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Abstract

Background: The complement cascade is increasingly implicated in development of a variety of diseases with
strong immune contributions such as Alzheimer’s disease and Systemic Lupus Erythematosus. Mouse models have
been used to determine function of central components of the complement cascade such as C1q and C3.
However, species differences in their gene structures mean that mice do not adequately replicate human
complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in
modifying disease states but the mechanisms are not known.

Results: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to
replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of
allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most
common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a
CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways
differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment
analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO.

Conclusion: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-
relevant CR1 alleles and disease.

Keywords: Complement cascade, Complement regulators, Immune cells, Alzheimer’s disease, Lupus, Hematopoietic
cells, Immune cell infiltration

Background
The complement cascade is an integral component of
our innate immune response and a first line of defense
against bacterial infections. Various components of the
complement cascade are constantly surveying for invad-
ing pathogens or debris, and tagging them for destruc-
tion. This system is composed of a number of plasma

and membrane bound proteins and is tightly regulated.
Circulating complement components are produced in
the liver but can also be produced by specific cells in
tissues.
In recent years, the recognized roles of the comple-

ment cascade have expanded. For example, the comple-
ment cascade is integral for the process of synapse
pruning during development and disease [68, 70], for
regulation of embryo survival [46, 84], and for tissue re-
generation [19, 49, 66]. Many of these novel roles were
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initially identified from animal models before being vali-
dated in human studies.
While animal models have proven fruitful in deliv-

ering greater understanding of the central compo-
nents of the complement cascade such as C1q and
C3, there are current limitations in studying human
complement regulation in mice. In humans, the com-
plement cascade is regulated in part by a series of
genes on human chromosome 1 within the Regulators
of Complement Activation (RCA) cluster [30, 42, 43,
63, 64, 76]. A major difference in the RCA cluster be-
tween humans and mice is in the locus encoding
Complement Receptor 1 (CR1/CD35), that is absent
in mice [25, 33, 54]. CR1 is both a receptor and a
negative regulator of the complement cascade, binding
to C3b, C4b, C1q, and MBL proteins. The interac-
tions with C3b and C4b are considered to be the
major function of this receptor [32, 39, 40, 80, 85].
Genetic variation in CR1 has been associated with a

variety of diseases, such as Alzheimer’s disease [3, 8, 9,
12, 27, 34, 36, 41, 72], Malaria [4, 37, 71, 83], and Sys-
temic Lupus Erythematous [5, 13, 29, 35, 37, 48, 52, 53,
60, 65, 75, 78, 82]; however, in many cases the precise
genetic variations have not been identified. CR1 has at
least four allotypes: CR1-F, CR1-S, CR1-F′ and CR1-D
(also known as CR1-A, CR1-B, CR1-C and CR1-D re-
spectively) [20–23, 73]. These four allotypes differ in size
through presence or absence of long homologous re-
peats (LHRs; each comprising seven short consensus re-
peats [SCRs]); the commonest form, CR1-F (gene
frequency 0.87 in Caucasians), comprises four LHR and
a total of 30 SCRs while the CR1-S allotype (gene fre-
quency 0.11) comprises five LHRs and a total of 37 SCRs
[28, 80]. Some studies suggest different allotypes may be
responsible for modifying risk for disease but currently
there is no effective model system in which to test this
[2, 3, 7, 27]. To address this knowledge gap, we created
a novel mouse model that enables the expression of dif-
ferent forms of human CR1 that we refer to as CR1long

(equivalent to CR1-S) and CR1short (equivalent to CR1-F)
(Fig. 1). Previous mouse models have relied on either the
mouse Cr2 or Crry genes or on transgenically expressed
forms of CR1 to study the function of human CR1 in
mice [18, 38, 44, 45, 47, 55, 57–59, 81]. For instance, in
the model created by Pappworth et al., human forms of
CR1 and CR2 were expressed in mice using a transgenic
approach and functional assessments made in a mouse
Cr2-deficient background [55]. In the model we now
present here, CR1 is expressed within the equivalent re-
gion of the mouse genome with human relevant pro-
moter and regulatory sequences in conjunction with the
expression of human CR2 driven by the mouse Cr2 pro-
moter. Transcriptional profiling of the spleen and brain
reveals significant differences in gene expression

between mice carrying different allotypes of CR1 sup-
porting the use of this new mouse model as a tool for
studying CR1-dependent disease mechanisms.

Results
Chimeras produce viable, construct-carrying pups with
successful Germline transmission
To overcome species differences between mice and
humans, we developed a new mouse model that, in the
place of mouse Cr2 (mCr2), expresses human CR2 and
CR1 (Figs. 1a-b and 2, see Methods). The B6.CR2CR1
mouse model is capable of expressing two isoforms of
CR1 (CR1long and CR1short, Figs. 1b) representing com-
mon allotypes predicted to be relevant to human disease
[2, 3, 27]. The difference between CR1long and CR1short is
the number of LHR regions (Figs. 1c). To maximize rele-
vance to human CR1 regulation, we have incorporated
the human intergenic region (HIR) between the CR2 and
CR1 genes (Fig. 2). To create the B6.CR2CR1 strain, B6
ES cells were targeted with a synthetic construct using
recombineering (Fig. 2a, see methods). Twenty-eight chi-
meras, derived from two chimeric lines (5H4 and 5E2,
Fig. 2b), were assayed for the presence of the construct.
Chimeric mice carrying the synthetic construct were
bred to B6Tyr, and all black progeny were genotyped to
confirm transmission (Fig. 2c). No sex bias was seen
with regards to transmission of the construct. Once
germline transmission, and no sex bias, was confirmed
the development of the CR1 allelic series (CR1long,
CR1short, CR1KO) was performed (Fig. 2c). All genotypes
developed through the allelic series were successfully
bred to homozygosity through brother/sister matings.
Allele-specific genotyping was used to determine the
presence or absence of specific regions that defined each
strain (mCr2, CR2, CR1long, CR1short, CR1KO, HIR; Fig. 3,
see methods). Of note, the initial establishment of the
B6.CR2CR1KO/KO line proved difficult, as low numbers
of homozygous mice were generated. However, once a
male and female B6.CR2CR1KO/KO were identified, a
mating pair was established, and the litter sizes were
comparable to those of the other strains.

RNA and protein expression of CR1 and CR2 in spleens of
B6.CR2CR1 mice
To establish RNA and protein expression of CR1 and
CR2, splenic tissue was assessed. As a primary organ of
murine Cr2 expression and complement-dependent im-
mune complex processing, the spleen was an ideal target
to validate the expression of human CR1 and CR2.
cDNA was generated from whole spleens of 3 males and
3 females from each genotype. Targeted primers con-
firmed the presence of human CR2 and CR1 in the
spleen and the absence of mouse Cr2 (Fig. 4a-e). For
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CR1, primers designed for CR1 targeted both exon 2 and
a region spanning exons 4 and 5. This strategy enabled
identification of B6.CR2CR1KO/KO mice that produced a
transcript containing only the first two exons but not
exons 4 and 5. As expected, Crry transcript, a mouse-
specific gene that lies downstream of Cr2, was seen in all
samples (Fig. 4e).
To evaluate expression of human CR1 and CR2 pro-

tein isoforms, first, western blotting using an anti-CR1
antibody was performed on spleen samples from
B6.CR2CR1long/long, B6.CR2CR1short/short and B6 mice. An
approximately 250 kDa band was detected in
B6.CR2CR1long/long mice, while an approximately 225
kDa band was detected in B6.CR2CR1short/short mice

(Figs. 4f and S1). These data agree with the predicted
sizes based on the amino acid sequences for CR1long

(273 kDa, 2494 amino acids) and CR1short (223 kDa,
2044 amino acids) (see Supplement File 1). CR1 protein
expression appeared greater B6.CR2CR1short/short com-
pared to B6.CR2CR1long/long mice. No band was present
at either of these sizes in B6 control mice. To quantify
CR1 and CR2 protein expression in the spleen, western
blots were performed on B6.CR2CR1long/long,
B6.CR2CR1short/short, B6.CR2CR1KO/KO and B6 mice
(Figs. 5a-c and S2). Samples from B6.CR2CR1long/long

mice showed significantly lower levels of CR1 protein
expression compared to samples from B6.CR2CR1short/-
short mice (Fig. 5b-c).

Fig. 1 The B6.CR2CR1 strain incorporates human CR2 and common isoforms of human CR1 into the mouse RCA cluster. a Humans and B6 mice
differ in the genes they contain within the regulation of complement activation (RCA cluster). Human genes (blue boxes) include CR2, CR1 and
CR1L whereas B6 mouse genes (red boxes) include Cr2 and Crry. b-c The B6.CR2CR1 strain contains the human CR2 gene and a long form of the
human CR1 gene (containing multiple Long Homologous Repeats, LHR). Through recombination using the Flp/FRT system, one LHR (LHR’) can be
removed from the CR1 gene. Through recombination using the Cre/LoxP system, the majority of the human CR1 gene can be deleted
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Mice of all genotypes showed a band of similar inten-
sity at ~ 148 kDa – the expected size of the orthologous
CR2 isoform in humans and mice (Figs. 5d-f Fig. S2). In
addition, a second ~ 190 kDa band was observed that we
expect to be the second CR2 isoform known to be
expressed in mice. The 148 kDa band showed greatest
expression in B6 mice, but very low levels of expression
in some mice expressing human forms of CR2. This may
be due to the fact that the human CR2 transcript expres-
sion is driven from the mouse Cr2 promoter, and in-
cludes the mouse Cr2 5′ UTR. Therefore, we cannot
rule out a small amount of alternatively spliced human

CR2 in the B6.CR2CR1 mice. A third band, a little
smaller than 148 kDa, was only observed in B6 mice but
not B6.CR2CR1 mice and may indicate an as yet unchar-
acterized CR2 isoform.

CR1long modifies expression of more genes in the brain
and spleen compared to CR1short

Transcriptional profiling was performed to identify
transcriptional differences between B6.CR2CR1 and B6
mice. Spleen and brain samples from three male and
three female B6.CR2CR1long/long, B6.CR2CR1short/short,
B6.CR2CR1KO/KO and B6 controls were assessed (24

Fig. 2 Creation of the B6.CR2CR1 mouse strain. a The synthetic construct inserted into the B6 mouse genome (red bars) at the Cr2 locus
encompasses both the human CR2 and CR1 genes (blue bars), and included the human intergenic region between CR2 and CR1 (green bar).
Human CR2 sequence was based on NCBI reference sequence NM_001006658. Two introns (equivalent to introns 11 and 19) were included in
human CR2 gene. Intron 19 contained a neomycin cassette (PGKNEO) flanked by AttB and AttP sites. Human CR1 sequence was based on NCBI
reference sequence NM_000651. Three introns (equivalent to introns 3, 12 and 20) were included in the human CR1 gene. LoxP sites were added
to introns 3 and 20, FRT sites were added to introns 12 and 20. See Supplemental File CR1 and CR2 protein alignments for comparison of CR1long,
CR1short and CR2 protein sequences to reference protein sequence. b Example images of chimeras and progeny from the 5H4 ES cell line. Black
pups were genotyped for the presence of the synthetic construct and used to establish subsequent strains. c The breeding schemes to generate
strains and experimental cohorts
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samples in total). There were no differences between
male vs female for each of the three comparisons, so
samples were pooled by genotype to increase the quan-
tity from three (three per sex) to six (pooled sexes). First,
the spleen samples were analyzed (Fig. 6a-c). Compared
to B6 controls, B6.CR2CR1long/long mice showed a greater
number of differentially expressed (DE) genes than
B6.CR2CR1short/short mice (104 and 38 genes respectively,
Tables S1 and S2). Only ten genes were DE when com-
paring B6.CR2CR1KO/KO mice to B6 (Table S3) suggest-
ing that, at least in the spleens of young, healthy mice,
the human CR2 gene functions similarly to mouse Cr2.
Interestingly, the expression of the CR1short transcript
was almost twice as high as the CR1long transcript (9.4
counts per million (cpm) compared to 5.6 cpm respect-
ively) supporting our previous data that showed a
greater amount of CR1short protein in comparison to
CR1long protein (Figs. 4f, 5, S1 and S2).
To predict functional relevance of the 104 DE genes

comparing spleen samples from B6.CR2CR1long/long com-
pared to B6, Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) term enrichment ana-
lyses were performed. Four KEGG pathways were signifi-
cantly enriched (p < 0.05), with two of the four relevant
to amylase related genes (starch and sucrose metabolism,
carbohydrate digestion and absorption) and the other
two pathways (African trypanosomiasis and malaria)

driven by ‘heme’ related genes. Enriched biological pro-
cesses included metabolic terms such as ‘cellular oxidant
detoxification’ and ‘carbohydrate catabolic process’.
Interestingly, ‘negative regulation of histone acetylation’
was significant, suggesting that expression of CR1 in
B6.CR2CR1long/long mice may affect some epigenetic
signatures when compared to B6 controls. For molecular
function (MF), GO terms showed changes relating to
binding, such as ‘haptoglobin binding’, ‘chloride ion
binding’, ‘organic acid binding’ and ‘copper ion binding’,
indicating that the CR1long gene may be playing a role in
intracellular binding (Fig. 6c). None of these pathways or
GO terms were enriched in the DE genes comparing
samples from B6.CR2CR1short/short mice or
B6.CR2CR1KO/KO to B6.
The number of DE genes was greater in the brain

when compared to the spleen (Fig. 6d). There were
183 DE genes identified by comparing
B6.CR2CR1long/long mice to B6 (Table S4), 58 DE
when comparing B6.CR2CR1short/short with B6 (Table
S5), and only 5 DE genes between B6.CR2CR1KO/KO

and B6 (Table S6). This trend reflects the results seen
in the spleen, indicating that expression of CR1long in
mice had the greatest effect on gene expression in the
brain compared with mice expressing either CR1short

or CR1KO. The CR1long transcript was expressed at a
much lower levels in the brain (0.5 cpm on average)

Fig. 3 Validation of genomic regions within the B6.CR2CR1 strains. a Location of primer pairs (black arrows) used to validate genomic regions. b
The presence and absence of bands confirmed the presence or absence of each of the genomic regions and confirmed the Crry gene has not
been disrupted. Mouse Cr2 = 300 bp product. Human CR2 = 198 bp product. CR1long = ~ 800 bp product. CR1short (deletion between intron 12 and
intron 20) = no product. CR1KO (deletion between intron 3 to intron 20, Fig. 2a) = no product. CR2CR1 Human Intergenic Region (HIR) = 291 bp
product. Crry = 190 bp product. L – Ladder (100 bp ladder, arrow is 500 bp). 1 – heterozygous B6.CR2CR1long/+ with Neomycin cassette. 2 –
homozygous B6.CR2CR1long/long. 3 – homozygous B6.CR2CR1short/short. 4 – homozygous B6.CR2CR1KO/KO. 5 – B6. 6 – Water
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compared to the spleen, while no CR1short transcripts
were detected in the brain.
To identify the biological relevance of the 183 genes

DE in brains of B6.CR2CR1long/long compared to B6,
KEGG and GO term gene set enrichment was per-
formed. Only one KEGG pathway, ‘Fanconi anemia
pathway’ was significant (p < 0.05) in the DE gene set be-
tween B6.CR2CR1long/long and B6 controls. Enrichment
of this pathway was driven by the genes ‘Wdr48’, ‘Atr’,
and ‘Rev1’ which respond to DNA damage. GO BP terms

associated with differences between B6.CR2CR1long/long

and B6 controls identified ‘regulation of transcription,
DNA-templated’, ‘phosphorylation’, and ‘cellular re-
sponse to DNA damage stimulus’ indicating DNA-
damage response genes may be affected by the CR1long.
GO MF analysis identified terms involved in kinase ac-
tivity and DNA binding, further suggesting potential in-
volvement in DNA repair mechanisms. No pathways or
GO terms were enriched in mice expressing either
CR1short or CR1KO (compared to B6) further supporting

Fig. 4 Generation of transcript and protein from the humanized region of the B6.CR2CR1 mice. a-c Each graphic depicts the humanized CR2CR1
region (a), mouse Cr2 gene (b) and mouse Crry gene (c). Black arrows denote the location of primer pair. d All B6.CR2CR1 mice show expression
of human CR2 and CR1 (exon 2). Only B6.CR2CR1long/long and B6.CR2CR1short/short show expression of CR1 exons 4–5. e Only B6 mice show mouse
Cr2 expression. All mice show expression of mouse Crry. L- Ladder (100 bp ladder, arrow is 500 bp). 1 – Female B6.CR2CR1long/long. 2 – Male
B6.CR2CR1long/long. 3 – Female B6.CR2CR1short/short. 4 –Male B6.CR2CR1short/short. 5 – Female B6.CR2CR1KO/KO. 6 – Male B6.CR2CR1KO/KO. 7 – Female B6.
8 – Male B6. 9 - Water. Product sizes for RT-PCR are provided in the methods. f Western blot indicating B6.CR2CR1 mice produce protein products
at their expected molecular weight. B6.CR2CR1long/long mice produce a product larger than that of their B6.CR2CR1short/short counterparts. No
product was observed in B6 controls. Intensity of CR1 protein in B6.CR2CR1short/short mice appears greater than in B6.CR2CR1long/long mice
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a model whereby CR1long protein causes more changes
to gene expression levels compared to CR1short.

CR1long, but not CR1short, is predicted to modulate
hematopoietic cell quantity and cell infiltration
To predict the functional consequences of the genes
modified in B6.CR2CR1long/long, B6.CR2CR1short/short and
B6.CR2CR1KO.KO mice compared to B6, ‘Disease and
Function Analysis’ was performed in IPA. This function
predicts increases or decreases in downstream biological
activities using the direction of change of the genes in
each DE gene list. In the spleen, multiple functional
terms were predicted to be increased with the DE genes
comparing B6.CR2CR1long/long with B6. These could be
generally classified as being related to regulation of
hematopoietic cell number and were predicted to be ac-
tivated (Fig. 7a). Two terms considered significant were
‘quantity of erythroid precursor cells’ and ‘quantity of

myeloid cells’. Interestingly, genes associated with these
terms were generally downregulated, including Hba-a1
(− 39.74 fold), Hba-a2 (− 19.25 fold) and Hbb-bs (− 20.00
fold) which all encode for hemoglobin subunits (Fig. 7b,
c). These data suggest that there is an effect of the
CR1long allele on hematopoietic quantity, possibly spe-
cific to red blood cells, in the spleen. These functional
consequences were not associated with DE genes when
comparing samples from either B6.CR2CR1short/short or
B6.CR2CR1KO/KO with B6.
In the brain samples, functional consequences associ-

ated with DE genes comparing B6.CR2CR1long/long with
B6 samples included ‘cellular infiltration by leukocytes’
and ‘infiltration by neutrophils’ (p < 0.05, Fig. 7d). DE
genes associated with these terms were generally upreg-
ulated including Hyal1 (14.78 fold), Tlr9 (3.44 fold) and
Cd276 (4.59 fold) (Fig. 7e,f). HYAL1, a lysosomal hyal-
uronidase that degrades hyaluronan (a major constituent

Fig. 5 Evaluating CR1 and CR2 protein expression in the spleens of CR2CR1 mice. a-c Western blot using anti-CD35/CR1 indicating presence of
an approximately 250 kDa band in B6.CR2CR1long/long mice but an approximately 250 kDa band in B6.CR2CR1short/short mice. No bands of these sizes
were detected in either B6.CR2CR1KO/KO or B6 mice. Comparing the CR1long:vinculin ratio with CR1short:vinculin ratio it is clear that CR1short is more
highly expressed in the spleen than CR1long. d-f Western blot using anti-CD21/CR2 indicating presence of a 148 kDa band in all samples and a
190 kDa band strongly expressed in B6 mice – likely representing the alternative spliced product previously identified in mice. A very faint band
appears in some B6.CR2CR1 samples. An additional previously uncharacterized band, smaller than ~ 148 kDa, is also observed in B6 mice. Loading
control = Vinculin (VIN)
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of extracellular matrix), has been shown to be involved
in cell proliferation, migration and differentiation [1].
TLR9, a toll-like receptor, plays a critical role in patho-
gen recognition and activation of innate immunity [11,
67]. CD276, also known as B7-H3, a member of the im-
munoglobulin superfamily, plays a role in T cell-
mediated immune responses [10, 15]. Collectively, these
data predict CR1long and CR1short in the brain will differ-
entially modulate immune-like cells such as resident
microglia or the infiltration and functioning of peripher-
ally derived immune cells – functional differences that
may alter risk for diseases such as Alzheimer’s disease.

Discussion
Here, we present a new mouse model expressing the hu-
man proteins CR1 and CR2 that will be of value to study
of an array of human diseases including Alzheimer’s dis-
ease [3, 8, 9, 12, 27, 34, 36, 41, 72], Systemic Lupus Ery-
thematosus [5, 13, 29, 35, 37, 48, 52, 53, 60, 65, 75, 78,
82] and infections such as malaria [4, 37, 71, 83]. We
show that the humanized B6.CR2CR1 strain expresses
CR2 in place of mouse Cr2 and is capable of express-
ing two different isoforms of human CR1 – a long
form (2494 amino acids) and a short form (2044
amino acids, lacking one long homologous repeat).

CR1 and CR2 are important regulators of the comple-
ment cascade but their specific roles in human dis-
eases have been difficult to study in mouse models
due to species differences between humans and mice
(Fig. 1) [18, 38, 44, 45, 47, 55, 57–59, 81].
The B6.CR2CR1 mouse model leaves the mouse Crry

gene intact. Interestingly, while the murine CD21/Cr2
gene undergoes alternative splicing to encode the two
complement receptors, CR1 and CR2; the additional N-
terminal domains in CR1 represent duplications of se-
quences derived from Crry [33]. In primates, the CR2
gene has lost the ability to encode CR1. The human CR1
gene derives from the sub-primate Crry gene through
amplification/duplication events; Crry was effectively
sacrificed in primates as a consequence. It will be inter-
esting to determine the functional relationship and any
interactions between Crry and human forms of CR1 and
CR2 in this model.
We anticipate this mouse model will provide an im-

portant resource for elucidating the functions of CR1
and CR2 in human diseases – however further work is
required to assess its full potential. First, it will be neces-
sary to validate that human forms of CR1 and CR2 regu-
late the mouse complement system in a similar fashion
to those seen in human studies. To do this, both CR2

Fig. 6 Transcriptional Profiling of the Spleen and Brain. a Number of differentially expressed (DE) genes (p < 0.05) in the spleen for i)
B6.CR2CR1long/long compared to B6, ii) B6.CR2CR1short/short compared to B6, and iii) B6.CR2CR1KO/KO compared to B6. b Biological Process (BP) GO
terms associated with the 104 DE genes between B6.CR2CR1long/long compared to B6 in the spleen. c Molecular Function (MF) GO terms
associated with the 104 DE genes between CR2CR1long/long compared to B6. d Number of DE genes between each previous comparison in the
brain. e Biological Process (BP) GO terms associated with the 183 DE genes between CR2CR1long/long compared to B6. f Molecular Function (MF)
GO terms associated with the 183 DE genes between B6.CR2CR1long/long compared to B6. Dot size correlates to number of genes in the pathway
associated with each term (see Table S7)
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and CR1 (long and short forms) will need to be tested
for their ability to bind mouse C3b, C4b and C1q, three
central components of the cascade. Second, creating
new antibodies that specifically recognize the human
isoforms of CR1 expressed in this mouse is required to
confirm tissue and cellular distribution patterns in
health and disease. Commonly used mouse anti-human
CR1 monoclonal antibodies were tested but were unsat-
isfactory in the B6.CR2CR1 mouse. Some previous stud-
ies show available anti-CR1 and anti-CR2 antibodies are
inconsistent between assays and tissues samples [26].
Testing existing and new antibodies for human CR1 and
CR2 in the B6.CR2CR1 strain as well as in strains defi-
cient in mouse CR2 protein (B6.Cr2KO) and mouse
CRRY protein (B6.CrryKO) will eliminate the antibody
specificity issue and potential for cross-reactivity due to

similarities between these homologous genes. Establish-
ing the gene expression patterns of human CR2 and
CR1 in specific cell types, particularly in the bone mar-
row, blood, spleen and blood, will be necessary. Human
CR1 is broadly expressed, albeit in varying quantities, on
the plasma membranes of blood derived cells, including
erythrocytes, eosinophil, monocytes/macrophages, B-
lymphocytes, dendritic cells and a sub-set of CD4+ T-
cells [17, 24, 50, 51, 56, 61, 62, 77], on endothelia and
numerous cell types in tissues. Erythrocyte CR1 plays an
integral role in the clearance of soluble immune com-
plexes, transporting them to macrophages in the spleen
and Kupffer cells in the liver [14, 16], allowing for these
cells to engulf and eliminate immune complexes [69,
74]. The levels of CR1 expression on erythrocytes can
differ due to a HindIII restriction fragment length

Fig. 7 CR1long is predicted to modulate hematopoietic cell quantity in the spleen and immune cell infiltration in the brain. (A) Disease and
Function analytic (IPA) of transcriptional profiling data in the spleen identifies a significant positive association of DE genes in B6.CR2CR1long/long

compared to B6 samples with ‘Quantity of erythroid precursor cells’ and ‘Quantity of myeloid cells’ (p < 0.05). (B) Genes associated with ‘Quantity
of erythroid precursor cells’ associated genes and their effects. (C) Genes associated with ‘Quantity of myeloid cells’. (D) Disease and Function
analytic (IPA) of genes DE comparing B6.CR2CR1long/long with B6 samples in the brain identifies a significant positive association with ‘Cellular
infiltration by leukocytes’ and ‘Infiltration by neutrophils’. (E) Genes associated with ‘Cellular infiltration by leukocytes’. (F) Genes associated with
‘Infiltration by neutrophils’. Figures reproduced from IPA; shapes, colors, and color intensity follow IPA legend details. Orange = predicted
activation, blue is deactivation. Red = increased expression in B6.CR2CR1long/long compared to B6 samples. Green = decreased expression in
B6.CR2CR1long/long compared to B6 samples
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polymorphism, which corresponds to a SNP in intron 27
of the CR1 gene [79]. Interestingly, CR1 transcript and
protein levels were greater in spleens of mice expressing
CR1short compared to CR1long (Figs. 4, 5). This may indi-
cate reduced expression of CR1long compared to CR1short

per cell and/or differences in the numbers of CR1+ cells
in the spleen. Differences in cell number may indicate
general baseline differences in hematopoietic cell num-
bers, or differences in the numbers of CR1+ cells being
trafficked from the bone marrow and blood to the
spleen. Differences in protein expression may also reflect
efficiency of presentation of the different isoforms of
CR1 protein at the cell membrane. However, transcript
analysis indicated a similar reduction in expression levels
of CR1long compare to CR1short. While the functional sig-
nificance of these differences remains to be elucidated,
the B6.CR2CR1 mouse model provides an ideal platform
to determine the mechanisms by which the CR1long and
CR1short isoforms impact health, the aging process and
disease.
The B6.CR2CR1 mouse model also provides an im-

portant platform for studying the function of single nu-
cleotide polymorphisms (SNPs) that have been shown to
modify CR1 and CR2 function and increase risk for hu-
man disease. Several exonic SNPs have been suggested
to influence the stability of CR1 on erythrocytes, and
thus mediate the high and low levels of expression [83].
While this variation is seen on erythrocytes, leukocyte
expression does not show the same variability [78].
Given the current focus on developing treatments for
Alzheimer’s disease, we expect the B6.CR2CR1 model to
be a key resource to advance our understanding of how
CR1 risk alleles contribute to disease susceptibility. In
2009, a genome-wide association (GWA) study identified
CR1 as a potential risk factor for Alzheimer’s disease
[41]. This association was corroborated in 2010 [9], 2012
[8, 27, 36] and 2013 [72]. The exact nature of the associ-
ation of CR1 with Alzheimer’s disease is not well under-
stood. One study [27] proposed the risk for Alzheimer’s
disease is most likely associated with the B allele of CR1
(CR1-B, equivalent to CR1long in this study), with one
copy of CR1-B carrying a 1.8x higher risk of disease over
the CR1-A/A allele (equivalent to CR1short in this study)
and a faster rate of cognitive decline. These observations
make determining the effects of CR1 variants specifically
on brain health of key importance to fully elucidate its
role in Alzheimer’s disease. Differences in neuronal
morphology and distribution between CR1-A/A and
CR1-A/B carriers were also reported, the former having
a more filiform neuronal structure with CR1 expression
that associated with the endoplasmic reticulum, whereas
the latter had a more vesicular-like pattern of CR1 ex-
pression associating with lysosomes; reduced expression
levels of CR1-B in comparison to that of CR1-A were

also seen. Another study [36] identified specific CR1
SNPs (rs6656401 and rs4844609) that influenced rate of
cognitive decline in Alzheimer’s disease in combination
with APOE status. The latter SNP is associated with a
single amino acid change in the C1q binding region of
CR1; patients carrying both APOE4 and rs4844609
showed a faster decline in episodic memory. While the
functional implications of this coding SNP is yet to be
determined, it may impact clearance of Aβ through
interfering with C1q binding [27]. Young adults who
carry the CR1 SNP rs6656401 had reduced grey matter
volume in the entorhinal cortex [7], an area associated
with atrophy in AD patients [6, 31]. Biffi et al. [3] also
saw drastic differences in entorhinal cortical volume in
AD and MCI patients depending on their CR1 genotype.
Precise gene editing in B6.CR1CR2 mice by methods
such as CRISPR/CAS9 allows for the first time these pu-
tative risk SNPs to be studied in the context of the dif-
ferent CR1 isoforms.
Analysis of the transcriptional profiling data for the

brain suggests that the CR1 isoforms differentially affect
immune cell infiltration or immune cell activation, pro-
cesses that have been shown to be important in disease
susceptibility, onset and progression. Critically, the long
form of CR1, CR1-B, the reported risk allele for Alzhei-
mer’s disease, was associated with a DE gene signature
indicating upregulation of pathways labelled ‘cellular in-
filtration by leukocytes’ and ‘infiltration by neutrophils’;
we thus speculate that the association of CR1long with
AD might be explained at least in part, by altered im-
mune cell infiltration into the brain. Interestingly, gene
expression profiles of brain and spleen from mice ex-
pressing only human CR2 (KO for CR1) appeared very
similar to B6 (Fig. 6). These data suggest that in the tis-
sues (brain and spleen) and at the ages (approximately 3
mos) studied, the additional CR2 protein isoform
encoded by the mouse Cr2 gene did not significantly
affect gene expression profiles. Therefore, the presence
of the additional Cr2 variant in the mouse genome may
be more important during times of stress, during aging
or in disease contexts. Further studies in aging mice and
incorporating Alzheimer’s disease pathologies (such as
amyloid and TAU) are required to further corroborate
all of the predictions from our transcriptional profiling
data.

Conclusion
The ability to more precisely study CR1 and CR2 in a
model system such as the mouse will facilitate our un-
derstanding of the role that these receptors, and the
complement cascade more generally, play in a wide var-
iety of diseases that show a strong immune component.
A more complete understanding of the complement cas-
cade, and its regulators, will lead to more targeted and
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personalized therapeutics for common diseases such as
AD and lupus.

Materials and methods
Mouse husbandry
All mice were maintained on a 12/12 h light/dark cycle.
Mice were housed in 6-in. duplex wean cages with pine
shavings, group-housed dependent on sex at wean, and
maintained on LabDiet® 5 K67. The Institutional Animal
Care and Use Committee (IACUC) at The Jackson La-
boratory (JAX) approved all mice used in this study.
Daily monitoring of mice via routine health care checks
was carried out to determine general wellbeing, with any
mice considered to be unhealthy being euthanized with
IACUC approved CO2 euthanasia methods.

Humanizing complement receptors CR1 and CR2
The B6.CR2CR1 mouse model was created by Genetic
Engineering Technologies at JAX via vector targeted em-
bryonic stem (ES) cells. Due to the size, a multi-staged
approach was used to create the targeting construct. Re-
gions were designed in silico to encompass the human
mRNA transcripts of CR2 and CR1 along with their cor-
responding human intergenic region (HIR). In parallel to
this design a retrieval vector for mouse Cr2 was utilized,
targeted with a Spectinomycin (Spec) cassette, producing
a vector with the 5′ and 3′ flanking regions of mouse
Cr2 (mCr2). To ensure the integrity of the human genes,
they were assembled in a linear manner. The human
Cr2 mini gene was excised from its vector and incorpo-
rated within the HIR gap repair vector. This was then
targeted to the mCr2/Spec vector. The CR1 mini gene-
containing vector was then targeted using Apa1 and
AvrII restriction enzymes, excising the fragment for inte-
gration into the multigene vector. Finally, this multigene
vector was targeted with a Neomycin (Neo) cassette at
synthetic intron 19 in the human CR2 mini gene. Once
the vector was confirmed, C57BL/6 J (B6, Jax #664) ES
cells were targeted, with incorporation occurring at the
genomic locus for mCr2. ES cells were transferred to a
blastocyst from a B6(Cg)-Tyrc-2 J/J (B6Tyr, Jax #58) and
implanted into pseudo-pregnant females. Litters con-
tained a variety of chimeric pups with differing degrees
of penetrance.
Chimeric mice from two targeted B6 ES cell lines, 5H4

and 5E2, were bred to B6Tyr mice (Fig. 2). From these,
black pups were selected for further breeding as a conse-
quence of B6 ES cells being targeted initially. Mice de-
termined positive through genotyping for the CR2CR1
construct were then bred to B6 to confirm germline
transmission (Fig. 2). After germline transmission was
confirmed, male mice from each line were sent for
sperm cryopreservation, with the Neomycin (Neo)

cassette intact, and are available upon request. Mice
from the 5H4 line were used throughout this study.

Developing the CR1 allelic series
The initial stage of developing the allelic series was to
remove the Neo cassette within intron 19 of CR2. To
achieve this, mice derived from the 5H4 ES cell line were
bred to B6.129S4-Gt(ROSA)26Sortm3(phiC31*)Sor/J
(B6.ROSA-Phi, Jax #7743) mice, to target the attB-attP
region surrounding Neo (Fig. 2). Mice negative for Neo
were intercrossed to establish B6.CR2CR1long/long strain
(Figs. 1 and 2). For CR1short, B6.CR2CR1long/+ mice were
crossed to B6.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/
RainJ (B6.ROSA-Flp, Jax #9086) mice. The Flp recom-
binase is ubiquitously expressed and targets the removal
of LHR1’ (Fig. 1) encoded by exons 13–20 (via the flank-
ing FRT sites in synthetic introns 12 and 20; Fig. 2).
Mice carrying CR1short (B6.CR2CR1short/+) were inter-
crossed to establish the B6.CR2CR1short/short strain (Figs.
1 and 2). Finally, for CR1KO, B6.CR2CR1long/+ mice were
crossed to B6.Cg-Tg(Sox2-cre)1Amc/J (Sox2-cre Jax
#8454). In this strain, Cre recombinase is ubiquitously
expressed and excises the targeted region using the LoxP
sites, located within introns 3 and 20, to create a null allele
(knockout, KO). Female B6.Sox2-cre mice were bred to
male B6.CR2CR1long/+ mice, as Cre recombinase is active
without necessarily needing to be inherited. Mice carrying
CR1KO (B6.CR2CR1KO/+) mice were intercrossed to estab-
lish the B6.CR2CR1KO/KO strain (Figs. 1 and 2).

Genotyping
PCR assays for genotyping were as follows:
For mouse Cr2 or human CR2 (Fig. 3): Common pri-

mer forward primer: 5′ - TCTTCCTCTCCTTGCT
ACAGG - 3′ C Cr2 Reverse: 5′ - AGAAGAGGTGGG
GACGTTCT - 3′ and CR2 Reverse: 5′ - TACCAACA
GCAATGGGGGTA - 3′ with the mCr2 product size at
300 bp and the hCR2 product size at 198 bp with an an-
nealing temperature of 60 °C.
For the HIR Forward 5′ – TCACTCACCTCGAGCC

ATCT - 3′ and Reverse 5′ – TCAGCAGGTCTTGGCT
TCAG – 3′ with a product size of 291 bp at an anneal-
ing temperature of 59.3 °C.
For CR1long (Fig. 3): Forward 5′ – GTACTACGGG

AGGCCATTCT – 3′ and Reverse 5′ – TGGCTTGG
GGTACGCTC – 3′ with a product size of 708 bp at an
annealing temperature of 58.1 °C.
For CR1KO (Fig. 3): Forward 5′- TCTTGTACTACAGG

GCACCG – 3′ and Reverse 5′ – ACCTCTAGGATTAA
ACGGTGGGG – 3′ with a product size of 150 bp if cre
recombination has not occurred, with an annealing temp
57.5 °C. The absence of a band, with a CR1 positive geno-
type, indicates the removal of exons 4–20.
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For CR1short (Fig. 3), forward primer from the KO al-
lele with the Reverse primer 5′ – CGATCATGGC
TCACTGCGAA-3′. A product size of 251 bp is ex-
pected if Flp recombination had not occurred. The ab-
sence of a band in a combination with a CR1 positive
genotype, indicated Flp recombination. The annealing
temperature for this reaction was 57.8 °C.
For Crry: Forward 5′- TTGCTAATTGGTAGTGAG

GAAAGG − 3′ and Reverse 5′- TAAGTTGTTGTGAG
GCTTGGGT − 3′ with a product size of 190 bp and an
annealing temperature of 55.4 °C.

Cohort generation
Homozygous mice of the three genotypes CR2CR1long/-
long, CR2CR1short/short, CR2CR1KO/KO were identified. A
separate B6 colony was established for wild-type control
samples. Cohorts of at least 4 males and 4 females were
used for all assays except for transcriptional profiling
where 3 males and 3 females per genotype were
assessed. All mice were bled via submandibular bleed
and tissue harvested at 3 months of age.

Tissue harvesting and preparation
Mice were terminally anaesthetized using a Ketamine/
Xylazine (99 mg/kg Ketamine, 9 mg/kg Xylazine) mix.
They were transcardially perfused with 1xPBS (phos-
phate buffered saline pH 7.4). Spleens and brains were
harvested, snap frozen and stored at − 80 °C for further
use. RNA and protein were extracted from snap frozen
tissue using Trizol according to manufacturer’s instruc-
tions. RNA was reconstituted in dH2O and protein was
resuspended in 1:1 1% SDS/8M Urea. All RNA and pro-
tein samples were stored at − 80 °C before use. RNA
concentrations were determined via Nanodrop and pro-
tein concentrations via DC Protein Assay respectively.

cDNA synthesis and reverse transcriptase (RT)-PCR from
RNA extracted from spleen
RNA extracted via Trizol was treated with DNase at
37 °C for 30 min, the reaction was stopped by placing on
ice and 0.5 M EDTA was used to deactivate the DNase.
Samples were centrifuged and the supernatant was
transferred to a new tube. A lithium chloride:ethanol so-
lution was used to precipitate the RNA overnight at −
20 °C. Samples were centrifuged at maximum speed for
20 min at + 4 °C, the supernatant removed and
remaining pellets were washed with 70% ethanol. RNA
was resuspended in dH2O and concentrations were read
using the Nanodrop. 1 μg of RNA was used to synthesize
cDNA. Briefly, RNA was combined with random
primers, dNTPs, RNase inhibitor, Multiscribe Reverse
Transcriptase and made up to volume with dH2O. The
reaction was incubated at 25 °C for 10 min, 37 °C for 2 h,
85 °C for 5 min and + 4 °C. Samples were diluted 1:4 and

concentrations were read again on the Nanodrop to en-
sure that no degradation had occurred. Samples were
stored at − 20 °C until required. 100 ng of cDNA was
used to determine expression within the spleen. PCR as-
says for RT-PCR were as follows:
For CR2 at exon 11: Forward: 5′- TGGGGCAGAA

GGACTCCAAT − 3′ and Reverse: 5′- GCTCCACCAT
GGTCGTCATA − 3′ with a product size of 148 bp and
an annealing temperature of 60 °C.
For CR1 at exon 2: Forward: 5′- TCCATTTGCC

AGGCCTACCA − 3′ and Reverse: 5′- TGCACCTGTC
CTTAGCACCA − 3′ with a product size of 152 bp and
an annealing temperature of 60 °C.
For CR1 spanning exons 4 and 5: Forward: 5′- TGGT

TCCTCGTCTGCCACAT − 3′ and Reverse: 5′- AGGA
TTGCAGCGGTAGGTCA − 3′ with a product size of
178 bp and an annealing temperature 60 °C.
For mCr2: Forward: 5′- TCATGAGGGTACCTGGAG

TCA − 3′ and Reverse: 5′- AAGAGGAATAGTTGAC
CGGTATTT − 3′ with a product size of 244 bp and an
annealing temperature of 60 °C.
For Crry: Forward: 5′- GGAGGAGTCAAGCTAGAA

GTTT − 3′ and Reverse: 5′- GTGTTGCAGCGGTAGG
TAAC − 3′ with a product size of 521 bp and an anneal-
ing temperature of 55.3 °C.

Western blotting
To determine protein presence and size difference be-
tween the CR1long and CR1short, 6% SDS PAGE gels were
hand cast. Protein was diluted to 80 μg of total protein
with 2x Laemmli buffer (BioRad). Samples were dena-
tured at 95 °C for 5 min and loaded onto the gel. Gels
were run for 1 h at 150 V and transferred to nitrocellu-
lose membrane via the iBlot for 13mins. Blots were incu-
bated at room temperature for 1 h (hr) with blocking
solution (5% skimmed milk powder block in 0.1% PBS-
Tween), washed with 0.1% PBS-Tween for three 15 min
incubations and then incubated with rabbit-anti-human
CR1 (also known as CD35; Abcam #ab126737, 1:100) for
48 h in 0.1% PBS-Tween on an orbital shaker at + 4 °C.
Blots were washed three times in 0.1% PBS-Tween and
incubated with the appropriate secondary (Anti-Rabbit
IgG HRP 1: 50,000) for 1.5 h at RT. Blots were then
washed an additional three times and detection was car-
ried out using ECL detection regents (GE Healthcare).
When required, blots were stripped by treatment with
0.25% sodium azide for 2 h at RT and washed thor-
oughly in 0.1% PBS-Tween. Blots were re-blocked and
re-probed with mouse anti-CD21 (anti-human CR2;
Abcam #ab54253, 1:100) in 0.1% PBS-Tween overnight
at + 4 °C. Blots were washed and incubated in the appro-
priate secondary antibody (Anti-Mouse IgG HRP 1:40,
000), washed and detected. Finally, blots were treated
with 0.25% sodium azide and probed with a loading
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control, anti-Vinculin (1:10,000) in 0.1% PBS-Tween
overnight at + 4 °C, washed three times, incubated with
the appropriate secondary antibody (Anti-Rabbit HRP 1:
50,000) for 1 h at RT, washed and detected.

Transcriptional profiling
RNA isolation, library preparation and sequencing
RNA was isolated from tissue using the MagMAX mir-
Vana Total RNA Isolation Kit (ThermoFisher) and the
KingFisher Flex purification system (ThermoFisher). Tis-
sues were lysed and homogenized in TRIzol Reagent
(ThermoFisher). After the addition of chloroform, the
RNA-containing aqueous layer was removed for RNA
isolation according to the manufacturer’s protocol, be-
ginning with the RNA bead binding step. RNA concen-
tration and quality were assessed using the Nanodrop
(Thermo Scientific) and the RNA Total RNA Nano assay
(Agilent Technologies). Libraries were prepared by the
Genome Technologies core facility at The Jackson La-
boratory using the KAPA mRNA HyperPrep Kit (KAPA
Biosystems), according to the manufacturer’s instruc-
tions. Briefly, the protocol entails isolation of polyA-
containing mRNA using oligo-dT magnetic beads, RNA
fragmentation, first and second strand cDNA synthesis,
ligation of Illumina-specific adapters containing a unique
barcode sequence for each library, and PCR amplifica-
tion. Libraries were checked for quality and concentra-
tion using the D5000 assay on the TapeStation (Agilent
Technologies) and quantitative PCR (KAPA Biosystems),
performed according to the manufacturers’ instructions.
Libraries were pooled and sequenced by the Genome
Technologies core facility at JAX, generating 100 bp
paired-end reads on the HiSeq 4000 (Illumina) using
HiSeq 3000/4000 SBS Kit reagents (Illumina).

Sequence Alignment & Statistical Analysis Methods
FASTQ files were trimmed using Trimmomatic v0.33
which removed adapters and sequences with more than
2 mismatches, a quality score < 30 for PE palindrome
reads, or a quality score of < 10 for a match between any
adapter sequence against a read. A sliding window of 4
bases was used with a required (average) minimum qual-
ity score threshold of 15. The leading and trailing mini-
mum quality score thresholds were set to 3 to keep a
base. Reads had to be 36 bases or greater in length. Se-
quence alignment was completed using the Mus muscu-
lus Ensembl v82 reference genome in addition to three
custom references based on the strain. Samples from
both brain and spleen tissue were edited to include hu-
man CR2 and one (or none) of three human sequences:
CR1long, CR1short, or CR1 KO. Each of the three human
sequences was appended to the Mus musculus reference
genome individually; thus, three additional reference ge-
nomes were created to quantitate gene and isoform

expression levels using RSEM v1.2.19. B6 samples were
evaluated with the base Mus musculus reference gen-
ome. RSEM leveraged Bowtie2 alignment with strand-
specific and paired-end parameters. The resulting gene/
transcript (feature) count data were processed using
edgeR v3.14.0 (R v3.3.1). For each of the four datasets
(brain and spleen, gene and transcript), feature differen-
tial expression was evaluated in three pairwise compari-
sons per sex: 1.) CR1long vs. B6, 2.) CR1short vs. B6, and
3.) CR1KO vs. B6. Any feature that did not have at least 1
read per million for at least 2 samples in either sets of
samples evaluated in the pairwise comparison was ex-
cluded from the differential expression analysis. The
Cox-Reid profile-adjusted likelihood method was used to
derive tagwise dispersion estimates based on a trended
dispersion estimate. The GLM likelihood ratio test was
used to evaluate differential expression in pairwise
comparisons between sample groups. The Benjamini
and Hochberg’s algorithm was used to control the false
discovery rate (FDR). Features with an FDR-adjusted
p-value < 0.05 were declared statistically significant.

Gene set enrichment
The Database for Annotation, Visualization and
Integrated Discovery (DAVID, v6.8) was used on each
significant DE gene list for each pairwise comparison to
identify enrichment of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and Gene Ontology (GO)
terms. Background gene sets were all trimmed normal-
ized gene reads. KEGG pathways and GO terms were
considered enriched with a p-value less than 0.05
(p < 0.05). Ingenuity Pathway Analysis (IPA) was used
for disease and functional analysis.
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