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Abstract: Three-dimensional (3D) surface scans were carried out in order to determine the shapes
of the upper sections of (skeletal) crania of adult Eurasian otters (Lutra lutra) from Great Britain.
Landmark points were placed on these shapes using a graphical user interface (GUI) and distance
measurements (i.e., the length, height, and width of the crania) were found by using the landmark
points. Male otters had significantly larger skulls than females (P < 0.001). Differences in size also
occurred by geographical area in Great Britain (P < 0.05). Multilevel Principal Components Analysis
(mPCA) indicated that sex and geographical area explained 31.1% and 9.6% of shape variation in
“unscaled” shape data and that they explained 17.2% and 9.7% of variation in “scaled” data. The first
mode of variation at level 1 (sex) correctly reflected size changes between males and females for
“unscaled” shape data. Modes at level 2 (geographical area) also showed possible changes in size
and shape. Clustering by sex and geographical area was observed in standardized component
scores. Such clustering in a cranial shape by geographical area might reflect genetic differences in
otter populations in Great Britain, although other potentially confounding factors (e.g., population
age-structure, diet, etc.) might also drive regional differences. This work provides a successful first
test of the effectiveness of 3D surface scans and multivariate methods, such as mPCA, to study the
cranial morphology of otters.
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1. Introduction

Geometric morphometrics is the field of the study of biological shape [1–5]. Such shapes
(e.g., of whole organisms or faces) are often defined by a collection of measurements at, or between,
a predefined set of anatomically recognizable “landmark points”. Subsequently, “superimposition”
methods, such as Procrustes transformation/analysis, are used to correct for centering, orientation,
and scale in order to provide shape variables [1]. Multivariate data contain more than one
“outcome” variable; here the x-, y-, and z-components of the Cartesian landmark points. Multivariate
statistical methods, such as principal components analysis (PCA) [1], linear discriminant analysis [6],
and multivariate analysis of variance [6,7], provide us with ways to analyze such (often highly correlated)
data. Multivariate regression models may be used be used to study geometric morphometrics [8].

However, another multivariate method that has previously been used to study human shapes in
particular is given by multilevel principal components analysis (mPCA) [9–16], which is a generalization
of PCA that allows for us to account for groupings or clusters in our population of shapes. Indeed,
mPCA allows us to isolate (to some extent at least) competing effects at different levels of the model.
mPCA has also previously been employed in active shape models in order to segment image features
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in the human spine [9]. The authors note that mPCA “offers more flexibility and “allows deformations”
(i.e., changes in shape) that “classical statistical models cannot generate” [9]. We previously applied
mPCA to investigate (in humans): facial shape changes by ethnicity and sex [10,11]; the act of
smiling [12,13]; facial shape changes in adolescents due to age [14,15]; and, maternal smoking and
alcohol intake on the facial shape of children [16]. Here, we wish to extend these calculations to study
otter cranial morphology.

The Eurasian otter (Lutra lutra) (hereafter: otter) is a carnivore of the family Mustelidae, and it is
native across much of Eurasia [17]. Within this distribution, genetic sub-structuring is evident at both
the broad scale (e.g., across Europe [18]) and at smaller scales (e.g., within the UK [19–21]). As of yet,
there has been relatively little exploration of potential associations between genetic and phenotypic
variation, although craniometric differences between countries have been observed [22]. Eurasian
otters are sexually dimorphic (males are larger), and it has been suggested that differences in skull
morphology may allow dietary separation between the sexes [22]. Differences in diet that are associated
with age, body size, and sex have been reported [23]. Eurasian otters are primarily opportunistic
piscivores; in the UK, regional and temporal variation in availability of prey species is reflected in
diet [23]. Therefore, long term spatial variation in otter diet might drive evolutionary adaptations
of otter cranial morphometry. Previous investigations of otter cranial morphometry [22,24–26] have
focused on physical measurements (distances and angles) rather than by using three-dimensional
(3D) scans.

Here, we aim to first demonstrate that 3D surface scans can provide measurements of cranial
distances that are in good agreement with direct physical measurements of the crania obtained using
a caliper. Secondly, we also wish to “prove the principle” that multivariate statistical techniques
(i.e., mPCA here) can be applied to landmark points obtained from the 3D surface scans by using
a graphical user interface. Finally, we wish to explore whether these distance measurements show any
differences by sex and geographical area, thereby demonstrating the potential usefulness of such 3D
scans in analyzing such cranial shapes.

2. Materials and Methods

2.1. Shape Acquisition

The Cardiff Otter Project was established in 1992 to investigate the health and biology of otters in
the UK. Otters found dead (largely road traffic casualties) were collected, and then stored frozen at
−20 ◦C prior to postmortem examination. For each otter, location of origin was recorded by the finder,
and a range of biometric data (including sex, age-class, length, and weight) were recorded during
a standardized postmortem examination (see www.cardiff.ac.uk/otter-project). Skeletal material,
including the skull, was retained, and subsequently cleaned and archived by the National Museum of
Scotland. For this study, 59 adult otter crania were selected in order to give a balanced sex ratio and
broad geographic coverage (sex: 31 male, 28 female; geographical area: 21 Wales, 13 SE England; 15 SW
England, 10 north England and Scotland; assigned according to genetic groupings defined by [21]).

3D scans of the upper part of the otter crania were obtained using a (dental) Renishaw Medit
T300 (blue light) scanner. The quoted accuracy of scans for the blue light scanner by the manufacturer
(Renishaw, Wotton-under-Edge, UK) is 56 µm. Only partial scans were attainable due to the size of the
crania; these partial scans were “stitched together” using MATLAB R2019b, as illustrated in Figure 1.

A graphical user interface (GUI) (Meshmixer 3.5.474) was then used to place 31 3D landmark
points for each otter cranial shape file, as illustrated by Figure 2. Cranial distance measurements,
including the length, height, and width of the otter crania, were performed. These were found first by
using these landmark points (referred to as “GUI-based” distance measurements) and separately by
using direct “physical” measurements (referred to as “physical” distance measurements) on the crania
by using a digital caliper (maximum precision of ~0.01 mm, in principle).

www.cardiff.ac.uk/otter-project
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Figure 1. Stitching process of partial scans: point clouds extracted from shape files from partial three-
dimensional (3D) scans of the crania on the left-hand side of the figure are aligned and merged (as 
shown) in order to form a complete surface shape file shown on the right-hand side of the figure. Four 
partial scans of the crania as shown (i to iv) were found for each otter. The original shape files (STL 
format) were used to generate point clouds (v to viii). The front and rear of the top and bottom 
sections were aligned (ix,x) and combined (xi,xii) by using the “point cloud register” command in 
MATLAB R2019b, and the resulting top and bottom sections were aligned and combined (xiii) to 
create a complete representation of the surface shape as a point cloud (xiv). MESHLAB V2016.12 
(www.meshlab.net) was then used to create the final shape file (in STL format) from this point cloud 
(xv). 

A graphical user interface (GUI) (Meshmixer 3.5.474) was then used to place 31 3D landmark 
points for each otter cranial shape file, as illustrated by Figure 2. Cranial distance measurements, 
including the length, height, and width of the otter crania, were performed. These were found first 
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Figure 2. Schematic of the upper part of an otter cranium from different viewpoints with 31 landmark 
points indicated. Distances, such as the length, width, and height, of the skull can be found using 
these landmark points placed by using a graphical user interface (GUI) (referred to as “GUI-based” 

Figure 1. Stitching process of partial scans: point clouds extracted from shape files from partial
three-dimensional (3D) scans of the crania on the left-hand side of the figure are aligned and merged
(as shown) in order to form a complete surface shape file shown on the right-hand side of the figure.
Four partial scans of the crania as shown (i to iv) were found for each otter. The original shape files
(STL format) were used to generate point clouds (v to viii). The front and rear of the top and bottom
sections were aligned (ix,x) and combined (xi,xii) by using the “point cloud register” command in
MATLAB R2019b, and the resulting top and bottom sections were aligned and combined (xiii) to
create a complete representation of the surface shape as a point cloud (xiv). MESHLAB V2016.12
(www.meshlab.net) was then used to create the final shape file (in STL format) from this point cloud (xv).
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Figure 2. Schematic of the upper part of an otter cranium from different viewpoints with 31 landmark
points indicated. Distances, such as the length, width, and height, of the skull can be found using these
landmark points placed by using a graphical user interface (GUI) (referred to as “GUI-based” distance
measurements). These distances were also measured directly for the crania by using a digital caliper
(referred to as “physical” distance measurements.).

Sets of landmark points (defined above) that were represented by the shape vector z were centered
and aligned in 3D to the mean shape before analysis. This was carried out by using point cloud
registration in MATLAB, which produces a rigid transformation of each shape with respect to the
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overall mean shape. This process corrected for centering and alignment, although not scale. Procrustes
“superposition” was not carried out here.

Uncertainty in the positions of landmark points can occur, because of scanning inaccuracies,
merging of point clouds, and finally in point placement. The stated accuracy of the Renishaw Medit
blue light scanner is 56 µm, as noted above. The root mean square error (rmse) from point cloud
registration in MATLAB, prior to merging of points clouds, was ~2 mm here. However, rmse is not
a reliable estimate of the true of error that is involved in merging point clouds, as there is not a perfect
one-to-one correspondence between these sets of points. An estimation of errors in manual placement
can be achieved by repetition of the entire process of point placement for all shapes, although this was
not carried out in this initial study. Instead, we examined the level of agreement between the two sets of
landmark points (physical and GUI-based), while using intra-class correlation (ICC) coefficients in SPSS
V25 (“single measures”) and mean “absolute” differences (MAD = |physical − GUI|; mean evaluated
over all subjects).

2.2. Statistical Analysis

Descriptive statistics were used for exploring the distance measurements initially as a function
of sex and geographical area. Distributions of all cranial distance measurements were checked,
and found to be normally distributed. Differences in size between the two sexes were analyzed via
(unpaired) t-tests, and one-way ANOVA was used to test for size differences between geographical
areas. Two-way ANOVA was used to simultaneously test for associations with sex and geographical
area; their interaction could not be tested due to sample size limitations.

Thereafter, single-level PCA and multi-level PCA (mPCA) were applied to test for differences in
shape. Analyses were repeated, on (i) data that were scaled in size to that of the mean, thus removing
size variation (this dataset will be referred to as the scaled shape data), and on (ii) data that were not
scaled (referred to as the unscaled shape data). Therefore, we were able to focus on associations with size
and shape (unscaled data), and shape only (scaled data) in separate analyses. Linear discriminant analysis
(SPSS V26) was also carried out on for the distance measurement data as yet another comparison to
our results from mPCA.

PCA is the process of computing the principal components (also referred to as “modes of
variation” here) that reflect the variation occurring in the data. The first principal component provides
a direction that contains the highest amount of variance of the data, the second principal component
provides another (orthogonal) direction that contains the second highest amount of variation of the
data, and so on for all subsequent components. The magnitude of variation of each component is
represented by its corresponding eigenvalue. PCA is therefore often used as a dimensional reduction
technique. Here, PCA is carried out by forming a covariance matrix with respect to the landmark
coordinate components, and this matrix is diagonalized in order to find eigenvalues and eigenvectors
(i.e., the modes/components). New shapes may be readily fitted to a model provided by a weighted
sum of components. These component weights are also referred to as “component scores” here and they
may be standardized readily. Effectively there is only one level for “standard” PCA, and so we refer
to this as single-level PCA. The mathematics of PCA are presented in the Appendix A. mPCA [7–12]
allows us to decompose specific influences at specific levels of the model, i.e., sex and geographical
area here, as illustrated by Figure 3. Covariance matrices are found at each level of the model and PCA
is carried out for each of these matrices separately. Single-level PCA often mixes the effects of different
influences in the principal components together. By contrast, mPCA is more likely to isolate specific
influences at specific levels of the model, which is a strong advantage of mPCA over single-level PCA.
Component scores may be found at each level of the model when fitting to new shapes and these scores
may again be standardized readily. Again, the mathematics of mPCA are presented in the Appendix A.

Note that PCA also lies at the heart of active shape models (ASMs) and active appearance models
(AAMs) [27–34], which are common techniques in image processing that are used to search for specific
features or shapes in images, although ASMs and AAMs are not the focus of this article. Note that all
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of the calculations presented here for single-level PCA and mPCA were carried out using MATLAB
R2019b, whereas statistical tests were carried out using SPSS V25.
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3. Results

ICC coefficients between GUI-based and physical distance measurements were found to be high,
i.e., ICC = 0.99, 0.85, 0.96 for length, width, and height (see Figure 2). The ICC coefficients indicated
statistically significant (P < 0.001) levels of agreement between physical and GUI measurements.
Mean absolute differences (again: MAD = |physical − GUI|) for the distance measurements were of
order ~1 mm (minimum MAD = 0.66 mm and maximum MAD = 1.61 mm). These (small) differences
between physical and GUI measurements were probably due to difficulties in consistently identifying
points on the 3D surfaces (i.e., the “point correspondence” problem) for both sets of data (i.e., physical
and GUI) rather than problems due the stitching process shown in Figure 1. Overall, these results
show that good agreement occurred between physical and GUI-based measurements and that the
point placement of landmark points was generally accurate. This agreement between the physical
and GUI-based distance measurements is also demonstrated by descriptive statistics that are given in
Table 1 for males and females separately. The results for these distance measurements in Table 1 also
indicate that male otters have significantly larger (P < 0.001) crania than females in terms of length,
height, and width.

Table 1. Length, width, and height distance measurements of otter crania. Male crania are significantly
larger than female crania via unpaired t-tests (P < 0.001). Excellent agreement is seen between direct,
physical and GUI-based results for these distances.

Sex (Measurement Type) Length Width Height

Male (Physical) Mean (mm) 100.53 70.53 41.30
SD (mm) 3.96 2.89 1.62

Female (Physical) Mean (mm) 93.68 65.09 39.64
SD (mm) 3.26 2.14 1.36

Male (GUI)
Mean (mm) 100.38 70.10 41.84

SD (mm) 3.72 3.57 1.36

Female (GUI)
Mean (mm) 93.44 63.92 39.14

SD (mm) 3.25 2.42 1.22

Table 2 shows the results for the length, width, and height measurements of otter crania by
geographical area in Great Britain. All of the distance measurements consistently indicate that the
crania sampled from SW England were smaller than those from other areas (Table 2). Despite low
sample sizes per group, significant differences (one-way ANOVA, P < 0.05) occurred in width and
height, but not length. Two-way ANOVA indicated that significant (P < 0.05) differences occurred
in length, width, and height with respect to sex and geographical area. Again, GUI-based distance
measurements (not presented in Table 2) were found to agree well with physical measurements.
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Table 2. Length, width, and height distance measurements of otter crania (physical distance
measurements shown here only). Crania from SW England are smaller than those from other
areas. (Results from one-way ANOVA are also quoted in this table.).

Region Length Width Height

Wales
Mean (mm) 97.23 67.00 40.76

SD (mm) 4.08 3.10 1.45

SE England Mean (mm) 99.03 69.21 41.14
SD (mm) 6.57 4.98 1.95

SW England Mean (mm) 94.63 66.57 39.42
SD (mm) 4.34 2.90 1.45

North
England/Scotland

Mean (mm) 99.08 70.75 40.81
SD (mm) 4.17 2.39 1.75

ANOVA F = 2.563; df = 3, 55;
P = 0.064

F = 3.991; df = 3, 55;
P = 0.012

F = 5.386; df = 3, 55;
P = 0.03

Figure 4 shows the results for the eigenvalues from mPCA and single-level PCA. We see that
results of mPCA are of the same magnitude and follow a similar pattern to those results of single-level
PCA for both scaled and unscaled shape data (Figure 4). The largest eigenvalues for the unscaled data
occurs at level 1 of the model (sex), whereas the largest eigenvalues for the scaled data occurs for level 3
of the model (between subjects). The results of mPCA on the unscaled data (exploring both size and
shape differences) indicate that level 1 (sex), level 2 (geographical area), and level 3 (“between subjects”)
contribute to 31.1%, 9.6%, and 59.3% of shape variation, respectively. The results of mPCA on the scaled
data (exploring shape differences only) indicate that level 1 (sex), level 2 (geographical area) and level
3 (“between subjects”) contribute to 17.2%, 9.7%, and 73.1% of shape variation, respectively.
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Figure 4. Eigenvalues from single-level principal components analysis (PCA) and multilevel Principal
Components Analysis (mPCA): (left) Unscaled shape data; (right) scaled data (i.e., all shapes were
resized to a common length scale).

The results for the first major mode of variation at level 1 (sex) via mPCA shown in Figure 5 for
the unscaled data show strong changes in size (and not shape). These results are best illustrated by
only considering those 17 points on the bottom of the otter crania, schematic also shown in Figure 5 as
a reference. We remark that similar changes in size are seen for all points and also in the frontal (yz) and
side (xz) planes. The results presented in Figure 5 support those results for the distance measurements
that are shown in Table 1, which indicated that males have larger crania that females (e.g., in length of
the skull of order ~7 mm).
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might reflect changes in height to length (and width) ratio. However, any such changes at levels 2 
and 3 are more subtle than those changes in shape that were observed at level 1 (sex). We note again 
that modes of variation are hard to interpret based purely on key landmark points and so the results 
at levels 2 or 3 are not presented here in this initial study. We believe that a clearer explanation of 
modes of variation would hopefully be aided in future studies by using larger sample sizes and 
“denser” point clouds (i.e., more landmark points) than are used here. The results of modes 1 and 2 
via single-level PCA for the unscaled shape data (not shown here) are reminiscent of the first modes 

Figure 5. Sexual dimorphism in cranial size illustrated using mPCA (left-hand figure) for unscaled
shape data for 17 points on the bottom of the crania (schematic shown again in the right-hand figure
for the sake of comparison only). Blue dots represent females (mean + SD) red dots represent males
(mean − SD). (Note that axes are measured in mm.).

The results for the first major mode of variation at level 1 (sex) via mPCA shown in Figure 6 for
the scaled data show some possible residual changes in size, but now also some subtle variations in
shape. These results are again best illustrated by only considering those 17 points on the bottom of the
otter crania (a schematic is also shown in Figure 6 as a reference). However, modes of variation are
hard to interpret based purely on key landmark points. Again though, the results that are shown in
Figures 5 and 6 suggest broadly that changes in size and shape can occur as a function of sex.
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Figure 6. Sexual dimorphism in cranial size illustrated using mPCA (left-hand figure) for scaled shape
data for 17 points on the bottom of the crania (schematic shown again in the right-hand figure for the
sake of comparison only), which is more subtle in this case. Blue dots represent females (mean + SD)
red dots represent males (mean − SD). (Note that axes are measured in mm.).

The results for the first major mode of variation at level 2 (geographical area) via mPCA for the
unscaled data show changes in size (and shape) also, which is in agreement with those results for the
distance measurements shown in Table 2 that indicated that otters sampled from SW England had
smaller skulls than those from the other areas. Furthermore, we believe that the first mode at level 3
might reflect changes in height to length (and width) ratio. However, any such changes at levels 2 and
3 are more subtle than those changes in shape that were observed at level 1 (sex). We note again that
modes of variation are hard to interpret based purely on key landmark points and so the results at
levels 2 or 3 are not presented here in this initial study. We believe that a clearer explanation of modes
of variation would hopefully be aided in future studies by using larger sample sizes and “denser” point
clouds (i.e., more landmark points) than are used here. The results of modes 1 and 2 via single-level
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PCA for the unscaled shape data (not shown here) are reminiscent of the first modes of variations at
level 1 (sex) and level 3 (between subjects) via mPCA, as shown in Figure 7. However, it is probable
that mixing of different effects (sex, geographical area, etc.) occurs in single-level PCA. The results
for modes of variation for both mPCA and single-level PCA for the scaled data (also not shown here)
demonstrate differences in cranial shape by sex and geographical area (etc.), although these modes are
even harder to interpret than for the unscaled data. However, it was noticeable that large changes in
size are not seen in any of the modes via either mPCA or single-level PCA for the scaled data. Larger
sample sizes and “denser” point clouds (i.e., more landmark points) are again required to understand
these subtle effects.
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Figure 7. Results for the first two modes of variation using single-level PCA for unscaled shape data for
17 points on the bottom of the crania (left: first mode; right: second mode). Both modes show some
evidence of changes in size, although other subtle changes in shape might occur also, especially for the
second mode (Note that axes are measured in mm).

Figure 8 provides the results for standardized component scores for the unscaled data for mPCA.
We see that strong clustering by sex is seen at level 1 (sex) in component 1 via mPCA, as expected,
and that some differentiation between groups by geographical area is seen at level 2 in components
1 and 2 via mPCA. Indeed, component 1 at level 2 via mPCA separates SW England from the other
areas, and component 2 differentiates north England from SE England. Intriguingly, there is strong
overlap between Wales and SE England. However, we must be careful not to over-interpret these
initial results, because the sample sizes are low in these initial investigations, especially for the analysis
by regional area. No strong differences in standardized component scores by sex are seen at levels
other than level 1 and, similarly, no strong differences are seen by geographical area at levels other than
level 2, which is what we would expect if mPCA were correctly isolating specific influences at specific
levels of the model. Therefore, this is an excellent check of our results. The results for standardized
component scores via single-level PCA shown in Figure 8 show evidence of clustering by both sex
and geographical area in both the first and second modes, which suggests that the effects of these
factors might be mixed together. Furthermore, there is much more overlap in these component scores
than that observed for scores via mPCA. Linear discriminant analysis applied to manual distance
measurements also showed strong clustering by both sex and geographical area. Although a full
treatment lies beyond the scope of this article due to small sample sizes, it is encouraging that another
method (in addition to single-level PCA) provides support to the results of mPCA.
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Figure 8. Results of mPCA for standardized component scores (x-axis: component 1; y-axis: component
2) for the unscaled shape data. Results of mPCA with m1 = 1; m2 = 3; m3 = 20 in Equation (A4) are
shown in the top row: (left) level 1, which shows a strong clustering by sex; (right) level 2, which shows
clustering by geographical area. Results of single-level PCA are shown in the bottom row: (left) symbols
chosen by sex; (right) symbols chosen by geographical area.

Similar patterns of strong clustering by sex at level 1 and geographical area at level 2 also occur
for the scaled shape data, as shown in Figure 9. These results demonstrate that differences also
occur between males and females and between geographical regions purely in terms of shape only.
Some overlap again occurs between Wales and SE England. Again, no strong difference by sex is seen
at levels other than level 1 and no strong differences are seen by geographical area at levels other than
level 2. The results for components scores for single-level PCA results that are shown in Figure 9 show
evidence of clustering by sex and geographical area, although, again, there is evidence of mixing of
different effects in the first two modes and standardized scores have more overlap than seen in the
scores via mPCA.
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(left) symbols chosen by sex; (right) symbols chosen by geographical area.

4. Discussion

The cranial shape of adult Eurasian otters (Lutra lutra) in Great Britain was investigated in this
paper. Distance measurements found while using a GUI for the 3D scans had high ICC coefficients
when compared to direct physical measurements on the crania that were found by using a caliper.
This result demonstrates that good agreement occurred between the results of 3D scans and GUI-based
landmark placement, which was the first aim of this study. They also present a successful initial test of
the possible usefulness of such 3D scans in analyzing the cranial shape of otters. The use of imaging for
cranial morphometrics (rather than physical measurement) eliminates the need to transport potentially
fragile skulls for analysis, something that is particularly advantageous with geographically widespread
species. The creation of a digital archive of data also provides significant legacy value for future
analysis. Three-dimensional (3D) scanning of otter crania have other advantages over direct physical
measurements, in principle, including reliability, time, and cost. However, a crucial first step is to show
that the accuracy of such scans (and specifically landmark point extraction here) is at least as good as
direct physical measurements, which we believe that we have demonstrated here. Probably the most
important disadvantage of 3D scanning is that specialist (possibly expensive) equipment is needed in
order to carry out the scanning, as well as to store and process the data. Direct physical measurements
are also clearly a simpler and more straightforward, albeit more time-consuming, approach. Although
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structured light scanning, such as the blue light scanning used in this study, offers advantages over
other 3D scanning methods (e.g., laser scanning), it suffers from potential imaging artefacts that arise
from highly reflective or translucent materials. This, however, was not an issue given the opaque and
matt surfaces of the otter crania.

We also wished to show that mPCA can be applied to study landmark points on the cranial
shapes that were obtained while using a graphical user interface. mPCA indicated that sex and
geographical area explained 31.1% and 9.6% of shape variation in unscaled shape data and that they
explained 17.2% and 9.7% of variation in scaled data. Because there was an increase in the percentage
variation from 17.2% for the scaled data (i.e., variations due to shape only) to 31.1% for the unscaled data
(i.e., variations due to both shape and size) by sex, we interpret this as meaning that sex might influence
both size and shape. By contrast, there is little change in the percentage variation for the scaled data
(9.7%) as compared to the unscaled data (9.6%) by geographical area, which we interpret as meaning
that geographical area might only affect shape. However, larger sample sizes and visualizations of
dense point clouds are needed in order to confirm this statement, which lies beyond the scope of this
article. The first mode of variation at level 1 (sex) of the mPCA model for the unscaled data also clearly
corresponded to changes in size, as expected. This result in particular is very encouraging and it is
an excellent validation of the mPCA method in these initial studies. Some changes in size were also
seen in the first mode of variation at level 2 (geographical area) of the mPCA model for the unscaled data,
as well as subtle shape variations. An advantage of mPCA over single-level PCA is that eigenvectors
must be orthogonal within each level, but they do not necessarily have to be orthogonal between levels.
Therefore, specific influences or factors should be more effectively isolated at specific levels of the
model, as this should, in principle, reduce the effects of the common problem in PCA that leads to
mixing of different effects in components if they are not orthogonal “in reality”. However, it has been
remarked that between-groups PCA [35] (a form of two-level mPCA) can overestimate differences
between groups when sample sizes are small, because between-group variation is represented well by
differences between means, but within-group variation can be underestimated. Another limitation
of mPCA is that the number of non-zero eigenvalues can be constrained by the number of groups at
a given level.

Clustering by sex and regional area was seen in standardized component scores via mPCA at
appropriate levels of the models for both the scaled and unscaled shape data. Male otters were shown
to have significantly larger skulls than females, as seen in other research [22,24–26]. Specifically,
the quantitative results indicate that males had skulls that were 6.85 mm, 5.44 mm, 1.66 mm
larger (P < 0.001) in terms of length, width, and height for adult males when compared to females.
Strong differences in cranial size were also observed by geographical area in Great Britain that were
often significant. We speculate that these results might reflect previously observed clustering by genetic
profile in different regions of Great Britain [21]. We must also be careful when interpreting differences
between groups to remember that errors in landmark point position could not be completely removed.
These errors were due to the resolution of the 3D scans, merging of point clouds, and placement
of the landmark points. However, the magnitude of differences between physical and GUI-based
measurements, which we take here as a proxy for overall landmark error, had a minimum equal to
0.7 mm and maximum equal to 1.6 mm. These values are smaller than differences between sexes
(e.g., of order 7 mm for the length) or between geographical areas (e.g., of order 5 mm for the length).
Indeed, the natural variation between otters for the length, width, and height within each sex and
geographical area group were of order (standard deviations) 1 mm to 3 mm. Furthermore, we note that
there are many other factors (e.g., age, feeding habits) that might also affect cranial shapes. Our initial
sample sizes were too small to robustly explore these additional variables. Despite this, the sample
sizes probably were sufficiently large (i.e. around 30 per group) for comparisons between males and
females; apparent spatial differences merit further investigation.
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5. Conclusions

This study provides a successful first test of the effectiveness of 3D surface scans and multivariate
methods, such as mPCA, to study cranial morphology, as well as suggesting some intriguing differences
in cranial morphology among the UK otter population. Future studies will concentrate on larger
sample sizes and developing and applying multivariate methods that can account for continuous
covariates, such as age, as well as discrete ones, such as sex (etc.), for example, using (multilevel)
partial least-squares methods.
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Appendix A

In order to set the scene for our mathematical description of mPCA, we describe the mathematics
of single-level PCA and mPCA. For single-level PCA, landmark points (i.e., mark-up points) that
describe the shape are represented by a vector z and the kth element of this vector is given by zk.
The total number of such (Cartesian) “landmark” points is p, and the mean shape vector (averaged
over all n subjects) is given by z. The covariance matrix is found by evaluating a

Ck1,k2 =
1

n− 1

n∑
i=1

(zik1 − zik1)(zik2 − zik2) (A1)

where k1 and k2 indicate elements of the covariance matrix and the index i indicates the ith shape
in the dataset. We find the eigenvalues λl and eigenvectors ul of this matrix. Note that all of the
eigenvalues are non-negative, real numbers because covariance matrices are symmetric and (indeed)
positive semi-definite. We rank all of the eigenvalues λl into descending order and we choose the m
eigenvalues of largest magnitude to be retained in the model. Any new shape znew is modelled by

znew = z +
m∑

l=1

alul + ε (A2)

The eigenvectors ul are orthonormal and so we can determine the coefficients al (also referred
to as “component scores” here) for a fit of the model to a new shape vector znew readily by using the
scalar product, where

al = ul · (znew
− z) (A3)

Constraints may even be placed on these a-coefficients (e.g., |al | ≤ 3
√
λl), which ensures that

subsequent model fits to a new shape vector never “stray too far” from the cases in the training set.
The component scores al are standardised by dividing them by the square root of λl. Importantly,
the PCA procedure given above does not carry out any form of regression, because we are not regressing
dependent variables(s) and a function of independent variables. Rather, PCA aims to represent the
sources of (co)variation in the data. The model of Equations (A2) and (A3) is a simple expansion of any
new shape in terms of PCA components/modes of variation.

The formalism is only a little more complicated for mPCA, although the implementation of the
method is more complicated. For mPCA, we are able to represent different sources of variation at
different levels of the model. Note that principal components from mPCA must be orthogonal to each
other within levels of the model, although they do not necessarily have to be orthogonal between levels.
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Indeed, we hope that mPCA should isolate (to some extent at least) specific influences at specific levels
of the model because of this feature. By contrast, it is highly probable that traditional single-level PCA
will mix different effects together in principal components if these competing effects are not completely
orthogonal to each other in reality.

As shown in Figure 3, the mPCA model used here has: level 1 = sex; level 2 = geographical area in
Great Britain (Wales, SE England, SW England, north England/Scotland); level 3 = all other “between
subject” variations (everything that is not sex or geographical area is represented here). Covariance
matrices are found at each level of the model separately. The covariance matrix at level 3 is formed with
respect to all shapes for each group (i.e., each combination of sex and geographical area) individually.
The covariance matrices are averaged over both sexes and all geographical areas to give the level 3
covariance matrix Σ3. At level 2, covariance matrices are found with respect to geographical area for
males and females separately and the average of these two matrices forms the level 2 covariance matrix
Σ2. At level 1, covariance matrices are found with respect to sex by now for geographical area separately
and the average of these four matrices (i.e., over all 4 geographical areas) forms the level 1 covariance
matrix Σ1. Again, these relationships are illustrated in Figure 3. mPCA diagonalises the covariance
matrices at the three levels separately. The lth eigenvalue at level 1 is denoted by λ1

l , with associated
eigenvector u1

l , the lth eigenvalue at level 2 is denoted by λ2
l , with associated eigenvector u2

l , and the lth

eigenvalue at level 3 is denoted by λ3
l , with associated eigenvector u3

l . We rank the eigenvalues into
descending order at each level of the model separately. We retain the first m1, m2 and m3 eigenvectors
of largest magnitude at the three levels, respectively. Any new shape znew is modeled via mPCA by

znew = z +
m1∑
l=1

a1
l u1

l +

m2∑
l=1

a2
l u2

l +

m3∑
l=1

a3
l u3

l + ε (A4)

where z is the “grand mean” shape. The coefficients
{
a1

l

}
,
{
a2

l

}
and

{
a3

l

}
(again referred to as “component

scores” here) are determined for any new shape znew by using a global optimization procedure in
MATLAB R2019b with respect to a “least-squares-type” cost function (i.e., cost = ε2 = ε·ε) (constraints

may again be placed on these a-coefficients, e.g.,
∣∣∣aαl ∣∣∣ ≤ 3

√
λαl at level α of the model). The mPCA

component scores a1
l , a2

l , and a3
l may again be standardized by dividing by the square roots of λ1

l , λ2
l ,

and λ3
l , respectively.

Note that our dataset is a case that is “non-nested”. Fully “nested” cases are those where shapes,
subjects, and groups belong to exactly and only one group above it and (importantly) at all levels.
For example, clusters by hospital and ward for some arbitrary “outcome” (e.g., blood pressure).
One might assume that each patient belongs to only one ward and each ward belongs to only one
hospital. Thus, this design is “fully nested” at all levels. “Non-nested” cases have groups at a given
level than can belong to more than one group in the levels above it and our dataset is an example of
just such a non-nested case. We represent sex and geographical area at different levels (e.g., 1 and
2) of the model and subjects at the bottom level (level 3 here). Note that one can have both male
and female otters in the different geographical areas and so there is no “obvious order” to sex and
geographical area at levels 1 and 2. By contrast, the nested models must always have a clear ordering
at all levels. In practice however, all this means is that covariance matrices are found in a slightly
different manner at a given level; the procedure used to find covariance matrices for our “non-nested”
model is discussed above. Finally, some multilevel cases contain a mixture of nested and non-nested
elements, which might be referred to as “mixed”.
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