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Abstract

Gradient nonlinearities in magnetic resonance imaging (MRI) cause spatially varying

mismatches between the imposed and the effective gradients and can cause significant

biases in rotationally invariant diffusion MRI measures derived from, for example, diffu-

sion tensor imaging. The estimation of the orientational organization of fibrous tissue,

which is nowadays frequently performed with spherical deconvolution techniques ide-

ally using higher diffusion weightings, can likewise be biased by gradient nonlinearities.

We explore the sensitivity of two established spherical deconvolution approaches to

gradient nonlinearities, namely constrained spherical deconvolution (CSD) and damped

Richardson-Lucy (dRL). Additionally, we propose an extension of dRL to take into

account gradient imperfections, without the need of data interpolation. Simulations

show that using the effective b-matrix can improve dRL fiber orientation estimation

and reduces angular deviations, while CSD can be more robust to gradient nonlinearity

depending on the implementation. Angular errors depend on a complex interplay of

many factors, including the direction and magnitude of gradient deviations, underlying

microstructure, SNR, anisotropy of the effective response function, and diffusion

weighting. Notably, angular deviations can also be observed at lower b-values in con-

trast to the perhaps common assumption that only high b-value data are affected. In

in vivo Human Connectome Project data and acquisitions from an ultrastrong gradient

(300 mT/m) scanner, angular differences are observed between applying and not

applying the effective gradients in dRL estimation. As even small angular differences

can lead to error propagation during tractography and as such impact connectivity ana-

lyses, incorporating gradient deviations into the estimation of fiber orientations should

make such analyses more reliable.
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1 | INTRODUCTION

In magnetic resonance imaging (MRI), encoding of the signal to spatial

location and molecular motion is achieved through the application of

magnetic field gradients. Due to hardware limitations, however, these

gradient fields can be significantly nonuniform throughout the imaging

volume, causing the effective gradient amplitude and spatial orienta-

tion to deviate from the desired values. Gradient nonlinearities can be

characterized from the gradient coil configuration or, when this is not

available, by measuring specially designed phantoms (Nagy, Alexan-

der, & Weiskopf, 2009). According to previous works, the gradient

deviations become more significant when moving away from the

isocenter (Bammer et al., 2003; Glover & Pelc, 1986; Malyarenko,

Ross, & Chenevert, 2014; Mohammadi et al., 2012; Nagy, Weiskopf,

Alexander, & Deichmann, 2007).

In structural MRI, gradient nonlinearities cause geometric distor-

tions and image intensity inaccuracies, which can significantly affect

quantitative group and multisite studies (Jovicich et al., 2006; Tax

et al., 2019). Several frameworks have been developed to, retrospec-

tively, correct such geometric distortions (Glover & Pelc, 1986;

Jovicich et al., 2006). In diffusion MRI, where magnetic field gradients

are used to sensitize the signal to the microscopic motion of spins,

gradient nonlinearities additionally result in spatially varying diffusion

sensitization (Bammer et al., 2003; Malyarenko et al., 2014;

Sotiropoulos et al., 2013). Since the diffusion weighting (often sum-

marized by the b-value) scales quadratically with the gradient ampli-

tude, these effects can be more prominent with ultrastrong gradient

systems. Although gradient nonlinearities are often considered to be

problematic with strong gradients only, it was shown that even with

clinical systems equipped with 40 mT/m gradients, the resulting fields

can deviate more than 10% from the expected values at the edges of

the volume (Bammer, 2003; Jovicich et al., 2006; Mohammadi

et al., 2012; Nagy et al., 2007). In addition, higher gradient strengths

are becoming more commonplace in clinical settings and the state-of-

the-art Connectom scanner can even achieve gradient strengths up to

300 mT/m (Jones et al., 2018; Setsompop et al., 2013). For this rea-

son, imaging consortiums maintaining public databases (Sudlow

et al., 2015; Tax et al., 2019; Van Essen et al., 2012; Van Essen

et al., 2013) such as the Human Connectome Project (HCP) have rec-

ognized the detrimental effects of gradient nonlinearities on diffusion

measures and are now providing additional information to allow for

their mitigation.

The effect of gradient nonlinearities in diffusion MRI and their

corrections have been investigated in several studies (Bammer

et al., 2003; Jovicich et al., 2006; Malyarenko et al., 2014;

Mohammadi et al., 2012; Nagy et al., 2007; Setsompop et al., 2013).

Water phantom studies (Nagy et al., 2009; Rogers et al., 2018, 2017)

reveal gradient field inhomogeneities as one of the main factors con-

tributing to inaccuracies in the estimated apparent diffusion coeffi-

cient (ADC). Biases of up to 10% in diffusion measures derived from

diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI)

resulting from gradient field nonlinearities have been reported

(Bammer et al., 2003; Mesri, David, Viergever, & Leemans, 2020,

2018). Furthermore, gradient nonlinearities have a direct effect on the

accuracy of fiber orientation estimation (Glasser et al., 2013;

Setsompop et al., 2013; Sotiropoulos et al., 2013) and therefore also

bias any subsequent fiber tractography.

During parameter estimation on diffusion MRI data, the diffusion

gradient strength and its orientation are commonly assumed to be

constant across all voxels in the dataset. When this condition is not

met, a possible correction strategy is to generate a gradient encoding

matrix (b-matrix) for each voxel independently. In the ADC-, DTI-, or

DKI-equation, among others, the correct spatially varying b-matrix can

be naturally integrated, whereas this becomes less trivial for methods

which impose certain restrictions on the sampling strategy, such as

spherical deconvolution using spherical harmonics (SH) (Tournier, Cal-

amante, & Connelly, 2007) or diffusion spectrum imaging (Wedeen,

Hagmann, Tseng, Reese, & Weisskoff, 2005).

Spherical deconvolution formulations are commonly used to

resolve the fiber orientation distribution (FOD) function, and often

require a specific spherical sampling of q-space (i.e., “shells” for a spe-

cific diffusion weighting). Constrained spherical deconvolution (CSD)

(Tournier et al., 2007), for instance, represents the diffusion MRI data

in the SH basis to perform the deconvolution operation, which inher-

ently assumes the diffusion weighting to be constant per shell. The

same holds for techniques that simultaneously aim at estimating the

FOD and the deconvolution kernel, often relying on spherical averag-

ing (or powder averaging) of the signal (Edén, 2003; Kaden, Knösche, &

Anwander, 2007; Novikov, Veraart, Jelescu, & Fieremans, 2018;

Szczepankiewicz et al., 2016). The compatibility of data affected by

gradient nonlinearities with such approaches relies on a radial repre-

sentation of the signal (Morez, Sijbers, & Jeurissen, 2017; Paquette,

Eichner, & Anwander, 2019), e.g., to interpolate data back onto shells.

Among the various spherical deconvolution strategies, the damped

Richardson-Lucy (dRL) (Dell'Acqua et al., 2010) does not assume the

data to lie on shells and can be used in combination with a voxel spe-

cific response function, which can in turn be exploited to investigate

the bias caused by gradient field nonlinearities, albeit at the cost of

increased computational demands. Even though this still relies on a

radial representation of the response function, the data itself are not

interpolated, thereby circumventing potential interpolation inaccura-

cies, fitting issues, and modifying noise properties.

In this work, we study the effect of gradient nonlinearities on

estimates of fiber orientation from FODs reconstructed with dRL and

CSD. In the case of dRL, we propose a formulation of the

deconvolution matrix to account for the effect of gradient nonlinear-

ities and compare the application of dRL with and without correction.

Additionally, we suggest a “semicorrection” heuristic for CSD based

on the b-matrix, that is, using the average of the true b-values as

“shell” for each voxel. We evaluate the methods and the suggested

corrections with simulations, and with in vivo human datasets from

state-of-the-art acquisitions, including a dataset from the HCP (Van

Essen et al., 2012) and a public harmonization dataset from an

ultrastrong 300 mT/m gradient system (Tax et al., 2019).
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2 | METHODS

We introduce some background theory on the computation of the

effective gradients applied in each voxel in Section 2.1, and then

briefly describe the dRL and CSD techniques and the suggested cor-

rection schemes. In Section 2.3, we outline the data and experiments,

and in Section 2.4, the analysis strategies.

2.1 | Spatially varying b-matrix

Given the gradient coil tensor L(r) for each location r (where we define

ΔL(r) = L(r) − I), the effective gradient geff and the imposed gradient g

are related by the following expression (Bammer et al., 2003):

geff rð Þ=
Lxx rð Þ Lxy rð Þ Lxz rð Þ
Lyx rð Þ Lyy rð Þ Lyz rð Þ
Lzx rð Þ Lxy rð Þ Lzz rð Þ

0
B@

1
CAg = L rð Þg ð1Þ

Accordingly, the effective b-matrix Beff(r) can be related to the

imposed b-matrix B as

Beff rð Þ= L rð ÞBL rð ÞT ð2Þ

Here, the imposed b-value b = trace(B) and the effective b-value

beff = trace(Beff). In the following, we show how Beff(r) can be incorpo-

rated into two spherical deconvolution frameworks.

2.2 | Spherical deconvolution strategies

As previously mentioned, most spherical deconvolution methods require

a “shell” sampling, where data are acquired in multiple diffusion gradient

orientations sampled on a sphere for a given diffusion strength (i.e., b-

value). For dRL, this requirement can be relaxed, because the depen-

dency on the diffusion weighting can be explicitly taken into account

using a representation of the response function that can vary voxel-wise.

In Section 2.2.1, we briefly describe the dRL algorithm, and present a

modified version of dRL to consider the spatially varying b-vectors and b-

values. In Section 2.2.2, we similarly present CSD and a modified version

that can partially account for the spatially varying b-vectors and b-values.

2.2.1 | dRL deconvolution

The deconvolution response function used in dRL is represented by H

that maps the diffusion MRI signals onto the FOD. H is an m × n

matrix where every column of length m contains the values of the

fiber response profile oriented along one of the n-directions. In the

original dRL method, the H-matrix is generated once and subsequently

used for all voxels. In the rest of the manuscript, this method will be

referred to as dRL with a uniform H-matrix (dRL-uni).

The FOD of each voxel can then be estimated from the diffusion

MRI signal (S) through an iterative process estimating the maximum

expectation, where k represents the kth iteration:

f k +1ð Þ = f kð Þ 1+ u kð ÞH
TS−HTHf kð Þ

HTHf kð Þ

 !
ð3Þ

Here, the transpose of H is written as HT. f is a column vector

which contains the values of the FOD along n directions uniformly

distributed on a sphere, and u is a n × 1 vector that performs a

damping operation on f.

In the original dRL formulation, the response of a single fiber pop-

ulation was represented by a diffusion tensor corresponding to eigen-

values [λ, β, β] (the second and third eigenvalues are set to be equal),

as shown in Equation (4):

Hij = exp bi λ cos
2 θij
� �

+ β 1−cos2 θij
� �� �� �� � ð4Þ

In Equation (4), θij is the polar angle between the ith unit gradient

direction of the signal (denoted as ĝ = g= gj j2 ) and jth FOD orientation

sampled on the unit sphere, and bi is the b-value corresponding to the

ith gradient direction.

In the modified version of the dRL method introduced in this work

(dRL-mod), we propose to compute a voxel-wise H-matrix by taking into

account the effective b-values and b-vectors experienced at each voxel

location, by using the gradient coil tensor L(r) as described in Sec-

tion 2.1. In this case, the H-matrix at location r can be written as

Hij rð Þ= exp bi,eff rð Þ λ cos2 θij rð Þ� �
+ β 1−cos2 θij rð Þ� �� �� �� � ð5Þ

where θij(r) and bi,eff(r) are calculated from the effective b-matrix

(which in turn is computed as in Equation (2)). The results in this study

were generated with a dRL implementation in MATLAB based on pre-

vious studies (Dell'Acqua et al., 2010) with 50 iterations; for peak

detection an SH-fit truncated at order 8 was used (Jeurissen,

Leemans, Jones, Tournier, & Sijbers, 2011).

2.2.2 | Constrained spherical deconvolution

In CSD, diffusion MRI signals are typically collected for a set of b-

vectors (with direction g and magnitude b) on a given shell, and SH

coefficients are fitted to the signals for the deconvolution process. To

take the effect of nonshelled b-vectors into account, we implemented a

modified version of CSD that uses the average effective b-value of

each shell. The modified response function then considers the modified

ĝeff and averaged b-value �beff per shell:

ĝi,eff = gi,eff= gi,eff
�� ��

2 ð6Þ

�beff =
1
m

Xm
i=1

bi,eff ð7Þ
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CSD with a uniform response function across all voxels will be

referred to as CSD-uni, while CSD with a voxel-wise modified

response function using an averaged b-value of all gradient directions

will be referred to as CSD-mod. The results in this study were gener-

ated by default with CSD implementation in ExploreDTI with SH trun-

cated at order 8, peak threshold of 10% of the average peak

amplitude in the iterations and a regularization factor of 1, as

suggested in the previous literature (Tournier et al., 2007). For the

purpose of comparison, another implementation of CSD in MRtrix

(Tournier, Calamante, & Connelly, 2012) with SH truncated at 8 and

with both the default settings and modified peak threshold and regu-

larization factors were used when specifically mentioned.

2.3 | Data

2.3.1 | Monte Carlo simulations

In all simulations, the diffusion signals for a single fiber population were

represented by a tensor with the following properties (Dell'Acqua

et al., 2010): the axial diffusivity was set to 1.7 × 10−3 mm2/s and the

radial diffusivity was set to 0.2 × 10−3 mm2/s. Signals were generated

for 60 directions distributed over half the unit sphere unless indicated

otherwise. The simulated signals were fitted with both dRL and CSD.

Simulation I: Influence of fiber orientation

A single fiber configuration was generated with the tensor model with

the fiber orientation along the x-, y-, and z axes, respectively. We sim-

ulated a diffusion weighting of b = 3,000 s/mm2 and 60 gradient ori-

entations. A relative gradient deviation of ΔL(r) = diag([−0.13, –0.14, –

0.05]) was imposed along the primary axis; that is, a gradient deviation

that is relatively larger in the x and y axes compared to the z axis

(inspired by gradient deviations observed for a Connectom scanner

anteriorly in the brain). Then, 104 Rician noise realizations were gener-

ated to simulate a final noise level equal to SNR = 30 with respect to

the nondiffusion weighted signal.

Simulation II: Influence of b-value

The same settings used in Simulation I were used while changing the

applied diffusion weighting to b = 2,000 s/mm2 and b = 1,000 s/mm2,

respectively. Then, 104 Rician noise realizations were simulated with

SNR = 30. Additionally, a gradient deviation of opposite sign ΔL

(r) = diag([0.13, 0.14, 0.05]) was imposed along the primary axis with

the fiber orientation generated along the x-axis to further explore the

effects of positive gradient deviations.

Simulation III: Influence of gradient deviation

The above-mentioned fiber configuration was generated with the

main fiber orientation along the y-axis, a diffusion weighting of

b = 3,000 s/mm2 and 90 gradient orientations. In this case, we simu-

lated a relative gradient deviation within the range of [−0.2 0] along

each axis with step 0.1. Then, 104 Rician noise realizations were simu-

lated with SNR = 30.

Simulation IV: Influence of SNR

The fiber configuration explained in Simulation I was simulated with a rela-

tive gradient deviation ofΔL(r) = diag([−0.13,–0.14,–0.05]). Then, 104Rician

noise realizationswere generated for each SNR level [10, 20, 30, 40, 50].

Simulation V: Crossing fibers

Crossing fibers with a separation angle of [90� 75� 60� 45�] and a sig-

nal fraction of [0.5 0.5] of the two fiber populations were simulated.

Other parameters were b = 3,000 s/mm2, 60 gradient orientations,

and a gradient deviation of ΔL(r) = diag([−0.15, –0.15, –0.15]) and ΔL

(r) = diag([0.15, 0.15, 0.15]). Then, 104 Rician noise realizations were

generated to achieve an SNR of 30.

2.3.2 | Synthetic brain

Wecreated a synthetic brain based on the tensors estimated on a subject

from the HCP dataset (van Essen et al., 2012). The ground truth of the

fiber orientation in each voxel was assumed to coincide with the first

eigenvector of the tensors estimated from the b = 1,000 s/mm2 shell.

The imposed and effective gradients were used to generate diffusion

MRI signals. Rician noise was added to create a noise level of SNR 30.

2.3.3 | In vivo human brain data

Dataset I. HCP diffusion MRI data

The original and the modified dRL were applied to two HCP datasets

which included 18 b = 0 s/mm2 and 90 gradient directions at

b = 3,000 s/mm2. For all the HCP in vivo datasets, preprocessing

included motion correction and correction for geometric image defor-

mations due to eddy currents, susceptibility differences, and gradient

nonlinearities (Glasser et al., 2013). To correct the b-matrix, the gradi-

ent coil tensor was provided for each voxel with the data. A simple

gradient nonlinearity correction script is provided with the HCP

release (Sotiropoulos et al., 2013).

Dataset II. 300 mT/m Connectom diffusion MRI data

The dataset was acquired with a b-value of 3,000 s/mm2 applied along

60 gradient directions in addition to 18 nonweighted volume. The

imaging resolution was 1.2 × 1.2 × 1.2 mm3 (Tax et al., 2019). The

preprocessing included correction for subject motion, eddy-current dis-

tortions, EPI distortions (Andersson, Skare, & Ashburner, 2003), and

gradient nonlinearity distortions (Glasser et al., 2013). The b-matrices

were corrected using spatiotemporal gradient nonlinearity information

as described in previous work (Rudrapatna, Parker, Roberts, &

Jones, 2018), which also takes intervolumemotion into account.

2.4 | Data analysis

In simulations, FOD peaks were extracted using a Newton descent

algorithm (Jeurissen et al., 2011), as implemented in ExploreDTI
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(Leemans, Jeurissen, Sijbers, & Jones, 2009) for dRL and ExploreDTI

and MRtrix (Tournier et al., 2012) for CSD. In single fiber simulations,

the primary peak orientation was compared to the ground truth, that

is, the first eigenvector of the simulated tensor. In crossing fiber simu-

lations, the angular deviations were calculated between the ground

truth orientations and the peaks most aligned to them. The FOD

peaks were normalized to the mean amplitude of the primary peak

estimated from single fiber populations without gradient deviations

for each SD method.

For in vivo data, the angular deviations between the primary FOD

peaks from dRL-uni and the dRL-mod were calculated. A tensor with

eigenvalues [1.7 0.2 0.2] × 10−3 mm2/s was used in dRL FOD estima-

tion, as suggested by previous work (Dell'Acqua et al., 2010). We used

an SH order of 8 in the CSD estimation.

2.5 | Network analysis

The angular deviations can accumulate along tracts and potentially

cause streamlines to end in a different area of grey matter. To

investigate this, whole brain deterministic tractography was per-

formed with FOD amplitude threshold of 0.1 and a step size of 1 mm,

angle threshold of 30� and a fiber length range of [50 500] mm. Grey

matter parcellation was performed using the automated anatomical

labeling atlas (Tzourio-Mazoyer et al., 2002). Structural connectivity

matrices (CMs) were calculated in ExploreDTI (Leemans et al., 2009).

The difference (ΔCM) of the streamline count and streamline length

between using dRL-uni FOD and dRL-mod FOD was computed. We

visualized the graph with the size of the edges representing the ΔCM

of the streamline count and streamline length, and the size of the

nodes representing the L2-norm of the ΔCM to all other nodes.

3 | RESULTS

An illustration of the effective b-values and b-vectors experienced in

the presence of a gradient deviation of ΔL(r) = diag([−0.13, −0.14, –

0.05]), which was sampled from an in vivo human brain dataset

acquired with strong gradients, is shown in Figure 1a,b. Figure 1c

shows the absolute signal change in proportion to S0 for a mono-

F IGURE 1 An example of the (a) imposed sampling and the effective sampling with ΔL(r) = diag ([−0.13, −0.14, −0.05]) with three shells.
(b) The effective b-values in each gradient direction (solid line) versus the imposed b-values (dashed line), due to the gradient deviations, the
effective sampling does not adhere to “shells.” (c) Absolute signal changes as a function of the imposed b-value in the presence of gradient
nonlinearities, that is, ΔS = exp(−bL2D) − exp(−bD), where a mono-exponential signal decay was simulated with D = 0.7 × 10−3 mm2/s and L = 1
+ ΔL. The signal deviations depend both on the gradient deviations and the b-values, and the maximum deviation in this scenario occurs at
b = − log(1/L2)/(D * (L2 − 1))
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exponential signal decay with diffusivity D = 0.7 × 10−3 mm2/s, as a

function of the imposed b-value. Larger gradient deviations result in

higher signal changes. For a fixed gradient deviation, the largest signal

changes are within the range of b = 1,500 s/mm2 to b = 2,000 s/mm2

when the gradient deviations ΔL are between −5 and −15%.

3.1 | Simulations

3.1.1 | Simulation I: Influence of fiber orientation

Figure 2 shows the distribution of the estimated FOD peak angular

deviations from the ground truth, of dRL-uni, dRL-mod, CSD-uni, and

CSD-mod, with and without gradient nonlinearity effects. Simulations

of fibers along x-, y- and z- directions are plotted in panels from top

to bottom; simulations with b-values of 3,000; 2,000; and 1,000 s/

mm2, from left to right. Here, we first focus on a comparison between

the different fiber orientations, that is, between the rows of Figure 2.

Due to the relatively large gradient deviations in x- and y- direc-

tion and relatively small gradient deviation in z-direction, larger differ-

ences of FOD peak orientation in the x- and y-fibers (top two rows)

than in the z-fibers (bottom row) can be seen. When the fiber is along

z- direction, the distributions of the angular difference from CSD and

dRL estimation are similar, regardless of gradient nonlinearity effects.

For the simulations of x- and y-direction fibers, gradient distortions

generally increase the median of the angular deviation distribution of

FOD peaks over 1� in dRL estimation.

Employing the dRL-mod framework did improve the angular accu-

racy of FOD estimation in x- and y-directed fibers where the gradient

deviations are over 10%. The distribution of angular deviations of

dRL-mod FOD peaks matches well with the distribution of FODs esti-

mated from signals without any gradient deviations, with medians of

F IGURE 2 The distribution of the angular deviations of fiber orientation distribution (FOD) peaks from damped Richardson-Lucy (dRL)-uni,
dRL-mod, constrained spherical deconvolution (CSD)-uni, and CSD-mod estimation of Simulations I and II, with a fixed gradient deviation of
ΔL = diag([−0.13 –0.14 −0.05]), at b = 3,000 s/mm2, b = 2,000 s/mm2, and b = 1,000 s/mm2. dRL-uni no dev: dRL-uni estimation without the
gradient deviation ΔL; dRL-uni dev: dRL-uni estimation with the gradient deviation ΔL; dRL-mod dev: dRL-mod estimation with the gradient
deviation ΔL; CSD-uni no dev: CSD-uni estimation without the gradient deviation ΔL; CSD-uni dev: CSD-uni estimation with the gradient
deviation ΔL; CSD-mod dev: CSD-mod estimation with the gradient deviation ΔL

6 GUO ET AL.



F IGURE 3 The angular deviations of fiber orientation distribution (FOD) peaks with gradient deviations of ΔL = diag([−0.2 –0.1 0])
in x-, y-, and z- axes, at SNR 30 of a fixed fiber orientation along the y-axis (Simulation III), b = 3,000 s/mm2. Further results of
Simulation III with different ΔL can be found in supplementary Figure S3. Damped Richardson-Lucy (dRL)-uni no dev: dRL-uni
estimation without the gradient deviation ΔL; dRL-uni dev: dRL-uni estimation with the gradient deviation ΔL; dRL-mod dev: dRL-mod
estimation with the gradient deviation ΔL; constrained spherical deconvolution (CSD)-uni no dev: CSD-uni estimation without the
gradient deviation ΔL; CSD-uni dev: CSD-uni estimation with the gradient deviation ΔL; CSD-mod dev: CSD-mod estimation with the
gradient deviation ΔL
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the distributions moving from [1.26� 1.31� 1.03�] of [x, y, z] orienta-

tion fibers with dRL-uni estimation to [0.9� 0.87� 0.92�] with dRL-

mod estimation at b = 3,000 s/mm2 and b = 2,000 s/mm2. The

medians of the angular deviations in FOD estimation are shown in

supplementary material Table S1.

CSD slightly outperforms dRL in accuracy of FOD peak orienta-

tion estimation, while the angular deviations of CSD FOD peak orien-

tations did not change much with or without the gradient deviation.

Modifying the response function did not significantly improve the

CSD estimation, with similar angular deviations from the ground truth

within approximately 2� and a median of 0.8�. However, the angular

deviations with the MRtrix CSD implementation in supplementary

Figure S1 top row are showing smaller angular deviations using CSD-

mod compared to CSD-uni in the presence of negative gradient devia-

tions. At both b = 3,000 s/mm2 and b = 1,000 s/mm2, MRtrix CSD-

mod performs better than MRtrix CSD-uni with negative gradient

deviations, while the differences between CSD-uni and CSD-mod are

not obvious with positive gradient deviations.

3.1.2 | Simulation II: Influence of b-value

The columns of Figure 2 show the angular deviations for different b-

values. As shown in Figure 1, the averaged effective b-values are

around 80% of the imposed b-values. At lower b-values of

b = 1,000 s/mm2 (the right column), the gradient nonlinearity has a

more visible effect on the angular deviations of CSD than at higher b-

values, whereas the effect remains relatively similar across b-values

for dRL. dRL-mod significantly improves the FOD estimation across b-

values when the fiber direction coincides with directions of largest

gradient deviations, whereas the improvement of CSD-mod is less

obvious, with the implementation in ExploreDTI. The medians of the

angular deviations in the presence of positive gradient deviations in

FOD estimation are shown in supplementary material Table S1.

3.1.3 | Simulation III: Influence of gradient
deviation

Figure 3a shows the distribution of the estimated FOD peak angular

deviations from the ground truth for dRL-uni, dRL-mod, CSD-uni, and

CSD-mod, with and without gradient nonlinearity effects. When vary-

ing the gradient deviations while keeping the simulated fiber in y-

direction, dRL-uni (light green) clearly shows higher angular deviations

when the gradient nonlinearities have a large component in the direc-

tion of the simulated fiber orientations (the left column). In the case of

a gradient deviation of −20% along the fiber orientation (the left bot-

tom), the median of the dRL FOD angular deviations increases from

0.8 to 1.5�, while the range of the distribution increases from 0–3� to

0–5� (light green). In the case of CSD-uni and CSD-mod estimation,

the distributions of angular deviations are almost identical, with or

without gradient deviations. In the extreme circumstances, with a gra-

dient deviation of −20% along the fiber orientation (the left column),

CSD-mod (purple) slightly outperforms CSD-uni (dark green) in terms

of angular deviation. See supplementary Figure S3 for other configu-

rations of Simulation III.

Figure 3b shows the median of the estimated FOD peak angular

deviations from the ground truth for dRL-uni, dRL-mod, CSD-uni, and

CSD-mod, with and without gradient nonlinearity effects. When the

deviation is along the simulated fiber orientation, that is, the y-axis in

this case, gradient nonlinearities affect the FOD estimation the most,

with the median of angular deviations reaching up to 1.3� when the y-

gradient is reduced by 20% for the dRL-uni estimation (light green).

3.1.4 | Simulation IV: Influence of SNR

Similar to the results at SNR 30, dRL-uni is affected the most com-

pared to other algorithms by gradient nonlinearities for other SNR

levels using the regularization settings in this study, with on average

1� larger angular deviations. The distributions of angular deviations

are shown in supplementary material Figure S4.

3.1.5 | Simulations V: Crossing fibers

Figure 4 shows the angular deviations of dRL-uni, dRL-mod, CSD-uni,

and CSD-mod in crossing fiber simulations. In the presence of large

negative gradient deviations (ΔL = −15% in along all axes), the angular

deviations are relatively stable. At 60, 75, and 90�, dRL-uni shows the

largest angular deviations (green lines). At 75� with the default

implementations, CSD performs better than dRL. At 45�, dRL per-

forms better than CSD, that is, resulting in smaller angular deviations.

The second “peak” in the histograms of 45� shows that CSD in some

cases fails to extract two separate peaks, and CSD-mod performs

worse. On the contrary, with positive gradient deviations as shown in

supplementary Figure S5, CSD-mod performs better than CSD-uni,

which is likely due to the sharper response function used, subse-

quently improving the angular resolution. See section 4.2 for further

discussion.

Figures S6 and S7 show the normalized peak magnitudes. For sin-

gle fiber populations, dRL-mod causes larger peaks at negative gradi-

ent deviations (ΔL −), and smaller peaks at positive gradient

deviations (ΔL +). CSD-mod results in peak magnitudes that are closer

to CSD-uni without gradient deviations. For crossing fibers, dRL-mod

and CSD-mod changed the peak magnitudes in the same pattern as

for single fibers. CSD shows unstable results at 45� with CSD-mod at

negative gradient deviations (Figure S7, left bottom) and with CSD-

uni at positive gradient deviations (Figure S7, right bottom).

3.2 | Synthetic brain

Figure 5 shows the CSD FOD estimation and the dRL FOD estimation

of the synthetic brain both without and with Rician noise (SNR = 30).

The angular deviations between the estimated primary FOD peak and
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the simulated fiber orientations in an axial view are shown in

Figure 5a. The fraction of angular deviation occurrences among all the

synthetic brain voxels are shown in Figure 5b. Without Rician noise

but with gradient field nonlinearity, the dRL-mod method reduces the

angular deviation to less than 1�, with a distribution (red line) much

closer to zero than other FOD estimations (i.e., CSD-uni, CSD-mod,

F IGURE 4 The angular
deviations of crossing fibers
with ΔL = diag([−0.15 –0.15 –
0.15]) (Simulation V),
b = 3,000 s/mm2. θ stands for
the simulated separation angles
of the crossing fibers. Results
with a different sign of the
diagonal elements in ΔL can be

found in supplementary
Figure S5. Damped Richardson-
Lucy (dRL)-uni no dev: dRL-uni
estimation without the gradient
deviation ΔL; dRL-uni dev: dRL-
uni estimation with the
gradient deviation ΔL; dRL-mod
dev: dRL-mod estimation with
the gradient deviation ΔL;
constrained spherical
deconvolution (CSD)-uni no
dev: CSD-uni estimation
without the gradient deviation
ΔL; CSD-uni dev: CSD-uni
estimation with the gradient
deviation ΔL; CSD-mod dev:
CSD-mod estimation with the
gradient deviation ΔL
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and dRL-uni, which are almost overlapping). Ignoring the gradient

nonlinearity effects and using uniform b-values and b-vectors, both

the CSD estimation (blue line) and dRL estimation (red line) cause an

FOD peak angular deviation of up to 3� compared to the ground truth,

with a peak centered at 0.2–0.3� (the yellow line overlaps with the

green line). At the isocenter of the synthetic brain, the estimated pri-

mary fiber orientation matches the ground truth direction more

closely, while toward the edges of the gradient field, the angular devi-

ations can reach values over 3�.

At SNR 30, the distribution of angular deviations of the modified

dRL estimation is likewise moving closer to zero with a narrower peak

(red line) compared to the angular deviations of other estimation

methods. From an axial view, the angular deviations of the dRL-mod

estimation are much more spatially homogenous, as the effects of gra-

dient nonlinearity are mitigated. From a visual examination, the FOD

peak angular deviations of the synthetic brain are globally in corre-

spondence with the Frobenius norm of the coil tensor L(r), shown in

the first column of Figure 6. Local anatomical structures are visible,

F IGURE 5 (a) The angular deviationmap of the primary fiber orientation distribution (FOD) peak through dampedRichardson-Lucy (dRL)-uni, dRL-
mod, constrained spherical deconvolution (CSD)-uni, and CSD-mod estimation of the synthetic brain from an axial view. (b) The distribution of angular
deviations between the estimated primary FOD peak and the simulated fiber orientations. Notice that the yellow lines and green lines are overlapping.
CSD (blue and yellow lines) and dRL-uni (green lines) are close in performance. The angular deviations can reach over 2� toward the edges of the
synthetic brain. Using the dRL-mod FODestimation (red lines) reduces the angular deviations towithin 1� with amedium value of around 0.2�
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indicating a dependence of the angular deviations on the coil tensor

and its orientation with respect to the fiber direction. A strong corre-

lation between the magnitude of the gradient deviation and the angu-

lar deviation can be seen in frontal, lateral, and inferior regions of the

brain, whereas noise dominates gradient nonlinearity effects more

medially in the brain.

3.3 | In vivo human brain data

Figure 6 left shows the angular deviations of the primary FOD peaks

between the dRL-uni and the dRL-mod estimation of two HCP

datasets (Data I). Similar spatial patterns in the angular deviation map

can be seen for the two HCP subjects. At the center of the gradient

field, only small differences exist between the primary FOD peak ori-

entations of dRL-uni and dRL-mod. An angular difference of over 2�

can be seen toward the periphery of the brain. Anatomical structures

can be identified in some locations, indicating that the angular devia-

tions have a dependency on the underlying fiber orientation.

Figure 6 right shows the angular deviations of the two Connectom

MRI datasets (Data II) between the primary FOD peak with the dRL-uni

and dRL-mod estimation. A similar spatial pattern of angular deviations

throughout the brain can be seen in the map of the HCP subjects and

Connectome MRI subjects; there is a clear increase in angular deviation

from the isocenter toward the periphery of the brain.

Figure 7 shows CMs of 90 regions derived from fiber tractography

on FODs computed with the dRL-uni and dRL-mod estimation. Differ-

ences can be observed in the connectivitymaps representing the stream-

line counts (upper row) and average streamline length (bottom row), as

shown in the right column marked as ΔCM. A high ΔCM of up to 200 in

streamline count indicates that streamlines have potentially deviated

into a different cortical region because of the angular deviations caused

by gradient nonlinearities in the periphery of the brain. High ΔCM in

tract length are also shown in some brain regions, which may be related

to differences in termination of tractography. The number of streamlines

between the precentral gyrus in the left hemisphere and supplementary

motor area in the right hemisphere changes significantly when using

dRL-uni or dRL-mod FOD estimation. The number of streamlines that

starts and ends in the middle frontal gyrus also changes as a result of

modifying the voxel-wise gradients, as well as connections between the

supplementary motor area and the superior frontal gyrus. Considering

the average tract length, large differences can be found in the CM

between regions such as the medial orbital part of the superior frontal

gyrus and hippocampus, and between putamen, caudate nucleus and

superior occipital gyrus.

Figure 8 visualizes theΔCM in Figure 7with the size of the nodes and

edges representing the differences in streamline counts and streamline

length. Node sizes reflect the sum of the differences to other brain areas.

The edge size was scaled to only visualize differences larger than 20 for

the streamline counts and larger than 10 (with a maximum of 30) for the

F IGURE 6 The angular deviations of the primary fiber orientation distribution (FOD) peaks between damped Richardson-Lucy (dRL)-uni and
dRL-mod FOD peaks of Data I (Human Connectome Project [HCP] datasets) and Data II (300 mT/m Connectom datasets). The Frobenius norm of
the gradient nonlinearity maps within the mask of Subject A in both datasets are plotted next to the angular deviations for visual comparison. For
Data I, the high intensity area in the map indicates an angular deviation of above 2�, which mainly occurs in the frontal lobe and the inferior part
of the brain. For Data II, a high intensity (above 1�) is observed on the edges of the brain, which is occurring consistently on the frontal lobes. The
angular deviations of the subjects follow a spatial pattern that is in line with the gradient field deviations
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streamline length for better visualization. Large differences in streamline

counts can be seen in the superior area of the brain. Differences of stream-

line length can be found in the peripheral brain areas. These areas of large

differences roughlymatch areaswith strong gradient deviations.

4 | DISCUSSION

In this work, we investigated the effect of gradient nonlinearities on the

estimation of fiber orientations from spherical deconvolution, and evalu-

ated their characteristics when accounting for the effective gradients in

dRL. Through building a voxel-wise deconvolution H-matrix, dRL-mod

can consider the effective spatially varying b-values and b-vectors as a

result of gradient field nonlinearity without interpolating the data back

onto shells. By considering the voxel-wise average b-values and effective

b-vectors in CSD, gradient nonlinearities could be partially incorporated

into the estimation. In simulations, the error of the estimated FOD peak

orientations was evaluated to assess the accuracy of the spherical

deconvolution methods. Overall, we found that the effect of gradient

nonlinearities on fiber orientation estimates was dependent on the

diffusion-weighting, properties of the coil tensor, inherent microstruc-

tural characteristics (e.g., fiber direction and diffusivities), noise, and

implementation, among others. The proposed modification of dRL FOD

estimation has shown to be able to mitigate the effects of gradient field

nonlinearities, while the angular accuracy following a modification of

CSD estimation by using an averaged effective b-value depended on the

implementation and may be less affected. In in vivo experiments, angular

differences between the dRL-uni and dRL-mod FOD estimation are

shown both in HCP datasets and ConnectomMRI datasets, with a com-

parable pattern of increasing deviations when moving away from the

isocenter. Gradient nonlinearities caused different FOD characteristics

and hence variations in the reconstructed fiber pathways andCMs.

4.1 | Dependency on diffusion-weighting, coil
tensor, microstructure, and noise

The simulation study shows that when the gradient nonlinearity com-

ponent along the fiber orientation is large, the bias in the FOD estima-

tion is relatively larger (Simulations I and II). This interaction between

the underlying fiber orientation and gradient deviations becomes

apparent as the visibility of anatomical “features” in the synthetic

brain and in vivo images of the angular deviations. For example, orien-

tation estimates of single fiber populations in the corticospinal tract in

which the primary fiber orientation is not aligned with the main gradi-

ent deviation seem to be less biased.

The effect of gradient nonlinearity on the signals also depends on

diffusion weighting. The large signal changes occur at lower b-values

(Figure 1c), and the degree of deviation depends on the diffusivity,

imposed b-value and the coil tensor. The global angular deviation map

of the synthetic brain derived with CSD and dRL corresponds to the

pattern of gradient nonlinearity: the largest angular deviations are

mainly located in the frontal lobe, the temporal lobe, and the cerebel-

lum, which are the furthest away from the isocenter.

F IGURE 7 The connectivity matrix (CM) derived from the fiber tractography reconstructed from damped Richardson-Lucy (dRL)-uni fiber
orientation distributions (FODs) and dRL-mod FODs, and the differences between dRL-uni CM and dRL-mod CM shown in the right column
marked as ΔCM. Bright yellow and dark blue areas indicate large differences in the CMs
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Noise becomes the major confounding factor in medial regions

where gradient deviations are less pronounced, suggesting that the

relevance of this artifact becomes more prominent in data at high

SNR, which is nowadays becoming more readily available. Altogether,

the effects on fiber orientation estimation are different in different

datasets, that is, anatomical features can more clearly be seen in Data

I than in Data II (Figure 6).

4.2 | Dependency on spherical deconvolution
implementation

CSD and dRL FOD estimation, with or without gradient nonlinear-

ities, were compared in different fiber configurations in simula-

tions (Figures 2–4). FOD estimation from CSD can be more robust

to gradient deviations depending on the implementation. The

F IGURE 8 The connectivity matrix (ΔCM) of (a) streamline counts and (b) streamline length. The nodes are scaled according to the total ΔCM
to every other region. The edges are scaled according to differences, thresholded as being larger than 20 in streamline counts and between
10 and 30 in streamline length. The labels of areas with an edge threshold larger than 100 in streamline counts and an edge threshold of 25–30 in
streamline length are shown
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observed differences in implementation between ExploreDTI and

MRtrix (Figure S1) are further investigated in Figure S2, where we

observed that differences in the regularization approach may be

causing this effect. The relative robustness of CSD to gradient

nonlinearities could further be due to the fitting of SH, that is,

deviations in individual gradient directions may be smoothened

out. The semi-modification scheme suggested for CSD, which con-

siders the average effective b-value of all gradient directions, could

ameliorate the effect of gradient nonlinearities depending on the

implementation and b-value (Figure S1). dRL-mod was able to

largely mitigate the effects of gradient deviations on direction-

estimates, providing similar angular deviations to dRL on signals

unaffected by gradient nonlinearities. On the other hand, changes

in peak magnitude were more pronounced in dRL-mod than CSD-

mod, indicating that the effect of gradient-nonlinearities on mea-

sures such as apparent fiber density (Raffelt et al., 2012) and hin-

drance modulated orientational anisotropy (Dell'Acqua, Simmons,

Williams, & Catani, 2013) deserves further attention in future

studies.

Previous work has shown a difference in sensitivity of the spheri-

cal deconvolution methods to the shape of the response function

(Guo et al., 2019; Parker et al., 2013), where the choice of too isotro-

pic response functions can lead to lower angular resolution in the

deconvolution process, but can concomitantly mitigate spurious

fibers. Gradient nonlinearities leading to lower effective b-values can

in some cases lead to less anisotropic response functions, especially at

lower b-values and crossing fibers with small separation angles. We

suspect that this effect may cause the slightly lower angular accuracy

of the z-fiber in Figure 3, but with the potential benefit of avoiding

spurious peaks. To further elucidate this, we show the median of

angular deviations following a positive gradient deviation—leading to

a sharper response function—in supplementary Table S1, Figures S1

and S5, both showing a more marked improvement with positive gra-

dient deviations.

4.3 | The effect of gradient nonlinearities on
tractography and network analysis

The network analysis of brain connectomes relies on the accurate

estimation of FODs. The FOD deviations resulting from the gradi-

ent nonlinearity in the peripheral brain areas can cause variations in

network analysis (Figure 7), as measured by the differences in the

CMs ΔCM. The two presented matrices, streamline count and

streamline length, show high differences when comparing dRL-uni

and dRL-mod. Differences in the number of streamlines suggest

potential deviations of tractography into adjacent areas. Differ-

ences in the tract length may indicate, among others, early termina-

tion of tracking. In Figure 8, one can appreciate that brain areas

showing large differences in tract counts are mainly within the fron-

tal lobe and parietal lobe, consistent with spatial patterns of gradi-

ent deviations.

4.4 | Implications for multishell analyses, other
methods, and future work

In this work, we have focused on single-shell analyses to be able to

study the dependency on the b-value and to facilitate the interpret-

ability of the results. In contrast to the perhaps common assumption

that gradient nonlinearities are the most detrimental at strong gradi-

ent strengths and high b-values, our analyses suggest that fiber-

orientation estimates are also affected at lower b-values where the

absolute signal change per unit b-value is the largest (Figure 1). Spher-

ical deconvolution strategies have recently been extended to be com-

patible with multishell acquisitions, with the greatest advantage being

an improved separation of tissue types and a reduction of spurious

FODs in GM and CSF (Guo, Leemans, Viergever, Dell'Acqua, & de

Luca, 2019; Jeurissen, Tournier, Dhollander, Connelly, &

Sijbers, 2014). The effect of gradient nonlinearities on fiber orienta-

tion estimates from multishell deconvolution will depend on the b-

values included; if a stronger emphasis is put on lower b-values our

results suggest that the effect can be larger.

The simulations in this study have been designed to represent the

simplest possible scenario which still allows us to systematically study

effects of sufficient complexity; they assume that the response func-

tion can be described by a positive semidefinite tensor and is known a

priori. Regarding the first assumption, the kernel has been parameter-

ized in the literature by different functional forms such as zonal SH

(Tournier, Calamante, Gadian, & Connelly, 2004), an axially symmetric

tensor representation up to fourth order (Morez et al., 2017), and the

“standard model of diffusion” (Jespersen, Kroenke, Østergaard,

Ackerman, & Yablonskiy, 2007; Kroenke, Ackerman, &

Yablonskiy, 2004; Novikov, Fieremans, Jespersen, & Kiselev, 2016)

consisting of two axially symmetric tensors (a “Stick” with zero radial

diffusivity representing intra-axonal space and a “Zeppelin” rep-

resenting extra-axonal space). Regarding the latter model, while at

sufficiently low or high b-values either the extra- or intra-axonal com-

partment dominates the signal and the response function could thus

be represented by a tensor, at intermediate b-values it is better repre-

sented by a weighted sum of the tensors. Future work could study

this regime with other representations for the response function, but

we expect that the major trends (e.g., the dependency on b-value) are

already captured by the simpler scenarios presented in this study.

The second assumption of an a priori known response function is

common to several spherical deconvolution strategies. dRL has shown

to be less sensitive to the miscalibration of the response function than

CSD (Parker et al., 2013). The response function is commonly

described by one of the aforementioned representations (e.g., tensor,

SH), and the parameters of this representation can either be chosen

by the user or calibrated from the data. To account for spatially vary-

ing b-matrices due to gradient nonlinearities, the response function

representation should both have an angular and radial component.

Current state-of-the-art implementations for data-driven calibration

of a global WM response function (Tax, Jeurissen, Viergever, &

Leemans, 2013; Tournier et al., 2012) rely on the zonal SH
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representation of the response function, and need to be adapted to

other representations to be compatible with data that is not sampled

on shells (Morez et al., 2017).

In addition, various methods have been proposed to estimate the

kernel voxel-wise (de Almeida Martins et al., 2019; Kaden et al., 2007;

Novikov et al., 2018; Schultz & Groeschel, 2013). The majority of

these approaches first factors out the orientational dependency by

taking the “powder average” or “spherical mean” to estimate the ker-

nel. This is however problematic in the case of gradient nonlinearities,

as the effective sampling is not on a sphere and the spherical mean

will thus be biased. Estimation strategies that attempt to estimate the

kernel and the FOD simultaneously without first factoring out the ori-

entational dependency are better suited to deal with gradient nonline-

arities (Jespersen et al., 2010; Neto Henriques, Tax, Shemesh, &

Veraart, 2019). The effects on fiber orientation estimates found in this

study, where the response function is assumed to be known, could

thus be translated to such approaches, in which the estimated kernel

approaches the true one.

5 | CONCLUSION

In this study, we explored the sensitivity of spherical deconvolution

approaches, dRL and CSD, to gradient nonlinearity effects in diffusion

MRI. CSD can be more robust to gradient nonlinearities, depending

on the implementation. In the proposed dRL-mod framework, which

does not require interpolation of the data, we explored whether

employing the effective b-value and b-vector improved the estimation

of fiber orientation. Numerical simulations, a synthetic brain, HCP

datasets, and Connectom MRI datasets were used in this work. By

comparing the FOD peak orientations with and without applying the

effective gradients, we found that knowledge on the gradient nonline-

arities can be used within the dRL scheme to reduce angular errors.

The angular deviations of the synthetic brain and in vivo data show

similar patterns as the Frobenius norm of the gradient coil tensor field,

and gradient nonlinearities can affect both low b-value and high b-

value acquisitions. In datasets with relatively high SNR, anatomical

structures appear in the angular deviation maps, indicating that the

deviations are also depending on the angles between the gradient

direction and the underlying fiber orientation. Large negative gradient

deviations can affect the sharpness of the response function when

accounted for, slightly reducing angular accuracy in a balanced trade-

off with reducing spurious peaks in agreement with previous studies.

Finally, changes in CMs when not considering the gradient non-

linearity effects highlight potential detrimental effects in tractography

and network-based applications of diffusion MRI.
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