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ABSTRACT
In attempting to quantify statistically the density structure of the interstellar medium,
astronomers have considered a variety of fractal models. Here, we argue that, to properly
characterize a fractal model, one needs to define precisely the algorithm used to generate the
density field, and to specify – at least – three parameters: one parameter constrains the spatial
structure of the field, one parameter constrains the density contrast between structures on
different scales, and one parameter constrains the dynamic range of spatial scales over which
self-similarity is expected (either due to physical considerations, or due to the limitations
of the observational or numerical technique generating the input data). A realistic fractal
field must also be noisy and non-periodic. We illustrate this with the exponentiated fractional
Brownian motion (xfBm) algorithm, which is popular because it delivers an approximately
lognormal density field, and for which the three parameters are, respectively, the power
spectrum exponent, β, the exponentiating factor,S , and the dynamic range,R. We then explore
and compare two approaches that might be used to estimate these parameters: machine learning
and the established �-Variance procedure. We show that for 2 ≤ β ≤ 4 and 0 ≤ S ≤ 3, a
suitably trained Convolutional Neural Network is able to estimate objectively both β (with
root-mean-square error ε

β
∼ 0.12) and S (with εS ∼ 0.29). �-variance is also able to estimate

β, albeit with a somewhat larger error (ε
β

∼ 0.17) and with some human intervention, but is
not able to estimate S .
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1 IN T RO D U C T I O N

The interstellar medium is chaotic, due to the non-linear nature
of the processes involved in its evolution (supersonic non-ideal
magnetohydrodynamics, self-gravity, radiation transport, non-LTE
chemistry, and heat transfer, etc.). Consequently, the overall struc-
ture of the interstellar medium must be described using statistical
metrics. Since in the interstellar medium there exist structures
spanning a large dynamic range of spatial scales, and since there is
an evidence for self-similarity across parts of this dynamic range,
there have been several attempts to characterize the interstellar
medium, and in particular star-forming clouds, with fractal or
multifractal parameters (e.g. Beech 1987; Bazell & Desert 1988;
Falgarone, Phillips & Walker 1991; Hetem & Lepine 1993; Stutzki
et al. 1998; Bensch, Stutzki & Ossenkopf 2001; Chappell & Scalo
2001; Sánchez, Alfaro & Pérez 2005; Ossenkopf, Krips & Stutzki
2008a; Kauffmann et al. 2010; Schneider et al. 2013; Elia et al.
2014; Rathborne et al. 2015; Elia et al. 2018). Such characterizations
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can, in principle, allow one (a) to constrain the 3D structures and
dynamics that underlie the observed 2D projections; (b) to evaluate
whether two observed regions might be statistically similar, even if
their detailed structures are quite different; and (c) to compare the
results of numerical simulations with observations, and with one
another.

A variety of fractal metrics has been deployed. Of these, the
conceptually simplest are the perimeter–area dimension, DPA (e.g.
Beech 1987; Bazell & Desert 1988; Falgarone et al. 1991; Hetem &
Lepine 1993; Sánchez et al. 2005; Federrath, Klessen & Schmidt
2009; Rathborne et al. 2015), and the box-counting dimension, DBC

(e.g. Sánchez et al. 2005; Federrath et al. 2009; Elia et al. 2018);DPA

is usually preferred toDBC because it tends to give less noisy results.
A second group of metrics derive from structure, or structure-like,
functions (e.g. Sánchez et al. 2005; Federrath et al. 2009; Kritsuk,
Lee & Norman 2013); we include in this group the �-Variance
metric (Stutzki et al. 1998; Ossenkopf, Krips & Stutzki 2008b;
Federrath et al. 2009), which is the metric used here to compare
with our convolutional neural network (CNN) procedure. A third
group of metrics involves evaluation of the mass–length scaling
relation (e.g. Chappell & Scalo 2001; Sánchez et al. 2005; Federrath
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et al. 2009; Kauffmann et al. 2010; Kritsuk et al. 2013; Beattie,
Federrath & Klessen 2019a; Beattie et al. 2019b). A fourth group
involves estimating the size and/or mass spectra (e.g. Elmegreen &
Falgarone 1996), or the density spectrum (e.g. Federrath et al. 2009;
Konstandin et al. 2016).

There are two commonly used procedures for calibrating these
metrics, and they are quite distinct. One procedure is based on
idealized models of fractals generated using recursive algorithms.
Hetem & Lepine (1993) describe three possible recursive fractal
models, but do not identify a preferred model. Sánchez et al. (2005)
use a model proposed by Soneira & Peebles (1978), but have to
adjust this model for high fractal dimensions. Stutzki et al. (1998),
Elmegreen (2002), and Shadmehri & Elmegreen (2011) use models
based on fractal Brownian motion (fBm) and exponentiated fractal
Brownian motion (xfBm), and these are the models that we use
here.

Recursive fractal models have the problem that they are number-
less, in the sense that there is no obvious limit to the possibility of
inventing plausible new ones. One important distinction between
different recursive fractal models is that some of them deliver
nested fractals (i.e. fractals in which the smaller denser structures
tend to be embedded within the larger more diffuse structures)
and some do not. We have chosen the xfBm model because
it delivers a lognormal density distribution: lognormal column
density in 2D, as here, and lognormal volume density in 3D.
Lognormal volume density and column density fields are commonly
observed or inferred in (relatively) low-density gas (e.g. Schneider
et al. 2012, 2013; Kainulainen, Federrath & Henning 2014), and
are usually attributed to compressible turbulence (e.g. Vazquez-
Semadeni 1994; Federrath et al. 2010). However, xfBm does not
yield a nested fractal; structures on different scales are positioned
randomly with respect to one another. In a future paper, we will
explore whether nested fractal models provide a better model of the
interstellar medium.

Recursive fractal models for the interstellar medium require the
specification of at least three parameters. One parameter reflects the
relative frequency and spatial distribution of structures on different
scales; here, this parameter is the power-law exponent, β, but it
might equally be the fractal dimension, D, or the Hurst parameter,
H. A second parameter reflects the way in which the density varies
with physical scale; here this parameter is the exponentiating factor,
S (as defined in Section 2.2) – but in other algorithms it is the Larson
scaling exponent (i.e. dln [ρ]/dln [L], where ρ is the density, and L
is a generic length-scale). A third parameter reflects the dynamic
range of spatial scales, R, over which the model is applied. This
dynamic range might be determined by physical considerations, as,
for example, in the theory of turbulence, which spans an inertial
range from the large scales on which turbulent energy is injected
to the small scales on which it is dissipated (e.g. Frisch 1995;
Federrath 2013). Alternatively, the dynamic range of spatial scales
might simply be determined by the limitations of the observations
(between the field of view and the resolution of the telescope), or
the limitations of the numerical technique (between the size of the
computational domain and the smallest cell or particle); this is the
case here.

The other procedure for calibrating fractal metrics is quite
different, and is based on simulations of turbulent – and usually
non-self-gravitating – interstellar gas (e.g. Federrath et al. 2009;
Kritsuk et al. 2013; Konstandin et al. 2016; Beattie et al. 2019a,b).
The turbulence is maintained in isotropic statistical equilibrium
with a random forcing term. Turbulent simulations are normally
multifractal, first because the simulations have a limited dynamic

Figure 1. 1D (E = 1) pure fBm curves for β = 1.0, 2.0 and 3.0.

range of spatial scales (and hence the turbulence has a limited
inertial range), and secondly because the balance of solenoidal and
compressive modes tends to depend on scale (with a shift from
solenoidal to compressive modes as the turbulent energy cascades
to smaller scales). The validity of this procedure depends on the
fidelity of the simulations, on whether all the appropriate physics
has been included, and on whether the real interstellar medium
subscribes to isotropic statistical equilibrium.

Turbulent fractal simulations are usually characterized by just
two parameters, the mean Mach Number, M of the turbulent
velocity field, and the resolved dynamic range, R. However, such
simulations are also influenced by the way in which turbulent energy
is continuously injected (e.g. the mix of solenoidal and compressive
modes), the thermal and chemical behaviour of the gas, and the
importance of self-gravity. Indeed, de Vega, Sánchez & Combes
(1996) argue that fractal structure could be the natural product of
self-gravity, rather than turbulence.

In all cases (both recursive fractal models and turbulent fractal
simulations), different realizations of the same model (with the same
model parameters) are obtained using different random number
seeds.

The plan of this paper is as follows. In Section 2, we describe how
2D xfBm fields are constructed. In Section 3, we apply �-variance
to the analysis of such fields. In Section 4, we train a CNN to analyse
the same fields. In Section 5, we compare the two approaches and
summarize our conclusions.

2 C ONSTRU CTI NG X FBM FI ELDS

xfBm fields are based on pure fBm fields, which we generate using
the spectral synthesis method described by Peitgen & Saupe (1988).
The same methods have been used by Stutzki et al. (1998), to create
artificial molecular clouds, and by Lomax, Bates & Whitworth
(2018), to create artificial star clusters.

Pure fBm fields (un-exponentiated fBm fields) are a generalised
form of Brownian Motion and are characterized by a power-law
spectrum with exponent β = E + 2H, where E is the Euclidean
dimension and H is the Hurst parameter. Fig. 1 demonstrates how
a 1D (E = 1) pure fBm field, X(t), depends on β. Each field has
been realized with the same random seed, in order to preserve the
general shape, but larger β means more power on larger scales, and
hence a smoother field. Irrespective of the value of β, the mean of
the field over a sufficiently long t-interval, μX, is normally much
smaller in magnitude than its standard deviation, σ X. The case β =
2.0 corresponds to a 1D random walk, which is also sometimes
described as classical Brownian motion.
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For the rest of this paper, we will work in two dimensions (E = 2),
and hence we will be considering surface density fields. However,
the procedures we discuss can easily be adjusted to treat other
Euclidean dimensions. The methodology we use to create xfBm
fields comprises five distinct stages; Stages 2 through 4 can be
implemented in any order, but Stage 1 is always implemented first,
and Stage 5 is always implemented last.

2.1 Stage 1, generating a pure fBm field

A pure fBm field, fβ (r), is constructed by first generating a
power spectrum f̂β (k). Here, r ≡ (r1, r2) is a 2D grid of integers
with values of 1 ≤ ri ≤ NPIX, along each Cartesian axis, and
k ≡ (k1, k2) is a 2D grid of wave-vectors with integer values of
−NPIX/2 ≤ kj ≤ NPIX/2 along each Cartesian axis. For each k, the
contribution to the power spectrum is given by

f̂β (k) = Aβ (k)
{

cos(ϕk) + i sin(ϕk)
}

; (1)

Aβ (k) =
⎧⎨
⎩

0, if k = 0;

K−1/2||k||−β/2, if k �= 0;
(2)

K =
∑

k

{||k||−β
}

; (3)

ϕ(k) = χ (k) − χ (−k); (4)

Aβ (k) and ϕ(k) are, respectively, the amplitude and phase of the
contribution. The normalization factor K scales the total power of
the field to unity. χ (k) is a random variate sampled from a uniform
distribution on the interval 0 ≤ χ (k) ≤ 2π . The pure fBm field,
fβ (r), is obtained by taking the inverse Fourier Transform of f̂β (k).

2.2 Stage 2, the exponentiated fBm field

A pure fBm field has a roughly Gaussian distribution with a mean of
around zero, 〈fβ (r)〉 ≈ 0. This means that roughly half of the field
has negative values. In order to make the field everywhere positive,
so that it can be used to model surface density, we follow Elmegreen
(2002) and exponentiate fβ (r) to obtain an xfBm field,

gHS (r) = exp

{
S fβ (r)〈
f 2

β (r)
〉1/2

}
, (5)

using a scaling parameter,S. S = 0 gives uniform density, and, asS
is increased, the range of densities widens, and hence the structures
become more sharply defined. This process transforms the roughly
Gaussian field into one with a roughly lognormal distribution.

2.3 Stage 3, the non-periodic xfBm field

The xfBm field, gHS (r), is periodic, but observed fields are not.
Therefore, we initially generate a pure fBm field, g′

HS (r ′), with
1 ≤ r ′

i ≤ 4NPIX, along each Cartesian axis. Then, we cut out an
NPIX × NPIX section, located so that its geometric centre coincides
with its centre of mass.

2.4 Stage 4, the noisy xfBm field

Since real observations are noisy, we add white noise to gHS (r). The
white noise field is scaled to be a fraction η = 0.05B of the standard
deviation, σ g, of gHS (r), where B is a linear random deviate on the
interval [0, 1]; hence the noise always lies between 0 per cent and
5 per cent of σ g. This is only intended to be illustrative, but it is

worth noting that higher noise levels will compromise �-Variance
more than the CNN.

2.5 Stage 5, Adjusting rogue pixels

Finally, in order to filter out rogue pixels (for example, which in a
real map might represent cosmic ray strikes), we compute the mean,
μg, and standard deviation, σ g, for all pixels. Any pixels with g > μg

+ 2.5σ g are replaced with μg + 2.5σ g, and similarly any pixels with
g < μg − 2.5σ g are replaced with μg − 2.5σ g. This cull of the most
extreme pixels helps to stabilize the training and implementation
of the CNN. Moreover, in observed clouds, the lognormal part of
the column density Probability Density Field (PDF) is seldom well
defined outside ±2.5σ g, due to incompleteness on the low side, and
a power-law tail (usually attributed to self-gravity; Girichidis et al.
2014) on the high side (e.g. Schneider et al. 2012).

2.6 xfBm fields

Fig. 2 shows how the appearance of an xfBm field, generated by the
procedure outlined in the preceding sections, depends on β and S.
These fields have all been generated from the same random seed in
order that they all have the same large-scale pattern.

For the three fields on the top row, β = 4.0 (equivalently H =
1.0), the power is strongly concentrated in long-wavelength modes,
and there is little small-scale structure; the same contours could be
overlaid on all three images, albeit at different column densities,
and these contours would tend to be very smooth. For the three
fields on the bottom row, β = 2.0 (equivalently H = 0.0), there is
a lot of power at short wavelengths, and hence lots of small-scale
structure; again, the same contours could be overlaid on all three
images on the bottom row, albeit at different column densities, and
these contours would tend to be very twisted.

For the three fields in the left-hand column, S = 0.5, the range of
densities is the same and rather small. The only difference is that at
the top (β = 4.0) the density peaks and troughs are quite extended,
and at the bottom (β = 2.0) they are more compact. For the three
fields in the right-hand column, S = 3.0, the range of densities is
also the same, but now it is rather big. Once again the density peaks
and troughs at the top (β = 4.0) are quite extended, and those at
the bottom (β = 2.0) are more compact. The range 0.5 ≤ S ≤ 3.0
is chosen because this covers the range of variances in the column
density PDFs of observed clouds (e.g. Schneider et al. 2012, 2013;
Kainulainen et al. 2014).

Stutzki et al. (1998) show that the corresponding box-counting
fractal dimension should be DBC � (3E + 2 − β)/2, and the cor-
responding perimeter–area fractal dimension should be DPA �
(3E − β)/2 = DBC − 1, where E is the Euclidean dimension, and
we have used ‘�’ because our xfBm fields are not pure. Substituting
E = 2, we obtain DBC � (8 − β)/2 and DAP � (6 − β)/2.

In Fig. 2, and in the rest of the paper, we use NPIX = 128, so the dy-
namic range of spatial scales isR � 64. In the next two sections, we
explore two techniques for characterizing xfBm fields constructed
in this way: �-Variance (Section 3) and CNNs (Section 4).

3 �-VARI ANCE

The �-variance, σ 2
�(L), of a 2D field, g(x, y) is the variance after

the field has been convolved with a circular filter function, �L,
characterized by length-scale L:

σ 2
�(L) = 1

2π

〈
(g ∗ �L)2

〉
x,y

. (6)
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Figure 2. 2D fBm fields generated using the same random seed, but with different β and S, as shown in the top left-hand corner of each panel. The fields are
periodic and consist of 128 × 128 pixels. The logarithmic colour scale is the same in each plot, and shows the relative surface density, in arbitrary units.

σ 2
�(L) must be evaluated for many different values of L, spanning

the full dynamic range of spatial scales being modelled. The power-
law exponent, β, is then given by

β = E + d ln
(
σ 2

�

)
d ln(L)

. (7)

In computing this gradient, care must be taken to discount end
effects, i.e. where L is either close to the scale of the whole field,
or close to the resolution limit; this issue is discussed further in
Section 3.1 next.

In the original formulation (Stutzki et al. 1998), the French
Hat filter function has been used, but Ossenkopf et al. (2008b)

show that better results are obtained with the Mexican Hat filter
function:

�L (r) = �CORE.L(r) − �ANN.L(r), (8)

�CORE.L (r) = 4

πL2
exp

(− 4 r2

L2

)
, (9)

�ANN.L (r) = 4

π (ν2 − 1)L2

{
exp

(− 4 r2

ν2 L2

)
− exp

(− 4 r2

L2

)}
,

(10)

and this is the filter that we use here.
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Figure 3. �-variance curves for pure (i.e. periodic, un-exponentiated,
and noiseless) fBm fields with power-law exponent βTRUE =
2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 (hence HTRUE =
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0). The pink shading
shows the range used to estimate the slope, and hence (using equation 7) to
obtain βEST. Values of βTRUE and βEST are tabulated in the corner of the
frame.

3.1 The power-law exponent, β, for periodic fields

As noted by Ossenkopf et al. (2008b), for periodic fields (but only
for periodic fields), the �-variance can be computed more quickly
by integrating the product of the power spectrum of g (denoted
Pg(k)) and the power spectrum of the filter function (denoted �̃L)
over k-space:

σ 2
�(L) = 1

2π

∫
Pg(k)

∣∣�̃L

∣∣2
d2k. (11)

Fig. 3 shows the �-variance curves obtained in this way for 11 pure
(i.e. periodic, un-exponentiated, and noiseless) fBm fields with
βTRUE = 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8 , and 4.0.
If we limit consideration to the range −1.50 ≤ log10(L) ≤ −0.50
(the shaded pink on Fig. 3), the slope is in all cases well defined,
and can be used to estimate β from equation (7). The values
estimated in this way, βEST, are tabulated in the corner of Fig. 3,
and agree well with the input values, βTRUE.

3.2 The power-law exponent, β, for non-periodic fields

Ossenkopf et al. (2008b) also note that for non-periodic fields,
a more convoluted procedure is required. First, the map is zero-
padded to twice the linear size. Next, the convolution is performed,
using the original filter size, but only on the pixels that constitute
the original map, in order to prevent the filter from wrapping around
the edges of the map. This involves four convolution integrals:

GCORE.L(r) = gPAD(r ′) ∗ �CORE.L(r), (12)

GANN.L(r) = gPAD(r ′) ∗ �ANN.L(r), (13)

WCORE.L(r) = w(r ′) ∗ �CORE.L(r), (14)

WANN.L(r) = w(r ′) ∗ �ANN.L(r), (15)

where gPAD(r ′) is the zero-padded map, and w(r
′
) is a normalization

map that takes values of 1 within the region of the original map,
and 0 in the zero-padded region. The fully convolved map is then
computed using

FL(r) = GCORE.L(r)

WCORE.L(r)
− GANN.L(r)

WANN.L(r)
, (16)

and the �-variance is given by

σ 2
�(L) =

∑{
(FL(r) − 〈FL(r)〉)2 WTOT.L(r)

}
∑ {WTOT.L(r)} . (17)

Here, WTOT.L(r) = WCORE.L(r) WANN.L(r) acts as a map of weights,
which, when applied to the variance calculation, gives less signif-
icance to the pixels that are most heavily distorted by edge effects
due to the zero-padding.

3.3 Evaluating the performance of �-variance

To test the above procedures, we use the methodology outlined in
Section 2 to construct 2000 different artificial xfBm fields, each
measuring 128 × 128 pixels, and each with a random value of
βTRUE on the interval [2.0, 4.0], and a random value of STRUE on
the interval [0, 3]. At each stage in the construction, we apply �-
variance to estimate βEST, and compare the result with βTRUE.
The results are presented in Fig. 4. Note that for this exercise
we have reversed the order of Stages 2 and 3 (Sections 2.2
and 2.3).

For the pure fBm fields generated in Stage 1 (Section 2.1),
we are able to use the procedure for periodic fields outlined in
Section 3.1, and the same range (−1.50 ≤ log10(L) ≤ −0.50). The
results are presented in Fig. 4(a). In this case, there is almost exact
correspondence between βEST and βTRUE. The root-mean-square
error is εβ � 0.006 .

For the non-periodic fields generated in the subsequent stages
(Sections 2.2–2.4), we have to use the more convoluted procedure
for treating non-periodic fields, as outlined in Section 3.2, and
consequently the estimates of the power-law exponent deteriorate.
Fig. 4(b) shows the results obtained with non-periodic fBm fields;
in this case εβ � 0.09, and there is a tendency to overestimate βEST

for high values of βTRUE. Fig. 4(c) shows the results obtained for
exponentiated non-periodic fields; in this case εβ � 0.18, and there
is still a tendency to overestimate βEST for high values of βTRUE,
but also a tendency to underestimate βEST for low values of βTRUE.
The addition of noise does not change the error significantly, i.e. it
is εβ � 0.17 .

In order to explore the interplay between the parameters
β and S and how this is reflected in the values of βEST

obtained using �-variance, we consider discrete values of
βTRUE = 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0
and STRUE = 0.5, 1.0, 2.0, and 3.0. Then, for each combination
of βTRUE and STRUE, we generate 400 different artificial xfBm
fields (i.e. non-periodic, exponentiated, and noisy); estimate their
individual βEST using �-variance; and hence determine the mean,
μβ = 〈βEST〉, and standard deviation, σβ = 〈(βEST − 〈βEST〉)2〉1/2.
Fig. 5 displays the results. In general, as STRUE increases, the mean,
μβ , falls increasingly far below βTRUE, and the standard deviation,
σβ , increases. These trends are particularly strong for low values of
βTRUE. Inspection of Fig. 2 suggests that these trends arise because
increasing S and reducing β both have the effect of amplifying the
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Figure 4. Comparison of the input values of the power-law exponent, βTRUE, with the values estimated using �-variance, βEST. The box-and-whisker plots
in the top row show the distribution of (βEST − βTRUE) in bins of width �βTRUE = 0.4. In each bin, the orange line marks the median, and the box spans
from the lower quartile, Q1, to the upper quartile, Q3. If the interquartile range is �Q = Q3 − Q1, the upper whisker extends to the highest point less than
Q3 + 1.5�Q, the lower whisker extends to the lowest point greater than Q1 − 1.5�Q, and all points outside this range are plotted individually as the open
circles. The blue line marks exact correspondence. The kernel density estimates on the bottom row show the correspondence between βEST and βTRUE, and εβ

is given, for each stage, in the top lefthand corner of the panel. Reading from left to right and top to bottom, the plots correspond to (a) pure fBm fields, (b)
non-periodic fBm fields, (c) exponentiated, non-periodic fBm fields, and (d) noisy, exponentiated, non-periodic fBm fields.
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Figure 5. Values of 〈βEST〉 − βTRUE (top panel) and 〈(βEST

− 〈βEST〉)2〉1/2 (bottom panel) for discrete values of βTRUE =
2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0, and discrete val-
ues of STRUE = 0.5 (the filled blue circles), 1.0 (the orange crosses), 2.0
(the filled green diamonds), and 3.0 (the filled red triangles). For each
combination of βTRUE and STRUE, βEST has been estimated using �-
variance. The mean and standard deviation of βEST are based on 400
different artificial xfBm fields (i.e. non-periodic, exponentiated, and noisy
fields).

visibility of small-scale structure in the field. �-variance is unable
to distinguish these two effects, as noted previously by Lomax
et al. (2018).

4 C O N VO L U T I O NA L N E U R A L N E T WO R K S

The use of neural networks for classification and regression has
expanded rapidly in recent years. A large variety of different
types of network has emerged, most notably the CNN, which
is used extensively in problems involving image recognition. A
notable example is handwritten digit recognition (Ciresan et al.
2011; Ciresan, Meier & Schmidhuber 2012). Several competitions
have also served to push the boundaries of CNNs, for instance,
the annual ImageNet Large Scale Visual Recognition Challenge,
which in 2012 established the usefulness of Graphic Processing
Units when combined with deep CNNs (Krizhevsky, Sutskever &
Hinton 2017).

More recently machine learning techniques have started to be
applied to problems in astronomy. Examples of the use of CNNs
include galaxy classification (Khalifa et al. 2017), gamma-ray
astronomy (Dieleman, Willett & Dambre 2015; Postnikov et al.
2018), supernova classification (Kimura et al. 2017), astronomical
image reconstruction (Flamary 2016), denoising of images (Remez
et al. 2017), and star cluster analysis (Bialopetravicius, Narbutis &
Vansevicius 2019).

Table 1. The architecture of the CNN. The initial 128 × 128 × 1
input layer is the 2D field to be analysed, and the final 1 × 1 ×
2 output layer gives the estimated β and S. In between, there are
five convolutional layers, each followed by a max pooling function,
and then five flattened, fully connected, dense layers. The output size
column follows the format: width × height × channels.
The total number of parameters is 11 545 090.

Layer Output size Operation

Input 128 × 128 × 1 Input layer
Conv.1 126 × 126 × 512 3 × 3 kernel
MaxPool.1 63 × 63 × 512 2 × 2 max pooling
Conv.2 61 × 61 × 512 3 × 3 kernel
MaxPool.2 30 × 30 × 512 2 × 2 max pooling
Conv.3 28 × 28 × 512 3 × 3 kernel
MaxPool.3 14 × 14 × 512 2 × 2 max pooling
Conv.4 12 × 12 × 512 3 × 3 kernel
MaxPool.4 6 × 6 × 512 2 × 2 max pooling
Conv.5 4 × 4 × 512 3 × 3 kernel
MaxPool.5 2 × 2 × 512 2 × 2 max pooling
Flatten 1 × 1 × 2048 Flattens into 1D layer
Dense.1 1 × 1 × 512 Fully connected
Dense.2 1 × 1 × 512 Fully connected
Dense.3 1 × 1 × 512 Fully connected
Dense.4 1 × 1 × 512 Fully connected
Dense.5 1 × 1 × 512 Fully connected
Output 1 × 1 × 2 One channel each for β and S

4.1 Architecture of the CNN

A CNN consists of a collection of artificial neurons, with each
neuron taking a vector of inputs x, and producing a scalar output,
y = f (c + w · x). Here, w is a vector of weights, c is a bias, and
f(·) is an activation function; the activation function used here is the
rectified linear unit, f (x) = MAX[0, x] (Nair & Hinton 2010).

Neurons are arranged in multiple groupings called layers, and
each neuron in the layer takes all the outputs from the previous
layer as its inputs. In general, a layer delivers a vector of outputs
y; and a sequence of layers forms a neural network. Table 1 shows
the structure of the CNN developed here, using the Tensorflow
package. It consists of five convolutional layers (Conv.N), each
followed by a max pooling layer (MaxPool.N). These are then
flattened into a 1D layer that is then followed by five fully connected
layers (Dense.N).

The weights and biases of the neurons comprise the parameters
of the network, and are refined using multiple sets of input data
(xINPUT) and their corresponding known statistical parameters
( yKNOWN). Gradient descent is then used to minimize a loss function
L, which we set to the mean square error:

L = 〈(F (xINPUT) − yKNOWN)2〉. (18)

Here, F (xINPUT) is the estimate of y delivered by the CNN.
The convolutional layers of the CNN consist of 2D grids of

multiple, learnable convolutional filters. Each filter comprises a
3 × 3 window, made up of nine parameters. The window is moved
across the map in steps, producing an output at each step by
computing the dot product between the filter and the local subsection
of the map. The CNN used here has five convolutional layers, each
using 512 different filters (so that it produces 512 different feature
maps) and a step of 1 (so that it reduces the size of the layer by 2 in
each dimension). The nine parameters for each filter are refined by
minimization of the loss function.
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Figure 6. Left-hand panels: comparison of the input values of the power-law exponent, βTRUE with the values returned by the CNN, βEST. Right-hand panels:
comparison of the input values of the scaling factor, STRUE with the values returned by the CNN, SEST. The box-and-whisker plots on the top row show the
distribution of (βEST−βTRUE) in bins of width �βTRUE = 0.4, and (SEST − STRUE) in bins of width �STRUE = 0.6. In each bin, the orange line marks the
median, and the box spans from the lower quartile, Q1, to the upper quartile, Q3. If the interquartile range is �Q = Q3−Q1, the upper whisker extends to the
highest point less than Q3 + 1.5�Q, the lower whisker extends to the lowest point greater than Q1 − 1.5�Q, and all points outside this range are plotted as the
open circles. The blue line marks exact correspondence. The kernel density estimates on the bottom row show the correspondence between βEST and βTRUE,
and SEST and STRUE; the values of εβ and εS are given in the top left-hand corner of each panel.

Each convolutional layer is followed by a max pooling layer,
using a 2 × 2 window and a step of 2. Max pooling outputs the
maximum value of a 2 × 2 subsection of the layer. The step
of 2 means the window moves 2 pixel before outputting the next
maximum, thereby halving the image size.

The input to the CNN is a single channel, 128 × 128 pixel xfBm
field. The first convolutional layer (Conv.1) produces 512 different
feature maps, and these are then carried through the network, until
they are condensed into 512 single neurons at the Dense.1 layer, and
finally into two singular neurons at the output layer, i.e. the values
of βEST and SEST.

4.2 Training the CNN

To train the CNN, we generate 20 000 artificial xfBm fields (using
the procedures described in Section 2), each with a random value of
β on the interval [2.0, 4.0], a random value ofS on the interval [0, 3],
and 128 × 128 pixels. The CNN’s parameters start out with random
values. The artificial xfBm fields are then input to the network in
batches of 32, the input βTRUE, and STRUE are compared with the
values estimated by the network, βEST and SEST, and the parameters
updated using the RMSprop gradient-descent optimizer, so as to
minimize the loss function, L. For a comprehensive review of
different optimizers and their applicability, see Ruder (2016). We
train the CNN for 100 epochs with a random 70–30 train-test

cross-validation split. For details of this cross-validation split, see
Appendix A.

4.3 Evaluating the performance of the CNN

We test the performance of the CNN using the same 2000 artificial
fBm fields that were used in Section 3.3 to test the performance of
�-variance. Fig. 6(a) shows that the CNN tends to overestimate the
power-law exponent, β, but the error is small, εβ = 0.12. Fig. 6(b)
shows that the CNN also tends to overestimate the scaling factor, S,
except for large values (S > 2), which it tends to underestimate;
the error is εS = 0.29.

5 D I S C U S S I O N A N D C O N C L U S I O N S

It appears that the CNN developed here is able to estimate the
power-law exponent, β, of an xfBm field (i.e. an fBm field that has
been exponentiated, and is non-periodic and noisy) more accurately
(rms error εβ = 0.12) than �-variance (εβ = 0.18). In addition,
the CNN can also evaluate the scaling factor (S) with reasonable
accuracy (εS = 0.29).

Training and cross-validating a CNN takes about 4 h on a GPU
cluster, but applying the CNN to a single, 128 × 128 pixel xfBm field
then takes � 0.1 s. In contrast, �-variance requires no training, but
applying it to a single, 128 × 128 pixel xfBm field takes ∼ 2 s (on
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the same computer architecture), because it entails the computation
of several convolution integrals over the whole field. It may also
require human intervention to identify the range over which the
plot of log10(σ 2

�(L)) against log10(L) is linear.
The CNN developed here can only be applied to 128 × 128 pixel

fields. Given a field with NPIX �= 128, we have three choices. (i)
We can convert the field to 128 × 128 pixels. (ii) If NPIX > 128,
we can divide the field up into 128 × 128 pixel subfields, analyse
each subfield separately, and combine the results with appropriate
weights. (iii) We can develop a new CNN. In contrast, �-variance
can be applied immediately to a field with any number of pixels.

The disadvantage of both approaches is that they return parameter
values irrespective of whether the fields being analysed are actually
well approximated by fBm. This is particularly true for the CNN,
which is a black box with no demonstrable relation to underlying
physical structures. �-variance can at least provide some (necessary
but not sufficient) evidence for an underlying fBm structure, if the
plot of log10(σ 2

�(L)) against log10(L) displays a linear portion (as
demonstrated for the pure fBm fields analysed in Fig. 3), but this
may require human intervention. It might therefore be appropriate
to combine the two approaches: use the CNN to estimate βCNN

and SCNN, and then re-estimate β�-VAR using �-variance, and
check whether it falls below βCNN in accordance with the results
of Fig. 5.
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APPENDI X A : O PTI MI ZATI ON

The CNN was initially trained for 500 full passes, or epochs, of the
input data set (the 20 000 artificial fBm fields). At each epoch,
a random 70 per cent of the artificial fields (i.e. 14 000 fields)
were selected and used to train the network, by minimizing the
associated loss function,LTRAIN.70 per cent. The remaining 30 per cent
(6000 fields) were set aside and used to cross-validate the network,
by computing its loss function, LVALID.30 per cent, separately. This
cross-validation is designed to check that the network is not
overfitting the data set. If it is, LVALID.30 per cent will tend to increase
systematically with successive passes, while LTRAIN.70 per cent will
generally continue to decrease. We train for a large number of
epochs (500) in order to determine the point at which the CNN starts
to overfit. Fig. A1 shows the evolution of the TRAIN. 70 PER CENT

and VALID. 30 PER CENT loss functions. Separate plots are given
for the contributions to the loss functions from β and S, and for
their sum. We see by eye that LVALID.30 per cent starts to increase at
∼100 epochs. Therefore, we restrict the CNN to 100 epochs for the
analyses described in Section 4.

After ∼400 epochs, LTRAIN.70 per cent also starts to increase. This
suggests that the gradient-descent optimizer (here, RMSProp) is
taking too large a step and thus moving away from the loss-function
minimum.
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Figure A1. The loss function for β (Lβ , top panel), S (LS , middle panel),
and the total (L = Lβ + LS , bottom panel). The pale red (blue) curves
show how the loss function for the training (testing) set evolves with epoch,
and the dark red (blue) curves are smoothed versions obtained by taking the
median of the 20 surrounding points.

We tested the dependence on image size by repeating the analyses
in Sections 3 and 4 with 100 × 100 pixel xfBm images. Using a

CNN, there was no significant change in the accuracy, with εβ =
0.12 and εS = 0.31. Using �-variance, the accuracy was somewhat
worse, with εβ = 0.18.

We also tested several distinct CNN architectures, and different
numbers of layers and different numbers of nodes. The architecture
described in the text (Table 1) appears to deliver reasonable accuracy
using modest computation time.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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