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Abstract

This thesis investigates the behaviour that Iterated Prisoner’s Dilemma strategies

should adopt as a response to different environments. The Iterated Prisoner’s Dilemma

(IPD) is a particular topic of game theory that has attracted academic attention due

to its applications in the understanding of the balance between cooperation and com-

petition in social and biological settings.

This thesis uses a variety of mathematical and computational fields such as linear al-

gebra, research software engineering, data mining, network theory, natural language

processing, data analysis, mathematical optimisation, resultant theory, markov mod-

elling, agent based simulation, heuristics and machine learning.

The literature around the IPD has been exploring the performance of strategies in the

game for years. The results of this thesis contribute to the discussion of successful

performances using various novel approaches.

Initially, this thesis evaluates the performance of 195 strategies in 45,600 computer

tournaments. A large portion of the 195 strategies are drawn from the known and

named strategies in the IPD literature, including many previous tournament winners.

The 45,600 computer tournaments include tournament variations such as tournaments

with noise, probabilistic match length, and both noise and probabilistic match length.

This diversity of strategies and tournament types has resulted in the largest and most

diverse collection of computer tournaments in the field. The impact of features on

the performance of the 195 strategies is evaluated using modern machine learning and

statistical techniques. The results reinforce the idea that there are properties associated

with success, these are: be nice, be provocable and generous, be a little envious, be

clever, and adapt to the environment.

Secondly, this thesis explores well performed behaviour focused on a specific set of IPD

strategies called memory-one, and specifically a subset of them that are considered
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extortionate. These strategies have gained much attention in the research field and

have been acclaimed for their performance against single opponents. This thesis uses

mathematical modelling to explore the best responses to a collection of memory-one

strategies as a multidimensional non-linear optimisation problem, and the benefits of

extortionate/manipulative behaviour. The results contribute to the discussion that

behaving in an extortionate way is not the optimal play in the IPD, and provide

evidence that memory-one strategies suffer from their limited memory in multi agent

interactions and can be out performed by longer memory strategies.

Following this, the thesis investigates best response strategies in the form of static

sequences of moves. It introduces an evolutionary algorithm which can successfully

identify best response sequences, and uses a list of 192 opponents to generate a large

data set of best response sequences. This data set is then used to train a type of

recurrent neural network called the long short-term memory network, which have not

gained much attention in the literature. A number of long short-term memory networks

are trained to predict the actions of the best response sequences. The trained networks

are used to introduce a total of 24 new IPD strategies which were shown to successfully

win standard tournaments.

From this research the following conclusions are made: there is not a single best strategy

in the IPD for varying environments, however, there are properties associated with the

strategies’ success distinct to different environments. These properties reinforce and

contradict well established results. They include being nice, opening with cooperation,

being a little envious, being complex, adapting to the environment and using longer

memory when possible.
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1

Chapter 1

Introduction

Game theory is a field that makes use of mathematical tools and logic to model and

analyse situations of conflict, cooperation, and competition. One of the most well-

known examples of a strategic game is the Prisoner’s Dilemma, consisting of two players

which can either cooperate or defect. A more realistic version of the game is that

of the Iterated Prisoner’s Dilemma where the two players play more than once in

succession. The players remember the previous actions taken and change their strategy

accordingly.

The world is surrounded by situations of conflict, and understanding the emergent

outcome of interactions between two players can have a significant impact in economical

and political sciences.

In 1984 “The evolution of Cooperation” was published by Robert Axelrod introducing

the usage of the Iterated Prisoner’s Dilemma and computer modelling in studying

situations of conflict. Axelrod explored the optimal behaviour of players in round robin

tournaments using computer strategies. Many tournaments have followed Axelrod’s,

and today the literature and various codebases contain hundreds of strategies. The

aim of all these strategies has been to capture the best behaviour when playing the

game.

This thesis aims to reinforce the understanding of optimal behaviour in the Prisoner’s

Dilemma for a variety of environments. It summarises, evaluates and builds upon

previous literature. It does not only contribute to the discussion of dominant behaviour

but also provides new mathematical results for the continued understanding of the

questions raised throughout.
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This introductory Chapter is set as follows:

• section 1.1 introduces the Prisoner’s Dilemma.

• section 1.2 covers a brief literature review.

• section 1.3 formalises the research questions and sets out the structure of the

thesis.

• section 1.4 presents the software development techniques used throughout the

thesis.

1.1 Prisoner’s Dilemma

Game theory was formalised in 1944 [214] and is the study of interactions as games. A

game is a model of interacting decision makers referred to as players. Each player has

a set of possible actions, and the game captures the interactions of the players’ actions

by allowing each player’s payoffs to be dependant on the actions of all players. More

precisely, as given in [229], the formal definition of a game is as follows:

Definition 1.1.1. A game consists of

• a set of players,

• for each player, a set of actions and

• for each player, payoff functions mapping the set of all actions to a numerical

value.

One of the most well known games is the Prisoner’s Dilemma (PD) originally described

in [83]. The PD is a two player non-cooperative game which illustrates aspects of

political philosophy and morality; how selfishness will lead to an ‘inefficiency’ of the

outcome even though selflessness can be evolutionarily advantageous.

More specifically, in the PD each player has two actions, to either be selfless and

cooperate, denoted as (C), or to be selfish and defect, denoted as (D). Each decision is

made simultaneously and independently. The players’ payoffs are generally represented

by Equation (1.1). Both players receive a reward for mutual cooperation, R, and

a payoff P for mutual defection. A player that defects while the other cooperates
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receives a payoff of T , whereas the cooperator receives S.

Sp =

R S

T P

 Sq =

R T

S P

 (1.1)

It is assumed that two cooperating players do better than two defecting ones, and thus,

the payoff of two cooperating players is larger than the payoff of two defecting players;

R > P . A player, however, has the temptation to deviate, as that player will receive a

higher payoff T than that of mutual cooperation R whilst the cooperator’s payoff S is

smaller than P . In consequence, the payoffs are constrained by Equation (1.2).

T > R > P > S (1.2)

A second constraint which ensures that a social dilemma arises, is that the sum of the

utilities to both players is best when they both cooperate, Equation (1.3).

2R > T + S (1.3)

An equivalent representation of the PD is the donation game. In the donation game

each player can cooperate by providing a benefit b to the other player at a cost c

with b > c > 0. Thus, the players’ payoffs for the donation game are as given by

Equation (1.4).

Sp =

b− c c

b 0

 Sq =

b− c b

c 0

 (1.4)

This thesis studies the PD as given by Equation (1.1). There are numerical experiments

presented in the following Chapters. These have been carried out using the payoff values

of R = 3, P = 1, T = 5 and S = 0, which are the values most commonly used in the

literature [13,39,45,47,75,85,125,159,164,177,246,271].

In non-cooperative games the players interact in order to achieve their best possible

outcome. A best response strategy is a strategy that maximises the utility of a player
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given a known strategy of the other player. A solution concept commonly used in game

theory is the Nash equilibrium [213] which is a pair of best response strategies at which

neither of the players has a reason to deviate.

In the PD due to constraint (1.2) it never benefits a player to cooperate. A player

that cooperates receives either a payoff of R or S depending on the action of the

other player, whereas if a player defects they receive either T or P , and T > R and

P > S. Once both players defect neither have a reason to change their decision. Thus,

in the PD mutual defection is a Nash equilibrium and defection is the best response

strategy.

The game can be studied in a manner where prior outcomes matter. The repeated

form of the game is called the Iterated Prisoner’s Dilemma (IPD) and it differs from

the original concept of a PD because participants can learn about the behavioural

tendencies of their opponent. In the IPD defecting is no longer necessarily the dominant

action, and identifying a best response is not always trivial.

1.2 Brief history of the IPD

In the 1980’s Robert Axelrod studied the best way of behaving in the IPD by run-

ning a series of computer tournaments with two collections of strategies [39]. These

strategies were written/submitted by researchers. Axelrod performed an evolutionary

tournament [35] and two round robin tournaments [33, 34]. The strategy that took

over the population and won both tournaments was the strategy Tit For Tat. Axel-

rod’s results demonstrated the robustness of the strategy in those environments and

subsequently the robustness of reciprocal behaviour. These results, however, did not

consider the success of the strategy in other environments. This became more evi-

dent as further competitions and mathematical formulations introduced new dominant

strategies. A brief summary of selected works and their dominant strategies are given

by Table 1.1.

More details on these works will be presented in Chapter 2, and following Chapters 2

and 3 it will become evident that the literature on the IPD is rich, and new strategies

and competitions are being published every year. The question, however, still remains

the same: what is the best way to play the game?
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Year Reference Environment Dominating Strategies

1980 [33] Round robin tournament with 13 participants Tit For Tat

1980 [34] Round robin tournament with a probabilistic ending and 13 participants Tit For Tat

1984 [35] Ecological tournament with 64 participants Tit For Tat

1987 [44] Round robin & ecological tournament with 12 participants Gradual

1991 [47] Round robin tournament with noise and 13 participants Nice and Forgiving

2005 [159] Varied with 223 participants Varying

2012 [271] Round robin tournament with 13 participants Generous zero-determinants

2016 [165] Round robin tournament with 130 participants Heuristically trained strategies

2017 [125] Round robin tournament with 200 participants Heuristically trained strategies

Table 1.1: An overview of published works that introduced dominating IPD strategies
in their respective environments. These strategies were either explicitly calculated,
intelligently designed, or were developed through training methods.

1.3 Research questions & Thesis structure

This thesis contains eight Chapters, which together attempt to answer the research

question:

What behaviour should an Iterated Prisoner’s Dilemma strategy adopt as a

response to different environments to achieve a high average score against a list

of opponents?

Initially, Chapter 2 provides a condensed literature review which summarises the al-

ready established results of the literature. Chapter 2 separates the reviewed manuscripts

under different research topics identified manually. To complement the manual sepa-

ration of articles under research topics, Chapter 3 automatically partitions 2,422 IPD

articles using data mining, machine learning and natural language processing. The

data set of 2,422 articles’ metadata has been collected using a bespoke research soft-

ware tool, which was written for this work but has since been used by others. The data

set is further analysed using network theoretic approaches to explore the behaviour of

authors.

There are four Chapters to the thesis which explore best behaviour using original

approaches. Namely, Chapter 4 analyses a set of 45,600 computer tournaments of

distinct types and evaluates 195 strategies’ performance. Chapter 5 explores best

response strategies to environments of memory-one opponents and Chapter 6 explores

best response strategies in the form of static sequences of moves to a collection of

opponents. Finally Chapter 7, uses the data set of best response sequences generated

in Chapter 6 to train an IPD strategy using a recurrent neural network.
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The eight Chapters of the thesis and their role is illustrated in Figure 1.1. An arrow

between one Chapter and another implies that the work described in one serves as

motivation for the other.

2. Literature Review

1. Introduction

3. Bibliometric Study of
the Prisoner’s Dilemma

5. Best Response
Memory-one Strategies

6. Best Re-
sponse Sequences

4. Meta Analy-
sis of Tournaments

7. Long Short-Term
Memory Networks

Figure 1.1: Structure of this thesis.

A summary of each Chapter is given below:

• Chapter 1 has contextualised the main research question of this thesis. Back-

ground of game theory and the PD has been given, and the structure of the

remainder of the thesis has been outlined.

• Chapter 2 provides a literature review for the PD and a manual classification of

the reviewed papers under research topics. The manually identified research top-

ics include evolutionary dynamics, intelligently designed strategies and structured

strategies which have undergone training.

• Chapter 3 presents a bibliometric analysis of 2,422 IPD articles. It uses natural

language processing to identify five research topics, and a graph theoretic ap-

proach to quantify the collaborativeness of the field. The five identified topics
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are human subject research, biological studies, strategies, evolutionary dynamics

on networks and modelling problems as a PD.

• Chapter 4 generates and analyses a set of 45,600 computer tournaments. It eval-

uates 195 strategies, many of which are well known strategies from the literature.

It presents the top performing strategies and analyses their salient features. The

results show that there is not yet a single strategy that performs well in diverse

IPD scenarios, nevertheless there are several properties that heavily influence the

best performing strategies. These are: be nice, be provocable and generous, be a

little envious, be clever, and adapt to the environment.

• Chapter 5 explores best responses to a collection of memory-one strategies as

a multidimensional non-linear optimisation problem. It presents a closed form

algebraic expression for the utility of a memory-one strategy against a given set

of opponents, a compact method of identifying its best response to that given set

of opponents whilst having a theory of mind, and it introduces a well designed

framework that allows the comparison of an optimal memory-one strategy and

a more complex strategy which has a larger memory. The results add to the

literature that has shown that extortionate play is not always optimal, by showing

that optimal play is often not extortionate.

• Chapter 6 explores the problem of IPD best responses in the form of sequences.

It heuristically identifies the best response sequence against 192 strategies, and

generates a data set of 750 best response sequences of 205 turns. The Chapter

mainly serves as a foundation for Chapter 7 but does present a novel heuristic

and a study of its performance.

• Chapter 7 uses the data set of best response strategies obtained from Chapter 6 to

train a type of recurrent neural network to predict best response sequences. The

recurrent neural network used is the long short-term memory network (LSTM)

which has gained a lot of attention in the machine learning literature but not in

the IPD literature. A total of 8 were trained which were then used to introduce

24 distinct IPD strategies. It is demonstrated that a set of these strategies can

win standard tournaments and the best LSTM performers on average rank at the

top 25% of any standard tournament.

• Chapter 8 summarises the work of the previous chapters, and indicates possible

directions of future work, identifying further research questions that have arisen.
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Chapters 4-7 explore behaviour in the IPD. The disparity between the approaches is

their depth, as illustrated in Figure 1.2. Chapter 4 explores best responses by analysing

a data set of tournaments and evaluating the performance of pre-designed strategies.

The exact opposite is done in Chapter 5 where for a given set of two memory-one

opponents a best response strategy is calculated explicitly. Similarly, a best responses

sequence against a given opponent is calculated in Chapter 6, but this is done using a

heuristic method. Finally, Chapter 7 uses a machine learning algorithm to generate an

well performed strategy based on recurrent networks without any manual input.

4. Meta Analy-
sis of Tournaments

7. Long Short-Term
Memory Networks

6. Best Re-
sponse Sequences

5. Best Response
Memory-one Strategies

d
e
p

th

Figure 1.2: The depth of exploration whilst reporting on the research question.

Most Chapters of the thesis make use of parameters. There are instances that the

same symbol is used in different Chapters to denote different parameters with different

meanings. The parameters of each Chapter alongside a brief exploration per Chapter

is given in the Appendix D.

1.4 Software development & Best practices

A survey conducted by the Software Sustainability Institute at 15 Russell Group Uni-

versities showed that 92% of the researchers questioned use software intensively in their

work, and 70% said that “It would not be practical to conduct my work without soft-

ware” [131]. Similarly, the research of this thesis heavily relies on software. As with

all research there is an obligation to ensuring the correctness and reproducibility of

the results and the software decisions throughout this thesis have been driven by these

requirements.

For the research of each Chapter (excluding Chapters 2 and 8) source code and analysis

code have been developed. All code is written in the open source language Python, has

been made public via GitHub and has one of the most flexible and permissive licences,
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the MIT licence. Essentially, the code developed for the thesis is available for inspec-

tion, testing, and modification which enables and encourages greater understanding of

the underlying methodology, increases model confidence, and provides an extendable

framework which can be used by others.

Two themes arise as vital in research software development: reproducibility and sus-

tainability. To reassure the reproducibility and sustainability of the software, and

subsequently the research described in the thesis, several methods of best practice [11,

49,66,70] were considered and implemented during development. Namely:

• Version control

• Virtual environments

• Automated testing

• Documentation

These will be discussed in the following subsections.

1.4.1 Version control

Version control, is a system which records all files that make up a project (down to

the line) over time, tracking their development. It also provides the ability to recall

previous versions of files. This type of system is essential for ensuring reproducibility

of scientific research [254,293].

A good version control system has the following features as stated in [250]:

• Backup and restore: Files can be saved as they are edited and have the facility

to jump to a previous version.

• Synchronisation: Source code files can be shared and users can update their

codebase with the latest version.

• Undo changes: Changes made to the code can be undone by going back to a

version that was saved in the past.

• Track changes: Messages are attacked to file changes in order to track the how

and why the code evolved over time.

• Track ownership: File changes are tagged with the user’s name who made the

changes.
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• Sandboxing: The ability to make temporary changes in an isolated area, called

a sandbox, to test and try out code before it is checked in.

• Branching and merging: This is akin to a larger sandbox. Users can branch a

copy of the code into a separate area and modify it in isolation (tracking changes

separately). Later, the work can be merged back into the original codebase.

There are a number of popular tools for version control, these include Git [94], Sub-

version [18], and Mercurial [201]. The version control system chosen to carry out the

software development here is Git.

There are several services that host Git servers online and allow users to work with

Git publicly. These services are essential for reproducibility as they make not only

the source code for the computer programmes available online but also the history of

its development. Such services are GitHub [95], SourceForge [265], GitLab [97], and

BitBucket [31]. GitHub is the chosen service for the thesis which integrates well with

Git.

An important feature of GitHub is that it fosters collaboration between users. It is a

social service which allows users to comment and raise issues on each other’s repos-

itories. Moreover, it encourages collaboration and code contributions by other users

through pull request features. An example of a pull request on a GitHub repository is

given by Figure 1.3. In Figure 1.3 it is shown how changes are tagged with a user and

a short message describing the alternations made to the codebase.

Figure 1.3: An example of a pull request on GitHub.
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The code for Chapters’ 3-7 is hosted on individual GitHub repositories, Table 1.2. The

source code for each repository has been packaged and has been archived on Zenodo [59].

Zenodo is a platform where code, data and other project elements can be permanently

archived. Zenodo does this by assigning projects a Digital Object Identifier (DOI)

which makes the work citable.

1.4.2 Virtual environments

The source code of each repository has Python libraries as dependencies. Though

several of these projects use the same libraries, the versions of these libraries can differ.

Tracking software dependencies is of paramount importance in order to ensure the

reproducibility of computer code.

There are several tools for keeping dependencies required by different projects sepa-

rated. The tool used here are Python virtual environments. More specifically, the

Anaconda virtual environments which integrate easily with the programming language

Python. Anaconda [16] is a free and open-source distribution of the Python and R

programming languages for scientific computing, that aims to simplify package man-

agement and deployment. Package versions are managed by the package management

system conda.

The Anaconda distribution manager: conda allows users to create, export, list, remove,

and update environments that have different versions of Python and/or packages in-

stalled in them. Switching or moving between environments is called activating the

environment. An environment can be shared and kept under version control as a file.

An example of such a file is given by Figure 1.4.

Each Chapter’s repository includes an environment file detailing the dependencies of

the source code and their versions.

1.4.3 Automated testing

Testing code is of considerable importance in order to ensure the robustness, correctness

and sustainability of the computer code. The standard method of testing code is

through automated testing using test suits that run parts of the code and assert whether

they are behaving as expected.

Two types of tests are described in [232], functional tests that assert the code’s func-

tionality, and unit tests that help ensure the code is clean and free of bugs.
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name: opt-mo

channels:

- defaults

dependencies:

- python=3.6.7

- numpy=1.15.4

- pandas=0.23.4

- pip:

- attrs==19.1.0

- axelrod==4.4.0

- black==18.9b0

- sympy==1.2.0

- scikit-optimize==0.5.2

- jupyter==1.0.0

- jupyter-console==5.2.0

- ipython==6.4.0

- pytest==4.0.1

- pytest-cov==2.7.1

- sqlalchemy==1.2.17

- fsspec==0.3.3

Figure 1.4: An example of an environment file. The name of the specific environment
is called opt-mo and it corresponds to the environment associated with Chapter 5.

Functional tests aim to test how the whole application functions from the perspective

of the outside user. They feed in basic input and test whether the end product/final

behaviour is as expected. Unit tests assert that small chunks of code behave as ex-

pected, and they test the application from the point of the programmer. Unit tests are

isolated from the rest of the code and are modular. There are two types of unit tests:

pure and integrated tests.

Pure unit tests are written to test only one function or method. Thus, if a pure unit

test was to fail then it should be due to problems with the specific part of the code it

is testing only, and not any other bit of code. Pure unit tests are fast and readable,

however, they do not test how well functions and methods integrate with one another.

This is tested by writing unit tests that rely on other parts of the code that are not

explicitly being tested. This type of unit test is called integrated tests.

Automated tests, which include functional and unit tests, have been implemented for

the repositories associated with the thesis. This was done using the Python library

pytest which makes it easy to write automated tests in a few lines and to check

for code coverage. Coverage is a measure used to describe how much of the code is

executed (covered) by the testing suite. Coverage is tested using a plugin to pytest,

the pytest-cov.
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To regularly test code which aims to be merged back into the original codebase con-

tinuous integration (CI) systems are used. CIs perform the tests suite and the cover-

age checks every time a new version of the codebase is made available (“pushed”) on

GitHub. The benefits of using a CI are identifying bugs quickly, reducing problems

when merging in contributions from collaborators, and adding transparency to the de-

velopment process. There are two CIs that have been used in the repositories listed in

Table 1.2. These are Travis [279] and GitHub Actions [96].

1.4.4 Documentation

Software documentation is written text or illustration that accompanies computer soft-

ware or is embedded in the source code. The documentation either explains how the

software operates or how to use it.

Each repository associated with the thesis includes a detailed README file. These con-

tain installation instructions for the corresponding packaged source code and demon-

strate how to run the associated test suite. The source code for each repository has

been written in a modular way and meaningful names have been given to all variables,

functions, methods and classes. Each function, method and class includes a docstring.

A docstring is a series of sentences used to document a specific segment of code.

The repositories also include a series of Jupyter Notebooks [153] that are used to carry

out the analysis of each Chapter, and serve as demonstration of the source code’s

usage.

1.4.5 Summary of software written

As previously stated the codebases for Chapters 3-7 have been written following best

practices, have been packaged, are available on GitHub and have been archived on Zen-

odo. These practices have been followed to ensure the correctness, reproducibility and

sustainability of the source code and research described throughout the thesis.

To ensure the reproducibility of the work the data sets used in several of the following

Chapters have also been archived and are available online. The details for the source

code and data sets for each Chapter are summarised in Table 1.2.

Throughout the thesis, parts of the source code and examples of the code’s usage are

going to be presented in the corresponding Chapters. Two types of code snippets are

used in this thesis to present code. Firstly code snippets that demonstrate the source
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GitHub url Source code archive Data archive

Chapter 3 https://github.com/Nikoleta-v3/bibliometric-study-of-the-prisoners-dilemma [110] [101–103]

Chapter 4 https://github.com/Nikoleta-v3/meta-analysis-of-prisoners-dilemma-tournaments [99] [100,105]

Chapter 5 https://github.com/Nikoleta-v3/Memory-size-in-the-prisoners-dilemma [111] [104]

Chapter 6 & 7 https://github.com/Nikoleta-v3/Training-IPD-strategies-with-RNN [98] [106,108,109]

Table 1.2: A summary of the GitHub repositories, source code and data archives
associated with the thesis.

code of a specific piece of software as shown in Figure 1.5, and code snippets that

demonstrate the usage as shown in Figure 1.6. These can be distinguish by the three

arrows, >>>, which are only found in the usage code snippets. The three arrows are

followed by a command. It demonstrates that the command is executed in a Python

interpreter, and the result of executing the command is the one in the following lines

without the arrows. The code snippets can also be distinguish by their background

color. The usage snippets have a lighter background.

1 import axelrod as axl

2

3 def simulate_match_utility(player, opponent, turns=500, repetitions=200):

4 """

5 Returns the simulated utility of a memory one player against a single opponent.

6 """

7 total = 0

8 players = [axl.MemoryOnePlayer(vector) for vector in [player, opponent]]

9 for rep in range(repetitions):

10 match = axl.Match(players=players, turns=turns)

11 _ = match.play()

12

13 total += match.final_score_per_turn()[0]

14

15 return total / repetitions

Figure 1.5: Example of a function implemented withing the package opt_mo which is
the package that has been developed to carry out the research of Chapter 5.

1 >>> import opt_mo

2 >>> opt_mo.utility.simulate_match_utility([1, 0, 1, 0], [1, 1, 1, 1])

3 3.0

Figure 1.6: An example of using the function simulate_match_utility given by Fig-
ure 1.5.

The results of this thesis heavily rely not only on the projects of Table 1.2 but also on the

open source package Axelrod-Python library (APL). APL [7] is an open source project

for simulating rounds of the IPD which contains a large collections of strategies. APL

https://github.com/Nikoleta-v3/bibliometric-study-of-the-prisoners-dilemma
https://github.com/Nikoleta-v3/meta-analysis-of-prisoners-dilemma-tournaments
https://github.com/Nikoleta-v3/Memory-size-in-the-prisoners-dilemma
https://github.com/Nikoleta-v3/Training-IPD-strategies-with-RNN
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has several capabilities which include performing different types of tournaments. Its

documentation is found at http://axelrod.readthedocs.io/. The specific version

of APL used in each Chapter will be mentioned at the start of each Chapter.

This thesis itself is hosted on a GitHub repository at https://github.com/Nikoleta-

v3/Thesis. It is written in the document preparation system LATEX, and automated

tests have been setup to test that the document compiles, spelling is correct, every time

an updated version of the document is pushed to GitHub. The usage code examples

of this thesis are also automatically tested. Each command beginning with the symbol

>>> is executed each time the document is pushed to GitHub. The test executes the

commands and checks that the outcome is the same as the one following the command

in the code snippets.

1.5 Chapter summary

This Chapter has introduced the IPD which is the strategic game used in this thesis.

It has presented a review of the Axelrod’s tournaments in the 1980s, and presented a

list of tournaments that have been performed ever since.

The research questions of this thesis and how each Chapter contributes to these ques-

tions have been outlined. The research of this thesis heavily reliefs on software. The

software includes already established packages and packages that have been developed

specifically for this thesis. These have been developed following best practices. A

number of best practices were introduced in section 1.4.

The software packages and the data sets used in the following Chapters have been

archived and made available online. This reassures that all the results presented in the

following Chapters are reproducible. The developed packages as well as this thesis are

being hosted on GitHub repositories and are being tested using automated tests.

http://axelrod.readthedocs.io/
https://github.com/Nikoleta-v3/Thesis
https://github.com/Nikoleta-v3/Thesis
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Chapter 2

A literature review of the

Prisoner’s Dilemma.

2.1 Introduction

Chapter 1 introduced the PD as the main game theoretic model that will be used

throughout this thesis, and presented a brief literature review of the research this

thesis is building upon. This Chapter provides a more detailed literature on the PD.

The aim of this Chapter is to provide a concrete summary of the existing literature and

to identify research topics in the field of the PD. This is achieved by partitioning the

literature in five different sections each reviewing a different aspect of research. The

Chapter is structured as follows:

• section 2.2 presents the origin of the PD and reviews the early publications in

the field and the use of human subject research.

• section 2.3 presents the pioneering computer tournaments of Axelrod and reviews

IPD strategies of intelligent design.

• section 2.4 discusses the emergence, or not, of cooperative behaviour in evolu-

tionary dynamics.

• section 2.5 defines structured strategies in the IPD, the notion of training and

discusses related papers.

• section 2.6 reports on educational and research software used for simulating the

PD game.
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2.2 Origins of the Prisoner’s Dilemma

The origin of the PD goes back to the 1950s in early experiments conducted at

RAND [83] to test the applicability of games described in [214]. The game received

its name later the same year. According to [280], Albert W. Tucker (the PhD super-

visor of John Nash [213]), in an attempt to deliver the game with a story during a

talk described the players as prisoners and the game has been known as the Prisoner’s

Dilemma ever since.

The early research on the IPD was limited. The only source of experimental results

was through human subject research where pairs of participants simulated plays of the

game, and human subject research had disadvantages. Humans could behave randomly

and in several experiments both the size and the background of the individuals were

different, thus comparing results of two or more studies became difficult.

The main aim of these early research experiments was to understand how conditions

such as the gender of the participants [81, 184, 187], the physical distance between the

participants [259], the effect of their opening moves [278] and even how the experi-

menter, by varying the tone of their voice and facial expressions [91], could influence

the outcomes and subsequently the emergence of cooperation. An early figure that

sought to understand several of these conditions was the mathematical psychologist

Anatol Rapoport. The results of his work are summarised in [239].

Rapoport was also interested in conceptualising strategies that could promote interna-

tional cooperation. Decades later he would submit the winning strategy (Tit For Tat)

of the first computer tournament, run by Axelrod. These tournaments and several

strategies that were designed by researchers, such as Rapoport, are introduced in the

following section.

2.3 Axelrod’s tournaments and intelligently designed strate-

gies

As discussed in section 2.2, before 1980 a great deal of research was done in the field,

however, as described in [37], the political scientist Axelrod believed that there was no

clear answer to the question of how to avoid conflict, or even how an individual should

play the game. Combining his interest in artificial intelligence and political science

Axelrod created a framework for exploring these questions using computer tournaments
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and made the study of cooperation of critical interest. As described in [240], “Axelrod’s

new approach has been extremely successful and immensely influential in casting light

on the conflict between an individual and the collective rationality reflected in the

choices of a population whose members are unknown and its size unspecified, thereby

opening a new avenue of research”.

The first reported computer tournament took place in 1980 [33]. Axelrod asked re-

searchers to design a strategy with the purpose of winning an IPD tournament. A

total of 13 strategies were submitted, written in the programming languages Fortran

or Basic. Each competed in a 200 turn match against all 12 opponents, itself and a

player that played randomly (called Random). This type of tournament is referred to

as a round robin. The tournament was repeated 5 times to get a more stable estimate of

the scores for each pair of play. Each participant knew the exact number of turns and

had access to the full history of each match. Furthermore, Axelrod performed a pre-

liminary tournament and the results were known to the participants. This preliminary

tournament is mentioned in [33] but no details were given.

The winner of the tournament was determined by the total average score and not by

the number of matches won. The strategy that was announced the winner was the

strategy submitted by Rapoport, Tit For Tat. The success of Tit For Tat came as a

surprise. It was not only the simplest submitted strategy, it would always cooperates on

the first round and then mimic the opponent’s previous move, but it had also won the

tournament even though it could never beat any player it was interacting with.

In order to further test the results Axelrod performed a second tournament in 1980 [34].

The second tournament received much more attention and had a total of 62 entries. The

participants knew the results of the previous tournament and the rules were similar

with only a few alterations. The tournament was repeated 5 times and the length

of each match was not known to the participants. Axelrod intended to use a fixed

probability (referred to as ‘shadow of the future’ [38]) of the game ending on the next

move. However, 5 different number of turns were selected for each match 63, 77, 151,

308 and 401, such that the average length would be around 200 turns.

Nine of the original participants competed again in the second tournament. Two

strategies that remained the same were Tit For Tat and Grudger. Grudger is a

strategy that will cooperate as long as the opponent does not defect, submitted by

James W. Friedman. The name Grudger was given to the strategy in [180]. The
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strategy goes by many names in the literature such as Spite [44], GrimTrigger [42] and

Grim [285]. New entries in the second tournament included Tit for Two Tats submitted

by John Maynard Smith and KPavlovC. KPavlovC, is also known as Simpleton [239]

or just Pavlov [218]. The strategy is based on the fundamental behavioural mechanism

win-stay, lose-shift. Pavlov is heavily studied in the literature and similarly to Tit

For Tat had many variants trying to build upon its success, for example PavlovD and

Adaptive Pavlov [177].

Despite the larger size of the second tournament none of the new entries managed to

outperform the simpler designed strategy. The winner was once again Tit For Tat.

Axelrod concluded that the strategy’s robustness was due to four properties, which he

adapted into four suggestions on doing well in an IPD:

• Do not be envious by striving for a payoff larger than the opponent’s payoff.

• Be “nice”; Do not be the first to defect.

• Reciprocate both cooperation and defection; Be provocable to retaliation and to

apologies.

• Do not be too clever by scheming to exploit the opponent.

Being provocable to apologies refers to a strategy’s ability to go from a DC to C, which

is also referred to as forgiveness. The only way Tit For Tat would end up in DC is if it

had received a defection and then retaliated. Subsequently, Tit For Tat would forgive

an opponent that apologises (in a DC round) by returning to cooperation.

The success of Tit For Tat, however, was not unquestionable. Several papers showed

that stochastic uncertainties severely undercut the effectiveness of reciprocating strate-

gies and such stochastic uncertainties have to be expected in real life situations [203].

For example, in [209] it is proven that in an environment where noise (a probability

that a player’s move will be flipped) is introduced two strategies playing Tit For Tat re-

ceive the same average payoff as two Random players. Hammerstein, pointed out that

if by mistake, one of two Tit For Tat players makes a wrong move, this locks the two

opponents into a hopeless sequence of alternating defections and cooperations [258].

The poor performance of the strategy in noisy environments was also demonstrated in

tournaments. In [47, 75] round robin tournaments with noise were performed, and Tit

For Tat did not win. The authors concluded that to overcome the noise more generous

strategies than Tit For Tat were needed. They introduced the strategies Nice and For-
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giving and Omega Tit For Tat respectively. A second type of stochastic uncertainty is

misperception, where a player’s action is made correctly but it is recorded incorrectly

by the opponent. In [294], a strategy called Contrite Tit For Tat was introduced that

was more successful than Tit For Tat in such environments. The difference between

the strategies was that Contrite Tit For Tat was not so fast to retaliate against a

defection.

Several works extended the reciprocity based approach which has led to new strategies.

For example Gradual [44] which was constructed to have the same qualities as those

of Tit For Tat except one, Gradual had a memory of the game since the beginning of

it. Gradual recorded the number of defections by the opponent and punished them

with a growing number of defections. It would then enter a calming state in which it

would cooperates for two rounds. In a tournament of 12 strategies, including both Tit

For Tat and Pavlov, Gradual managed to outperformed them all. A strategy with

the same intuition as Gradual is Adaptive Tit For Tat [282]. Adaptive Tit For Tat

does not keep a permanent count of past defections, it maintains a continually updated

estimate of the opponent’s behaviour, and uses this estimate to condition its future

actions. In the exact same tournament as in [44] with now 13 strategies Adaptive Tit

For Tat ranked first.

Another extension of strategies was that of teams of strategies [73,74,246] that collude

to increase one member’s score. In 2004 Graham Kendall led the Anniversary Iterated

Prisoner’s Dilemma Tournament with a total of 223 entries. In this tournament par-

ticipants were allowed to submit multiple strategies. A team from the University of

Southampton submitted a total of 60 strategies [246]. All these were strategies that

had been programmed with a recognition mechanism by default. Once the strategies

recognised one another, one would act as leader and the other as a follower. The fol-

lower plays as a Cooperator, cooperates unconditionally and the leader would play as

a Defector gaining the highest achievable score. The followers would defect uncondi-

tionally against other strategies to lower their score and help the leader. The result

was that Southampton had the top three performers. Nick Jennings, who was part

of the team, said that “We developed ways of looking at the Prisoner’s Dilemma in a

more realistic environment and we devised a way for computer agents to recognise and

collude with one another despite the noise. Our solution beats the standard Tit For

Tat strategy” [284].
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2.3.1 Memory-one strategies

A set of strategies that have received a lot of attention in the literature are memory-

one strategies. In [219], Nowak and Sigmund proposed a structure for studying simple

strategies that remembered only the previous turn, and moreover, only recorded the

move of the opponent. These are called reactive strategies and they can be represented

by using three parameters (y, p1, p2), where y is the probability to cooperate in the

first move, and p1 and p2 are the conditional probabilities to cooperate given that the

opponent’s last move was a cooperation or a defection. For example Tit For Tat is

a reactive strategy and it can be written as (1, 1, 0). Another reactive strategy well

known in the literature is Generous Tit For Tat [221] (1, 1, 1
3).

In [220], Nowak and Sigmund extended their work to include strategies which consider

the entire history of the previous turn to make a decision. These are called memory-one

strategies. If only a single turn of the game is taken into account and depending on

the simultaneous moves of the two players there are only four possible states that the

players could be in. These are:

• Both players cooperated, denoted as CC.

• First player cooperated while the second one defected, denoted as CD.

• First player defected while the second one cooperated, denoted as DC.

• Both players defected, denoted as DD.

A memory-one strategy can be denoted by the probabilities of cooperating after each

state and the probability of cooperating in the first round, (y, p1, p2, p3, p4). For exam-

ple Pavlov’s memory-one representation is (1, 1, 0, 0, 1). Though reactive and memory-

one strategies have to specify their move in the first round, the opening move is a

transient effect and has no affect on the game in long run [262]. Consequently, reac-

tive strategies can be described as an element ∈ R2 and memory-one strategies as an

element ∈ R4.

Memory-one strategies made an impact when a specific subset of memory-one strategies

were introduced called zero-determinant strategies (ZDs) [234]. The American Mathe-

matical Society’s news section [136] stated that “the world of game theory is currently

on fire” and in [271] it was stated that “Press and Dyson have fundamentally changed

the viewpoint on the Prisoner’s Dilemma”. ZDs are a set of extortionate strategies that

can force a linear relationship between the long-run scores of both themselves and the
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opponent, therefore ensuring that the opponent will never do better than them. Press

and Dyson suggested that the ZDs were the dominant set of strategies in the IPD, and

as memory did not benefit them then they argued that memory is not beneficial for

any strategy. In [13, 125, 133–136, 163, 166, 175, 230, 271–273] the effectiveness of ZDs

is questioned. Namely, [272, 273] showed that memory-one strategies must be forgiv-

ing to be evolutionarily stable and [69, 125, 133, 163, 166, 175, 230] demonstrated that

longer-memory strategies have an advantage over short memory strategies. Memory-

one strategies and their limitations are also studied in this thesis, more specifically in

Chapter 5.

This section of the literature review covered the original computer tournaments of

Axelrod, the early success of Tit For Tat in these tournaments and large number of

IPD strategies. Though Tit For Tat was considered to be the most robust basic strategy,

reciprocity was found to not be enough in environments with uncertainties. There are

at least two properties, that have been discussed in this section, for coping with such

uncertainties; generosity and contrition. Generosity is letting a percentage of defections

go unpunished, and contrition is lowering a strategy’s readiness to defect following

an opponent’s defection. The strategies covered in this section are all strategies of

intelligent design. They have been designed by researchers and not surfaced from an

indirect process, such strategies are covered in section 2.5.

In the later part of this section a series of new strategies which were built on the

basic reciprocal approaches were presented, followed by memory-one strategies, the

zero-determinant strategies. Though the ZDs can be proven to be robust in pairwise

interactions they were found to be lacking in evolutionary settings and in computer

tournaments. Evolutionary settings and the emergence of cooperation under natural

selection are covered in the next section.

2.4 Evolutionary dynamics

As yet, the emergence of cooperation has been discussed in the contexts of the one shot

PD game (Chapter 1) and the IPD round robin tournaments (section 2.3). In the PD it

is known that cooperation will not emerge; furthermore, in a series of influential works

Axelrod demonstrated that reciprocal behaviour favours cooperation when individuals

interact repeatedly. But does natural selection favour cooperation? Understanding the

conditions under which natural selection can favour cooperative behaviour is important
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in understanding social behaviour amongst intelligent agents [55].

Imagine a mixed population of cooperators and defectors where every time two in-

dividuals meet they play a game of PD. In such population the average payoff for

defectors is always higher than cooperators. Under natural selection the frequency of

defectors will steadily increase until cooperators become extinct (Figure 2.1). Natural

selection favours defection in the PD, however, there are several mechanisms that allow

the emergence of cooperation in an evolutionary context which will be covered in this

section.
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Figure 2.1: Natural selection favours defection in a mixed population of Cooperator
(s) and Defector (s).

In the later sections of [34], Axelrod discusses an ecological tournament that he per-

formed using the 62 strategies of the second tournament to understand the reproduc-

tive success of Tit For Tat. In an ecological tournament the prevalence of each type of

strategy in each round is determined by that strategy’s success in the previous round.

The competition in each round becomes stronger as weaker performers are reduced

and eliminated. The ecological simulation concluded with a handful of nice strategies

dominating the population whilst exploitative strategies had died off. That was be-

cause the weaker strategies which were being exploitative were becoming extinct, and

exploitative strategies were loosing their prey.

This new result led Axelrod to study the IPD in an evolutionary context based on sev-

eral of the approaches established by the biologist J. Maynard Smith [266–268]. Smith

was a fundamental figure in evolutionary game theory and a participant of Axelrod’s

second tournament. The biological applications of the new evolutionary approach [35]

won Axelrod and his co-author William D. Hamilton the Newcomb-Cleveland prize of

the American Association for the Advancement of Science in 1981. In [35] pairs of

individuals from a population played the IPD. The number of interactions between the

pairs were not fixed, but there was a probability defined w, where 0 < w < 1, that the

pair would interact again. This was referred to as the importance of the future of the

game. It was shown that for a sufficient high w Tit For Tat strategies would become

common and remain common because they were “collectively stable”. Axelrod argued
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that collective stability implied evolutionary stability (ESS) and that when a collec-

tively stable strategy is common in a population and individuals are paired randomly,

no other rare strategy can invade. However, Boyd and Lorderbaum in [55] proved that

if w is large enough then no pure strategy is ESS because it can always be invaded by

any pair of other strategies. This was also independently proven in [236].

These conclusions were made in populations where the individuals could all interact

with each other. In 1992, Nowak and May considered a structured population where

an individual’s interactions were limited to its neighbours. More specifically, in [185]

they explored how local interaction alone can facilitate population wide cooperation

in a one shot PD game. The two deterministic strategies Defector and Cooperator

were placed onto a two dimensional square array where the individuals could interact

only with the immediate neighbours. The number of immediate neighbours could be

either fourth, six or eight, as shown in Figure 2.2, where each node represents a player

and the edges denote whether two players will interact. This topology is referred to as

spatial topology. Each cell of the lattice is occupied by a Cooperator or a Defector

and at each generation step each cell owner interacts with its immediate neighbours.

The score of each player is calculated as the sum of all the scores the player achieved

at each generation. At the start of the next generation, each lattice cell is occupied

by the player with the highest score among the previous owner and their immediate

neighbours.

Figure 2.2: Spatial neighbourhoods

Limited/Local interactions proved that as long as small clusters of cooperators form,

where they can benefit from interactions with other cooperators while avoiding interac-

tions with defectors, global cooperation will continue. Thus, local interactions proved

that even for the PD cooperation can emerge. Moreover in [225], whilst using the

donation game (Equation (1.4)), it was shown that cooperation will evolve in a struc-

tured population as long as the benefit to cost ratio b/c is higher than the number of

neighbours.
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In structured populations local interactions that can dynamically change were consid-

ered by Zhang and coworkers [299]. Graphs with a probability of rewiring connections

were considered, and the rewire could be with any given node in the graphs and not

just with immediate neighbours. Zhang et al concluded that “making new friends”

may be an important activity for the successful evolution of cooperation, but also they

must be selected carefully and one should keep their number limited. Finally, in [69] it

was shown that cooperation can evolve as a stable strategy in large social groups when

there are sufficient interactions on each round and players are able to base future play

on their observations of other players’ past actions (have a large memory).

Another approach for increasing the likelihood of cooperation by increasing of assor-

tative interactions among cooperative agents, include partner identification methods

such as reputation [147, 222, 276], communication tokens [205] and tags [63, 124, 205,

242].

This section considered papers on evolutionary dynamics and mechanisms that ensure

the emergence, or not, of cooperation. The emergence of cooperation using such mech-

anisms has not only been explored using only the PD but also other games such as the

public goods game [154]. The following section focuses on strategy archetypes, training

methods and strategies obtained from training.

2.5 Structured strategies and training

This section covers strategies that are different to that of intelligent design discussed in

section 2.3. These are strategies that have been through a training process using generic

strategy archetypes. For example, in [36] Axelrod explored deterministic strategies that

took into account the last 3 plays of both players. As discussed in section 2.3.1, for

each turn there are 4 possible outcomes, CC,CD,DC,DD, thus for 3 turns there are a

total of 4×4×4 = 64 possible combinations. Therefore, the strategy can be defined by

a series of 64 C’s/D’s, corresponding to each combination; this type of strategy is called

a lookup table. A graphical representation of the look up table strategy in [36] is given

by Figure 2.3a. In [36] lookup tables were trained using a genetic algorithm [168]. A

training process includes making random changes to a given instant of the lookup table,

Figure 2.3b. The strategy which corresponds to the new altered instant is evaluated in

a given setting set by the experiment, and if the utility of the strategy has increased this

change is kept and its genes are passed on to a new generation of strategies. A genetic
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algorithm is not the only heuristic method which can be used for training strategies,

realistically any heuristic method can be used.
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(a) A graphical representation of a look up
table player which considers 3 plays of both
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(b) Training a look up table player includes
making changes to the strategy’s responses
to a history.

Figure 2.3: A graphical representation of the lookup table strategy described in [36],
and a demonstration of the changes a strategy exhibits during training.

In 1996 John Miller considered finite state automata as an archetype [204], more specif-

ically, Moore machines [211]. The training process used a genetic algorithm and the

strategies were evaluated in a tournament with noise. Miller’s results showed that even

a small difference in noise (from 1% to 3%) significantly changed the characteristics

of the evolving strategies. The strategies he introduced were Punish Twice, Punish

Once For Two Tats and Punish Twice and Wait. A training combination of finite

state automata and a genetic algorithm was also considered in [29]. In a series of ex-

periments where the size of the population varied, there were two strategies frequently

developed by the training process, and moreover, they were developed only after the

evolution had gone on for many generations. These were Fortress3 and Fortress4.

A graphical representation of the strategies is given by Figure 2.4.

Also, in 1996 the first structured strategies based on neural networks that had been

trained using a genetic algorithm were introduced in [126] by Harrald and Fogel. Har-

rald and Fogel considered a single layered neural network which had 6 inputs. These

were the last 3 moves of the player and the opponent, similar to [36]. Neural networks

have broadly been used since 1996 to train IPD strategies [24, 27, 71, 85] with training

methods such as genetic algorithms [27, 65, 191] and particle swarm optimisation [85].

Chapter 7 of this thesis discusses the training of strategies using neural network in

more details, as the aim of the chapter is to use an extension of a neural network, a

recurrent neural network, to train an IPD strategy.
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Figure 2.4: A graphical representation of the strategies Fortress3 and Fortress4.
Finite state machines consist of a set of internal states. Fortress3 consists of 3 states
and Fortress4 of 4 states. There are transition arrows associated with the states.
Each arrow is labelled with A/R where A is the opponent’s last action and R is the
player’s response.

In [125, 163] both genetic algorithm and particle swarm optimisation were used to

introduce a series of structured strategies based on lookup tables, finite state machines,

neural networks, hidden Markov models [79] and Gambler. Hidden Markov models,

are a stochastic variant of a finite state machine and Gamblers are stochastic variants

of lookup tables. The structured strategies that arised from the training were put up

against a large number of strategies in (1) a Moran process, which is an evolutionary

model of invasion and resistance across time during which high performing individuals

are more likely to be replicated and (2) a round robin tournament with 200 strategies.

The top spots were dominated by the trained strategies of all the archetypes. The

top three strategies were Evolved LookerUp 2 2 2, Evolved HMM 5 and Evolved

FSM 16. In [163] it was demonstrated that these trained strategies would take over

the population in a Moran process. The strategies evolved an ability to recognise

themselves by using a handshake. This recognition mechanism allowed the strategies

to resist invasion by increasing the interactions between themselves, an approach similar

to the one described in section 2.4.

Throughout the different methods of training that have been discussed in this section,

a spectrum of structured strategies can be found. Differentiating between strategies is

not always straightforward. It is not obvious looking at a finite state diagram how a

machine will behave, and many different machines, or neural networks can represent

the same strategy. For example Figure 2.5 shows two finite automata and both are a

representation of Tit For Tat.

To allow for identification of similar strategies a method called fingerprinting was

introduced in [23] by Daniel Ashlock. The method of fingerprinting is a technique for
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(a) Tit For Tat as a finite state machine
with 1 state.
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(b) Tit For Tat as a finite state machine
with 2 states.

Figure 2.5: Finite state machine representations of Tit For Tat. A machine consists of
transition arrows associated with the states. Each arrow is labelled with A/R where
A is the opponent’s last action and R is the player’s response. Finite state machines
consist of a set of internal states. In (a) Tit For Tat finite state machine consists of 1
state and in (b) of 2.

generating a functional signature for a strategy [24]. This is achieved by computing the

score of a strategy against a spectrum of opponents. The basic method is to play the

strategy against a probe strategy with varying noise parameters. In [23] Tit For Tat is

used as the probe strategy. In Figure 2.6 an example of Pavlov’s fingerprint is given.

Fingerprinting has been studied in depth in [24–27]. Another type of fingerprinting is

the transitive fingerprint [7]. The method represents the cooperation rate of a strategy

against a set of opponents over a number of turns. An example of a transitive fingerprint

is given in Figure 2.7.
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Figure 2.6: Pavlov fingerprinting with Tit For Tat used as the probe strategy. Figure
was generated using [7]. The figure illustrates the average score Pavlov achieved against
Tit For Tat with varying noise parameters. In the bottom right Pavlov plays against
Tit For Tat without noise and achieves a score of 2.7. In the top left Pavlov plays
against Tit For Tat when both its actions are flipped with a probability of 1, and
achieves a score of 0.5.

This section covered a series of structured strategies based on different archetypes
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Figure 2.7: Transitive fingerprint of Tit For Tat against a set of 50 random opponents
with varying cooperation rate. The figure illustrates the cooperation rate of Tit For
Tat against the set of 50 random opponents over 40 turns. In the bottom right Tit
For Tat plays against a Random strategy that cooperates with a probability 1 and
achieves a cooperation rate of 1. In fact Tit For Tat has a cooperation rate of 1 against
the given strategy over all 40 turns. When Tit For Tat competes against a Random
strategy that cooperates with a probability 0 (following the opening move), it achieves
a cooperation rate of 0.

which have been trained via different training methods. The works discussed in this

section has demonstrated that through these indirect training processes successful IPD

strategies can emerge. This thesis explores both strategies of intelligent design and

trained strategies in more details. The next section covers software that has been

developed with the main aim of simulating the IPD interactions.

2.6 Software

Aside from human subject research the research of the IPD heavily relies on software.

Many academic fields suffer from lack of source code availability and the IPD is not

an exception. Several of the tournaments that have been discussed so far were gen-

erated using computer code, though not all of the source code is available. The code

for Axelrod’s original tournament is known to be lost, and moreover, for the second

tournament the only source code available is the code for the 62 strategies (found on

Axelrod’s personal website [1]).

Several projects, however, are open source and available. Two educational platforms

include [2] and [3]. The “Game of Trust” [2] is an on-line educational platform with
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a graphical user interface that introduces the basics of game theory, the IPD and the

notion of strategies. It attracted a lot of attention due to being “well-presented with

scribble-y hand drawn characters” [138] and “a whole heap of fun” [161]. Secondly, [3]

is a personal project written in PHP with also a graphical user interface. The project

offers a big collection of strategies and allows users to simulate their own tournaments

using the listed strategies.

Two open source projects used for research include [4] and [7]. PRISON [4] is written

in the programming language Java and it was launched in 1998. The project includes

a good number of strategies and has been used in several publications [44,45,192,194].

Axelrod-Python library [7] is another software used in a number of publications [90,

118, 125, 163, 165, 226, 289]. It is written in the programming language Python and

contains the largest collection of strategies in the field. The strategy list of the project

itself has been cited by publications [17, 129, 215]. The Axelrod-Python project has

been implemented following best practices and the tools used in this thesis to simulate

IPD interactions.

2.7 Chapter summary

This Chapter presented a literature review of the IPD. The opening sections focused on

research trends and published works of the field, followed by a presentation of research

and educational software. More specifically, section 2.2 covered the early years of

research. This was when simulating turns of the game was only possible with human

subject research. Following the early years, the pioneering tournaments of Axelrod

were introduced in section 2.3. Axelrod’s work offered the field an agent-based game

theoretic framework to study the IPD. In his original papers he asked researchers to

design strategies to test their performance with the new framework. The winning

strategy of both his tournaments was Tit For Tat. The strategy however came with

limitations which were explored by other researchers, and new intelligently designed

strategies were introduced in order to surpass Tit For Tat with some contributions such

as Pavlov and Gradual.

Soon researchers came to realise that strategies should not just do well in a tournament

setting but should also be evolutionary robust. Evolutionary dynamic methods were

applied to many works in the field, and factors under which cooperation emerges were

explored, as described in section 2.4. This was not done only for unstructured popu-
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lations, where all strategies in the population can interact with each other, but also in

population where interactions were limited to only strategies that were close to each

other. In such topologies it was proven that even in the one shot game, cooperation

can indeed emerge.

Evolutionary approaches can offer many insights in the study of the PD. In evolu-

tionary settings strategies can learn to adapt and take over population by adjusting

their actions; such algorithms can be applied so that evolutionarily robust strategies

can emerge. Algorithms and structures used to train strategies in the literature were

covered in section 2.5. From these training methods several strategies are found, and

to be able to differentiate between them fingerprinting was introduced. The research

of best play and cooperation has been going on since the 1950s, and for simulating

the game software has been developed along the way. This software has been briefly

discussed in section 2.6.

The study of the PD is still an ongoing field research where new variants and new

structures of strategies are continuously being explored [224]. The game now serves

as a model in a wide range of applications, for example in medicine and the study

of cancer cells [20, 158], as well as in social situations and how they can be driven by

rewards [77]. This thesis aims to contribute to the continued understanding of this well

known and widely applied game theoretic model. Many of the papers reviewed in this

Chapter have served as motivation to the research presented in the following Chapters.

In Chapter 4 the performance of several of the strategies mentioned in this Chapter is

evaluated in a large number of tournaments. Chapter 5 explores the set of memory-one

strategies, and Chapters 6 and 7 explore trained strategies based on archetypes such

as sequences and recurrent neural networks.
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Chapter 3

A bibliometric study of research

topics, collaboration and

influence in the field of the

Iterated Prisoner’s Dilemma

The research reported in this Chapter has led to a manuscript, entitled:

“A bibliometric study of research topics, collaboration and influence in

the field of the Iterated Prisoner’s Dilemma”

Available at: arxiv.org/abs/1911.06128

Associated data sets: [101–103]

Associated codebase: [110]

The manuscript’s abstract is the following:

This manuscript explores the research topics and collaborative behaviour of authors

in the field of the Prisoner’s Dilemma using topic modelling and a graph theoretic

analysis of the co-authorship network. The analysis identified five research topics in the

Prisoner’s Dilemma which have been relevant of the course of time. These are human

subject research, biological studies, strategies, evolutionary dynamics on networks and

modelling problems as a Prisoner’s Dilemma game. Moreover, the results demonstrated

the Prisoner’s Dilemma is a field of continued interest, and although it is a collaborative

field, it is not necessarily more collaborative than other scientific fields.

arxiv.org/abs/1911.06128
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The co-authorship network suggests that authors are focused on their communities

and not many connections across the communities are made. The Prisoner Dilemma

authors also do not influence or gain much information by their connections, unless

they are connected to a “main” group of authors.

The differences between the Chapter and the manuscript include details on the open

source package Arcas which was used for the data collection. The Chapter includes

snippets of its source code, its unit tests and examples of its usage.

3.1 Introduction

This Chapter presents a bibliometric analysis of the data set “Articles’ meta data on

the Prisoner’s Dilemma” [103]. Chapter 2 presented a review of published works on

the PD, and manually assigned them to different topics. To complement that manual

identification of topics this Chapter presents an automatic approach using natural

language processing. More specifically, the 2,422 articles’ metadata in [103] are used to

extract a list of research topics in the field. Moreover, the list of authors in [103] is also

used to generate a co-authorship network and explore their collaborative behaviour.

The Chapter is structured as follows:

• section 3.2 covers the data collection progress, an introduction to topic modelling

and to co-authorship networks.

• section 3.3 presents a preliminary analysis of the collected data set.

• section 3.4, identifies research topics in the field using natural language process-

ing.

• section 3.5 evaluates the collaborative behaviour of the field based on the publi-

cations of 4,226 authors.

3.2 Methodology

As discussed in [298], bibliometrics (the statistical analysis of published works origi-

nally described by [235]) has been used to support historical assumptions about the

development of fields [237], identify connections between scientific growth and policy
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changes [72], develop a quantitative understanding of author order [257], and to in-

vestigate the collaborative structure of an interdisciplinary field [183]. Most academic

research is undertaken in the form of collaborative effort and as [173] points out, it

is rational that two or more people have the potential to do better as a group than

individually. Indeed this is the very premise of the PD itself. Collaboration in groups

has a long tradition in experimental sciences and it has be proven to be productive

according to [80]. The number of collaborations can be different between research

fields. Understanding collaborative nature of a field is not always an easy task. Several

studies tend to consider academic citations as a measure. A blog post published by

Nature [217] argues that depending on citations can often be misleading because the

true number of citations can not be known. Citations can be missed due to data en-

try errors, academics are influenced by many more papers than they actually cite and

several of the citations are superficial.

A more recent approach to measuring collaborative behaviour, and to studying the

development of a field is to use the co-authorship network, as described in [183]. The

co-authorship network has many advantages as several graph theoretic measures can

be used as proxies to explain author relationships. For example the average degree of

a node corresponds to the average number of an author’s collaborators, and clustering

coefficient corresponds to the extent that two collaborators of an author also collaborate

with each other. In [183], the approach was applied to analyse the development of

the field “evolution of cooperation”, and in [298] to identify the subdisciplines of the

interdisciplinary field of “cultural evolution” and investigate trends in collaboration and

productivity between these subdisciplines. This Chapter builds on the works of [183]

and [298], and extends their methodology as it will be described in section 3.2.2.

Latent Dirichlet Allocation (LDA) is a topic modelling technique proposed in [53] as a

generative probabilistic model for discovering underlying topics in collections of data.

Applications of the technique include detection in image data [14,68] and detection in

video [216, 290]. Nevertheless, LDA has been applied by several works on publication

data for identifying the topic structure of a subject area. In [143] it was applied to

the publications on mathematical education of the journals “Educational Studies in

Mathematics” and “Journal for Research in Mathematics Education”, in [275] to the

dissertations of the North American library and Information Science and in [51] to

conference papers presented at EvoLang conferences. LDA is the topic modelling tech-

nique used in this thesis to identify research topics. An introduction to the technique
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is presented in section 3.2.3.

The individual techniques of the methodology and their applications to research fields

have been done before [51,183,275,298]. The novelty of this Chapter is the combination

of these techniques and their application to a new data set. A data set that has been

collected from five different sources, whereas the data sets of previous works [183,298]

were from a single source (Web of Science). A bespoke open source software was used

to carry out the data collection. Details of the software and the data collection process

are presented in section 3.2.1.

3.2.1 Data collection

Academic articles are accessible through scholarly databases. Several databases and

collections today offer access through an open application protocol interface (API). An

API allows users to query directly a journal’s database and bypass the graphical user in-

terface. Interacting with an API has two phases: requesting and receiving. The request

phase includes composing a url with the details of the request. For example,

http://export.arxiv.org/api/query?search_query=abs:prisoner’sdilemma&max_

results=1

represents a request message. The first part of the request is the address of the API.

In this example the address corresponds to the API of arXiv. The second part of the

request contains the search arguments. In this example it is requested a single article

that the word “Prisoner’s Dilemma” exists within the article’s title. The format of

the request message is different from API to API. The receive phase includes receiving

a number of raw metadata of articles that satisfies the request message. The raw

metadata are commonly received in extensive markup language (xml) or Javascript

object notation (json) formats [223]. Similarly to the request message, the structure of

the received data differs from journal to journal.

To ensure that the research reported in this Chapter can be reproduced all code used

to query the different APIs has been packaged as a Python library called Arcas. The

source code of the library has been made available online and the package includes

documentation of usage which is available at: http://arcas.readthedocs.io/en/

latest/. Arcas allows users to communicate with a list of APIs by specifying a single

keyword whilst not considering the differences between the requesting and receiving

phases of the APIs.

http://export.arxiv.org/api/query?search_query=abs:prisoner's dilemma&max_results=1
http://export.arxiv.org/api/query?search_query=abs:prisoner's dilemma&max_results=1
http://arcas.readthedocs.io/en/latest/
http://arcas.readthedocs.io/en/latest/
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Consider the example of retrieving a single article with the word “Prisoner’s Dilemma”

in the title. Figure 3.1 demonstrates the Python code needed to query the publisher

PLOS and Figure 3.2 demonstrates code for querying the API of Nature. The only

distinction between the two code snippets is their respective line 2 where the API is

specified by creating an instance of a class corresponding to the publisher’s API. The

differences between querying the two APIs are visible from lines 6 and 14-onwards.

Lines 6 show the requesting message and lines 14-onwards show the metadata of the

article received by each source.

1 >>> import arcas

2 >>> api = arcas.Plos()

3 >>> parameters = api.parameters_fix(title="Prisoner's Dilemma", records=1)

4 >>> url = api.create_url_search(parameters)

5 >>> url

6 'http://api.plos.org/search?q=title:"Prisoner\'s Dilemma"&rows=1'

7

8 >>> request = api.make_request(url)

9 >>> root = api.get_root(request)

10 >>> article = api.parse(root)

11

12 >>> for key in article[0].keys():

13 ... print(key)

14 id

15 journal

16 eissn

17 publication_date

18 article_type

19 author_display

20 abstract

21 title_display

22 score

Figure 3.1: Example of using the library Arcas to communicate the API of the publisher
PLOS. The query is for a single article with the word “Prisoner’s Dilemma” in the title.

There are differences and similarities between the retrievable metadata of each API.

Arcas includes a function which standarises the format of querying results. Figure 3.3

demonstrates the usage of the function.

At the time of writing there are a total of five different APIs implemented within the

project. These five include APIs of four prominent publishers in the field and a preprint

server. Namely these are:

• arXiv [198]; a repository of electronic

preprints. It consists of scientific pa-

pers in the fields of mathematics,

physics, astronomy, electrical engi-

neering, computer science, quantita-

tive biology, statistics, and quanti-
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1 >>> import arcas

2 >>> api = arcas.Nature()

3 >>> parameters = api.parameters_fix(title="Prisoner's Dilemma", records=1)

4 >>> url = api.create_url_search(parameters)

5 >>> url

6 "http://www.nature.com/opensearch/request?&query=dc.title adj Prisoner's Dilemma&maximumRecords=1"

7

8 >>> request = api.make_request(url)

9 >>> root = api.get_root(request)

10 >>> article = api.parse(root)

11

12 >>> for key in article[0].keys():

13 ... print(key)

14 records

15 record

16 recordSchema

17 recordPacking

18 recordData

19 message

20 article

21 head

22 identifier

23 title

24 creator

25 productCode

26 publicationName

27 issn

28 eIssn

29 doi

30 publisher

31 publicationDate

32 volume

33 number

34 startingPage

35 endingPage

36 url

37 genre

38 description

39 copyright

40 aggregationType

Figure 3.2: Example of using the library Arcas to communicate the API of the publisher
Nature. The query is for a single article with the word “Prisoner’s Dilemma” in the
title.
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1 >>> import arcas

2 >>> api = arcas.Plos()

3 >>> parameters = api.parameters_fix(title="Prisoner's Dilemma", records=1)

4 >>> url = api.create_url_search(parameters)

5

6 >>> request = api.make_request(url)

7 >>> root = api.get_root(request)

8 >>> article = api.parse(root)

9

10 >>> meta_data = api.to_dataframe(article[0])

11 >>> meta_data.columns

12 Index(['url', 'key', 'unique_key', 'title', 'author', 'abstract', 'doi',

13 'date', 'journal', 'provenance', 'category', 'score', 'open_access'],

14 dtype='object')

Figure 3.3: Python Code. Arcas includes a function which standarises the results of
the queries regarding the API.

tative finance, which all can be ac-

cessed online.

• PLOS [5]; a library of open access

journals and other scientific litera-

ture under an open content license.

It launched its first journal, PLOS

Biology, in October 2003 and pub-

lishes seven journals, as of October

2015.

• IEEE Xplore Digital Library

(IEEE) [142]; a research database for

discovery and access to journal arti-

cles, conference proceedings, techni-

cal standards, and related materials

on computer science, electrical en-

gineering and electronics, and allied

fields. It contains material published

mainly by the Institute of Electrical

and Electronics Engineers and other

partner publishers.

• Nature [120]; a multidisciplinary sci-

entific journal, first published on 4

November 1869. It was ranked the

world’s most cited scientific journal

by the Science Edition of the 2010

Journal Citation Reports and is as-

cribed an impact factor of 40.137,

making it one of the world’s top aca-

demic journals.

• Springer [199]; a leading global sci-

entific publisher of books and jour-

nals. It publishes close to 500 aca-

demic and professional society jour-

nals.

Each API has a corresponding class implemented in Arcas. The classes include a series

of methods which allow Arcas to communicate with the APIs. An example of an API

class is given by both Figure 3.4 and Figure 3.5. These include the classes for the

APIs of arXiv and IEEE. Note that IEEE is an example of an API which requires
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a user to have an access key (line 7 in Figure 3.5). An access key can be required

from the publisher’s website and for the APIs of this Chapter they can be acquired for

free.

As mentioned in Chapter 1 the source code associated with the research projects of

this thesis have been written following a set of best practices. These best practices

include unit testing. There are a series of unit tests that test the functionality and

correctness of each API class. For example, Figure 3.6 displays a test case for the

method to_dataframe of the Arxiv class. Moreover, Figure 3.7 shows several unit

tests which ensure that the request url for IEEE, with different search arguments, is

being generated correctly.

The 2,422 articles metadata explored in this Chapter has been collected using Arcas.

More specifically, articles for which any of the terms “prisoner’s dilemma”, “prisoners

dilemma”, “prisoner dilemma”, “prisoners evolution”, “prisoner game theory” existed

within the title, the abstract or the text are included in the analysis. The data set

has been archived and is available at [103]. Note that the latest data collection was

performed on the 30th November 2018.

3.2.2 Co-authorship network

The relationship between the authors within a field will be modelled as a graph G =

(VG, EG) where VG is the set of nodes and EG is the set of edges. The set VG represents

the authors and an edge connects two authors if and only if those authors have written

together. This co-authorship network is constructed using the data set [103] and the

open source package [123]. The PD network is denoted asG where the number of unique

authors |V (G)| is 4,226 and |E(G)| is 7,642 . All authors’ names were formatted as

their first name and last name (i.e. Martin A. Nowak to Martin Nowak). This was

done to avoid errors such as Martin A. Nowak and Martin Nowak being treated as a

different person. There are some authors for which only their first initial was found.

These entries are left as such.

The collaborativeness of the authors will be analysed using measures such as, isolated

nodes, connected components, clustering coefficient, communities, modularity and av-

erage degree. These measures show the number of connections authors can have and

how strongly connected these people are. The number of isolated nodes is the number

of nodes that are not connected to another node, thus the number of authors that
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1 class Arxiv(Api):

2 def __init__(self):

3 self.standard = 'http://export.arxiv.org/api/query?search_query='

4

5 def to_dataframe(self, raw_article):

6 """A function which takes a dictionary with structure of the arXiv results,

7 transforms it to a standardised format and returns a dataframe."""

8 raw_article['url'] = raw_article.get('id', None)

9

10 for key_one, key_two in [['author', 'name'], ['category', 'category']]:

11 raw_article[key_one] = raw_article.get(key_two, None)

12 if raw_article[key_one] is not None:

13 raw_article[key_one] = raw_article[key_one].split(',')

14

15 raw_article['abstract'] = raw_article.get('summary', None)

16 raw_article['date'] = int(raw_article.get('published', '0').split('-')[0])

17 raw_article['journal'] = raw_article.get('journal_ref', None)

18 if raw_article['journal'] is None:

19 raw_article['journal'] = "arXiv"

20

21 raw_article['provenance'] = 'arXiv'

22 raw_article['title'] = raw_article.get('title', None)

23 raw_article['doi'] = raw_article.get('doi', None)

24 raw_article['key'], raw_article['unique_key'] = self.create_keys(raw_article)

25

26 raw_article['open_access'] = True

27 raw_article['score'] = 'Not available'

28 return self.dict_to_dataframe(raw_article)

29

30 def parse(self, root):

31 """Removing unwanted branches."""

32 branches = root.getchildren()

33 raw_articles = []

34 for record in branches:

35 if 'entry' in record.tag:

36 raw_articles.append(self.xml_to_dict(record))

37 if not raw_articles:

38 raw_articles = False

39 return raw_articles

40

41 @staticmethod

42 def parameters_fix(author=None, title=None, abstract=None, year=None, records=None,

43 start=None, category=None, journal=None, keyword=None):

44 parameters = []

45 if author is not None:

46 parameters.append('au:{}'.format(author))

47 if title is not None:

48 parameters.append('ti:{}'.format(title))

49 if abstract is not None:

50 parameters.append('abs:{}'.format(abstract))

51 if category is not None:

52 parameters.append('cat:{}'.format(category))

53 if journal is not None:

54 parameters.append('jr:{}'.format(journal))

55 if keyword is not None:

56 parameters.append('all:{}'.format(keyword))

57 if records is not None:

58 parameters.append('max_results={}'.format(records))

59 if start is not None:

60 parameters.append('start={}'.format(start))

61 if year is not None:

62 print('arXiv does not support argument year.')

63

64 return parameters

65

66 @staticmethod

67 def get_root(response):

68 root = ElementTree.fromstring(response.text)

69 return root

Figure 3.4: Arxiv class implementation in Arcas. It includes the code necessary for
Arcas to query the API of arXiv.
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1 class Ieee(Api):

2 """

3 API argument is 'ieee'.

4 """

5 def __init__(self):

6 self.standard = 'https://ieeexploreapi.ieee.org/api/v1/search/articles?'

7 self.key_api = api_key

8

9 def create_url_search(self, parameters):

10 """Creates the search url, combining the standard url and various

11 search parameters."""

12 url = self.standard

13 url += parameters[0]

14 for i in parameters[1:]:

15 url += '&{}'.format(i)

16 url += '&apikey={}'.format(self.key_api)

17 return url

18

19 @staticmethod

20 @ratelimit.rate_limited(3)

21 def make_request(url):

22 """Request from an API and returns response."""

23 response = requests.get(url, stream=True, verify=False)

24 if response.status_code != 200:

25 raise APIError(response.status_code)

26 return response

27

28 def parse(self, root):

29 """Parsing the xml file"""

30 if root['total_records'] == 0:

31 return False

32 return root['articles']

33

34 @staticmethod

35 def parameters_fix(author=None, title=None, abstract=None, year=None,

36 records=None, start=None, category=None, journal=None,

37 keyword=None):

38 parameters = []

39 if author is not None:

40 parameters.append('author={}'.format(author))

41 if title is not None:

42 parameters.append('article_title={}'.format(title))

43 if abstract is not None:

44 parameters.append('abstract={}'.format(abstract))

45 if year is not None:

46 parameters.append('publication_year={}'.format(year))

47 if category is not None:

48 parameters.append('index_terms={}'.format(category))

49 if journal is not None:

50 parameters.append('publication_title={}'.format(journal))

51 if keyword is not None:

52 parameters.append('querytext={}'.format(keyword))

53 if records is not None:

54 parameters.append('max_records={}'.format(records))

55 if start is not None:

56 parameters.append('start_record={}'.format(start))

57

58 return parameters

59

60 @staticmethod

61 def get_root(response):

62 root = response.json()

63 return root

Figure 3.5: Ieee class implementation in Arcas. It includes the code necessary for
Arcas to query the API of IEEE.
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1 import arcas

2

3 def test_to_dataframe():

4 dummy_article = {'entry': '\n', 'id': 'http://arxiv.org/abs/0000',

5 'updated': '2011', 'published': '2010', 'title': 'Title',

6 'summary': "Abstract", 'author': '\n', 'name': 'E Glynatsi, V Knight',

7 'doi': '10.0000', 'comment': 'This is a comment.',

8 'journal_ref': 'Awesome Journal', 'primary_category': 'Dummy',

9 'category': None}

10 api = arcas.Arxiv()

11 article = api.to_dataframe(dummy_article)

12

13 assert isinstance(article, pandas.core.frame.DataFrame)

14 assert list(article.columns) == api.keys()

15 assert len(article['url']) == 2

16

17 assert article['url'].unique()[0] == 'http://arxiv.org/abs/0000'

18 assert article['key'].unique()[0] == 'Glynatsi2010'

19 assert article['title'].unique()[0] == 'Title'

20 assert article['abstract'].unique()[0] == 'Abstract'

21 assert article['journal'].unique()[0] == 'Awesome Journal'

22 assert article['primary_category'].unique()[0] == 'Dummy'

23 assert article['category'].unique()[0] == None

24 assert article['score'].unique()[0] == 'Not available'

25 assert article['open_access'].unique()[0] == True

Figure 3.6: Unit tests for the Arxiv class. Tests the functionality of the method
to_dataframe.

1 import arcas

2

3 def test_setup():

4 api = arcas.Ieee()

5 assert api.standard == 'https://ieeexploreapi.ieee.org/api/v1/search/articles?'

6

7 def test_parameters_and_url_author():

8 api = arcas.Ieee()

9 parameters = api.parameters_fix(author='Glynatsi')

10 assert parameters == ['author=Glynatsi']

11

12 url = api.create_url_search(parameters)

13 assert (

14 url ==

15 "https://ieeexploreapi.ieee.org/api/v1/search/articles?author=Glynatsi&apikey=Your key here"

16 )

17

18 def test_parameters_and_url_title():

19 api = arcas.Ieee()

20 parameters = api.parameters_fix(title="Game")

21 assert parameters == ["article_title=Game"]

Figure 3.7: Unit tests for the Ieee class.
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have published alone. The average degree denotes the average number of neighbours

for each nodes, i.e. the average number of collaborations between the authors. A con-

nected component is a maximal set of nodes such that each pair of nodes is connected

by a path [78]. The number of connected components as well as the size of the largest

connected component in the network are reported. The size of the largest connected

component represents the scale of the central cluster of the entire network, as will be

discussed in later parts. Clustering coefficient and modularity are also calculated. The

clustering coefficient, defined as 3 times the number of triangles on the graph divided

by the number of connected triples of nodes, is a local measure of the degree to which

nodes in a graph tend to cluster together in a clique [78]. It shows to which extent the

collaborators of an author also write together.

In comparison, modularity is a global measure designed to measure the strength of

division of a network into communities. The number of communities will be reported

using the Clauset-Newman-Moore method [67]. Also the modularity index is calcu-

lated using the Louvain method described in [54]. The value of the modularity index

can vary between [−1, 1]; a high value of modularity corresponds to a structure where

there are dense connections between the nodes within communities but sparse connec-

tions between nodes in different communities. That means that there are many sub

communities of authors that write together but not across communities.

Two further points are aimed to be explored in this thesis, (1) which people control

the flow of information; as in which people influence the field the most and (2) which

are the authors that gain the most from the influence of the field. To measure these

concepts centrality measures are going to be used. Centrality measures are often used

to understand different aspects of social networks [174]. The two centrality measures

chosen here are closeness and betweenness centrality.

1. In networks some nodes have a short distance to a lot of nodes and consequently

are able to spread information on the network very effectively. A representative

of this idea is closeness centrality, where a node is seen as centrally involved

in the network if it requires only few intermediaries to contact others and thus

is structurally relatively independent. Closeness centrality is interpreted as in-

fluence. Authors with a high value of closeness centrality, are the authors that

spread scientific knowledge easier on the network and they have high influence.

2. Another centrality measure is the betweenness centrality, where the determination
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of an author’s centrality is based on the quotient of the number of all shortest

paths between nodes in the network that include the node in question and the

number of all shortest paths in the network. In betweenness centrality the posi-

tion of the node matters. Nodes with a higher value of betweenness centrality are

located in positions that a lot of information pass through, this is interpreted as

the gain from the influence, thus these authors gain the most from their networks.

3.2.3 Topic modelling

The articles contained in the data set will be classified into research topics using LDA,

a topic modelling technique designed to summarise large collections of documents by a

small number of conceptually connected topics or themes [53,119]. LDA is carried out

using [241].

The input to an LDA is a collection of documents, and the collection of documents con-

sidered here are the articles’ abstracts. The output of an LDA is an N × n matrix - N

rows for N abstracts and n columns for n topics. The cells contain the percentage con-

tributions for each topic for each abstract, cji for i ∈ {1, 2, . . . , n} for j ∈ {1, 2, . . . , N}.

Thus each document/abstract is represented by a distribution over topics, and the

topics themselves are represented by a distribution over words. More specifically, each

topic is described by weights associated with words. For example assume two topics A

and B. Their associated words and weights are:

• Topic A: 0.039×“cooperation”, 0.028×“study” and 0.026×“human”.

• Topic B: 0.020×“cooperation”, 0.028×“agents” and 0.026×“strategies”.

A document with abstract “The study of cooperation in humans” has a cA = 0.039 +

0.028 + 0.026 = 0.093 and cB = 0.020 + 0.0 + 0.0 = 0.020. In essence, LDA maps every

paper to a vector. In this example the document is mapped to [0.093, 0.020]. Each

document has a dominant topic. The dominant topic is the topic with the highest

percentage contribution denoted as c∗. For the given example the dominant topic is

Topic A, and c∗ = cA.

LAD requires that the number of topics is specified in advance before running the

algorithm. The number of topics can be chosen using the coherence value [244] or

through subjective minimisation of the overlapping keywords between two topics. Both

these approaches will be used here. Preceding the analysis of research topics, the next

section presents a preliminary analysis of the collected data set.
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3.3 Preliminary analysis

The data set consists of 2,422 articles with unique titles. In case of duplicates the

preprint version of an article (collected from arXiv) was dropped. Similarly to [183],

76 articles have been manually added throughout the writing of Chapter 2 because

they were of specific interest. These papers include [83] the first publication on the

PD, [225, 271] two well cited articles in the field, and a series of works of Axelrod

[33–36,242].

A more detailed summary of the articles’ provenance is given by Table 3.1. Only 3%

of the data set consists of articles that were manually added and 27% of the articles

were collected from arXiv. The average number of publications is also included in

Table 3.1. Overall an average of 43 articles are published per year on the topic. The

most significant contribution to this appears to be from arXiv with 11 articles per year,

followed by Springer with 9, and PLOS and Nature with 8.

Number of Articles Percentage % Year of first publication Average number of publications per year

IEEE 294 12.14% 1973 5

Manual 76 3.14% 1951 1

Nature 436 18.00% 1959 8

PLOS 477 19.69% 2005 8

Springer 533 22.01% 1966 9

arXiv 654 27.00% 1993 11

Table 3.1: Summary of [103] per provenance.

The data handled here is in fact a time series from the 1950s, the formulation of the

game, until 2018 (Figure 3.8). Two observations can be made from Figure 3.8.

1. There is a steady increase of the number of publications since the 1970s.

2. There is a decrease in 2017-2018. This is due to the data set being incomplete.

Articles that have been written in 2017-2018 have either not being published or

were not retrievable by the APIs at the time of the last data collection.

These observations can be confirmed by studying the time series. Using [150], an ex-

ponential distribution is fitted to the data. The fitted model can be used to forecast

the behaviour of the field for the next 5 years. Even though the time series has indi-

cated a slight decrease, the model forecasts that the number of publications will keep

increasing, thus demonstrating that the field of the PD continues to attract academic

attention.
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Figure 3.8: Number of articles published on the PD 1951-2018 (on a log scale), with a
fitted exponential line, and a forecast for 2017-2022.

There are a total of 4,226 authors in the data set and several of these authors have had

multiple publications collected from the data collection process. The highest number

of articles collected for an author is 83 publications for Matjaz Perc. The distribution

of the number of papers per author is given by Figure 3.9, and it can be seen that

Perc is an outlier. More specifically, most authors have 1 to 6 publications in the data

set.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81
number of publications

100

101

102

103

Figure 3.9: Distribution of number of papers per author (on a log scale).

The overall collaboration index or the average number of authors on multi-authored

papers is 3.2, thus on average a non single author publication in the PD has 3 authors.

This appears to be quite standard compared to other fields such as cultural evolu-

tion [298], Astronomy and Astrophysics, Genetics and Heredity, Nuclear and Particle

Physics as reported by [190]. There are only a total of 545 publications with a single

author, which corresponds to the 22% of papers. It appears that academic publica-

tions tend to be undertaken in the form of collaborative effort, which is in line with

the claim of [173]. From Figure 3.10 the trend of collaboration index over the years

is given. There are some peaks in the early years 1969 and 1980, however, a steady
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increase appears to happen after 2004. This could be an effect of better communication

tools being introduced around that time which enabled more collaborations between

researchers.
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Figure 3.10: Collaboration index over time.

The collaborativeness of the authors is explored in more detail in section 3.5 using the

co-authorship network. The collaborative behaviour and relative influence of authors

will also be explored in co-authorship networks which correspond to their publications

research topics. These topics are presented in the next section.

3.4 Research topics in the Prisoner’s Dilemma research

In order to identify the topics which are being discussed in the field of the PD, the

LDA algorithm implemented in [241] is applied to the abstracts of the data set. As

mentioned before, the number of topics, which will be denoted as n, needs to be specified

before running the algorithm. The appropriate number of topics is chosen based on

the coherence value [244]. Figure 3.11 gives the coherence values of 18 models where

n ∈ {2, 3, . . . , 19}, and it can be seen than the most appropriate number of topics is 6

with a coherence value of 0.418.
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Figure 3.11: Coherence for LDA models over the number of topics.
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The keywords associated with each topic for n = 6 are given by Table 3.2. Though

n = 6 has the highest coherence score, from Table 3.2 it can be observed that there are

overlapping keywords between the topics. Further manual investigation has revealed

that the separation of topics are the most clear when an n of 5 is considered. The

LDA model for n = 5 has a coherence value 0.406 which is close to 0.418 (the score for

n = 6). Thus, n = 5 is chosen to carry out the LDA.

Topic Topic Keywords

A model, theory, system, base, paper, problem, propose, present, approach, provide, analysis, framework, method, develop, solution

B behavior, social, human, decision, study, experiment, make, suggest, result, behaviour, effect, partner, participant, subject, experimental

C individual, group, good, social, punishment, level, cost, mechanism, dilemma, cooperative, show, base, public, high, society

D game, strategy, player, agent, play, dilemma, state, prisoner, payoff, equilibrium, result, iterate, set, probability, show

E population, evolutionary, dynamic, model, selection, result, evolution, evolve, show, process, size, interaction, cooperator, change, system

F cooperation, network, interaction, structure, study, evolution, find, behavior, cooperative, simulation, rule, spatial, cooperator, promote, result

Table 3.2: Keywords for each topic when n = 6. The highlighted keywords are over-
lapping keywords between topics.

For n = 5 the articles are clustered and assigned to their dominant topic based on the

highest percentage contribution. The keywords associated with a topic, the most rep-

resentative article of the topic (based on the percentage contribution) and its academic

reference are given by Table 3.3. The topics are labelled as A, B, C, D and E, and

more specifically:

• Based on the keywords associated with Topic A, and the most representative

article, Topic A appears to be about human subject research. Several publications

assigned to the topic study the PD by setting experiments and having human

participants simulate the game instead of computer simulations. These articles

include [195] which showed that prosocial behaviour increased with the age of

the participants, [181] which studied the difference in cooperation between high-

functioning autistic and typically developing children, [210] explored the gender

effect in high school students and [46] explored the effect of facial expressions of

individuals.

• Though it is not immediate from the keywords associated with Topic B, investi-

gating the papers assigned to the topic indicate that it is focused on biological

studies. Papers assigned to the topic include papers which apply the PD to ge-

netics [255,264], to the study of tumours [19,256] and viruses [281]. Other works

include how phenotype affinity can affect the emergence of cooperation [295] and

modelling bacterial communities as a spatial structured social dilemma.
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• Based on the keywords and the most representative article Topic C appears to

include publications on PD strategies. Publications in the topic include the in-

troduction of new strategies [272], the search of optimality in strategies [41] and

the training of strategies [144] with different representation methods. Moreover,

publications that study the evolutionary stability of strategies [13] and introduced

methods of differentiating between them [24] are also assigned to C.

• The keywords associated with Topic D clearly show that the topic is focused on

evolutionary dynamics on networks. Publications include [141] which explored

the robustness of cooperation on networks, [287] which studied the effect of a

strategy’s neighbourhood on the emergence of cooperation and [62] which ex-

plored the fixation probabilities of any two strategies in spatial structures.

• The publications assigned to Topic E are on modelling problems as a PD game.

Though Topic B is also concerned with problems being formulated as a PD,

it includes only biological problems. In comparison, the problems in Topic E

include decision making in operational research [227], information sharing among

members in a virtual team [82], the measurement of influence in articles based

on citations [140] and the price spikes in electric power markets [121], and not on

biological studies.

Dominant
Topic

Topic Keywords Most Representative Article Title Reference # Documents % Documents

A social, behavior, human, study,
experiment, cooperative, coopera-
tion, suggest, find, behaviour

Facing Aggression: Cues Differ for
Female versus Male Faces

[93] 496.0 0.2008

B individual, group, good, show,
high, increase, punishment, cost,
result, benefit

Genomic and Gene-Expression
Comparisons among Phage-
Resistant Type-IV Pilus Mutants
of Pseudomonas syringae pathovar
phaseolicola

[264] 309.0 0.1251

C game, strategy, player, agent,
dilemma, play, payoff, state, pris-
oner, equilibrium

Fingerprinting: Visualization and
Automatic Analysis of Prisoner’s
Dilemma Strategies

[264] 561.0 0.2271

D cooperation, network, population,
evolutionary, evolution, interac-
tion, dynamic, structure, cooper-
ator, study

Influence of initial distributions on
robust cooperation in evolutionary
Prisoner’s Dilemma

[61] 556.0 0.2251

E model, theory, base, system, prob-
lem, paper, propose, information,
provide, approach

Gaming and price spikes in electric
power markets and possible reme-
dies

[121] 548.0 0.2219

Table 3.3: Keywords for each topic and the document with the most representative
article for each topic.

Note that whilst for the choice of 5 topics the actual clustering is not subjective (the

algorithm is determining the output) the interpretation above is.
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Thus, the five topics in the PD publications identified by the data set of using an LDA

are:

1. human subject research,

2. biological studies,

3. strategies,

4. evolutionary dynamics on networks,

5. modelling problems as a PD.

These topics nicely summarise the PD research. They highlight the interdisciplinarity

of the field; how it brings together applied modelling of real world situations (Topic B

and E) and more theoretical notions such as evolutionary dynamics and optimality of

strategies.

Figure 3.12 gives the number of articles per topic over time. The topics appear to

have had a similar trend over the years, with topics B and D having a later start.

Following the introduction of a topic its publications have been increasing. There is

no decreasing trend in any of the topics. All topics have been publishing for years and

they still attract the interest of academics. Thus, there does not seem to be any given

topic more or less in fashion.
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Figure 3.12: Number of articles per topic over the years (on a logged scale).

To gain a better understanding regarding the change in the topics over the years, LDA

is applied to the cumulative data set over 8 time periods. These periods are 1951-1965,
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1951-1973, 1951-1980, 1951-1988, 1951-1995, 1951-2003, 1951-2010, 1951-2018. The

number of topics for each cumulative subset is chosen based on the coherence value

and no objective approach is used. As a result, the period 1951-2018 has been assigned

n = 6 which had the highest coherence value instead of 5. The chosen models for each

period including the number of topics, their keywords and number of articles assigned

to them are given by Table 3.4.

But how well do the five topics which were presented earlier fit the publications over

time? This is answered by comparing the performance of three LDA models over the

cumulative periods’ publications. The three models are LDA models for the entire data

set for n equal to 5, 6 and the optimal number of topics over time. For each model the

c∗ is estimated for each document in the cumulative data sets. The performance of the

models are then compared based on:

c̄∗ × n (3.1)

where c̄∗ is the median highest percentage contribution and n is the number of topics

of a given period. A model with more topics will have more difficulty to assign papers.

Thus, Equation (3.1) is a measure of confidence in assigning a given paper to its topic

weighted by the number of topics. The performances are given by Figure 3.13.

The five topics of the PD presented in this manuscript appear to always be less good

at fitting the publications compared to the six topics of LDA n = 6. The difference

in the performance values, Equation (3.1), however are small. The relevance of the

five topics has been increasing over time, and though, the topics did not always fit the

majority of published work over time, there were still papers being published on those

topics.

In the following section the collaborative behaviour of authors in the field, and within

the field’s topics as were presented in this section, are explored using a network theoretic

approach.

3.5 Analysis of co-authorship network

The collaborative behaviour of authors in the field of the PD is assessed using the

co-authorship network, which as introduced in section 3.2 is denoted as G. There are

a total of 947 connected components in G and the largest component has a size of 796
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Period Topic Topic Keywords Num of Documents Percentage of Documents

1951-1965 1 problem, technology, divert, euler, subsystem, requirement, trace, technique, system, untried 3 0.375

1951-1965 2 interpret, requirement, programme, evolution, article, increase, policy, system, trace, technology 2 0.25

1951-1965 3 equipment, agency, conjecture, development, untried, programme, trend, technology, weapon, technique 1 0.125

1951-1965 4 variation, celebrated, trend, untried, change, involve, month, technique, subsystem, research 1 0.125

1951-1965 5 give, good, modern, trace, technique, ambiguity, problem, trend, technology, system 1 0.125

1951-1973 1 study, shock, cooperative, money, part, vary, investigate, good, receive, equipment 12 0.3243

1951-1973 2 cooperation, level, significantly, sequence, reward, provoke, descriptive, principal, display, argue 4 0.1081

1951-1973 3 player, make, effect, triad, experimental, motivation, dominate, hypothesis, instruction, trend 3 0.0811

1951-1973 4 ss, sex, male, female, dyad, design, suggest, college, factor, tend 3 0.0811

1951-1973 5 result, research, format, change, operational, analysis, relate, understanding, decision, money 2 0.0541

1951-1973 6 condition, give, high, treatment, conflict, cc, real, original, replication, promote 2 0.0541

1951-1973 7 group, competitive, show, interpret, scale, compete, escalation, free, variable, individualistic 2 0.0541

1951-1973 8 outcome, strategy, choice, type, pdg, difference, dummy, conclude, compare, consistent 2 0.0541

1951-1973 9 game, difference, pair, approach, behavior, person, weapon, occur, advantaged, differential 2 0.0541

1951-1973 10 response, present, dilemma, influence, cooperate, bias, point, amount, participate, factor 2 0.0541

1951-1973 11 trial, problem, previous, involve, prisoner, experiment, follow, tit, increase, initial 1 0.027

1951-1973 12 matrix, behavior, rational, black, model, research, broad, distance, complex, trace 1 0.027

1951-1973 13 play, finding, individual, noncooperative, white, nature, race, ratio, represent, prisoner 1 0.027

1951-1980 1 play, trial, group, follow, white, interpret, scale, black, trend, small 14 0.25

1951-1980 2 outcome, level, effect, type, dyad, vary, pdg, participate, understanding, arise 9 0.1607

1951-1980 3 game, strategy, cooperation, significant, difference, sentence, text, occur, differential, hypothesis 4 0.0714

1951-1980 4 male, female, find, result, sex, subject, experimental, situation, treatment, computer 4 0.0714

1951-1980 5 research, problem, influence, matrix, format, model, analysis, year, crime, equipment 4 0.0714

1951-1980 6 condition, dilemma, bias, free, attempt, book, year, dummy, prison, design 4 0.0714

1951-1980 7 variable, result, factor, individual, ability, triad, half, migration, change, investigate 3 0.0536

1951-1980 8 show, present, suggest, rational, compete, approach, characteristic, examine, person, conduct 3 0.0536

1951-1980 9 behavior, high, finding, relate, obtain, assistance, ratio, good, weapon, competition 3 0.0536

1951-1980 10 ss, shock, money, competitive, part, difference, pair, amount, man, information 3 0.0536

1951-1980 11 player, conflict, theory, decision, determine, produce, maker, cooperate, specialist, programming 2 0.0357

1951-1980 12 study, prisoner, make, response, experiment, noncooperative, standard, separate, conclude, initial 2 0.0357

1951-1980 13 give, cooperative, choice, cognitive, real, operational, set, subject, ascribe, concern 1 0.0179

1951-1988 1 trial, difference, find, choice, significant, competitive, effect, triad, interact, occur 24 0.2553

1951-1988 2 ss, shock, money, pair, response, part, high, tit, receive, amount 13 0.1383

1951-1988 3 suggest, paper, case, debate, view, achieve, framework, natural, assumption, finitely 10 0.1064

1951-1988 4 prisoner, dilemma, behavior, model, present, involve, person, increase, trust, experiment 8 0.0851

1951-1988 5 game, player, show, approach, repeat, previous, move, tat, related, include 8 0.0851

1951-1988 6 cooperation, level, mutual, equilibrium, standard, provide, information, human, real, question 6 0.0638

1951-1988 7 play, result, male, subject, female, cooperative, sex, experimental, treatment, computer 5 0.0532

1951-1988 8 research, study, variable, ability, factor, conflict, matrix, year, student, interpret 4 0.0426

1951-1988 9 problem, group, small, scale, social, issue, large, base, bias, party 4 0.0426

1951-1988 10 game, strategy, outcome, type, cooperate, ethical, pdg, explain, dependent, separate 4 0.0426

1951-1988 11 give, condition, individual, major, dyad, behaviour, produce, conflict, assistance, collectively 3 0.0319

1951-1988 12 situation, iterate, statement, rational, card, side, paradox, true, consequence, front 2 0.0213

1951-1988 13 inflation, hypothesis, rate, run, change, demand, nominal, cost, output, growth 2 0.0213

1951-1988 14 theory, make, analysis, decision, system, examine, work, soft, lead, hard 1 0.0106

1951-1995 1 strategy, population, evolution, iterate, tit, opponent, evolve, dynamic, set, tat 31 0.1732

1951-1995 2 game, repeat, assumption, rule, person, equilibrium, general, finitely, indefinitely, analyze 24 0.1341

1951-1995 3 inflation, long, rate, hypothesis, run, policy, cost, nominal, demand, programming 20 0.1117

1951-1995 4 condition, outcome, trial, find, difference, cooperation, experiment, level, significant, response 15 0.0838

1951-1995 5 rational, result, receive, statement, money, paradox, shock, iterate, consequence, common 14 0.0782

1951-1995 6 cooperation, show, competitive, high, probability, conflict, simulation, altruism, yield, natural 14 0.0782

1951-1995 7 prisoner, dilemma, give, point, defect, form, cooperator, increase, relate, ethical 10 0.0559

1951-1995 8 player, give, decision, provide, cooperative, game, previous, pair, determine, interact 9 0.0503

1951-1995 9 play, cooperate, result, male, subject, female, time, relationship, suggest, student 8 0.0447

1951-1995 10 problem, group, theory, good, approach, society, large, scale, issue, level 8 0.0447

1951-1995 11 study, situation, behaviour, computer, argue, change, implication, characteristic, real, associate 8 0.0447

1951-1995 12 model, paper, behavior, examine, present, mutual, expectation, develop, type, variable 7 0.0391

1951-1995 13 make, research, system, analysis, choice, work, base, relation, world, wide 6 0.0335

1951-1995 14 individual, social, behavior, standard, choose, evolutionary, partner, payoff, defection, small 5 0.0279

1951-2003 1 game, player, dilemma, prisoner, theory, give, paper, make, group, problem 151 0.4266

1951-2003 2 cooperation, result, play, show, cooperate, condition, cooperative, high, level, time 106 0.2994

1951-2003 3 strategy, model, agent, study, behavior, individual, population, evolutionary, state, player 97 0.274

1951-2010 1 model, theory, paper, base, make, present, problem, provide, human, decision 325 0.3454

1951-2010 2 game, strategy, player, agent, play, dilemma, system, behavior, show, state 322 0.3422

1951-2010 3 cooperation, network, study, population, individual, evolutionary, social, evolution, interaction, structure 294 0.3124

1951-2018 1 model, theory, system, base, paper, problem, propose, present, approach, provide 556 0.2251

1951-2018 2 behavior, social, human, decision, study, experiment, make, suggest, result, behaviour 482 0.1951

1951-2018 3 individual, group, good, social, punishment, level, cost, mechanism, dilemma, cooperative 428 0.1733

1951-2018 4 game, strategy, player, agent, play, dilemma, state, prisoner, payoff, equilibrium 380 0.1538

1951-2018 5 population, evolutionary, dynamic, model, selection, result, evolution, evolve, show, process 351 0.1421

1951-2018 6 cooperation, network, interaction, structure, study, evolution, find, behavior, cooperative, simulation 273 0.1105

Table 3.4: Topic modelling result for the cumulative data set over the periods
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Figure 3.13: Maximum percentage contributions (c∗) over the time periods, for the
LDA models for the entire data set for n equal to 5, 6 and the optimal number of
topics over time. The optimal number of topics are based on the coherence score.

nodes. The largest connected component is going to be referred to as the main cluster

of the network and is denoted as Ḡ. A graphical representation of both networks is

shown in Figures 3.14-3.15 and a metrics summary is given by Table 3.5.

Based on Table 3.5 an author in G has on average 4 collaborators and a 70% probability

of collaborating with a collaborator’s co-author. An author of Ḡ on average is 7% more

likely to write with a collaborator’s co-author and on average has 2 more collaborators.

Moreover, there are only 3.2 % of authors in the PD that has no connection to any

other author.

# Nodes # Edges % Isolated nodes # Connected
components

Size of largest
component

Av. degree # Communities Modularity Clustering coeff

G 4011 7642 3.2 947 796 3.811 967 0.96491 0.701

Ḡ 796 2214 0.0 1 796 5.563 25 0.84406 0.773

Table 3.5: Network metrics for G and Ḡ respectively.

But how do these compare to other fields? Two more data sets for the topics “price of

anarchy” and “auction Games” have been collected in order to compare the collabora-

tive behaviour of the PD to other game theoretic fields. A total of 3,444 publications

have been collected for auction games and 748 for price of anarchy. Price of anarchy is

a relatively new field, with the first publication on the topic being [167] in 1999. This

explains the small number of articles that have been retrieved. Both data sets have

been archived and are available in [101, 102]. The networks for both data sets have
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Figure 3.14: G the co-authorship network for the IPD.
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Figure 3.15: Ḡ the largest connected component of G.
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been generated in the same way as G. A summary of the networks’ metrics are given

by Table 3.6.

# Nodes # Edges # Isolated nodes % Isolated nodes # Connected
components

Size of largest
component

Av. degree # Communities Modularity Clustering coeff

auction games 5165 7861 256 5.0 1272 1348 3.044 1294 0.957 0.622

price of anarchy 1155 1953 4 0.3 245 222 3.382 253 0.965 0.712

Table 3.6: Network metrics for auction games and price of anarchy networks respec-
tively.

The average degrees for the price of anarchy and for auction games are lower than

the PD’s. In auction games an author is more likely to have no collaborators, and in

the price of anarchy there are almost no authors that are not connected to someone.

This could be an effect of the field being introduced in more modern days. Overall,

an author in the PD has on average more collaborators and there are less isolated

authors compared to another well established game theoretic field. These results seem

to indicate that the PD is a relatively collaborative field.

However, both G and Ḡ have a high modularity (larger than 0.84) and a large number

of communities (967 and 25 respectively). A high modularity implies that authors

create their own publishing communities but not many publications from authors from

different communities occur. Thus, author tends to collaborate with authors in their

communities but not many efforts are made to create new connections to other commu-

nities and spread the knowledge of the field across academic teams. The fields of both

price of anarchy and auction games also have high modularity, and that could indicate

that is in fact how academic publications are. Thus, the PD is indeed a collaborative

field but perhaps it is not more collaborative than other fields, as there is no effort

from the authors to write with people outside their community.

The evolution of the networks was also explored over time by constructing the network

cumulatively over 51 periods. Except from the first period 1951-1966 the rest of the

periods have a yearly interval (data for the years 1975 and 1982 were not retrieved by

the collection data process). The metrics of each sub network are given by Tables 3.7

and 3.8.

The results, similarly to the results of [183], confirm that the networks grow over

time and that the networks always had a high modularity. Since the first publications

authors tend to write with people from their communities, and that is not an effect of

a specific time period.
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Period # Nodes # Edges % Isolated nodes # Connected components Size of largest
component

Av. degree # Communities Modularity Clustering coeff

1951 - 1966 6 3 0.0 3 2 1.000 3 0.667 0.000

1951 - 1967 8 4 0.0 4 2 1.000 4 0.750 0.000

1951 - 1968 19 15 0.0 8 5 1.579 8 0.684 0.228

1951 - 1969 20 17 0.0 8 6 1.700 8 0.630 0.250

1951 - 1970 22 18 0.0 9 6 1.636 9 0.667 0.227

1951 - 1971 33 28 0.0 13 6 1.697 13 0.827 0.424

1951 - 1972 39 34 0.0 15 6 1.744 15 0.867 0.513

1951 - 1973 42 35 2.4 17 6 1.667 17 0.873 0.476

1951 - 1974 42 35 2.4 17 6 1.667 17 0.873 0.476

1951 - 1976 42 35 2.4 17 6 1.667 17 0.873 0.476

1951 - 1977 44 36 2.3 18 6 1.636 18 0.880 0.455

1951 - 1978 44 36 2.3 18 6 1.636 18 0.880 0.455

1951 - 1979 47 40 2.1 18 6 1.702 18 0.884 0.454

1951 - 1980 47 40 2.1 18 6 1.702 18 0.884 0.454

1951 - 1981 50 46 2.0 18 6 1.840 18 0.889 0.497

1951 - 1983 51 46 3.9 19 6 1.804 19 0.889 0.487

1951 - 1984 53 47 3.8 20 6 1.774 20 0.894 0.469

1951 - 1985 53 47 3.8 20 6 1.774 20 0.894 0.469

1951 - 1986 53 47 3.8 20 6 1.774 20 0.894 0.469

1951 - 1987 56 48 5.4 22 6 1.714 22 0.898 0.443

1951 - 1988 62 52 6.5 25 6 1.677 25 0.909 0.449

1951 - 1989 75 62 6.7 31 6 1.653 31 0.926 0.424

1951 - 1990 79 64 6.3 33 6 1.620 33 0.930 0.403

1951 - 1991 87 69 6.9 37 6 1.586 37 0.937 0.400

1951 - 1992 95 72 10.5 42 6 1.516 42 0.941 0.367

1951 - 1993 106 81 11.3 47 6 1.528 47 0.947 0.366

1951 - 1994 124 95 12.9 56 6 1.532 56 0.955 0.394

1951 - 1995 135 102 12.6 61 6 1.511 61 0.960 0.384

1951 - 1996 142 105 12.7 65 6 1.479 65 0.962 0.365

1951 - 1997 155 115 12.9 71 6 1.484 71 0.966 0.392

1951 - 1998 191 140 11.0 87 6 1.466 87 0.973 0.367

1951 - 1999 221 169 11.3 99 6 1.529 99 0.977 0.397

1951 - 2000 250 195 10.8 110 6 1.560 110 0.979 0.418

1951 - 2001 287 235 10.5 125 7 1.638 125 0.977 0.419

1951 - 2002 335 278 10.7 146 7 1.660 146 0.979 0.428

1951 - 2003 381 310 10.5 168 7 1.627 168 0.982 0.413

1951 - 2004 437 370 9.2 185 10 1.693 185 0.983 0.424

1951 - 2005 532 476 7.7 214 19 1.789 214 0.985 0.458

1951 - 2006 640 603 6.7 246 22 1.884 246 0.987 0.486

1951 - 2007 793 877 5.8 283 25 2.212 283 0.985 0.532

1951 - 2008 948 1170 5.3 318 33 2.468 319 0.985 0.558

1951 - 2009 1108 1442 4.9 356 71 2.603 358 0.982 0.573

1951 - 2010 1300 1936 5.1 402 133 2.978 405 0.965 0.592

1951 - 2011 1560 2375 5.1 472 157 3.045 475 0.970 0.613

1951 - 2012 1837 2865 4.4 534 209 3.119 537 0.969 0.634

1951 - 2013 2149 3420 4.3 603 322 3.183 609 0.965 0.644

1951 - 2014 2481 3971 4.2 683 399 3.201 694 0.962 0.658

1951 - 2015 2938 4877 3.7 765 504 3.320 779 0.965 0.675

1951 - 2016 3469 6532 3.3 850 613 3.766 863 0.964 0.696

1951 - 2017 3735 7072 3.2 895 706 3.787 912 0.964 0.700

1951 - 2018 4011 7642 3.2 947 796 3.811 967 0.966 0.701

Table 3.7: Collaborativeness metrics for cumulative graphs, G̃ ⊆ G
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Period # Nodes # Edges % Isolated nodes Size of largest component Av. degree # Communities Modularity Clustering coeff

1951 - 1966 2 1 0.0 2 1.000 1 0.000 0.000

1951 - 1967 2 1 0.0 2 1.000 1 0.000 0.000

1951 - 1968 5 8 0.0 5 3.200 1 0.000 0.867

1951 - 2002 7 21 0.0 7 6.000 1 0.000 1.000

1951 - 2003 7 21 0.0 7 6.000 1 0.000 1.000

1951 - 2004 10 13 0.0 10 2.600 2 0.376 0.553

1951 - 2005 19 28 0.0 19 2.947 3 0.544 0.730

1951 - 2006 22 35 0.0 22 3.182 4 0.527 0.720

1951 - 2007 25 39 0.0 25 3.120 5 0.558 0.686

1951 - 2008 33 62 0.0 33 3.758 4 0.623 0.736

1951 - 2009 71 148 0.0 71 4.169 6 0.697 0.698

1951 - 2010 133 387 0.0 133 5.820 7 0.726 0.749

1951 - 2011 157 465 0.0 157 5.924 8 0.727 0.725

1951 - 2012 209 611 0.0 209 5.847 11 0.733 0.737

1951 - 2013 322 892 0.0 322 5.540 12 0.780 0.743

1951 - 2014 399 1109 0.0 399 5.559 15 0.794 0.742

1951 - 2015 504 1368 0.0 504 5.429 24 0.811 0.751

1951 - 2016 613 1677 0.0 613 5.471 21 0.819 0.761

1951 - 2017 706 1935 0.0 706 5.482 29 0.830 0.772

1951 - 2018 796 2214 0.0 796 5.563 25 0.845 0.773

Table 3.8: Collaborativeness metrics for cumulative graphs’ main clusters, G̃ ⊆ Ḡ

The networks corresponding to the topics of section 3.3 have also been generated simi-

larly to G. Note that authors with publications in more than one topic exist, and these

authors are included in all the corresponding networks. A metrics’ summary for all five

topic networks is given by Table 3.9.

# Nodes # Edges # Isolated nodes % Isolated nodes # Connected
components

Size of largest
component

Av. degree # Communities Modularity Clustering coeff

Topic A 1124 2137 15 1.3 264 56 3.802 265 0.983 0.759

Topic B 695 1382 13 1.9 157 80 3.977 158 0.950 0.773

Topic C 900 1141 41 4.6 281 29 2.536 281 0.981 0.636

Topic D 880 1509 17 1.9 174 312 3.430 183 0.918 0.701

Topic E 1045 1964 59 5.6 354 31 3.759 354 0.926 0.664

Table 3.9: Network metrics for topic networks.

Topic B is the network with the highest average degree followed by Topic A. The

topic with the smallest average degree, 2.5, is Topic C. In topics A and B the number

of isolated nodes is very small < (0.2) compared to Topic E where the percentage

of isolated nodes is approximately 6%. Moreover, in topics C and E an author is

10% more likely to collaborate with a collaborator’s co-author. Thus, topics “human

subject research” and “biological studies” tend to be more collaborative than the topic

of “strategies”, and an authors in these are less likely to have at least one collaborator

compared to the topic of “modelling problems as a PD”.

“Evolutionary dynamics on networks” also appear to be a collaborative topic. In fact
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the network of the topic is a sub graph of Ḡ, the main cluster of G and it will be

demonstrated in the following section that authors in this network are more like to

gain from the influence of the network compared to any other topic network.

The two centrality measures reported in this thesis are closeness and betweenness

centrality. Closeness centrality is a measure of how easy it is for an author to contact

others, and consequently affect them; influence them. Thus closeness centrality is a

measure of influence. Betweenness centrality is a measure of how many paths pass

through a specific node, thus the amount of information this person has access to.

Betweenness centrality is interpreted as a measure of how much an author gains from

the field. The values of the centralities can range between 0 and 1. Influence and

the amount of information an author has access to are proxies to understand if/which

authors benefit more from their position.

For G and Ḡ the most central authors based on closeness and betweenness centralities

are given by Table 3.10. The most central authors in G and Ḡ are the same. This

implies that the results on centrality heavily rely on the main cluster (as expected).

Matjaz Perc is an author with 83 publications in the data set and the most central

authors based on both centrality measures. The most central authors are fairly similar

between the two measures. The author that appear to be central based on one measure

and not the other are Martin Nowak, Franz Weissing, Jianye Hao, Angel Sanchez and

Valerio Capraro which have access to information due to their positioning but do not

influence the network as much, and the opposite is true for Attila Szolnoki, Luo-Luo

Jiang Sandro Meloni, Cheng-Yi Xia and Xiaojie Chen.

G Ḡ

Name Betweenness Name Closeness Name Betweenness Name Closeness

1 Matjaz Perc 0.015 Matjaz Perc 0.066 Matjaz Perc 0.373 Matjaz Perc 0.330

2 Zhen Wang 0.011 Long Wang 0.060 Zhen Wang 0.279 Long Wang 0.301

3 Long Wang 0.007 Yamir Moreno 0.059 Long Wang 0.170 Yamir Moreno 0.299

4 Martin Nowak 0.006 Attila Szolnoki 0.059 Martin Nowak 0.159 Attila Szolnoki 0.297

5 Angel Sanchez 0.004 Zhen Wang 0.059 Angel Sanchez 0.114 Zhen Wang 0.296

6 Yamir Moreno 0.004 Arne Traulsen 0.056 Yamir Moreno 0.110 Arne Traulsen 0.281

7 Arne Traulsen 0.004 Luo-Luo Jiang 0.055 Arne Traulsen 0.107 Luo-Luo Jiang 0.280

8 Franz Weissing 0.004 Sandro Meloni 0.055 Franz Weissing 0.101 Sandro Meloni 0.278

9 Jianye Hao 0.004 Cheng-Yi Xia 0.055 Jianye Hao 0.094 Cheng-Yi Xia 0.276

10 Valerio Capraro 0.004 Xiaojie Chen 0.055 Valerio Capraro 0.093 Xiaojie Chen 0.276

Table 3.10: The 10 most central authors based on betweenness and closeness centralities
for G and Ḡ.

It is obvious that in G the centrality values are low which suggests that in the PD
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authors do not benefit from their positions. This could be an effect of information not

flowing from one community to another as authors tend to write with people from their

communities. Nevertheless, there are authors that do benefit from their position, but

these are only the authors connected to the main cluster.

The centrality measures for the topic networks have also been estimated and are given

in Tables 3.11-3.12. If information was flowing between the communities of the research

topics then there would be an increase to the values of centralities for the sub networks.

However, the only topic where authors gain from their positions are the authors of Topic

D (topic on evolutionary dynamics on network). From the list of names it is obvious

that these authors are part of Ḡ, and that the network of Topic D is a sub network

of Ḡ. This confirms the results. The people benefiting from their position in the co-

authorship networks corresponding to research topics of the PD are only the people

from the main cluster of G.

Topic A Topic B Topic C Topic D Topic E

Name Betweeness Name Betweeness Name Betweeness Name Betweeness Name Betweeness

1 David Rand 0.002 Long Wang 0.006 Daniel Ashlock 0.001 Matjaz Perc 0.064 Zengru Di 0.0

2 Valerio Capraro 0.001 Luo-Luo Jiang 0.005 Matjaz Perc 0.000 Luo-Luo Jiang 0.037 Jian Yang 0.0

3 Angel Sanchez 0.001 Martin Nowak 0.004 Karl Tuyls 0.000 Yamir Moreno 0.031 Yevgeniy Vorobeychik 0.0

4 Feng Fu 0.001 Matjaz Perc 0.003 Philip Hingston 0.000 Christoph Hauert 0.027 Otavio Teixeira 0.0

5 Martin Nowak 0.000 Attila Szolnoki 0.003 Eun-Youn Kim 0.000 Long Wang 0.024 Roberto Oliveira 0.0

6 Nicholas Christakis 0.000 Christian Hilbe 0.002 Wendy Ashlock 0.000 Zhen Wang 0.024 M. Nowak 0.0

7 Pablo Branas-Garza 0.000 Yamir Moreno 0.002 Attila Szolnoki 0.000 Han-Xin Yang 0.023 M. Harper 0.0

8 Toshio Yamagishi 0.000 Xiaojie Chen 0.002 Seung Baek 0.000 Martin Nowak 0.020 Xiao Han 0.0

9 James Fowler 0.000 Arne Traulsen 0.002 Martin Nowak 0.000 Angel Sanchez 0.017 Zhesi Shen 0.0

10 Long Wang 0.000 Zhen Wang 0.002 Thore Graepel 0.000 Zhihai Rong 0.016 Wen-Xu Wang 0.0

Table 3.11: The 10 most central authors based on betweenness centrality for topics’
networks.

Topic A Topic B Topic C Topic D Topic E

Name Closeness Name Closeness Name Closeness Name Closeness Name Closeness

1 David Rand 0.027 Long Wang 0.043 Karl Tuyls 0.022 Matjaz Perc 0.123 Stefanie Widder 0.029

2 Valerio Capraro 0.023 Matjaz Perc 0.041 Thore Graepel 0.019 Zhen Wang 0.109 Rosalind Allen 0.029

3 Jillian Jordan 0.022 Attila Szolnoki 0.040 Joel Leibo 0.018 Long Wang 0.107 Thomas Pfeiffer 0.029

4 Nicholas Christakis 0.021 Martin Nowak 0.040 Edward Hughes 0.017 Yamir Moreno 0.105 Thomas Curtis 0.029

5 James Fowler 0.020 Olivier Tenaillon 0.038 Matthew Phillips 0.017 Luo-Luo Jiang 0.104 Carsten Wiuf 0.029

6 Martin Nowak 0.020 Xiaojie Chen 0.038 Edgar Duenez-Guzman 0.017 Attila Szolnoki 0.103 William Sloan 0.029

7 Angel Sanchez 0.019 Bin Wu 0.038 Antonio Castaneda 0.017 Gyorgy Szabo 0.102 Otto Cordero 0.029

8 Gordon Kraft-Todd 0.019 Yanling Zhang 0.037 Iain Dunning 0.017 Xiaojie Chen 0.102 Sam Brown 0.029

9 Akihiro Nishi 0.019 Feng Fu 0.037 Tina Zhu 0.017 Guangming Xie 0.101 Babak Momeni 0.029

10 Anthony Evans 0.019 David Rand 0.037 Kevin Mckee 0.017 Lucas Wardil 0.101 Wenying Shou 0.029

Table 3.12: The 10 most central authors based on closeness centrality for topics’ net-
works.

The fact that most authors of the main cluster are primarily publishing in evolutionary

dynamics on networks indicates that publishing in this specific topic differs from the

other topics covered in this manuscript. There appears to be more collaboration and

influence in the publications on evolutionary dynamics and authors are more likely to
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gain from their position, though it is not clear as to why.

The distributions of both centrality measures for all the networks are given in the

Appendix A.2.

3.6 Chapter summary

This Chapter explored the research topics from a collection of 2,422 publications of

the IPD, and moreover, the authors’ collaborative behaviour and their influence in the

research field. This was achieved by applying network theoretic approaches and a LDA

algorithm to the collection of publications. Both the software [110] and the main data

set [103] associated with the Chapter have been archived and are available to be used

by other researchers. In fact Arcas has been used by [189] and [277].

Arcas, its development and the data collection were covered in section 3.2, as well

as an introduction to the co-authorship network and to LDA. Section 3.3 covered an

initial analysis of the data set which demonstrated that the PD is a field that continues

to attract academic attention and publications. In section 3.4 LDA was applied to

the data set to identify topics on which researchers have been publishing. The LDA

analysis showed that the articles could be classified into 5 topics associated with human

subject research, biological studies, strategies, evolutionary dynamics on networks and

modelling problems as a PD. These topics summarise the field of the PD well, as

they demonstrate its interdisciplinarity and applications to a variety of problems. A

temporal analysis explored how relevant these topics have been over the course of

time, and it revealed that even though there were not the necessarily always the most

discussed topics they were still being explored by researchers.

The collaborative behaviour of the field was explored in section 3.5 by constructing the

co-authorship network. It was concluded that the field is a collaborative field, where

authors are likely to write with a collaborator’s co-authors and on average an author

has 4 co-authors, however, it not necessarily more collaborative than other fields. The

authors tend to collaborate with authors from one community, but not many authors

are involved in multiple communities. This however might be an effect of academic

research, and it might not be true just for the field of the PD. Exploring the influence

of authors and their gain from being in the network of the field demonstrated that

authors do not gain much, and the authors with influence are only the ones connected

to the main cluster, to a “main” group of authors. This ‘main” group of authors
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consists of authors publishing in evolutionary dynamics on networks. Thus, an author

would be aiming to publish on this topic if they were interested in gaining from their

position in the publications of the PD.

The study of the PD is the study of cooperation and investigating the cooperative

behaviours of authors is what this Chapter has aimed to achieve. The following Chap-

ters focus on best responses in changing environments of the PD, and more specifically

Chapter 4 studies best responses from a collection of strategies in a large number of

IPD tournaments.
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Chapter 4

A meta analysis of tournaments

and an evaluation of performance

in the Iterated Prisoner’s

Dilemma.

The research reported in this Chapter has led to a manuscript, entitled:

“Properties of winning Iterated Prisoner’s Dilemma strategies”

Available at: https://arxiv.org/abs/2001.05911

Associated data sets: [100,105]

Associated codebase: [99]

Axelrod-Python library (APL) version: 3.0.0

The manuscript’s abstract is the following:

Researchers have explored the performance of Iterated Prisoner’s Dilemma strategies

for decades: from the celebrated performance of Tit For Tat, to the introduction of

the zero-determinant strategies, to the use of sophisticated learning structures such as

neural networks, many new strategies have been introduced and tested in a variety of

tournaments and population dynamics. Typical results in the literature, however, rely

on performance against a small number of somewhat arbitrarily selected strategies in a

small number of tournaments, casting doubt on the generalisability of conclusions. We

analyse a large collection of 195 strategies in 45,600 tournaments, present the top per-

https://arxiv.org/abs/2001.05911
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forming strategies across multiple tournament types, and distill their salient features.

The results show that there is not yet a single strategy that performs well in diverse

Iterated Prisoner’s Dilemma scenarios, nevertheless there are several properties that

heavily influence the best performing strategies. This refines the properties described

by R. Axelrod in light of recent and more diverse opponent populations to: be nice, be

provocable and generous, be a little envious, be clever, and adapt to the environment.

More precisely, we find that strategies perform best when their probability of cooper-

ation matches the total tournament population’s aggregate cooperation probabilities,

or a proportion thereof in the case of noisy and probabilistically ending tournaments,

and that the manner in which a strategy achieves the ideal cooperation rate is crucial.

The features of high performing strategies help cast some light on why strategies such

as Tit For Tat performed historically well in tournaments and why zero-determinant

strategies typically do not fare well in tournament settings.

The differences between the Chapter and the manuscript include the introduction to

the PD and the discussion of previous literature. Both the introduction to the PD and

the discussion of previous tournaments and strategies are excluded from the Chapter.

That is because the introduction to the PD was presented in Chapter 1 and the previous

literature was discussed in Chapter 2.



CHAPTER 4. A META ANALYSIS OF TOURNAMENTS AND AN
EVALUATION OF PERFORMANCE IN THE ITERATED PRISONER’S
DILEMMA. 67

4.1 Introduction

In Chapter 1 it was discussed that conceptualising strategies and understanding the

best way of playing the game has been of interest to the scientific community since the

formulation of the game. In Chapter 2 it was established that following the computer

tournaments of Axelrod in the 1980’s a strategy’s performance in a round robin com-

puter tournament became a common evaluation technique for newly designed strate-

gies. A large collection of works were discussed in Chapter 2 which introduced a broad

collection of strategies, and new strategies and competitions are published frequently

as established in Chapter 3. The question, however, still remains the same: what is

the best way to play the game?

Compared to the works reviewed in Chapter 2, where typically a few selected or intro-

duced strategies are evaluated on a small number of tournaments and/or small number

of opponents, this Chapter evaluates the performance of 195 strategies in 45,600 com-

puter tournaments. Furthermore, a large portion of these strategies are drawn from the

known and named strategies in IPD literature, including many previous tournament

winners, in contrast to other work that may have randomly generated many essentially

arbitrary strategies (typically restrained to a class such as memory-one strategies, or

those of a certain structural form such as finite state machines or deterministic memory

two strategies). Additionally, the analysis of this Chapter considers tournament vari-

ations including standard tournaments, tournaments with noise, probabilistic match

length, and both noise and probabilistic match length. This diversity of strategies and

tournament types yields new insights and tests earlier claims in alternative settings

against known powerful strategies.

The later part of the Chapter evaluates the impact of features on the performance of

the strategies using modern machine learning and statistical techniques. These features

include measures regarding a strategy’s behaviour as well as measures regarding the

tournaments. The outcomes reinforce the discussion started by Axelrod on properties

of successful strategies (presented in section 2.3), and conclude that the properties

are:

• Be a little bit envious

• Be “nice” in non-noisy environments or when game lengths are longer

• Reciprocate both cooperation and defection appropriately; Be provocable in tour-
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naments with short matches, and generous when matches are longer

• It is okay to be clever

• Adapt to the environment; Adjust to the mean population cooperation rate

The rest of the Chapter is structured as follows:

• section 4.2 covers the different tournament types and the data collection which

are made possible due to APL.

• section 4.3 focuses on the best performing strategies for each type of tournament

and overall.

• section 4.4 explores the traits which contribute to a good performance.

4.2 Data collection

The data set generated for this Chapter was created with APL version 3.0.0. APL

allows for different types of IPD computer tournaments to be simulated and contains

a large list of strategies. Most of these are strategies described in the literature with

a few exceptions of strategies that have been contributed specifically to the package.

A total of 195 strategies are used in this Chapter, a list of these is given in the Ap-

pendix B.1.

Although APL features several tournament types, only standard, noisy, probabilistic

ending, and noisy probabilistic ending tournaments are considered here. Standard

tournaments are tournaments similar to that of Axelrod’s tournaments [33]. There

are N strategies which all play an iterated game of n number of turns against each

other. Note that self-interactions are not included. Similarly, noisy tournaments have

N strategies and n number of turns, but at each turn there is a probability pn that

a player’s action will be flipped. Probabilistic ending tournaments, are of size N and

after each turn a match between strategies ends with a given probability pe. Finally,

noisy probabilistic ending tournaments have both a noise probability pn and an ending

probability pe. For smoothing the simulated results a tournament is repeated for k

number of times. This was allowed to vary in order to evaluate the effect of smoothing.

The winner of each tournament is based on the median score a strategy achieved and

not by the number of wins.

The process of collecting tournament results is described by Algorithm 4.1.
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Algorithm 4.1: Tournaments’ result summary collections algorithm

foreach seed ∈ [0, 11, 400] do

N ← randomly select integer ∈ [Nmin, Nmax];

players← randomly select N players;

k ← randomly select integer ∈ [kmin, kmax];

n← randomly select integer ∈ [nmin, nmax];

pn ← randomly select float ∈ [pnmin, pnmax];

pe ← randomly select float ∈ [pemin, pemax];

result standard ← Axelrod.tournament(players, n, k);

result noisy ← Axelrod.tournament(players, n, pn, k);

result probabilistic ending ← Axelrod.tournament(players, pe, k);

result noisy probabilistic ending ← Axelrod.tournament(players, pn, pe, k);

return result standard, result noisy, result probabilistic ending, result noisy

probabilistic ending ;

For each trial a random sizeN is selected, and from the 195 strategies a random list ofN

strategies is chosen. For the given list of strategies a standard, a noisy, a probabilistic

ending and a noisy probabilistic ending tournament are performed and repeated k

times. The parameters for the tournaments, as well as the number of repetitions,

are selected once for each trial. The parameters and their respective minimum and

maximum values are given by Table 4.1.

parameter parameter explanation min value max value

N number of strategies 3 195

k number of repetitions 10 100

n number of turns 1 200

pn probability of flipping action at each turn 0 1

pe probability of match ending in the next turn 0 1

Table 4.1: Data collection; parameter values.

A total of 11,400 trials of Algorithm 4.1 have been run. For each trial the results for

4 different tournaments were collected, thus a total of 45,600 (11, 400× 4) tournament

results have been retrieved. Each tournament outputs a result summary in the form

of Table 4.2. These have been archived and are available at [100, 105]. Each strategy

has participated on average in 5,154 tournaments of each type. The strategy with

the maximum participation in each tournament type is Inverse Punisher with 5,639

entries. The strategy with the minimum entries is EvolvedLookerUp 1 1 1 which was
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selected in 4,693 trials.

A result summary (Table 4.2) has N rows because each row contains information for

each strategy that participated in the tournament. The information includes the strat-

egy’s rank, median score, the rate with which the strategy cooperated (Cr), its match

win count, and the probability that the strategy cooperated in the opening move. More-

over, the probabilities of a strategy being in any of the four states (CC,CD,DC,DD),

and the rate of which the strategy cooperated after each state. The normalised rank is

a feature that has been manually added to the result summary. The rank R of a given

strategy can vary between 0 (first) and N − 1 (last), and thus the normalised rank,

denoted as r, is calculated as a strategy’s rank divided by N − 1.

Rates

Rank Name Median score Cooperation rating (Cr) Win Initial C CC CD DC DD CC to C CD to C DC to C DD to C

0 EvolvedLookerUp2 2 2 2.97 0.705 28.0 1.0 0.639 0.066 0.189 0.106 0.836 0.481 0.568 0.8

1 Evolved FSMSix 16 Noise 05 2.875 0.697 21.0 1.0 0.676 0.020 0.135 0.168 0.985 0.571 0.392 0.07

2 PSO Gambler 1 1 1 2.874 0.684 23.0 1.0 0.651 0.034 0.152 0.164 1.000 0.283 0.000 0.136

3 PSO Gambler Mem1 2.861 0.706 23.0 1.0 0.663 0.042 0.145 0.150 1.000 0.510 0.000 0.122

4 Winner12 2.835 0.682 20.0 1.0 0.651 0.031 0.141 0.177 1.000 0.441 0.000 0.462

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.2: Output result of a single tournament.

4.3 Top ranked strategies

The performance of each strategy is evaluated in four tournament types, as presented in

section 4.2, followed by an evaluation of their performance over all the 45,600 simulated

tournaments. Each strategy participated in multiple tournaments of the same type (on

average 5,154). For example Tit For Tat participated in a total of 5,114 tournaments of

each type. The strategy’s normalised rank distribution in these is given in Figure 4.1.

A value of r = 0 corresponds to a strategy winning the tournament where a value

of r = 1 corresponds to the strategy coming last. Because of the strategies’ multiple

entries their performance is evaluated based on the median normalised rank denoted

as r̄.

The top 15 strategies for each tournament type based on r̄ are given in Table 4.3. The

data collection process was designed such that the probabilities of noise and ending of

the match varied between 0 and 1. However, commonly used values for these probabili-

ties are values less than 0.1. Thus, Table 4.3 also includes the top 15 strategies in noisy

tournaments with pn < 0.1 and probabilistic ending tournaments with pe < 0.1. The r

distributions for the top ranked strategies of Table 4.3 are given by Figure 4.2.
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Figure 4.1: Tit For Tat’s r distribution in tournaments. Lower values of r correspond
to better performances. The best performance of the strategy has been in standard
tournaments where it achieved a r̄ of 0.34.

Standard Noisy Noisy (pn < 0.1) Probabilistic ending Probabilistic ending (pe < 0.1) Noisy probabilistic ending

Name r̄ Name r̄ Name r̄ Name r̄ Name r̄ Name r̄

0 Evolved HMM 5 0.007 Grumpy 0.140 DBS 0.000 Fortress4 0.013 Evolved FSM 16 0.000 Alternator 0.304

1 Evolved FSM 16 0.010 e 0.194 Evolved FSM 16 Noise 05 0.008 Defector 0.014 Evolved FSM 16 Noise 05 0.013 φ 0.310

2 EvolvedLookerUp2 2 2 0.011 Tit For 2 Tats 0.206 Evolved ANN 5 Noise 05 0.013 Better and Better 0.016 MEM2 0.027 e 0.312

3 Evolved FSM 16 Noise 05 0.017 Slow Tit For Two Tats 0.210 BackStabber 0.024 Tricky Defector 0.019 Evolved HMM 5 0.044 π 0.317

4 PSO Gambler 2 2 2 0.021 Cycle Hunter 0.215 DoubleCrosser 0.025 Fortress3 0.022 EvolvedLookerUp2 2 2 0.049 Limited Retaliate 0.353

5 Evolved ANN 0.029 Risky QLearner 0.222 Evolved ANN 5 0.028 Gradual Killer 0.025 Spiteful Tit For Tat 0.060 Anti Tit For Tat 0.354

6 Evolved ANN 5 0.034 Retaliate 3 0.229 Evolved ANN 0.038 Aggravater 0.028 Nice Meta Winner 0.068 Limited Retaliate 3 0.356

7 PSO Gambler 1 1 1 0.037 Cycler CCCCCD 0.235 Spiteful Tit For Tat 0.051 Raider 0.031 NMWE Finite Memory 0.069 Retaliate 3 0.356

8 Evolved FSM 4 0.049 Retaliate 2 0.239 Evolved HMM 5 0.051 Cycler DDC 0.045 NMWE Deterministic 0.070 Retaliate 0.357

9 PSO Gambler Mem1 0.050 Defector Hunter 0.240 Level Punisher 0.052 Hard Prober 0.051 Grudger 0.070 Retaliate 2 0.358

10 Winner12 0.060 Retaliate 0.242 Omega TFT 0.059 SolutionB1 0.060 NMWE Long Memory 0.074 Limited Retaliate 2 0.361

11 Fool Me Once 0.061 Hard Tit For 2 Tats 0.250 Fool Me Once 0.059 Meta Minority 0.061 Nice Meta Winner Ensemble 0.076 Hopeless 0.368

12 DBS 0.071 Limited Retaliate 3 0.253 PSO Gambler 2 2 2 Noise 05 0.067 Bully 0.061 EvolvedLookerUp1 1 1 0.077 Arrogant QLearner 0.407

13 DoubleCrosser 0.072 ShortMem 0.253 Evolved FSM 16 0.078 EasyGo 0.071 NMWE Memory One 0.080 Cautious QLearner 0.409

14 BackStabber 0.075 Limited Retaliate 0.257 EugineNier 0.080 Fool Me Forever 0.071 Winner12 0.085 Fool Me Forever 0.418

Table 4.3: Top performances for each tournament type based on r̄. The results of each
type are based on 11,420 unique tournaments. The results for noisy tournaments with
pn < 0.1 are based on 1,151 tournaments, and for probabilistic ending tournaments
with pe < 0.1 on 1,139. The top ranks indicate that trained strategies perform well in
a variety of environments, but so do simple deterministic strategies. The normalised
medians are close to 0 for most environments, except environments with noise not
restricted to 0.1 regardless of the number of turns. Noisy and noisy probabilistic
ending tournaments have the highest medians.
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Figure 4.2: r distributions of the top 15 strategies in different environments. A lower
value of r̄ corresponds to a more successful performance. A strategy’s r distribution
skewed towards zero indicates that the strategy ranked highly in most tournaments it
participated in. Most distributions are skewed towards zero except the distributions
with unrestricted noise, supporting the conclusions from Table 4.3.



CHAPTER 4. A META ANALYSIS OF TOURNAMENTS AND AN
EVALUATION OF PERFORMANCE IN THE ITERATED PRISONER’S
DILEMMA. 73

In standard tournaments 10 out of the 15 top strategies were introduced in [125]. These

are strategies based on finite state automata (FSM), hidden Markov models (HMM), ar-

tificial neural networks (ANN), lookup tables (LookerUp) and stochastic lookup tables

(Gambler) that have been trained using reinforcement learning algorithms (evolution-

ary and particle swarm algorithms). They have been trained to perform well against a

subset of the strategies in APL in a standard tournament, thus their performance in the

specific setting was anticipated although still noteworthy given the random sampling

of tournament participants. DoubleCrosser, BackStabber and Fool Me Once, are

strategies not from the literature but from APL. DoubleCrosser is an extension of

BackStabber and both strategies make use of the number of turns because they are

set to defect on the last two rounds. It should be noted that these strategies can be

characterised as “cheaters” because the source code of the strategies allows them to

know the number of turns in a match (unless the match has a probabilistic ending).

These strategies were expected to not perform as well in tournaments where the num-

ber of turns is not specified. Finally, Winner 12 [193] and DBS [32] are both from

the literature. DBS is a strategy specifically designed for noisy environments, however,

it ranks highly in standard tournaments as well. Similarly the fourth ranked player,

Evolved FSM 16 Noise 05, was trained for noisy tournaments yet performs well in

standard tournaments. Figure 4.2a shows that these strategies typically perform well

in any standard tournament in which they participate.

In the case of noisy tournaments with smaller noise pn < 0.1 the top performing

strategies include strategies specifically designed for noisy tournaments. These are

DBS, Evolved FSM 16 Noise 05, Evolved ANN 5 Noise 05, PSO Gambler 2 2

2 Noise 05 and Omega Tit For Tat [159]. Omega Tit For Tat, another strategy

designed to break the deadlocking cycles of CD and DC that Tit For Tat can fall

into in noisy environments, places 10th. The rest of the top ranks are occupied by

strategies which performed well in standard tournaments and deterministic strategies

such as Spiteful Tit For Tat [4], Level Punisher [8], Eugine Nier [233].

In contrast, the performance of the top ranked strategies in noisy environments when

pn ∈ [0, 1] is bimodal. The top strategies include strategies which decide their actions

based on the cooperation to defection ratio, such as ShortMem [57], Grumpy [7]

and e [7], and the Retaliate strategies which are designed to defect if the opponent

has tricked them more often than a given percentage of the times that they have

done the same. The bimodality of the r distributions is explained by Figure 4.3 which
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demonstrates that the top 6 strategies were highly ranked due to the their performance

in tournaments with pn > 0.5, and that in tournaments with pn < 0.5 they performed

poorly. At a noisy level of 0.5 or greater, mostly cooperative strategies become mostly

defectors and vice versa.
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Figure 4.3: Normalised rank r distributions for top 6 strategies in noisy tournaments
over the probability of noisy (pn).

The most effective strategies in probabilistic ending tournaments with pe < 0.1 are a

series of ensemble Meta strategies, trained strategies which performed well in standard

tournaments, and Grudger [7] and Spiteful Tit For Tat [4]. The Meta strategies [7]

utilise a team of strategies and aggregate the potential actions of the team members into

a single action in various ways. Figure 4.2d indicates that these strategies performed

well in any probabilistic ending tournament.

In probabilistic ending tournaments with pe ∈ [0, 1] the top ranks are mostly occupied

by defecting strategies such as Better and Better, Gradual Killer, Hard Prober (all

from [7]), Bully (Reverse Tit For Tat) [212] and Defector, and a series of strategies

based on finite state automata introduced by Daniel Ashlock and Wendy Ashlock:

Fortress3, Fortress4 (both introduced in [28]), Raider [30] and Solution B1 [30].

The success of defecting strategies in probabilistic ending tournaments is due to larger

values of pe which lead to shorter matches (the expected number of rounds is 1/pe), so

the impact of the PD being iterated is subdued. As stated by the Folk Theorem [89],

defecting strategies do better when the likelihood of the game ending in the next turn

increases. This is demonstrated by Figure 4.4, which gives the distributions of r for
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the top 6 strategies in probabilistic ending tournaments over pe.
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Figure 4.4: Normalised rank r distributions for top 6 strategies in probabilistic ending
tournaments over pe. The 6 strategies start of with a high median rank, however, their
ranked decreased as the the probability of the game ending increased and at the point
of pe = 0.1.

The top performances in tournaments with both noise and a probabilistic ending and

the top performances over the entire data set have the largest median values compared

to the top rank strategies of the other tournament types, Figure 4.2f and Figure 4.5.

The r̄ for the top strategy is approximately at 0.3, indicating that the most successful

strategy can on average just place in the top 30% of the competition.
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Figure 4.5: r distributions for best performed strategies in the data set [100]. A lower
value of r̄ corresponds to a more successful performance.

On the whole, the analysis of this section has shown that:
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Name r̄

Limited Retaliate 3 0.286

Retaliate 3 0.297

Retaliate 2 0.302

Limited Retaliate 2 0.304

Limited Retaliate 0.311

Retaliate 0.317

BackStabber 0.324

DoubleCrosser 0.331

Nice Meta Winner 0.350

PSO Gambler 2 2 2 Noise 05 0.351

Grudger 0.352

NMWE Memory One 0.357

Evolved HMM 5 0.358

Nice Meta Winner Ensemble 0.359

Forgetful Fool Me Once 0.359

Table 4.4: Top performances over all the tournaments. The top ranks include strategies
that have been previously mentioned. The set of Retaliate strategies occupy the
top spots followed by BackStabber and DoubleCrosser. The distributions of the
Retaliate strategies have no statistical difference. PSO Gambler 2 2 2 Noise 05 and
Evolved HMM 5 are trained strategies introduced in [125] and Nice Meta Winner
and NMWE Memory One are strategies based on teams. Grudger is a strategy
from Axelrod’s original tournament and Forgetful Fool Me Once is based on the same
approach as Grudger.

• In standard tournaments the dominating strategies were strategies that had been

trained using reinforcement learning techniques.

• In noisy environments where the noise probability strictly less than 0.1 was con-

sidered, the successful strategies were strategies specifically designed or trained

for noisy environments.

• In probabilistic ending tournaments most of the highly ranked strategies were

defecting strategies and trained finite state automata, all by the authors of [28,30].

These strategies ranked high due to their performance in tournaments where the

probability of the game ending after each turn was bigger than 0.1.

• In probabilistic tournaments with pe less than 0.1 the highly ranked strategies

were strategies based on the behaviour of others.

• From the collection of strategies considered here, no strategy can be consistently

successful in noisy environments, except if the value of noise is constrained to less

than a 0.1.

Though there is not a single strategy that repeatedly outranks all others in any of the
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distinct tournament types, or even across the tournament types, there are specific types

of strategies have been repeatedly ranked in the top ranks. These have been strategies

that have been trained, strategies that defect, and strategies that would adapt their

behaviour based on preassigned rules to achieve the highest outcome. These results

contradict some of Axelrod’s suggestions, and more specifically, the suggestions ‘Do

not be clever’ and ‘Do not be envious’. The features and properties contributing a

strategy’s success are further explored in section 4.4.

4.4 Evaluation of performance

This section examines the performance of the strategies based on features of strategies

described in Table 4.5. These features are measures regarding a strategy’s behaviour

from the tournaments the strategies competed in as well as intrinsic properties such as

whether a strategy is deterministic or stochastic.

feature feature explanation source value type min value max value

stochastic If a strategy is stochastic strategy classifier from APL boolean Na Na

makes use of game If a strategy makes used of the game information strategy classifier from APL boolean Na Na

makes use of length If a strategy makes used of the number of turns strategy classifier from APL boolean Na Na

memory usage The memory size of a strategy divided by the number of turns memory size from APL float 0 1

SSE A measure of how far a strategy is from ZD behaviour method described in [166] float 0 1

max cooperating rate (Cmax) The biggest cooperating rate in a given tournament result summary float 0 1

min cooperating rate (Cmin) The smallest cooperating rate in a given tournament result summary float 0 1

median cooperating rate (Cmedian) The median cooperating rate in a given tournament result summary float 0 1

mean cooperating rate (Cmean) The mean cooperating rate in a given tournament result summary float 0 1

Cr / Cmax A strategy’s cooperating rate divided by the maximum result summary float 0 1

Cmin / Cr A strategy’s cooperating rate divided by the minimum result summary float 0 1

Cr / Cmedian A strategy’s cooperating rate divided by the median result summary float 0 1

Cr / Cmean A strategy’s cooperating rate divided by the mean result summary float 0 1

Cr The cooperating ratio of a strategy result summary float 0 1

CC to C rate The probability a strategy will cooperate after a mutual cooperation result summary float 0 1

CD to C rate The probability a strategy will cooperate after being betrayed by the opponent result summary float 0 1

DC to C rate The probability a strategy will cooperate after betraying the opponent result summary float 0 1

DD to C rate The probability a strategy will cooperate after a mutual defection result summary float 0 1

pn The probability of a player’s action being flip at each interaction trial summary float 0 1

n The number of turns trial summary integer 1 200

pe The probability of a match ending in the next turn trial summary float 0 1

N The number of strategies in the tournament trial summary integer 3 195

k The number of repetitions of a given tournament trial summary integer 10 100

Table 4.5: The features which are included in the performance evaluation analysis.
Stochastic, makes use of length and makes use of game are APL classifiers that de-
termine whether a strategy is stochastic or deterministic, whether it makes use of the
number of turns or the game’s payoffs. The memory usage is calculated as the number
of turns the strategy considers to make an action (which is specified in the APL) divided
by the number of turns. The SSE (introduced in [166]) shows how close a strategy is
to behaving as a ZDs, and subsequently, in an extortionate way. The method identifies
the ZDs closest to a given strategy and calculates the algebraic distance between them,
defined as SSE. More details on the measure are presented in Chapter 5. A SSE value
of 1 indicates no extortionate behaviour at all whereas a value of 0 indicates that a
strategy is behaving as a ZDs. The rest of the features considered include the cooper-
ating ratio of a strategy, the minimum (Cmin), maximum (Cmax), mean (Cmean) and
median (Cmedian) cooperating ratios of each tournament.
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The memory usage of strategies is the number of rounds of play used by the strategy

divided by the number of turns in each match. For example, Winner 12 uses the

previous two rounds of play, and if participating in a match with 100 turns its memory

usage would be 2/100. For strategies with an infinite memory size, for example Evolved

FSM 16 Noise 05, memory usage is equal to 1. Note that for tournaments with a

probabilistic ending the number of turns was not collected, so the memory usage feature

is not used for probabilistic ending tournaments.

The correlation coefficients between the features of Table 4.5 the median score and the

median normalised rank are given by Table 4.6. The correlation coefficients between

all features of Table 4.5 have been calculated and a graphical representation can be

found in the Appendix C.1.

Standard Noisy Probabilistic ending Noisy probabilistic ending Overall

r median score r median score r median score r median score r median score

CC to C rate -0.501 0.501 0.414 -0.504 0.408 -0.323 0.260 0.022 0.108 0.081

CD to C rate 0.226 -0.199 0.456 -0.330 0.320 -0.017 0.205 -0.220 0.281 -0.177

Cr -0.323 0.384 0.711 -0.678 0.714 -0.832 0.579 -0.135 0.360 -0.124

Cr / Cmax -0.323 0.381 0.616 -0.551 0.714 -0.833 0.536 -0.116 0.395 -0.265

Cr / Cmean -0.331 0.358 0.731 -0.740 0.721 -0.861 0.649 -0.621 0.428 -0.439

Cr / Cmedian -0.331 0.353 0.652 -0.669 0.712 -0.852 0.330 -0.466 0.294 -0.405

Cr / Cmin 0.109 -0.080 -0.358 0.250 -0.134 0.150 -0.368 0.113 0.000 0.280

Cmax -0.000 0.049 0.000 0.023 -0.000 0.046 0.000 -0.004 -0.000 0.553

Cmean -0.000 0.229 -0.000 0.271 0.000 0.200 0.000 0.690 -0.000 0.544

Cmedian 0.000 0.209 -0.000 0.240 -0.000 0.187 -0.000 0.673 0.000 -0.250

Cmin 0.000 0.084 0.000 -0.017 -0.000 0.007 -0.000 0.041 -0.161 -0.190

DC to C rate 0.127 -0.100 0.509 -0.504 -0.018 0.033 0.341 -0.016 0.173 -0.088

DD to C rate 0.412 -0.396 0.533 -0.436 -0.103 0.176 0.378 -0.263 0.237 -0.239

N 0.000 -0.009 -0.000 0.002 -0.000 0.003 -0.000 0.001 -0.000 -0.001

k 0.000 -0.002 -0.000 0.003 -0.000 0.001 -0.000 -0.008 0.000 -0.001

n 0.000 -0.125 -0.000 -0.024 - - - - 0.000 -0.074

pe - - - - 0.000 0.165 0.000 -0.058 0.000 0.055

pn - - -0.000 0.207 - - -0.000 -0.650 -0.000 -0.256

Make use of game -0.003 -0.022 0.025 -0.082 -0.053 -0.108 0.013 -0.016 -0.004 -0.053

Make use of length -0.158 0.124 0.005 -0.123 -0.025 -0.090 0.014 -0.016 -0.041 -0.026

SSE 0.473 -0.452 0.463 -0.337 -0.156 0.223 0.305 -0.259 0.233 -0.167

memory usage -0.082 0.095 -0.007 -0.017 - - - - -0.053 0.046

stochastic 0.006 -0.024 0.022 -0.026 0.002 -0.130 0.021 -0.013 0.013 -0.048

Table 4.6: Correlations between the features of Table 4.5 and the normalised rank and
the median score.

In standard tournaments the features CC to C, Cr, Cr/Cmax and the cooperating ratio

compared to Cmedian and Cmean have a moderately negative effect on the normalised

rank (smaller rank is better), and a moderate positive on the median score. The SSE

error and the DD to C rate have the opposite effects. Thus, in standard tournaments

behaving cooperatively corresponds to a more successful performance. Even though

being nice generally pays off that does not hold against defective strategies. Being

more cooperative after a mutual defection, that is not retaliating, is associated to lesser
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overall success in terms of normalised rank. Figure 4.6 confirms that the winners of

standard tournaments always cooperate after a mutual cooperation and almost always

defect after a mutual defection.
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Figure 4.6: Distributions of CC to C and DD to C for the winners in standard tour-
naments.

Compared to standard tournaments, in both noisy and in probabilistic ending tourna-

ments the higher the rates of cooperation the lower a strategy’s success and median

score. A strategy would want to cooperate less than both the mean and median coop-

erator in such settings. In probabilistic ending tournaments the correlation coefficients

have larger values, indicating a stronger effect. Thus a strategy will be punished

more by its cooperative behaviour in probabilistic ending environments, supporting

the results of section 4.4 as well. The distributions of the Cr of the winners in both

tournaments are given by Figure 4.7. It confirms that the winners in noisy tourna-

ments cooperated less than 35% of the time and in probabilistic ending tournaments

less than 10%. In noisy probabilistic ending tournaments and over all the tournaments’

results, the only features that had a moderate effect are Cr/Cmean, Cr/Cmax and Cr.

In such environments cooperative behaviour appears to be punished less than in noisy

and probabilistic ending tournaments.
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Figure 4.7: Cr distributions of the winners in noisy and in probabilistic ending tour-
naments.
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A multivariate linear regression has been fitted to model the relationship between

the features and the normalised rank. Based on the graphical representation of the

correlation matrices given in Appendix C.1 several of the features are highly correlated

and have been removed before fitting the linear regression model. The features included

are given by Table 4.7 alongside their corresponding p values in the distinct tournaments

and their regression coefficients.

Standard Noisy Probabilistic ending Noisy probabilistic ending Overall

R adjusted: 0.541 R adjusted: 0.639 R adjusted: 0.587 R adjusted: 0.577 R adjusted: 0.242

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

CC to C rate -0.042 0.000 -0.007 0.000 0.017 0.000 0.111 0.0 -0.099 0.0

CD to C rate 0.297 0.000 -0.068 0.000 0.182 0.000 0.023 0.0 0.129 0.0

Cr / Cmax - - 1.856 0.000 - - 1.256 0.0 - -

Cr / Cmean -0.468 0.000 -0.577 0.000 0.525 0.000 -0.120 0.0 0.300 0.0

Cmax -0.071 0.000 - - -0.022 0.391 1.130 0.0 - -

Cmean 0.118 0.000 -2.558 0.000 -0.023 0.001 -1.489 0.0 - -

Cmin -0.161 0.000 -1.179 0.000 -0.170 0.000 - - - -

Cmin / Cr 0.057 0.000 -0.320 0.000 0.125 0.000 - - -0.103 0.0

DC to C rate 0.198 0.000 0.040 0.000 -0.030 0.000 0.022 0.0 0.064 0.0

k 0.000 0.319 0.000 0.020 0.000 0.002 0.000 0.0 - -

n 0.000 0.000 - - - - - - - -

pe - - - - 0.000 0.847 -0.083 0.0 - -

pn - - -0.048 0.000 - - - - - -

SSE 0.258 0.000 0.153 0.000 -0.041 0.000 0.100 0.0 0.056 0.0

constant 0.697 0.000 1.522 0.000 -0.057 0.019 -0.472 0.0 0.178 0.0

memory usage -0.010 0.000 -0.000 0.035 - - - - - -

Table 4.7: Results of multivariate linear regressions with r as the dependent variable.
R squared is reported for each model.

A multivariate linear regression has also be fitted on the median score. The coefficients

and p values of the features can be found in Appendix C.2. The results of the two

methods are in agreement.

The feature Cr/Cmean has a statistically significant effect across all models and a high

regression coefficient. It has both a positive and negative impact on the normalised rank

depending on the environment. For standard tournaments, Figure 4.8 gives the dis-

tributions of several features for the winners of standard tournaments. The Cr/Cmean

distribution of the winner is also given in Figure 4.8. A value of Cr/Cmean = 1 im-

plies that the cooperating ratio of the winner was the same as the mean cooperating

ratio of the tournament, and in standard tournaments, the median is 1. Therefore, an

effective strategy in standard tournaments was the mean cooperator of its respective

tournament.
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The distributions of SSE and CD to C rate for the winners of standard tournaments

are also given in Figure 4.8. The SSE distributions for the winners indicate that the

strategy behaved in a ZD way in several tournaments, however, not constantly. The

winners participated in matches where they did not try to extortionate their opponents.

Furthermore, the CD to C distribution indicates that if a strategy were to defect against

the winners the winners would reciprocate on average with a probability of 0.5.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.1

0.2

0.3

0.4

median=1.15
Cr / Cmean

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6 median=0.104
SSE

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 median=0.492
CD to C rate

Standard Tournaments

Figure 4.8: Distributions of Cr/Cmean, SSE and CD to C ratio for the winners of
standard tournaments. A value of Cr/Cmean = 1 imply that the cooperating ratio of
the winner was the same as the mean cooperating ratio of the tournament. An SSE
distribution skewed towards 0 indicates a extortionate behaviour by the strategy.

Similarly for the rest of the different tournaments types, and the entire data set the

distributions of Cr/Cmean, SSE and CD to C ratio are given by Figures 4.9, 4.11, 4.12

and 4.13.

Based on the Cr/Cmean distributions the successful strategies have adapted differently

to the mean cooperator depending on the tournament type. In noisy tournaments where

the median of the distribution is at 0.67, and thereupon the winners cooperated 67% of

the time the mean cooperator did. In tournaments with noise and a probabilistic ending

the winners cooperated 60%, whereas in settings that the type of the tournament can

vary between all the types the winners cooperated 67% of the time the mean cooperator

did. Lastly, in probabilistic ending tournaments above more defecting strategies prevail

(section 4.3), and this result is reflected here.

The probability of noise has been observed to substantially affect successful behaviour.

Figure 4.10 gives the ratio Cr/Cmean for the winners in tournaments with noise, over

the probability of noise. From Figure 4.10a it is clear that cooperating only 67% of the

time the mean cooperator did is optimal only when pn ∈ [0.2, 0.4) and pn ∈ [0.6, 0.7].

In environments with pn < 0.1 the winners want to be close to the mean coopera-

tor, similarly to standard tournaments, and as the probability of noise is exceeding

0.5 (where the game is effectively inverted) strategies should aim to be less and less
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Figure 4.9: Distributions of Cr/Cmean, SSE and CD to C ratio for the winners of noisy
tournaments.

cooperative.

Figure 4.10 gives Cr/Cmean for the winners over pn in tournaments with noise and

a probabilistic ending. The optimal proportions of cooperations are different now

that the number of turns is not fixed, successful strategies want to be more defecting

that the mean cooperator, that only changes when pn approaches 0.5. Figure 4.10

demonstrates how the adjustments to Cr/Cmean change over the noise in the to the

environment, and thus supports how important adapting to the environment is for a

strategy to be successful.
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(b) Cr/Cmean distribution for winners in noisy
probabilistic ending tournaments over pn.

Figure 4.10: Cr/Cmean distributions over intervals of pn. These distributions model
the optimal proportion of cooperation compared to Cmean as a function of (pn).

The distributions of the SSE across the tournament types suggest that successful strate-

gies exhibit some extortionate behaviour, but not constantly. ZDs are a set of strate-

gies that are often envious as they try to exploit their opponents. The winners of the

tournaments considered in this analysis are envious, but not as much as many ZDs.

Though the exact interactions between the matches have not been recorded here, the

work of [125] which introduced the trained strategies that appeared in the top ranked
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strategies of section 4.3 did. In [125] it was shown that clever strategies managed to

achieve mutual cooperation with stronger strategies whilst exploiting the weaker strate-

gies. This could explain the clever winners of this analysis, and would explain the SSE

distributions. This could also be the reason why ZDs fail to appear in the top ranks –

they try to exploit all opponents and cannot actively adapt back to mutual coopera-

tion against stronger strategies, which requires more depth of memory. Note that ZDs

also tend to perform poorly in population games for a similar reason: they attempt

to exploit other players using ZDs, failing to form a cooperative sub population [164].

This makes them good invaders but poor resisters of invasion.
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Figure 4.11: Distributions of Cr/Cmean, SSE and CD to C ratio for the winners of
probabilistic ending tournaments.

The distributions of the CD to C rate evaluate the behaviour of a successful strategy

after its opponent has defected against it. In standard tournaments it was observed that

a successful strategy reciprocates with a probability of 0.5, and in a setting that the type

of the tournament can vary between all the examined types a winning strategy would

reciprocate on average with a probability of 0.58. In tournaments with noise a strategy

is less likely to cooperate following a defection compared to standard tournaments, and

in probabilistic ending tournaments a strategy will reciprocate a defection. This leads

to adjusting the recommendation of being provocable to defections made by Axelrod.

A strategy should be provocable in tournaments with short matches, but in the rest of

the settings a strategy should be more generous.

Further statistically significant features with strong effects include Cr/Cmin, Cr/Cmax,

Cmin and Cmax. These add more emphasis on how important it is for a strategy to

adapt to its environment. Finally, the features number of turns, repetitions and the

probabilities of noise and the game ending had no significant effects based on the

multivariate regression models.

A third method that evaluates the importance of the features in Table 4.5 using clus-
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Figure 4.12: Distributions of Cr/Cmean, SSE and CD to C ratio for the winners of
noisy probabilistic ending tournaments.
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Figure 4.13: Distributions of Cr/Cmean, SSE and CD to C ratio for the winners over
the tournaments of the entire data set.

tering and random forests can be found in the Appendix C.3. The results uphold the

outcomes of the correlation and multivariate regression. It also evaluates the effects

of the classifiers stochastic, make use of game, and make use of length which have not

been evaluated by the methods above because there are binary variables. The results

imply that they have no significant effect on a strategy’s performance.

4.5 Chapter summary

This Chapter explored the performance of 195 strategies of the IPD in 45,600 computer

tournaments. The collection of computer tournaments presented here is the largest and

most diverse collection in the literature. The 195 strategies are drawn from the APL

and include strategies from the IPD literature. The computer tournaments include

tournaments of four different types.

So what is the best way of playing the IPD? And is there a single dominant strategy

for the IPD?

There was not a single strategy within the collection of the 195 strategies that managed

to perform well in all the tournaments variations it competed in. Even if on average
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a strategy ranked highly in a specific environment this did not guarantee its success

over the different tournament types. Nevertheless, in sections 4.3 and 4.4 examined

the best performing strategies across various tournament types and analysed their

salient features. It was demonstrated that there are properties associated with the

success of strategies which in fact contradict the originally suggested properties of

Axelrod [35].

It was shown that complex or clever strategies can be effective, whether trained against

a corpus of possible opponents or purposely designed to mitigate the impact of noise

such as the DBS strategy. Moreover, it was found that some strategies designed or

trained for noisy environments were also highly ranked in noise-free tournaments which

reinforces the idea that strategies’ complexity/cleverness is not necessarily a liability,

rather it can confer adaptability to a more diverse set of environments. It was also

shown that while the type of exploitation attempted by ZDs is not typically effec-

tive in standard tournaments, envious strategies capable of both exploiting and not

their opponents can be highly successful. Based on the results of [125] this could

be because they are selectively exploiting weaker opponents while mutually cooper-

ating with stronger opponents. Highly noisy or tournaments with short matches also

favoured envious strategies. These environments mitigated the value of being nice. Un-

certainty enables exploitation, reducing the ability of maintaining or enforcing mutual

cooperation, while triggering grudging strategies to switch from typically cooperating

to typically defecting.

The feature analysis of the best performing strategies demonstrated that a strategy

should reciprocate, as suggested by Axelrod, but it should relax its readiness to do

so and be more generous. For noisy environments this is in line with the results

of [47,75,209,258], however, it was also showed that generosity pays off even in standard

settings, and that in fact the only setting a strategy would want to be too provocable is

when the matches are not long. Forgiveness as defined by Axelrod was not explored in

this Chapter. This was mainly because the two round states were not recorded during

the data collection. This could be a topic of future work that examines the impact

of considering more rounds of history. The features analysis also concluded that there

is a significant importance in adapting to the environment, and more specifically, to

the mean cooperator. In standard tournaments a strategy would aim to be the mean

cooperator while in noisy tournaments the best performing players cooperate at a lower

rate than the tournament population on average. Moreover, the manner in which
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a strategy achieves a given cooperation rate relative to the tournament population

average is important.

This could potentially explain the early success of Tit For Tat. Tit For Tat naturally

achieves a cooperation rate near Cmean by virtue of copying its opponent’s last move

while also minimising instances where it is exploited by an opponent (cooperating while

the opponent defects), at least in non-noisy tournaments. It could also explain why

Tit For N Tats does not fare well for N > 1 – it fails to achieve the proper cooperation

ratio by tolerating too many defections.

Similarly, the results could suggest an explanation regarding the intuitively unexpected

effectiveness of memory-one strategies historically. Given that among the important

features associated with success are the relative cooperation rate to the population av-

erage and the four memory-one probabilities of cooperating conditional on the previous

round of play, these features can be optimised by a memory-one strategy such as Tit

For Tat. Usage of more history becomes valuable when there are exploitable opponent

patterns. This is indicated by the importance of SSE as a feature, showing that the

first-approximation provided by a memory-one strategy is no longer sufficient. The

limitations of memory are further explored in Chapter 5.

Overall, the five properties successful strategies need to have in a IPD competition

based on the analysis that has been presented in this Chapter are:

• Be a little bit envious

• Be “nice” in non-noisy environments or when game lengths are longer

• Reciprocate both cooperation and defection appropriately; Be provocable in tour-

naments with short matches, and generous when matches are longer

• It is okay to be clever

• Adapt to the environment; Adjust to the mean population cooperation rate

In this Chapter well performed behaviour was explored whilst considering a collection of

pre defined strategies. In comparison, Chapter 5 does not consider pre defined strategies

but estimates the exact best responses. This is done by considering strategies with a

theory of mind that compete in environments of memory-one opponents.
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Chapter 5

Stability of defection,

optimisation of strategies and the

limits of memory in the

Prisoner’s Dilemma.

The research reported in this Chapter has led to a manuscript, entitled:

“A theory of mind: Best responses to memory-one strategies. The

limitations of extortion and restricted memory”

Available at: arxiv.org/abs/1911.12112

Associated data set: [104]

Associated codebase: [111]

Axelrod-Python library (APL) version: 4.4.0

The manuscript’s abstract is the following:

Memory-one strategies are a set of Iterated Prisoner’s Dilemma strategies that have

been praised for their mathematical tractability and performance against single op-

ponents. This manuscript investigates a theory of mind: best response memory-one

strategies, as a multidimensional optimisation problem. We add to the literature that

has shown that extortionate play is not always optimal by showing that optimal play

is often not extortionate. We also provide evidence that memory-one strategies suffer

from their limited memory in multi agent interactions and can be outperformed by

arxiv.org/abs/1911.12112


CHAPTER 5. STABILITY OF DEFECTION, OPTIMISATION OF STRATEGIES
AND THE LIMITS OF MEMORY IN THE PRISONER’S DILEMMA. 88

optimised strategies with longer memory.

The differences between the Chapter and the manuscript include details on the bespoke

open source package used to carried out the numerical experiments, details on resultant

theory and an additional section on reactive strategies. These details and the additional

section are only reported in this Chapter, and not in the manuscript. The Chapter also

includes an introduction to the Bayesian optimisation used to carry out the numerical

experiments.

5.1 Introduction

This Chapter contributes to the question: what is the optimal behaviour an IPD

strategy should adapt as a response to different environments? In [234] the authors

stated that “Only a player with a theory of mind about his opponent can do better, in

which case Iterated Prisoner’s Dilemma is an Ultimatum Game”. The purpose of this

Chapter is to investigate the first part of this sentence, more specifically, to investigate

the best response strategy with a theory of mind in an environment with memory-one

opponents, and to understand the effects of extortion and restricted memory in those

environments. Extortionate behaviour is explored using a linear algebraic approach

presented in [166].

The outcomes of this Chapter reinforce and extend known results which were presented

in Chapter 2. These are that (a) memory-one strategies must be adaptable to be

successful [125,166] and (b) longer-memory strategies have a certain form of advantage

over short memory strategies [133,230]. The Chapter is structured as follows:

• section 5.2 describes a closed form algebraic expression for the utility of a memory-

one strategy to a given group of opponents.

• section 5.3 produces a compact method of identifying the best response memory-

one strategy against a given set of memory-one opponents.

• section 5.4 explains best response reactive strategies and demonstrates the usage

of resultant theory in explicitly finding a reactive best response.

• section 5.5 describes a series of numerical experiments and a well designed frame-

work that allows the comparison of an optimal memory-one strategy and a more
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complex strategy which has a larger memory.

• section 5.6 presents a compact method of identifying environments for which

cooperation cannot occur.

5.2 Quadratic form utility of the IPD

One specific advantage of memory-one strategies is their mathematical tractability.

They can be represented completely as an element of R4
[0,1]. As previously discussed in

Chapter 2, if a strategy is concerned with only the outcome of a single turn then there

are four possible ‘states’ the strategy could be in:

• Both players cooperated, denoted as CC.

• First player cooperated while the second one defected, denoted as CD.

• First player defected while the second one cooperated, denoted as DC.

• Both players defected, denoted as DD.

Therefore, a memory-one strategy can be denoted by the probability vector of cooper-

ating after each of these states; p = (p1, p2, p3, p4) ∈ R4
[0,1].

In [219] it was shown that it is not necessary to simulate the play of a strategy p against

a memory-one opponent q. Rather this exact behaviour can be modelled as a stochastic

process, and more specifically as a Markov chain (Figure 5.1) whose corresponding

transition matrix M is given by Equation (5.1). The long run steady state probability

vector v, which is the solution to vM = v, can be combined with the payoff matrices

of Equation (1.1) to give the expected payoffs for each player. More specifically, the

utility for a memory-one strategy p against an opponent q, denoted as uq(p), is given

by Equation (5.2).

M =



p1q1 p1 (−q1 + 1) q1 (−p1 + 1) (−p1 + 1) (−q1 + 1)

p2q3 p2 (−q3 + 1) q3 (−p2 + 1) (−p2 + 1) (−q3 + 1)

p3q2 p3 (−q2 + 1) q2 (−p3 + 1) (−p3 + 1) (−q2 + 1)

p4q4 p4 (−q4 + 1) q4 (−p4 + 1) (−p4 + 1) (−q4 + 1)


(5.1)
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CC CD

DC DD

Figure 5.1: Markov Chain

uq(p) = v · (R,S, T, P ). (5.2)

This thesis is the first work to explore the form of uq(p). The first theoretical result

of the thesis is given by Theorem 1 which states that uq(p) is given by a ratio of two

quadratic forms [160].

Theorem 1. The expected utility of a memory-one strategy p ∈ R4
[0,1] against a memory-

one opponent q ∈ R4
[0,1], denoted as uq(p), can be written as a ratio of two quadratic

forms:

uq(p) =
1
2pQp

T + cp+ a
1
2pQ̄p

T + c̄p+ ā
, (5.3)

where Q, Q̄ ∈ R4×4 are square matrices defined by the transition probabilities of the

opponent q1, q2, q3, q4 as follows:

Q =



0 − (q1 − q3) (Pq2 − P − Tq4) (q1 − q2) (Pq3 − Sq4) (q1 − q4) (Sq2 − S − Tq3)

− (q1 − q3) (Pq2 − P − Tq4) 0 (q2 − q3) (Pq1 − P −Rq4) − (q3 − q4) (Rq2 −R− Tq1 + T )

(q1 − q2) (Pq3 − Sq4) (q2 − q3) (Pq1 − P −Rq4) 0 (q2 − q4) (Rq3 − Sq1 + S)

(q1 − q4) (Sq2 − S − Tq3) − (q3 − q4) (Rq2 −R− Tq1 + T ) (q2 − q4) (Rq3 − Sq1 + S) 0


, (5.4)

Q̄ =



0 − (q1 − q3) (q2 − q4 − 1) (q1 − q2) (q3 − q4) (q1 − q4) (q2 − q3 − 1)

− (q1 − q3) (q2 − q4 − 1) 0 (q2 − q3) (q1 − q4 − 1) (q1 − q2) (q3 − q4)

(q1 − q2) (q3 − q4) (q2 − q3) (q1 − q4 − 1) 0 − (q2 − q4) (q1 − q3 − 1)

(q1 − q4) (q2 − q3 − 1) (q1 − q2) (q3 − q4) − (q2 − q4) (q1 − q3 − 1) 0


. (5.5)
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c and c̄ ∈ R4×1 are similarly defined by:

c =



q1 (Pq2 − P − Tq4)

− (q3 − 1) (Pq2 − P − Tq4)

−Pq1q2 + Pq2q3 + Pq2 − Pq3 +Rq2q4 − Sq2q4 + Sq4

−Rq2q4 +Rq4 + Sq2q4 − Sq2 − Sq4 + S + Tq1q4 − Tq3q4 + Tq3 − Tq4


, (5.6)

c̄ =



q1 (q2 − q4 − 1)

− (q3 − 1) (q2 − q4 − 1)

−q1q2 + q2q3 + q2 − q3 + q4

q1q4 − q2 − q3q4 + q3 − q4 + 1


, (5.7)

and the constant terms a, ā are defined as a = −Pq2 + P + Tq4 and ā = −q2 + q4 + 1.

Proof. From Equation (5.2) uq(p) = v · (R,S, T, P ).

Evaluating this yields,

uq(p) =



−p1p2(q1−q3)(Pq2−P−Tq4)+p1p3(q1−q2)(Pq3−Sq4)+p1p4(q1−q4)(Sq2−S−Tq3)+p2p3(q2−q3)(Pq1−P−Rq4)−

p2p4(q3−q4)(Rq2−R−Tq1 +T )+p3p4(q2−q4)(Rq3−Sq1 +S)+p1q1(Pq2−P −Tq4)−p2(q3−1)(Pq2−P −Tq4)+

p3(−Pq1q2 + Pq2q3 + Pq2 − Pq3 +Rq2q4 − Sq2q4 + Sq4) + p4(−Rq2q4 +Rq4 + Sq2q4 − Sq2 − Sq4 + S)

Tq1q4 − Tq3q4 + Tq3 − Tq4 − Pq2 + P + Tq4
p1p2(q1q2−q1q4−q1−q2q3+q3q4+q3)+p1p3(−q1q3+q1q4+q2q3−q2q4)+p1p4(−q1q2+q1q3+q1+q2q4−q3q4−q4)+

p2p3(−q1q2+q1q3+q2q4+q2−q3q4−q3)+p2p4(−q1q3+q1q4+q2q3−q2q4)+p3p4(q1q2−q1q4−q2q3−q2+q3q4+q4)+

p1(−q1q2+q1q4+q1)+p2(q2q3−q2−q3q4−q3+q4+1)+p3(q1q2−q2q3−q2+q3−q4)+p4(−q1q4+q2+q3q4−q3+q4−1)+

q2 − q4 − 1


.

Consider the numerator of uq(p). The cross product terms pipj are given by,

−p1p2(q1 − q3)(Pq2 − P − Tq4) + p1p3(q1 − q2)(Pq3 − Sq4) + p1p4(q1 − q4)(Sq2 − S − Tq3)+

p2p3(q2 − q3)(Pq1 − P −Rq4) − p2p4(q3 − q4)(Rq2 −R− Tq1 + T ) + p3p4(q2 − q4)(Rq3 − Sq1 + S)

This can be re written in a matrix format given by Equation (5.8).

(p1, p2, p3, p4)1
2



0 − (q1 − q3) (Pq2 − P − Tq4) (q1 − q2) (Pq3 − Sq4) (q1 − q4) (Sq2 − S − Tq3)

− (q1 − q3) (Pq2 − P − Tq4) 0 (q2 − q3) (Pq1 − P −Rq4) − (q3 − q4) (Rq2 −R− Tq1 + T )

(q1 − q2) (Pq3 − Sq4) (q2 − q3) (Pq1 − P −Rq4) 0 (q2 − q4) (Rq3 − Sq1 + S)

(q1 − q4) (Sq2 − S − Tq3) − (q3 − q4) (Rq2 −R− Tq1 + T ) (q2 − q4) (Rq3 − Sq1 + S) 0





p1

p2

p3

p4


(5.8)

Similarly, the linear terms are given by,
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p1q1(Pq2 − P − Tq4) + p4(−Rq2q4 + Rq4 + Sq2q4 − Sq2 − Sq4 + S + Tq1q4 − Tq3q4 + Tq3 − Tq4)

−p2(q3 − 1)(Pq2 − P − Tq4) + p3(−Pq1q2 + Pq2q3 + Pq2 − Pq3 + Rq2q4 − Sq2q4 + Sq4)

and the expression can be written using a matrix format as Equation (5.9).

(p1, p2, p3, p4)



q1 (Pq2 − P − Tq4)

− (q3 − 1) (Pq2 − P − Tq4)

−Pq1q2 + Pq2q3 + Pq2 − Pq3 +Rq2q4 − Sq2q4 + Sq4

−Rq2q4 +Rq4 + Sq2q4 − Sq2 − Sq4 + S + Tq1q4 − Tq3q4 + Tq3 − Tq4


(5.9)

Finally, the constant term of the numerator, which is obtained by substituting p =

(0, 0, 0, 0), is given by Equation (5.10).

−Pq2 + P + Tq4 (5.10)

Combining Equation (5.8), Equation (5.9) and Equation (5.10) gives that the numer-

ator of uq(p) can be written as,

1

2
p



0 − (q1 − q3) (Pq2 − P − Tq4) (q1 − q2) (Pq3 − Sq4) (q1 − q4) (Sq2 − S − Tq3)

− (q1 − q3) (Pq2 − P − Tq4) 0 (q2 − q3) (Pq1 − P −Rq4) − (q3 − q4) (Rq2 −R− Tq1 + T )

(q1 − q2) (Pq3 − Sq4) (q2 − q3) (Pq1 − P −Rq4) 0 (q2 − q4) (Rq3 − Sq1 + S)

(q1 − q4) (Sq2 − S − Tq3) − (q3 − q4) (Rq2 −R− Tq1 + T ) (q2 − q4) (Rq3 − Sq1 + S) 0


pT+



q1 (Pq2 − P − Tq4)

− (q3 − 1) (Pq2 − P − Tq4)

−Pq1q2 + Pq2q3 + Pq2 − Pq3 +Rq2q4 − Sq2q4 + Sq4

−Rq2q4 +Rq4 + Sq2q4 − Sq2 − Sq4 + S + Tq1q4 − Tq3q4 + Tq3 − Tq4


p− Pq2 + P + Tq4

and equivalently as,

1

2
pQpT + cp+ a

where Q ∈ R4×4 is a square matrix defined by the transition probabilities of the oppo-

nent q1, q2, q3, q4 as follows:
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Q =



0 − (q1 − q3) (Pq2 − P − Tq4) (q1 − q2) (Pq3 − Sq4) (q1 − q4) (Sq2 − S − Tq3)

− (q1 − q3) (Pq2 − P − Tq4) 0 (q2 − q3) (Pq1 − P −Rq4) − (q3 − q4) (Rq2 −R− Tq1 + T )

(q1 − q2) (Pq3 − Sq4) (q2 − q3) (Pq1 − P −Rq4) 0 (q2 − q4) (Rq3 − Sq1 + S)

(q1 − q4) (Sq2 − S − Tq3) − (q3 − q4) (Rq2 −R− Tq1 + T ) (q2 − q4) (Rq3 − Sq1 + S) 0


,

c ∈ R4×1 is similarly defined by:

c =



q1 (Pq2 − P − Tq4)

− (q3 − 1) (Pq2 − P − Tq4)

−Pq1q2 + Pq2q3 + Pq2 − Pq3 +Rq2q4 − Sq2q4 + Sq4

−Rq2q4 +Rq4 + Sq2q4 − Sq2 − Sq4 + S + Tq1q4 − Tq3q4 + Tq3 − Tq4


,

and a = −Pq2 + P + Tq4.

The same process is done for the denominator.

Numerical simulations have been carried out to validate the result. The simulated

utility, which is denoted as Uq(p), has been calculated with APL. For smoothing the

simulated results the utility has been estimated in a tournament of 500 turns and 200

repetitions. Figure 5.2 shows two examples demonstrating that the formulation of

Theorem 1 successfully captures the simulated behaviour.

Theorem 1 can be extended to consider multiple opponents. The IPD is commonly

studied in tournaments and/or Moran Processes [155] where a strategy interacts with a

number of opponents. The payoff of a player in such interactions is given by the average

payoff the player received against each opponent. More specifically the expected utility

of a memory-one strategy against N opponents is given by Theorem 2.

Theorem 2. The expected utility of a memory-one strategy p ∈ R4
[0,1] against a group

of opponents {q(1), q(2), . . . , q(N)}, denoted as 1
N

N∑
i=1

uq
(i)(p), is given by:

1

N

N∑
i=1

uq
(i)(p) =

1

N

N∑
i=1

(1
2pQ

(i)pT + c(i)p+ a(i))
N∏

j = 1

j 6= i

(1
2pQ̄

(j)pT + c̄(j)p+ ā(j))

N∏
i=1

(1
2pQ̄

(i)pT + c̄(i)p+ ā(i))

.

(5.11)
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Figure 5.2: Simulated and empirical utilities for p = (0, 1, 0, 1) and p = (0, 2
3 ,

1
3 , 0)

against (1
3 ,

1
3 ,

1
3 , q4) for q4 ∈ {0, 1

19 ,
2
19 , . . . ,

18
19 , 1}. uq(p) is the theoretic value given in

Theorem 1, and Uq(p) is simulated numerically using APL.

Equation (5.11) is the average score (using Equation (5.3)) against the set of oppo-

nents.

Using a procedure similar to that used in Theorem 1, the formulation of Theorem 2 is

validated using numerical simulations where the 10 memory-one strategies described

in [271] have been used as the opponents. Figure 5.3 shows that the simulated behaviour

has been captured successfully.
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Figure 5.3: The utilities of memory-one strategies (1
3 ,

1
3 ,

1
3 , p4) for p4 ∈

{0, 1
19 ,

2
19 , . . . ,

18
19 , 1} against the 10 memory-one strategies described in [271].

1
10

∑10
i=1 u

(i)
q (p) is the theoretic value given in Theorem 1, and 1

10

∑10
i=1 U

(i)
q (p) is simu-

lated numerically using APL.
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The list of strategies from [271] was also used to check whether the utility against

a group of strategies could be captured by the utility against the mean opponent;

condition (5.12). However, condition (5.12) fails. This is numerically shown using a

series of examples, demonstrated in Figure 5.4.

1

N

N∑
i=1

uq
(i)(p) = u

1
N

N∑
i=1

q(i)
(p), (5.12)
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Figure 5.4: The difference between the average utility against the opponents from [271]
and the utility against the average player of the strategies in [271] of a player p =
(p1, p2, p1, p2). A positive difference indicates that condition (5.12) does not hold.

Theorem 2 which allows for the utility of a memory-one strategy against any number of

opponents to be estimated without simulating the interactions is the main result used

in the rest of this Chapter. In section 5.3 it is used to define best response memory-one

strategies, in section 5.4 to define best response reactive strategies and in section 5.6

to explore the conditions under which defection dominates cooperation.

5.3 Best responses to memory-one players

This section focuses on memory-one best response strategies. A best response is a strat-

egy which corresponds to the most favourable outcome (Chapter 1), thus a memory-one

best response to a set of opponents q(1), q(2), . . . , q(N) corresponds to a strategy p∗ for

which Equation (5.11) is maximised. This is considered as a multi dimensional opti-

misation problem given by:

max
p

:
N∑
i=1

uq
(i)(p)

such that : p ∈ R[0,1]

(5.13)



CHAPTER 5. STABILITY OF DEFECTION, OPTIMISATION OF STRATEGIES
AND THE LIMITS OF MEMORY IN THE PRISONER’S DILEMMA. 96

Optimising this particular ratio of quadratic forms is not trivial. It can be verified

empirically for the case of a single opponent that there exists at least one point for

which the definition of concavity does not hold.

A function f(x) is concave on an interval [a, b] if, for any two points x1, x2 ∈ [a, b] and

any λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2). (5.14)

Let f be u( 1
3
, 1
3
, 1
3
, 1
3

). For x1 = (1
4 ,

1
2 ,

1
5 ,

1
2), x2 = ( 8

10 ,
1
2 ,

9
10 ,

7
10) and λ = 0.1. Direct

substitution in to the left hand side of Equation (5.14) gives,

f(λx1 + (1− λ)x2) = u( 1
3
, 1
3
, 1
3
, 1
3

)

(
0.1

(
1

4
,
1

2
,
1

5
,
1

2

)
+ 0.9

(
8

10
,
1

2
,

9

10
,

7

10

))
= 1.485

and in to the right hand side,

λf(x1) + (1− λ)f(x2) = 0.1× u( 1
3
, 1
3
, 1
3
, 1
3

)

((
1

4
,
1

2
,
1

5
,
1

2

))
+ 0.9× u( 1

3
, 1
3
, 1
3
, 1
3

)

((
8

10
,
1

2
,

9

10
,

7

10

))
= 0.1× 1.790 + 0.9× 1.457

= 1.490.

Thus Equation (5.14) does not hold, and thus u( 1
3
, 1
3
, 1
3
, 1
3

) is not concave.

The non concavity of u(p) indicates multiple local optimal points. This is also intuitive.

The best response against a Cooperator, q = (1, 1, 1, 1), is a Defector p∗ = (0, 0, 0, 0).

The strategies p = (1
2 , 0, 0, 0) and p = (1

2 , 0, 0,
1
2) are also best responses. The approach

taken here is to introduce a compact way of constructing the discrete candidate set of all

local optimal points, and evaluating the objective function Equation (5.11). This gives

the best response memory-one strategy. The approach is given in Theorem 3.

Theorem 3. The optimal behaviour of a memory-one strategy p∗ ∈ R4
[0,1] against a set

of N opponents {q(1), q(2), . . . , q(N)} for q(i) ∈ R4
[0,1] is given by:
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p∗ = argmax
N∑
i=1

uq(p), p ∈ Sq.

The set Sq is defined as all the possible combinations of:

Sq =


p ∈ R4

∣∣∣∣∣∣∣∣∣∣∣∣

• pj ∈ {0, 1} and
d

dpk

N∑
i=1

u(i)
q (p) = 0 for all j ∈ J & k ∈ K for all J,K

where J ∩K = Ø and J ∪K = {1, 2, 3, 4}.

• p ∈ {0, 1}4


. (5.15)

Proof. The optimal behaviour of a memory-one strategy player p∗ ∈ R4
[0,1] against a

set of N opponents {q(1), q(2), . . . , q(N)} for q(i) ∈ R4
[0,1] is established by:

p∗ = argmax

(
N∑
i=1

uq(p)

)
, p ∈ Sq,

where Sq is given by Equation (5.15).

The optimisation problem of (5.13) can be written as:

max
p

:
N∑
i=1

uq
(i)(p)

such that : pi ≤ 1 for ∈ {1, 2, 3, 4}

−pi ≤ 0 for ∈ {1, 2, 3, 4}

(5.16)

The optimisation problem has two inequality constraints and regarding the optimality

this means that:

• either the optimum is away from the boundary of the optimization domain, and

so the constraints plays no role;

• or the optimum is on the constraint boundary.

Thus, the following three cases must be considered:

Case 1: The solution is on the boundary and any of the possible combinations for

pi ∈ {0, 1} for i ∈ {1, 2, 3, 4} are candidate optimal solutions.

Case 2: The optimum is away from the boundary of the optimization domain and the

interior solution p∗ necessarily satisfies the condition d
dp

N∑
i=1

uq(p
∗) = 0.
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Case 3: The optimum is away from the boundary of the optimization domain but some

constraints are equalities. The candidate solutions in this case are any combinations of

pj ∈ {0, 1} and d
dpk

N∑
i=1

u
(i)
q (p) = 0 for all j ∈ J & k ∈ K for all J,K where J ∩K =

Ø and J ∪K = {1, 2, 3, 4}.

Combining cases 1-3 a set of candidate solution is constructed as:

Sq =


p ∈ R4

∣∣∣∣∣∣∣∣∣∣∣∣

• pj ∈ {0, 1} and
d

dpk

N∑
i=1

u(i)
q (p) = 0 for all j ∈ J & k ∈ K for all J,K

where J ∩K = Ø and J ∪K = {1, 2, 3, 4}.

• p ∈ {0, 1}4


.

The derivative of
N∑
i=1

u
(i)
q (p) calculated using the following property (see [10] for details):

dxAxT

dx
= 2Ax. (5.17)

Using property (5.17):

d

dp

1

2
pQpT + cp+ a = pQ+ c and

d

dp

1

2
pQ̄pT + c̄p+ ā = pQ̄+ c̄. (5.18)

Note that the derivative of cp is c and the constant disappears. Combining these it can

be proven that:

d

dp

N∑
i=1

u(i)
q (p) =

N∑
i=1

d
dp(1

2pQ
(i)pT + c(i)p+ a(i))(1

2pQ̄
(i)pT + c̄(i)p+ ā(i))− d

dp(1
2pQ̄

(i)pT + c̄(i)p+ ā(i))(1
2pQ

(i)pT + c(i)p+ a(i))

(1
2pQ̄

(i)pT + c̄(i)p+ ā(i))2

=

N∑
i=1

(pQ(i) + c(i)+)(1
2pQ̄

(i)pT + c̄(i)p+ ā(i))

(1
2pQ̄

(i)pT + c̄(i)p+ ā(i))2
−

(pQ̄(i) + c̄(i))(1
2pQ

(i)pT + c(i)p+ a(i))

(1
2pQ̄

(i)pT + c̄(i)p+ ā(i))2

For d
dp

N∑
i=1

uq(p) to equal zero then:

N∑
i=1

(
pQ(i) + c(i)

)(1

2
pQ̄(i)pT + c̄(i)p+ ā(i)

)
−
(
pQ̄(i) + c̄(i)

)(1

2
pQ(i)pT + c(i)p+ a(i)

)
= 0, while

(5.19)

N∑
i=1

1

2
pQ̄(i)pT + c̄(i)p+ ā(i) 6= 0. (5.20)
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The optimal solution to Equation 5.13 is the point from Sq for which the utility is

maximised.

Note that there is no immediate way to find the zeros of d
dp

N∑
i=1

uq(p);

d

dp

N∑
i=1

uq
(i)(p) =

=

N∑
i=1

(
pQ(i) + c(i)

)(
1
2
pQ̄(i)pT + c̄(i)p + ā(i)

)
−
(
pQ̄(i) + c̄(i)

)(
1
2
pQ(i)pT + c(i)p + a(i)

)
(
1
2
pQ̄(i)pT + c̄(i)p + ā(i)

)2
(5.21)

For d
dp

N∑
i=1

uq(p) to equal zero then:

N∑
i=1

((
pQ(i) + c(i)

)(1

2
pQ̄(i)pT + c̄(i)p+ ā(i)

)
−
(
pQ̄(i) + c̄(i)

)(1

2
pQ(i)pT + c(i)p+ a(i)

))
= 0, while

(5.22)

N∑
i=1

1

2
pQ̄(i)pT + c̄(i)p+ ā(i) 6= 0. (5.23)

Finding best response memory-one strategies, more specifically constructing the subset

Sq, can be done analytically. The points for any or all of pi ∈ {0, 1} for i ∈ {1, 2, 3, 4}

are trivial, and finding the roots of the partial derivatives which are a set of polynomial

equations (Equation (5.22)) is feasible using resultant theory [152]; however, for large

systems building the resultant quickly becomes intractable.

Nevertheless, there are constrained versions of problem (5.13) for which calculating

the resultant is efficient and a best response strategy can be identified explicitly. A

constrained version is that of reactive strategies. Section 5.4 presents best response

reactive strategies, and demonstrates the usage of resultant theory in identifying best

responses.
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5.4 Reactive strategies & Resultant theory

Reactive strategies are a subset of memory-one strategies discussed in Chapter 2. Well

known reactive strategies include Tit For Tat and Generous Tit For Tat. As a re-

minder, reactive strategies only take into account the opponent’s previous moves, and

thus can be described as p = (p1, p2) ∈ R2
[0,1].

Best response reactive strategies are incorporated in the formulation of this Chapter

by adding two extra constraints to the optimisation problem of (5.13),

max
p

:
N∑
i=1

uq(p)

such that : p1 = p3

p2 = p4

p1, p2 ∈ R[0,1].

(5.24)

and a best response reactive strategy to a set of opponentsN opponents {q(1), q(2), . . . , q(N)}

is given by Lemma 4.

Lemma 4. The optimal behaviour of a reactive strategy p∗ ∈ R2
[0,1] against a set of N

opponents {q(1), q(2), . . . , q(N)} for q(i) ∈ R2
[0,1] is given by:

p∗ = argmax
N∑
i=1

uq(p), p ∈ Sq.

The set Sq is defined as all the possible combinations of:

Sq =


p ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣

• pj ∈ {0, 1} and
d

dpk

N∑
i=1

u(i)
q (p) = 0 for all j ∈ J & k ∈ K for all J,K

where J ∩K = Ø and J ∪K = {1, 2}.

• p ∈ {0, 1}2


. (5.25)

Note that d
dp

N∑
i=1

u
(i)
q (p) = 0 corresponds to a system of 2 polynomials of 2 variables,

corresponding to the partial derivatives over p1 and p2. Solving systems of 2 polyno-

mials of 2 variables can be done analytically. The approach taken here to extract the

roots from the partial derivatives is to use resultants.
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5.4.1 Resultant theory

The resultant of two polynomials is a polynomial expression of their coefficients which

is equal to zero if and only if the polynomials have a common root.

More specifically given a polynomial,

f(x) = anx
n + a(n−1)x

(n−1) + · · ·+ a1x+ a0

of degree n with roots αi, i = 1, . . . , n and a polynomial

g(x) = bmx
m + b(m−1)x

(m−1) + · · ·+ b1x+ b0

of degree m with roots βj , j = 1, . . . ,m, the resultant denoted as R(f, g) and also called

the eliminant [252], is defined by

R(f, g) = amn b
n
m

n∏
(i=1)

m∏
(j=1)

(αi − βj). (5.26)

Interestingly, the resultant can also be expressed as the determinant of matrices such

as Sylvester’s, Bezout’s and Macaulay’s. For systems of 2 polynomials the resultant is

commonly expressed as the determinant of Sylvester’s matrix [15]. The Sylvester matrix

associated with f and g is the (n+m)× (n+m) matrix constructed as described by
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Algorithm 5.1.

Algorithm 5.1: Construction of Sylvester matrix [15]

if n > 0 then

the 1st row is

(
am am−1 · · · a1 a0 0 · · · 0

)
;

for i← 1 to n− 1 do

the ith is the previous row shifted one column to the right; the other entries

of the row are 0

;

if m > 0 then

the (n+ 1)th row is:

(
bm bm−1 · · · b1 b0 0 · · · 0

)
;

for i← n+ 1 to (m+ n)− 1 do

the ith is the previous row shifted one column to the right; the other entries

of the row are 0

As an example consider the case of m = 4 and n = 3. The Sylvester matrix denoted

as Sf,g is given by,

Sf,g =



a4 a3 a2 a1 a0 0 0

0 a4 a3 a2 a1 a0 0

0 0 a4 a3 a2 a1 a0

b3 b2 b1 b0 0 0 0

0 b3 b2 b1 b0 0 0

0 0 b3 b2 b1 b0 0

0 0 0 b3 b2 b1 b0



(5.27)

and,

|Sf,g| = R(f, g).

The resultant can verify that the system has a root, but also can be used to extract
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the roots. In a system of 2 polynomial equations in 2 variables, the resultant can be

defined over one variable whereas the second one is kept as a coefficient. It is used in

this Chapter to analytically solve for the roots of the derivative of the utility, and thus

explicitly identify the best response reactive strategy against a given set of memory-one

opponents.

The open source package [202] is used to calculate the Sylvester matrix and subse-

quently its determinant. An example is demonstrated in Figure 5.5. The approach

demonstrated in Figure 5.5 is used to find the roots of the partial derivatives of

d
dp

N∑
i=1

u
(i)
q (p) and the candidate set of solutions Sq is constructed as defined in Equa-

tion (5.25).

1 >>> import sympy as sym

2 >>> from sympy.polys import subresultants_qq_zz

3 >>> p_1, p_2 = sym.symbols('p_1, p_2')

4

5 >>> f = p_1 ** 2 + p_1 * p_2 + 2 * p_1 + p_2 - 1

6 >>> g = p_1 ** 2 + 3 * p_1 - p_2 ** 2 + 2 * p_2 - 1

7 >>> matrix = subresultants_qq_zz.sylvester(f, g, p_2)

8 >>> matrix

9 Matrix([

10 [p_1 + 1, p_1**2 + 2*p_1 - 1, 0],

11 [ 0, p_1 + 1, p_1**2 + 2*p_1 - 1],

12 [ -1, 2, p_1**2 + 3*p_1 - 1]])

13 >>> matrix.det().factor()

14 -p_1*(p_1 - 1)*(p_1 + 3)

Figure 5.5: Example code for calculating the Sylvester matrix associated with f =
p2

1 + p1p2 + 2p1 + p2 − 1 and g = p2
1 + 3p1 − p2

2 + 2p2 − 1 using [202]. The matrix
is calculated for p2 whilst p1 is handled as a coefficient, and thus the determinant is
expressed in p1. In order for the system to have a common root, p1 must be ∈ {−3, 0, 1}.
By substituting these values of p1, each at a time, in f and g gives the roots for p2.

A bespoke package has been developed to carry out the calculations for this Chapter.

The package is called opt_mo and an example of how Sq is calculated against a given

opponent q = (0.513, 0.773, 0.870, 0.008) is given by Figure 5.6.

Once Sq is calculated then defining the best response is trivial. Figure 5.7 demonstrates

how this is done using opt_mo, and the result is validated by Figure 5.8.

Sylvester’s formulation can only handle systems of 2 polynomials, however, the multi-

variate resultants can be calculated for n homogeneous polynomials in n variables. A

number of multivariate resultants can be found in the literature such as Dixon’s [156]

resultant and Macaulay’s [186] resultant.
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1 >>> import opt_mo

2 >>> import numpy as np

3 >>> import axelrod as axl

4

5 >>> axl.seed(14)

6 >>> opponents = [np.random.random(4)]

7 >>> opponents

8 [array([0.51394334, 0.77316505, 0.87042769, 0.00804695])]

9

10 >>> candidate_set = opt_mo.reactive_best_response.get_candidate_reactive_best_responses(

11 ... opponents

12 ... )

13 >>> candidate_set

14 {(0.913428410721382+0j), 0.6964731896521483, 0.2775453690890986, 0, 1}

Figure 5.6: Code example of calculating Sq for a given opponent. The function
reactive_best_response.get_candidate_reactive_best_responses retrieves the
set Sq for a reactive strategy against a list of opponents. The set includes 0, 1 and to
roots of the partial derivatives 0.277 and 0.696. An imaginary solution has also been
calculated, however, it is ignored in the next step which calculates the best response.

1 >>> import numpy as np

2 >>> import opt_mo

3

4 >>> opponents = [np.array([0.51394334, 0.77316505, 0.87042769, 0.00804695])]

5 >>> candidate_set = opt_mo.reactive_best_response.get_candidate_reactive_best_responses(

6 ... opponents

7 ... )

8

9 >>> opt_p1, opt_p2, score = opt_mo.reactive_best_response.get_argmax(

10 ... opponents, candidate_set

11 ... )

12 >>> opt_p1, opt_p2

13 (0, 0.6964731842832972)

Figure 5.7: Code example of estimating the best response reactive strategy from a
given Sq set and a given list of opponents.
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Figure 5.8: The utility of a p = (p1, p2) reactive player against q =
(0.513, 0.773, 0.870, 0.008) for changing values of p1 and p2. The point marked with
X is the point identified as the best response.

Project [202] which was used to construct Sylvester’s resultant is called SymPy and

it is the Pythonic package for symbolic mathematics. However, the project did not

include the feature to calculate multivariate resultants. As part of this Chapter the

source code for constructing both Dixon’s and Macaulay’s resultants was developed

and was integrated into SymPy. Figure 5.9 shows the pull request made to SymPy for

integrating the source code to their codebase. Figure 5.10 demonstrates an example of

using [202] to calculate Dixon’s resultant.

1 >>> from sympy.polys.multivariate_resultants import DixonResultant

2 >>> p_1, p_2 = sym.symbols('p_1, p_2')

3

4 >>> f = p_1 + p_2

5 >>> g = p_1 ** 2 + p_2 ** 3

6 >>> h = p_1 ** 2 + p_2

7

8 >>> dixon = DixonResultant(variables=[p_1, p_2], polynomials=[f, g, h])

9 >>> poly = dixon.get_dixon_polynomial()

10 >>> matrix = dixon.get_dixon_matrix(polynomial=poly)

11 >>> matrix

12 Matrix([

13 [ 0, 0, -1, 0, -1],

14 [ 0, -1, 0, -1, 0],

15 [-1, 0, 1, 0, 0],

16 [ 0, -1, 0, 0, 1],

17 [-1, 0, 0, 1, 0]])

18

19 >>> matrix.det()

20 0

Figure 5.10: Code example of using [202] to calculate Dixon’s resultant. f, g and h
have a common root (x = 1, y = −1). The determinant of Dixon’s matrix falls to zero
which confirms that the system has a common root.
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Figure 5.9: Screenshot of the pull request made to SymPy for integrating the source
code of the multivariate resultants to the project’s codebase. The details of the pull
request as well as the conversation with the project’s main contributors can be found
at: https://github.com/sympy/sympy/pull/14370.

https://github.com/sympy/sympy/pull/14370
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Multivariate resultants theoretically can be used to explicitly identify best response

memory-one strategies by solving the system of 4 polynomials. However, as previously

stated for large systems building the resultant quickly becomes intractable. As a result

in section 5.5 a numerical approach was considered instead.

5.5 Numerical experiments

As briefly discussed in section 3.1, ZDs have been praised for their robustness against a

single opponent. ZDs are evidence that extortion works in pairwise interactions. Their

behaviour ensures that the strategies will never lose a game. However, this thesis

argues that in multi opponent interactions, where the payoffs matter, strategies trying

to exploit their opponents will suffer. Compared to ZDs, best response memory-one

strategies which have a theory of mind of their opponents, utilise their behaviour in

order to gain the most from their interactions. The question that arises then is whether

best response strategies are optimal because they behave in an extortionate way. This

is explored in section 5.5.3.

The other main finding presented in [234] was that short memory of the strategies

was all that was needed. This thesis argues that the second limitation of ZDs in

multi opponent interactions is that of their restricted memory. To demonstrate the

effectiveness of memory in the IPD a best response longer-memory strategy against a

given set of memory-one opponents is explored, and its performance is compared to

that of a memory-one best response in section 5.5.4.

The results of this section rely on estimating best response memory-one strategies

and understanding whether they behave in an extortionate way. Best responses will be

estimated heuristically using Bayesian optimisation, which is described in section 5.5.1,

and in order to investigate whether best responses behave in an extortionate matter

the SSE method described in section 5.5.2 is used.

5.5.1 Bayesian optimisation

Bayesian optimisation is a global optimisation algorithm that has proven to outperform

many other popular algorithms [148]. The algorithm builds a bayesian understanding of

the objective function which is well suited to the potential multiple local optimas in the

described search space of this Chapter. Differential evolution [274] was also considered,

however, it was not selected due to Bayesian optimisation being computationally more
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efficient.

As described in [87] Bayesian optimisation consists of two main components: a Bayesian

statistical model for modelling the objective function, and an acquisition function for

deciding where to sample next. The algorithm initially evaluates the objective accord-

ing to a space-filling experimental design, often consisting of points chosen uniformly at

random. They are used iteratively to allocate the remainder of a budget of I function

evaluations, as shown in Algorithm 5.2.

Algorithm 5.2: Basic pseudo-code for Bayesian optimisation. As given in [87]

Place a Gaussian process prior on f ;

Observe f at i0 points according to an initial space-filling experimental design, set

i = i0 ;

while i ≤ I do

Update the posterior probability distribution on f using all available data;

Let xi be a maximiser of the acquisition function over x, where the acquisition

function is computed using the current posterior distribution;

Observe yi = f(xi);

Increment i;

return either the point evaluated with the largest f(x), or the point with the

largest posterior mean.

The statistical model is invariably a Gaussian process. It provides a Bayesian posterior

probability distribution that describes potential values for the objective function at a

candidate point. Each time the objective function is observed at the new point the

posterior distribution is updated.

The acquisition function measures the value that would be generated by evaluation of

the objective function at a new point, based on the current posterior distribution over

f . The most commonly used acquisition functions are:

• The expected improvement [149].

• The knowledge gradient [86].

• The entropy search and predictive entropy search [130].

As an example of the algorithm’s usage consider the optimisation problem of (5.13).

Figure 5.11 illustrates the change of the utility function over I. The algorithm is set

to run for I = 60. After 60 function evaluations if the utility has not changed in the
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last 10% of evaluations, then the algorithm runs for a further 20 evaluations. This is

repeated until there is no change to the utility in the last 10% of evaluations.
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Figure 5.11: Utility over time of calls using Bayesian optimisation. The opponents are
q(1) = (1

3 ,
1
3 ,

1
3 ,

1
3) and q(2) = (1

3 ,
1
3 ,

1
3 ,

1
3). The best response obtained is p∗ = (0, 11

50 , 0, 0)

5.5.2 SSE method

The SSE method is a linear algebraic approach that defines the closest ZD strategy to

a given strategy p. This strategy is defined as x∗ given by,

x∗ =
(
CTC

)−1
CT p̄ (5.28)

where

p̄ = (p1 − 1, p2 − 1, p3, p4) and

and

C =



R− P R− P

S − P T − P

T − P S − P

0 0


. (5.29)

Once x∗ is estimated the method calculates the squared norm of the remaining error
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referred to as sum of squared errors of prediction (SSE):

SSE = p̄T p̄− p̄C
(
CTC

)−1
CT p̄ = p̄T p̄− p̄Cx∗ (5.30)

The SSE is defined as how far a strategy is from behaving as a ZD. A small SSE implies

ZD behaviour whereas a high SSE implies a non extortionate behaviour.

5.5.3 Best response memory-one strategies for N = 2

Bayesian optimisation was used to generate a data set of best response memory-one

strategies for N = 2 opponents. The data set has been archived and is available at [104].

The data set contains two sets of best response memory-one strategies for each pair of

opponents. These are:

• Best response memory-one strategies without self interactions.

• Best response memory-one strategies with self interactions.

In several evolutionary settings such as Moran Processes self interactions are key.

Previous work has identified interesting results such as the appearance of self recog-

nition mechanisms when training strategies using evolutionary algorithms in Moran

processes [164]. This aspect of reinforcement learning can be done for best response

memory-one strategies by incorporating the strategy itself in the objective function

as shown in Equation (5.13). K is the number of self interactions that will take

place.

max
p

:
1

N

N∑
i=1

uq
(i)(p) +Kup(p)

such that : p ∈ R[0,1]

(5.31)

For determining the memory-one best response with self interactions, an algorithmic

approach is considered, called best response dynamics. The best response dynamics

approach used in this manuscript is given by Algorithm 5.3.

Algorithm 5.3: Best response dynamics algorithm

p(t) ← (1, 1, 1, 1);

while p(t) 6= p(t−1) do

p(t+1) = argmax 1
N

N∑
i=1

uq
(i)(p(t)) +Kup(t)(p

(t));
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Using this approach it would be possible to create a memory-one best response strat-

egy that updates on every generation of a Moran process to recalculate the optimal

behaviour given the population.

The data set contains a total of 1,000 trials corresponding to 1,000 different instances

of a best response strategy in tournaments with and without self interactions. For each

trial a set of 2 opponents is randomly generated and the memory-one best responses

against them are found. The probabilities qi of the opponents are randomly generated

and Figures 5.12a and 5.12b, show that they are uniformly distributed over the trials.

Thus, the full space of possible opponents has been covered.
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Figure 5.12: Distributions of opponents’ probabilities.

The SSE method was applied to the best response memory-one strategies once the

data set was generated. The distributions of SSE for the best response in tournaments

(N = 2) with and without self interactions with (K = 1) are given in Figure 5.13.

Moreover, a statistical summary of the SSE distributions is given in Table 5.1.

mean standard deviation 5% 50% 95% max median skewness kurtosis

Tournament without self interactions 0.34 0.40 0.028 0.17 1.05 2.47 0.17 1.87 3.60

Tournament with self interactions 0.17 0.23 0.01 0.12 0.67 1.53 0.12 3.42 1.92

Table 5.1: SSE of best response memory-one for N = 2.

For the best response in tournaments that do not include self interactions the distri-

bution of SSE is skewed to the left, indicating that the best response does exhibit ZDs

behaviour and so could be extortionate, however, the best response is not uniformly

a ZDs. A positive measure of skewness and kurtosis, and a mean of 0.34 indicate a

heavy tail to the right. Therefore, in several cases the strategy is not trying to extort

its opponents. In [132] a similar behaviour is refereed to as the partner strategy. The
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Figure 5.13: SEE distributions for best response in tournaments without and with self
interactions for N = 2.

partner strategy aims to share the payoff for mutual cooperation, but it is ready to fight

back when being exploited. The partner strategy was designed, but the best responses

which are defined by their opponents seem to exhibit the same behaviour.

Similarly, when considering self interactions, the distribution of SSE for the best re-

sponse strategy has skewness and kurtosis that indicate a heavy tail to the right. This

indicates that memory-one strategies that interact with copies of themselves need to

even more adaptable than ZDs, and aim for mutual cooperation as well as exploitation

which is in line with the results of [132] where their strategy was designed to adapt and

was shown to be evolutionary stable. The findings of this work show that an optimal

strategy acts in the same way.

The difference between best responses in tournaments without and with self interactions

is further explored by Figure 5.14. Though, no statistically significant differences have

been found, from Figure 5.14, it seems that the best response that incorporate self

interactions has a higher median p2; which corresponds to the probability of cooperating

after receiving a defection. Thus, they are more likely to forgive after being tricked.

This is due to the fact that they could be playing against themselves, and they need

to be able to forgive so that future cooperation can occur.

5.5.4 Longer memory best responses

This section focuses on the memory size of strategies. The effectiveness of memory

in the IPD has been previously explored in the literature, as discussed in section 3.1,

however, none of the previous works has compared the performance of longer-memory

strategies to memory-one best responses.
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Figure 5.14: Distributions of p∗ for best response in tournaments without and with self
interactions. The medians, denoted as p̄∗, for tournaments are p̄∗ = (0, 0, 0, 0), and for
evolutionary settings p̄∗ = (0, 0.19, 0, 0).

The strategy used in this Chapter is one of the archetypes described in Chapter 2

called Gambler (introduced in [125]). As a reminder, Gambler is a stochastic version

of a lookup table. It makes probabilistic decisions based on the opponent’s n1 first

moves, the opponent’s m1 last moves and the player’s m2 last moves. In this Chapter

Gambler with parameters: n1 = 2,m1 = 1 and m2 = 1 is used as a longer-memory

strategy.

By considering the opponent’s first two moves, the opponents last move and the player’s

last move, there are only 16 (4× 2× 2) possible outcomes that can occur, furthermore,

Gambler also makes a probabilistic decision of cooperating in the opening move. Thus,

Gambler is a function f : {C, D} → [0, 1]R. This can be hard coded as an element of

[0, 1]16+1
R , one probability for each outcome plus the opening move. Hence, compared

to (5.13), finding an optimal Gambler is a 17 dimensional problem given by:

max
p

:

N∑
i=1

Uq
(i)(f)

such that : f ∈ R17
[0,1]

(5.32)

Note that Equation (5.11) can not be used here for the utility of Gambler, and actual
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simulated players are used. This is done using a tournament of 500 turns and 200

repetitions, moreover, (5.32) is solved numerically using Bayesian optimisation.

As in the previous section a large data set has been generated with instances of an

optimal Gambler and a memory-one best response, available at [104]. Estimating a

best response Gambler (17 dimensions) is computational more expensive compared to

a best response memory-one (4 dimensions). As a result, the analysis of this section is

based on a total of 130 trials. For each trial two random opponents have been selected.

The 130 pair of opponents are a sub set of the opponents used in section 5.5.3. The

distributions of their transition probabilities are given in Figures 5.15a and 5.15a.
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(a) Distributions of first opponents’ probabili-
ties for longer memory experiment.
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(b) Distributions of second opponents’ proba-
bilities for longer memory experiment.

Figure 5.15: Distributions of opponents’ probabilities for longer memory experiment.

The ratio between Gambler’s utility and the best response memory-one strategy’s util-

ity has been calculated and its distribution in given in Figure 5.16. It is evident from

Figure 5.16 that Gambler always performs as well as the best response memory-one

strategy and often performs better. There are no points where the ratio value is less

than 1, thus Gambler never performed less than the best response memory-one strat-

egy and in places outperforms it. This seems to be at odd with the result of [234]

that against a memory-one opponent having a longer memory will not give a strategy

any advantage. However, against two memory-one opponents Gambler’s performance

is better than the optimal memory-one strategy. This is evidence that in the case of

two opponents having a shorter memory is limiting.

5.6 Stability of defection

An additional theoretical result that is possible to obtain due to Theorem 2, is a

condition for which in an environment of memory-one opponents defection is the stable
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Figure 5.16: Utilities of Gambler and best response memory-one strategies for 130
different pair of opponents.

choice, based only on the coefficients of the opponents.

This result is obtained by evaluating the sign of Equation (5.11)’s derivative at p =

(0, 0, 0, 0). If at that point the derivative is negative, then the utility of a player only

decreases if they were to change their behaviour, and thus defection at that point is

stable.

Lemma 5. In a tournament of N players {q(1), q(2), . . . , q(N)} for q(i) ∈ R4
[0,1] defec-

tion is stable if the transition probabilities of the opponents satisfy conditions Equa-

tion (5.33) and Equation (5.34).

N∑
i=1

(c(i)T ā(i) − c̄(i)Ta(i)) ≤ 0 (5.33)

while,

N∑
i=1

ā(i) 6= 0 (5.34)

Proof. For defection to be stable the derivative of the utility at the point p = (0, 0, 0, 0)

must be negative.



CHAPTER 5. STABILITY OF DEFECTION, OPTIMISATION OF STRATEGIES
AND THE LIMITS OF MEMORY IN THE PRISONER’S DILEMMA. 116

Substituting p = (0, 0, 0, 0) in Equation (5.21) gives:

d
N∑
i=1

uq
(i)(p)

dp

∣∣∣∣∣∣∣∣∣
p=(0,0,0,0)

=

N∑
i=1

(c(i)T ā(i) − c̄(i)Ta(i))

(ā(i))2
(5.35)

The sign of the numerator
N∑
i=1

(c(i)T ā(i) − c̄(i)Ta(i)) can vary based on the transition

probabilities of the opponents. The denominator can not be negative, and otherwise is

always positive. Thus the sign of the derivative is negative if and only if
N∑
i=1

(c(i)T ā(i)−

c̄(i)Ta(i)) ≤ 0.

Consider a population for which defection is known to be stable. In that population

all the members will over time adopt the same behaviour; thus in such population

cooperation will never take over. This is demonstrated in Figure 5.17.
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Figure 5.17: A. For q1 = (0.2219, 0.8707, 0.2067, 0.9186), q2 =
(0.4884, 0.6117, 0.7659, 0.5184) and q3 = (0.2968, 0.1877, 0.0807, 0.7384), Equa-
tion (5.33) and Equation (5.34) hold and Defector takes over the population.
B. For q1 = (0.9670, 0.5472, 0.9726, 0.7148), q2 = (0.6977, 0.2160, 0.9762, 0.0062) and
q3 = (0.2529, 0.4349, 0.7738, 0.1976), Equation (5.33) fails and Defector does not take
over the population.
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5.7 Chapter summary

This Chapter has considered best response strategies in the IPD game, and more

specifically, memory-one best responses. It has proved that:

• The utility of a memory-one strategy against a set of memory-one opponents can

be written as a sum of ratios of quadratic forms (Theorem 2).

• There is a compact way of identifying a memory-one best response to a group of

opponents through a search over a discrete set (Theorem 3).

• There is a compact way of identifying environment of memory-one opponents

where defection is the stable choice based only on the coefficients of the opponents

(Lemma 5).

Note that Theorem 3 does not only have game theoretic novelty, but also mathematical

novelty of solving quadratic ratio optimisation problems where the quadratics are non

concave. Additionally, Theorem 3 led to Lemma 4 which defined best response reactive

strategies. Using the set of reactive strategies it was possible to demonstrate the usage

of resultant theory in the search of best response strategies.

The empirical results of this Chapter were presented in section 5.5. The results relied on

a bespoke data set of 1,000 pairs of memory-one opponents. For each pair of opponents

two sets of best response memory-one strategies were estimated. These two best re-

sponse memory-one calculations were estimated in the case when self-interactions were

included and also when they were not included. The behaviour of these best responses

was investigated. More specifically, it was explored whether it was extortionate acts

that made them the most favourable strategies. It was shown that it was not extortion

but adaptability that allowed the strategies to gain the most from their interactions.

In settings with self interactions there is some evidence that the best response strategy

is more likely to forgive after being tricked.

Section 5.5 also explored the limitations of memory. The performance of best response

memory-one strategy was compared to that of a Gambler with longer memory. The

results concluded that the performance of memory-one strategies is limited by their

memory in cases where they interact with multiple opponents. They can never score

higher than a longer memory strategy.

By specifically exploring the entire space of memory-one strategies to identify the best
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strategy for a variety of situations, this Chapter has added to the literature casting

doubt on the effectiveness of ZDs, it has highlighted the importance of adaptability

and provides a framework for the continued understanding of these important ques-

tions.



119

Chapter 6

Best response sequences in the

Iterated Prisoner’s Dilemma

The research reported in this Chapter has been carried out with:

Axelrod-Python library (APL) version: 4.2.0

Associated data set: [106]

Associated codebase: [98]

6.1 Introduction

In this Chapter best response strategies are explored in the form of static sequences of

moves, in order to generate a large data set of best response sequences to a collection

of opponents.

The data set is generated by considering best response sequences in finite IPD matches

of 205 turns against 192 strategies available in the APL. These best response sequences

are not obtained explicitly but instead are estimated heuristically using a genetic al-

gorithm devised for this purpose.

The purpose of a large collection of best response sequences is to serve as training

data in Chapter 7 which aims to train a recurrent neural network as an IPD strategy.

In Chapter 7 the usage of the bespoke data set, which has been archived and made

publicly available [106], is discussed in more detail. This Chapter is structured as
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follows:

• section 6.2 formalises the use of sequences to express a player in a finite IPD

match.

• section 6.3 describes the genetic algorithm used to estimate best response se-

quences.

• section 6.4 details the process of generating best response sequences to a collection

of 192 strategies.

6.2 Iterated Prisoner Dilemma Strategies as sequences

In a finite N round IPD match a player that does not react to their opponent can be

defined by a sequence,

S ∈ {C,D}n,where 1 ≤ n ≤ N. (6.1)

Strategies that base their actions on sequences are already established in the litera-

ture [44], such as Periodic Player CD, Periodic Player DC, Periodic Player CCD

and Periodic Player DDC [178, 207], or as referred to in [165] Cycler CD, Cycler

DC, Cycler CCD and Cycler DDC. These are strategies that play a given sequences

periodically, however, the strategies concerned with here play a given sequence only

once, thus n = N .

As an example consider a match of 10 turns between the strategy S = {D,D,D,C,C,C,

D,D,C,C} and Cooperator. The match between the two strategies is captured by

Table 6.1 where U(s1, s2) ∈ R2 is the average score per turn scored by strategies s1

and s2.

1 2 3 4 5 6 7 8 9 10 U(S,Cooperator)

S D D D C C C D D C C 4.0

Cooperator C C C C C C C C C C 1.5

Table 6.1: The interactions of a 10 turns match between S =
{D,D,D,C,C,C,D,D,C,C} and Cooperator as well as the average score per
turn achieved by each strategy.

A sequence strategy S can play against strategies that react to the history, for example
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against Tit For Tat as demonstrated by Table 6.2,

1 2 3 4 5 6 7 8 9 10 U(S,Tit For Tat)

S D D D C C C D D C C 2.2

Tit For Tat C D D D C C C D D C 2.2

Table 6.2: The interactions and average score per turn of a 10 turns match between
S = {D,D,D,C,C,C,D,D,C,C} and Tit For Tat.

and against stochastic strategies such as Random. Random cooperates with a prob-

ability of 0.5 at each turn, and thus the actions of the strategy are not deterministic.

Random is a strategy that does not react to the history, however, the actions of

stochastic strategies that react to the history also differ between repetitions even when

the history of the match is the same. Tables 6.3 and 6.4 both capture a match between

S and a Random player. For a match of 10 turns Random has a total of 210 possi-

ble plays. In order to capture several different plays of stochastic strategies computer

seeding, further details of this are given in section 6.4.

1 2 3 4 5 6 7 8 9 10 U(S,Random)

S D D D C C C D D C C 2.2

Random D D C C D C D C C D 2.2

Table 6.3: The interactions and average score per turn of a 10 turns match between
S = {D,D,D,C,C,C,D,D,C,C} and Random.

1 2 3 4 5 6 7 8 9 10 U(S,Random)

S D D D C C C D D C C 2.4

Random C D D C C C D D C C 1.9

Table 6.4: The interactions and average score per turn of a 10 turns match between
S = {D,D,D,C,C,C,D,D,C,C} and Random. The actions make by Random are
different to that of Table 6.3.

As discussed in Chapters 1 and 5, a best response strategy is a strategy that achieves

the most favourable outcome. Thus a best response sequence against a given opponent

Q corresponds to a sequence S∗ for which the average score per turn is maximised, as

given in (6.2).

max
S∗

:U(S∗, Q) (6.2)
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Identifying best responses to some opponents can be a trivial problem. The optimal se-

quence against a Cooperator is in an all D sequence. In fact the sequence {D, . . . ,D︸ ︷︷ ︸
N

} is

a best response against any sequence player whose plays are independent of the history.

However, for some strategies identifying best responses is a complex problem.

Additionally, there are strategies that have multiple best response sequences. For

instance the strategy Adaptive introduced in [178]. Adaptive opens by playing a se-

quence of {C, . . . , C︸ ︷︷ ︸
6

} followed by a sequence of {D, . . . ,D︸ ︷︷ ︸
5

}. The strategy then proceeds

to play either C or D depending on which action had a higher total score for the strat-

egy (the total score is recalculated at each turn). A sequence maximises its average

score against Adaptive by locking the strategy into unconditional cooperations follow-

ing its opening 11 turns sequence while the sequence defects. In order for cooperation

to be the most favourable action for Adaptive the strategy needs to achieve two mutual

cooperations at its opening sequence. That is because the score achieved by cooperat-

ing 2 × 3 + 4 × 0 = 6 is greater than the score achieved by defecting 1 × 5 = 5. Any

sequence which incorporates two cooperations in the first 6 turns and defects thereafter

is a best response sequence to Adaptive. Thus, there can be 26 best response sequences

to the strategy, for example S∗1 and S∗2 ,

S∗1 = {C,D,D,D,D,C,D,D,D,D,D,D,D,D,D}

S∗2 = {D,D,C,C,D,D,D,D,D,D,D,D,D,D,D}

where U(S∗1 ,Adaptive) = U(S∗2 ,Adaptive) = 3.4.

Due to identifying best response sequences to some opponents being a complex problem,

and moreover, multiple best response sequences existing for some opponents the best

response sequences are not manually identified. Instead a genetic algorithm is used to

estimate them. A background on genetic algorithms as well as the details of the specific

genetic algorithm devised for this Chapter are presented in the following section.

6.3 Genetic algorithm

A genetic algorithm (GA) is a heuristic inspired by the process of natural selection that

belongs to the larger class of evolutionary algorithms. As stated in [292] GAs encode
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a potential solution to a specific problem on a simple chromosome-like data structure,

and apply recombination operators to these structures in such a way as to preserve

critical information. GAs are often viewed as function optimisers, although the range

of problems to which they have been applied is quite broad [139,151,297].

An implementation of a GA begins with a population P of potential solutions, a number

of generations G ∈ N and a cut-off or bottleneck b < |P |. At each generation the

algorithm scores and potentially removes each member of the population pi ∈ P . This

is done by using a mapping from a member of the population to an ordered set based

on an evaluation function f , usually f(pi)→ R, and by only keeping the top b ranking

members (or proportion of members) by score at the end of each generation. The rest of

the member are discarded. By keeping the top ranked individuals critical information

regarding the successful candidates is preserved and the population rebuilds on it by

using a series of crossovers and mutations.

• During a crossover 2 members of the population are selected, and a new member

is created based on combination of their “genes”. The 2 selected members are

commonly referred to as parents.

• Mutation is a probabilistic change that occurs to an individual, Mutation is

commonly associated with a probability, denoted as pm. pm is the probability of

a mutation happening, either to the individual or to each gene of the individual.

A diagrammatic representation of a generic GA is given in Figure 6.1.

start
Generate

population members

Construct new
members to rebuild

the population

Score and rank
population members

Use crossover

Retain top rank-
ing members

Mutate population

Generations
complete?

endMutatingScoringConstructing

Yes

No

Figure 6.1: Generic flow diagram of a GA.
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The purpose of a GA here is to estimate a best response sequence to a given opponent

Q. Consequently, the members of the population correspond to sequences,

Si ∈ P where |Si| = N

and the evaluation function corresponds to the average score per turn of a sequence

against Q,

U(Si, Q)→ R for Si ∈ P.

More specifically, the exact GA used in this Chapter is given by Algorithm 6.1.

Algorithm 6.1: GA for estimating best response sequences to a given opponent
Q.

Input: Q,N, b, pm, G,K
Output: The populations at each generation and the members’ scores
begin

create initial population (Algorithm 6.2) of members S, where |S| = N and
|P | = K

while gi < G do
score each member based on U(Si, Q) for Si ∈ P
sort population based on scores
keep b top members
while |P | < K do

select 2 random members
use members to create new member through crossover
for gene in new member do

mutate gene with probability pm
end
add new member to population

end

end

end

The initial population is created using Algorithm 6.2.

Using a starting population of random guesses is a generally common approach in

the GA literature [139]. However, there is efficiency in using non random starting

populations [76, 228]. As discussed in section 6.2 the best response sequence to any

strategy that does not react to the history is a Defector. Moreover, the best response

sequences to several strategies are sequences that defect only in the last turns. These

are sequences that have been incorporated in the initial population. More specifically,
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Algorithm 6.2: Create initial population of individuals S

Input: K,N
Output: A population of size K.
begin

set of cuts ← K evenly spaced numbers over [1, N ]
for c ∈ set of cuts do

first new member ← {C, . . . , C︸ ︷︷ ︸
c

, D, . . . ,D︸ ︷︷ ︸
N−c

}

second new member ← {D, . . . ,D︸ ︷︷ ︸
c

, C, . . . , C︸ ︷︷ ︸
N−c

}

add both members to population
end

end

Algorithm 6.2 consider all the possible combinations of:

•{C, . . . , C︸ ︷︷ ︸
c

, D, . . . ,D︸ ︷︷ ︸
N−c

} for c ∈ evenly spaced numbers over [1, N ] and

•{D, . . . ,D︸ ︷︷ ︸
c

, C, . . . , C︸ ︷︷ ︸
N−c

} for c ∈ evenly spaced numbers over [1, N ].

The GA of Algorithm 6.1 has been implemented in the programming language Python

and it has been organised into an open source package called sequence_sensei avail-

able at [98]. The properties of creating an initial population, crossover and mutation

have been implemented as individual functions. The implementation of Algorithm 6.2

in the package is given by Figure 6.2.

1 import numpy as np

2 def get_initial_population(half_size_of_population, sequence_length):

3 """

4 Generates an initial population of sequences. Note that the length

5 of the population which is being generated is 2 * half_size_of_population.

6 """

7 cuts = np.linspace(1, sequence_length, half_size_of_population, dtype=int)

8 sequences = []

9 for cut in cuts:

10 sequences.append(

11 [1 for _ in range(cut)] + [0 for _ in range(sequence_length - cut)]

12 )

13 sequences.append(

14 [0 for _ in range(cut)] + [1 for _ in range(sequence_length - cut)]

15 )

16

17 return sequences

Figure 6.2: Source code for the function get_initial_population implemented in
sequence_sensei which is used to create an initial population of a given size.
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Figure 6.3 gives an example of creating an initial population using the package. Note

that the sequences are of 0s and 1s and not of IPD actions. The APL project can map

binary number to actions such that 0 → D and 1 → C. This is also demonstrated in

Figure 6.3.

1 >>> import sequence_sensei as ss

2 >>> import numpy as np

3

4 >>> initial_population = ss.get_initial_population(

5 ... half_size_of_population=5, sequence_length=8

6 ... )

7 >>> np.matrix(initial_population)

8 matrix([[1, 0, 0, 0, 0, 0, 0, 0],

9 [0, 1, 1, 1, 1, 1, 1, 1],

10 [1, 1, 0, 0, 0, 0, 0, 0],

11 [0, 0, 1, 1, 1, 1, 1, 1],

12 [1, 1, 1, 1, 0, 0, 0, 0],

13 [0, 0, 0, 0, 1, 1, 1, 1],

14 [1, 1, 1, 1, 1, 1, 0, 0],

15 [0, 0, 0, 0, 0, 0, 1, 1],

16 [1, 1, 1, 1, 1, 1, 1, 1],

17 [0, 0, 0, 0, 0, 0, 0, 0]])

18

19 >>> import axelrod as axl

20 >>> np.matrix([[axl.Action(gene) for gene in member] for member in initial_population])

21 matrix([[C, D, D, D, D, D, D, D],

22 [D, C, C, C, C, C, C, C],

23 [C, C, D, D, D, D, D, D],

24 [D, D, C, C, C, C, C, C],

25 [C, C, C, C, D, D, D, D],

26 [D, D, D, D, C, C, C, C],

27 [C, C, C, C, C, C, D, D],

28 [D, D, D, D, D, D, C, C],

29 [C, C, C, C, C, C, C, C],

30 [D, D, D, D, D, D, D, D]], dtype=object)

Figure 6.3: Example of using get_initial_population to generate a population of
K = 10 and N = 8.

In the GA, as given by Algorithm 6.1, the crossover occurs by randomly selecting two

member of the population, while |P | < K, and randomly selecting a crossover point.

Note that the crossover point is smaller than N . The new member initially inherits

the genes to the left of the crossover point of the first parent, and to the right of the

crossover point of the second parent.

For instance, given two member of the population S1 = {C,C,C,C,C,C,C,C,C,C}

and S2 = {C,D,C,D,C,D,C,D,C,D} and given that the crossover point is 4, this

gives a new member S3:



CHAPTER 6. BEST RESPONSE SEQUENCES IN THE ITERATED
PRISONER’S DILEMMA 127

S3 = {C,C,C,C︸ ︷︷ ︸
from S1

, C,D,C,D,C,D︸ ︷︷ ︸
from S2

}.

The implementation of crossover in sequence_sensei is given by Figure 6.4, and Fig-

ure 6.5 demonstrates the usage of the crossover function to crossover S1 and S2.

1 import random

2

3 def crossover(sequence_one, sequence_two):

4 sequence_length = len(sequence_one)

5 crossover_point = random.randint(0, sequence_length)

6

7 return sequence_one[:crossover_point] + sequence_two[crossover_point:]

Figure 6.4: Source code of the crossover function.

1 >>> import random

2 >>> import sequence_sensei as ss

3

4 >>> turns = 10

5 >>> s_one = [1 for _ in range(turns)]

6 >>> s_two = [i % 2 for i in range(turns)]

7

8 >>> random.seed(0)

9 >>> new_member = ss.crossover(s_one, s_two)

10 >>> new_member

11 [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]

Figure 6.5: An example of using crossover function to crossover S1 and S2

Following the crossover between two members, a mutation is applied to new member

before it is added to the population. Mutation has been implemented as a given

probability pm that each gene of the new member is flipped. A total of N random

numbers between [0, 1] are sampled. If the sampled probability at time i is less than

pm then the ith gene of the individual is flipped, as demonstrated by Figure 6.6.

S3 = {C, C, C, C, C, C, D, C, D,C}

mutated S3 = {C, C, C, C, C, C, D, C, D,D}
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Figure 6.6: Mutation example of S3.
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The implementation of mutation in sequence_sensei is given by Figure 6.7, and an

example of mutating S3 using the function is given in Figure 6.8.

1 def mutation(gene, mutation_probability):

2 if random.random() < mutation_probability:

3 return abs(gene - 1)

4 return gene

Figure 6.7: Source code of the mutation function.

1 >>> new_member = [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]

2

3 >>> random.seed(1)

4 >>> [ss.mutation(gene, mutation_probability=0.05) for gene in new_member]

5 [1, 1, 1, 1, 1, 1, 0, 1, 0, 0]

Figure 6.8: An example of using the mutation function to mutate S3.

The main function implemented in sequence_sensei for performing a GA is the

evolved function. The function has several input arguments which correspond to

the inputs of Algorithm 6.1. In the following section the evolved function is used to

run several trials and estimate best response sequences. The parameters values for

each run will be presented there. Moreover, the details of the best response sequence

collection against the 192 strategies are presented in the following section.

6.4 Data collection

The data set generated in this Chapter was created using the GA of Algorithm 6.1

and the APL project. The GA of Algorithm 6.1 estimates the best response sequence

for a given opponent, and in order to generate a collection of best responses a list

of opponents is obtained from APL. More specifically 192 strategies are used in this

Chapter. These can be found in the Appendix B.2.

The APL project is also used to calculate the average score per turn, U(S,Q), player

S can achieve against an opponent Q. The project contains a specific player class that

can simulate the play of any given sequence of Cs and Ds. The player class is called

Cycler and it takes as an input argument a series of actions as a string. An example

of creating and using such a player in a match is given by Figure 6.9. The average

score per turn is obtained using an in built method of APL once a match has been

simulated.
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1 >>> import axelrod as axl

2

3 >>> players = [axl.Cycler('DDDCCCDDCC'), axl.Cooperator()]

4 >>> match = axl.Match(players, turns=10)

5 >>> match.play()

6 [(D, C), (D, C), (D, C), (C, C), (C, C), (C, C), (D, C), (D, C), (C, C), (C, C)]

7

8 >>> match.final_score_per_turn()

9 (4.0, 1.5)

10

11 >>> players = [axl.Cycler('DDDCCCDDCC'), axl.TitForTat()]

12 >>> match = axl.Match(players, turns=10)

13 >>> match.play()

14 [(D, C), (D, D), (D, D), (C, D), (C, C), (C, C), (D, C), (D, D), (C, D), (C, C)]

15

16 >>> match.final_score_per_turn()

17 (2.2, 2.2)

Figure 6.9: Simulating a match between Cycler and Cooperator and Cycler and Tit
For Tat. The class Cycler takes a given sequence as an input argument in a string
format ('DDDCCCDDCC'). Once a match has been simulated with the play method the
average score per turn is obtained using the final_score_per_turn method.

From the 192 strategies, 62 are stochastic and 130 are deterministic. In section 6.2

it was explained that the outcome of a match between two deterministic strategies is

always the same. In comparison, the outcome of a match with a stochastic strategy

can differ, because the actions of a stochastic opponent are not deterministic. The

actions of a stochastic opponent can be repeated by using computer seeding for seeding

the pseudo random number generator (PRNG) that creates the parameters that define

what moves the strategy will take. Seeds are set before generating a random number,

and if the same seed is used on initialisation then the random output remains the

same. Thus, as long as a match is seeded the behaviour of a stochastic strategy can be

reproduced, and different seeds lead to different plays of stochastic strategies.

Consider the match between Random and S = {D,D,D,C,C,C,D,D,C,C} pre-

sented in section 6.2. Random has a total of 210 possible plays for the given match.

By using different computer seeds a number of these plays can be simulated as shown

in Figure 6.10.
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1 >>> players = [axl.Cycler('DDDCCCDDCC'), axl.Random()]

2 >>> for seed in range(5):

3 ... axl.seed(seed)

4 ... match = axl.Match(players, turns=10)

5 ... actions = match.play()

6 ... print(actions, match.final_score_per_turn())

7 ... print("================================================================================")

8 [(D, D), (D, D), (D, C), (C, C), (C, D), (C, C), (D, D), (D, C), (C, C), (C, D)] (2.2, 2.2)

9 ================================================================================

10 [(D, C), (D, D), (D, D), (C, C), (C, C), (C, C), (D, D), (D, D), (C, C), (C, C)] (2.4, 1.9)

11 ================================================================================

12 [(D, D), (D, D), (D, C), (C, C), (C, D), (C, D), (D, D), (D, C), (C, D), (C, D)] (1.6, 2.6)

13 ================================================================================

14 [(D, C), (D, D), (D, C), (C, D), (C, D), (C, C), (D, C), (D, D), (C, C), (C, C)] (2.6, 2.1)

15 ================================================================================

16 [(D, C), (D, C), (D, C), (C, C), (C, C), (C, C), (D, D), (D, D), (C, D), (C, C)] (2.9, 1.9)

17 ================================================================================

Figure 6.10: Example code of using seeding to generate different plays of Random.
The value of seed changes to {0, 1, 2, 3, 4, 5} and the seed is set with the command
axl.seed(seed) before simulating the game. This initialises the pseudo random gen-
erator that define what moves Random will take. The above code snipped will always
have the same output each time it is repeated.

A total of 10 different plays are captured for each of the stochastic strategies of this

Chapter. Thus, a total of 10 different seeds are used for each stochastic strategy.

The data collection process of best response sequences in more details is given by

Figure 6.11.

start
assign a strategy from

the collection as Q
Is Q

stochastic?
Perform GA trials

write generations
history to csv

seed ∈ {0, . . . , 9}

seed=NaN end

Yes

No

seed=NaN or seed= 9

seed 6=NaN and seed< 9

Figure 6.11: Diagrammatic representation of the best response sequences collection
process.

From the collection of opponents a strategy is selected at each trial. If the strategy

is deterministic a set of GAs with different parameters values are performed for 2,000

generations. The summary of the GA trials which contain information for each genera-

tion is exported to a single csv file, then the next opponent is selected. If the opponent
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is stochastic the above process is repeated 10 times. Each time the stochastic strategy

is accompanied by a different seed value which is used to initialise the pseudo random

generator. For each combination of stochastic opponent and seed the GAs summary is

exported to a csv file.

For each opponent, or opponent-seed combination a total of 18 GAs are performed.

The different values for each parameter are given by Table 6.5.

Parameter Explanation Values

N number of turns 205

G number of generations 2,000

b bottleneck 10, 20

K size of a population 20, 30, 40

pm probability of gene mutating 0.01, 0.05, 0.1

Table 6.5: The parameters of the GA. The GA is performed a total of 18 times for
each opponent. More specifically, it is performed for each possible combination of the
parameters values.

All the best response sequences that are generated in this Chapter are best response

sequences of 205 turns. Moreover, they are best responses not to 192 strategies, but

to a total of (130 + 62× 10) 750 opponents. Thus, a total of 750 trials of Figure 6.11

have been performed.

An example of an exported summary for the deterministic opponent Alternator is

given by Table 6.6.

opponent seed b pm K/2 gi index score gene 1 gene 2 . . . gene 203 gene 204 gene 205

0 Alternator NaN 10 0.01 10 0 19 3.009756 0 0 . . . 0 0 0

1 Alternator NaN 10 0.01 10 0 0 3.000000 1 0 . . . 0 0 0

2 Alternator NaN 10 0.01 10 0 2 2.839024 1 1 . . . 0 0 0

3 Alternator NaN 10 0.01 10 0 17 2.839024 0 0 . . . 1 1 1

4 Alternator NaN 10 0.01 10 0 4 2.673171 1 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1080535 Alternator NaN 20 0.10 20 2000 29 2.775610 1 0 . . . 0 0 0

1080536 Alternator NaN 20 0.10 20 2000 24 2.770732 0 0 . . . 0 0 0

1080537 Alternator NaN 20 0.10 20 2000 31 2.770732 1 0 . . . 0 0 0

1080538 Alternator NaN 20 0.10 20 2000 32 2.770732 0 0 . . . 0 0 1

1080539 Alternator NaN 20 0.10 20 2000 34 2.756098 0 0 . . . 0 0 0

Table 6.6: An example of an exported summary. The specific output is for the opponent
Alternator. Alternator is a deterministic strategy, consequently, the value of seed is
NaN. The values of the different GA parameters are recorded in the summary, as well
as the details of each member of each generation. The sequences’ genes were recorded
in 0 and 1, where 0→ D and 1→ C. The best responses sequences are the individuals
that have the maximum score at gi = 2,000.
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For a stochastic strategy there are a total of 9 exported summaries. An example of an

exported summary for Champion with seed=9 is given by Table 6.7. The best response

sequences are collected from the last generation of the exported summaries.

opponent seed b pm K/2 gi index score gene 1 gene 2 . . . gene 203 gene 204 gene 205

0 Champion 9 10 0.01 10 0 10 3.712195 1 1 . . . 0 0 0

1 Champion 9 10 0.01 10 0 12 3.663415 1 1 . . . 0 0 0

2 Champion 9 10 0.01 10 0 8 3.585366 1 1 . . . 0 0 0

3 Champion 9 10 0.01 10 0 14 3.448780 1 1 . . . 0 0 0

4 Champion 9 10 0.01 10 0 6 3.312195 1 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1080535 Champion 9 20 0.10 20 2000 25 3.634146 0 0 . . . 1 1 0

1080536 Champion 9 20 0.10 20 2000 34 3.629268 1 1 . . . 0 0 1

1080537 Champion 9 20 0.10 20 2000 31 3.604878 1 1 . . . 1 0 1

1080538 Champion 9 20 0.10 20 2000 21 3.443902 0 0 . . . 1 0 0

1080539 Champion 9 20 0.10 20 2000 20 3.351220 1 0 . . . 0 1 0

Table 6.7: An example of an exported summary for a stochastic strategy. The column
seed does not have a value of NaN anymore but has captured the seed that was used
to generate the specific play of the stochastic opponent. The members’ genes are also
recorded for each generation. Note that 0→ D and 1→ C.

In section 6.2 it was stated that the best response to a strategy that does not react to the

history is to always defect. Such strategies include Cooperator, Defector, Alternator

and the family of the Cycler strategies. Algorithm 6.1 successfully identified their best

responses, as shown in Table 6.8.

opponent score gene 1 gene 2 gene 3 gene 4 gene 5 gene 6 . . . gene 201 gene 202 gene 203 gene 204 gene 205

Cooperator 5.000 0 0 0 0 0 0 . . . 0 0 0 0 0

Alternator 3.010 0 0 0 0 0 0 . . . 0 0 0 0 0

Cycler CCCCCD 4.337 0 0 0 0 0 0 . . . 0 0 0 0 0

Cycler CCCD 4.005 0 0 0 0 0 0 . . . 0 0 0 0 0

Cycler CCCDCD 3.673 0 0 0 0 0 0 . . . 0 0 0 0 0

Cycler CCD 3.673 0 0 0 0 0 0 . . . 0 0 0 0 0

Cycler DC 2.990 0 0 0 0 0 0 . . . 0 0 0 0 0

Cycler DDC 2.327 0 0 0 0 0 0 . . . 0 0 0 0 0

Defector 1.000 0 0 0 0 0 0 . . . 0 0 0 0 0

Table 6.8: Best response sequences to a number of opponents that do not react to the
history of the match. The best response to such strategies are to always defect. This
was successfully captured by the best sequence collection process of this Chapter.

The best response sequence to Tit For Tat and Grudger is the sequence that cooper-

ates until before the last turn. That way the sequence receives the payoff for mutual

cooperation for N − 1 turns, and then betrays its opponent in the last turn to max-

imise its score, receiving a payoff of T . It only defects on the last turn because then

it can not be punished. The sequence is also the best response to the strategy Hard
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Tit For Tat. The strategy is a variant of Tit For Tat that uses that uses a longer his-

tory for retaliation. The best response sequences were captured for all three strategies,

Table 6.9.

opponent score gene 1 gene 2 gene 3 gene 4 gene 5 gene 6 . . . gene 201 gene 202 gene 203 gene 204 gene 205

Tit For Tat 3.01 1 1 1 1 1 1 . . . 1 1 1 1 0

Grudger 3.01 1 1 1 1 1 1 . . . 1 1 1 1 0

Hard Tit For Tat 3.01 1 1 1 1 1 1 . . . 1 1 1 1 0

Table 6.9: Best response sequences to strategies Tit For Tat, Grudger and Hard Tit
For Tat.

There are more sophisticated yet still established best response sequences. These in-

clude the best response to TF1 [164]. In [164] the strategy TF1 was trained using a 16

state finite state machine in a Moran process setting. The TF1 strategy developed a

hand shake mechanism that allowed it to identify strategies that play like itself. Once

two copies of TF1 identify each other they go into mutually cooperations until the end

of their interactions. The best response to the strategy is the sequence that performs

the handshake, and goes into mutual cooperations until before the final turn. This best

response sequence was also captured by the data collection process. The handshake

is performed in the opening three turns, and it is the sequence {C,C,D} as shown in

Table 6.10.

opponent score gene 1 gene 2 gene 3 gene 4 gene 5 gene 6 . . . gene 201 gene 202 gene 203 gene 204 gene 205

TF1 3.0 1 1 0 1 1 1 . . . 1 1 1 1 0

Table 6.10: Best response sequence to TF1 introduced in [164]. The strategy performs
a handshake in the first three moves. The hand shake is the sequence CDC. If the
opponent plays that same then the strategies go into mutual cooperation.

6.4.1 Parallelisation and stochastic results

The data collection process of this Chapter was carried out using parallel processing.

In parallel processing many calculations or executions of tasks are carried out simul-

taneously. In the case of the data collection here the tasks were scoring members of

the population. More specifically, at most 10 members of the population were being

scored at the same time.

Parallel programming was executed using multi threading [261]. Threads are “light-

weight” processes, a unit of execution within a process. Threads are designed to have

shared memory and can manipulate global variables of main thread. Scoring a member
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of the population corresponded to a single task which was executed on a single thread.

For the stochastic opponents the task included seeding/setting the PRNG state before

simulating the match. Seeding at the time of generating the data collection was not

implemented in a safe thread way.

The data collection was implemented in a way that each thread was setting the global

PRNG state. That was then shared across all the the threads without synchronisa-

tion. Since the threads are running in parallel, at the same time, and their access

to this global PRNG is not synchronised between them, errors occur. In the case of

the stochastic opponents this means that there are given instances that are not repro-

ducible and for those instance the simulated behaviour does not reflect the opponent’s

behaviour for its given seed.

There are several ways that this error can be corrected. There is a thread safe way

of implementing seeding which involves giving each thread its own local PRNG. Then

there is no longer any state that’s shared by multiple threads without synchronisa-

tion.

For the stochastic opponents 34% of the collected sequences are not reproducible.

Recalling that the aim of this Chapter is to generate a collection of well performing

sequences in the IPD, so that they can be used as the training data for the purposes

of Chapter 7. A 34% percentage of non reproducible sequences is a reasonable ratio

which also ensures more variability to the data for training.

6.4.2 The collection of best response sequences

The collections process was performed for 750 trials, and a total of 18 GAs were per-

formed for each trial. The best response sequences are the sequences with the highest

average score per turn in the final generation regardless of the GA.

In order to understand whether the algorithms reached convergence over the 2,000

generations, the highest score in a population over the generations for four different

strategies is given in Figure 6.12. The population is said to have converged if the highest

average score of the population has not changed over a number of generations.

There are trials for which the algorithms never converged to the best response se-

quences. There are two reason that as to why this happened:

• The bottleneck was equal to the population size. A value K/2 = 10 while b = 20
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results to no new members being added to the population. These trials would

have reached convergence only if the best response was in the initial generation.

• The mutation probability is too high. The earliest converged GA trials are the

trials for which pm = 0.01. As pm is the probability that each gene of the new

member is being flipped, higher values could potentially add to much variation to

the new members. This could lead to the new members losing critical information

they inherited from their parents.
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Figure 6.12: The highest score in a population over the generations for Tit For Tat,
Grudger, FSM 16 and Aggravater. The selected trials capture the results of all the
18 trials for the given set of opponents.

Nevertheless, a sequence that has not converged is still useful. Even though it is not

the highest scoring member, it is a sequence that was not arbitrarily generated but has

some critical information regarding playing against given opponents.

There are several trials that have managed to converged, and they did so in less than

200 generations. This is potentially the effect of a non random initial population.

Figure 6.13 shows the highest score in a population over the generations for the four

strategies of Figure 6.12 but only up to gi = 500. All trials with a pm = 0.01 converged

within the first 200 generations. The trial which reaches convergence first (in the four

demonstrated cases) is the trial with the parameter values of K/2 = 15, b = 10 and

pm = 0.1.

There are a total of 130 deterministic strategies in the collection of opponents and
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Figure 6.13: The highest score in a population over the generations for Tit For Tat,
Grudger, FSM 16 and Aggravater up to gi = 500.

best response sequences were estimated for each. Several of the known best response

sequences have been manually checked and they have been successfully estimated by

the algorithm. These include best response sequences to Tit For Tat, Grudger, Alter-

nator, Pavlov and the Cycler strategies.

In section 6.2 is was explained that strategies can have more than a single best response

sequence. In the case of the strategy Adaptive any strategy that cooperated twice in

the opening 6 moves and defected thereafter is a best response. The data collection

has managed to successfully identify multiple best responses to Adaptive, these are

given by Table 6.11. Adaptive is not the only deterministic strategy with multiple

best response sequences. More specifically, for the 130 deterministic opponents a total

of 2,949 best response sequences were collected.

index gene 1 gene 2 gene 3 gene 4 gene 5 gene 6 gene 7 . . . gene 203 gene 204 gene 205

0 1 0 0 0 0 1 0 . . . 0 0 0

1 0 0 1 1 0 0 0 . . . 0 0 0

2 1 1 0 0 0 0 0 . . . 0 0 0

Table 6.11: Best responses sequences estimated by the data collection process. Note
that 0 corresponds to defection and 1 to cooperation.

An interesting questions that arises is: how diverse are the set of best response se-
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quences? Out of the 2,949 sequences 2,836 are unique. A graphical representation of

these sequences is given by Figure 6.16a. The two distinct colours represent genes of

C and D. Overall, it can be seen that there is diversity in the best response sequences,

and they are not just long sequences of either C or D. A common trend appears to be

a series of defections at the last turns. In a finite IPD this is to expected. As it was

mentioned in Chapter 4, the more likely it is that the match will end soon, the more

likely it is that the best strategy is to defect.

A total of 2,309 sequences have been estimated for the stochastic opponents. From

these sequences, 66% did indeed play against the correct seeded opponent.

For instance for the strategy - seed combination of Champion - seed= 9 the highest

score achieved by a member of the population over the generations is given by Fig-

ure 6.14. There is variation in the highest score occurring over the generations with

several increasing and decreasing peaks. However, for most of the generations the high-

est score appears to be between 3.80− 3.82. The best response sequence retrieved by

the data collection scored 3.82 against Champion, and it reflected the score of the

sequence against Champion - seed= 9.
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Figure 6.14: The maximum score a sequence achieved against Champion with seed
9 over the generations. Each line represents a different GA trial. Only the GAs with
pm = 0.01 have been included.

There are stochastic opponents for which more variation occurred over the generations.

An example of that is Random. The highest score of the population in a single GA

trial, for opponent - seed combination Random - seed= 1, is given by Figure 6.15. In

the case of Random - seed= 1 the score of the best response sequence that was collected

was not the actual score the sequence scores against Random - seed= 1.
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Figure 6.15: The maximum score a sequence achieved against Random - seed= 1 over
the generations.

From the 2,309 sequences against stochastic strategies 2,130 are unique. A graphical

representation of these sequences are given by Figure 6.16b. Similar to the results of

the best response sequences against deterministic opponents the sequences are diverse.

However, compared to the best response sequences to deterministic opponents the

responses to stochastic opponents appear to be less diverse. The responses to stochastic

opponents appear to belong to two families of strategies. Strategies that cooperate for

approximately the first 150 turns and defect thereafter, and strategies that play a

series of alternating sets of cooperations and defections. The best response sequences

to deterministic opponents can not be classified in just two families of strategies, and

thus are more diverse.

In summary, from the list of 192 strategies examined in this Chapter, 750 different op-

ponent instances were simulated and a total of 5,258 best response sequences of length

205 were retrieved. The choice of 205 turns will be explained in the following Chapter.

The best response sequences have been archived and made available at [106].

6.5 Chapter summary

This Chapter has explored the concept of best responses in the IPD game in the form

of static sequences of moves. It introduced an evolutionary algorithm, Algorithm 6.1,

which can successfully identify best response sequences.

The algorithm was executed to estimate best response sequences to the majority of

opponents listed in the APL. More specifically, a total of 192 opponents from APL

were used. Several of the strategies in the project are stochastic and computer seeded
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(a) A graphical representation of best 2,949
response sequence. These have been esti-
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Figure 6.16: A graphical representation of best response sequences. The best response
sequences have been sorted based on their total number of cooperations. Thus the top
rows of the plots are dominated by best response sequences that mainly defect and the
bottom rows by sequences that mainly cooperate.
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versions of these strategies were used to explore their different behaviours. From the

list of 192 opponents a total of 750 different behaviours were simulated.

For the 130 deterministic strategies a total of 2,949 sequences, from which 2,836 were

unique, were estimated. These sequences were not just a set of trivial sequences of

either C or D. A common trait in the best response sequences appeared to be a

series of defection closer to the final turns. For the seeded versions of the 62 stochastic

opponents the best response sequences are not guaranteed to have been captured due to

issues related to PRNGs and multi threading. Nevertheless, a total of 2,309 sequences

from which 2,130 are unique were collected. Similar, these sequences are more diverse

than just a series of a single action.

A total of 5,258 sequences were collected. These have been archived and are available

at [106]. The main purpose of this Chapter has been to generate the bespoke data set,

which contains a large number of unique and diverse sequences, so it can be used as

training data in Chapter 7.
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Chapter 7

Training long short-term memory

networks produces successful

Prisoner’s Dilemma strategies

The research reported in this Chapter has been carried out with:

Axelrod-Python library (APL) version: 4.2.0

Associated data sets: [108,109]

Associated codebase: [98]

This work was performed using the computational facilities of the Advanced Research

Computing @ Cardiff (ARCCA) Division, Cardiff University.

7.1 Introduction

In Chapter 4 it was mentioned that conceptualising and introducing new strategies

has been an important aspect of research to the field. The aim of this Chapter is

to introduce new IPD strategies based on an archetype that has not received much

attention in the literature.

In Chapter 4 it was concluded that one of the properties successful strategies in a IPD

competition need to have is cleverness/complexity. Complexity can confer to adapt-

ability, and adaptability is important in performing well in diverse sets of environments.
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This was established not only in Chapter 4 but also from the results of Chapter 5. The

set of complex strategies that ranked highly across distinct tournaments in Chapter 4

included strategies based on archetypes such as finite state automata, hidden Markov

models and artificial neural networks (ANNs).

ANNs have successfully been trained to play games other than the IPD such as draughts [60],

chess [84] and Go [263]. Feed forward networks were firstly used to represent IPD

strategies in 1996 [126]. Feed forward networks have been used in the literature ever

since [24, 27, 71, 85], and possibly the most successful ANN strategies in the game are

the ones introduced in [125]. The three ANN based strategies in [125] ranked 7th, 9th,

and 11th in a tournament of 223 strategies.

A type of ANNs that have not received much attention in the literature are the recurrent

neural networks (RNNs). RNNs are a type of neural networks that include a feedback

connection and are designed to work with inputs in the form of sequences. RNNs were

firstly considered as an archetype in 1996. In [253] a RNN which considered a single

previous step as an input was trained via a Q learning algorithm to play against a single

opponent. The opponent was either the strategy Tit For Tat or another Q learning

strategy. The results of [253] were promising, the RNN player learned to successfully

win against Tit For Tat, however it had learned to win only a single opponent.

its opponent play but only against a single strategy, which was Tit For Tat.

The limitations of [253] could potentially have been due to the limitations of the RNNs

themselves. As it will be discussed later in section 7.2, RNNs quickly became unable

to learn due to the vanishing gradient problem. To improve on the standard recur-

rent networks a new model called the long short-term memory network (LSTM) was

introduced in [137]. Remembering information for long periods of time is the default

behaviour of LSTMs, not something they struggle to learn.

LSTMs are a set of networks that have been proven to be successfully trained and today

are being used in a number of innovative applications such as time series analysis [188],

speech recognition [251] and prediction in medical care pathways [288]. However, they

have not received attention in the IPD literature. The aim of this Chapter is to train

and introduce a number of strategies based on LSTMs. The training has been possible

due to the collection of best response sequences generated in Chapter 6.

A total of 24 LSTMs based strategies are introduced in this Chapter, and their perfor-
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mance is evaluated and compared in a meta tournament analysis of 300 standard tour-

naments. The results demonstrate that LSTM networks can be trained to successfully

compete in IPD tournaments. The rest of the Chapter is structured as follows:

• section 7.2 presents an introduction to artificial, recurrent and long short-term

memory neural networks.

• section 7.3 covers the architectural details of the LSTMs considered in this Chap-

ter. The networks are trained to predict best response sequences. This is done not

only on the entire data set generated by the collection of best response sequences,

but also for three distinct subsets of the collection.

• section 7.4 evaluates and compares the performance of 24 LSTMs strategies in

300 standard IPD computer tournaments.

7.2 Artificial, recurrent and long short-term memory neu-

ral networks

ANNs are computing systems vaguely inspired by the biological neural networks that

constitute brains. As stated in [146] the research on ANNs has experienced three

periods of extensive activity. The first peak was in the 1940s. The work of [197]

opened the subject by creating a computational model for neural networks. The second

peak occurred in 1960s with the introduction of the perceptron [247]. The perceptron

is a linear binary classifier and in the 1960s it was shown that it could be used to

learn to classify simple shapes with 20 × 20 pixels input. However, it was impossible

for the perceptron to be extended to classification tasks with many categories. The

limitations of the model were presented in [206] which halted the enthusiasm of most

researchers in ANNs, resulting in no activity in the field for almost 20 years. The

third peak occurred in the early 1980s with the introduction of the back propagation

algorithm for multilayered networks [291]. Though the algorithm was initially proposed

by [291] it has been reinvented several times and it was popularised by [196]. Following

the introduction of the algorithm and the ability to now train more complex models,

ANNs have received considerable interest and are being used today in a number of

applications, good review articles include [12,182,208,260].

ANNs based on the connection pattern can be grouped into two categories:

• Feed forward networks.
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• Recurrent or feedback networks.

ANNs can be viewed as weighted directed graphs in which artificial neurons are nodes

and directed edges, with weights, are connections between the neuron outputs and the

neuron inputs [146]. This is demonstrated by Figure 7.1. In feed forward networks the

graphs have no loops, whereas in recurrent networks loops occur because of feedback

connections.

hidden layerinput layer output layer

Figure 7.1: A generic representation of an ANN.

A graphical representation of a feed forward network with a single hidden layer is given

by Figure 7.2.

Neural

Network
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h = φ(Wx)

x

ŷ

Figure 7.2: Graphical representation of a feed forward network.

A feed forward network is composed by an input layer, hidden layers, and an output

layer [146,171]. The input is a vector x. The dimensionality, or number of nodes of the

input layer is dependent on the dimensionality of x. Each element of the input vector

is connected to the hidden layer via a set of learned weights. The hidden layer also
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consists of nodes. The number of nodes of the hidden layer is an architectural decision.

The jth hidden node outputs,

hj = φ(
∑
i

wijxi),where φ is an activation function.

Frequently used activation functions [157,171] include:

• The sigmoid function σ(x) which squashes numbers into the range [0, 1].

• The hyperbolic tangent, tanh(x) which squashes numbers into the range [−1, 1].

• The rectified linear unit, ReLU(x) = max(0, x).

The hidden layer in turn is fully connected to an output layer, where the jth output

node outputs,

yj =
∑
i

vijhi.

Feed forward networks make predictions using forward propagation which in matrix

notation is described by,

h = φ(Wx) (7.1)

ŷ = softmax(V h) (7.2)

where W is a weight matrix connecting the input and hidden layers, V is a weight

matrix connecting the hidden and output layers and the output layer transforms the

raw scores to a probability via a softmax function.

The softmax function, referred to also as softargmax [117] or normalised exponential

function [52], is a function that normalises a vector of M real numbers to a probability

distribution consisting of M probabilities proportional to the exponentials of the input

numbers. The normalisation ensures that the sum of the components of the output
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vector is 1. The softmax function, denoted as s(xi), is defined by Equation (7.3).

s(xi) =
exi

M∑
m=1

exm
for i ∈ 1, . . . ,M. (7.3)

W and V are the learning parameters of the network. Their dimensionality depends

on the dimensionality of network’s layers. For example if x and ŷ were 2 dimensional

and the hidden layer had 500 nodes then W ∈ R2×500 and V ∈ R500×2. Increas-

ing the dimensionality of the hidden layer corresponds to larger number of learning

parameters.

To train an ANN a set of values for the learning parameters need to be found so that

the error on the training data is minimised [122]. The function that measures error is

called the loss function. An example of a loss functions is the cross entropy, denoted

as L(y, ŷ) where ŷ is the prediction and y the true output. For M training examples

and K classes the cross entropy error is given by Equation (7.4).

L(y, ŷ) = − 1

M

∑
m∈M

∑
k∈K

ym,klog(ŷm,k) (7.4)

The minimum of the loss function is calculated using the gradient descent algorithm

[249]. The gradient descent algorithm relies on the gradients which are the vector of

derivatives of the loss function with respect to the learning parameters. Thus ∂L
∂W and

∂L
∂V . These gradients are calculated with the back propagation algorithm [296] which

is a way of efficiently calculating the gradients starting from the output.

According to [249] there are variants of the gradient descent which differ in how much

data is used to compute the gradient of the objective function. Using the gradient

descent algorithm, the weights are updated incrementally after each pass over the

training data set. In contrast, the stochastic gradient descent performs a parameter

update for each training example. This work uses a variant of the stochastic gradient

descent called the Adaptive Moment Estimation (Adam) algorithm [162].

An extension of feed forward networks are recurrent networks. RNNs are capable of

processing variable length sequences of inputs. Sequences are data samples over a

number of time steps. RNNs can receive sequence inputs and output sequences of the

same length, using their internal state/knowledge to make a prediction on the input at
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time t based on the decisions made at the previous time steps.

A graphical representation of a RNN is given by Figure 7.3. The loop represents that

information can be passed down from one step of the network to the next. RNNs

can be thought of as multiple copies of the same network each passing a message to a

successor, which is also demonstrated by Figure 7.3.

Recurrent

Neural Network

xt

ŷt

= h1 = φ(Wx1)

x1

ŷ1

h2 =

= Wx2 + Uh1

x2

ŷ2

. . . ht =

= Wxt + Uht−1

xt

ŷt

h1 h2 ht

Figure 7.3: Graphical representation of a RNN.

In RNNs information is passed down by using,

ht = φ(Wxt + Uht−1)

where ht−1 is the hidden state computed at time t−1 multiplied by some weight vector

U . In matrix notation RNNs are described by,

ht = φ(Wxt + Uht−1) (7.5)

ŷt = softmax(V ht). (7.6)

Unfortunately in practice RNNs quickly become unable to learn to connect the infor-

mation. The longer the sequences, the higher the chance that the back propagation

gradients either accumulate and explode or vanish down to zero. The fundamental

difficulties of RNNs were explored in depth by [48]. As stated in [137], although RNNs

are theoretically fascinating there was no clear practical advantage over feed forward

networks.

A network specifically designed to avoid the long-term dependency problem was intro-

duced by [137], called the long short-term memory network. The core idea to LSTMs

is the cell state also referred to as the long term memory, denoted as Ct. The cell
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state is a vector designed to pass down information with only a few carefully regulated

changes being applied to it by structures called gates. Gates are composed of a sigmoid

neural net layer and a point wise multiplication operator. In order to explain the cell

gate and subsequently how LSTMs make predictions consider a LSTM’s hidden layer

at time step t given by Figure 7.4.

σ

Ct−1 Ctx

ft

σ tanh

x x

tanh

+

it

Ct

σ

xt

ht−1

ot

ht

ht

Figure 7.4: An LSTM hidden layer at time step t.

The cell state and hidden state from the previous time step are fed back into the

network. Initially, the network decides what information from the previous cell state is

to be discarded. This decision is made by the forget state. The forget state considers

the hidden state at time t− 1 and the input at time t,

ft = σ(Wfxt + Ufht−1). (7.7)

The forget gate outputs a number between 0 and 1 or each number in the cell state

Ct−1. A 1 represents “keep this” while a 0 represents “forget this”.

Secondly, the network decides what information is going to be stored at the cell gate.

There are two parts to this. Firstly, the input gate decides which values are going to

be updated,

it = σ(Wixt + Uiht−1). (7.8)

and secondly, a tanh layer creates a vector of candidate values denoted as C̃t that could
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be added to the cell state. C̃t is given by Equation (7.9).

C̃t = tanh(Wcxt + Ucht−1). (7.9)

The cell state Ct−1 is multiplied by ft, forgetting the values which have been decided

to be discarded. The new candidate values are scaled by how much information has

been decided to keep from the input. Thus,

Ct = ftCt−1 + itC̃t. (7.10)

The LSTM outputs a hidden state at each time step which is based on the current cell

state. Initially, the cell state goes through a tanh function and then it is multiplied by

a sigmoid gate that decides which parts to output from the cell state,

ot = σ(Woxt + Uoht−1), (7.11)

ht = ottanh(Ct). (7.12)

This process is being carried out for each time step of the input sequence. At each

time step both the cell state and hidden state are fed back into the network. The

hidden state can also be used to make a prediction at each time step as demonstrated

by Figure 7.5.

LSTM

xt

ŷt

=

x1

ŷ1

x2

ŷ2

. . .

xt

ŷt

C1

h1

C2

h2

Ct

ht

Figure 7.5: Graphical representation of an LSTM network.
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LSTMs unique architecture allows them to learn longer-term dependencies and to be

trained using the back propagation algorithm. Hence, they are an exceptional model for

sequential data and this is why they were chosen here. As it was described in Chapter 6,

the actions of IPD strategies can be defined as sequences, and therefore a collection

of best response sequences was generated using a heuristic method. In section 7.3 a

variety of LSTM networks are trained to predict these best response sequences.

7.3 Training LSTM networks to predict best response se-

quences

LSTM are trained in a supervised fashion on a set of training sequences. The purpose

of training a network in this Chapter is so it can learn to play successfully against IPD

strategies. For that reason the networks are going to be trained on the collection of

best response sequences generated in Chapter 6.

The training inputs are the actions of a given strategy for N turns. The expected

outputs are the responses to those N actions by the opponent’s best response sequence.

Each best response sequence, from Chapter’s 6 collection, corresponds to 204 expected

outputs. This is done so that each sample captures a match between a strategy and

its best response for N turns in a match where N ∈ {1, 204}.

Consider the actions of the strategy Adaptive and its best response, as presented in

section 6.4.2, given by Table 7.1.

1 2 3 4 5 6 7 8 9 10 11 12 . . . 204 205

Adaptive 1 1 1 1 1 1 1 0 0 0 0 1 . . . 1 1

S∗ 1 1 0 0 0 0 0 0 0 0 0 0 . . . 0 0

Table 7.1: The actions of the strategy Adaptive against one of the best response
sequences to the strategy. Note that 0→ D and 1→ C.

Initially the highest dimensionality a training sample based on Table 7.1 can have

is 204. This is because the expected output to Adaptive’s action in turn 1 is the

action of the best response sequence at turn 2. Moreover, the expected output to the

Adaptive’s 204th action is the best response’s 205th action. This is demonstrated by

Figure 7.6.
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input: x1 x2 x3 x4 x204

1 1 1 1 . . . 1 1

output: y1 y2 y3 y4 y204

1 1 0 0 0 . . . 0

Figure 7.6: An example of a networks input and output of t = 204. The last action of
Adaptive as well as the first action of the best response sequence are discarded.

Secondly, in order to train the networks on different input lengths the training sample

of Figure 7.6 is transformed to 204 samples. This is done by considering all the possible

IPD matches between the pair where the number of turns N ∈ [1, 204]. For example

Table 7.1 corresponds to the training samples given by Equation (7.13).

x =

[
1

]
→ y =

[
1

]

x =

[
1 1

]
→ y =

[
1 1

]

x =

[
1 1 1

]
→ y =

[
1 1 0

]

x =

[
1 1 1 1

]
→ y =

[
1 1 0 0

]
(7.13)

x =

[
1 1 1 1 1

]
→ y =

[
1 1 0 0 0

]

x =

[
1 1 1 1 1 1

]
→ y =

[
1 1 0 0 0 0

]

x =

[
1 1 1 1 1 1 0

]
→ y =

[
1 1 0 0 0 0 0

]
...

...

Subsequently, the training data set retrieved from the collection of best responses has

a total of 5, 258× 204 = 1, 122, 612 training samples.

Two types of LSTMs have been trained in this Chapter. These are referred to as:

• The sequence to sequence (StoS) network.
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• The sequence to probability (StoP) network.

Both networks take as input a sequence of actions. The StoS network outputs a re-

sponse to each time step of the input sequence, thus attempting to recover the entire

best response sequence. The StoP network only outputs a response to the sequence

at the last time step, thus only attempting to figure out what comes next. Both net-

works indicate the predicted action with a probability of cooperating. A graphical

representation of the two networks are given by Figures 7.7 and 7.8.

1 1 1 1

. . .

1

Figure 7.7: A graphical representation of the StoS LSTM network.

1 1 1 1

. . .

1

Figure 7.8: A graphical representation of the StoP LSTM network.

The StoS network is trained on samples in the form of Equation (7.13), whereas the

StoP network is trained on sample in the form of Equation (7.14).



CHAPTER 7. TRAINING LONG SHORT-TERM MEMORY NETWORKS
PRODUCES SUCCESSFUL PRISONER’S DILEMMA STRATEGIES 153

x =

[
1

]
→ y =

[
1

]

x =

[
1 1

]
→ y =

[
1

]

x =

[
1 1 1

]
→ y =

[
0

]

x =

[
1 1 1 1

]
→ y =

[
0

]
(7.14)

x =

[
1 1 1 1 1

]
→ y =

[
0

]

x =

[
1 1 1 1 1 1

]
→ y =

[
0

]

x =

[
1 1 1 1 1 1 0

]
→ y =

[
0

]
...

...

7.3.1 Building the networks with Keras

There are many open source libraries that allow the creation of neural nets in Python

without having to explicitly write the code from scratch. As stated in [286] the three

most popular are TensorFlow [9], Keras [64], and PyTorch [231]. Keras is a high level

neural net Python library that runs on top of TensorFlow. Though Keras’ performance

is comparatively slower than TensorFlow and PyTorch, Keras has a simple architecture

and it is more readable and concise. Keras has been used in several academic works

such as [43,200,269], and is also used here to construct and train the networks.

The Python code for implementing the StoS model is given by Figure 7.9. In line 12

the model is defined to be of the Sequential class. This means that the model will be

constructed layer by layer. The StoS network has a single LSTM layer with 100 nodes.

The input to the LSTM network is not of a fixed length and there is a single time

step between the elements of each input sequence. This is defined by the argument

input_shape=(None, 1). The LSTM layer outputs a hidden state at each time step.

Initially, the hidden states go through a dropout layer. The dropout layer is a simple

and yet efficient method to reduce overfitting by randomly dropping out nodes of the

hidden states [40]. Finally, the hidden states are transformed into probabilities via a
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sigmoid layer. There are a total of 41,301 learning parameters to the StoS model.

1 >>> from keras.models import Sequential

2

3 >>> from keras.layers import (

4 ... Dense,

5 ... Dropout,

6 ... CuDNNLSTM,

7 ... )

8

9 >>> num_hidden_cells = 100

10 >>> drop_out_rate = 0.2

11

12 >>> model = Sequential()

13

14 >>> model.add(

15 ... CuDNNLSTM(

16 ... num_hidden_cells, return_sequences=True, input_shape=(None, 1))

17 ... )

18

19 >>> model.add(Dropout(rate=drop_out_rate))

20

21 >>> model.add(Dense(1, activation="sigmoid"))

22 >>> model.summary()

23 Model: "sequential_1"

24 _________________________________________________________________

25 Layer (type) Output Shape Param #

26 =================================================================

27 cu_dnnlstm_1 (CuDNNLSTM) (None, None, 100) 41200

28 _________________________________________________________________

29 dropout_1 (Dropout) (None, None, 100) 0

30 _________________________________________________________________

31 dense_1 (Dense) (None, None, 1) 101

32 =================================================================

33 Total params: 41,301

34 Trainable params: 41,301

35 Non-trainable params: 0

36 _________________________________________________________________

Figure 7.9: Python code for implementing the StoS LSTM with Keras.

Regarding the dimensionality of the hidden layer there is no direct answer as to what

is the optimal number of nodes. Several methods for determining the dimensionality

include experimentation, intuition and building on the work of others. A common

practice is that the dimensionality of the hidden layer is smaller than the dimensionality

of the input layer. The dimensionality of the input layer changes from 1 to 204, and

thus a number of 100 nodes was chosen so that the dimensionality of the hidden layer

is smaller 50% of the times.

The Python code for implementing the StoP network with Keras is given by Figure 7.10.

The implementations of the networks are similar, however, the StoP model contains 2



CHAPTER 7. TRAINING LONG SHORT-TERM MEMORY NETWORKS
PRODUCES SUCCESSFUL PRISONER’S DILEMMA STRATEGIES 155

LSTM layers. The first LSTM layer outputs the hidden states at each time step. In

turn these are connected to the second layer which only outputs the hidden state at

the final time step. The StoP network has a higher number of learning parameters due

to the two LSTM layers. More specifically, there are 122,101 learning parameters to

the network.

1 >>> from keras.models import Sequential

2 >>> from keras.layers import (

3 ... Dense,

4 ... Dropout,

5 ... CuDNNLSTM,

6 ... )

7

8 >>> num_hidden_cells = 100

9 >>> drop_out_rate = 0.2

10

11 >>> model = Sequential()

12

13 >>> model.add(

14 ... CuDNNLSTM(num_hidden_cells, return_sequences=True, input_shape=(None, 1))

15 ... )

16

17 >>> model.add(CuDNNLSTM(num_hidden_cells))

18 >>> model.add(Dropout(rate=drop_out_rate))

19

20 >>> model.add((Dense(1, activation="sigmoid")))

21 >>> model.summary()

22 Model: "sequential_2"

23 _________________________________________________________________

24 Layer (type) Output Shape Param #

25 =================================================================

26 cu_dnnlstm_2 (CuDNNLSTM) (None, None, 100) 41200

27 _________________________________________________________________

28 cu_dnnlstm_3 (CuDNNLSTM) (None, 100) 80800

29 _________________________________________________________________

30 dropout_2 (Dropout) (None, 100) 0

31 _________________________________________________________________

32 dense_2 (Dense) (None, 1) 101

33 =================================================================

34 Total params: 122,101

35 Trainable params: 122,101

36 Non-trainable params: 0

37 _________________________________________________________________

Figure 7.10: Python code for implementing the StoP LSTM with Keras.

Keras includes two implementations for an LSTM layer. The class LSTM and the class

CuDNNLSTM which is the class used here. CuDNNLSTM provides a faster implementa-

tion of LSTM with the NVIDIA CUDA Deep Neural Network library. The use of the

CuDNNLSTM class means that the networks can be trained on a graphics processing unit

(GPU).
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7.3.2 High performance training

Conventionally the execution of computer code happens on the central processing unit

(CPU). The CPU, also called main processor, is essentially the brain of any computing

device [50]. Architecturally the CPU is composed of just a few cores designed to support

an extremely broad variety of tasks.

A graphical processing unit (GPU), on the other hand, is composed of hundred of

cores designed to process a set of simpler and more identical computations in parallel.

GPUs were initially designed as dedicated graphical rendering workhorses for computer

games. However as stated in [58], graphics processors transitioned from their initial

role to general purpose engines for high throughput floating-point computation.

A CPU core is more powerful than a GPU core. A CPU core is designed to carry

out a variety of tasks one of which include computations, whereas GPUs are designed

exclusively for data computations. The vast majority of a CPUs power goes unused

by machine learning applications. Machine learning applications which perform large

numbers of computations on a vast amount of data can see huge performance improve-

ments when running on a GPU versus a CPU.

There are several manufacturers of GPUs. These include NVIDIA, AMD, Asus and

Intel. NVIDIA created a parallel computing architecture and platform for its GPUs

called CUDA [127]. CUDA programming model gave developers access and the ability

to express simple processing operations in parallel through code. The vast majority

of deep learning projects work exclusively with NVIDIA GPUs because of the better

software support NVIDIA provides. In 2005, [270] presented the usage of GPUs in

training a generic 2 layer fully connected neural network. The first important work was

later in 2008 [238]. However, the usage of GPUs in machine learning was popularised

in 2012 by [170].

Due to the time advantage, the training process of the networks was carried out on a

GPU. The training was performed using the computational facilities of the ARCCA

division, Cardiff University.

7.3.3 Training data sets

Section 7.3 covered the training data set used to train the LSTM networks. There are

a total of 1,122,612 training inputs and expected outputs in the data set. In order to

understand the effect of the training samples on the LSTM strategies’ performance the
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networks are trained on the entire data set and on three unique subsets.

The subsets are based on three collection of opponents. These are a collection of

best performing strategies, 15 representative strategies with. equally distributed ranks

across a standard tournament and a collection of basic strategies. The details of the

subsets are given by Table 7.2. A list of the strategies’ names used in each subset is

given in the Appendix B.3.

Data set # of opponents Explanation
# of best response

sequences

all strategies 192 The data set as presented in section 7.3. 5,258

top performing strategies 18 A data set constructed in the same way as the training data
set but only with the best response sequences to 18 strategies.
These are the top performing strategies in a standard tourna-
ment of 218 opponents.

714

representative strategies 15 A data set generated only with the best response sequences
to 15 strategies whose ranks are across the 218 ranks of the
standard tournament. They are referred to as representative
strategies because they represent behaviours of all types of per-
formance (successful and not).

212

basic strategies 11 A data set generated with the best response sequences to 11
strategies which are classified as a set of basic strategies in the
APL.

84

Table 7.2: Training data sets used to train the LSTM networks. The IPD standard
tournament with the 218 opponent has been carried out using APL version 3.10.0. The
results are available at [107].

The training data sets have been archived and are available at [109].

7.3.4 Training and validation

The two different LSTM networks, StoS and StoP, are trained on four different training

sets. Thus, a total of 4×2 = 8 LSTM networks have been trained in this Chapter.

The networks were trained using the back propagation algorithm and the Adam al-

gorithm presented in section 7.2. Due to the different size of the training data the

networks have been trained for a different number of epochs. The number of epochs is

the number of times the training algorithm has work through an entire training data

set. The number of epochs for each of the 8 network is given by Table 7.3.

all strategies top strategies representative strategies basic strategies

sequence to sequence 19999 83999 39999 129999

sequence to probability 7999 74999 39999 84999

Table 7.3: Number of epochs for each of the LSTM networks.

The StoP networks have a larger number of learning parameters. Subsequently, their
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training corresponds to more computer time. It can been seen from Table 7.3 that the

StoP networks have been trained for less epochs compared to the StoS networks.

At each training process the training data set is split into 80% training samples and 20%

test samples. At each epoch the loss function is calculated for both the training and

test samples. The loss function used to train the networks is the binary cross entropy.

In essence, the task of predicting IPD actions is a binary classification problem as there

can only be two classes: cooperation or defection.

As discussed in section 7.2, the loss function is used to optimise the learning algorithm.

The networks that will be used as IPD strategies in the next section are the networks

that achieved the lowest loss value over the epochs. The weights of the best performing

networks have been archived and are available at [108].

Another measure which is being reported at each epoch is the accuracy. The accuracy

is calculated after the learning parameters have been determined and it is in the form

of a percentage. Accuracy is a measure of how accurate the predictions are based

on the expected output. Both the measures over the number of epochs are given by

Figures 7.11 and 7.12.

In Figure 7.11 the loss and accuracy are given for the StoS networks. Overall the StoS

networks, regarding the training data set, have maintained a high value of accuracy over

the epochs. Whilst training on the basic strategies there was a minor decrease, however,

the accuracy still remained over 0.85 (85%). The loss function values have also remained

low over the epochs, for all the networks, with only a few spikes occurring.

For the StoP networks there appears to be more variation in the test loss and ac-

curacy, Figure 7.12. This is more evident for the networks that were trained on the

top strategies and the representative strategies. This could indicate that the networks

are overfitting. The StoP network trained on the entire training data set has man-

aged to maintained a low loss value (at 0.5) and a training accuracy of 0.75. The

most successfully trained StoP network appears to be the network trained on the basic

strategies.

This section has presented the 8 trained LSTM networks of this thesis. These networks

are based on two different architectures and have been trained on four different training

data sets. The networks’ validation based on the training data sets was presented in

this section. In the next section the networks are evaluated as IPD strategies.



CHAPTER 7. TRAINING LONG SHORT-TERM MEMORY NETWORKS
PRODUCES SUCCESSFUL PRISONER’S DILEMMA STRATEGIES 159

0
50

00
10

00
0

15
00

0
20

00
0

0.4

0.5

0.6

0.7

0.8

accuracy
test accuracy

0
50

00
10

00
0

15
00

0
20

00
0

0.5

1.0

1.5

2.0

2.5

3.0 loss
test loss

All strategies

0
20

00
0

40
00

0
60

00
0

80
00

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

accuracy
test accuracy

0
20

00
0

40
00

0
60

00
0

80
00

0
0

2

4

6

8

10

12 loss
test loss

Top strategies

0
10

00
0

20
00

0
30

00
0

40
00

0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

accuracy
test accuracy

0
10

00
0

20
00

0
30

00
0

40
00

0
0

2

4

6

8

10
loss
test loss

Representative strategies

0
25

00
0

50
00

0
75

00
0

10
00

00

12
50

00
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

accuracy
test accuracy

0
25

00
0

50
00

0
75

00
0

10
00

00

12
50

00
0

1

2

3

4 loss
test loss

Basic strategies

Figure 7.11: Loss function and accuracy of the networks based on the StoS network,
over the number of epochs.
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Figure 7.12: Loss function and accuracy of the networks based on the StoP network,
over the number of epochs.
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7.4 Validation of LSTM based strategies using a meta

tournament analysis

This section evaluates the trained LSTM networks as IPD strategies. A strategy class

called the LSTMPlayer was implemented in order for the networks, which are Keras

models, to interact in an IPD match simulated with APL. The source code for the

LSTMPlayer is given by Figure 7.13.

1 import numpy as np

2

3 import axelrod as axl

4 from axelrod.random_ import random_choice

5 from keras.layers import LSTM, Dense, Dropout

6 from keras.models import Sequential

7

8 C, D = axl.Action.C, axl.Action.D

9

10 class LSTMPlayer(axl.Player):

11 name = "The LSTM player"

12 classifier = {

13 "memory_depth": float("inf"),

14 "stochastic": True,

15 "inspects_source": False,

16 "manipulates_source": False,

17 "manipulates_state": False,

18 }

19

20 def __init__(self, model, reshape_history_funct, opening_probability=0.78):

21 self.model = model

22 self.opening_probability = opening_probability

23 self.reshape_history_function = reshape_history_funct

24 super().__init__()

25 if opening_probability in [0, 1]:

26 self.classifier["stochastic"] = False

27

28 def strategy(self, opponent):

29 if len(self.history) == 0:

30 return random_choice(self.opening_probability)

31

32 history = [action.value for action in opponent.history]

33 prediction = float(

34 self.model.predict(self.reshape_history_function(history))[0][-1]

35 )

36

37 return axl.Action(round(prediction))

38

39 def __repr__(self):

40 return self.name

Figure 7.13: Implementation of the LSTMPlayer class.

The class has three input arguments:
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• A Keras model. The input models are the 8 trained LSTM networks presented

in section 7.3.

• A reshape history function. A function that reshapes the opponent’s history to

the appropriate LSTM input.

• The probability that the strategy opens with cooperation on the first turn denoted

as po. The LSTM networks can be used to predict the strategy’s next action

following the opponent’s opening turn. Thus, the strategy’s opening action must

be manually defined.

Following the opening turn the LSTM strategy makes a prediction based on the oppo-

nent’s history. The strategy has an infinite memory because it needs to remember all

the actions made by the opponent. The prediction of the networks correspond to the

probability of cooperating. The LSTM strategy makes a deterministic decision based

on the predicted probability. It cooperates if the prediction on the last time step is

greater than 0.5, otherwise it defects. In section 7.4.2 the performance of a strategy

that plays stochastically will be briefly discussed.

The 8 trained LSTM networks are used to introduce 24 new IPD strategies. Each

network corresponds to three distinct players with a different opening move. More

specifically, three different values of po are used here. These are po = 0, po = 1 and

po = 0.78. The probability 0.78 is the probability that the best response sequences of

Chapter 6 opens with a cooperation. Thus, a total of 8 × 3 = 24 IPD strategies are

evaluated in this section.

The performance of the LSTM strategies are evaluated and compared in 300 standard

tournaments similarly to Chapter 4. The process of collecting the tournaments results

for each strategy is given by Algorithm 7.1.

For each trial a random size s ∈ [5, 10] is selected, and from the 192 strategies of

Appendix B.2, a random list of s strategies is chosen. The LSTM player is then added

to the list of players, increasing the size to s + 1. For the given list of strategies a

standard tournament of 200 turns is performed and repeated 50 times. The number of

turns is fixed at 200. In Chapter 6 the sequences were fixed to 205 turns which resulted

in many best response sequences to defect on the last turn as the match was coming

to an end. To avoid a series of unconditional defections by the LSTM strategies their

performance is evaluated in 200 turns, which is a common number of turns used in the
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Algorithm 7.1: Standard tournament result summary collection algorithm

foreach seed ∈ [0, 300] do

s← randomly select integer ∈ [smin, smax];

players← randomly select s players;

players← players + LSTM strategy;

s← s+ 1;

k ← 50;

n← 200;

result standard ← Axelrod.tournament(players, n, k);

return result standard ;

IPD literature [33,34,125,165].

A total of 300 trials of Algorithm 7.1 have been run. For each trial a result summary

(in the format of Table 4.2) is exported. Similarly to Chapter 4, the performance

of the strategies is evaluated on the normalised rank r, and more specifically on the

median normalised rank r̄. As a reminder r is calculated as a strategy’s rank divided

by s− 1.

The r̄ of each of the 24 strategies over the 300 standard tournaments is given by

Table 7.4.

sequence to sequence sequence to probability

po = 0 po = 1 po = 0.78 po = 0 po = 1 po = 0.78

All strategies 0.667 0.222 0.333 0.778 0.333 0.500

Top strategies 0.714 0.444 0.500 0.500 0.429 0.429

Representative strategies 0.750 0.667 0.683 0.500 0.250 0.300

Basic strategies 0.800 0.600 0.625 0.800 0.300 0.429

Table 7.4: The median normalised ranks of the 24 LSTM strategies over the standard
tournaments. A r̄ closer to 0 indicates a more successful performance.

The strategy with the lowest r̄ over the 300 tournaments is the LSTM strategy based

on the StoS network trained over the entire training set with po = 1. The strategy

achieved a r̄ of 0.222. The second most successful performance is by the StoP based

strategy trained against the representative strategies with po = 1. In section 7.3 it was

indicated that the specific network was overfitting, however, as an IPD strategy the

network outperforms any other StoP strategies.
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A few strategies have achieved a r̄ close to 0.3. These include the StoS strategy trained

on the entire data set with po = 0.78, and the StoP strategies trained against all

strategies, the representative strategies, and against the basic strategies with po = 1,

po = 0.78 and po = 1 equivalently.

The LSTM strategies that open with cooperation outperform any other strategy based

on the same LSTM networks. Overall, the best performing strategies open with coop-

eration. The strategies that open with a probabilistic cooperation perform better than

the strategies that open with defection. Interestingly, from Table 7.4 it is indicated

that the strategies trained on the subsets perform better when they are based on the

StoP model. There is no intuition as to why that is. The StoP networks have more

learning parameters and yet they perform better when trained on the smaller training

sets than the StoS network. The StoP network, trained against the entire data set, has

trained for the smallest number of epochs. A topic of future work would be to train

the specific network for more epochs.

Figure 7.14 gives the r distributions for the strategies based on the StoS network. All

the distributions for po = 0 have a median higher than 0.66, indicating that those

strategies on average perform in the bottom half of a tournament. The most success-

ful strategy is the strategy trained against all strategies with po = 1. The strategy’s

distribution shows that the strategy ranked highly in most of the tournament it partic-

ipated with only a few exceptions. Even if when po is lowered to 0.78 the strategy still

performs adequately. The rest of the distributions appear to have peaks either at 0.5

or closer to 1. A statistical summary of the distributions are given by Table 7.5.

count mean std min 10% 25% 50% 75% 95% max skew kurt

All strategies po = 0 300.0 0.620 0.278 0.0 0.200 0.429 0.667 0.839 1.000 1.0 -0.523 -0.587

po = 1 300.0 0.295 0.252 0.0 0.000 0.111 0.222 0.458 0.779 1.0 0.702 -0.251

po = 0.78 300.0 0.368 0.265 0.0 0.000 0.143 0.333 0.560 0.833 1.0 0.433 -0.647

Top strategies po = 0 300.0 0.655 0.273 0.0 0.250 0.500 0.714 0.875 1.000 1.0 -0.629 -0.436

po = 1 300.0 0.461 0.274 0.0 0.090 0.222 0.444 0.667 0.875 1.0 -0.029 -0.940

po = 0.78 300.0 0.509 0.255 0.0 0.167 0.333 0.500 0.704 0.876 1.0 -0.158 -0.710

Representative strategies po = 0 300.0 0.643 0.306 0.0 0.141 0.486 0.750 0.875 1.000 1.0 -0.768 -0.523

po = 1 300.0 0.636 0.262 0.0 0.250 0.500 0.667 0.833 1.000 1.0 -0.680 -0.198

po = 0.78 300.0 0.645 0.255 0.0 0.250 0.500 0.683 0.833 1.000 1.0 -0.754 -0.034

Basic strategies po = 0 300.0 0.728 0.263 0.0 0.333 0.600 0.800 1.000 1.000 1.0 -0.949 0.229

po = 1 300.0 0.556 0.283 0.0 0.143 0.375 0.600 0.778 1.000 1.0 -0.365 -0.803

po = 0.78 300.0 0.579 0.280 0.0 0.167 0.375 0.625 0.800 1.000 1.0 -0.435 -0.772

Table 7.5: Statistics summary of the r distributions for the strategies based on the
StoS network.
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Figure 7.14: Normalised rank distributions for the strategies which are based on the
StoS LSTM.
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Figure 7.15 gives the r distributions for the strategies based on the StoP network. For

po = 0 the performance of the strategies remains poorly. The strategies that have been

trained against all strategies, representative and basic strategies with po = 1 appear to

have won several of the tournaments they participated in. The statistics summary of

the distributions is given by Table 7.6.
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Figure 7.15: Normalised rank distributions for the strategies which are based on the
StoP LSTM.
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count mean std min 10% 25% 50% 75% 95% max skew kurt

All strategies po = 0 300.0 0.720 0.254 0.0 0.333 0.571 0.778 0.900 1.000 1.0 -0.860 0.056

po = 1 300.0 0.339 0.244 0.0 0.000 0.125 0.333 0.500 0.800 1.0 0.458 -0.280

po = 0.78 300.0 0.471 0.255 0.0 0.125 0.286 0.500 0.625 0.875 1.0 -0.064 -0.696

Top strategies po = 0 300.0 0.491 0.305 0.0 0.000 0.200 0.500 0.714 1.000 1.0 -0.131 -1.140

po = 1 300.0 0.417 0.283 0.0 0.000 0.167 0.429 0.600 0.875 1.0 0.157 -0.974

po = 0.78 300.0 0.432 0.277 0.0 0.000 0.200 0.429 0.625 0.876 1.0 0.109 -0.891

Representative strategies po = 0 300.0 0.487 0.287 0.0 0.000 0.286 0.500 0.700 1.000 1.0 -0.037 -0.899

po = 1 300.0 0.308 0.267 0.0 0.000 0.111 0.250 0.500 0.800 1.0 0.586 -0.695

po = 0.78 300.0 0.335 0.272 0.0 0.000 0.125 0.300 0.556 0.800 1.0 0.465 -0.867

Basic strategies po = 0 290.0 0.738 0.239 0.0 0.400 0.600 0.800 0.975 1.000 1.0 -0.881 0.315

po = 1 290.0 0.323 0.249 0.0 0.000 0.125 0.300 0.500 0.778 1.0 0.491 -0.535

po = 0.78 290.0 0.432 0.269 0.0 0.000 0.200 0.429 0.625 0.875 1.0 0.096 -0.916

Table 7.6: Statistics summary of the r distributions for the strategies based on the
StoP network.

An interesting question that arises is: what is the probability that a LSTM strategy

ranks in the top half of a standard tournament?

This is answered by calculating the cumulative distribution function (CFD) of r. CFD

is the cumulative probability for a given value. It can be used to determine the proba-

bility that a random observation taken from the population will be less than or equal to

a certain value. The CFD distributions are shown by Figures 7.16-7.17. They demon-

strate that the strategies with a r̄ less than 0.333 have a 0.70-0.80 probability of being

on the top ranks on a standard IPD tournament.
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Figure 7.16: The cumulative distribution function (CFD) for the r distributions for the
LSTM strategies based on the StoS network.
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Figure 7.17: The cumulative distribution function (CFD) for the r distributions for the
LSTM strategies based on the StoP network.

This section has evaluated the performance of 24 newly introduced IPD strategies based

on LSTM networks. The performance of the strategies was evaluated based on their

normalised ranks in 300 standard computer tournaments.

A total of 6 strategies have achieved a r̄ lower than 0.35. Thus, these strategies have on

average ranked on the top 30% of a standard tournament. Furthermore, these strategies

have a 0.70-0.80 probability of ranking in the top half of a standard tournament. Overall

the most successful strategies of the analysis have been strategies that open with a

cooperation.

The LSTM strategies that have been trained against the top ranked strategies per-

formed poorly. The top ranked strategies consisted of many trained strategies from [125].

In [125] it was shown that these strategies managed to exploit weak opponents whilst

achieving mutual cooperation with strong opponents. The best response sequences of

these strategies could have potentially only captured a single behaviour of these strate-

gies, thus not providing enough diverse training samples. This could have in turn made

the LSTM strategies less adaptable to diverse environments.

On the whole, the analysis of this section has shown that the LSTM strategies which

were trained on the entire data set of best responses were successful strategies regardless

of the LSTM architecture. Both the StoS and StoP networks have produced strategies
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that can win IPD tournaments, and on average rank on the top 30% of any given

standard tournament. Moreover, the LSTM strategies trained on subsets of the training

data set, perform better when trained with the StoP network than the StoS network.

The StoP networks for the subsets have been trained for a longer number of epochs

compared to the StoP network over the entire data set. An interesting question is

whether the StoP strategy, trained on the entire data set, would perform even better

than its equivalent StoS strategy if it was trained for longer.

Having successfully trained high performing strategies using LSTM networks, the next

section will attempt to qualify their behaviour.

7.4.1 Fingerprinting the LSTM based strategies

The 24 strategies that have been introduced in this Chapter are based on an LSTM

archetype. These strategies are based on a complex structure and interpreting their

behaviour is not trivial. The difference between the strategies is not straightforward

either. In Chapter 2 a method that produces a functional signature of a strategy called

fingerprinting was presented. More specifically, two types of fingerprints were discussed

which were the Ashlock fingerprints and the transitive fingerprints.

Ashlock’s fingerprints [23–27] compute the score of a strategy against a spectrum of

opponents. The basic method is to play the strategy against a probe strategy with

varying noise parameters. The fingerprints for the 24 strategies based on Ashlock’s

approach have been generated for the probe strategies Tit For Tat and Pavlov. These

are given by Figures 7.18 - 7.21. Note that the strategies that appear on the same

row are of the same network type and have been trained on the same training data

set.

Tit For Tat was used as the probe strategy for Figures 7.18 and 7.19. From the

fingerprints it is demonstrated that the strategies of the same row behave in a similar

manner even though their opening moves differ. The strategies based on different

networks and the strategies trained on different training data sets behave differently.

The only set of strategies based on different networks that exhibit similarities, is the

strategies trained against the top performing strategies.

Figures 7.20 and 7.21 give the Ashlock fingerprints whilst Pavlov is used as a probe.

These fingerprints, across the network types, training data set and opening moves

appear to be more similar.
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(a) Strategies trained on the entire training data set.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.18: Ashlock’s fingerprints for the LSTM strategies based on the StoS network
when Tit For Tat is the probe strategy.
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(d) Strategies trained against basic strategies.

Figure 7.19: Ashlock’s fingerprints for the LSTM strategies based on the StoP network
when Tit For Tat is the probe strategy.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.20: Ashlock’s fingerprints for the LSTM strategies based on the StoS network
when Pavlov is the probe strategy.
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(d) Strategies trained against basic strategies.

Figure 7.21: Ashlock’s fingerprints for the LSTM strategies based on the StoP network
when Pavlov is the probe strategy.
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Ashlock fingerprints do not give an immediate qualifiable understanding of behaviour

and so to further explore the similarities of the strategies a set of more interpretable

fingerprints, the transitive fingerprints implemented in APL, have also been generated.

The transitive fingerprints represent the cooperation rate of a strategy against a set

of opponents over a number of turns. There are three set of opponents used here to

generate the transitive fingerprints. These are the collection of strategies from [271] and

from [44], and a spectrum of Random opponents with varying cooperating probability

p. The transitive fingerprints are given by Figures 7.22 -7.27.

The differences between the strategies are more distinct using the transitive finger-

printing method. The transitive fingerprints demonstrate that the LSTM strategies do

behave differently against the same list of opponents and that the strategies that open

with cooperation achieve a higher cooperation rate compared to the strategies (on the

same row) that do not.

Furthermore, the LSTM strategies appear to be using the opening moves to make up

their minds regarding their opponents. Following the opening moves the strategies

decide on a play. This is demonstrated by the fact that there is some variation in the

opening moves of each fingerprint, but following the opening turns the patterns became

more stable. An exception to this can be seen from the transitive fingerprints against

the spectrum of Random opponents (Figures 7.26 and 7.27). It can be seen that this

is not true for the strategies trained against the top performing strategies. This set of

LSTM strategies do not make their mind regarding their opponent. In fact, following

the opening moves the strategies just play a series of alternating sets of cooperations

and defections.

This could potentially reinforce the discussion that the training set against the top

performing strategies is not diverse. Against strong opponents the top performing

strategies simply cooperate. The trained LSTM strategies, on that training data set,

have not been trained to react against random defections.
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(a) Strategies trained on the entire training data set.

0 25 50 75 100 125 150 175
turns

Cooperator
Defector

ZD-Extort-2
Hard Go By Majority

Joss
Hard Tit For Tat

Hard Tit For 2 Tats
Tit For Tat

Grudger
GTFT

Tit For 2 Tats
Win-Stay Lose-Shift

Random
ZD-GTFT-2

1.0

0.5

0.0 0 25 50 75 100 125 150 175
turns

Cooperator
Defector

ZD-Extort-2
Hard Go By Majority

Joss
Hard Tit For Tat

Hard Tit For 2 Tats
Tit For Tat

Grudger
GTFT

Tit For 2 Tats
Win-Stay Lose-Shift

Random
ZD-GTFT-2

1.0

0.5

0.0 0 25 50 75 100 125 150 175
turns

Cooperator
Defector

ZD-Extort-2
Hard Go By Majority

Joss
Hard Tit For Tat

Hard Tit For 2 Tats
Tit For Tat

Grudger
GTFT

Tit For 2 Tats
Win-Stay Lose-Shift

Random
ZD-GTFT-2

1.0

0.5

0.0

(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.22: Transitive fingerprints for the LSTM strategies based on the StoS network
against the list of opponents from [271].
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(a) Strategies trained on the entire training data set.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.23: Transitive fingerprints for the LSTM strategies based on the StoP network
against the list of opponents from [271].
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(a) Strategies trained on the entire training data set.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.24: Transitive fingerprints for the LSTM strategies based on the StoS network
against the list of opponents from [44].
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(a) Strategies trained on the entire training data set.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.25: Transitive fingerprints for the LSTM strategies based on the StoP network
against the list of opponents from [44].
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(a) Strategies trained on the entire training data set.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.26: Transitive fingerprints for the LSTM strategies based on the StoS network
against a list of Random opponents.
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(a) Strategies trained on the entire training data set.
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(b) Strategies trained against the top performing strategies.
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(c) Strategies trained against the representative strategies.
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(d) Strategies trained against basic strategies.

Figure 7.27: Transitive fingerprints for the LSTM strategies based on the StoP network
against a list of Random opponents.
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In order to gain a further understanding of the behaviour of the LSTM strategies

produced by the training, the top performing LSTM strategies are put against a list of

manually selected opponents. These are:

1. Tit For Tat. A strategy that retaliates a defection but also forgives if the opponent

apologises. The strategy was selected to explore whether the LSTM strategies

try to exploit the strategy, and whether they apologise after being in DD.

2. Gradual. Plays in a similar fashion as Tit For Tat but retaliates with a growing

number of defection. Gradual was selected for the same reason as Tit For Tat.

3. Cooperator. A strategy that can been taken advantage of. The strategy was

selected to explore whether the LSTM strategies do exploit the strategy.

4. Alternator. Another strategy that does not react to the history and can be taken

advantage of.

5. Defector. A strategy that just defects. It was selected to inspect whether the

LSTM strategies defend themselves from unconditional defections.

6. ZDExtort2. A strategy that exploits its opponents. The strategy was chosen to

see if the LSTM players protect themselves from being exploited.

7. TF1. The strategy was presented in section 6.4. The strategy includes a hand-

shake. The strategies are matched against TF1 to investigate whether they have

developed the handshake.

8. Adaptive. A strategy discussed in Chapter 6. The strategy has a unique set

of best responses. It can be exploited to unconditionally cooperate while the

opponent defects.

Three LSTM players are matched against these strategies in a tournament of 200 turns

and 50 repetitions:

• The StoS based strategy, trained against all strategies with po = 1.

• The StoP based strategy, trained against the representative strategies with po =

1.

• The StoP based strategy, trained against the basic strategies with po = 1.

The median scores of each tournament are given by Tables 7.7- 7.9 and the transitive

fingerprints of the three LSTM strategies against the selected opponents are given by
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Figure 7.28.
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(a) StoS network trained
against all strategies with
po = 1.
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(b) StoP network trained
against the representative
strategies with po = 1.
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(c) StoP network trained
against the basic strategies
with po = 1.

Figure 7.28: Transitive fingerprints for the top performing LSTM strategies against a
list of manually selected strategies.

LSTM strategy Tit For Tat Gradual Cooperator Defector Alternator ZD-Extort-2 TF1 Adaptive

LSTM strategy 3.0000 3.0000 3.000 3.0000 0.9900 2.9800 1.8221 0.8950 0.670

Tit For Tat 3.0000 3.0000 3.000 3.0000 0.9950 2.4900 1.0893 1.0400 2.955

Gradual 3.0000 3.0000 3.000 3.0000 0.8250 2.6850 1.5835 0.8800 2.945

Cooperator 3.0000 3.0000 3.000 3.0000 0.0000 1.5000 2.2146 1.5150 0.090

Defector 1.0400 1.0200 1.700 5.0000 1.0000 3.0000 1.0408 1.0400 1.120

Alternator 0.5550 2.5150 1.310 4.0000 0.5000 2.0000 1.7567 1.1750 0.605

ZD-Extort-2 2.3981 1.1143 2.087 3.5236 0.9898 2.5437 1.0824 1.0586 2.953

TF1 2.5950 1.0650 1.705 3.9900 0.9900 2.8250 1.0976 2.9900 1.080

Adaptive 2.6200 2.9550 2.995 4.9400 0.9700 2.9550 2.0210 1.0550 2.950

Table 7.7: Median scores of a standard tournament of 200 turns that was repeated
50 times. The LSTM strategy corresponds to the strategy based on the StoS network
trained against all strategies with po = 1.

LSTM strategy Tit For Tat Gradual Cooperator Defector Alternator ZD-Extort-2 TF1 Adaptive

LSTM strategy 3.0000 3.0000 3.0000 3.0000 0.9950 2.9600 1.1189 1.0250 4.8300

Tit For Tat 3.0000 3.0000 3.0000 3.0000 0.9950 2.4900 1.0954 1.0400 2.9550

Gradual 3.0000 3.0000 3.0000 3.0000 0.8250 2.6850 1.5264 0.8800 2.9450

Cooperator 3.0000 3.0000 3.0000 3.0000 0.0000 1.5000 2.2989 1.5150 0.0900

Defector 1.0200 1.0200 1.7000 5.0000 1.0000 3.0000 1.0384 1.0400 1.1200

Alternator 0.5850 2.5150 1.3100 4.0000 0.5000 2.0000 1.7972 1.1750 0.6050

ZD-Extort-2 1.1484 1.1204 2.0449 3.4674 0.9904 2.5247 1.0793 1.0604 2.8963

TF1 1.0500 1.0650 1.7050 3.9900 0.9900 2.8250 1.0659 2.9900 1.0800

Adaptive 0.1550 2.9550 2.9950 4.9400 0.9700 2.9550 1.9138 1.0550 2.9500

Table 7.8: Median scores of a standard tournament of 200 turns that was repeated 50
times. The LSTM strategy corresponds to the strategy based on the StoP network
trained against the representative strategies with po = 1.

It is demonstrated that all three LSTM strategies achieve mutual cooperation for all

200 turns when matched against Tit For Tat, Gradual and Cooperator. The LSTM

strategies open with cooperation and are never the first ones to defect. However, they

quickly defend themselves against unconditional defections made by Defector, and
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LSTM strategy Tit For Tat Gradual Cooperator Defector Alternator ZD-Extort-2 TF1 Adaptive

LSTM strategy 3.0000 3.0000 3.0000 3.00 0.995 2.9850 1.0919 1.0400 2.9750

Tit For Tat 3.0000 3.0000 3.0000 3.00 0.995 2.4900 1.1134 1.0400 2.9550

Gradual 3.0000 3.0000 3.0000 3.00 0.825 2.6850 1.5399 0.8800 2.9450

Cooperator 3.0000 3.0000 3.0000 3.00 0.000 1.5000 2.2650 1.5150 0.0900

Defector 1.0200 1.0200 1.7000 5.00 1.000 3.0000 1.0400 1.0400 1.1200

Alternator 0.5350 2.5150 1.3100 4.00 0.500 2.0000 1.8194 1.1750 0.6050

ZD-Extort-2 1.1109 1.1384 2.0329 3.49 0.990 2.5149 1.0909 1.0598 2.9747

TF1 1.0650 1.0650 1.7050 3.99 0.990 2.8250 1.0823 2.9900 1.0800

Adaptive 2.9250 2.9550 2.9950 4.94 0.970 2.9550 1.9897 1.0550 2.9500

Table 7.9: Median scores of a standard tournament of 200 turns that was repeated 50
times. The LSTM strategy corresponds to the strategy based on the StoP network
trained against the basic strategies with po = 1.

quickly learn to exploit Alternator. Following the opening 2 to 4 moves the LSTM

strategies decide on unconditional defections against Alternator.

The StoP based strategy trained against the basic strategies with po = 1, is the strategy

that reacts quickest to Alternator’s alternate defections. In fact, against Alternator

the strategy demonstrates a Grudger like behaviour. However, this is not true for every

opponent the strategy is matched against. Figure 7.28 shows that strategy manages

mutual cooperation with Adaptive following a series of mutual defections. Thus, the

LSTM strategy exhibits more adaptable behaviour than Grudger.

The biggest difference between the three LSTM strategies behaviours are when matched

with ZDExtort2, TF1 and Adaptive.

Initially, against TF1 none of the three strategies carry out TF1’s specific handshake.

The StoP strategies have a Grudger behaviour against the strategy, and go into mutual

defections following the opening moves. The StoS strategy demonstrates a more varying

behaviour against the strategy, which includes a series of cooperations and defections.

Amongst the three strategies, the StoS strategy achieves the highest score per turn

against TF1. The two StoP strategies also demonstrate a more aggressive behaviour

against ZDExtort2. In comparison, the StoS sequence manages to achieve a higher

cooperation rate against ZDExtort2 which subsequently results in a better score.

Amongst the three strategy the most aggressive appears to be the StoP based strategy

trained against the representative strategies. Even against Adaptive the strategy goes

into mutual defection. The strategy does exhibit a more Grudger behaviour than

the rest of the LSTM strategies. However, as it can be seen against ZDExtort2 the

strategy is not as provocable as Grudger. The StoP based strategy trained against the
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basic strategies also exhibited a more adaptable behaviour, however, it is still a quite

aggressive strategy. The LSTM strategy based on the StoS network trained against the

entire data set is less aggressive, appears to achieve series of both mutual cooperation

and defection and it is the best performing strategy amongst the LSTMs.

The three LSTM strategies when matched against each other achieve mutual cooper-

ation. The median scores of a standard tournament of 200 turns and 50 repetitions

with the three best performing LSTM strategies are given by Table 7.10. Being able

to achieve mutual cooperation when competing against each other is a strong property

of the LSTM strategies. As was discussed in Chapter 5, self interactions are important

in evolutionary dynamic settings.

StoS strategy trained
against all

StoP strategy trained
against the

representative
strategies

StoP strategy trained
against basic strategies

StoS strategy trained against all 3.0 3.0 3.0

StoP strategy trained against the representative strategies 3.0 3.0 3.0

StoP strategy trained against basic strategies 3.0 3.0 3.0

Table 7.10: Median scores of a standard tournament with the three best performing
LSTM strategies. The tournament is of 200 turns and of 50 repetitions.

On the whole, the high performing LSTM strategies appear to have the following

properties:

1. Never defect first.

2. Are complex by design.

3. Use the opening moves to make up their mind about their opponents and decide

on a play.

4. Can achieve mutual cooperation following mutual defections.

7.4.2 Stochastic LSTM strategies

The LSTM strategies that have been considered so far make a deterministic decision

based on the networks predictions. Another variation of the LSTM strategies that has

been considered are strategies that make a probabilistic choice based on the prediction.

A strategy class called the StochasticLSTMPlayer has been implemented to simulate

the behaviour of these strategies. The source code for the StochasticLSTMPlayer is

given by Figure 7.29.
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1 import numpy as np

2

3 import axelrod as axl

4 from axelrod.random_ import random_choice

5 from keras.layers import LSTM, Dense, Dropout

6 from keras.models import Sequential

7

8 C, D = axl.Action.C, axl.Action.D

9

10

11 class StochasticLSTMPlayer(axl.Player):

12 name = "Stochastic LSTM Player"

13 classifier = {

14 "memory_depth": float("inf"),

15 "stochastic": True,

16 "inspects_source": False,

17 "manipulates_source": False,

18 "manipulates_state": False,

19 }

20

21 def __init__(self, model, reshape_history_funct, opening_probability=0.78):

22 self.model = model

23 self.opening_probability = opening_probability

24 self.reshape_history_function = reshape_history_funct

25 super().__init__()

26

27 def strategy(self, opponent):

28 if len(self.history) == 0:

29 return random_choice(self.opening_probability)

30

31 history = [action.value for action in opponent.history]

32 prediction = float(

33 self.model.predict(self.reshape_history_function(history))[0][-1]

34 )

35

36 return random_choice(prediction)

37

38 def __repr__(self):

39 return self.name

Figure 7.29: Implementation of the StochasticLSTMPlayer class.
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The 24 strategies that make a probabilistic decision at each turn are evaluated on the

same 300 tournaments as the strategies in section 7.4. The r̄ for the strategies are

given by Table 7.11.

sequence to sequence sequence to probability

po = 0 po = 1 po = 0.78 po = 0 po = 1 po = 0.78

All strategies 0.833 0.800 0.800 0.800 0.750 0.778

Top strategies 0.800 0.800 0.789 0.778 0.714 0.714

Representative strategies 0.750 0.700 0.707 0.667 0.600 0.600

Basic strategies 0.833 0.700 0.714 0.857 0.700 0.714

Table 7.11: The median normalised ranks of the 24 LSTM strategies that make stochas-
tic decisions. A r̄ closer to 0 indicates a more successful performance.

The results of Table 7.11 demonstrate that the strategies that make a probabilistic

decision instead of a deterministic one (following the opening turn) performed very

poorly. The smallest r̄ has a value of 0.6. Thus, the most successful strategy on

average performs on the bottom half of the tournaments it participated in.

7.5 Chapter summary

This Chapter has introduced a total of 24 new IPD strategies based on LSTM networks.

The advantage of using LSTMs, contrary to feed forward networks, is that LSTMs

incorporate a mechanism of memory. This allows the networks to learn to using the

history of an opponent in order to decide their next move. The collection of best

response sequences of Chapter 6 was purposely generated so that LSTMs could be

trained to play successfully against a list of known IPD strategies.

Two types of LSTM networks have been trained in this Chapter. Presented in sec-

tion 7.3, there were referred to as the sequence to sequence (StoS) network and the

sequence to probability (StoP) network. The two networks were trained on a train-

ing data set generated by the collection of best response strategies, but also on three

subsets of that training data set. This was done in order to understand the effect of

the training samples on the network’s performance in a IPD tournament. The subsets

included the best response sequences to top performing strategies, to representative

strategies with ranks across a standard tournament and a set of basic strategies. The

networks were developed and trained using the open source package Keras, and the

training process was carried out on a GPU.
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A total of 8 LSTM networks were trained, and those corresponded to 24 strategies when

the opening move was taken into account. The opening move of an LSTM strategy

had to be manually defined, and three different values were chosen to carry out the

evaluation analysis. These were po = 0, po = 1 and po = 0.78.

The performance of the 24 LSTM strategies was evaluated in 300 standard tourna-

ments. The results of the meta tournament analysis demonstrated that the strategies

trained on the entire data set performed well in the 300 standard tournaments regard-

less the LSTM network type. Moreover, the strategies trained on the subsets performed

well only when they were trained using the StoP network. Finally, it was shown that

the strategies that performed well in the analysis of this Chapter have a high proba-

bility of ranking in the top half of any standard tournament. This demonstrates that

LSTM strategies trained on a collection of sequences can lead to successful behaviours

in the IPD. This unsupervised approach is the first contribution of this type at the

intersection of deep learning and game theory.

An interesting result demonstrated by the analysis was the effect of opening with a

cooperation. The most successful strategies of this Chapter have been the strategies

that cooperated on the first turn. The transitive fingerprints demonstrated that it was

because these strategies achieve a higher cooperation rate compared to the rest of the

trained strategies. This result reinforces the discussion started by Axelrod: opening

with a cooperation is a property that successful strategies in a IPD competition need

to have.
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Chapter 8

Conclusions

This Chapter serves to summarise the work and contributions of this thesis. Each

chapter contains a detailed chapter summary section, and so the summary here will be

brief.

8.1 Research summary

The fundamental research question of this thesis has been the same question that has

troubled the scientific community since the formulation of the IPD in 1950. Namely,

what behaviour an Iterated Prisoner’s Dilemma (IPD) strategy should adapt as a

response to different environments.

Chapter 1 introduced the IPD, carried out an initial literature review and outlined

the research tasks of this thesis. A more detailed literature review was presented in

Chapter 2. The literature reviewed in Chapter 2 was divided into different research

topics. These included evolutionary dynamics, intelligently designed strategies, struc-

tured strategies and training, and software that has been developed specifically for the

game.

In Chapter 3 a bespoke research software tool called Arcas was developed and used to

collect a data set of articles’ metadata on the IPD. A topic modelling technique, called

Latent Dirichlet Allocation, was applied to the abstracts of these articles and allocated

them into five different research topics. These were human subject research, biological

studies, strategies, evolutionary dynamics on networks and modelling problems as a

Prisoner’s Dilemma (PD).
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The bespoke data set was further analysed to explore whether the academic field of

the PD is cooperative and whether there is influence between the authors. It was

shown that the field of the IPD is a collaborative field, yet it is not necessarily more

collaborative than other fields. Many authors tend to collaborate with authors from

one community and are not involved in multiple communities. The collaborativeness

was also explored over time, and it was shown that since the first publications authors

tended to write only with a single community and that it is not an effect of a specific

time period. Exploring the influence of authors in the field based on the specific

publications showed that authors do not gain much influence, and the only ones with

influence are the ones connected to a “main” group.

Chapter 4 examined the performance of a collection of 195 strategies in the largest

collection of computer tournaments in the field. The results across the 45,600 tourna-

ments of various tournaments types deduced that there was not a single strategy that

performs well in diverse IPD scenarios. The later parts of the Chapter analysed and

extracted the salient features of the best performing strategies across the various tour-

nament types and established that there are several properties that heavily influence

the best performing strategies. There were: be nice, be provocable and forgiving, be a

little envious, be clever, and adapt to the environment.

Chapter 5 investigated best response memory-one strategies with a theory of mind.

It presented several theoretical and numerical results. More specifically, it proved

that:

• The utility of a memory-one strategy against a set of memory-one opponents can

be written as a sum of ratios of quadratic forms.

• There is a compact way of identifying a memory-one best response to a group of

opponents through a search over a discrete set.

• There is a condition for which in an environment of memory-one opponents de-

fection is the stable choice, based only on the coefficients of the opponents.

Additionally, the numerical results of Chapter 5 reinforced established result of the

literature. Namely, they showed that extortionate play is not always optimal by show-

ing that optimal play is often not extortionate, and that memory-one strategies suffer

from their limited memory in multi agent interactions and can be out performed by

optimised strategies with longer memory.
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Chapter 6 also investigated best responses but in the form of sequences. It defined an

IPD strategy in a finite match as a sequence, and it defined the best response sequence

against a given opponent. It introduced an evolutionary algorithm which demonstrated

that it can successfully identify best response sequences, and which was used to estimate

best response sequences to 192 strategies. A total of 5,258 best responses sequences

were obtained as result of Chapter 6.

The purpose of this collection of best response sequences was to be used in Chapter 7

to train a series of long short-term memory (LSTM) networks. These networks were

trained on the collection, and on three subsets of the collection, to predict best response

sequences. A total of 8 LSTMs were trained, and these were used to introduce a total of

24 distinct IPD strategies. The results of 300 standard tournaments demonstrated that

a set of these LSTM strategies can successfully be on the top ranks of any given stan-

dard tournament. The top performing LSTM strategies exhibited distinct behaviours

against the same opponents, demonstrated that they are adaptable and that opening

with a cooperation is crucial to a successful performance.

8.2 Contributions

This thesis has made novel contributions across various themes. Numerous research

software packages have been implemented as part of this thesis. These packages have

been written following the highest standards of software development, and have been

made available so that other researchers can contribute to and use them. The packages

include Arcas a tool designed for scraping academic articles from various APIs and

sequences-sensei a project for performing genetic algorithms. Additionally, software

contributions were made to well established Python libraries such as SymPy [202] and

Axelrod-Python Library [7].

A total of six accompanying data sets have been generated as a result of this thesis,

which include one of the largest collection of IPD tournaments known to the field:

1. Articles’ meta data on the Prisoner’s Dilemma [103].

2. Articles’ meta data on the Price of Anarchy [102].

3. Articles’ meta data on Auction Games [101].

4. Raw data for: “Stability of defection, optimisation of strategies and the limits of

memory in the Prisoner’s Dilemma” [104].
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5. A data set of 45686 Iterated Prisoner’s Dilemma tournaments’ results [100,105]

6. Best response sequences in the Prisoner’s Dilemma [106].

These have been archived and made available via Zenodo, and likewise, are available

to other researchers. They can be used to conduct further analysis and provide new

insights to the field.

A total of four scientific manuscripts presenting the methodology, analysis and results

of this thesis have been prepared and three of them are currently under submission to

respective academic journals. The title of these manuscripts are:

1. A bibliometric study of research topics, collaboration and influence in the field

of the Iterated Prisoner’s Dilemma [114].

2. Properties of winning Iterated Prisoner’s Dilemma strategies [116].

3. Recognising and evaluating the effectiveness of extortion in the Iterated Prisoner’s

Dilemma [166].

4. A theory of mind: Best responses to memory-one strategies. The limitations of

extortion and restricted memory [115].

These manuscripts have been uploaded on the pre print server arXiv and are currently

available and accessible to the scientific community.

Designing new strategies is an important type of research for the field. This thesis has

introduced an abundant number of properties of successful strategies which can be of

interest to researchers designing a new strategy for new environments, or just to un-

derstand the reasons behind some strategies being better than others. Complementing

this, a new mathematical framework has been developed for the better understand-

ing of memory-one strategies and an initial understanding of using recurrent neural

networks to train IPD strategies has been presented.

This thesis has contributed to the continuous understanding of the emergence of coop-

eration by providing a condition for which cooperation can not occur in memory-one

environments. It has also has proven that constrained quadratic ratio optimisation

problems that are non concave can be solved explicitly by using resultant theory.

Finally, compared to conventional works where a strategy is trained against a specific

set of opponents and its performance is then validated against that same set, this thesis

has trained LSTM networks on data sets of best response sequences and then validated
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their performance as IPD strategies is 300 different tournaments. This has shown the

potential for an unsupervised learning approach to training a recurrent neural network

to compete in IPD competitions.

8.3 Complementary research

The results of this thesis are not the only scientific results to which I contributed

during this doctoral research. The publications that will be discussed in this section

are publications to which I am an author.

Two other projects which focused on the IPD have been [125,163]. The works of [125,

163] focused on the usage of reinforcement learning algorithms (genetic algorithms

and particle swarm optimisation algorithms) in training a series of strategies based on

different structures such as finite state machines, hidden Markov models and neural

networks. These strategies were trained in two settings:

• A Moran process which is an evolutionary model of invasion and resistance across

time during which high performing individuals are more likely to be replicated.

• A standard tournament.

The results of [125] were confirmed in Chapter 4. The trained strategies performed at

the top of the standard tournament surpassing well established strategies such as Tit

For Tat, Pavlov, Gradual and zero-determinant strategies. In [163] it was observed

that the trained strategies (with no manual input) evolved the ability to have a hand-

shake, to recognise themselves. This was particularly important in a Moran process

of resisting invasion where a single individual of another type is introduced and the

strategies need to resist the invasion.

Another undertaken project included exploring rhino poaching behaviour using evo-

lutionary game theory [112]. Rhino populations are at critical level today and in

protected areas devaluation approaches are used to secure the life of the animals. The

effectiveness of these approaches, however, relies on poacher’s behaviour as they can

be selective or indiscriminate. Selective poachers do not kill devalued rhinos where

indiscriminate do. Populations of differently behaving poachers were modelled using

evolutionary game theory. The results demonstrated that full devaluation of all rhinos

is likely to lead to indiscriminate poaching and that devaluating of rhinos can only

be effective when implemented along with a strong disincentive framework. The paper
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aimed to contribute to the necessary research required for an informed discussion about

the lively debate on legalising rhino horn trade.

Finally, delivering science outreach workshops is a great way to gain a deeper under-

standing of science and its applications, and enhancing students interest in science.

With that in mind I created an open source educational tutorial, called Game The-

ory and Python [113], aimed at introducing participants to game theory and more

specifically to repeated games. The tutorial is aimed at two groups of individuals: in-

dividuals familiar with Python (programmers) who want to start to learn game theory

and mathematicians with little or no programming knowledge as a pathway to pro-

gramming through the interesting subject. The tutorial has gained much interest and

is currently under submission at the Journal of Open Source Education.

A full list of the publications produced during the research presented in this section

is:

1. Reinforcement Learning Produces Dominant Strategies for the Iterated Prisoner’s

Dilemma [125].

2. Evolution Reinforces Cooperation with the Emergence of Self-Recognition Mech-

anisms: an empirical study of the Moran process for the iterated Prisoner’s

dilemma [163].

3. An Evolutionary Game Theoretic Model of Rhino Horn Devaluation [112].

4. Game Theory and Python [113].

8.4 Future research directions

Each part of this thesis has given rise to further interesting questions and research

directions that, although not in the scope of the current work, would improve or com-

pliment it.

Future research - Meta tournament Analysis

In Chapter 4 during the data collection the probability of noise was allowed to vary

between values of 0 and 1. However, it was established that large values of noise (> 0.1)

caused an impactful variation to the environment. From the collection of 195 strategies

considered in the Chapter there was not a single strategy that performed well in that

spectrum of noise.
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Strategies that have been trained specifically for noisy environments such as DBS,

Evolved FSM 16 Noise 05, Evolved ANN 5 Noise 05, PSO Gambler 2 2 2 Noise

05 and Omega Tit For Tat, performed adequately only in tournaments with restricted

noise. This indicates that possibly there is not a strategy in the literature trained to

be effective for a broad spectrum of noise values. Training such a strategy would be

an interesting avenue of further research. The analysis of the top performances would

then be reproduced whilst including the new trained strategy.

Future research - Memory-one strategies

In Chapter 5 the empirical results supported that extortionate play is not always op-

timal and that memory-one strategies suffer from their limited memory in multi agent

interactions. All the empirical results presented have been for the case of two oppo-

nents (N = 2). A future research direction would be to validate the empirical results

of the Chapter for larger values of N .

Another restricted set of strategies on memory that have been studied in the literature

are memory-two strategies. These are strategies that take into account the past two

turns of the match. A compelling research question that arises is whether the cur-

rent formulation of Chapter 5 can be expanded to include memory-two strategies, and

whether the results still hold.

Future research - Training an LSTM strategy

An interesting question that was raised in Chapter 7 was whether the sequence to

probability based strategy trained on the entire data set would perform even better if

it was trained for longer. An interesting avenue of further research would be to train

the specific strategy for more epochs, and to evaluate its performance again in the

meta tournament analysis presented in Chapter 7. Finally, another avenue of further

research would be to explore the effect of the dimensionality of the hidden layers in the

performance of the LSTM networks as IPD strategies.



CHAPTER 8. CONCLUSIONS 196



197

Bibliography

[1] Complexity of cooperation web site. http://www-personal.umich.edu/~axe/

research/Software/CC/CC2.html. Accessed: 2017-10-23.

[2] The evolution of trust. http://ncase.me/trust/. Accessed: 2017-10-23.

[3] The iterated prisoner’s dilemma game. http://selborne.nl/ipd/. Accessed:

2017-10-23.

[4] Lifl (1998) prison. http://www.lifl.fr/IPD/ipd.frame.html. Accessed: 2017-

10-23.

[5] PLOS public library of science. https://www.plos.org/.

[6] The prisoner’s dilemma. http://www.prisoners-dilemma.com/, 2017.

[7] The Axelrod project developers . Axelrod: 4.4.0, April 2016.

[8] E. A. Coopsim v0.9.9 beta 6. https://github.com/jecki/CoopSim/, 2015.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software

available from tensorflow.org.

[10] K. M. Abadir and J. R. Magnus. Matrix algebra, volume 1. Cambridge University

Press, 2005.

[11] M. Aberdour. Achieving quality in open-source software. IEEE software,

24(1):58–64, 2007.

http://www-personal.umich.edu/~axe/research/Software/CC/CC2.html
http://www-personal.umich.edu/~axe/research/Software/CC/CC2.html
http://ncase.me/trust/
http://selborne.nl/ipd/
http://www.lifl.fr/IPD/ipd.frame.html
https://github.com/jecki/CoopSim/


BIBLIOGRAPHY 198

[12] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar, O. U. Linus,

H. Arshad, A. A. Kazaure, U. Gana, and M. U. Kiru. Comprehensive review

of artificial neural network applications to pattern recognition. IEEE Access,

7:158820–158846, 2019.

[13] C. Adami and A. Hintze. Evolutionary instability of zero-determinant strategies

demonstrates that winning is not everything. Nature communications, 4:2193,

2013.

[14] A. Agarwal and B. Triggs. Multilevel image coding with hyperfeatures. Interna-

tional Journal of Computer Vision, 78(1):15–27, 2008.

[15] A. Akritas, G. Malaschonok, and P. Vigklas. Sturm sequences and modified

subresultant polynomial remainder sequences. Serdica Journal of Computing,

8(1):29–46, 2014.

[16] Anaconda Inc. Anaconda. https://www.anaconda.com.

[17] N. Anastassacos and M. Musolesi. Learning through probing: a decentral-

ized reinforcement learning architecture for social dilemmas. arXiv preprint

arXiv:1809.10007, 2018.

[18] Apache. Subversion. https://subversion.apache.org/.

[19] M. Archetti. Evolutionary game theory of growth factor production: implications

for tumour heterogeneity and resistance to therapies. British journal of cancer,

109(4):1056, 2013.

[20] M. Archetti and K. J. Pienta. Cooperation among cancer cells: applying game

theory to cancer. Nature Reviews Cancer, page 1, 2018.

[21] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seed-

ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics,

2007.

[22] D. Ashlock, J. A. Brown, and P. Hingston. Multiple opponent optimization of

prisoner’s dilemma playing agents. IEEE Transactions on Computational Intel-

ligence and AI in Games, 7(1):53–65, 2015.

https://www.anaconda.com
https://subversion.apache.org/


BIBLIOGRAPHY 199

[23] D. Ashlock and E. Y. Kim. Techniques for analysis of evolved prisoner’s dilemma

strategies with fingerprints. In 2005 IEEE Congress on Evolutionary Computa-

tion, volume 3, pages 2613–2620 Vol. 3, Sept 2005.

[24] D. Ashlock and E. Y. Kim. Fingerprinting: Visualization and automatic analysis

of prisoner’s dilemma strategies. IEEE Transactions on Evolutionary Computa-

tion, 12(5):647–659, Oct 2008.

[25] D. Ashlock, E. Y. Kim, and W. Ashlock. Fingerprint analysis of the noisy pris-

oner’s dilemma using a finite-state representation. IEEE Transactions on Com-

putational Intelligence and AI in Games, 1(2):154–167, June 2009.

[26] D. Ashlock, E. Y. Kim, and W. Ashlock. A fingerprint comparison of different

prisoner’s dilemma payoff matrices. In Proceedings of the 2010 IEEE Conference

on Computational Intelligence and Games, pages 219–226, Aug 2010.

[27] D. Ashlock, E. Y. Kim, and N. Leahy. Understanding representational sensitivity

in the iterated prisoner’s dilemma with fingerprints. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part C (Applications and Reviews), 36(4):464–475,

July 2006.

[28] W. Ashlock and D. Ashlock. Changes in prisoner’s dilemma strategies over evo-

lutionary time with different population sizes. In 2006 IEEE International Con-

ference on Evolutionary Computation, pages 297–304. IEEE, 2006.

[29] W. Ashlock and D. Ashlock. Changes in prisoner’s dilemma strategies over evolu-

tionary time with different population sizes. In Evolutionary Computation, 2006.

CEC 2006. IEEE Congress on, pages 297–304. IEEE, 2006.

[30] W. Ashlock, J. Tsang, and D. Ashlock. The evolution of exploitation. In 2014

IEEE Symposium on Foundations of Computational Intelligence (FOCI), pages

135–142. IEEE, 2014.

[31] Atlassian. Bitbucket. https://bitbucket.org/.

[32] T. C. Au and D. Nau. Accident or intention: that is the question (in the noisy

iterated prisoner’s dilemma). In Proceedings of the fifth international joint con-

ference on Autonomous agents and multiagent systems, pages 561–568. ACM,

2006.

https://bitbucket.org/


BIBLIOGRAPHY 200

[33] R. Axelrod. Effective choice in the prisoner’s dilemma. The Journal of Conflict

Resolution, 24(1):3–25, 1980.

[34] R. Axelrod. More effective choice in the prisoner’s dilemma. The Journal of

Conflict Resolution, 24(3):379–403, 1980.

[35] R. Axelrod. The emergence of cooperation among egoists. American political

science review, 75(2):306–318, 1981.

[36] R. Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. Ge-

netic Algorithms and Simulated Annealing, pages 32–41, 1987.

[37] R. Axelrod. Launching “the evolution of cooperation”. Journal of Theoretical

Biology, 299(Supplement C):21 – 24, 2012. Evolution of Cooperation.

[38] R. Axelrod and D. Dion. The further evolution of cooperation. Science,

242(4884):1385–1390, 1988.

[39] R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,

211(4489):1390–1396, 1981.

[40] P. Baldi and P. J. Sadowski. Understanding dropout. In Advances in neural

information processing systems, pages 2814–2822, 2013.

[41] D. Banerjee and S. Sen. Reaching pareto-optimality in prisoner’s dilemma using

conditional joint action learning. Autonomous Agents and Multi-Agent Systems,

15(1):91–108, 2007.

[42] J. S. Banks and R. K. Sundaram. Repeated games, finite automata, and com-

plexity. Games and Economic Behavior, 2(2):97–117, 1990.

[43] G. Barbastathis, A. Ozcan, and G. Situ. On the use of deep learning for compu-

tational imaging. Optica, 6(8):921–943, 2019.

[44] B. Beaufils, J.-P. Delahaye, and P. Mathieu. Our meeting with gradual, a good

strategy for the iterated prisoner’s dilemma. In Proceedings of the Fifth Inter-

national Workshop on the Synthesis and Simulation of Living Systems, pages

202–209. MIT press, 1997.

[45] B. Beaufils, J.-P. Delahaye, and P. Mathieu. Complete classes of strategies for

the classical iterated prisoner’s dilemma. In International Conference on Evolu-

tionary Programming, pages 33–41. Springer, 1998.



BIBLIOGRAPHY 201

[46] R. Bell, L. Mieth, and A. Buchner. Separating conditional and unconditional

cooperation in a sequential prisoner’s dilemma game. PloS one, 12(11):e0187952,

2017.

[47] J. Bendor, R. M. Kramer, and S. Stout. When in doubt... cooperation in a noisy

prisoner’s dilemma. The Journal of Conflict Resolution, 35(4):691–719, 1991.

[48] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,

1994.

[49] F. Benureau and N. P. Rougier. Re-run, repeat, reproduce, reuse, replicate:

transforming code into scientific contributions. Frontiers in neuroinformatics,

11:69, 2018.

[50] A. S. Berger. Hardware and computer organization. Newnes, 2005.

[51] T. Bergmann and R. Dale. A scientometric analysis of evolang: Intersections and

authorships. In The evolution of language: Proceedings of the 11th international

conference (EVOLANGX11). http://evolang. org/neworleans/papers/182. html.

Retrieved, volume 22, 2018.

[52] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[53] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of

machine Learning research, 3(Jan):993–1022, 2003.

[54] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding

of communities in large networks. Journal of statistical mechanics: theory and

experiment, 2008(10):P10008, 2008.

[55] R. Boyd and J. P. Lorberbaum. No pure strategy is evolutionarily stable in the

repeated prisoner’s dilemma game. Nature, 327:58–59, 1987.

[56] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[57] A. Carvalho, H. Rocha, F. Amaral, and F. Guimaraes. Iterated prisoner’s

dilemma-an extended analysis. Iterated Prisoner’s Dilemma-An extended analy-

sis, 2013.



BIBLIOGRAPHY 202

[58] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine train-

ing and classification on graphics processors. In Proceedings of the 25th interna-

tional conference on Machine learning, pages 104–111, 2008.

[59] CERN. Zenodo. https://zenodo.org.

[60] K. Chellapilla and D. B. Fogel. Evolving neural networks to play checkers without

relying on expert knowledge. IEEE transactions on neural networks, 10(6):1382–

1391, 1999.

[61] X. Chen, F. Fu, and L. Wang. Influence of different initial distributions on

robust cooperation in scale-free networks: A comparative study. Physics Letters

A, 372(8):1161 – 1167, 2008.

[62] Y.-T. Chen, A. McAvoy, and M. A. Nowak. Fixation probabilities for any con-

figuration of two strategies on regular graphs. Scientific reports, 6:39181, 2016.

[63] J. Choi, J. Yang, and H. Jo. The co-evolution of cooperation and trait distinction.

In Proceedings of the First Complexity Conference, 2006.

[64] F. Chollet et al. Keras. https://keras.io, 2015.

[65] S. Y. Chong and X. Yao. Behavioral diversity, choices and noise in the iterated

prisoner’s dilemma. IEEE Transactions on Evolutionary Computation, 9(6):540–

551, Dec 2005.

[66] N. P. Chue Hong, T. Crick, I. P. Gent, L. Kotthoff, and K. Takeda. Top tips to

make your research irreproducible. arXiv, pages arXiv–1504, 2015.

[67] A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very

large networks. Physical review E, 70(6):066111, 2004.

[68] L. P. Coelho, T. Peng, and R. F. Murphy. Quantifying the distribution of probes

between subcellular locations using unsupervised pattern unmixing. Bioinfor-

matics, 26(12):i7–i12, 2010.

[69] S. J. Cox, T. Sluckin, and J. Steele. Group size, memory, and interaction rate in

the evolution of cooperation. Current Anthropology, 40(3):369–376, 1999.

[70] T. Crick, B. A. Hall, S. Ishtiaq, and K. Takeda. ”””” share and enjoy””””: Pub-

lishing useful and usable scientific models. In 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing, pages 957–961. IEEE, 2014.

https://zenodo.org
https://keras.io


BIBLIOGRAPHY 203

[71] P. J. Darwen and X. Yao. Why more choices cause less cooperation in iter-

ated prisoner’s dilemma. In Proceedings of the 2001 Congress on Evolutionary

Computation (IEEE Cat. No. 01TH8546), volume 2, pages 987–994. IEEE, 2001.

[72] R. das Neves Machado, B. Vargas-Quesada, and J. Leta. Intellectual structure

in stem cell research: exploring brazilian scientific articles from 2001 to 2010.

Scientometrics, 106(2):525–537, 2016.

[73] J. Delahaye. L’altruisme perfectionné. Pour la Science (French Edition of Sci-
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Appendix A

Centrality measures

distributions

A.1 Distributions for G and Ḡ

Betweeness and closeness centralities distributions for G and Ḡ.
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Figure A.1: Distributions of betweenness centrality in G and Ḡ

A.2 Distributions for topic networks

Betweeness and closeness centralities distributions for graphs of topics A to E.
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Figure A.2: Distributions of closeness centrality in G and Ḡ
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Figure A.3: Distributions of betweenness centrality in topics’ networks.
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Appendix B

List of strategies

B.1 List of strategies considered in Chapter 4

The strategies considered in Chapter 4, which are from APL version 3.0.0.

1. φ [7]

2. π [7]

3. e [7]

4. ALLCorALLD [7]

5. Adaptive [178]

6. Adaptive Pavlov

2006 [159]

7. Adaptive Pavlov

2011 [178]

8. Adaptive Tit For Tat:

0.5 [283]

9. Aggravater [7]

10. Alexei [233]

11. Alternator [35,207]

12. Alternator Hunter [7]

13. Anti Tit For Tat [135]

14. AntiCycler [7]

15. Appeaser [7]

16. Arrogant QLearner [7]

17. Average Copier [7]

18. Backstabber [7]

19. Better and Better [4]

20. Bully [212]

21. Calculator [4]

22. Cautious QLearner [7]

23. Champion [34]

24. CollectiveStrategy [179]

25. Contrite Tit For

Tat [294]

26. Cooperator [35, 207,

234]

27. Cooperator

Hunter [7]

28. Cycle Hunter [7]

29. Cycler CCCCCD [7]

30. Cycler CCCD [7]

31. Cycler CCCDCD [7]

32. Cycler CCD [207]

33. Cycler DC [7]

34. Cycler DDC [207]

35. DBS [32]

36. Davis [33]

37. Defector [35,207,234]

38. Defector Hunter [7]

39. Double Crosser [7]
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40. Desperate [285]

41. DoubleResurrection [8]

42. Doubler [4]

43. Dynamic Two Tits

For Tat [7]

44. EasyGo [4,178]

45. Eatherley [34]

46. Eventual Cycle

Hunter [7]

47. Evolved ANN [7]

48. Evolved ANN 5 [7]

49. Evolved ANN 5 Noise

05 [7]

50. Evolved FSM 16 [7]

51. Evolved FSM 16

Noise 05 [7]

52. Evolved FSM 4 [7]

53. Evolved HMM 5 [7]

54. EvolvedLookerUp1 1

1 [7]

55. EvolvedLookerUp2 2

2 [7]

56. Eugine Nier [233]

57. Feld [33]

58. Firm But Fair [88]

59. Fool Me Forever [7]

60. Fool Me Once [7]

61. Forgetful Fool Me

Once [7]

62. Forgetful Grudger [7]

63. Forgiver [7]

64. Forgiving Tit For

Tat [7]

65. Fortress3 [28]

66. Fortress4 [28]

67. GTFT [92,218]

68. General Soft

Grudger [7]

69. Gradual [44]

70. Gradual Killer [4]

71. Grofman [33]

72. Grudger [33, 42, 44,

178,285]

73. GrudgerAlternator [4]

74. Grumpy [7]

75. Handshake [243]

76. Hard Go By Major-

ity [207]

77. Hard Go By Major-

ity: 10 [7]

78. Hard Go By Major-

ity: 20 [7]

79. Hard Go By Major-

ity: 40 [7]

80. Hard Go By Major-

ity: 5 [7]

81. Hard Prober [4]

82. Hard Tit For 2

Tats [271]

83. Hard Tit For Tat [6]

84. Hesitant QLearner [7]

85. Hopeless [285]

86. Inverse [7]

87. Inverse Punisher [7]

88. Joss [33,271]

89. Knowledgeable

Worse and Worse [7]

90. Level Punisher [8]

91. Limited Retaliate

2 [7]

92. Limited Retaliate

3 [7]

93. Limited Retaliate [7]

94. MEM2 [180]

95. Math Constant

Hunter [7]

96. Meta Hunter Aggres-

sive [7]

97. Meta Hunter [7]

98. Meta Majority [7]

99. Meta Majority Finite

Memory [7]



APPENDIX B. LIST OF STRATEGIES 227

100. Meta Majority Long

Memory [7]

101. Meta Majority Mem-

ory One [7]

102. Meta Minority [7]

103. Meta Mixer [7]

104. Meta Winner [7]

105. Meta Winner Deter-

ministic [7]

106. Meta Winner Ensem-

ble [7]

107. Meta Winner Finite

Memory [7]

108. Meta Winner Long

Memory [7]

109. Meta Winner Mem-

ory One [7]

110. Meta Winner

Stochastic [7]

111. NMWE Determinis-

tic [7]

112. NMWE Finite Mem-

ory [7]

113. NMWE Long Mem-

ory [7]

114. NMWE Memory

One [7]

115. NMWE Stochastic [7]

116. Naive Prober [178]

117. Negation [6]

118. Nice Average

Copier [7]

119. Nice Meta Winner [7]

120. Nice Meta Winner

Ensemble [7]

121. Nydegger [33]

122. Omega TFT [159]

123. Once Bitten [7]

124. Opposite Grudger [7]

125. PSO Gambler 1 1

1 [7]

126. PSO Gambler 2 2

2 [7]

127. PSO Gambler 2 2 2

Noise 05 [7]

128. PSO Gambler Mem1

[7]

129. Predator [28]

130. Prober [178]

131. Prober 2 [4]

132. Prober 3 [4]

133. Prober 4 [4]

134. Pun1 [28]

135. Punisher [7]

136. Raider [30]

137. Random Hunter [7]

138. Random: 0.5 [33,283]

139. Remorseful

Prober [178]

140. Resurrection [8]

141. Retaliate 2 [7]

142. Retaliate 3 [7]

143. Retaliate [7]

144. Revised Downing [33]

145. Ripoff [24]

146. Risky QLearner [7]

147. SelfSteem [57]

148. ShortMem [57]

149. Shubik [33]

150. Slow Tit For Two

Tats [7]

151. Slow Tit For Two

Tats 2 [4]

152. Sneaky Tit For

Tat [7]

153. Soft Go By Major-

ity [35,207]

154. Soft Go By Majority

10 [7]

155. Soft Go By Majority

20 [7]

156. Soft Go By Majority

40 [7]
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157. Soft Go By Majority

5 [7]

158. Soft Grudger [178]

159. Soft Joss [4]

160. SolutionB1 [22]

161. SolutionB5 [22]

162. Spiteful Tit For

Tat [4]

163. Stalker [57]

164. Stein and

Rapoport [33]

165. Stochastic Coopera-

tor [13]

166. Stochastic WSLS [7]

167. Suspicious Tit For

Tat [44,135]

168. TF1 [7]

169. TF2 [7]

170. TF3 [7]

171. Tester [34]

172. ThueMorse [7]

173. ThueMorseInverse [7]

174. Thumper [24]

175. Tit For 2 Tats [35]

176. Tit For Tat [33]

177. Tricky Cooperator [7]

178. Tricky Defector [7]

179. Tullock [33]

180. Two Tits For Tat [35]

181. VeryBad [57]

182. Willing [285]

183. Win-Shift Lose-

Stay [178]

184. Win-Stay Lose-

Shift [169,218,271]

185. Winner12 [193]

186. Winner21 [193]

187. Worse and Worse [4]

188. Worse and Worse 2 [4]

189. Worse and Worse 3 [4]

190. ZD-Extort-2 v2 [172]

191. ZD-Extort-2 [271]

192. ZD-Extort-4 [7]

193. ZD-GEN-2 [172]

194. ZD-GTFT-2 [271]

195. ZD-SET-2 [172]

B.2 List of strategies considered in Chapter 6

The strategies considered in Chapter 6, which are from APL version 4.2.0.

1. e [7]

2. ALLCorALLD [7]

3. AON2 [133]

4. Adaptive [178]

5. Adaptive Pavlov

2006 [159]

6. Adaptive Pavlov

2011 [178]

7. Adaptive Tit For

Tat [283]

8. Aggravater [7]

9. Alexei [233]

10. Alternator [35,207]

11. Alternator Hunter [7]

12. Anti Tit For Tat [135]

13. AntiCycler [7]

14. Appeaser [7]

15. Arrogant QLearner [7]

16. Average Copier [7]

17. Backstabber [7]

18. Better and Better [4]

19. Black [34]

20. Borufsen [34]

21. Bully [212]
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22. Bush Mosteller [145]

23. Calculator [4]

24. Cautious QLearner [7]

25. Cave [34]

26. Champion [34]

27. Colbert [34]

28. CollectiveStrategy [179]

29. Contrite Tit For

Tat [294]

30. Cooperator [35, 207,

234]

31. Cooperator

Hunter [7]

32. Cycle Hunter [7]

33. Cycler CCCCCD [7]

34. Cycler CCCD [7]

35. Cycler CCCDCD [7]

36. Cycler CCD [207]

37. Cycler DC [7]

38. Cycler DDC [207]

39. Davis [33]

40. Defector [35,207,234]

41. Defector Hunter [7]

42. Delayed AON1 [133]

43. Double Crosser [7]

44. Desperate [285]

45. DoubleResurrection [8]

46. Doubler [4]

47. Dynamic Two Tits

For Tat [7]

48. EasyGo [4,178]

49. Eatherley [34]

50. Eventual Cycle

Hunter [7]

51. Evolved ANN [7]

52. Evolved ANN 5 [7]

53. Evolved ANN 5 Noise

05 [7]

54. Evolved FSM 16 [7]

55. Evolved FSM 16

Noise 05 [7]

56. Evolved FSM 4 [7]

57. Evolved HMM 5 [7]

58. EvolvedLookerUp1 1

1 [7]

59. EvolvedLookerUp2 2

2 [7]

60. Eugine Nier [233]

61. Feld [33]

62. Firm But Fair [88]

63. Fool Me Forever [7]

64. Fool Me Once [7]

65. Forgetful Fool Me

Once [7]

66. Forgetful Grudger [7]

67. Forgiver [7]

68. Forgiving Tit For

Tat [7]

69. Fortress3 [28]

70. Fortress4 [28]

71. GTFT [92,218]

72. General Soft

Grudger [7]

73. Getzler [34]

74. Gladstein [34]

75. GraaskampKatzen [34]

76. Gradual [44]

77. Gradual Killer [4]

78. Grofman [33]

79. Grudger [33, 42, 44,

178,285]

80. GrudgerAlternator [4]

81. Grumpy [7]

82. Handshake [243]

83. Hard Prober [4]

84. Hard Tit For 2

Tats [271]

85. Hard Tit For Tat [6]

86. Harrington [34]

87. Hesitant QLearner [7]

88. Hopeless [285]

89. Inverse [7]
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90. Inverse Punisher [7]

91. Joss [33,271]

92. Kluepfel [34]

93. Knowledgeable

Worse and Worse [7]

94. Level Punisher [8]

95. Leyvraz [34]

96. Limited Retaliate

2 [7]

97. Limited Retaliate

3 [7]

98. Limited Retaliate [7]

99. MEM2 [180]

100. Math Constant

Hunter [7]

101. Meta Hunter Aggres-

sive [7]

102. Meta Hunter [7]

103. Michaelos [176]

104. Mikkelson [34]

105. More Tideman and

Chieruzzi [34]

106. Grofman [34]

107. N Tit(s) For M

Tat(s) [7]

108. Naive Prober [178]

109. Negation [6]

110. Nice Average

Copier [7]

111. Nydegger [33]

112. Omega TFT [159]

113. Once Bitten [7]

114. Opposite Grudger [7]

115. PSO Gambler 1 1

1 [7]

116. PSO Gambler 2 2

2 [7]

117. PSO Gambler 2 2 2

Noise 05 [7]

118. PSO Gambler Mem1

[7]

119. Predator [28]

120. Prober [178]

121. Prober 2 [4]

122. Prober 3 [4]

123. Prober 4 [4]

124. Pun1 [28]

125. Punisher [7]

126. Raider [30]

127. Random Hunter [7]

128. Random Tit for

Tat [7]

129. Random: 0.5 [33,283]

130. Remorseful

Prober [178]

131. Resurrection [8]

132. Retaliate 2 [7]

133. Retaliate 3 [7]

134. Retaliate [7]

135. Revised Downing [33]

136. Richard Hufford [34]

137. Ripoff [24]

138. Risky QLearner [7]

139. SelfSteem [57]

140. ShortMem [57]

141. Shubik [33]

142. Slow Tit For Two

Tats 2 [4]

143. Sneaky Tit For

Tat [7]

144. Soft Grudger [178]

145. Soft Joss [4]

146. SolutionB1 [22]

147. SolutionB5 [22]

148. Spiteful Tit For

Tat [4]

149. Stalker [57]

150. Stein and

Rapoport [33]

151. Stochastic Coopera-

tor [13]

152. Stochastic WSLS [7]
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153. Suspicious Tit For

Tat [44,135]

154. TF1 [7]

155. TF2 [7]

156. TF3 [7]

157. Tester [34]

158. ThueMorse [7]

159. ThueMorseInverse [7]

160. Thumper [24]

161. Tideman and

Chieruzzi

162. Tit For 2 Tats [35]

163. Tit For Tat [33]

164. Tranquilizer [33]

165. Tricky Cooperator [7]

166. Tricky Defector [7]

167. Tricky Level Punisher

168. Tullock [33]

169. Two Tits For Tat [35]

170. VeryBad [57]

171. Weiner [34]

172. White [34]

173. Willing [285]

174. Win-Shift Lose-

Stay [178]

175. Win-Stay Lose-

Shift [169,218,271]

176. Winner12 [193]

177. Winner21 [193]

178. WmAdams [34]

179. Worse and Worse [4]

180. Worse and Worse 2 [4]

181. Worse and Worse 3 [4]

182. Yamachi [34]

183. ZD-Extort-2 v2 [172]

184. ZD-Extort-2 [271]

185. ZD-Extort-4 [7]

186. ZD-Extort3 [7]

187. ZD-Extortion [245]

188. ZD-GEN-2 [172]

189. ZD-GTFT-2 [271]

190. ZD-Mem2 [7]

191. ZD-Mischief [245]

192. ZD-SET-2 [172]

B.3 List of strategies considered in Chapter 7

The strategies considered in Chapter 7 for the training subsets.

The top 18 performing strategies of the 218 opponents standard tournament [107]:

1. PSOGambler Mem 1

2. Evolved ANN 5

3. Double Crosser

4. OmegaTFT

5. EvolvedLookerUp 2 2

2

6. Fool Me Once

7. Gradual

8. PSOGambler 2 2 2

Noise 05

9. Evolved HMM 5

10. PSOGambler 1 1 1

11. PSOGambler 2 2 2

12. Evolved ANN

13. Evolved FSM 16

14. Winner 12

15. Back Stabber

16. Evolved FSM 16

Noise 05

17. Evolved ANN Noise

05

18. Evolved FSM 4
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The 15 representative strategies whose ranks are across the 218 ranks of the standard

tournament:

1. Eatherley

2. Cautious Q Learner

3. Forgiver

4. Gladstein

5. Punisher

6. Easy Go

7. Tricky Cooperator

8. Anti Tit For Tat

9. Tit For Tat

10. PSO Gambler 2 2 2

Noise 05

11. Evolved HMM 5

12. e

13. Pun1

14. A Pavlov 2006

15. GraaskampKatzen

16. Hard Tit For Tat

The 11 strategies which are classified as a set of basic strategies in the APL:

1. Alternator

2. AntiTitForTat

3. Bully

4. Cooperator

5. Cycler DC

6. Defector

7. Grudger

8. Suspicious Tit For

Tat

9. Tit For Tat

10. Win Shift Lose Stay

11. Win Stay Lose Shift
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Appendix C

Further analysis on features

importance

C.1 Correlation coefficients of strategies features

A graphical representation of the correlation coefficients for the features of Table 4.5,

Chapter 4.
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Figure C.1: Correlation coefficients of features in Table 4.5 for standard tournaments
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Figure C.2: Correlation coefficients of features in Table 4.5 for noisy tournaments
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Figure C.3: Correlation coefficients of features in Table 4.5 for probabilistic ending
tournaments
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Figure C.4: Correlation coefficients of features in Table 4.5 for noisy probabilistic
ending tournaments
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Figure C.5: Correlation coefficients of features in Table 4.5 for data set
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C.2 Multivariate linear regressions on median score

A multivariate linear regression has also been fitted to model the relationship between

the features and the median score. The features included are given by Table C.1

alongside their corresponding p values in the distinct tournaments and their regression

coefficients.

Standard Noisy Probabilistic ending Noisy probabilistic ending Overall

R adjusted: 0.576 R adjusted: 0.679 R adjusted: 0.816 R adjusted: 0.930 R adjusted: 0.318

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

CC to C rate 0.043 0.000 -0.380 0.000 0.224 0.000 0.078 0.0 0.308 0.0

CD to C rate -0.325 0.000 0.124 0.000 0.060 0.000 0.073 0.0 -0.014 0.0

Cr / Cmax - - -1.044 0.000 - - -1.251 0.0 - -

Cr / Cmean 0.553 0.000 -0.101 0.000 -1.136 0.000 -0.089 0.0 -0.665 0.0

Cmax 0.059 0.000 - - -0.044 0.086 -1.396 0.0 - -

Cmean 1.837 0.000 3.078 0.000 1.506 0.000 3.645 0.0 - -

Cmin 0.156 0.000 1.528 0.000 0.311 0.000 - - - -

Cmin / Cr -0.049 0.000 -0.378 0.000 -0.204 0.000 - - -0.257 0.0

DC to C rate -0.204 0.000 0.074 0.000 0.066 0.000 0.066 0.0 0.007 0.0

k -0.000 0.853 -0.000 0.987 0.000 0.008 0.000 0.0 - -

n -0.000 0.000 - - - - - - - -

pe - - - - 0.025 0.000 -0.095 0.0 - -

pn - - 0.124 0.000 - - - - - -

SSE -0.294 0.000 -0.319 0.000 0.055 0.000 0.010 0.0 -0.015 0.0

constant 0.925 0.000 1.536 0.000 2.466 0.000 2.299 0.0 2.924 0.0

memory usage 0.010 0.000 -0.004 0.000 - - - - - -

Table C.1: Results of multivariate linear regressions with the median score as the
dependent variable. R squared is reported for each model.

C.3 Evaluation based on clustering and random forest.

The final method to evaluate the features importance in a strategy’s success is a com-

bination of a clustering task and a random forest algorithm. Initially the performances

are clustered into different clusters based on them being successful or not. The per-

formances are clustered into successful and unsuccessful clusters based on 4 different

approaches. More specifically:

• Approach 1: The performances are divided into two clusters based on whether

their performance was in the top 5% of their respective tournaments. Thus,

whether r was smaller or larger than 0.05.

• Approach 2: The performances are divided into two clusters based on whether

their performance was in the top 25% of their respective tournaments. Thus,
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whether r was smaller or larger than 0.25.

• Approach 3: The performances are divided into two clusters based on whether

their performance was in the top 50% of their respective tournaments. Thus,

whether r was smaller or larger than 0.50.

• Approach 4: The performances are clustered based on their normalised rank

and their median score by a k−means algorithm [21]. The number of clusters is

not deterministically chosen but it is based on the silhouette coefficients [248].

Once the performances have been assigned to a cluster for each approach a random

forest algorithm [56] is applied. The problem is a supervised problem where the random

forest algorithm predicts the cluster to which a performance has been assigned to using

the features of Table 4.5. The random forest models are trained on a training set of

70% of the tournaments results. The accuracy of each model based on R2 and the

number of clusters for each tournament type (because in the case of Approach 4 it

is not deterministically chosen) are given by Table C.2. The out of the bag error

(OOB) [128] has also been calculated. The models fit well, and a high value of both

the accuracy measures on the test data and the OOB error indicate that the model is

not over fitting.

Tournament type Clustering Approach Number of clusters R2 training data R2 test data R2 OOB score

standard Approach 1 2 0.998831 0.987041 0.983708

Approach 2 2 0.998643 0.978626 0.969202

Approach 3 2 0.998417 0.985217 0.976538

Approach 4 2 0.998794 0.990677 0.982959

noisy Approach 1 2 0.997786 0.972229 0.968332

Approach 2 2 0.997442 0.963254 0.955219

Approach 3 2 0.997152 0.953164 0.940528

Approach 4 3 0.996923 0.950728 0.935444

probabilistic ending Approach 1 2 0.997909 0.981490 0.978120

Approach 2 2 0.997883 0.973492 0.967150

Approach 3 2 0.990448 0.890068 0.875822

Approach 4 2 0.999636 0.995183 0.992809

noisy probabilistic ending Approach 1 2 0.995347 0.957846 0.952353

Approach 2 2 0.992813 0.909346 0.898613

Approach 3 2 0.990579 0.824794 0.806540

Approach 4 4 0.989465 0.841652 0.824052

over 45,600 tournaments Approach 1 2 0.997271 0.972914 0.969198

Approach 2 2 0.996323 0.951194 0.940563

Approach 3 2 0.993707 0.906941 0.891532

Approach 4 3 0.993556 0.913335 0.898453

Table C.2: Accuracy metrics for random forest models.
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The importance that the features of Table 4.5 had on each random forest model are

given by Figures C.6, C.7, C.8, C.9 and C.10. These show that the classifiers stochastic,

make use of game and make use of length have no significant effect, and several of the

features that are highlighted by the importance are inline with the correlation results.

Moreover, the smoothing parameter k appears to no have a significant effect either.

The most important features based on the random forest analysis were Cr/Cmedian and

Cr/Cmean.
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Figure C.6: Importance of features in standard tournaments for different clustering
methods.
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Figure C.7: Importance of features in noisy tournaments for different clustering meth-
ods.
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Figure C.8: Importance of features in probabilistic ending tournaments for different
clustering methods.
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Figure C.9: Importance of features in noisy probabilistic ending tournaments for dif-
ferent clustering methods.



APPENDIX C. FURTHER ANALYSIS ON FEATURES IMPORTANCE 242

C r
 / 

C m
in

C r
 / 

C m
ea

n

D
C 

to
 C

 ra
te

C r
 / 

C m
ed

ia
n

C m
ed

ia
n

C r
 / 

C m
ax

 
CD

 to
 C

 ra
te SS
E C r

C m
ea

n

D
D

 to
 C

 ra
te

CC
 to

 C
 ra

te
C m

in

C m
ax N k

M
ak

e 
us

e 
of

 g
am

e
M

ak
e 

us
e 

of
 le

ng
th

st
oc

ha
st

ic

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Feature importances on 5%

(a) Importance of features for clusters on 5%
performance.

C r
 / 

C m
ed

ia
n

C r
 / 

C m
ea

n

C r
 / 

C m
ax

 
D

C 
to

 C
 ra

te
C m

ed
ia

n

C m
ea

n

C r
 / 

C m
in

SS
E

CC
 to

 C
 ra

te
D

D
 to

 C
 ra

te C r
CD

 to
 C

 ra
te

C m
ax

C m
in N k

M
ak

e 
us

e 
of

 le
ng

th
st

oc
ha

st
ic

M
ak

e 
us

e 
of

 g
am

e

0.00

0.05

0.10

0.15

0.20

0.25

Feature importances on 25%

(b) Importance of features for clusters on 25%
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performance.
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Figure C.10: Importance of features over all the tournaments for different clustering
methods.
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Appendix D

Table of parameters (per

Chapter)

The parameters used throughout the thesis. There are given by Table D.1 alongside a

brief explanation. Note that they are reported by Chapter.
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Parameter Explanation

Chapter 3 N number of abstracts

n number of topics

cji the percentage contributions of the ith topic for the jth abstract

c∗ the highest percentage contribution

Chapter 4 N number of strategies

k number of tournament repetitions

n number of turns per match

pn the probability of noise

pe the probability of the match ending in the next turn

Cr the cooperation rate of a strategy

R the rank of a strategy

r the normalised rank of strategy calculated as R/N − 1

r̄ the median normalised rank of a strategy

Cmax the maximum cooperation rate of a given tournament

Cmin the minimum cooperation rate of a given tournament

Cmean the mean cooperation rate of a given tournament

Cmedian the median cooperation rate of a given tournament

Cr / Cmax a strategy’s cooperation rate divided by Cmax

Cmin / Cr Cmin divided by a strategy’s cooperation rate

Cr / Cmedian a strategy’s cooperation rate divided by Cmedian

Cr / Cmean a strategy’s cooperation rate divided by Cmean

Chapter 5 N number of opponents

p a vector describing a given memory-one/reactive player

q a vector describing a given memory-one opponent

K the number of self interactions

Chapter 6 N number of turns

S a sequence player

Q an given opponent which can be any IPD strategy

P a population of potential best response sequences

b the bottleneck

G a number of genetic algorithm generations

pm the probability that each gene of an sequence being flipped

K maximum size of a population

Chapter 7 x input

y expected output

ŷ predicted output

φ activation function

N number of turns in a sequence

po the probability of opening with a cooperation

t the number of time steps in a sequence

s the size of a tournament

k number of tournament repetitions

n number of turns per match

R the rank of a strategy

r the normalised rank of strategy calculated as R/N − 1

r̄ the median normalised rank of a strategy

p the probability of cooperating at each turn

Table D.1: The parameters used throughout the thesis per Chapter.
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