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Tim-3 promotes cell aggressiveness and paclitaxel resistance through the NF-κB 

/STAT3 signalling pathway in breast cancer cells 

 

Abstract 

Objective: Although T-cell immunoglobulin and mucin-domain containing molecule-

3 (Tim-3) has been recognized as a promising target for cancer immunotherapy, its 

exact role in breast cancer has not been fully elucidated. Methods: Tim-3 gene 

expression in breast cancer and its prognostic significance were analysed. Associated 

mechanisms were then explored in vitro by establishing Tim-3-overexpressing breast 

cancer cells. Results: In a pooled analysis of TCGA database, Tim-3 gene expression 

levels were significantly higher (p<0.001) in breast cancer tissue, compared with 

normal tissue. Tim-3 was a prognosis indicator in breast cancer patients (relapse-free 

survival, p=0.004; overall survival, p=0.099). Tim-3 overexpression in Tim-3low breast 

cancer cells promoted aggressiveness of breast cancer cells, as evidenced by enhanced 

proliferation, migration, invasion, tight junction deterioration and tumour-associated 

tubal formation. Tim-3 also enhanced cellular resistance to paclitaxel. Furthermore, 

Tim-3 exerted its function by activating the NF-κB/STAT3 signalling pathway and by 

regulating gene expression (CCND1, C-Myc, MMP1, TWIST, VEGF upregulation, 

concomitant with E-cadherin downregulation). Lastly, Tim-3 downregulated tight 

junction-associated molecules zona occludens (ZO)-2, ZO-1 and occludin, which may 

further facilitate tumour progression. Conclusions: Tim-3 plays an oncogenic role in 

breast cancer and may represent a potential target for antitumour therapy. 

 

Keywords: breast neoplasm, hepatitis A virus cellular receptor 2, tight junction, 

aggression, chemoresistance 

 

Introduction 
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Breast cancer is the most frequently diagnosed malignancy and the main cause of 

cancer-associated mortality in women [1]. Although comprehensive treatments are 

clinically available, the response of individual breast cancer patients greatly varies, 

partly due to different antitumour immune responses [2]. Dysregulation of immune 

checkpoints can play an important role in tumour immune evasion, especially through 

tumour-reactive T-cell exhaustion [3].  

T-cell immunoglobulin and mucin-domain containing molecule-3 (Tim-3), also known 

as hepatitis A virus cellular receptor 2 (HAVCR2), is a negative immune checkpoint 

molecule expressed on a variety of immune cells including T-cells [4], dendritic cells [5] 

and macrophages [6]. Tim-3 can reduce cell proliferation, decrease the production of 

effective cytokines and increase apoptosis of effector T-cells, through interaction with 

its ligands including galectin-9, high mobility group protein B1 (HMGB1), 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) and 

phosphatidylserine [7, 8]. Tim-3 is considered a critical mediator in cancer progression 

and a potential therapeutic target. Tim-3 blockade has demonstrated promising results 

in multiple preclinical cancer models [9]. Evidence suggests that resistance to anti-

cytotoxic T-lymphocyte-associated antigen 4 or anti-programmed death-1 (PD-1)/PD-

ligand 1 (PD-L1) inhibitors is compensated by upregulation of additional immune 

checkpoints, including Tim-3 [10]. Moreover, PD-1 and Tim-3 co-blockade resulted in 

a significant survival advantage in a murine lung cancer model [11]. These findings 

support the view that Tim-3 may be a potential target for tumour therapy.  

Tim-3 is overexpressed on many types of malignant tumours. Ectopic expression of 

Tim-3 in tumour cells was correlated with more advanced pathologic T classification 

in non-small-cell lung carcinoma [12], lymph-vascular invasion in gastric cancer [13], 

lung metastasis in clear cell renal cell carcinoma [14], and lymphatic metastasis in colon 

cancer [8]. A meta-analysis also suggested that high expression of Tim-3 in solid 

tumours led to significantly shorter overall survival (OS) [15]. Therefore, Tim-3 has been 

described as a prognostic indicator for cancer patients. However, Tim-3 downregulation 

promotes invasion and metastasis of colorectal cancer cells [16]. Low Tim-3 expression 
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levels in tumour tissues is associated with poor prognosis for metastatic prostate cancer 

[17].Tim-3 expression in renal cell carcinoma is associated with longer progression-free 

survival (PFS) and OS [18]. These seemingly contradictory results suggest that the role 

of Tim-3 might be dependent on tumour type. Tim-3 is reported to be overexpressed in 

breast cancer tissues [15, 19], and high Tim-3 levels are associated with poor prognosis 

[19]. Downregulation or overexpression of Tim-3 suppresses or enhances the 

proliferation, migration and invasion of breast cancer cells, respectively [19].  

Previous studies demonstrated that Tim-3 was associated with resistance to the anti-

angiogenic drug sunitinib and to the mTOR inhibitor rapamycin in a renal cell 

carcinoma cell line [20]. Additionally, Tim-3 promoted resistance to adriamycin and 

carboplatin in lymphoma ATN-1 cells [21]. These findings implied a possible role in 

tumour angiogenesis and chemoresistance. Therefore, the aim of the present study was 

to evaluate the clinical significance of Tim-3 using large-scale genomic data analysis 

and to determine the mechanisms underlying the effects of Tim-3 in breast cancer cell 

lines. The role of Tim-3 in tumour-associated angiogenesis and chemoresistance was 

also examined. 

 

Materials and Methods 

Cell lines and culture 

The human breast cancer cell lines MDA-MB-231 and MCF7 and human umbilical 

vein endothelial cells (HUVECs) were purchased from American Type Culture 

Collection (Middlesex, UK). These cells were maintained in a humidified incubator at 

37°C with 5% CO2. 

Stable cell lines overexpressing Tim-3 

To establish Tim-3-overexpressing breast cancer cell lines, lentiviral vectors containing 

full-length Tim-3 (PLV [Exp]-EGFP: T2A: Puro-CMV> hHAVCR2 [NM_032782.4]) 

or Scramble (Scr) negative control (PLV [Exp]-EGFP: T2A: Puro-
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CMV>stuffer_300bp) were transduced into MDA-MB-231 and MCF7 cells (Vector 

builder, USA) according to the manufacturer’s instructions.  

Quantitative real-time PCR (qPCR) 

Total RNA from cultured cells was extracted using TRIzol reagent (Sigma-Aldrich, 

Dorset, UK) according to the manufacturer’s instructions. RNA was then reverse 

transcribed into cDNA using the GoScript™ Reverse Transcription System kit 

(Promega, Madison, WI, USA). Subsequently, qPCR was carried out using an iCycler 

iQ™ (Bio-Rad Laboratories, Hemel Hempstead, UK). The primer sequences used in 

this study are listed in Table 1.  

Western blotting 

Western blot analysis was carried out on whole cell lysates. Antibodies against Tim-3 

(Ab241332), NF-κB (p65) (Ab16502), p-NF-κB (p-p65) (Ab194726) and VEGFA 

(Ab9570) were purchased from (Abcam Cambridge, UK). GAPDH (sc-47724), p-β-

catenin (sc-16743-R), CCND1 (sc-8396), C-Myc (sc-70465), MMP1 (sc-21731), 

TWIST (sc-6269), ZO-1(sc-10804), ZO-2 (sc-11448), occludin (sc-133256) and 

VEGFB (sc-13083) antibodies were obtained from Santa Cruz (Insight Biotechnology 

Limited, Middlesex UK). E-Cadherin (AF748) and VEGFD (MAB286) antibodies 

were purchased from R&D Systems (Abingdon, Oxfordshire, UK). STAT3 (S5933), p-

STAT3 (SAB4504541), IL-6 (17901) and β-catenin (C2206) antibodies were purchased 

from Sigma-Aldrich (Gillingham, Dorset, UK). Anti-mouse (A5278), anti-rabbit 

(A0545) and anti-goat (A8919) secondary antibodies were obtained from Sigma-

Aldrich (Gillingham, Dorset, UK).  

Immunohistochemistry  

Cultured cells were fixed using 95% ethanol for approximately 1 hour, then treated with 

a Tim-3 primary antibody (1:500, Ab241332, Abcam, Cambridge, UK) overnight at 

4°C. For the negative control, the primary antibody was replaced with PBS. Samples 

were then treated with an anti-rabbit HRP-conjugated secondary antibody (Abcam, UK) 

for 30 min. The colour was developed by using 0.025% 3, 3-diaminobenzidine (DAB) 
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solution. Nuclei were counterstained with haematoxylin. Excess staining was removed 

using hydrochloric acid and alcohol solution. Ammonia was used to restore staining 

colour.  

Cell proliferation and cytotoxicity assay 

Cell proliferation was assessed using an AlamarBlue assay (Serotec Ltd., Oxford, UK) 

according to the manufacturer’s instructions. The percentage of growth during the 

incubation period was calculated against the fluorescence values at day 0. 

For cytotoxicity assays, 8×103 cells/ well were seeded into a 96-well plate with medium 

containing 1% FBS. After cells were starved overnight, medium was replaced with 

different concentrations of paclitaxel (Sigma-Aldrich, UK) and incubated for 48 h. Cell 

viability was then assessed by AlamarBlue assay. 

Wound healing assay 

Cells were seeded into a 24-well plate at a density of 2×105 cells/well and grown to 

confluence. The cell monolayer was then scratched using a 1 ml pipette tip. Migration 

of cells to the wounding gap was monitored using an EVOS® FL imaging system (Life 

Technologies, Carlsbad, CA, USA) with a 4X objective every 2 h for 24-48 h.  

Matrigel invasion assay 

A Transwell Matrigel assay was used to assess cell invasion in vitro as described 

previously [22].  

Cell-matrix adhesion assay 

The cell-matrix adhesion was evaluated using a 96-well plate coated with 10 μg/well 

Matrigel [23].  

Tube formation assay  

Cancer cells stably transfected with Tim-3 overexpression or Scr control vectors were 

cultured to reach 70-80% confluence in complete medium. The cells were then washed 

twice with PBS and re-suspended in serum-free medium. The supernatant (conditioned 
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medium) was then collected after a 24-h incubation, filtered with a 0.22-μm filter 

(Millipore) and stored at -80˚C for further use. The tube formation ability of HUVECs 

mimicking angiogenesis was then measured in response to the tumour-conditioned 

medium.  

Electric cell-substrate impedance sensing (ECIS) assay 

ECIS was used to assess cell migration as described previously [24]. Briefly, an ECIS 

Zθ system with a 96W1E+ array plate (Applied Biophysics, Inc., Troy, NY, USA) was 

used for the measurement of cell function, including initial attachment, spreading and 

barrier function. The 96W1E+ array plate was stabilized using normal medium 2 h in 

advance. 5×104 cells per well were then seeded and cultured for 24 h. Each group was 

set up at least six repetitions. The resistance across the array was recorded at multiple 

frequencies. 

Transepithelial resistance (TER) and paracellular permeability (PCP) 

TER is used to assess the integrity of tight junction (TJ) dynamics in cell culture models 

of epithelial monolayers as a widely accepted quantitative technique. An EVOM 

voltohmmeter (World Precision Instruments, Aston, Herts, UK), equipped with STX2 

chopstick electrodes (World Precision Instruments, Inc., Sarasota, FL, USA) was used 

to measure TER, and paracellular permeability (PCP) was assessed. The medium in the 

upper chamber was replaced with medium containing 0.2 mg/ml fluorescein 

isothiocyanate (FITC)-dextran 10 kDa. Then, 50 μl of medium from outside the insert 

was transferred into a black 96-well cell culture microplate (Greiner Bio-One) in 

duplicate every 2 h for 10 h. Basolateral dextran passage was analysed with a 

GloMax®-Multi Microplate Multimode Reader (Promega UK Ltd., Southampton, UK) 

at 490-nm excitation and 510-570 nm emission. Measurement of dextran-indicated PCP 

was then normalized to the 0 h time point. 

Statistical analysis 

Data are presented as the mean ± SD unless stated otherwise. GraphPad Prism (Version 

7.0, GraphPad Software, San Diego, CA) or R language (version 3.6.3. https://www.R-
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project.org) were used for statistical analysis. The normality of the data was determined 

using the Shapiro-Wilk normality test. Two-group comparisons were analysed using a 

two-sided t-test when data were normally distributed and a Mann-Whitney U test 

otherwise. Differences between multiple groups were analysed using ANOVA 

followed by Tukey’s post hoc test for pairwise comparison if the data were normal. For 

non-parametric data, the Kruskal-Wallis test was used instead. Differences were 

considered statistically significant if p<0.05. Experiments were repeated 2-4 times 

unless otherwise stated. The statistical significance in the figures is shown as *p<0.05 

or **p<0.01 or ***p<0.001. 

 

Results 

Tim-3 is upregulated in breast cancer tissues 

Gene expression levels of Tim-3 were analysed in breast cancer (n=1,097) and normal 

tissue (n=114) from TCGA BRCA datasets. Although Tim-3 was overexpressed in 

breast cancer compared with normal tissues (p<0.001) (Fig.1A), there was no statistical 

difference among different breast cancer subtypes (p=0.074) (Fig.1B). The effect of 

Tim-3 on patient survival was evaluated using the KM-plotter database 

(http://kmplot.com/analysis/) by entering ‘Gene symbol= HAVCR2 (235458_at)’, 

selecting ‘JetSet best probe set’, and dividing patients using ‘Auto select best cutoff ’. 

Patients with high Tim-3 expression had a significantly worse RFS when over a 20-

year follow-up period (p=0.004) (Fig. 1C). OS displayed a similar trend but this was 

not statistically significant (p=0.099) (Fig. 1E).  

In subgroup analysis, high Tim-3 expression was associated with worse RFS in luminal 

A (p<0.001) and luminal B (p=0.039) subtypes, but improved RFS in basal breast 

cancer (p<0.001) (Fig.1D). The HER2-positive subtype showed a similar trend with 

basal subtype, without statistical significance (p=0.12) (Fig.1D). For OS, high Tim-3 

levels were associated with worse prognosis in luminal A subtype (p=0.019). In basal 

type, patients with high levels of Tim-3 had a better prognosis (p<0.001) (Fig.1F).  
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Stable cell lines overexpressing Tim-3 

To evaluate the role of Tim-3 in breast cancer in vitro, Tim-3low MDA-MB-231 and 

MCF7 cell lines (initial assessment shown in Sup. Fig. 1) were stably transfected with 

Tim-3 overexpression plasmid or Scr, respectively. Tim-3 levels increased in Tim-3-

overexpressing cell lines (Tim-3 OE), compared with the Scr and wildtype (WT) 

controls both at mRNA and protein levels, confirming that Tim-3 was successfully 

transfected (Fig. 2A). Tim-3 was expressed in both the cytoplasm and membrane in 

Tim-3 OE cells (Fig. 6F).  

Effect of Tim-3 in cell proliferation and adhesion in vitro 

The effect of Tim-3 in cell proliferation and adhesion was evaluated in vitro. 

Proliferation was enhanced in MDA-MA-231 Tim-3 OE and MCF7 Tim-3 OE cells, 

compared with their Scr controls, especially after 6 days (p<0.001 for both) (Fig. 2B, 

2C), indicating that Tim-3 could promote breast cancer cell proliferation.  

Cell-matrix adhesion assay was used to investigate the role of Tim-3 in cell adhesion. 

The adhesive ability of cells was increased when Tim-3 was overexpressed in the MCF7 

cell line (p<0.001 (Fig. 2E). However, Tim-3 overexpression reduced the adhesion of 

the MDA-MB-231 cell line (p=0.006) (Fig. 2D). Thus, the effect of Tim-3 may be 

dependent on cell type.  

The signalling pathways at play in Tim-3 OE breast cancer cells were examined. NF-

κB (p65), STAT3 and IL-6 were all upregulated both at gene and protein levels in 

MDA-MB-231 Tim3 OE cells. Additionally, p-STAT3 levels were increased in MDA-

MB-231 Tim-3 OE cells (Fig. 2F, 2G). NF-κB (p65), p-NF-κB (p-p65), STAT3, p-

STAT3 and IL-6 were also upregulated in MCF7 Tim-3 OE cells at the protein level 

(Fig. 2F, 2G). Moreover, the cell proliferation markers β-catenin, p-β-catenin, cyclin 

D1 and C-Myc were upregulated in MDA-MB-231 Tim-3 OE cells (Fig. 2G, 2H). β-

catenin, p-β-catenin and C-Myc protein levels were also increased in MCF7 Tim-3 OE 

cells (Fig. 2G), but not at the mRNA level (Fig. 2I). Thus, the NF-κB/ STAT3 pathway 

was involved in breast cancer progression following Tim-3 upregulation. 
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Tim-3 increases cell invasion and migration in vitro 

The effects of Tim-3 on cell invasion and migration were evaluated in Transwell 

Matrigel invasion assays and wound healing assays. Tim-3 OE cells were significantly 

more invasive than Scr controls, both in MDA-MB-231 (p=0.030) (Fig. 3A) and MCF7 

(p<0.001) (Fig. 3B) cells. Cell migration was also enhanced in MDA-MA-231 (p<0.001 

at 24h) (Fig. 3C) and in MCF7 Tim-3 OE cells (p=0.007 at 48h) (Fig. 3D).  

As EMT is a key step in metastasis, EMT-associated molecules were also measured. 

Tim-3 downregulated the epithelial marker E-cadherin, whilst upregulating TWIST in 

both MDA-MB-231 and MCF7 cells (Fig. 3E) at the protein level. The downstream 

target of TWIST MMP1 was also upregulated in MDA-MB-231 Tim-3 OE cells at the 

protein level (Fig. 3E). Upregulation of TWIST and downregulation of E‑cadherin in 

MCF7 Tim-3 OE cells were also observed at the mRNA level (Fig. 3F). Therefore, 

EMT could promote the invasion of Tim-3 breast cancer overexpressing cells . 

Tim-3 disrupts TJ integrity 

TJ are complex structures that cancer cells need to destroy in order to metastasize. We 

evaluated the role of Tim-3 in the TJ function of breast cancer cells. ECIS used to 

evaluate the resistance at 1kHz, as the current at this frequency is mainly flowing 

outside the cell and therefore is representative of cellular interactions. Tim-3 OE cells 

displayed lower resistance relative to scramble (Scr) cells during initial attachment and 

spreading in MDA-MB-231 and MCF 7 cells (Fig. 4A), suggesting Tim-3 might inhibit 

TJ function. 

To confirm these findings, we performed TER and PCP assays to examine the effect of 

Tim-3 on TJ barrier function. TER values in Tim-3 OE cells were reduced, compared 

with Scr controls both in MDA-MB-231(p<0.001) and MCF7 (p<0.001) cells (Fig. 4B). 

PCP was also assessed using FITC-dextran 10 kDa as a tracer. Higher PCP fluorescence 

signals were detected in Tim-3 OE MDA-MB-231 (10h, p=0.002) and MCF7 (10h, 

p=0.023) cell lines (Fig. 4C), compared with Scr. Thus, Tim3 OE cells had a looser 

connection of cell-cell junctions.  
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There is evidence that the expression or distribution of TJ proteins is usually altered in 

cancer. While most cell-cell adhesion proteins are downregulated, others may be 

overexpressed or delocalized. We therefore examined changes in key TJ molecules in 

cancer cells following Tim-3 overexpression. ZO-2 was reduced in both MDA-MB-

231 and MCF7 Tim-3 OE cells at the protein level (Fig. 4D and 4E). The mRNA levels 

of ZO-2 were also downregulated in MDA-MB-231 Tim-3 OE cells (Fig. 4F). ZO-1 

protein was downregulated in MDA-MB-231 Tim-3 OE cells. In addition, occludin was 

downregulated in MCF Tim-3 OE cells. Therefore, Tim-3 disrupts TJ integrity by 

regulating the expression of TJ-associated proteins.  

Tim-3 promotes tube formation of endothelial cells  

To explore whether Tim-3 plays a role in mediating tumour-associated angiogenesis, 

tube formation assay was performed using endothelial cells subjected to conditioned 

medium from stable cells with Tim-3 overexpression. Tube formation ability of 

HUVECs cultured in medium from MDA-MB-231 Tim-3 OE cells was significantly 

increased when cultured for 8 hours (p=0.014) (Fig. 5A), a similar phenomenon was 

also observed in medium from MCF7 Tim-3 OE cells after 16 h (p=0.016) (Fig. 5B), 

indicating that Tim-3 overexpression promoted tumour-associated angiogenesis.   

We next determined whether the role of Tim-3 in angiogenesis was VEGF-dependent. 

The protein levels of VEGFA, VEGFB and VEGFD increased in MDA-MB-231 Tim-

3 OE cells, while VEGFA was upregulated in MCF7 Tim-3 OE cells (Fig. 5C). 

However, gene expression analysis indicated that VEGFD expression increased in 

MCF7 Tim-3 OE cells (Fig. 5D). We also evaluated the extracellular levels of VEGFC 

and VEGFR2 proteins. VEGFC expression was significantly increased in MDA-MB-

231 Tim-3 OE cells, compared with Scr control (p<0.01) (Sup. Fig. 2). The overall 

levels of VEGFC in MCF7 cells were extremely low, compared with MDA-MB-231 

(p<0.05). VEGFR2 was not expressed in MDA-MB-231 cells, or expressed at low 

levels in MCF7 cells. Thus, Tim-3-mediated angiogenesis is VEGF-dependent. 
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Tim-3 enhances breast cancer cell resistance to paclitaxel 

In order to evaluate the role of Tim-3 in chemo-drug sensitivity in breast cancer, MDA-

MB-231 and MCF7 cells were treated with different concentrations of paclitaxel, and 

their viability was assessed. MDA-MB-231 Tim-3 OE cells were more resistant to 

paclitaxel than the Scr cells at concentrations of 10 (p=0.049), 20 (p=0.003) and 40 nM 

(p<0.001). MCF7 Tim-3 OE cells were also more resistant to paclitaxel at 

concentrations of 2.5 nM (p=0.043) and 5 nM (p=0.002), compared with Scr (Fig. 6A 

and 6C).  

The levels of STAT3, NF-κB, p-NF-κB, and cyclin D1 (CCND1) proteins were also 

altered following treatment with single-dose paclitaxel (10 nM for MDA-MB-231 and 

5 nM for MCF7) for 6 h and 24 h. Total NF-κB protein levels significantly increased 

in Tim-3 OE cells when cultured for 6 h, and p-NF-κB was significantly higher in Tim-

3 OE cells when cultured for 24 h in both cell lines, compared with the Scr controls 

(Fig. 6B and 6D). After 24-h paclitaxel treatment, the protein levels of STAT3 were 

significantly higher in Tim-3 OE cells than Scr cells in both cell lines. CCND1 was 

upregulated in MCF7 Tim-3 OE cells after 6 h, compared with Scr controls (Fig 6B and 

6D). To validate the functional involvement of NF-κB and STAT3 in the Tim-3 

mediated paclitaxel resistance, we performed cytotoxicity assays using the NF-κB 

inhibitor SC75741 or the STAT3 inhibitor Stattic. In the presence of either SC75741 or 

Stattic, the paclitaxel resistance induced by Tim-3 was abolished (Fig. 6E). Thus, NF-

κB and STAT3 activities were involved in Tim-3 mediated paclitaxel resistance. 

 

Discussion 

In recent years, immune checkpoint inhibition in breast cancer, especially in triple-

negative breast cancer (TNBC), has attracted accumulating interest to improve the 

efficacy of targeted therapies. Previous reports have described the functions of Tim-3 

in the regulation of immune response during cancer progression. As a negative immune 
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regulator, Tim-3 has also been proposed as a prognostic indicator in several types of 

solid tumour [15].  

Previous small-scale studies suggest that Tim-3 is overexpressed in breast cancer. 

Positive Tim-3 staining in breast cancer is significantly higher than in adjacent 

tissues[19]. Tim-3 expression in invasive ductal breast carcinoma cells is also 

significantly higher than in normal breast tissues [15]. Tim-3 levels are also higher in 

breast tumour tissues [25]. Moreover, high Tim-3 expression is associated with advanced 

clinical stage, lymph node metastasis, higher Ki67 and a poorer 5-year patient survival 

rate [15, 19]. Consistent with previous studies, our pooled analysis of the TCGA and KM-

plotter databases further confirms that Tim-3 is upregulated in breast cancer and is 

associated with poor OS. 

Tim-3 signalling is associated with the downstream effector NF-κB in negative 

regulation of T cell function or liver cancer [26-28]. NF-κB plays a key role in targeting 

the IL-6/STAT3 axis, which is associated with pro-tumour activity [29]. We therefore 

examined Tim-3-associated molecules, including NF-κB, STAT3 and IL-6 following 

Tim-3 overexpression. NF-κB, STAT3 and IL-6 were upregulated following Tim-3 

overexpression, suggesting that these molecules were involved in Tim-3-mediated 

function in breast cancer cells. Similarly, a recent study in liver cancer also 

demonstrated that Tim-3 overexpression enhanced tumour cell growth by activating the 

NF-κB/IL-6/STAT3 pathway, while Tim-3 inhibition resulted in suppressed tumour 

growth, both in vitro and in Tim-3 knockout mice [30]. Tim-3 knockdown also 

suppresses proliferation and invasion of clear cell renal carcinoma cell lines [14]. 

Phosphorylated STAT3 binds to DNA in response to IL-6 and epidermal growth factor 

[31]. STAT3 plays a critical role in breast cancer and STAT3 inhibitors show efficacy in 

inhibiting TNBC tumour growth and metastasis [32]. Besides regulating downstream 

gene expression in its phosphorylated state, STAT3 may also be involved in 

transcriptional regulation by forming complexes with NF-κB in its unphosphorylated 

form [33]. The cooperation of STAT3 and NF-κB has also been reported in fascin 
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expression, which accelerates the migration of breast cancer cells [34]. STAT3 signalling 

promotes breast tumour progression by regulating downstream molecules that control 

cell proliferation (CCND1, C-Myc, Bcl-2, Bcl-xL and survivin), angiogenesis (HIF1α 

and VEGF) and epithelial-mesenchymal transition (TWIST, Vimentin, MMP9 and 

MMP7) [35]. In the present study, CCND1and C-Myc were upregulated in Tim-3 

overexpressing cells, which facilitated cell proliferation. A positive correlation between 

STAT3 and CCND1 in both primary breast tumours and breast cancer cell lines has 

been suggested [36]. CCND1 assembles with the cyclin-dependent kinases 4/6 (CDK4/6), 

phosphorylates substrates such as retinoblastoma protein, releases E2F transcription 

factor and promotes entry of cells to the S-phase [36]. C-Myc is a proto-oncogene 

associated with high grade and advanced stage of TNBC, and C-Myc expression 

correlates with poor prognosis [37]. Based on the evidence as above, we propose that 

Tim-3 upregulates CCND1 and C-Myc by activating STAT3, which promotes cell 

proliferation in breast cancer. 

In our study, Tim-3 promoted cell invasion and migration, implying a potential role in 

cancer metastasis. EMT is a key process during cancer invasion and metastasis, which 

confers an aggressive phenotype to tumour cells. Our study shows that Tim-3 

overexpression influences the EMT-associated molecules. It has been reported that 

there is a positive correlation between phosphorylated STAT3 and TWIST in primary 

breast carcinoma [38]. Therefore, we hypothesise that Tim-3 promotes breast cancer 

invasion by regulating STAT3 and downstream EMT-associated molecules, consistent 

with a previous study [39].  

Loss of intercellular adhesion molecules also facilitates tumour cells detachment from 

primary tumours, ultimately initiating metastasis. In this study, Tim-3 disrupted TJ 

integrity by downregulating TJ molecules including ZO-2, ZO-1 and occludin. ZO-2 

and ZO-1 belong to the membrane-associated guanylate kinase protein family and 

interact with numerous molecules, including cell-cell adhesion proteins, cytoskeletal 

components and nuclear factors [40]. STAT3 activation induced by IL-6 increases retinal 

endothelial permeability and vascular leakage through the reduction of ZO-1 and 
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occludin expression [41]. STAT3 also suppresses CLDN1 transcription by direct binding 

to its promoter [42, 43]. VEGF can induce phosphorylation and downregulation of ZO-1 

and ZO-2 in endothelial cells [44]. Moreover, VEGF promotes motility and reduces the 

expression of ZO-2 in pancreatic cancer cells [45]. Thus, we hypothesise that Tim-3 

promotes invasion and migration by disrupting TJ by downregulating ZO-2, ZO1 and 

occludin, which may be STAT-3 and VEGF dependent. 

Tim-3 promotes resistance to the anti-angiogenesis drug sunitinib and mTOR inhibitor 

rapamycin in renal cell carcinoma cell lines [20]. Interestingly, our data indicate that 

conditioned medium from Tim-3 overexpressing cancer cells accelerates tube 

formation, compared with the controls in both breast cancer cell lines. We also 

evaluated the expression levels of VEGF family members in Tim-3 overexpressing cell 

lines. The levels of VEGFA, VEGFB and VEGFD were increased in MDA-MB-231 

Tim-3-overexpressing cells, while VEGFA was upregulated in MCF7 Tim-3-

overexpressing cells. STAT3 plays an important role in angiogenesis. For instance, 

STAT3 and HIF1α cooperatively activate VEGF and haptoglobin genes during hypoxia 

in breast cancer cell lines [46], which may also partially contribute to the role of Tim-3 

in angiogenesis.  

Chemoresistance is a major obstacle for the treatment of breast cancer. Previous studies 

suggest a role of Tim-3 in chemotherapeutic resistance in cancer [21, 47, 48]. In our study, 

Tim-3 overexpression in breast cancer cells induces resistance to paclitaxel, possibly 

due to the upregulation of STAT3 and NF-κB. Numerous studies confirmed the role of 

STAT3 in cancer chemoresistance. For example, paclitaxel induces apoptosis in human 

ESCC cell lines through the reduction of STAT3 expression and phosphorylation [49]. 

Tumour cell sensitivity to paclitaxel can also be improved by targeting STAT3 using 

microRNAs [50, 51]. Therefore, Tim-3 may enhance paclitaxel resistance by upregulating 

STAT3 in breast cancer. 

In this study, although Tim-3 was associated with poor prognosis in total breast cancer 

patients, the prognostic significance varied with different subtypes. High expression of 
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Tim-3 was associated with poor RFS in luminal A and luminal B subtypes, but better 

RFS in basal breast cancer. Both MCF7 and MDA-MB-231 cells exhibited a more 

malignant phenotype after Tim-3 overexpression, which might be associated with poor 

prognosis in vivo. Recent studies, however, suggest that Tim-3+ tumour-infiltrating 

lymphocytes (TILs) are associated with better disease-free survival and OS [52]. Thus, 

we hypothesise that the distribution of Tim-3 on tumour or immune cells might have 

different prognostic significance. The location of Tim-3 in certain types of cells in 

cancer might determine prognostic outcomes, although further studies including in vivo 

models would be required to confirm this hypothesis.  

In conclusion, Tim-3 overexpression in breast cancer promotes tumour cell 

proliferation, migration and invasion while disrupting TJ function, increasing tumour-

associated tube formation and paclitaxel resistance. These effects are achieved by 

activating the NF-κB/STAT3 signalling pathway and altering gene expression of 

CCND1, C-Myc, MMP1, TWIST, VEGF and E-cadherin. Moreover, Tim-3 modulates 

TJ dynamics by downregulating ZO-2, ZO-1 and occludin, which may, in turn, 

facilitate tumour invasion and migration (illustrated in Fig.7). Thus, Tim-3 may serve 

as a prognostic predictor and have therapeutic potential for breast cancer treatment. 
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Fig. 1 Tim-3 gene expression in breast cancer and association with patient survival. (A) 

Tim-3 mRNA levels in primary tumour vs. normal tissue (p<0.001). (B) Tim-3 mRNA 

levels among breast cancer subgroups (p=0.074). (C) Association of Tim-3 gene 

expression with RFS in breast cancer patients (p=0.004). (D) Association of the Tim-3 

gene expression levels with RFS in breast cancer subtypes. (E) Association of Tim-3 

gene expression with OS in breast cancer patients. (F) Association of the Tim-3 gene 

expression levels with OS in breast cancer subtypes.  

 

Fig. 2 Effect of Tim-3 overexpression on proliferation, adhesion and signalling in breast 

cancer cells. (A) Validation of Tim-3 overexpression in MDA-MB-231 and MCF7 cells 

by q-PCR and western blotting. (B) Effect of Tim-3 overexpression on the proliferation 

of MDA-MB-231 cells (6 days, p<0.001). (C) Effect of Tim-3 overexpression on the 

proliferation of MCF7 cells (6 days, p<0.001). (D) Tim-3 overexpression reduces 

adhesion in MDA-MB-231 cells (p=0.006). (E) Tim-3 overexpression affects adhesion 

of MCF7 cells (p<0.001). (F) Protein levels of STAT3, phosphorylated STAT3, NF-

κB, phosphorylated NF-κB, IL-6 and proliferation markers. (G) Quantitative 

densitometric analysis of the western blots (n=3). (H) Gene expression profile of the 

MDA-MB-231 cell line. (I) Gene expression profile of the MCF7 cell line (n=3). 

 

Fig. 3 Effect of Tim-3 overexpression on invasion and migration of breast cancer cells. 

(A) MDA-MB-231 cell invasion following Tim-3 overexpression. (B) MCF7 cell 

invasion following Tim-3 overexpression. (C) Migration of MDA-MA-231 Tim-3-

overexpressing cells. (D) Migration of MCF7 Tim-3-overexpressing cells. (E) Protein 

levels of MMP1, TWIST and E-cadherin in breast cancer cells (left) and quantitative 

densitometric analysis (n=3, right). (F) Gene expression levels of MMP1, TWIST and 

E-cadherin (n=3).  
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Fig. 4 Role of Tim-3 in tight junction function in breast cancer cells. (A) Decelerated 

cell attachment and spreading in MDA-MB-231 and MCF7 cell lines after Tim-3 

overexpression. (B) Effect of Tim-3 overexpression on TER in both MDA-MB-231 and 

MCF7 cell lines. (C) Effect of Tim-3 overexpression on permeability between cells 

monolayers in MDA-MB-231 and MCF7 cell lines. (D) Protein levels of ZO-2, ZO-1 

and occludin following Tim-3 overexpression. (E) Quantitative densitometric analysis. 

(F) mRNA expression levels of ZO-2, ZO-1 and occludin. 

 

Fig. 5 Effect of Tim-3 overexpression on tube formation of endothelial cells. (A) Tube 

formation ability of HUVECs cultured in conditioned medium from MDA-MB-231 

Tim-3-overexpressing cells (p=0.014 vs Scr). (B) Tube formation ability of HUVECs 

cultured in conditioned medium from MCF7 Tim-3-overexpressing cells (*p=0.016 vs 

Scr). (C) Protein levels of VEGFA, VEGFB and VEGFD following Tim-3 

overexpression (left) and quantitative densitometric analysis (right). (D) mRNA 

expression of VEGFA and VEGFD genes in breast cancer cells. 

 

Fig. 6 Effect of Tim-3 overexpression on paclitaxel resistance in MDA-MB-231 and 

MCF7 cells. Two-way ANOVA was used to evaluate the significance by considering 

two factors, paclitaxel doses and cell lines. Pairwise comparison between two cell lines 

was performed using Holm’s post hoc test. (A) Paclitaxel resistance in MDA-MB-231 

cells. (B) Protein levels of STAT3, NF-κB, p-NF-κB and CCND1 in MDA-MB-231 

cells treated with 10 nM paclitaxel (left), and quantitative densitometry analysis (right). 

(C) Paclitaxel resistance in MCF7 cells. (D) Protein levels of STAT3, NF-κB, p-NF-

κB and CCND1 in MCF7 cells treated with 5 nM paclitaxel (left) and quantitative 

densitometry analysis accordingly (right). (E) Cytotoxicity assay of the MDA-MB-231 

stable cell lines in response to paclitaxel in the absence or presence of NF-κB inhibitor 

(SC75741) or STAT3 inhibitor (Stattic). (F) Immunohistochemical staining of Tim-3 

in MDA-MB-231 stable cell lines compared with the MDA-MB-231 Scr cells.  
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Fig. 7 Schematic illustration of the role of Tim-3 in breast cancer. Upregulation of Tim-

3 not only promotes cell proliferation, migration and invasion, but also disrupts cell-

cell tight junction, increases angiogenesis of endothelial cells and paclitaxel-resistance. 

Tim-3 functions in breast cancer cells by activating NF-κB/STAT3 pathway and 

downstream target genes. 

 

Sup. Fig. 1 Endogenous gene expression levels of Tim-3 in ten breast cancer cells and 

two endothelial cells accessed by qRT-PCR. 

 

Sup. Fig. 2 VEGRC and VEGFR2 protein levels in conditioned media of stable cell 

lines indicated by ELISA.  

 

Table 1. Primer sequences. 
 

Gene Forward Primers (5'-3') Reverse Primers (5'-3') 

CCND1 CGGTGTCCTACTTCAAATGT ACTGAACCTGACCGTACAGAAGCGGTCCAGGTAGTTC 

C-Myc TGCTCCATGAGGAGACAC 
 

ACTGAACCTGACCGTACATGATCCAGACTCTGACCTTT 

E-cadherin CACACGGGCTTGGATTT ACTGAACCTGACCGTACAGACCTCAAAAGGTACCACAT 

GAPDH CTGAGTACGTCGTGGAGTC ACTGAACCTGACCGTACACAGAGATGATGACCCTTTTG 

IL-6 TCATCACTGGTCTTTTGGAG ACTGAACCTGACCGTACACAGGGGTGGTTATTGCATC 

MMP1 CTTTTGTCAGGGGAGATCAT ACTGAACCTGACCGTACAGGTCCACCTTTCATCTTCAT 

NF-κB ACAGAGAGGATTTCGTTTCC ACTGAACCTGACCGTACAGTTGCAGATTTTGACCTGAG 

Occludin GAATTCAAACCGAATCATTG ACTGAACCTGACCGTACATGAAGAATTTCATCTTCTGG 

STAT3 CATGGAAGAATCCAACAACG ACTGAACCTGACCGTACAAATCAGGGAAGCATCACAAT 

Tim-3 GCTCCATGTTTTCACATCTT ACTGAACCTGACCGTACAATTCCACTTCTGAGGACCTT 

TWIST AGCAACAGCGAGGAAGAG ACTGAACCTGACCGTACAGAGGACCTGGTAGAGGAAGT 

VEGFA GAGCCGGAGAGGGAG ACTGAACCTGACCGTACACTGGGACCACTTGGCAT 
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VEGFD TCCACATTGGAACGATCTGA ACTGAACCTGACCGTACACTCCACAGCTTCCAGTCCTC 

ZO-1 TGACACACATGGTAGACTCA ACTGAACCTGACCGTACAGTAACTGCGTGAATATTGCT 

ZO-2 CAAAAGAGGATTTGGAATTG ACTGAACCTGACCGTACAGAGCACATCAGAAATGACAA 

β-catenin AAAGGCTACTGTTGGATTGA ACTGAACCTGACCGTACACTGAACTAGTCGTGGAATGG 

Note: The Z Sequence is highlighted in bold. 

 

 


