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Abstract:  15 

Accurate assessment of environmental externalities of particulate air pollution is crucial to the 16 

design and evaluation of environmental policies. Current evaluations mainly focus on direct 17 

damages resulting from exposure, missing its indirect co-damages through the feedback and 18 

interactions among the externalities, human behaviors, and technologies. Our study provides an 19 

empirical assessment of such co-damages using customer-level daily and hourly electricity data 20 

of a large sample of residential and commercial consumers in Arizona, United States. We use an 21 

instrumental variable panel regression approach and find that particulate matter air pollution 22 

increases electricity consumption in residential buildings as well as in retail and recreation 23 

service industries. Air pollution also reduces the actual electricity generated by distributed solar 24 

panels. Lower-income and minority ethnic groups are disproportionally impacted by air pollution 25 

and pay higher electricity bills associated with pollution avoidance, stressing the importance of 26 

incorporating the consideration of environmental justice in energy policy making. 27 

 28 

Keywords: Co-damage; Air pollution; Electricity consumption; Solar energy; Inequitable 29 
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 31 

Introduction 

Air pollution has been resulting in negative externalities in multiple aspects which calls for 32 

policy interventions to address the associated damages. Policymakers and research are widely 33 

concerned about increases in mortality risk which are direct damages induced by pollution as 34 

well as co-damages in terms of other welfare losses. These damages are generated via different 35 

channels including physical and mental health impact on human beings, decreases of labor 36 

productivity1,2, declines of subjective well-being3, harm on cognitive competence 4,5, disturbance 37 

on ecosystem health6, diminished value of local environmental amenities and properties7, rises in 38 
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household medical expenditure, etc. Accurate assessment of such externalities is crucial to 39 

estimating the social cost of pollution for the design and evaluation of policies such as a 40 

Pigouvian tax that imposes the polluters for such external cost for pollution control, or a cap-and-41 

trade program that establishes a market issuing allowances to internalize such cost8. While direct 42 

pollution damages are often measured in existing studies, there are not many discussions in the 43 

literature about the magnitude of the co-damages. A key challenge to quantify these co-damages, 44 

however, is to understand the feedback and interactions among pollution, human behaviors 9, and 45 

technologies. People can mitigate exposure to environmental risks by taking various avoidance 46 

behaviors, such as adjusting outdoor activities 10,11 and purchasing facemasks and air purification 47 

systems in the short term 9,12, and migrating to new living locations in the longer term 13. 48 

Avoidance behaviors alleviate the negative health impact by pollution 14 but come at a cost, for 49 

example spending less time for outdoor activities10,15, and may lead to further impacts such as 50 

increased energy consumption due to a shift from natural to mechanical ventilation16, increased 51 

needs for heating or air-conditioning or other activities such as watching TV17,18 in residential 52 

buildings. The commercial buildings may also be affected via further complexities if individuals 53 

choose to work remotely due to air pollution to avoid exposure during commuting19. However, 54 

on the other hand commercial buildings might have better indoor air quality due to better 55 

ventilation 20 so that people can stay in commercial buildings for longer period of time. These 56 

two effects can cancel out, and thus we hypothesize that air pollution does not have a statistically 57 

significant impact on commercial buildings as a whole. Such effects and the consequential extra 58 

environmental damage are, however, hardly addressed explicitly and quantitatively in the current 59 

studies, and thus lead to biases in the damage evaluation. Our paper fills in this gap in literature. 60 

While electricity demand is driven up by pollution averting behaviors, air pollution can further 61 

affect electricity supply in the opposite direction. High concentrations of particulate matters 62 

reduce solar electricity generation due to the changed solar irradiance. The emissions of aerosols 63 

can attenuate solar radiation by scattering and absorbing sunlight before it reaches the solar panel 64 
21, and thus reduces photovoltaic performance 22,23. Large particulate matters can also generate 65 

dust on top of solar panels. In areas with severe air pollution such as China, the potential of solar 66 

PV generation decreased on average by 11–15% between 1960 and 2015 22; the decrease of 67 

point-of-array irradiance can even reach 35% in the most polluted areas 23. Such interaction adds 68 

another dimension to the complexity of assessing pollution externalities. Existing studies take a 69 

dominantly engineering perspective that relies on computer simulations to calculate the change 70 

in solar irradiance due to air pollution or field experiments to measure the changes in electricity 71 

generation of a few solar panels in response to air pollution. While providing critical estimation 72 

on the relationship between particulate pollution and solar electricity generation in certain 73 

refined meteorological and geographical conditions, these studies fall short in evaluating how 74 

much actual solar generation is affected at a large scale. Our paper contributes on the empirical 75 

ground and serves a crucial reference for policy making.  76 

As pollution co-damages are closely related to both demand-side human behaviors and supply-77 

side solar power generation, the distribution of these co-damages would raise environmental 78 

justice concerns. Lower-income households or minority ethnic groups can be more vulnerable to 79 

the impact of air pollutions. Individuals from these groups usually reside in locations with higher 80 

air pollution levels 24. Moreover, they may live in affordable houses and buildings that are aged, 81 

not insulated well, equipped with fewer energy-efficient appliances, and thus lead to higher 82 

energy-related expenditures 25,26. The increased electricity bills due to more indoor hours, 83 

therefore, translate into a larger proportion of the household income compared to their higher-84 
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income or non-minority counterparts. This constraints other essential expenditures on medical 85 

services by lower-income and minority households, thus leading to further adverse health 86 

impacts 27. Our analyses incorporate the equity aspects of pollution co-damages to provide 87 

necessary implications for policy design towards environmental justice.  88 

This article demonstrates how the interactions among air pollution, human defensive behavior, 89 

and energy supply system can influence the estimates of negative externalities caused by air 90 

pollution. Using consumer-level daily and hourly electricity consumption data and solar panel 91 

generation records in Phoenix metropolitan, Arizona during 2013-2018, we testify how 92 

particulate air pollution, indicated by concentrations of both PM10 and PM2.5 (particulate matter 93 

10 micrometers or less in diameter, and 2.5 micrometers or less, respectively), triggers consumer 94 

avoidance behaviors as well as lowers the generation of solar energy. Our sample covers 4,313 95 

residential buildings and 17,422 commercial buildings. A variety of demographic and socio-96 

economic characteristics are associated with the consumer data set, based on which we further 97 

explore the heterogeneity of the co-damages associated with income and ethnicity. Estimates can 98 

be biased by endogeneity issues due to reverse causality (i.e. air pollution induces changes in 99 

energy consumption as well as solar electricity generation, which in turn also affects the air 100 

quality) and missing variables (e.g. unobservable characteristics of the local economy and 101 

physical environment can affect the air quality and energy consumption simultaneously). To 102 

address the endogenous biases, we use wind direction as an instrumental variable (IV) for the 103 

pollution concentration. This IV has a direct impact on concentrations of pollutants but not on 104 

energy consumption, which creates variation in air quality that is exogenous to consumption, 105 

thus leading to non-biased estimation of the pollutant coefficient. Our main results are based on 106 

daily average data. We also analyze hourly data to examine the intra-day heterogeneity in the 107 

impact on electricity usage. The study area of our analysis is the fifth most populated city in the 108 

United States28 and ranks among the top five most polluted cities in the country29. This suggests 109 

that even though based on a developed country region, our results can provide valuable insights 110 

and benchmark statistics when compared with studies in the developing context with dense 111 

population and low-ranked air quality. 112 

   113 

Effect of air pollution on the demand sectors 

Through an instrumental variable (IV) fixed effects panel regression, we regress the individual 114 

household’s daily electricity consumption on air pollution level, while controlling for other 115 

confounding variables. Detailed modeling can be found in the Methods section. The validity of 116 

IV estimation is also supported by the first-stage regression which shows a strong positive 117 

correlation between the daily average cosine of the prevailing-hourly wind direction angle and 118 

the concentration of air pollution, meaning that wind in the upwind direction of pollution sources 119 

would bring higher particulate concentration (Column 1 and 3 in Table 1).  The considerable F 120 

statistics far more than 10 indicates a strong IV in both the regressions for PM10 and PM2.5. We 121 

find that a higher concentration of particulate pollutant results in a statistically significant 122 

increase in residential electricity consumption. An increase of 1µg/m3 in PM10 concentration 123 

raises the daily residential electricity consumption by 0.020 kWh (Column 2 in Table 1). 124 

Residents turn out to be more sensitive to the change of PM 2.5 concentration as 1µg/m3 rise in 125 

PM2.5 concentration causes 0.145 kWh (Column 4 in Table 1) increase in daily electricity 126 

consumption. In this way, one more standard deviation of PM10 and PM2.5 would increase the 127 
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daily residential electricity consumption by 0.85% and 1.74% from the mean based on the 128 

descriptive statistics in Supplementary Table 1, respectively. Such effects are also seasonally 129 

heterogeneous (Supplementary Table 12) as the increased electricity consumption is of larger 130 

magnitude in summer peak (July and August), while the significance diminishes during the 131 

winter (November to April).  132 

To validate our hypothesis that the increased electricity consumption is caused by averting 133 

behaviors that shift outdoor activities indoor, we next examine the pollution-kWh relationship on 134 

an hourly basis. Results using hourly data confirm that air pollution increases residential 135 

electricity consumption and imply a possible reallocation of time due to air pollution. As shown 136 

in Figure 1, residential electricity consumption increases considerably during the daytime but 137 

decreases slightly during evenings when affected by air pollution. While both are statistically 138 

significant, the summed change (the area above the horizontal line of 0 minus the area below) 139 

still shows an overall increase of daily electricity consumption aligning with the findings based 140 

on Table 1. This possibly indicates a change of activities during a day: as air quality deteriorates, 141 

residents tend to participate in indoor energy-dependent activities such as watching TV and 142 

turning on the heating/cooling system. They may also move activities usually conducted in the 143 

evenings, e.g. laundries, ahead to the daytime so that the electricity consumption during the 144 

nights drops. The drop in consumption during the evening can also be due to the pre-cooling or 145 

pre-heating effects from turning on the HVAC system during the daytime.  146 

To further support our finding, we test whether individuals tend to reduce outdoor trips using a 147 

daily county-level dataset of mobility nationwide in the United States (details are included in 148 

Methods). As shown in Supplementary Table 13, the number of trips per person reduces as the 149 

concentration of air pollution rises, implying that people are staying home for more hours due to 150 

air pollution. 151 

We next discern the effects of air pollution among residential consumers with different socio-152 

economic characteristics. The potential heterogeneous effects can be caused by environmental 153 

injustice in different aspects. On the one hand, as consumers of disadvantaged socio-economic 154 

status can be exposed to higher pollution 8 and live in houses that are less energy-efficient25,26, 155 

their pollution-induced increase in electricity demand could be larger than their advantaged 156 

counterparts. On the other hand, their abilities to self-protect against air pollution are likely to be 157 

restricted by their limited disposable income or they are simply less attentive to air pollution. If 158 

the effect of these constraints dominates their behavioral responses to pollution, then we may 159 

observe a smaller change in electricity demand for disadvantaged households. As a result, 160 

whether and how the effect of air pollution on electricity consumption differs across socio-161 

economic status becomes an empirical question. Our summary statistics show that lower-income 162 

and non-white consumers are associated with higher PM concentrations and lower baseline 163 

electricity consumption (Supplementary Table 2), implying a possible heterogeneous effect. 164 

Thus, we test such heterogeneity for different income and racial-ethnic groups. Using the 165 

available data on household characteristics, the sample is divided into three levels of per capita 166 

income: low, medium, and high (see Methods for details). The sample is also divided into four 167 

ethnic groups (White, Asian, Hispanic, and Other) to conduct the regression analysis separately.  168 

The results show that lower-income and Hispanic consumers have a larger increase in electricity 169 

consumption in response to a unit increase in PM pollution.  The IV estimates in Figure 2 170 

illustrate that the marginal effect of pollution on electricity demand is the highest for the low-171 

income group. For ethnic groups, Hispanic consumers increase their electricity consumption 172 
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more than white consumers. The empirical estimates for heterogeneous groups imply that the 173 

effect of low energy-efficiency and high exposure possibly overrides the constraint of disposable 174 

income. In contrast, a previous study found that higher-income consumers need to use more 175 

energy in response to changing weather conditions in China 30. Existing studies have found that 176 

lower-income tend to live in homes that are not energy-efficient 25,26 which can lead to a higher 177 

increase in electricity consumption due to air pollution. Two studies 31,32find that Hispanic 178 

households have higher energy use intensity due to residing in less energy-efficient homes. 179 

These findings of Hispanic households help justify our results because when air pollution 180 

increases and people need to spend more time indoors, inefficient homes (such as Hispanic 181 

homes) will increase more electricity consumption compared to an efficient home. The Medium-182 

income group shows less electricity increase compared to both low-income and high-income 183 

groups, which can be a result of low-income households having inefficient homes 25,26 and high-184 

income households needing more energy in response to changing weather conditions 30. The 185 

socio-economic heterogeneity embedded in air pollution issues requires more subtle 186 

investigations and tests given the multiple mechanisms that can balance the effects of each other. 187 

We also rerun the model separately for each residential building to get the unique estimated 188 

impact for the individual consumer. The results show similar heterogeneity. As shown in 189 

Supplementary Figure 1, air pollution demonstrates a different marginal effect for each building, 190 

and the summary statistics in Supplementary Table 5 shows a similar pattern as observed in 191 

Figure 2. 192 

Our results show that contrary to the findings in the residential sector, electricity usage in the 193 

commercial buildings as a whole sample is not significantly affected by air pollution in general, 194 

although the usage in individual industries shows statistically significant changes. As presented 195 

in Table 2, despite that the instrument variable is still valid and strong (the coefficients of Wind 196 

cosine are positively significant in the first stage results in Column 1 and 3 and the F statistics 197 

are considerable), IV estimates indicate no statistically significant effects (Column 2 and 4 in 198 

Table 2). In this way, the hypothesis that particulate pollution has no effect on energy use in 199 

commercial buildings as a whole cannot be rejected. We then examine if the hourly estimates 200 

could imply any indoor-outdoor activity shifts. There is not sufficient evidence to show that air 201 

pollution affects electricity usage in commercial buildings (Figure 3). Although the results show 202 

a similar pattern of electricity consumption in the commercial buildings as in the residential 203 

buildings, the coefficients of hourly pollution concentrations are barely statistically significant. 204 

Such an insignificant effect on commercial buildings overall is likely a result of mixed-effects by 205 

air pollution that cancel each other out. On one hand, when estimating the micro-environment 206 

exposure, incorporating work activities will induce higher exposure to air pollution compared to 207 

home-only activities, partially due to higher pollution exposure during transit or commute19. This 208 

implies that workers have the incentives to stay at home or work from home to avoid higher 209 

average pollution exposure, which lowers the energy consumption of the commercial buildings. 210 

We further test this hypothesis by our analysis of the effect of air pollution on personal trips. 211 

With a daily county-level dataset of mobility nationwide in the United States, we test whether 212 

individuals tend to reduce outdoor trips (details are included in Methods). As shown in 213 

Supplementary Table 13, the number of trips per person reduces as the concentration of air 214 

pollution rises. The same conclusion holds for both work trips (Supplementary Table 14) and 215 

non-work trips (Supplementary Table 15). On the other hand, commercial buildings on average 216 

might have different building envelope or better building management system 20 that can lead to 217 

better indoor environment 33 compared to residential buildings, so that when ambient air 218 
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pollution increases some people might want to stay inside commercial buildings for a longer 219 

period time, potentially increasing electricity in these buildings. Building occupants may also 220 

utilize less natural ventilation in polluted weather, and thus can increase the energy consumption 221 

of buildings due to increased mechanical ventilation 16. These effects may cancel out so that we 222 

are not observing a statistically significant effect of air pollution on average for all commercial 223 

buildings in our sample. 224 

The insignificant effect of air pollution on commercial buildings as a whole actually validates 225 

our residential electricity consumption result. There could be possibly a concern that our 226 

regression model can still fail to capture some physical relationship between electricity 227 

consumption and other unmeasured meteorological variables which can be correlated with air 228 

pollution. Or there could be a concern about misspecified functional form (incorrect description 229 

of the relationship between our independent and dependent variables). As a result, the positive 230 

impact of air pollution on residential electricity consumption could be purely due to these 231 

physical relationships, and not due to consumer behavioral change. The insignificant result in the 232 

commercial sector actually implies that our regression model can capture those physical 233 

relationships well, so that our estimated increase in residential electricity consumption is indeed 234 

due to consumers’ behavior change. 235 

Such statistically insignificant results of commercial buildings can, however, conceal the sectoral 236 

heterogeneity as air pollution can significantly affect the commercial sectors that are closely 237 

related to indoor activities. Due to the nature of different industries, each commercial building 238 

serves with a specific purpose, with some sectors more likely to be affected by air pollution. 239 

Sectors such as retail trade, recreation, and service can have increased electricity consumption 240 

where more of their customers spend more time inside the buildings to avoid being exposed to 241 

outdoor pollution. Thus, we separate the effect by sectors as shown in Figure 4. With a similar 242 

averaged pollution concentration across all sectors (Supplementary Table 4), the retail sectors 243 

respond most intensely to the increase of air pollution concentration (0.086 kWh rise in 244 

electricity consumption per µg/m3 increase of PM10 concentration, and 0.560 kWh rise per 245 

µg/m3 increase of PM2.5 concentration), followed by the recreation and service sectors (0.026 246 

kWh per µg/m3 and 0.167 kWh per µg/m3, respectively). In contrast, the other sectors reduce 247 

their electricity consumption also as expected (0.028 kWh per µg/m3 and 0.178 kWh per µg/m3 248 

for PM10 and PM2.5, respectively, both significant at 90% confidence level). As a result, one 249 

standard deviation increase of PM10 and PM2.5 would lead to 1.82% and 3.34% rise in retail 250 

trading sector, 1.13% and 2.00% rise in recreation and service sector, as well as 0.79% and 1.39% 251 

reduction of electricity consumption in the other sectors, respectively. These effects with 252 

opposite directions in different sectors balance out each other when being summed up, and thus 253 

lead to an insignificant change of energy consumption for the whole sample. Taken together with 254 

our analysis above, these results show that individuals are more likely to reduce outdoor trips in 255 

general and particularly related to work. However, the final destinations for the remaining trips 256 

may shift at least partially from open spaces to sheltered areas, and thus lead to more energy 257 

consumption in malls, recreation centers, etc. This distributional result stresses the importance of 258 

looking into sectoral nuance based on understandings of how consumer behaviors differ by 259 

industries as a response to the varying air quality.  260 
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Effect of air pollution on the supply sector 

We then use a similar panel IV regression to regress individual consumer’s daily solar electricity 261 

generation on air pollution level, while controlling for confounding variables (See details in 262 

Methods). The IV of wind direction again turns to be powerful in explaining the variation of 263 

PM10 and PM2.5 with its positive significance in Column 1 and 3 in both Table 3 and Table 4, 264 

while the F statistics continue to verify it as strong. We find that particulate pollution also 265 

reduces the electricity generation of distributed solar panels in both residential and commercial 266 

buildings. IV estimation shows that 1µg/m3 increase in PM10 concentration significantly reduces 267 

the electricity generated by solar panels by 0.435 kWh in residential buildings (Column 2 in 268 

Table 3) and by 0.022 kWh in commercial buildings (Column 2 in Table 4). PM2.5 demonstrates 269 

an even larger effect -- 1.888 kWh reduction per µg/m3 increase for residential buildings 270 

(Column 2 in Table 3) and 0.093 kWh reduction per µg/m3 increase for commercial buildings 271 

(Column 4 in Table 4). In terms of percentage change, one standard deviation increase of PM10 272 

and PM2.5 would result in 25.01% and 30.64% reduction of solar electricity generation for 273 

residential buildings with solar panels from the mean solar electricity generation, and 0.13% and 274 

0.15% reduction for commercial buildings, respectively. The comparison also indicates that 275 

commercial buildings are much less affected if considering that the power of solar panels is 276 

averagely larger in the commercial buildings referring to the descriptive statistics in 277 

Supplementary Table 1 and Supplementary Table 3. A possible reason is that the solar panels in 278 

commercial buildings are better maintained with dust cleaned timely.  279 

Discussion 

This study explores the co-damage of air quality degradation via human defensive behavior and 280 

the performance of clean energy techniques on the demand and supply sides, respectively. Our 281 

results show that particulate pollution, while exposing individuals to health risks with direct 282 

emissions, can further add to the loss with regenerative feedback which boosts energy 283 

consumption due to longer indoor time-spending and downgrades the performance of solar 284 

panels. While previous studies predominantly focus on the positive consequences of the 285 

defensive behaviors in alleviating the health impacts 10,12, this research shows the possible 286 

pathways in which air pollution generates extra damage by interacting with such defensive 287 

behaviors 9. Our analysis also shows that residents from low-income or Hispanic groups are 288 

more heavily affected, highlighting the vulnerability of specific socio-economic status in 289 

responding to environmental change and the potential environmental justice issues that should be 290 

addressed by policy design24,27. 291 

Several limitations should be noted. First, our analysis addresses the situation in Phoenix 292 

metropolitan, Arizona. In spite of its top ranking in the air pollution levels of U.S. cities, the 293 

concentration of particulate matter is still far less than in many developing countries such as 294 

Mexico or China 34,35. Meanwhile, responsive levels can also differ due to cultural differences. 295 

Therefore, our results should be extrapolated with caution.  In addition, our dataset lacks the 296 

information on specific household end-use activities (e.g. heating and cooling, air purification). 297 

Thus, we are not able to pinpoint exactly what appliance(s) are more intensively used against 298 

higher particulate concentration for further details on the mechanisms that we discuss. We leave 299 

these for future research that draws on high-resolution data in various geographical areas.   300 

Several critical policy implications stem from the findings of this research. First, when 301 

calculating the marginal damage factors from air pollution, policymakers need to explicitly 302 



8 

 

consider these co-damages generated from the feedbacks among consumer behaviors and clean 303 

technology performance, which is insufficiently discussed in the current literature as well as 304 

policy analysis and evaluation. Lack of consideration of these pollution co-damages will lead to 305 

under-estimation of welfare gains from pollution control policies. Our results also stress the 306 

necessity to investigate comprehensively the consequences of air quality alerting systems, e.g. 307 

alleviated health risks 36, changed automobile traffic flows as individuals endeavor to escape 308 

from pollution as a response 37, decreased outdoor recreation 10,38, etc. Second, the fact that air 309 

pollution disproportionally affects low socio-economic status threats energy and environmental 310 

justice, and again stresses that air pollution control can not only result in health benefit as a 311 

whole, but also contribute to equitable distribution of such benefit. The disproportional impact 312 

also highlights the importance of energy policies that can improve the home energy-efficiency of 313 

lower-income and ethnic minority groups to accelerate the achievement of fairness and equity. 314 

Third, our findings provide one more justification for the need to clean the electricity grid and 315 

improve the efficiency of renewable energy generation techniques. In addition, the expansions of 316 

solar power should take into consideration the effect of air pollution when setting reasonable 317 

development targets. The results comparing the impacts on commercial PV and residential PV 318 

suggest that there should be clear messages or incentives to communicate the importance of 319 

cleaning and maintenance of PV to the residential consumers.  320 

 321 

 322 

 323 

Methods 

Data 324 

The data are provided by Salt River Project, one of the two largest utility companies in Arizona. 325 

Hourly electricity consumption in kWh is available for 4,313 residential units (spanning from 326 

May 2013 to April 2017) and 17,422 commercial units (spanning from May 2013 to April 2018). 327 

For the residential units in the sample, a Residential Equipment and Technology (RET) survey is 328 

also conducted in 2014 which asked about detailed sociodemographic information, building 329 

characteristics, appliance and other energy technology attributes, and energy consumption 330 

behaviors. For the commercial units, a 6-digit code in the North American Industry 331 

Classification System (NAICS) is available to identify the sector type of the building. We 332 

aggregate the electricity consumption to daily level for analysis. The daily electricity price is 333 

constructed by taking the average of the hourly prices. For commercial consumers, both 334 

electricity charge and demand charge are included as price variables. The zip code zone of each 335 

building is also available in the dataset that enables a spatial match with the air quality and 336 

meteorological variables.  337 

Salt River Project also has distributed-solar consumers in its service territory.  These solar panels 338 

can be installed on the rooftop of buildings or can be ground-mounted. For each distributed solar 339 

consumer, our dataset has the information on the hourly electricity generated by the consumer’s 340 

solar panels, along with the installation dates of the solar panels. There are 260 residential 341 

distributed solar consumers (6.03% of the residential sample) and 330 commercial distributed 342 

solar consumers (1.89% of the commercial sample) in our dataset.  343 
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We combine meteorological observations from multiple sources. Records of air quality, 344 

including daily average concentrations of PM 2.5 and PM10, are retrieved from Pre-Generated 345 

Data Files of United States Environmental Protection Agency (US EPA)39. Climate factors 346 

including the daily average temperature, total precipitation, and average wind speed are obtained 347 

from Global Surface Summary of the Day40. The hourly wind direction data comes from EPA 348 

Pre-Generated Data Files. We obtain the solar irradiance data from the National Renewable 349 

Energy Laboratory (NREL)’s National Solar Radiation Data Base41. For missing solar irradiance 350 

data for a given location in a given time period, we use the simulated solar irradiance by NREL 351 

for a given day in that location in a typical meteorological year.  352 

We adopt an inverse distance weighting interpolation that is commonly used in the previous 353 

literature 42,43 to match the air quality and meteorological records with the zip code zone of each 354 

building. First, the distance between each pair of air quality monitoring station and the geometric 355 

center of a zip code zone is calculated. Next, the daily records of all the stations less than 50 km 356 

away from the geometric center are averaged with a weight of their inversed distance to the 357 

center as the matched air quality record for all the buildings within the zip code zone. The 358 

climate records are matched in a similar way. The inverse distance weighting is conducted in 359 

Stata 14.0 using the wtmean command with 34 meteorological stations and 67 air pollution 360 

monitoring stations. To test whether our analysis is sensitive to the radius of the inverse distance 361 

weighting procedure, we change the caliper to 10km and 20km and rerun the analysis. As shown 362 

in Supplementary Tables 16-19 (for 10km) and Supplementary Tables 20-23 (for 20km). The 363 

coefficients change only slightly in magnitude but their signs and statistical significance remain, 364 

indicating the robustness of our results. 365 

Since datasets address individual traveling behavior are rarely publicly available at the localized 366 

level for the study area, we resort to the COVID-19 Impact Analysis Platform by the University 367 

of Maryland44,45 for a national-level exploration. Established for studies on COVID-19’s impact, 368 

this dataset includes the daily number of trips per person at the county level starting from 369 

January 1st, 2020, which is further broken down to work and non-work trips. The information on 370 

trips comes from mobile device location data. Since the massive outbreak of COVID-19 in the 371 

United States took place no earlier than March, we adopt the records in January and February 372 

and match them with the air pollution and climate data from the above sources using a similar 373 

method.  374 

Empirical strategies 375 

We first estimate a Generalized Linear Squared model on the panel dataset of residential and 376 

commercial units separately with the equation 377 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  
+ 𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛼𝛼𝑖𝑖 + 𝜏𝜏𝑦𝑦 + 𝛿𝛿𝑚𝑚 + 𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝐶𝐶𝑊𝑊𝑖𝑖 + 𝐻𝐻𝐶𝐶𝐸𝐸𝑃𝑃𝑊𝑊𝐻𝐻𝐻𝐻𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖     (1) 378 

where i indexes individual residential or commercial consumer and t indexes day of the sample. 379 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 refers to the daily electricity consumption of consumer i on day t. 𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 is the 380 

daily average concentration of either PM10 or PM2.5. 𝑿𝑿𝒊𝒊𝒊𝒊  is a vector of control variables, 381 

including cooling degree days (CDD) and heating degree days (HDD) (estimated using daily 382 

average temperature), daily total precipitation, wind speed, and electricity price (average daily 383 

electricity price for the residential consumers, and demand charge and energy charge for the 384 

commercial units). We also control for the concentration of ozone as another major pollutant that 385 

affects the air quality and thus the outdoor activities of consumers.  𝛼𝛼𝑖𝑖 is customer fixed effects 386 
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and it controls for the time-invariant attributes of the consumer such as square footage and the 387 

number of stories as well as environmental awareness of building occupants. The time fixed 388 

effects 𝜏𝜏𝑦𝑦 and  𝛿𝛿𝑚𝑚 include the year fixed effect and the month-of-year fixed effect. The time 389 

fixed effects capture the time-varying factors across years and seasons such as economic 390 

development and change in local energy policies. 𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝐶𝐶𝑊𝑊 and 𝐻𝐻𝐶𝐶𝐸𝐸𝑃𝑃𝑊𝑊𝐻𝐻𝐻𝐻 are dummy variables 391 

for holidays and weekends, respectively. Holiday dummy is equal to 1 if the day belongs to the 392 

following federal holidays: New Year’s Day, Martin Luther King Day, Presidents’ Day, 393 

Memorial Day, Independent Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving Day, 394 

and Christmas Day. 𝜀𝜀𝑖𝑖,𝑑𝑑 is the error term. Standard errors are clustered at the building level. We 395 

are interested in 𝛽𝛽1 which indicates the electricity use raised by per µg/m3 increase of particulate 396 

concentration ceteris paribus. 397 

We analyze how the impact of air pollution differs by different income groups. Using the 398 

available data on household characteristics, the sample is divided into three levels of per capita 399 

income: low, medium, and high. The division is provided by Pew research center based on the 400 

minimum household income level of different household size varying from 1-5 401 

($24,042/34,000/41,641/48,083/53,759 for middle income, and 402 

$72,126/102,001/124,925/144,251/161,277 for upper income in 201446). Since the household 403 

size is recorded as 1.5, 3.5, and 5, we take an average of the two adjacent minimum household 404 

income levels for 1.5- and 3.5-people households. 405 

We test whether and by how much the particulate pollution affects the solar energy generation 406 

with 407 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑆𝑆𝐶𝐶𝐸𝐸𝐻𝐻𝑆𝑆𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  
+ 𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛼𝛼𝑖𝑖 + 𝜏𝜏𝑦𝑦 + 𝛿𝛿𝑚𝑚 + 𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝐶𝐶𝑊𝑊𝑖𝑖 + 𝐻𝐻𝐶𝐶𝐸𝐸𝑃𝑃𝑊𝑊𝐻𝐻𝐻𝐻𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖     (2) 408 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑆𝑆𝐶𝐶𝐸𝐸𝐻𝐻𝑆𝑆𝑖𝑖𝑖𝑖 refers to the daily electricity generated by solar for consumer i on day t, and 409 

other terms are the same as in equation (1). 𝑿𝑿𝒊𝒊𝒊𝒊 is modified to adapt to factors that can affect the 410 

power generation of solar panels, including climate factors which can also affect the performance 411 

of solar power (temperature, precipitation, wind speed, and surface albedo), and the electricity 412 

prices which can affect the motivation of consumers in actively maintaining a good condition of 413 

solar panel (consumers would be encouraged to do so if the price is higher). The distributed solar 414 

consumers in our sample were on the net-metering plan under which they could sell excessive 415 

solar electricity at retail electricity prices.  416 

The naïve GLS estimation (results shown in Supplementary Tables 6-9) suffers from 417 

endogeneity issues due to reverse causality and missing variables 47,48. As air pollution changes 418 

the behavior patterns and increases the energy consumption of consumers, the latter can result in 419 

more electricity generation and thus pollution emissions. Meanwhile, if consumers spend more 420 

time indoors, the demand for vehicle traveling may also decrease and lead to reduced emissions 421 

from transportation 48. Omitting such pathways would lead to a biased estimation of the effect of 422 

air pollution. Besides, air quality and individual socio-economic activities can be jointly affected 423 

by the same factors such as the local economy and physical environment 47. Since all such 424 

factors cannot be observed in our datasets, these missing variables could bias the estimation.  425 

To address these issues, we resort to wind direction for an instrumental variable estimation. Its 426 

validity has been verified by multiple existing air pollution studies 47,49,50. The idea is that wind 427 

direction affects regional air quality as it transports pollutants in specific directions. As the wind 428 

direction fluctuates on a daily or even hourly basis, it can convert the study area between the 429 
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upwind or downwind of the pollution. Other than this pathway, wind direction (while controlling 430 

for wind speed) can hardly affect electricity consumption or solar electricity generation, and thus 431 

can meet the exclusive restriction for a valid instrumental variable. 432 

We use the daily average cosine of the angle between the prevailing wind direction and the 433 

hourly wind direction as our instrumental variable following the previous studies47,51 with 434 

modification in adapting to our daily-level data. We first plot the distribution of the hourly wind 435 

direction of all the climate stations to obtain the prevailing wind direction which turns out to be 436 

180°. We then calculate the cosine of the angle between each hourly wind direction observation 437 

and this prevailing direction, and finally obtain the daily average for each climate station that 438 

matches with different zip code zones. In this way, we can conduct the first stage regression 439 

before running equation (1) or (2) as 440 𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛾𝛾1𝑊𝑊𝑃𝑃𝐶𝐶𝑊𝑊_𝑊𝑊𝑃𝑃𝑆𝑆𝑖𝑖𝑖𝑖  
+ 𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛼𝛼𝑖𝑖 + 𝜏𝜏𝑦𝑦 + 𝛿𝛿𝑚𝑚 + 𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝐶𝐶𝑊𝑊𝑖𝑖 + 𝐻𝐻𝐶𝐶𝐸𝐸𝑃𝑃𝑊𝑊𝐻𝐻𝐻𝐻𝑖𝑖 +  𝐸𝐸𝑖𝑖𝑖𝑖     (3) 441 

where  𝑊𝑊𝑃𝑃𝐶𝐶𝑊𝑊_𝑊𝑊𝑃𝑃𝑆𝑆𝑖𝑖𝑖𝑖  
 indicates the daily wind direction variable,  𝐸𝐸𝑖𝑖𝑖𝑖 is the error term, and other 442 

terms are the same as in equation (1) or (2). The coefficient 𝛾𝛾1 after we run the first stage model 443 

is statistically significant with an F-value larger than 10, implying that the instrumental variable 444 

is relevant and strong. We then use the predicted values of pollution from equation (3) in the 445 

second stage model when we run equation (1) or (2).  446 

It should be noted that the maximum value of electricity consumption of commercial buildings in 447 

our sample is extraordinarily large (Supplementary Table 3). However, there is no way for us to 448 

rule out the possibility that this value is reasonable given the decent variation of daily electricity 449 

consumption in the commercial building that this value belongs to. Therefore, we keep these 450 

potential outliers for the main analysis but also rerun the regressions dropping commercial 451 

buildings with maximum daily electricity consumption over 500kWh and 1000kWh, respectively. 452 

The results provided in Supplementary Tables 10-11 show that our key results remain robust 453 

after the change. Also, there are about 10% of buildings with constant daily electricity 454 

consumption of 0 in the raw data. We regard them as shutdown buildings and drop them from 455 

our sample. 456 

We further test how air pollution affects residential and commercial electricity consumption at 457 

the hourly level. The identification is similar to equation (1) but using the matched hourly data of 458 

electricity use and air quality (lagged for one hour). The electricity consumption and solar 459 

electricity generation of one particular hour will not influence the air quality of the last hour, and 460 

thus there is no reverse causality issue. In addition, such immediate hourly reaction of building 461 

energy use will not lead to immediate change (within the same hour) in local PM pollution levels 462 

for the following reason. The hourly change in building electricity consumption leads to an 463 

hourly change in electricity generated at power plants. The coal-fired power plants surrounding 464 

the Phoenix metropolitan area are all located at least 100 miles away. This implies that the 465 

transmission of the PM pollution from these power plants to Phoenix metropolitan will take time 466 

(considering that the average wind speed in Arizona cities is less than 23 miles per hour and the 467 

average wind speed in our sample is 2.66 meters/second or 6 miles/hour), and thus will not 468 

influence the local PM pollution within an hour. The significant hourly variation in local PM 469 

pollution (such as in morning hours and late afternoon hours) in Arizona mostly comes from 470 

other sources such as motor vehicles and road dust, instead of from power plants, based on the 471 
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study by Clements et al.52 As a result, the hourly change in building energy consumption will not 472 

alter local PM pollution in Phoenix metropolitan area immediately.  473 

To examine whether individuals stay at home instead of commuting to work in polluted days, we 474 

conduct a regression analysis on personal trips with 475 𝑇𝑇𝑆𝑆𝑃𝑃𝑇𝑇𝑗𝑗𝑖𝑖 = 𝛽𝛽1𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑗𝑗𝑖𝑖
 
+ 𝑿𝑿𝒋𝒋𝒊𝒊 + 𝜋𝜋𝑗𝑗 + 𝛿𝛿𝑚𝑚 + 𝑊𝑊𝐶𝐶𝑑𝑑𝑖𝑖 +  𝜀𝜀𝑗𝑗𝑖𝑖     (4) 476 

where 𝑇𝑇𝑆𝑆𝑃𝑃𝑇𝑇𝑗𝑗𝑖𝑖 indicates the trips per person in county j on day t, 𝜋𝜋𝑗𝑗 and 𝑊𝑊𝐶𝐶𝑑𝑑𝑗𝑗𝑖𝑖 denotes the county 477 

and day-of-week fixed effect, and other terms are similar as in equation (1) or (2) but at the 478 

county level. On the basis of regressions using the total trips, we further test the effect of 479 

pollution concentration on the work and non-work trips. Due to a similar source of endogeneity, 480 

we are instrumenting the pollution using the wind direction with 481 𝑃𝑃𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑗𝑗𝑖𝑖 = 𝛾𝛾1𝑊𝑊𝑃𝑃𝐶𝐶𝑊𝑊_𝑊𝑊𝑃𝑃𝑆𝑆𝑗𝑗𝑖𝑖
 
+ 𝑿𝑿𝒋𝒋𝒊𝒊 + 𝜋𝜋𝑗𝑗 + 𝛿𝛿𝑚𝑚 + 𝑊𝑊𝐶𝐶𝑑𝑑𝑖𝑖 + 𝐸𝐸𝑗𝑗𝑖𝑖     (5) 482 

where 𝑊𝑊𝑃𝑃𝐶𝐶𝑊𝑊_𝑊𝑊𝑃𝑃𝑆𝑆𝑗𝑗𝑖𝑖 indicates the daily wind direction variable for county j on day t, and other 483 

terms are the same as in equation (4). We calculate the daily average cosine of the angle between 484 

the prevailing wind direction and the hourly wind direction as our instrumental variable in a 485 

similar way as described above. The prevailing wind direction is retrieved from the median of 486 

the wind angle of each county during the study period.  487 

 488 

 489 

Data availability 490 

Records of air quality and hourly wind direction are retrieved from Pre-Generated Data Files of 491 

United States Environmental Protection Agency (US EPA) at 492 

https://aqs.epa.gov/aqsweb/airdata/download_files.html. Climate factors are obtained from 493 

Global Surface Summary of the Day at ftp://ftp.ncdc.noaa.gov/pub/data/gsod/. The solar 494 

irradiance data from National Renewable Energy Laboratory (NREL)’s National Solar Radiation 495 

Data Base at https://maps.nrel.gov/nsrdb-viewer. The high-frequency electricity data are from 496 

the SRP. As restricted by a non-disclosure agreement, they are available from the authors upon 497 

reasonable request and with permission from the SRP. The county level trip data is available 498 

upon request from the COVID-19 Impact Analysis Platform of University of Maryland at 499 

https://data.covid.umd.edu/about/index.html. Source data are provided with this paper. 500 

 501 

Code availability 502 

All data and models are processed in Stata 14.0. The figures are produced in R studio (based on 503 

R 3.6.1). All custom code is available on Github from https://github.com/hepannju/Increase-in-504 

domestic-electricity-consumption-from-particulate-air-pollution. 505 

 506 
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 645 

Figure 1 Change in residential hourly electricity consumption due to 1 unit increase in air pollution concentration.  The colored 646 
dots show the changes in hourly electricity consumption, obtained from panel regression at hourly level. The colored vertical 647 
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lines show the 95% confidence intervals. As the information on hourly electricity price is available only for a small part of the 648 
residential and commercial samples, we conduct the analysis both with and without the regressor of price as a control variable. 649 
Source data 650 

 651 

Figure 2 Change in daily residential electricity consumption due to 1 unit increase in air pollution concentration. Results are 652 
based on instrumental variable methods. The solid dots represent the values of the coefficients that measure the change in 653 
daily electricity consumption in response to a 1 µg/m3 increase in PM concentration. The vertical lines represent 95% 654 
confidence intervals.  Source data 655 

 656 

Figure 3 Change in commercial hourly electricity consumption due to 1 unit increase in air pollution. The colored dots show the 657 
changes in hourly electricity consumption, obtained from panel regression at hourly level. The colored vertical lines show the 658 
95% confidence intervals. Source data 659 

 660 

Figure 4 Change in daily commercial electricity consumption due to 1 unit increase in air pollution. Results are based on 661 
instrumental variable methods. The solid dots represent the values of the coefficients that measure the change in daily 662 
electricity consumption in response to a 1 µg/m3 increase in PM concentration. The vertical lines represent 95% confidence 663 
intervals.  Source data 664 

 665 

Table 1 Effect of air pollution on electricity consumption in residential buildings 666 

 
(1) (2) (3) (4)  

IV-first stage 
IV-second 

stage IV-first stage 
IV-second 

stage 

Wind direction (cosine) 13.740***  1.852***  
 (0.016)  (0.008)  
PM10 concentration  0.020***    

 (0.004)   
PM2.5 concentration    0.145***  

   (0.032) 
Ozone concentration -8.223*** 58.849*** -2.587*** 58.606*** 
 (0.766) (1.643) (0.204) (1.618) 
Heating degree days -0.383*** 0.779*** 0.134*** 0.751***  

(0.001) (0.012) (0.001) (0.012) 
Cooling degree days 0.145*** 1.103*** 0.002*** 1.106***  

(0.001) (0.009) (0.000) (0.009) 
Precipitation accumulation -3.503*** -0.142** -1.771*** 0.048  

(0.067) (0.068) (0.038) (0.086) 
Wind speed 1.094*** -0.119*** -1.264*** 0.087**  

(0.007) (0.014) (0.003) (0.044) 
Relative humidity -0.430*** 0.044*** -0.020*** 0.038*** 
 (0.001) (0.002) (0.000) (0.001) 
Daily electricity price (log) -0.507*** -8.003*** 0.631*** -8.078***  

(0.119) (0.819) (0.027) (0.820) 
Fixed effects  
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Consumer Y Y Y Y 

Weekend Y Y Y Y 

Holiday Y Y Y Y 

Month-of-year Y Y Y Y 

Year Y Y Y Y 

N 5287985 5287985 5274599 5274599 
R2  0.507  0.507 
F statistics 7.7*105  49475.29  

Notes: Standard errors in parentheses are clustered to building unit level. * p<0.1, ** p<0.05, *** p<0.01.  667 

 668 

Table 2 Effect of air pollution on electricity consumption in commercial buildings 669 

 (1) (2) (3) (4) 

 IV-first stage 
IV-second 

stage IV-first stage 
IV-second 

stage 

Wind cosine 13.749***  2.149***  

 (0.008)  (0.004)  

PM10 concentration  -0.007   

  (0.011)   
PM2.5 concentration    -0.045 

    (0.074) 

Ozone concentration -9.828*** 9.241** -5.344*** 8.917** 

 (0.490) (3.598) (0.124) (3.558) 

Heating degree days -0.554*** 0.093*** 0.080*** 0.100*** 

 (0.001) (0.018) (0.000) (0.026) 

Cooling degree days 0.213*** 0.649*** 0.006*** 0.648*** 

 (0.001) (0.023) (0.000) (0.022) 

Precipitation accumulation -3.833*** -0.899*** -1.685*** -0.948*** 

 (0.025) (0.107) (0.013) (0.143) 

Wind speed 1.011*** 0.647*** -1.315*** 0.581*** 

 (0.004) (0.038) (0.001) (0.089) 

Relative humidity -0.455*** 0.033*** -0.027*** 0.035*** 

 (0.000) (0.003) (0.000) (0.003) 

Demand charge (log) 0.470*** 68.257*** 0.095*** 68.404*** 

 (0.117) (22.572) (0.027) (22.614) 

Energy charge (log) 0.277*** 15.871*** 0.112*** 15.896*** 

 (0.043) (3.603) (0.007) (3.611) 
Fixed effects     

    Building Y Y Y Y 

    Weekend Y Y Y Y 

    Holiday Y Y Y Y 

    Month-of-year Y Y Y Y 

    Year Y Y Y Y 

N 23561924 23561924 23527526 23527526 
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R2  0.011  0.011 

F statistics 3.0*106  2.3*105  
Notes: Standard errors in parentheses are clustered to building unit level. * p<0.1, ** p<0.05, *** p<0.01. The 670 

demand charge and energy price are calculated by taking the average of the marginal prices of a price plan in a given 671 

month. Thus, the coefficients for the prices measure the differences in electricity consumption of consumers across 672 

different price plans across different months. Some large electricity-using consumers were on price plans that have 673 

lower prices.   674 

 675 
Table 3 Effect of air pollution on solar energy generation in residential buildings 676 

 (1) (2) (3) (4) 

 IV-first stage 
IV-second 

stage 
IV-first 
stage 

IV-second 
stage 

Wind cosine 7.622***  1.751***  

 (0.129)  (0.046)  

PM10 concentration  -0.435***   

  (0.027)   
PM2.5 concentration    -1.888*** 

    (0.125) 

Heating degree days -0.608*** -0.142*** 0.048*** 0.214*** 

 (0.010) (0.015) (0.003) (0.016) 

Cooling degree days 0.619*** 0.382*** 0.021*** 0.154*** 

 (0.015) (0.024) (0.002) (0.011) 

Precipitation accumulation -9.181*** -5.659*** -1.346*** -4.197*** 

 (0.941) (0.668) (0.155) (0.557) 

Wind speed 0.551*** -0.450*** -1.243*** -3.038*** 

 (0.053) (0.045) (0.015) (0.175) 

Daily electricity price (log) 1.617*** 0.104 1.413*** 2.024** 

 (0.536) (0.794) (0.117) (0.858) 

Surface albedo 777.950*** 447.377*** 60.592*** 223.112*** 

 (13.426) (28.414) (2.118) (18.319) 

Constant     

     
Fixed effects     

    Building Y Y Y Y 

    Weekend Y Y Y Y 

    Holiday Y Y Y Y 

    Month-of-year Y Y Y Y 

    Year Y Y Y Y 

N 199613 199613 198579 198579 

R2  0.032  0.135 

F statistics 3488.99  1435.08  
Notes: Standard errors in parentheses are clustered to building unit level. * p<0.1, ** p<0.05, *** p<0.01.  677 

 678 
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Table 4 Effect of air pollution on solar energy generation in commercial buildings 679 

 (1) (2) (3) (4) 

 IV-first stage IV-second stage IV-first stage IV-second stage 

Wind cosine 6.390***  1.551***  

 (0.014)  (0.006)  

PM10 concentration  -0.022***   

  (0.005)   

PM2.5 concentration    -0.093*** 

    (0.020) 

Heating degree days -0.422*** -0.028*** 0.287*** 0.008 

 (0.001) (0.005) (0.001) (0.006) 

Cooling degree days 0.149*** 0.021*** -0.022*** 0.015*** 

 (0.001) (0.003) (0.000) (0.003) 

Precipitation accumulation -20.052*** -0.737*** -3.273*** -0.590*** 

 (0.115) (0.133) (0.021) (0.104) 

Wind speed 0.037*** 0.084*** -1.417*** -0.048** 

 (0.005) (0.013) (0.001) (0.025) 

Demand charge (log) -10.492*** 0.792 -0.414*** 0.991 

 (0.075) (0.593) (0.009) (0.613) 

Energy charge (log) -8.105*** -0.986*** -1.143*** -0.911*** 

 (0.113) (0.260) (0.017) (0.249) 

Surface albedo 213.255*** 41.617*** -8.850*** 35.990*** 

 (0.655) (5.044) (0.121) (4.580) 
Fixed effects     

    Building Y Y Y Y 
    Weekend Y Y Y Y 
    Holiday Y Y Y Y 
    Month-of-year Y Y Y Y 
    Year Y Y Y Y 

N 22259565 22259565 22226277 22226277 

R2  0.001  0.001 

F statistics 2.1*105  73964.88  
Notes: Standard errors in parentheses are clustered to building unit level. * p<0.1, ** p<0.05, *** p<0.01.  680 

 681 
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