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Abstract 

Interpenetrating phase composites (IPCs) are a class of composites in which two or 

more constituent phases are continuous in their geometry and each phase is a self-

connected network in its architecture or microstructure. The reinforcement phase of the 

IPCs has a cellular network structure, and the lattice structured reinforcement IPCs can 

be fabricated by different methods. Although the prediction of the mechanical 

properties of IPCs has long been a research hotspot in composite materials, the effects 

of the geometrical structures and mechanical properties of the constituent materials on 

the mechanical properties of the composite are less known. This thesis provides a 

numerical approach to predict the elastic properties of IPCs reinforced by different 

types of lattice structures and Voronoi fibre networks, and by different combinations of 

the constituent materials using finite element method (FEM). 

Four different types of regular lattice reinforced IPCs are constructed via Boolean 

operations and modelled using solid elements. The simulation shows that the Young’s 

modulus of the composites strongly depends on the Poisson’s ratios of the two 

constituent materials, and it can exceed the Voigt limit when the Poisson’s ratio of the 

matrix is negative. 

In order to achieve a negative Poisson’s ratio for the composite materials, three types 

of auxetic lattice structured IPCs are constructed. The simulation results of the IPCs 

reinforced by auxetic lattice structures shows that they all could have either a positive, 

or a negative, or a zero Poisson’s ratio. The magnitude of the Poisson’s ratio depends 

on the combination between the fibre angle, the type of the fibre-network, the fibre 

volume fraction, and the mechanical properties of the component materials. 

To represent the reinforcement of random fibre network structure, IPCs reinforced by a 

3D Voronoi open-cell foam are constructed, and their elastic properties are simulated.  

Their results show elastic properties similar to those of IPCs reinforced by regular 

lattice structures. Different types of structures are compared to find which is the best in 



 

 

given conditions. This study could provide a good guide for designing the architecture 

and microstructure of interpenetrating phase composites. 
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Chapter 1 Introduction 1 

1.1 Research Background and Objectives 2 

Interpenetrating phase composites (IPCs) are a class of composite in which two or more 3 

constituent phases are continuous in their geometry and each phase is interconnected in 4 

its architecture or microstructure [1]. When crack or other type of failures occur from 5 

one phase of the IPCs, the structural completeness and loading capacity will still be 6 

maintained by the other phase or phases. The co-continuous structure of all the phases 7 

provides the IPCs with many advantages compared to its conventional, discretely 8 

reinforced counterparts, such as particle, whisker or unidirectional fibre reinforced 9 

composites. IPCs attract the attentions of both academic and industrial researchers in 10 

different disciplines. Aviation, aerospace and other weight-sensitive industries employ 11 

IPCs for its good stiffness/weight ratio. The characteristic of no significant directional 12 

dependency or distinct weak planes makes IPCs ideal for structural applications. High 13 

temperature and high cycling fatigue applications utilize IPCs as they are more resistant 14 

to thermal and fatigue damage. Each phase of an IPC contributes its own property to 15 

the overall composite. Thus, it is possible to tune IPCs to get satisfiable mechanical, 16 

thermal or conductive properties at the same time by retaining those properties of the 17 

constituent phases. This character attracts the attention of functional material 18 

researchers and manufacturers. However, IPCs were relatively difficult to fabricate. 19 

Long processing time and extensive manufacturing conditions resulted in high costs as 20 

well. Besides, the microstructures of IPCs were not easily controllable during 21 

fabrication. How to get an expected, homogeneous microstructure was also an obstacle 22 

for IPC applications.  23 

The advancement of metal manufacturing processes such as metallurgy, moulding and 24 

casting takes down the cost of IPC production. Different types of IPCs are fabricated 25 

and experimentally investigated. It is hard to describe the microstructure of an IPC, 26 

especially a metal-metal IPC via 3D models, as their microstructures are highly 27 
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irregular and cannot be represented by simple 2D and 3D shapes like lines or cubes. 1 

Tetradecahedrons was widely used to equivalently illustrate many different IPC 2 

structures. Recently, the rise and maturating of additive manufacturing enables the 3 

fabrication of precisely designed architecture or microstructure in IPCs. 4 

The underlying relation between microstructure of the composite, mechanical 5 

properties of constituent materials and the mechanical properties of composites remains 6 

unclear. Therefore, it is obliged to investigate the mechanical properties of different 7 

types of interpenetrating composites. This thesis attempts to give a glance of how the 8 

mechanical properties of constituent materials affect those properties of the composites 9 

with different microstructures. To predict the effect of structures and mechanical 10 

properties of constituent materials on the mechanical properties of the composite, we 11 

aim to construct different types of 3D, lattice structure reinforced interpenetrating 12 

composites and compare their elastic properties. Four different types of regular lattice 13 

reinforced structures, three different types of regular auxetic lattice reinforced 14 

structures are considered. 3D Voronoi fibre reinforced structure is also taken into 15 

account.  16 

The main contributions are organized into four chapters as follows: 17 

1. Four types of regular three-dimensional isotropic lattice structured 18 

representative volume element (RVE) models to describe IPCs with different 19 

types of regular reinforcement structures are build. The models are prepared to 20 

be periodic and ready to analyse with finite element (FE) method. Periodic 21 

boundary conditions for solid cubic RVEs are presented and coded for 22 

automatically applying them to any cubic RVE. The elastic modulus of the 23 

composites is found to be determined by the combination of fibre volume 24 

fraction and the mechanical properties of the constituent materials. The elastic 25 

properties of these models are investigated and compared. Stiffness of all those 26 

IPC models are superior among composite structures and the capability to tune 27 

the mechanical properties by adjusting the corresponding mechanical properties 28 

of the constituent materials is appealing. Under some of the constituent 29 
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materials combinations, Young’s moduli of all types of IPCs could exceed the 1 

Voigt limit, which has long been regarded as the upper limit of the Young’s 2 

moduli of two-phase composites. The weight/stiffness ratio of regular lattice 3 

structured IPCs can be largely affected by the fibre volume fraction and a best 4 

range of fibre volume fractions can be found. 5 

2. Models of three types of regular auxetic lattice network reinforced isotropic 6 

structures are created. The concavity of different types of auxetic structure is 7 

defined and considered as one of the crucial parameters that affect the Poisson’s 8 

ratio of the composite. Elastic properties of the constituent materials are also 9 

considered. It is discovered that the Poisson’s ratio of these kind of IPCs can be 10 

tuned to zero or negative figures while the Poisson’s ratios of both the matrix 11 

and the reinforcement are positive. Meanwhile, these composite models also 12 

have good stiffness. They are desirable for functional materials in different 13 

applications such as impact resistant materials, artificial bones and other 14 

biomechanical uses. 15 

3. 3D Voronoi fibre network reinforced IPC models are constructed. The process 16 

of generating periodic Voronoi fibre networks is specified and coded to generate 17 

Voronoi fibre networks with different Voronoi cell numbers. ASC technique 18 

enables the constraints of beam element fibres and solid element matrix, instead 19 

of full solid element mesh of the RVEs. The elastic properties of 3D Voronoi 20 

fibre network reinforced IPCs are predicted. The effect of the number of fibres, 21 

coefficient of regularity and fibre volume fractions on the stiffness of this kind 22 

of IPCs are revealed. 23 

1.2 Thesis Outline 24 

In relation to the major objectives, the thesis is organised as follows: 25 

Chapter 1 introduces the background of this work, gives the key objectives and 26 

contributions, and outlines the framework of the thesis. 27 
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Chapter 2 presents a review in the domain of composite materials including the 1 

discontinuous reinforcement composites, unidirectional/aligned fibre reinforced 2 

composites, and interpenetrating phase composites. Furthermore, the microstructure 3 

behind the auxetic behaviour, related auxetic materials and their composites are also 4 

reviewed. In addition, a brief review of fibrous materials including cellular materials 5 

and stochastic fibrous materials is given. 6 

Chapter 3 demonstrates the technique of constructing three-dimensional isotropic 7 

regular fibre networks composite models. An introduction of periodic boundary 8 

conditions (PBCs) and how to revise them in FE analysis to fit the solid RVE is included 9 

in this chapter. Four different types of regular lattice structured IPC models are 10 

constructed by volume Boolean operation. They are solved to obtain their elastic 11 

properties under the constraint of PBCs. Fibre volume fractions, Young’s moduli, and 12 

Poisson’s ratios of the constituent materials are considered as key parameters to affect 13 

the stiffness of the composites.  14 

Chapter 4 introduces the way to construct solid and isotropic auxetic composite 15 

structures by embedding auxetic fibre networks into matrices. Three different regular 16 

auxetic lattice reinforced isotropic structures are constructed. They are investigated to 17 

show how structures affect the Poisson’s ratio in the aspects of concavity, volume 18 

fraction and material combination of two constituent phases.   19 

Chapter 5 explores the elastic property of 3D Voronoi fibre network reinforced 20 

composites. 3D Voronoi fibre networks are generated with different coefficient of 21 

regularity and different numbers of Voronoi cells to evaluate their effect on the stiffness 22 

of the composite. ASC technique and PBCs are applied to build RVEs of the 3D 23 

Voronoi fibre network reinforced composites. The mesh sensitivity of ASC coupling is 24 

investigated to ensure an accurate FE approach to the mechanical properties of this kind 25 

of composites. The influence of the Young’s moduli and Poisson’s ratio of the 26 

constituent material is also considered. A comparison between different IPC structures 27 

built in this work is given to determine which are the best structure at given conditions. 28 
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Chapter 6 summarises the main conclusions of this thesis. Furthermore, limitations 1 

regarding the current work and possible further works are stated. 2 
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Chapter 2 Literature Review 1 

2.1 Composite materials 2 

Composite material is a wide range of materials which includes all the materials that 3 

are formed from two or more constituent materials with different physical or chemical 4 

properties [2]. By combining those ingredients, a material with different characteristics 5 

could be produced. However, different from mixtures, the individual materials remain 6 

separate and distinct within composites. Composites received much attention as they 7 

have desirable combinations of properties which are hard to find in the individual 8 

components. 9 

The concept of “composite” has existed since the Palaeolithic age. It was reported that 10 

the ancient Mesopotamians around 3400 B.C used clay mixed with finely chopped 11 

straw (mud and reed) to build a temple tower in the city centre of Babylon [3]. Moreover, 12 

it was stated that composite bricks were made by putting straw within mud bricks since 13 

the time of Pharaoh in Egypt [4]. In a historical review of the mechanics of composites, 14 

it was reported that Egyptians used fibre composites for laminated writing materials as 15 

well [5]. Civilizations throughout the world have used basic elements of their 16 

surrounding environment in the fabrication of dwellings including mud/straw and 17 

wood/clay.  18 

In the late 1800s, canoe builders began experimenting different materials to make paper 19 

laminates. Layers of kraft paper were glued together with shellac. Those attempts failed 20 

because the available materials were not up to the task. However, that was the rudiments 21 

of resin-based composite. The first synthetic resins that could be converted from liquid 22 

to solid (using a chemical process called polymerization) were developed between 1870 23 

and 1890. These polymer resins were transformed from the liquid state to the solid state 24 

by crosslinking the molecules [6]. 25 

Leo Baekeland brought composite materials to modern era with the invention of 26 

‘Bakelite’, a practical synthetic resin. The procedure of synthesis, constitution, and 27 
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possible uses of Bakelite was well stated in his publication [7] in 1909. Military, planes 1 

and high end, luxury cars took the advantage of the composite material almost 2 

immediately regardless of cost. The first industrial application of Bakelite was for the 3 

Rolls Royce automobiles and then it was rapidly introduced to aviation industries. 4 

Polyester resin and glass fibre reinforcement were produced by chemical companies 5 

such as American Cyanamid and Dupont from 1920s to 1930s. The composite enjoyed 6 

a rapid increase of usage during the War when the manufacture technique improved 7 

fast. After the War, many industries, including warship, fighter, bomber in military and 8 

boats, pipes, ducts in civil engineering, embraced composite materials. 9 

Carbon fibres with high strength and stiffness were developed by Royal Aircraft 10 

Establishment (RAE) in 1953 [8]. As it was easy to make carbon fibre to complicated 11 

geometrical shape with desirable elastic properties, carbon fibres were used as 12 

reinforcements in composites in 1960s, soon after its invention. In 1970s to 1980s, 13 

different economy alternatives of fibre reinforced composite (FRC) manufacturing 14 

were developed. The application of composites spread to the infrastructure, appliances, 15 

and other uses where cost matters for the product’s competitiveness.  16 

The recent four decades have witnessed how modern composite materials became 17 

ubiquitous and indispensable in various applications. Fibre reinforced composites have 18 

formed a well-developed system and gained popularity in various daily life products 19 

like clothing, bicycle frames, fishing rods, baseball bats and tennis rackets. Strong 20 

materials including glass fibres, carbon fibres, silicon carbide, alumina and alumina 21 

compounds are used as reinforcement. The matrix, polymeric, metallic or ceramic, 22 

binds the fibres together. The matrix mainly functions as a medium to transfer the load 23 

applied to the fibres, the principal load-bearing component. For discontinuous 24 

reinforcement composites such as particulate composites and unidirectional fibre 25 

reinforced composites, the matrix enabling the composite to withstand compression, 26 

flexural and shear forces as well as tensile loads [9]. For interpenetrating phase 27 

composite, matrix fill the porous fibres to make the composite geometrically solid. 28 

Composite materials also benefit much from novel materials and manufacturing 29 
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technologies. Carbon nanotubes are good reinforcements for their exceptional 1 

mechanical stiffness and tensile strength. Rapid prototyping and additive 2 

manufacturing, which produce shaped parts by gradual creation or addition of solid 3 

material, started in late 1980s and has enjoyed a rapid rise in the past three decades 4 

[10,11]. Additive manufacturing has become a popular alternative to fabricate 5 

composite materials. For example, as additive manufacturing shapes a component layer 6 

by layer, it is suitable to produce functional graded materials [12–14]. 7 

It is always a critical problem to obtain or predict the mechanical properties of the 8 

composite materials. It is difficult to figure out the distribution, the blending feature, 9 

the microstructure and the interface conditions of the matrix and reinforcement. 10 

Different empirical, analytical and experimental approaches were provided to predict 11 

the effective properties of the composite [15–18]. The Hashin-Shtrikman (HS) model, 12 

for example, treats the composite as an isotropic aggregate and the model is based on 13 

variational principles of linear elasticity [18]. HS bounds are widely considered as the 14 

tightest bounds in terms of composite moduli for a two-phase composite material. By 15 

specifying the volume fractions and the mechanical properties of the constituent, the 16 

upper and lower bounds for the elastic moduli of any composite material can be 17 

calculated. The Hashin-Shtrikman bounds for the Young’s, E, bulk, K, and shear 18 

moduli μ are given by, 19 

(𝐸𝑐)𝐻𝑆𝑈𝑝𝑝𝑒𝑟 = 𝐸𝑎 +
𝑓𝑏

1
𝐸𝑏 − 𝐸𝑎

+
𝑓𝑎

3𝐸𝑎

(2. 1)
 20 

(𝐸𝑐)𝐻𝑆𝐿𝑜𝑤𝑒𝑟 = 𝐸𝑏 +
𝑓𝑎

1
𝐸𝑎 − 𝐸𝑏

+
𝑓𝑏

3𝐸𝑏

(2. 2)
 21 

(𝐾𝑐)𝐻𝑆𝑈𝑝𝑝𝑒𝑟 = 𝐾𝑎 +
𝑓𝑏

1
𝐾𝑏 − 𝐾𝑎

+
𝑓𝑎

(𝐾𝑎 +
4
3 𝜇𝑎)

(2. 3)
 22 
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(𝐾𝑐)𝐻𝑆𝐿𝑜𝑤𝑒𝑟 = 𝐾𝑏 +
𝑓𝑎

1
𝐾𝑎 − 𝐾𝑏

+
𝑓𝑏

(𝐾𝑏 +
4
3 𝜇𝑏)

(2. 4)
 1 

(𝜇𝑐)𝐻𝑆𝑝𝑝𝑒𝑟 = 𝜇𝑎 +
𝑓𝑏

1
𝜇𝑏 − 𝜇𝑎

+
2𝑓𝑎(𝐾𝑎 + 2𝜇𝑎)

5𝜇𝐴 (𝐾𝑎 +
4
3 𝜇𝑎)

(2. 5)
 2 

(𝜇𝑐)𝐻𝑠𝐿𝑜𝑤𝑒𝑟
= 𝜇𝑏 +

𝑓𝑎

1
𝜇𝑎 − 𝜇𝑏

+
2𝑓𝑏(𝐾𝑏 + 2𝜇𝑏)

5𝜇𝑎 (𝐾𝑏 +
4
3 𝜇𝑏)

(2. 6)
 3 

where subscript c represents for the properties of the composite while subscript a, b 4 

represents for two phases of the composite. Thus, 𝑓𝑎, 𝑓𝑏 are volume fractions of the two 5 

constituent materials of the composite and obviously, 𝑓𝑎 + 𝑓𝑏 = 1. 6 

There are also other bounding methods to estimate the effective mechanical properties 7 

of the composites. Reuss bounds is obtained by assuming the stress field remains 8 

constant throughout the material in an arbitrary average strain field. Reuss bounds was 9 

originally considered in the domain of mixed crystals, given a looser estimation of the 10 

bounds of the composites [19]. On the other hand, Voigt limit is obtained by assuming 11 

the strain field remains constant throughout the material in an arbitrary average stress 12 

field. Voigt limit has long been regarded as the upper limit of the stiffness of isotropic 13 

composite materials by researchers and textbooks. The Reuss and Voigt limit are as 14 

follows: 15 

(𝐸𝑐)𝑉𝑜𝑖𝑔𝑡 = 𝐸𝑎𝑉𝐹𝑎 + 𝐸𝑏𝑉𝐹𝑏 (2. 7) 16 

(𝐸𝑐)𝑅𝑒𝑢𝑠𝑠 =
𝐸𝑎𝐸𝑏

𝐸𝑎𝑉𝐹𝑏 + 𝐸𝑏𝑉𝐹𝑎

(2. 8) 17 

In addition, Mori-Tanaka method also uses the average local stress and strain fields in 18 

the constituents of a composite to estimate the effective material properties of the 19 

composite, but in a more complicated way [17]. Benveniste [20] provided a more direct 20 
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and simplified derivation of the Mori-Tanaka method, predicting the effective shear and 1 

bulk moduli μ and K as follows: 2 

𝜇 = 𝜇𝑎 + 𝑓𝑏(𝜇𝑏 − 𝜇𝑎) [
1 + 𝑓𝑏(𝜇𝑏 − 𝜇𝑎)

𝜇𝑎 +
𝜇𝑎(9𝐾𝑎 + 8𝜇𝑎)

6(𝐾𝑎 + 2𝜇𝑎)

] (2. 9) 3 

𝐾 = 𝐾𝑎 +
𝑓𝑏(𝐾𝑏 − 𝐾𝑎)

1 + 𝑓𝑎 [
𝐾𝑏 − 𝐾𝑎

𝐾𝑎 +
4
3 𝜇𝑎

]

(2. 10)

 4 

It can be seen that the prediction of bulk moduli by the Mori-Tanaka method above is 5 

the same as that of the Hashin-Shtrikman bounds. Once the above equations are 6 

evaluated, Young’s modulus E and Poisson’s ratio 𝜈 of the composite are given as 7 

follows: 8 

𝐸 =
9𝜇𝐾

𝜇 + 3𝐾′
(2. 11) 9 

𝜈 =
3𝐾 − 2𝜇

2(𝜇 + 3𝐾)
(2. 12) 10 

Some models are semi-empirical, such as the Halpin–Tsai (H–T) model, which is an 11 

approach modified from continuous fibbers to discontinuous reinforcement. However, 12 

although prediction approaches relist above such as Mori-Tanaka method, Voigt limit 13 

and Hashin-Shtrikman bounds could provide bounds of the mechanical and physical 14 

behaviour of the composites, they are not able to capture precisely the experimentally 15 

observed behaviour of the composites, because the microstructures of the composites 16 

are not considered. 17 

The concept of composite materials is so general that no review paper can include all 18 

kind of composites materials. On the contrary, review papers often focus on a certain 19 

kind of composite materials, presenting a relatively complete scope of that kind of 20 

composite. There are different approaches to classify the composite materials, e.g. by 21 

structure type, by manufacturing alternatives, by applications, by matrix and material 22 
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types, etc. Under different categories of composite materials, there are plenty of reviews 1 

for reference. For example, Singhal et al. [21] gave a review of composite materials 2 

made by microwave sintering. Quan et al. [22] reviewed the multi-directional preforms 3 

for composites produced by additive manufacturing. Polymer-composite materials used 4 

in biomedical applications were also outlined [23]. Stankovich summarized the 5 

graphene based composite materials [24]. As a hot research spot, a critical review on 6 

nanotube and nanotube/nanoclay related polymer composite was given [25].  7 

The following types of composites listed below in this Chapter are neither a full-scope 8 

review in every perspective of composite materials to cover all kinds of composite 9 

materials, nor a review which concentrates on a certain aspect of the composite material 10 

world. On the contrary, they present brief reviews of the composite material topics 11 

related to this research.  12 

2.1.1 Discontinuous reinforcement composites 13 

Discontinuous reinforcement composite is one of the most common composites. The 14 

most widely used and famous discontinuous reinforcement composite should be 15 

concrete, which are coarse to medium grained particulate aggregate bonded with fluid 16 

cements. Different types of particles, whiskers and short fibre reinforced composites 17 

are developed other than concrete for their strength, stiffness, good thermal and 18 

electrical conductivity, excellent high temperature performance and good wear 19 

resistance. Metal matrix composites (MMCs) is one of the important parts of 20 

discontinuous reinforcement composites. For metal matrix composites, the continuous 21 

fibres reinforced MMCs were confined to ultrahigh-performance applications for their 22 

cost, complex fabrication routes and limited fabricability. Therefore, discontinuous 23 

fibres (short fibres, whiskers) composites were developed for various applications. 24 

Particularly, Al, Mg, and Ti-based matrix, short staple Al2O3 fibre and SiC whisker 25 

reinforcements are popular. For example, Disc brake manufacturing for railway 26 

vehicles has become a popular field for assessing the possibilities of Al-based 27 

particulate MMC applications [26].  28 
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One of the problems encountered in the manufacturing of discontinuous reinforcement 1 

composite is the distribution of the reinforcement. Generally, the dispersibility of 2 

particles in the matrix is better in low volume fractions than high volume fractions. It 3 

was found that in 1% and 2% particle volume fractions (vol.%) of situ CaB6/Al-Cu-Mn 4 

composites, nanoparticles were distributed in the matrix uniformly [27]. However, 5 

when it reached 3% particle volume fraction, the CaB6 nanoparticles tended to 6 

aggregate into clusters [27]. Coincidentally, it was reported that the uniform dispersion 7 

of nano Al2O3 particles was achieved in A356 alloy (7Si-0.3Mg alloy with 0.2 Fe max 8 

and 0.1 Zn max) with 1.5% volume fraction  of nano particles, while in the 3.5% or 9 

above nano particle volume fraction, the agglomeration of reinforcement powders 10 

occurred [28]. Figure 2-1 gave a microstructure of the Duralcan aluminium alloys, 11 

which provided a general sketch of the microstructure of MMCs [29]. The hardness, 12 

tensile, and compressive strength of the composites increased with decreasing particle 13 

size and increasing reinforcement content.  14 

 

Figure 2-1. Microstructure of Duralcan 6061, 20% vol.% Al2O3 composite [29]. 

The mechanical properties of particle reinforced composites have long been a hotpot in 15 

research of material and mechanics. Theoretical approach of the effective elastic moduli 16 

of misoriented short-fibre composites was presented by Chen and Cheng [30]. They 17 

Reinforcement 

Matrix 
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found that the longitude elastic moduli 𝐸11  of a short-fibre-reinforced composite 1 

increases faster than linearly with reinforcement volume fraction 𝑓1 . Other than 2 

corresponding properties of the fibre and matrix, length-diameter aspect ratio of 3 

discrete fibres 𝑡, and the orientation distribution parameter 𝜆 also maters to the elastic 4 

moduli [30]. Furthermore, the fibre orientation distribution and aspect ratio have a more 5 

significant effect on composite longitudinal Young's modulus than the fibre volume 6 

fraction within the range examined [30].  7 

 

Figure 2-2. Illustration of unit cell models: (a) three phase model, (b) unit cell model and (c) 

finite element (FE) model mesh [31]. 

The particulate composite could be idealized as three-phase composite spheres model 8 

(TPM) following Fröhlich and Sack [31], as Figure 2-2 (a) shows. For simplicity, 9 

representative unit cell methods were also employed for evaluating the effective elastic 10 

properties of particulate composites, as Figure 2-2 (b) shows. The results showed that 11 

the elastic constants predicted by the axisymmetric spherical unit cell match closely 12 

with the experimental data on glass-epoxy composites [32]. At filler concentrations 13 

below 15 vol.%, the stress state at the inclusion interface determined using unit cell 14 

model agreed well with TPM. However, when the volume fraction is larger than 20%, 15 

the results of TPM, 3D unit cell, cylindrical unit cell, and spherical model differs much 16 

in both Young’s modulus and Poisson’s ratio [32].  17 

Eshelby [33] considered the three-dimensional elasticity problem of the particle 18 

reinforced composites as a single ellipsoidal inclusion in an infinite matrix. This 19 

approach has been employed quite extensively in modified forms when analysing 20 

a  

(a) (b) (c) 
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discontinuously reinforced composite materials. Mura [34] provided estimations of  1 

shear and bulk moduli µ and K for finite concentrations of reinforcements. Taking the 2 

reinforcement geometry to be spherical, the Mura expressions for the effective moduli 3 

are: 4 

𝜇 = 𝜇𝑚 [1 +
𝑉𝐹𝑟(𝜇𝑚 − 𝜇𝑟)

𝜇𝑚 + 2(𝜇𝑟 − 𝜇𝑚)
4 − 5𝜈𝑚

15(1 − 𝜈𝑚)

]

−1

(2. 13) 5 

𝐾 = 𝐾𝑚 [1 +
𝑉𝐹𝑟(𝐾𝑚 − 𝐾𝑟)

𝐾𝑚 + (𝐾𝑟 − 𝐾𝑚)
1 + 𝜈𝑚

3(1 − 𝜈𝑚)

]

−1

(2. 14) 6 

where the subscript m stands for the matrix and the subscription r stand for the 7 

reinforcement. However, microstructural aspects of the composite, such as particle size, 8 

shape, and distribution are vital in determining the mechanical properties of the 9 

composite. Therefore, analytical models and numerical models which simplified the 10 

microstructure of the composite models are unable to accurately predict the properties 11 

of particle-reinforced composite material since these models do not include the 12 

microstructural factors that influence the mechanical behaviour of the material. To deal 13 

with this issue, Chawla et al. [35] presented a reconstructed 3D microstructure of SiC 14 

particle-reinforced aluminium composites utilizing a serial sectioning process. The 15 

localized stress and plasticity were observed due to the sharp and angular nature of 16 

irregular particles. The serial sectioning method, reconstruction, and 3D 17 

microstructure-based FEM used was considered a significant improvement over 2D and 18 

3D unit cell and simple multiparticle models. 19 

Furthermore, representative volume element (RVE) has been used to evaluate the 20 

effective material properties with periodic boundary conditions. Segurado and Llorca 21 

[36] and Böhm et al. [37] assessed the effective coefficients of randomly distributed 22 

spherical particles using the random sequential adsorption (RSA) algorithm and 23 

compared those with different analytical methods. Sreedhar Kari [38] modified the 24 

random sequential adsorption algorithm to generate 3D representative volume element 25 
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models of randomly distributed spherical particles, as Figure 2-3 shows. Hua and Gu 1 

[39] modelled composite with random distributed sphero-cylinder shaped particles, as 2 

Figure 2-4 shows. 3 

 

Figure 2-3. 3D RVE models of randomly distributed spherical particles created by random 

sequential adsorption algorithm (RSA) (a) geometric model, (b) meshed particles and (c) 

meshed RVE [38] 

 

Figure 2-4. RVE with random distributed sphero-cylinder shaped particles. (a) geometric 

model, (b) meshed particles and (c) meshed RVE [39]. 

It was found that volume fraction of the particles had significant impact on the 4 

mechanical behaviour of the composite. Stiffer particles could improve the effective 5 

Young’s modulus, while the overall sensitivity of the effective Poisson’s ratio with 6 

respect to the particle stiffness was minimal. The particle orientations also strongly 7 

impacted the mechanical properties of MMCs, especially along the longitudinal 8 

direction. 9 

(a) (b) (c) 

(a) (b) (c) 
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Moreover, it was discovered that the mechanical properties of MMCs can be further 1 

enhanced by decreasing the sizes of ceramic particulates and/or matrix grains from 2 

micrometre to nanometre level. Such materials are referred to as the nanocomposites 3 

[40]. Sadeghian [41] fabricated Al-TiB2 nanostructured composite by mechanical 4 

alloying from pure Ti, B and Al powder mixture and evaluated its mechanical behaviour. 5 

Al 20% weight ratio (wt.%) TiB2 nanocomposite showed a tensile strength around 6 

540MPa [41]. Al 5083/SiCp nano composite was synthesized by high energy ball 7 

milling and spark plasma sintering and demonstrated an elastic modulus of 126GPa 8 

[42].  9 

2.1.2 Unidirectional/aligned fibre reinforced composites 10 

Fibre reinforced composites have been produced for centuries. Fibre glass, or in other 11 

names such as glass-reinforced plastic (GRP), glass-fibre reinforced plastic (GFRP), 12 

was one of the earliest fibre reinforced composites which has been put into practice. Its 13 

patent was awarded to Hermann Hammesfahr in the U.S. in 1880 [43]. Industrial 14 

applications of fibre glass include aircrafts, boats, automobiles, bathtubs and enclosures, 15 

swimming pools, hot tubs, septic tanks, water tanks, roofing, pipes, cladding, 16 

orthopaedic casts, surfboards, and external door skins. 17 

The principles of fibre reinforcement have been adumbrated for a few years since the 18 

mass production of fibreglass and have been extended to the reinforcement metals in 19 

1960s. Tensile tests were carried out on tungsten or molybdenum wires reinforced 20 

copper [44]. Reinforcement of tungsten or molybdenum wires was uniaxially aligned 21 

in copper matrix. Both continuous and discontinuous wires have been used, and both 22 

brittle and ductile tungsten wires [44]. A linear relationship between strength and fibre 23 

volume fraction for a particular aspect ratio was found to fit the experimental data, as 24 

Figure 2-5 shows. 25 
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Figure 2-5. Tensile strengths of copper/molybdenum composites tested at 900℃ [44]. 

Recently, a growing trend suggests that it is more sustainable to use natural fibres as 1 

reinforcements in polymer composites instead of synthetic fibres like glass. In addition, 2 

natural fibres reinforced composites is presently receiving increasing attention because 3 

of its cost effectiveness, low density, and high specific strength  [45–47]. Selected 4 

natural fibres, mostly plant based fibres such as ramie, flax, hemp, harakeke, sisal, alfa, 5 

cotton, coir with proper harvest time and treatment can reach desirable mechanical 6 

properties [48]. A graphical overview of the range of strength, stiffnesses, specific 7 

stiffnesses and specific strengths of natural fibre composites (NFC) compared with 8 

those for glass fibre reinforced plastics produced by Shah [49] is shown in Figure 2-6. 9 

𝜎
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Figure 2-6. Comparison of stiffness and strength of NFCs (upper of paired bars, green) 

with glass fibre reinforced plastics (lower of paired bars, blue) [49]. 

 

Besides, highly oriented, co-extruded polypropylene (PP) tapes allow the production of 1 

recyclable unidirectional ‘all-polypropylene’ composites. The specific mechanical 2 

properties are comparable to those reported for a commercial unidirectional glass fibre 3 

reinforced PP, while the all-PP composites clearly have great advantages in terms of 4 

recyclability [50]. 5 

Various analytical and experimental research on the mechanical properties of 6 

uniaxial/random fibre reinforced composites have been conducted. Thomason [51] 7 
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reported the influence of fibre length and concentration on the mechanical properties of 1 

glass fibre-reinforced polypropylene. For random, in-plane, glass fibre-reinforced 2 

polypropylene laminates, the modulus of these laminates increases linearly with fibre 3 

content up to 40% in weight. Above 40% fibre content weight, improvement of the 4 

modulus is considerably less [51]. Modulus is practically independent of fibre length 5 

above 0.5mm. The tensile stress-strain curve was determined in a Ti–6Al–4V alloy 6 

uniaxially reinforced with 35 vol.% Sigma 1140 and SiC monofilaments. The 7 

composite exhibited a bilinear stress–strain curve as Figure 2-7 shows.  8 

 

Figure 2-7. Tensile stress–strain curves of six tensile tests of Ti–6Al–4V alloy uniaxially 

reinforced with 35 vol. % Sigma 1140+SiC monofilament [52]. 

Computational micromechanics tools such as representative volume element and 9 

periodic boundary conditions were also introduced to investigate the mechanical 10 

properties of fibre reinforce d composites [53]. 11 
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2.1.3 Interpenetrating phase composites 1 

Interpenetrating phase composites (IPCs) is the main target of this thesis. The most 2 

significant character of IPCs is the interconnectivity of each constituent phase of the 3 

composite. Consequently, many attractive properties in each of the constituent phases 4 

may be retained in the composite. Each phase of the interpenetrating composite can 5 

bear loads independently and hold the completeness of the structure, even if one phase 6 

of the composite fails. Interpenetrating composites often exhibit excellent mechanical 7 

and physical properties compared with its discontinuous counterparts. Breslin et al. [54] 8 

developed an interpenetrating Al2O3 and Al composite, consisting of approximately 65% 9 

(by volume) of Al2O3. It was a novel co-continuous ceramic-metal composite, thus 10 

called C4 material. A list of physical and mechanical properties is shown in Table 2-1. 11 

It can be seen that the thermal conductivity is twice that of steel while the coefficient 12 

of thermal expansion is smaller than that of steel.  13 

Table 2-1. Physical and mechanical properties of co-continuous ceramic-metal composite 14 

Property Value 

Density 3.5-3.7 g cm-3 

Thermal conductivity 80 W K-1 m-1 

Coefficient of thermal expansion 10×10-6 K-1 

Young's modulus 215 GPa 

Average modulus of rapture a in three-point bend 470 MPa 

Fracture toughness 10.5 MPa m0.5 
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Figure 2-8. Comparison of specific stiffnesses (stiffness to weight ratio) of various 

materials with that of C4 [54]. 

A comparison of specific stiffness (stiffness to weight ratio) is given in Figure 2-8. It is 1 

obvious that the specific stiffness of C4 material is superior compared with materials 2 

like aluminium or Ti-6Al-4V [54]. The uniaxial elastic and plastic behaviour of C4 3 

material has then been studied by the same group both experimentally and analytically 4 

via finite element method. A bilinear tensile stress vs strain loading curve was observed 5 

from the result of a typical tensile test. The C4 material exhibit an elastic modulus near 6 

207 GPa and a linear plastic modulus of approximately 108 GPa [55]. However, 7 

confined to the computational method and tools in the 1990s, Breslin et al. used a 8 

simplified two-phase interpenetrating representative volume element to represent the 9 

composite, which led to slight deviation from the experimental results of elastic 10 

modulus. Similar alumina/aluminium composites with interpenetrating microstructures 11 

were made by infiltrating an alumina preform which had the structure of a reticulated 12 

ceramic foam [56]. Interpenetrating composites produced by this approach also possess 13 

higher elastic modulus than conventional metal matrix composites with a homogeneous 14 

reinforcement distribution. Furthermore, metal-epoxy and metal-syntactic foam IPCs 15 

were processed and tested. The result showed that the elastic modulus of syntactic foam 16 
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reinforced by interpenetrating open cell aluminium preform doubles comparing the 1 

syntactic foam itself while its density rises less than 10% [57].  2 

Robert J. Moon, Matthew Tilbrook, and Mark Hoffman [58] presented a comparison 3 

of different theoretical composite modulus prediction methods including 4 

Ravichandran, Tuchinskii, Hashin-Shtrikman, and the effective medium 5 

approximation (EMA). The effective Young’s moduli of co-continuous Al-Al2O3 6 

composites over the 5 to 97 vol% Al2O3 composition range were experimentally 7 

measured and compared with those prediction methods. The results showed that the 8 

EMA, with an appropriate microstructural shape factor, was the most consistent 9 

method for approximating the composite Young’s modulus [58]. The EMA method 10 

uses Eshelby’s [33] ellipsoidal inclusion shape-dependent strain relation tensor, T, to 11 

consider the inclusion shape. A shape factor, 𝜓, is used to describe the ellipsoid aspect 12 

ratio. The weighted mean effective bulk and shear moduli, K* and G* are defined by: 13 

(𝐾1 − 𝐾∗)𝑓1 · 𝑇𝑘1 + (𝐾2 − 𝐾∗)𝑓2 · 𝑇𝑘2 = 0 (2. 15)  14 

(𝐺1 − 𝐺∗)𝑓1 · 𝑇𝐺1 + (𝐺2 − 𝐺∗)𝑓2 · 𝑇𝐺2 = 0 (2. 16) 15 

These equations and tensors are given in reference of Kreher and Pompe [59], as well 16 

as Tilbrook et al. [60]. The full piecewise functions in terms of shape parameter ψ and 17 

shape-dependent strain relation tensor T is provided [60]. However, this method was 18 

still doubted as the relation between the actual shape of reinforcement phase and the 19 

shape factor, 𝜓, is unclear. The relation between Young’s modulus of the composite 20 

and the Al2O3 volume fraction predicted by different methods are shown in Figure 2-9. 21 
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Figure 2-9. Effect of the modulus ratio (E1/E2) on the effective composite modulus. (a) 

comparison between epoxy-Al2O3, and Al-Al2O3 measured composite Young’s modulus with 

effective medium approximation (EMA) (𝜓 = 5) predictions. (b) epoxy-Al2O3, composite 

modulus plotted with EMA (𝜓 = 5), and the Ravichandran (R in the legends) and Tuchinskii 

Bounds (T in the legends) [59]. 
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The main limit of the EMA method is that the shape parameter 𝜓 and shape-dependent 1 

strain relation tensor T are hard to determine when the architecture and microstructure 2 

of a composite is unknown or difficult to describe.  3 

After the C4 material, three-dimensional periodic architecture composite can be created 4 

by robotic deposition. Liquid metal infiltration of this structure resulted in an Al2O3-Al 5 

interpenetrating phase composite exhibiting low thermal expansion of 8.9 ×10-6 K-1, 6 

and high compressive strength at 700MPa [61]. In addition to Al-Al2O3 IPCs, Cu-Al2O3 7 

IPCs have also been considered via finite element analysis. Based on the microstructure 8 

of Cu-Al2O3 composite shown in Figure 2-10, Poniznik et al. [62] built a cubic 9 

representative element which consists of a prescribed number of voxels where each 10 

voxel is represented by an eight-node brick element.  11 

 

Figure 2-10. Microstructure of Al2O3–Cu composite, X-ray CT scan: dark phase - copper, 

light phase - alumina [62]. 

To build this representative element, material properties of the reinforcement phase 12 

were assigned to a certain amount of randomly selected elements corresponding to its 13 

phase volume fraction, while other elements were related to matrix, as Figure 2-11 (a) 14 

shows. Xie et al. [63] developed another approach which characterize the realistic 15 

microstructure of IPC in a more precise way comparing to the work done by Poniznik 16 

et al. [62], as Figure 2-11 (b) shows. Calculation of the elastic properties of those finite 17 
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element models presented good results in between Hashin-Shtrikman upper and lower 1 

limits [62,63]. 2 

 

Figure 2-11. (a) chosen elements for a phase with 20% volume fraction (b) random model 

for Cu-Al2O3 interpenetrating composite [62,63]. 

Furthermore, reactive metal penetration (RMP) in two subsequent steps was used to 3 

prepare intermetallic-ceramic composites with co-continuous structure. It has been 4 

reported that an NiAl(Si)/Al2O3 interpenetrating composite was obtained via RMP 5 

and showed mechanical properties (Young’s modulus, density, coefficient of thermo 6 

expansion) better than Al/Al2O3 composite mentioned before [64].  7 

In addition, triply periodic minimal surfaces (TPMS) are introduced to establish IPC 8 

structures via multi-material additive manufacturing. In general, the most appealing 9 

TPMS are those having cubic symmetry, as they can be repeated in 3D space and can 10 

be viewed as building blocks for any desirable geometry while maintaining periodicity. 11 

In nature, minimal surface topologies usually exist as interfaces separating two sub 12 

volumes. Thus, TPMS are used to separate cubic RVEs to build two-phase 13 

interpenetrating phase composites. Al-Ketan et al. [65] studied the mechanical 14 

properties of IPCs constructed by different TPMS topologies, as Figure 2-12 (a) and (b) 15 

shows. 16 

(a) (b) 
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Figure 2-12. Gyroid surface splits the space into two identical volumes a) Gyroid and b) I-

graph and wrapped package-graph (IWP) surface splits the space in two nonidentical 

volumes [65] 

The comparison of mechanical properties (Young’s Modulus, maximum strength, yield 1 

strength and toughness) of the TPMS IPCs and idealized simple hollow structure IPCs 2 

with 15% volume fraction of the reinforcement phase showed that TPMS IPCs 3 

outperforms the idealized IPCs. However, the connecting part of idealized simple 4 

reinforcement structure are with sharp connection edges, which is not considered a 5 

well-designed IPC structure. The comparison target of this work may have the potential 6 

to be improved in terms of the mechanical properties. Al-Ketan et al. [66] presented 7 

another work of the mechanical properties of periodic IPCs assembled by means of 8 

dividing the space by TPMS. Additional TPMS IPC structures were tested and similar 9 

conclusions were drawn. However, the idealized simple hollow structure remains the 10 

same. It could be better if reasonable non-TPMS structures were constructed and 11 

compared to determine which structure performs better. Abueidda et al. [67] presented 12 

comparison of the uniaxial modulus between different TPMS foams as Figure 2-13 and 13 

Figure 2-14 shows. IPCs can be constructed based on those TPMS foams. The other 14 

researches done by Abueidda et al. [67–70] focused on the electrical and thermal 15 

conductivity of TPMS IPCs. 16 
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Figure 2-13. Architectures of foams that are based on TPMS; (a) Primitive, (b) IWP, (c) 

Neovius, (d) Gyroid, (e) Fischer-Koch S, (f) Crossed layers of parallels (CLP). The pictures 

on the left show the three-dimensionally repeated unit cells while the pictures on the right 

represent the unit cell of the structure [67].  

 

Figure 2-14. Uniaxial modulus of TPMS-foams at varying relative density [67]. 

Representative Volume Elements 
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The results of FE analysis and experiments showed that the conductivity of TPMS IPCs 1 

are superior than that of particulate-reinforced composite, while the difference of 2 

averaged conductivity 𝑘𝑎𝑣𝑔  between the simple cross-cubic fibre IPC structures and 3 

TPMS IPCs is small. 4 

Polymers are also widely used materials as both reinforcement and matrix for 5 

interpenetrating composites. Interpenetrating polymer network (IPN) is a combination 6 

of two or more polymers in network form [71]. L. H. Sperling has done encyclopaedic 7 

documentaries of IPNs including synthesis, properties and applications [72,73].  8 

Notably, it has been found as a breakthrough that the Young’s Modulus of a composite 9 

can substantially exceed the Voigt limit, which had long been regarded as the upper 10 

limit of stiffness of isotropic composite materials [74,75]. It was theoretically proved 11 

that with specific structure, the Young’s Modulus of the composite are largely affected 12 

by the Poisson’s ratio combination of the constituent materials, as Figure 2-15 shows 13 

[74]. Furthermore, Poisson’s ratio of IPCs can be designed at a desired value, e.g. 14 

positive, or negative, or zero [74,75]. In addition, it was predicted that with proper 15 

cross-cubic structure, interpenetrating composite have achieved a conductivity which 16 

almost reaches the highest possible theoretical upper limit [76]. Coefficient of thermal 17 

expansion of interpenetrating composites could be significantly larger than the 18 

maximum possible value as well [77].  19 
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Figure 2-15 Effects of the value of /𝐸𝐴 𝐸𝐵⁄  on the relationship between the normalized 

Young’s modulus of the composites and the volume fraction of material A: (a) ν𝐴 = 0.05 

and ν𝐵 = 0.495; (b) ν𝐴 = 0.45 and ν𝐵 = −0.5; (c) ν𝐴 = 0.45 and ν𝐵 = −0.8; (d) ν𝐴 =
0.495 and ν𝐵 = 0.05; (e) ν𝐴 = −0.5 and ν𝐵 = 0.45; (f) ν𝐴 = −0.8 and ν𝐵 = 0.45 [74]. 

2.2 Auxetic behaviour and auxetic materials 1 
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The classical theory of elasticity [78,79] shows that the Poisson’s ratio of an isotropic 1 

material could be in the range −1 < ν < 0.5. However, everyday experience tells us 2 

that when we stretch a material, the material not only becomes longer in the direction 3 

of stretch but also becomes thinner in cross-section. Similarly, a material under 4 

compression usually expands. In both these cases the behaviour of the material under 5 

deformation is governed by one of the fundamental mechanical properties of materials, 6 

the Poisson's ratio (υ). Poisson’s ratio has long been regarded as positive and a range 7 

between 0 and +0.5 are given as the range of Poisson’s ratio in most of the classical and 8 

modern textbooks [80]. Although a few single crystal materials, e.g., pyrite [78] and 9 

cadmium [81], are found to exhibit negative Poisson’s ratio, they are not isotropic. 10 

Isotropic material with a negative Poisson’s ratio had been veiled in secrecy for many 11 

years until 1987 when an cellular/porous material was produced and tested under 12 

compression by Lakes, showing a Poisson’s ratio around -0.6 to -0.7 [82]. After that, 13 

auxetic behaviour has also been found in different structures. A schematic diagram of 14 

positive and negative Poisson’s ratio deformation is shown in Figure 2-16. 15 

 

Figure 2-16. Schematic diagram of positive and negative Poisson's ratio deformation. a) Non-

auxetic behaviour in which an initially undeformed material undergoes longitudinal 

extension and lateral contraction for a tensile load applied in the longitudinal (x) direction. 

b) Auxetic behaviour in which an initially undeformed material undergoes longitudinal and 

lateral extension for a tensile load applied in the longitudinal (x) direction. 

In contrast to the general cognition that negative Poisson’s ratio is rare in crystalline 16 

solids, 69% of cubic elemental metals exhibit auxetic behaviour when stretched along 17 

the [1 1 0] direction [83]. Several idealized zeolites and molecular structures are found 18 
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to possess a negative Poisson’s ratio, and have been explained by their geometry and 1 

deformation mechanisms [84,85]. Silicon dioxide (SiO2) in the α-cristobalite structure 2 

exhibits a negative Poisson’s ratio averaging around -0.16 [86]. Negative Poisson’s 3 

ratio behaviour is also found in tension deformation experiment of a natural layered 4 

ceramic. This auxetic behaviour enhances the deformation capacity by about one 5 

order of magnitude [87]. Single layered graphene ribbons [88], 2D puckered structure 6 

of PdSe2 monolayer [89], nanolayered graphene/Cu composites [90] also show 7 

negative Poisson’s ratio under uniaxial load. Very large Poisson’s ratio (from -5 to -8 

11) has been observed in the thorough-thickness direction in highly porous fibre 9 

networks made of 316L fibres [91]. However, all the aforementioned materials are 10 

either cellular/porous or highly anisotropic materials. Poisson's ratio has attracted 11 

more and more attention in recent years. With the advance in materials syntheses, 12 

experimental measurements and computational simulations, it has been recognised 13 

that Poisson’s ratio is related to the densification, connectivity, ductility and the 14 

toughness of solid materials. It has also been found that the elastic properties as well 15 

as ductility of a composite material can be largely affected, thus tuned by the Poisson 16 

ratios of different phases [74–76]. Cellular materials are often used as filler in 17 

sandwich structures. Compared to the conventional foam fillers, auxetic materials 18 

with a negative Poisson’s ratio can enhance the stiffness [74,75], indentation 19 

resistance [92,93], crashworthiness, energy absorption performance [94,95], and 20 

fracture toughness [96] of sandwich structures. Greaves et al. [97] presented a 21 

numerical window of Poisson’s ratio from -1 to 0.5 as a function of the ratio of bulk 22 
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and shear moduli and located the position of a wide range of materials, as Figure 2-17 1 

shows. On the right side of the figure locates the compact materials such as liquids 2 

and rubbers where stress primarily results in shape change, their Poisson’s ratio ν 3 

closes to 0.5. For most well-known solids such as metals, polymers and ceramics, 0.25 4 

< ν < 0.35. Generally, glasses and minerals are more compressible and exhibits a 5 

Poisson’s ratio around 0 to 0.2. 6 

 

Figure 2-17. Numerical window of Poisson’s ratio ν, from -1 to 0.5, plotted as a function of 

the ratio of the bulk and shear moduli B/G for a wide range of isotropic classes of materials 

[97] 

Research of negative Poisson’s ratio materials was initially supported by NASA and 7 

Boeing for aviation and aerospace applications [98,99]. Further investigation into the 8 

auxetic behaviour proved that many features of negative Poisson’s ratio materials are 9 

desirable in aerospace industry [100,101]. Textile industry utilizes negative Poisson’s 10 

ratio structures with their new knitting techniques to fabricate functional clothing, home 11 
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ware and medical textiles [102–105]. Auxetic materials attract car manufacturers for 1 

their better crashworthiness performance. Military and biomedical industry showed 2 

their interest in negative Poisson’s ratio materials as well [106,107]. Conventional 3 

honeycombs [108,109] and open-cell foams [110], which have a positive Poisson’s 4 

ratio under small deformation, can also exhibit a negative Poisson’s ratio (i.e., auxetic 5 

behaviour) under large strain compression because of cell junction/vertex rotation.  6 

Most fabricated materials with a negative Poisson’s ratio are porous in macro or micro 7 

scale, with relatively low stiffness, which may limit their applications to low load-8 

bearing structures. When high stiffness/weight ratio, strength and energy absorption are 9 

all demanded, composite materials may be a good choice. Compared to the 10 

conventional particle reinforced and unidirectional fibre reinforced composites [111–11 

114], interpenetrating phase composites (IPCs) reinforced by a self-connected network 12 

rather than by separated particles or fibres, have been demonstrated to have much better 13 

mechanical and physical properties [1,56,60,75,76,115] than those of their conventional 14 

counterparts. Therefore, the fabrication of auxetic IPCs should be a good choice to 15 

overcome the defects of single negative Poisson’s ratio materials.  16 

2.2.1 Auxetic structures and mechanisms of auxetic behaviour 17 

After three decades of research, the mechanism of auxetic materials are summarised in 18 

different alternatives. The microstructure of re-entrant foams was captured in Lakes’ 19 

continued work [116] in 1988, as Figure 2-18 (b) shows. For comparison, 20 

microstructure of the conventional polyester foam is also presented in Figure 2-18 (a). 21 
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Figure 2-18. (a) Scanning electron micrograph (SEM) of conventional polyester foam. (b) 

Scanning electron micrograph of re-entrant polyester foam [116]. 

The unit cell of a conventional polyester foam was idealized as a typical structure of 1 

tetrakaidekahedral (14-sided) cell, while the re-entrant foam was produced by 2 

symmetrical collapse of a 24-sided polyhedron with cubic symmetry, as Figure 2-19 3 

shows. When the re-entrant foam is pulled uniaxially, the other side expands because 4 

of the concavity of the structure. Lakes found that the auxetic behaviour does not 5 

require a large cellular structure or depend on the structure size. In principle, materials 6 

with microstructure on a scale smaller than 1µm could exhibit a negative Poisson's ratio 7 

[82]. The Poisson’s ratio reaches -0.7 for Lakes’ re-entrant foam. However, as an open 8 

cell foam, the re-entrant foam only has a Young’s modulus around 72kPa, which may 9 

limit its applications. 10 

(a) (b) 
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Figure 2-19. (a) Idealized unit cell of conventional foam. (b) Idealized unit cell of re-entrant 

foam [116]. 

Meanwhile, the well-known material polytetrafluoroethylene (PTFE) was found to 1 

have negative major Poisson’s ratio. A microporous, anisotropic form of expanded 2 

polytetrafluoroethylene exhibited negative major Poisson’s ratio as large as -12 [117]. 3 

The microstructure and mechanism of this behaviour was observed by SEM photograph 4 

and schematically drawn as Figure 2-20 shows. When tensile strain was applied, the 5 

micro rotation of the nodes led to an auxetic behaviour of expanded PTFE.  6 

 

Figure 2-20. Schematic diagram of structural changes observed in microporous PTFE 

undergoing tensile loading in the x direction. (a) Initial densified microstructure. (b) Tension 

in fibres causing transverse displacement of nodes and lateral expansion. (c) Rotation of 

nodes producing further lateral expansion. (d) Fully expanded condition 

(a) (b) 
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In 1992 Yeganeh-Haeri et al. revealed that a naturally existed material, α-cristobalite 1 

of crystalline silicon dioxide is auxetic [86]. A tetrahedral rotation framework was 2 

established to illustrate the mechanism of the auxetic behaviour of the SiO4 in atomic 3 

structure level. With one oxygen atom at each of the four corners surrounding a Si atom, 4 

each oxygen atom is shared between two SiO4 tetrahedral units. The rotation of a 3×3×3 5 

SiO4 unit cell is shown in Figure 2-21. In addition, zeolites share similar mechanism 6 

when exhibiting negative Poisson’s ratio [84,118]. The 2D rotating hinged triangle and 7 

square structures are shown is Figure 2-22. 8 

 

Figure 2-21. Auxetic behaviour of a 3×3×3 unit cell of SiO4 caused by tetrahedral rotation 

(a) fully expanded. (b) fully compressed [80]. 

 

Figure 2-22. Schematic illustration of the mechanism of auxetic zeolites: (a) Hinged rotating 

(a) (b) 

(a) 

(b) 
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triangles; (b) Hinged rotating rectangles [84]. 

Conventional 2D hexagonal honeycomb could also exhibit zero or negative Poisson’s 1 

ratio in one direction [119]. The microstructures of positive, negative and zero 2 

Poisson’s ratio hexagonal honeycomb is illustrated in Figure 2-23. 3 

 

Figure 2-23. The hexagonal honeycomb geometries: (a) conventional non re-entrant form (b) 

auxetic re-entrant form (c) semi re-entrant form [119]. 

Additionally, lots of different auxetic structures are found or fabricated to achieve a 4 

negative Poisson’s ratio material. 2D re-entrant triangular [120], 3D re-entrant variant 5 

structures [121,122], re-entrant star and its variants [123], and different hinged rotating 6 

structures [124–127] are all feasible microstructures for negative Poisson’s ratio 7 

materials. Figure 2-24 provides an overview of the other auxetic structures stated. 8 

(b) (c) (a) 
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Figure 2-24. Microstructure of different negative Poisson’s ratio materials: (a) 2D re-entrant 

triangular. (b) (c) (d) 3D re-entrant variants. (e) re-entrant star variant. (f) hinged rotating 

structures [120–127]. 

Besides, macro scale auxetic structures as Figure 2-25 shows are used in reactor cores 1 

in some nuclear reactors. The structure was designed to withstand the horizontal 2 

components of the forces generated during an earthquake, whilst also allowing free 3 

movement of the structure to accommodate differential thermal movements between 4 

the graphite core and steel supporting/restraining structures at the edges of the core 5 

[128]. 6 

(b) (c) (a) 

(e) (f) (d) 
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Figure 2-25. Schematic of the horizontal plane of a radially keyed graphite brick moderator 

core of a Magnox nuclear reactor. Auxetic behaviour occurs due to radial movement of the 

free-standing columns of graphite bricks [128]. 

The auxetic behaviour has also been explained in the molecular level. Evans et al. 1 

designed a ‘reflexyne’ molecular network model in 1991 to illustrate the negative 2 

Poisson’s ratio of materials observed in naturally occurring materials and fabricated re-3 

entrant foams [129]. This was the first attempt at designing a material that demonstrates 4 

a negative Poisson’s ratio owing to mechanisms acting at the molecular level. After that, 5 

self-expanding molecular networks were modelled through force-field based 6 

simulations [130]. The molecular lever auxetic behaviour was explained by the same 7 

mechanism of hinged rotating triangles. Near zero Poisson’s ratio behaviour of a series 8 

of polyphenylacetylene network were explained by different honeycomb molecular 9 

networks [131]. The ‘egg rack’ structure as Figure 2-24 (e) shows is also considered in 10 

molecular level. The calix[4]arene subunits can be constructed as ‘double calix’ 11 

molecular networks, which share same mechanism as the ‘egg rack’ structure [132]. 12 

The elastic properties such as in-plane and out-of-plane Poisson’s ratios and Young’s 13 

moduli of calix[4]arene networks were predicted and the Poisson’s ratio was as small 14 

as -0.8 [133]. Figure 2-26 gives a representation of molecular networks designed to 15 

exhibit auxetic behaviour. The in-plane mechanical properties of different types of two-16 

dimensional molecular networks with auxetic potential were characterised [123]. The 17 

comparison showed that two-dimensional poly-triangles and the poly-calixes are 18 

effectively more auxetic than those based on 2D re-entrant models. 19 
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Figure 2-26. Two-dimensional molecular networks designed to show auxetic behaviours 

[123]. 

2.2.2 Auxetic composite materials 1 

Although auxetic materials with a negative Poisson’s ratio can enhance the stiffness 2 

[74,75], indentation resistance [92,93], crashworthiness, energy absorption 3 

performance [94,95], and fracture toughness [96] compared to conventional open foams, 4 

most of the auxetic materials with easy access are porous materials. The relatively low 5 

stiffness and strength of porous foams excluded porous auxetic materials from the 6 

applications used for load-bearing structures and tough conditions. The auxetic 7 

structure based on re-entrant foams are always weak in shear. As a particular kind of 8 

auxetic materials, the development of auxetic composites has currently attracted great 9 

attentions due to their wonderful properties as compared to porous auxetic foams and 10 

non-auxetic composites. Auxetic composites has been used in aerospace, automotive 11 

industry and protection gear  (such as helmets and cushions) [80]. Milton [134] 12 

suggested a group of two-phase composite materials designed with different layer 13 

methods of multiscale laminates. Chen and Lakes [135] used re-entrant copper foam as 14 

the matrix with viscoelastic elastomer, solder and indium as the filler materials to 15 

produce auxetic composites. Alderson et al. [136] paved two different ways of auxetic 16 

composite manufacturing. One of them was to produce auxetic composite materials 17 

(b) (c) (a) 
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with appropriate laminates configurations of conventional materials and another was to 1 

produce single fibre composites use auxetic fibres. With the development of materials 2 

productions, auxetic fibre networks were used to reinforce the conventional matrix 3 

materials such as polymers and metals. It was confirmed that composite with negative 4 

Poisson’s ratio can be produced by infusing auxetic stainless steel mats with a polymer 5 

and the ratio of reinforcing network stiffness to matrix stiffness was sufficiently high 6 

[137]. Zhou et al. [138] fabricated a kind of auxetic composites by injecting 7 

polyurethane (PU) resin to a mould containing auxetic textile structure and compared 8 

the compression behaviour of the auxetic textile composite with non-auxetic 9 

composites made from the same materials and dimensional parameters. However, they 10 

discovered that the auxetic composite behaved more like a damping material with a 11 

lower range of compression stress, while the non-auxetic composite behaved more like 12 

a stiffer material with a higher range of compression stress. In addition, a finite element 13 

analysis of the auxetic textile composite has been done by the same research group and 14 

matched the experiments well. The finite element analysis shows that the auxetic 15 

behaviour of the 3D auxetic textile structure increases with increasing compression 16 

strain [139]. Composites with elliptic inclusions exhibited auxetic effect with relative 17 

lower Young's modulus compared with the non-auxetic composites as evidenced by the 18 

finite element analysis [140]. Additive manufacturing and rapid prototyping techniques 19 

enable us to fabricate complex topologies of architectures of cellular materials in a 20 

precisely controlled and ordered way rather than randomly generated architectures by 21 

metallurgy or synthesis, as Figure 2-27 shows [141]. Schwerdtfeger et al. [142] build 22 

typical re-entrant foam structures via selective electron-beam melting (SEBM) which 23 

allows the direct translation of CAD models to real world objects. The following test 24 

showed that the Poisson’s ratio of the auxetic behaviour direction of the specimen was 25 

around -0.2. Samples of chiral honeycombs are also produced and tested with two 26 

different types of materials, by two different models of Rapid Prototyping machines 27 

[143]. Additive manufacturing has also become an alternative to fabricate polymer 28 

matrix composites [144]. Thereafter, the advantage of additive manufacturing and rapid 29 

prototyping was taken to create auxetic composites. Re-entrant auxetic structure were 30 
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made by rapid prototyping method with 316L-0407 austenitic stainless-steel alloy. The 1 

metal auxetic structures were then filled by gelatine and polyurethane fillings. It has 2 

been proved by experiment that the filler could affect the impact resistance and 3 

absorption capabilities [145]. Li et al. [146] fabricated re-entrant honeycomb and chiral 4 

truss lattice composite by 3D-printing. The two constituents of the auxetic composites 5 

are VeroWhite and TangoPlus. It is found that the auxetic lattice reinforced composites 6 

exhibited enhanced stiffness and energy absorption under uniaxial compression.  7 

 

Figure 2-27 Architecture of the materials. (a) None. (b) Random. (c) Ordered. (d) Ordered 

and location specific. 

When a self-connected auxetic lattice structure or fibre-network is embedded as 8 

reinforcement in a matrix with a low positive Poisson’s ratio, the composite would have 9 

the potential to exhibit auxetic behaviour. It has already been experimentally 10 

demonstrated that composites reinforced by an auxetic fibre-network exhibits a 11 

negative Poisson’s ration in the thickness direction [137]. Composites reinforced by a 12 

re-entrant hexagonal honeycomb are also found to exhibit strong in-plane auxetic 13 

behaviour [147].  14 

2.3 Fibrous Materials  15 

Fibrous materials can be defined as bulk materials made of large numbers of individual 16 

fibres [148]. Fibrous materials can be metals, polymers or ceramics. Researches on 17 

fibrous materials have been a hotspot for several decades started from the 1940s. The 18 

prediction of the physical and mechanical properties was regarded as a complex 19 

(b) (c) (a) (d) 
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question as the behaviour of fibrous materials is remarkably different from that of their 1 

constituent individual fibres. Parameters such as aspect ratio, fibre volume fraction, 2 

porosity, tortuosity and pore shape factor were introduced to generally describe a 3 

fibrous material. Fibrous materials can be two-dimensional structures and three-4 

dimensional solids such as corks and bones. Fibrous materials are widely used in 5 

packaging, textiles, insulation, lightweight structures, and acoustic resonances dampers 6 

[149,150]. Furthermore, fibrous materials are also used as the reinforcements in 7 

composites. Fibre networks are a kind of specific fibrous materials in which fibres are 8 

connected with each other. Composites reinforced by fibre networks with a proper 9 

method could be interpenetrating phase composites, as reviewed previously. A brief 10 

review of fibrous materials probably leads to a better understand of IPCs reinforced by 11 

fibre networks, especially randomly created ones. 12 

2.3.1 Cellular fibrous material 13 

Some of the fibrous networks possess regular architectures or microstructure cells. For 14 

example, 2D triangle cells and hexagon cells, 3D tetrahedron and tetradecahedrons are 15 

found in fibrous materials. Some of them consist of random cells such as Voronoi cells 16 

and Delaunay cells. Gibson and Ashby [151] gives a comprehensive overview about 17 

the researches done in the domain of structures, physical properties and mechanical 18 

properties of cellular solids. The regular or random cells in these kinds of composites 19 

can be regarded as tessellations of 2D or 3D spaces. Triangle, squares and hexagons 20 

can tessellate a 2D area. In the same way 3D space can be partitioned by tetrahedron 21 

and tetradecahedrons. For random tessellation methods, hyperplane tessellation, STIT 22 

tessellation (tessellations that are stable under iterations) and Poisson-Laguerre 23 

tessellation are applied to the modelling of cellular materials other than Voronoi 24 

tessellation. All these four methods can tessellate both 2D and 3D spaces, schematic 25 

illustrations of 3D cubic RVE tessellations are shown as Figure 2-28 [152]. Random 26 

mosaic tessellation [153] and Gilbert tessellation [154] can also be applied to create 27 

random fibre network models. The mechanical behaviour of cellular materials are 28 
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investigated based on these models, e.g. Redenbach [155] utilized Laguerre 1 

tessellations generated by random sphere packings to describe the geometric structure 2 

of cellular material. Zhu et al. did a series of research on the open foams with hexagon, 3 

tetrakaidecahedral cells and Voronoi cells [156–158]. An elliptical yield function was 4 

found to fit the predicted yield surfaces of imperfect 2D hexagon and Voronoi foams 5 

[159].  6 

 

Figure 2-28. Tessellations of 3D RVEs to model the structure of cellular materials: (a) 

hyperplane tessellation (b) STIT tessellation (c) Voronoi tessellation (d) Poisson-Laguerre 

tessellation [152]. 

2.3.2 Stochastic fibrous material 7 

 Stochastic architectures or microstructures also widely exist in fibrous materials. A 8 

significant difference between cellular fibrous materials and stochastic fibrous material 9 

in the microstructures can be observed in Figure 2-29 [160]. The fibres in cellular 10 

(a) (b) 

(c) (d) 
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fibrous materials are connected to each other by joints (stronger in cross section 1 

compared with that of the fibres) at the end of the fibres, while the fibre in stochastic 2 

fibrous materials are connect by overlaps of the fibres and cross-links between the fibres. 3 

 

Figure 2-29. Comparison of the microstructures of (a) a metal fibre sintered sheet with fibre 

diameter 12μm and relative density of 23% and (b) an open cell aluminium foam [160]. 

Study of the mechanical properties of stochastic fibrous materials began from 4 

investigating the compressibility of wool [161]. After that, Cox pioneered to predict the 5 

elastic behaviour of papers based on the distribution and mechanical properties of the 6 

constituent fibres [162] in 1952. Papers may to some extent be the most common 7 

stochastic fibrous material used in our daily life, which is a bonded planar random fibre 8 

network and are deeply researched. Kallmes [163–166], Seth [167,168] and Page 9 

[169,170] have contributed a great deal to this field through their research work on 10 

properties of paper. They extended Cox’s analysis by using probability theory to study 11 

fibre bonding points, the free fibre lengths between the contacts, and their distributions. 12 

Different natural fibrous materials have been studied for their advantages on the 13 

environmental and sustainable aspects over its synthesized counterparts which are 14 

difficult to recycle. Based on the origin of the natural fibres, those suitable for 15 

composite reinforcement can be grouped into leaf, bast, seed and fruit origin [171]. For 16 

example, sisal fibres are produced by sisal leaves and widely used in composite material 17 

industries. The mechanical properties [172] as well as degradation behaviour [173] and 18 

recyclability [174] of the sisal fibre and its composites were investigated. However, not 19 
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all the natural fibres can form a proper network. Sisal fibres are mostly used in 1 

unidirectional fibre reinforced composites. Only nanofibril networks around the neat 2 

sisal fibre can be formed by dipping process [175]. 3 

When it turns to artificial porous materials, metal fibre sintered sheets (MFSSs) are a 4 

typical kind of random fibre network with desirable mechanical properties as separation 5 

and filtration material where high temperatures, high pressures, and aggressive 6 

chemicals are present. MFSSs are widely used in petrochemical, common chemical 7 

industry, hydraulic filtration, pharmaceutical, and power generation. AISI 316L 8 

stainless steel fibres with diameters of 50 and 100 µm were compacted and sintered to 9 

prepare the specimens of metal fibre porous structures in Ducheyne’s work [176]. The 10 

modulus of elasticity measured in compression was found to be close to the theoretical 11 

Mackenzie relationship and upper Hashin-Shtrikman bound [176]. Copper fibre can 12 

also be used to produce metal fibre sintered sheets. The unique four step fracture 13 

process and the relationship between the porosity and tensile strength is determined 14 

[177]. Jin et al. [178] developed a 2D stochastic beam model to investigate the in-pane 15 

elasto-plastic behaviour of metal fibre sintered sheets. In his work, a 2D random fibre 16 

network was generated by overlapping all the fibres with each other, which led to very 17 

strong bonding connection and thus high nodal connectivity between fibres. The 18 

simulation results showed that the in-plane Young’s modulus and bulk modulus have a 19 

linear correlation with the relative density [178]. As the multilayer structure of porous 20 

fibre sintered sheets, MFSSs are transversely isotropic.  21 
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Chapter 3 Regular lattice structured 1 

interpenetrating composites 2 

3.1 Introduction 3 

As potential candidates of applications in need of high stiffness-weight ratio and/or 4 

tuned mechanical properties, different types of novel composite materials have been 5 

manufactured and investigated in depth. Compared to particle reinforced and 6 

unidirectional fibre reinforced composites, interpenetrating phase composites (IPCs) 7 

with interconnected network in reinforced phase rather than discontinuous structures 8 

are attractive for their enhanced mechanical and physical properties. 9 

In general, the factor which could affect the mechanical properties of composites 10 

including geometrical lattice structure design, different mechanical properties 11 

combination for the constituent material (such as Poisson’s Ratio and Young’s moduli), 12 

interphase conditions between reinforcements and matrices. Periodic cells such as 13 

Kelvin cells (tetrakaidekahedron cell) have been widely used to represent the 14 

reinforcement phase of metal-metal interpenetrating phase composites. However, very 15 

little attempt has been made on micro-scale structural design aiming at finding the 16 

variations of mechanical properties with different microstructures of IPCs. 17 

This chapter gives a numerical approach to explore how different lattice microstructures 18 

in IPCs affect the normalized elastic properties of the composites. Several periodical 19 

microstructures are modelled. Different types of IPC structures are considered via 20 

representative volume elements and periodic boundary conditions (PBCs). All the 21 

structures are numerically tested to find if their calculated Young’s moduli can reach 22 

and exceed the Voigt limit with proper combinations of constituent materials. The 23 

volume fraction, moduli, and Poisson’s ratios of the constituent materials are taken into 24 

consideration. Elastic properties of lattice structured interpenetrating composites are 25 

analytically acquired via finite element method. The elastic moduli of different IPC 26 
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structures are compared to experimental and theoretical approaches to validate the 1 

results. Those of the conventional particle and fibre reinforced composites are listed 2 

together.  3 

3.2 Geometric structures 4 

This chapter focus on the two-phase interpenetrating composites of which consist two 5 

homogenous and isotropic materials. Three different kind of composites are considered. 6 

The microstructure of the composites is supposed to be perfectly periodic, containing a 7 

large number of identical cubic cells. In FE analysis where time and memory consuming 8 

are sensitive, it is meaningful to describe the IPCs by a much smaller model, which is 9 

still large enough to include all the features and characteristics of the structure. The 10 

representative model is small enough on one hand for short calculation time and large 11 

enough on the other hand for fully describe the material. This smaller model is a 12 

representative volume element. In this case, the periodic cells are perfect candidates as 13 

RVEs. The different selections on the same structure are shown in Figure 3-1 as a cross-14 

sectional view of the material structure. The cyan colour of material represents for the 15 

matrix while the magenta colour of  material represents for the reinforcements. The In 16 

each cubic cell, the reinforced open foam structure is assumed to be reticular cylindrical 17 

struts latticed in three different patterns: (I) cross-cubic, (II) cross-cubic with space 18 

diagonals, (II) tetrakaidekahedral, while the matrix fills the RVE space other than the 19 

reinforcements, as shown in Figure 3-3. The method of existence and size determination 20 

of an RVE has been discussed during the research of particle model [179,180]. 21 
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Figure 3-1. RVE1 selection of simple cubic lattice IPC.  

The fibre network is constructed in ANSYS and added together with the conjunction 1 

spherical reinforce components. And then RVEs are constructed by Boolean operations 2 

as Figure 3-2 shows. Firstly, the fibre in an RVE is obtained by intersecting the fibre 3 

network from a solid cube in correct dimension and place. Then the matrix in the RVE 4 

is obtained by subtracting the fibre in the RVE from the same solid cube. Finally, these 5 

two entities are put together to form a complete RVE. The interface of the fibres and 6 

matrix is bonded together. 7 

RVE 1 

RVE 2 
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Figure 3-2. Boolean operation to build an RVE of regular IPC. 

 

Figure 3-3. The geometrical structures of three different types of self-connected 

reinforcement composites: (a) Type I, (b) Type II, (c) Type III.  

All the three cubic RVEs have an edge length L, and the diameter of the open-foam 1 

cylinders strut is d. By changing d, the different set of volume fractions can be obtained. 2 

The two phase of the interpenetrating composites RVEs are made from two isotropic 3 

materials. 𝐸𝑚, 𝐸𝑓 , 𝜈𝑚, 𝜈𝑓 represent the Young’s moduli and Poisson’s ratio of the matrix 4 

and fibre reinforcement separately. The volume fractions of the reinforcement and 5 

(a) (b) (c) 
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matrix are denoted as 𝑉𝐹𝑓 and 𝑉𝐹𝑚 . The intersections of the rods are reinforced by 1 

spherical connections to simulation the crossing of micro lattice structures. 2 

In order to predict the elastic performance of the composites by tracking how Young’s 3 

Modulus of the composite 𝐸𝑐 is affected by different constituent material properties and 4 

volume fractions. 𝐸𝑚 = 1 is assumed for generality and simplicity. 𝜈𝑚 and 𝜈𝑓 are set 5 

to be with as much difference as possible in positive and negative range. Sets of  6 

𝐸𝑓 𝐸𝑚⁄ , 𝜈𝑚 and 𝜈𝑓 are listed in Table 3-1. 7 

Table 3-1. Young’s moduli and Poisson’s ratios of constituent materials 8 

𝐸𝑓 𝐸𝑚⁄  2 2 10 10 2 2 10 10 

𝜈𝑓 0.49 0.05 0.49 0.05 0.49 0.3 0.49 0.3 

𝜈𝑚 0.05 0.49 0.05 0.49 -0.8 -0.8 -0.8 -0.8 

For the volume fraction, it is obvious that 𝑉𝐹𝑓 + 𝑉𝐹𝑚 = 1. Thus, the volume fraction 9 

of the fibre is considered from 5% to the upper close of the geometrical limit of each 10 

structure Type. The diameter of fibres in Type I, II and III can be denoted as dI, dII, dIII. 11 

The geometrical fibre volume fraction limit of each structure type is given as the 12 

following equations. 13 

𝑑𝐼 < 𝐿 (3. 1) 14 

𝑑𝐼𝐼 <
√2

1 + √2
𝐿 (3. 2) 15 

𝑑𝐼𝐼𝐼 <
√2

4
𝐿 (3. 3) 16 

As the structure is complex especially in the cross parts of the fibres, it is difficult to 17 

mesh the whole RVE by rectangular prism or cuboid elements. Tetrahedral element are 18 

a reasonable choice for this kind of structures. The RVEs are meshed by 3D 10-node 19 

tetrahedral structural solid element SOLID187 in ANSYS. As it is proved that the 20 
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solving results of these simple regular models is not sensitive to the element sizes as 1 

long as the models can be solved without any shape elements in ANSYS, the size of the 2 

element es is set as a function of the fibre volume fraction as to ensure a balance of 3 

efficiency and calculation time. A piecewise function is created to describe how to 4 

determine the size of the element es according to the fibre volume fraction. At a given 5 

fibre volume fraction the fibre diameter can be calculated. If the corresponding fibre 6 

diameter to the fibre volume fraction is denoted in specific notation as 𝑑𝑓 = 𝑑𝑓𝑒 × 10𝑘. 7 

In specific notation 1 ≤ |𝑑𝑓𝑒| < 10,  es is specified as 8 

𝑒𝑠 = {
𝑓𝑙𝑜𝑜𝑟(𝑑𝑓𝑒) × 10𝑘 , 𝑑𝑓𝑒 < 5 

0.5, 𝑑𝑓𝑒 ≥ 5
(3. 4) 9 

The function floor is defined to round 𝑑𝑓𝑒  toward negative infinity. This can give an 10 

element size automatically with a given fibre volume fraction, thus accelerate the 11 

solving procedure of FE analysis. After mesh, the nodes on the interfaces of the fibres 12 

and matrix are merged as one single nodes. Besides, the nodes of each face of the RVEs 13 

are kept exactly the same in both number and positions for periodicity, as Figure 3-4 14 

shows.  15 
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Figure 3-4. The two facets of an RVE with the exactly the same mesh pattern. 

The length of the RVEs of three types of IPCs are 𝐿 = 10.  1 

3.2 Boundary conditions 2 

An appropriate boundary condition is vital in numerical approaches to estimate the 3 

mechanical properties of materials. When a composite material is described via one 4 

representative volume elements, that means a single RVE can form the full material 5 

structure by periodically replicate itself. Thus, a matching boundary condition, namely, 6 

the periodic boundary conditions need to be applied to constraint the deformation 7 

behaviour of the RVE model. It has been suggested that periodic boundary conditions 8 

are more suitable than mixed boundary conditions and prescribed displacement 9 

boundary conditions for a periodic RVE [109,157,181]. A unified periodical boundary 10 

conditions for representative volume elements of composites was presented to predict 11 

the rhombohedral RVE models’ elastic moduli for both unidirectional laminate and 12 

angle-ply laminates [182]. Any correctly defined RVE with different shapes can obtain 13 

the same mechanical properties with correct periodic boundary conditions. This has 14 

been proved by Xia’s work [183] with two types of different RVEs of the same structure, 15 

as Figure 3-5 shows.  16 

Pi 

Pj 
Pj’ 

Pi’ 
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Figure 3-5. (a) The shape of two RVEs  A and B. (b) stress along same physical line of two 

RVEs with different RVE (RUC stands for representative unit cell which shares the same 

meaning in the figure legends) shapes [183].  

The periodic boundary conditions assume that the corresponding nodes on the opposite 1 

edge of the mesh have the same translation pattern and the same rotations in all 2 

directions. Figure 3-6 shows two different types of periodic boundary conditions, the 3 

restricted periodic boundary conditions and general periodic boundary conditions. For 4 

the restricted periodic boundary conditions, one of the ends of the RVE structure is 5 

fixed thus no displacement will occur. 6 

 

Figure 3-6 Two types of periodic boundary conditions (a) Restricted periodic boundary 

conditions; (b) General periodic boundary conditions. 

According to the definition, the constraint equations of the restricted periodic boundary 7 

conditions can be specified as follows: 8 

(a) (b) 

(a) (b) 
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𝑢𝐼 = 0; 𝑢𝐽 = 0 (3. 5) 1 

𝑢𝐼′ − 𝑢𝐼 = 𝑢𝐽′ − 𝑢𝐽 (3. 6) 2 

where 𝑢 is one of the degrees of freedom of the FE node such as I, I’, J or J’. As 𝑢𝐼 =3 

0 and 𝑢𝐽 = 0, it can be easily derived that 𝑢𝐼′ = 𝑢𝐽′, which means the shape of the RVE 4 

after deformation will be as same as the shape of the original one. For example, a cubic 5 

RVE as illustrated before will remain rectangular under a uniaxial load. This boundary 6 

condition is too strong because it is obvious that a cubic RVE of interpenetrating 7 

composite will become an entity with curved surface under uniaxial tension or 8 

compression. Therefore, a general periodic boundary condition is introduced as 9 

𝑢𝐼′ − 𝑢𝐼 = 𝑢𝐽′ − 𝑢𝐽 (3. 7) 10 

we adopt 11 

𝑈 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇 (3. 8) 12 

where 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the translations in nodal x, y and z directions. As the solid 13 

elements such as SOLID187 only have three translational degrees of freedom at 14 

each node, 𝑈 in 15 

𝑈 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇 (3.8) 16 

 can describe the deformation of each node of the RVEs. For a cubic RVE in this 17 

Chapter shown as Figure 3-7, the group of nodes located at the RVE facet on the yz 18 

plane of coordinates oxyz is designated as 𝐹𝑥𝑛  and those nodes opposite to 𝐹𝑥𝑛  is 19 

designated as 𝐹𝑥𝑝. To make it clearer, the vertices of the cube is labelled as a, b, c, d, o, 20 

e, f, g. Face oabd is noted as 𝐹𝑥𝑛 . With the same manner, the 𝐹𝑦𝑛, 𝐹𝑦𝑝, 𝐹𝑧𝑛, 𝐹𝑧𝑝 can be 21 

designated. 22 
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Figure 3-7. Schematic diagram of a cubic RVE. 

Thus, the periodic boundary conditions of a cubic RVE can be specified as Equation 1 

3.9 in [183] 2 

𝑈𝐹𝑥𝑝 𝑗 − 𝑈𝐹𝑥𝑛 𝑗 = 𝑈𝐹𝑥𝑝 𝑖 − 𝑈𝐹𝑥𝑛 𝑖 (3. 9) 3 

However, when applying periodic boundary conditions on composite materials which 4 

two constituent materials filled the whole space of the solid cubic RVE. If periodic 5 

boundary conditions are simply applied at each cubic face, the over constraints on the 6 

edges and vertices of the cubic RVE could not be ignored. We denote the nodes on the 7 

vertices of a cubic RVE as V1 to V8 and the groups of nodes on the edges (except the 8 

vertices) of a cubic RVE as 𝐸1 to 𝐸12, respectively as Figure 3-8 shows. To avoid the 9 

over constraint issue, revised periodic boundary conditions for cubic RVE is presented 10 

in three groups. 11 

𝐹𝑥𝑛 

𝐹𝑧𝑛 
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𝐹𝑦𝑛 
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Figure 3-8. (a) Vertices of a cubic RVE. (b) Edges of a cubic RVE. 

For the vertices, the constraint equations are 1 

𝑈𝑉3 − 𝑈𝑉4 = 𝑈𝑉2 − 𝑈𝑉1 (3. 10) 2 

𝑈𝑉6 − 𝑈𝑉5 = 𝑈𝑉2 − 𝑈𝑉1 (3. 11) 3 

𝑈𝑉8 − 𝑈𝑉5 = 𝑈𝑉4 − 𝑈𝑉1 (3. 12) 4 

𝑈𝑉7 − 𝑈𝑉8 = 𝑈𝑉2 − 𝑈𝑉1 (3. 13) 5 

Where 𝑈𝑉1 to 𝑈𝑉8 are the translations of the nodes located on the vertices of the RVE. 6 

For example, 𝑈𝑉1 are the translations in x, y and z directs of the node on 𝑉1. To avoid 7 

over constraints on the vertices, we cannot constrain all the nodes pair by pair. Four 8 

constraint equation are enough for the vertices of the RVE. For the edges, 𝑈𝐸1 to 𝑈𝐸12 9 

represent for the translations of the groups of nodes in 𝐸1 to 𝐸12 except for the nodes 10 

on corresponding vertices. For example, 𝑈𝐸1 are the translations of the group of nodes 11 

among group 𝐸1 except for node 𝑉1 and 𝑉5. Thus, the translations in x, y and z directs 12 

of the group of nodes in 𝐸1 can be denoted as 𝑈𝐸1 𝑖. The constraint equations are 13 

𝑈𝐸2 𝑗 − 𝑈𝐸1 𝑗 = 𝑈𝐸2 𝑖 − 𝑈𝐸1 𝑖 (3. 14) 14 
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𝑈𝐸3 𝑗 − 𝑈𝐸4 𝑗 = 𝑈𝐸3 𝑖 − 𝑈𝐸4 𝑖 (3. 15) 1 

𝑈𝐸4 𝑗 − 𝑈𝐸1 𝑗 = 𝑈𝐸4 𝑖 − 𝑈𝐸1 𝑖 (3. 16) 2 

𝑈𝐸6 𝑗 − 𝑈𝐸5 𝑗 = 𝑈𝐸6 𝑖 − 𝑈𝐸5 𝑖 (3. 17) 3 

𝑈𝐸7 𝑗 − 𝑈𝐸8 𝑗 = 𝑈𝐸7 𝑖 − 𝑈𝐸8 𝑖 (3. 18) 4 

𝑈𝐸8 𝑗 − 𝑈𝐸5 𝑗 = 𝑈𝐸8 𝑖 − 𝑈𝐸5 𝑖 (3. 19) 5 

𝑈𝐸10 𝑗 − 𝑈𝐸9 𝑗 = 𝑈𝐸10 𝑖 − 𝑈𝐸9 𝑖 (3. 20) 6 

𝑈𝐸11 𝑗 − 𝑈𝐸12 𝑗 = 𝑈𝐸11 𝑖 − 𝑈𝐸12 𝑖 (3. 21) 7 

𝑈𝐸12 𝑗 − 𝑈𝐸9 𝑗 = 𝑈𝐸12 𝑖 − 𝑈𝐸9 𝑖 (3. 22) 8 

To avoid over constraint issue, only 9 constraint equations are listed instead of 12. For 9 

the facets, 𝑈𝐹𝑥𝑛 to 𝑈𝐹𝑧𝑝 represent for the translations of the groups of nodes on the 10 

facets of the RVE. For example, 𝑈𝐹𝑥𝑛 is the translations of the groups of nodes on 𝐹𝑥𝑛 11 

except for edges 𝐸1, 𝐸4, 𝐸5, 𝐸8 and vertices 𝑉1, 𝑉5. The constraint equations are 12 

𝑈𝐹𝑥𝑝 𝑗 − 𝑈𝐹𝑥𝑛 𝑗 = 𝑈𝐹𝑥𝑝 𝑖 − 𝑈𝐹𝑥𝑛 𝑖 (3. 23) 13 

𝑈𝐹𝑦𝑝 𝑗 − 𝑈𝐹𝑦𝑛 𝑗 = 𝑈𝐹𝑦𝑝 𝑖 − 𝑈𝐹𝑦𝑛 𝑖 (3. 24) 14 

𝑈𝐹𝑧𝑝 𝑗 − 𝑈𝐹𝑧𝑛 𝑗 = 𝑈𝐹𝑧𝑝 𝑖 − 𝑈𝐹𝑧𝑛 𝑖 (3. 25) 15 

For the meshed cubic RVEs, there are only one node on each vertex, thus Equation 3.10 16 

to Equation 3.13 can be directed applied as constraint equations in ANSYS. For the 17 

nodes on the edges except for the nodes on the vertices of the RVEs, the Equation 3.14 18 

to Equation 3.22 can be specified as  19 
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𝑈𝐸2 𝑖 − 𝑈𝐸1 𝑖 = 𝑈𝑉2 − 𝑈𝑉1 (3. 26) 1 

𝑈𝐸3 𝑖 − 𝑈𝐸4 𝑖 = 𝑈𝑉2 − 𝑈𝑉1 (3. 27) 2 

𝑈𝐸4 𝑖 − 𝑈𝐸1 𝑖 = 𝑈𝑉4 − 𝑈𝑉1 (3. 28) 3 

𝑈𝐸6 𝑖 − 𝑈𝐸5 𝑖 = 𝑈𝑉2 − 𝑈𝑉1 (3. 29) 4 

𝑈𝐸7 𝑖 − 𝑈𝐸8 𝑖 = 𝑈𝑉2 − 𝑈𝑉1 (3. 30) 5 

𝑈𝐸8 𝑖 − 𝑈𝐸5 𝑖 = 𝑈𝑉5 − 𝑈𝑉1 (3. 31) 6 

𝑈𝐸10 𝑖 − 𝑈𝐸9 𝑖 = 𝑈𝑉4 − 𝑈𝑉1 (3. 32) 7 

𝑈𝐸11 𝑖 − 𝑈𝐸12 𝑖 = 𝑈𝑉4 − 𝑈𝑉1 (3. 33) 8 

𝑈𝐸12 𝑖 − 𝑈𝐸9 𝑖 = 𝑈𝑉5 − 𝑈𝑉1 (3. 34) 9 

For the nodes on the faces except for those on the vertices and edges of the RVEs, the 10 

Equation 3.23 to Equation 3.25 can be specified as 11 

𝑈𝐹𝑥𝑝 𝑖 − 𝑈𝐹𝑥𝑛 𝑖 = 𝑈𝑉2 − 𝑈𝑉1 (3. 35) 12 

𝑈𝐹𝑦𝑝 𝑖 − 𝑈𝐹𝑦𝑛 𝑖 = 𝑈𝑉4 − 𝑈𝑉1 (3. 36) 13 

𝑈𝐹𝑧𝑝 𝑖 − 𝑈𝐹𝑧𝑛 𝑖 = 𝑈𝑉5 − 𝑈𝑉1 (3. 37) 14 

For Type I, II and III composite structures in this chapter, constrain Equations 3.10 – 15 

3.13, 3.26-3.34 and 3.35-3.37 are applied to the nodes on the vertices, edges and faces 16 

of the RVE. This can be done by ANSYS with APLD coding to execute each specific 17 

node. On each boundary, one pair of nodes is selected to serve as the reference nodes 18 

for the displacement constraints. A small uniaxial translational load of 0.1% of the RVE 19 
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length L is applied on one of the reference nodes. The displacement load is denoted as 1 

ux0= 𝐿 × 0.1%. It is obvious that the RVEs are all symmetric about the x, y and z-axis. 2 

So only one axis needs to be considered. For example, we choose V1 and V2 and then 3 

apply load ux0 on the node at V1. The node on V2 is fixed. 4 

3.3 Results 5 

The reaction force Fr on the pair of reference nodes can be obtained after solving in 6 

ANSYS. Fr can be regarded as the concentrated force of the loaded face as all other 7 

nodes are constrained with the reference nodes by equation. Thus, the Young’s modulus 8 

in the x-direction of the RVE can be expressed as 9 

𝐸𝑐𝑥 =
𝜎𝑥

𝜀𝑥
=

𝐹𝑟

𝐴𝑥
𝑢𝑥0

𝐿

=
𝐹𝑟

𝐿𝑢𝑥0

(3. 38) 10 

where 𝜎𝑥 is the stress in the x direction, 𝜀𝑥 is the strain in the x direction, Ax is the area 11 

of the face Fxn. The Poisson’s ratio ν𝑐𝑥𝑦 and ν𝑐𝑥𝑧 can be obtained from 12 

ν𝑐𝑥𝑦 = −
𝑢𝑦

𝐿𝜀𝑥

(3. 39) 13 

ν𝑐𝑥𝑧 = −
𝑢𝑧

𝐿𝜀𝑥

(3. 40) 14 

3.3.1 Effects of the Young’s moduli of constituent materials on the Young’s 15 

moduli of the composites 16 

Relationship between the Young’s modulus of the composite 𝐸𝑐 and volume fraction 17 

of the reinforcement 𝑓𝑓 is obtained from IPC type I. Results are shown in Figure 3-9. 18 

The volume fraction of IPC type I is from 3% to 95%. The Voigt, Reuss, and the 19 

Hashin-Shtrikman upper and lower limits are also provided in Figure 3-9.  20 
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Figure 3-9. Young’s Modulus of the composite 𝐸𝑐 as a function of the reinforcement volume 

fractions in IPC type I, compared with Voigt, Reuss, and the HS upper and lower limits. (a) 

𝐸𝑓 = 2. (b) 𝐸𝑓 = 10. All the Voigt, Reuss, and the HS upper and lower limits are presented 

coincident with the parameters of each material. 

From Figure 3-9, Young’s modulus of the composite 𝐸𝑐 has a nearly linear function 1 

with fibre volume fractions 𝑓𝑓. When 𝐸𝑓 𝐸𝑚⁄ > 1, 𝐸𝑐 of composite type I increased in 2 

a linear relationship with 𝑓𝑓. The Young’s modulus of composite type II and III are 3 

shown in Figure 3-10 and Figure 3-11. 4 

 

Figure 3-10. Young’s Modulus of the composite 𝐸𝑐 as a function of the reinforcement volume 

fractions in IPC type II, compared with Voigt, Reuss, and the HS upper and lower limits. (a) 

𝐸𝑓 = 2. (b) 𝐸𝑓 = 10.  

Figure 3-10 and Figure 3-11 show the same trend of 𝐸𝑐 in relation to 𝑓𝑓. The volume 5 

fractions of IPC type II are from 3% to 90% and those of ICP type III are from 3% to 6 

47%. 7 

(a) (b) 

(a) (b) 
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Figure 3-11. Young’s Modulus of the composite 𝐸𝑐 as a function of the reinforcement volume 

fractions in IPC type III, compared with Voigt, Reuss, and the HS upper and lower limits. (a) 

𝐸𝑓 = 2. (b) 𝐸𝑓 = 10.  

It can be seen from Figure 3-9 (a) that when the difference between Poisson’s ratios of 1 

two constituent materials is large (𝜈𝑓 = 0.05 , 𝜈𝑚 = 0.49), while there are no big 2 

divergence in the Young’s moduli of the two phases ( 𝐸𝑓 𝐸𝑚⁄ = 2 ), the Young’s 3 

modulus of the composite can be slightly larger than Voigt limit. These results be found 4 

at all 3 types of RVEs, especially in type III. However, when the difference between 5 

the Young’s moduli of the two constituent materials are big enough, for instance 6 

𝐸𝑓 𝐸𝑚⁄ = 10 in Figure 3-9 (b), and the other parameters remain the same,  the Young’s 7 

modulus of the composite stays lower than the Voigt and Hashin-Shtrikman upper 8 

limits. This result coincident with the theoretically analysis that if 𝜈𝑚 = 𝜈𝑓 , the 9 

Young’s Modulus of the composite is much larger than Reuss and Hashin-Shtrikman’s 10 

lower limit. However, no matter what  𝐸𝑓 𝐸𝑚⁄  combinations and model structure 11 

chosen, the composite elastic moduli can’t surpass the Voigt limit [75]. 12 

3.3.2 Effects of the Poisson’s ratios of constituent materials on the Young’s 13 

moduli of the composites 14 

Poisson’s ratios of the constituent material can also affect the mechanical properties of 15 

the composite. Matrices with both positive (𝜈𝑓 = 0.49, 𝜈𝑚 = 0.05; (𝜈𝑓 = 0.05, 𝜈𝑚 =16 

(a) (b) 
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0.49) and negative Poisson’s (𝜈𝑓 = 0.49, 𝜈𝑚 = −0.8; 𝜈𝑓 = 0.3, 𝜈𝑚 = −0.8) ratios are 1 

considered in this Chapter.  2 

 

Figure 3-12. Young’s Modulus of the composite 𝐸𝑐 as a function of the reinforcement volume 

fractions in IPC type I with auxetic matrix, compared with Voigt, Reuss, and the HS upper 

and lower limits. (a) 𝐸𝑓 = 2. (b) 𝐸𝑓 = 10. 

Figure 3-12 (a) give an outcome that the Young’s Modulus of the composite type I 3 

drastically surpass the Voigt limit when the Poisson’s Ratio of one phase of the 4 

composite goes to negative (𝜈𝑓 = 0.49, 𝜈𝑚 = −0.8). The Young’s Modulus acquired 5 

with negative Poisson’s ratios matrix is far larger than that acquired with positive ones. 6 

The Young’s Modulus of the composite rises with the volume fraction of the 7 

reinforcement increases, peaks when the volume fraction of the reinforcement is in the 8 

range of 30% to 50%, surpass the Young’s Modulus of the reinforcement, then 9 

gradually goes down, closing to the Voigt limit at the end of 95%. In Figure 3-12 (b), 10 

(a) 

(b) 
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when the difference between the Young’s moduli of the two constituent materials is 1 

large (𝐸𝑓 𝐸𝑚⁄ = 10), the Young’s Modulus of the composite is still larger than the 2 

Voigt limit in the most of the fibre volume fractions. However, the difference between  3 

𝐸𝑐 and 𝐸𝑐𝑣𝑜𝑖𝑔𝑡 is not that big compared to Figure 3-12 (a). The Young’s moduli of the 4 

composite cannot dramatically surpass the Young’s Moduli of the reinforcement and 5 

keeps increasing as the volume fraction of the composites increase, instead of having 6 

obvious peaks at certain volume fractions.  7 

 

Figure 3-13. Young’s Modulus of the composite 𝐸𝑐 as a function of the reinforcement volume 

fractions in IPC type II with auxetic matrix, compared with Voigt, Reuss, and the HS upper 

and lower limits. (a) 𝐸𝑓 = 2. (b) 𝐸𝑓 = 10 

The Young’s Moduli of type II and type III composites with negative Poisson’s ratio 8 

matrix is shown in Figure 3-13 and Figure 3-14. The relationships between volume 9 

fractions of the fibre and the Young’s modulus of the composites at same constituent 10 

Poisson’s ratio and material combinations in Figure 3-13 are almost the same with those 11 

(a) 

(b) 



Chapter 3. Regular lattice structured interpenetrating composites 

67 
 

in Figure 3-12. The only different is that the peak of 𝐸𝑐 at 𝐸𝑓 𝐸𝑚⁄ = 2 of the Type II 1 

structure is higher than Type I, which means that type II structure can reach a large 2 

elastic modulus with same constituent material. In Figure 3-14, limited to the structure 3 

of type III composite, the maximum possible fibre volume fraction is around 47%. 4 

However, a clear peak of the curve of the Young’s Modulus of the composite at 𝜈𝑓 =5 

0.05, 𝜈𝑚 = 0.49 can be observed. The shapes of all the curves Figure 3-14 are similar 6 

with half of the Figure 3-13 and Figure 3-12 with fibre volume fraction from 3% to 5%. 7 

 

Figure 3-14. Young’s Modulus of the composite 𝐸𝑐 as a function of the reinforcement volume 

fractions in IPC type III with auxetic matrix, compared with Voigt, Reuss, and the HS upper 

and lower limits. (a) 𝐸𝑓 = 2. (b) 𝐸𝑓 = 10 

All the three types of IPC structures share the same trend that Young’s Modulus of the 8 

composites at 𝜈𝑓 = 0.49, 𝜈𝑚 = −0.8 are larger than that at 𝜈𝑓 = 0.3, 𝜈𝑚 = −0.8. 9 

 10 

(a) 

(b) 
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3.3.3 Comparison of regular lattice structured interpenetrating composites 1 

by normalized Young’s moduli 2 

Comparisons of the type I, II and III in 8 sets of parameter combinations listed in of the 3 

two phases are plotted below as Figure 3-15 (a) to (h).  4 

Table 3-2. Sets of parameter combinations in Figure 3-15 (a) to (h). 5 

 

𝜈𝑓 = 0.49  

𝜈𝑚 = 0.05 

𝜈𝑓 = 0.05 

𝜈𝑚 = 0.49 

𝜈𝑓 = 0.49 

𝜈𝑚 = −0.8 

𝜈𝑓 = 0.3 

𝜈𝑚 = −0.8 

𝐸𝑓 𝐸𝑚⁄ = 2 Figure 3-15 (a) Figure 3-15 (c) Figure 3-15 (e) Figure 3-15 (g) 

𝐸𝑓 𝐸𝑚⁄ = 10 Figure 3-15 (b) Figure 3-15 (d) Figure 3-15 (f) Figure 3-15 (h) 

In these figures the Young’s moduli are normalized by the Voigt limit as Equation 2.7 6 

shows. The normalized Young’s modulus can be expressed as 7 

𝐸𝑁 = 𝐸𝑐 𝐸𝑐𝑉𝑜𝑖𝑔𝑡⁄ (3. 41) 8 

The broken lines 𝑦 = 1.0 parallel to x axis in Figure 3-15 indicates the Voigt limit itself. 9 

Thus, the results plotted above this line represents that the Young’s modulus of the 10 

composite 𝐸𝑐 surpasses the Voigt limit. A value of 𝐸𝑁 = 2.0 means that the Young’s 11 

modulus of the composite is 2 times larger than the upper limit. In general, we can see 12 

that the tetrakaidekahedron structure Type III performs well in negative Poisson’s ratio 13 

matrix IPCs, while on the contrary, the simplest cross-cubic model performs the best in 14 

positive Poisson’s ration matrix IPCs. 15 

 16 
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Figure 3-15. Comparison of Normalized Young’s Modulus of the three types of 

composite structures: (a) to (d) 

(a) (b) 

(c) (d) 
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Figure 3-15. Comparison of Normalized Young’s Modulus of the three types of composite 

structures  

An overview of the Figure 3-15 shows that the normalized Young’s modulus 𝐸𝑛 1 

decreases, reaches its lowest point, and then increases with the increase of fibre volume 2 

fraction when 𝜈𝑓 and 𝜈𝑚 are positive. Most of the values of 𝐸𝑛 are smaller than 1 when 3 

𝜈𝑓  and 𝜈𝑚  are positive, which mean the Young’s moduli of the composite cannot 4 

surpass the Voigt limit when the Poisson’s ratio of two constituent materials are positive. 5 

However, when 𝜈𝑚 is negative, the relations between normalized Young’s modulus and 6 

fibre volume fraction turns to be the opposite, increases first, peaks, and then decreases. 7 

𝐸𝑛 is larger than 1 in most of the corresponding volume fractions and can be as large as 8 

2.5. The Young’s moduli of the composite can be two times larger than the Voigt limit. 9 

Furthermore, it can be summarized that 𝐸𝑛 increases when 𝐸𝑓 𝐸m⁄  approaches 1 and 10 

|𝜈𝑓−𝜈𝑚|  get the largest possible value. When the Poisson’s ratio of the matrix is 11 

(e) (f) 

(g) (h) 
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negative, the largest normalized Young’s modulus can be obtained in around 30% fibre 1 

volume fraction when 𝐸𝑓 𝐸m⁄ = 2 and in around 10% to 15% fibre volume fraction 2 

when 𝐸𝑓 𝐸m⁄ = 10. 3 

It can be observed in Figure 3-15 (a) to (d) that the normalized Young’s moduli of IPC 4 

Type II and Type III are not as large as that of IPC Type I when the Poisson’s ratios of 5 

the two constituent materials is all positive. The elastic performance of the IPC structure 6 

can be sequenced as 𝐸𝑛|Type I > 𝐸𝑛|Type III > 𝐸𝑛|Type II in most of the cases. However, 7 

Figure 3-15 (e) to (h) illustrate that when one constituent material exhibits negative 8 

Poisson’s ratio behaviour, the elastic performance of IPC Type III is better than that of 9 

IPC Type I and Type II. The elastic performance of the IPC structure can be sequenced 10 

as 𝐸𝑛|Type III > 𝐸𝑛|Type II > 𝐸𝑛|Type I in most of the cases. 11 

In addition, comparisons of Figure 3-15 (a) and (c), (b) and (d) reveal that the elastic 12 

performance of IPCs is not with much difference between 𝜈𝑓 = 0.05, 𝜈𝑚 = 0.49 and 13 

𝜈𝑓 = 0.49, 𝜈𝑚 = 0.05. For example, the Young’s moduli of the composite when 𝜈𝑓 =14 

0.05, 𝜈𝑚 = 0.49 and 𝜈𝑓 = 0.49, 𝜈𝑚 = 0.05 are very similar in IPC Type I and II. It 15 

can be inferred that the value difference between 𝜈𝑓 and 𝜈𝑚 instead of the values itself 16 

is the key to affect the elastic performance of the IPCs. 17 

It can be seen from the stress maps of the reinforcements in Figure 3-16 (a) and (b) that 18 

the fibres along the axle directions (x axis direction in Figure 3-16 a and b) undertakes 19 

more load than those fibres along space diagonals. In Figure 3-16 (c) there are no fibre 20 

shows significant stress concentration in the tetrakaidekahedral reinforcements. In other 21 

words, that means normally the materials are most effectively constructed in Type I 22 

structure than Type II and III. That could be a possible explanation of why Type I 23 

composite structure performs the best. 24 
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Figure 3-16. Comparison of Von Mise stress of the three types of composite structures. 

When the Poisson’s ratio of the composite goes to negative, it has been proved that the 1 

Young’s moduli and Poisson’s ratio of a cubic – cubic two-phase composite material 2 

as Figure 3-17 shows can be theoretically obtained by solving a set of 8 simultaneous 3 

linear equations as follows [74] 4 

𝐿 − 𝑡

𝐿𝐸𝐴
(𝜎𝑥1 − 𝜈𝐴𝜎𝑦1 − 𝜈𝐴𝜎𝑦4) +

1

𝐿𝐸𝐴
(𝜎𝑥1 − 𝜈𝐴𝜎𝑦2 − 𝜈𝐴𝜎𝑦3) = 𝜀𝑥 5 

𝐿 − 𝑡

𝐿𝐸𝐴
(𝜎𝑥2 − 2𝜈𝐴𝜎𝑦1) +

1

𝐿𝐸𝐴
(𝜎𝑥2 − 2𝜈𝐴𝜎𝑦2) = 𝜀𝑥 6 

𝐿 − 𝑡

𝐿𝐸𝐵
(𝜎𝑥3 − 2𝜈𝐵𝜎𝑦4) +

1

𝐿𝐸𝐵
(𝜎𝑥3 − 2𝜈𝐴𝜎𝑦3) = 𝜀𝑥 7 

𝐿 − 𝑡

𝐿𝐸𝐴
(𝜎𝑦1 − 𝜈𝐴𝜎𝑥1 − 𝜈𝐴𝜎𝑦4) +

1

𝐿𝐸𝐴
(𝜎𝑦1 − 𝜈𝐴𝜎𝑥2 − 𝜈𝐴𝜎𝑦1) = 𝜀𝑦 8 

𝐿 − 𝑡

𝐿𝐸𝐴
(𝜎𝑦2 − 𝜈𝐴𝜎𝑥1 − 𝜈𝐴𝜎𝑦3) +

1

𝐿𝐸𝐴
(𝜎𝑦2 − 𝜈𝐴𝜎𝑦2 − 𝜈𝐴𝜎𝑥2) = 𝜀𝑦 9 

𝐿 − 𝑡

𝐿𝐸𝐴
(𝜎𝑦3 − 𝜈𝐴𝜎𝑥3 − 𝜈𝐴𝜎𝑦3) +

1

𝐿𝐸𝐴
(𝜎𝑦3 − 𝜈𝐴𝜎𝑥1 − 𝜈𝐴𝜎𝑦2) = 𝜀𝑦 10 

𝐿 − 𝑡

𝐿𝐸𝐵
(𝜎𝑦4 − 𝜈𝐴𝜎𝑦4 − 𝜈𝐴𝜎𝑥3) +

1

𝐿𝐸𝐴
(𝜎𝑦4 − 𝜈𝐴𝜎𝑥1 − 𝜈𝐴𝜎𝑦1) = 𝜀𝑦 11 
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(𝐿 − 𝑡)2𝜎𝑦4 + (𝐿 − 𝑡)𝑡𝜎𝑦1 + (𝐿 − 𝑡)𝑡𝜎𝑦3 + 𝑡2𝜎𝑦2 = 0 1 

Where L and t are dimensions shown in Figure 3-17 below from which the fibre volume 2 

fraction can be obtained. 𝜎𝑥1, 𝜎𝑥2, 𝜎𝑥3 𝑎𝑛𝑑 𝜎𝑦1, 𝜎𝑦2, 𝜎𝑦3, 𝜎𝑦4 are normal stresses on two 3 

surfaces of the 1/8 RVE shown below.  4 

 

Figure 3-17. Theocratical model of cubic – cubic two-phase composite material  
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In this case, given L=10 and t=1, thus fibre volume fraction is 1 − (𝐿 − 𝑡)3 𝐿3⁄ =1 

27.1%, 𝐸𝑓 𝐸𝑚⁄ = 10, and 𝜀𝑥=0.001. Confine the Poisson’s ratio of fibre 𝜈𝑓 from 0 to 2 

0.5 and that of matrix 𝜈𝑚 from -1 to 0.5, the relation between 𝜈𝑓, 𝜈𝑚, and the Young’s 3 

moduli of the composite can be obtained, as Figure 3-18 shows.  4 

 

Figure 3-18. The relation between 𝜈𝑓, 𝜈𝑚, and the Young’s moduli of the composite. 

The results showed that the Young’s moduli of this kind of structure could exceed Voigt 5 

limit, even large than both matrix and reinforcement when the Poisson’s ratio of its one 6 

phase is negative and that of the other phase is positive. The Young’s moduli of the 7 

composite reach the maximum value at 𝜈𝑓 = 0.5, 𝜈𝑚 = −1.  8 

Furthermore, the effect of Young’s moduli of matrix and reinforcement on the Young’s 9 

moduli of the composite is considered. Given L=10 and t=1, thus fibre volume fraction 10 

is 1 − (𝐿 − 𝑡)3 𝐿3⁄ = 27.1%, and 𝜀𝑥=0.001, Figure 3-19 shows the case that 𝜈𝑓 = 0.2, 11 

𝜈𝑚 = 0.3 and Figure 3-20 shows the case that 𝜈𝑓 = 0.5, 𝜈𝑚 = −0.8. 12 
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Figure 3-19. The relation between 𝐸𝑓 , 𝐸𝑚 , and the normalized Young’s moduli of the 

composite when 𝜈𝑓 = 0.2, 𝜈𝑚 = 0.3. 

 

Figure 3-20. The relation between 𝐸𝑓 , 𝐸𝑚 , and the normalized Young’s moduli of the 

composite when 𝜈𝑓 = 0.5, 𝜈𝑚 = −0.8. 
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The Young’s moduli of the composite are normalized by the Voigt limit. It can be seen 1 

in both cases that when Ef , Em  are close the normalized Young’s moduli reaches 2 

maximum value.   3 

The cross-section strut shape changes from cubic to circle in this chapter, but the results 4 

are still compatible. 5 

From the perspective of the results, it can be seen that the matrix undertakes much more 6 

load from the stress map as Figure 3-21 shows when the Poisson’s ratio goes to negative 7 

comparing to the cases with positive Poisson’s ratio matrix. 8 

 

 

Figure 3-21. Von mises stress map of the matrix Type I structure when fibre volume fraction 

is set as 10%, 𝐸𝑓 𝐸𝑚⁄ = 10: (a) 𝜈𝑓 = 0.2 𝜈𝑚 = 0.3, (b) 𝜈𝑓 = 0.49 𝜈𝑚 = 0.05, (c) 𝜈𝑓 = 0.49 

𝜈𝑚 = −0.5, (b) 𝜈𝑓 = 0.49 𝜈𝑚 = −0.8. 

From the figure above it is obvious that the matrix with same parameters other than 

the Poison’s ratio under the same load result in very different stress average value and 

stress distribution. Both are larger when the difference between the Poisson’s ratio of 

matrix and reinforcement is larger. This may be caused by interaction between the 

matrix and the reinforcement through the interface. The higher inner pressure between 

the interface of matrix and the reinforcement contributes to the resistance of 

(a) (b) 

(c) (d) 
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deformation when difference between the Poisson’s ratios of matrix and reinforcement 

is large. Otherwise when this difference is small there are no significant pressure 

between the two during deformation. 

3.4 Discussion 1 

As traditional particulate composites and unidirectional fibre reinforced composites 2 

have been developed and investigated, it is necessary to compare the elastic properties 3 

of these lattice structured interpenetrating composites to its conventional counterparts. 4 

Chawla, Sidhu and Ganesh [35] did a detailed investigation for SiC/Aluminium particle 5 

composite both experimental and computational. In 1983, the tensile behaviour of 6 

polystyrene-glass-bead composites has been tested [184]. Those are all typical particle 7 

reinforced composites. Comparing particle composites to IPCs could prove that 8 

interpenetrating phases enhances the elastic performance of the composite with same 9 

constituent material and fibre volume fraction. Figure 3-22 illustrates the 10 

microstructures of the particle reinforced composites.  11 

 12 

 

Figure 3-22. The particle reinforced composites listed for comparison. (a) SiC /Aluminium 

particle composite [35]. (b) Glass reinforced polystyrene [184]. (c) Epoxy based glass 

particle composite [185].  

Table 3-3 listed the elastic properties of some particle reinforced composites. 13 

Table 3-3 Summary of particle reinforced composites used in comparison with our models.  14 

(a) (b) (c) 
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Composites 𝐸𝑓 (MPa) 𝜈𝑓 𝐸𝑚 (MPa) 𝜈𝑚 

SiC /Al [35]* 410000 0.19 74000 0.33 

Glass/Polystyrene [184] 70000 0.22 3250 0.34 

Glass /Epoxy [185]** 69000 0.15 3000 0.35 

* Computational results from reference [35] are taken for comparison 1 

** Experimental results from reference [185] are taken for comparison 2 

The reinforcement volume fractions of the composites in reference papers are listed in 3 

Table 3-4 below. 4 

Table 3-4. Volume fractions of the composites in reference papers. 

Composites Reinforcement volume fractions 

SiC /Al [35] 10% 20% 30% 

Glass/Polystyrene [184] 10% 15% 20% 25% 

Glass /Epoxy [185] 14% 22% 28% 35% 43% 

The normalized Young’s moduli of our models are obtained and compared with the 5 

models in listed references above. The results are plotted in the Figure 3-23 below. 6 
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Figure 3-23. Comparison of the 3 types of structures with the traditional particle composites 

in research papers. computational results from reference [35] in subfigure (a), experimental 

results from reference [184] in subfigure (b), and experimental results from reference [185] 

in subfigure (c). 

Figure 3-23 shows that when the Poison’s ratios of both two phases of the composite 1 

are close and positive, the simple cubic model performs much better than the particle 2 

composites and maintain the best among those three models regarding each set of 3 

material parameters. 4 

Interpenetrating phase composites have also been fabricated via different methods. It is 5 

also a wide concern to investigate which type of geometry structure model can reveal 6 

their mechanical properties more precisely. For the interpenetrating composites, 7 

especially those with well-connected lattice structures are hard to fabricate, the 8 

experimental sample and results in research papers often lacks the comprehensiveness 9 

for investigating the mechanical behaviour with the Young’s modulus and Poison’s 10 

ratio of each phase. 11 

(a) (b) 

(c) 
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In this thesis, research of the interpenetrating composite materials including both 1 

experimental and computational work are compared with our models.  2 

 

Figure 3-24. Interpenetrating composite materials listed for comparison. (a) Syntactic Foam 

with coated aluminium scaffold [57]. (b) Syntactic Foam prepared by dispersing hollow glass 

micro balloons into an epoxy matrix, reinforced by metal form using open-cell Duocel® 

aluminium [186]. (c) Al/Al2O3 composites [54]. (d) TangoPlus/VeroWhite composites 

formed by Boolean operations from triply periodic minimal surfaces [65]. All these results 

are experimental except Jhaver and Hareesh’s work [57]. 

The parameters in the research papers are summarized below in Table 3-5. 3 

Table 3-5 Summary of interpenetrating composites used in comparison with our models, 4 

including mechanical properties of the constituent materials and the fibre volume fractions. 5 

Composites 𝐸𝑓 (MPa) 𝜈𝑓 𝐸𝑚 (MPa) 𝜈𝑚 𝑉𝑓 

Syntactic Foam / Al [57] 68900 0.34 1600 0.33 9% 

Syntactic Foam / Al [186] 69600 0.35 5122 0.34 8% 

Al / Al2O3 [54] 380000 0.35 69600 0.25 65% 

(d) (c) 

(a) (b) 
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TangoPlus / VeroWhite [65] 1660 0.3* 0.7456 0.3* 48% 

After comparison, the results are listed in Table 3-6. 1 

Table 3-6 Results of the comparison of our models and other interpenetrating composites. 2 

 Model 1 Model 2 Model 3 Paper Results 

Syntactic Foam /Al [57] 0.583 0.378 0.333 0.276 

Syntactic Foam /Al [186] 0.761 0.640 0.626 0.602 

Al / Al2O3 [54] 0.871 0.789 0.791 0.792 

TangoPlus/VeroWhite [65] 0.568 0.532 0.527 0.355 

From the results in Table 3-6, we can find that the elastic property of our lattice 3 

interpenetrating structures are better than those interpenetrating composites fabricated 4 

with syntactic foam (epoxy and micro balloons in the aforementioned two papers) and 5 

aluminium, the alumina-aluminium composites, and TMPS-IPCs which are relatively 6 

difficult to fabricate with metals like alumina or steel.  7 

3.5 Conclusion 8 

In this Chapter, the geometric models of three types of RVEs are constructed by solid 9 

Boolean operations. The revised periodic boundary conditions generally suitable for 10 

solid cube RVE is specified. The constituent material combinations are selected to 11 

predict the effect of their Young’s moduli and Poisson’s ratio on the Young’s moduli 12 

of the composite. It can be concluded from the results of this chapter that the Young’s 13 

modulus of different lattice-structured interpenetrating composites can be much larger 14 

than the HS upper limit and can surpass the Voigt limit. This is coincident with the 15 

analytical results by Zhu, Fan and Zhang [74] in 2015. The Young’s modulus of the 16 

composites 𝐸𝑐 has strong relationship with the Poisson’s ration of the two constituent 17 

materials. 𝐸𝑐  increases as 𝐸𝑓 , 𝐸m  and fibre volume fraction 𝑓𝑓  increases. However, 18 

when the Poisson’s ratio of the matrix is negative and 𝐸𝑓 𝐸m⁄  is relatively small, the 19 

EN 
Compared paper 
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Young’s modulus 𝐸𝑐 increases with 𝑉𝐹𝑓 from the beginning, reaches its peak, and then 1 

decreases. The largest Young’s modulus 𝐸𝑐 can be obtained in around 30% to 40% fibre 2 

volume fraction in this case. Furthermore, the normalized Young’s modulus 𝐸𝑛 3 

decreases, reaches its lowest point, and then increases with the increase of fibre volume 4 

fraction when 𝜈𝑓  and 𝜈𝑚  are positive. When 𝜈𝑚  is negative, the relations between 5 

normalized Young’s modulus and fibre volume fraction turns to be the opposite trend, 6 

increases firstly, then decreases. 𝐸𝑛 peaks when 𝐸𝑓 𝐸m⁄  approaches 1 and |𝜈𝑓−𝜈𝑚| get 7 

the largest possible value. The largest normalized Young’s modulus can be obtained in 8 

around 30% fibre volume fraction when 𝐸𝑓 𝐸m⁄ = 2 and the Poisson’s ratio of the 9 

matrix is negative and in around 10% to 15% fibre volume fraction when 𝐸𝑓 𝐸m⁄ = 10. 10 

Generally, the basic cubic model performs the best when the Poison’s ratio of both 11 

phases of the composites are positive, while the tetrakaidekahedron model with the 12 

most connection points of the lattice structure show a larger normalized Young’s 13 

modulus when the Poison’s ration goes to negative. 14 

These kind of latticed interpenetrating composites are better than its conventional 15 

counterparts like particle and unidirectional reinforced composites, as well as 16 

aluminium and TMPS-IPCs composites. 17 
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Chapter 4 Auxetic interpenetrating composites 

4.1 Introduction 

When a self-connected auxetic lattice structure or fibre-network is embedded as 

reinforcement in a matrix with a low positive Poisson’s ratio, the composite would 

have the potential to exhibit auxetic behaviour. It has already been experimentally 

demonstrated that composites reinforced by an auxetic fibre-network exhibits a 

negative Poisson’s ratio in the thickness direction [137]. Composites reinforced by a 

re-entrant hexagonal honeycomb are also found to exhibit strong in-plane auxetic 

behaviour [147]. As most of the microstructures which exhibit an auxetic behaviour 

are self-connected and periodic, auxetic lattice foams are perfect candidates as 

reinforcement in interpenetrating composites. Despite considerable efforts have been 

devoted to designing and synthesizing composites with auxetic reinforcements, the 

quantitative understanding of the interplay between the auxetic behaviour and the 

other mechanical properties such as stiffness, strength, and toughness is still elusive. 

Research on composites with auxetic behaviour are very limited and the properties 

are in general anisotropic. In this chapter, we study the mechanical behaviour of solid 

interpenetrating composites reinforced by three different types of auxetic fibre-

networks with cubic symmetry. The concavity of the fibre-networks is considered as 

a key factor affecting the auxetic behaviour of the constructed composites. The effects 

of the volume fraction, elastic properties and concavity of the fibres, and the structural 
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hierarchy on the elastic properties of the interpenetrating auxetic composites are 

investigated by computational simulation. 

4.2 Geometric structures and computational methods 

4.2.1 Geometric structures 

Re-entrant foams are the most common auxetic cellular-network materials, examples 

include 2D re-entrant honeycombs, 3D re-entrant foams, double-arrowhead re-entrant 

structure, star-shaped structure. In this chapter, we study the elastic properties of 

interpenetrating composites which are reinforced by three different types of regular re-

entrant fibre-networks. As all the three types of interpenetrating composites are periodic 

and have cubic symmetry, we use representative volume elements to study their elastic 

properties. The RVE of the type I re-entrant fibre-network, as shown in Figure 4-1 (a), 

has 12 self-connected chevron struts in 6 rectangular diagonal planes, each of which 

contains two chevron struts. The RVE of the type II re-entrant fibre-network is shown 

in Figure 4-1 (b), which consists of 6 self-connected inward crosses. The RVE of the 

type III re-entrant fibre-network is shown in Figure 4-1 (c).  
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Figure 4-1. The geometrical structures of three different type of self-connected reinforcement 

auxetic fibre-networks: (a) Type I, (b) Type II, (c) Type III. 

All the reinforced fibres are presumed to have a round axial section with the same 

diameter. The RVE models are constructed by the same method with the RVEs in 

Chapter 3. 

4.2.2 Model parameters 

One of the most important parameters for a two-phase interpenetrating composite is the 

fibre volume fraction. For the three different types of re-entrant fibre-networks, all the 

fibres are assumed to have the same uniform circular cross-section. The fibre volume 

fraction 𝑉𝐹𝑓 can be controlled by varying the diameter of the fibres or the fibre direction 

angle 𝛼  shown in Figure 4-2. Because of the natural limit of the fibre-network 

geometric structures, the fibre volume fraction 𝑉𝑓 considered in this thesis is limited in 

the range from 4% to 32% for type I and II composites, and from 2.5% to 20% for type 

III composites.  
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Figure 4-2. Fibre direction angle 𝛼  in the three different types of reinforcement fibre-

networks. (a) the chevron, angle 𝛼 measured in the main diagonal plane of the type-I RVE; 

(b) and (c) the re-entrant, angle 𝛼 measured in the RVE main diagonal plane of the type I and 

II composites. 

For the three types of interpenetrating composites, their negative Poisson’s ratio and 

other elastic properties (e.g., Young’s modulus) significantly depend on the chevron or 

the re-entrant angle 𝛼 . In order to explore how the fibre angle affects the elastic 

properties of the three types of interpenetrating composites, the following three sets of 

angles given in Table 4-1 are used in simulations. 

Table 4-1. Fibre angle 𝛼 of the three different types of fibre-networks. 

 𝛼1 𝛼2 𝛼3 

Type I 20° 30° 40° 

Type II 12° 18° 20° 

Type III 12° 18° 20° 

It is assumed that the reinforcement fibre-network and the matrix of the interpenetrating 

composites are made by two different isotropic solid materials. The Young’s moduli 

and Poisson’s ratios of the constituent materials are denoted as 𝐸𝑓 ,  𝐸𝑚, 𝜈𝑓 , 𝜈𝑚, where 

subscript 𝑓 stands for fibre and 𝑚 for matrix.  For simplicity and generality, both the 

Young’s moduli of the fibre and the matrix are normalised by that of the matrix, thus 

the normalised Young’s modulus of the matrix is always 1 and the possible range of the 

normalised Young’s modulus of the fibre is given in Table 4-2. In some 3D printed 

composites [65], VeroWhite (rigid photopolymer) is often used as the stiffer phase 

whose Young’s modulus is 𝐸𝑓 = 1.66GPa, and TangoPlus (soft rubbery material) is 

α α 

α 

(b) 

 

(a) 

 

(c) 

 



Chapter 4. Auxetic interpenetrating composites 

89 
 

often used as the softer phase whose Young’s modulus is 𝐸𝑚 = 0.7456MPa. Thus, the 

ratio 𝐸𝑓 𝐸𝑚⁄  in such composites is close to 2500. In most polymer, rubber or metal 

matrix composites reinforced by a metal or ceramic, the ratio 𝐸𝑓 𝐸𝑚⁄  stays in the range 

from 2 to 1000, examples include Al/epoxy composites [57], glass/epoxy composites 

[185] and Al/Al2O3 composites [54]. In order to enhance the auxetic behaviour (i.e., a 

large negative Poisson’s ratio), a relatively high value of  𝐸𝑓 𝐸𝑚⁄  is preferred. 

Table 4-2. The range of the normalised Young’s Moduli of three fibre material. 

𝐸𝑓 𝐸𝑚⁄  2 10 50 100 500 1000 2000 

The elastic properties of composites can be significantly affected by the Poisson’s ratio 

of the matrix material [74,75], but are less sensitive to that of the stiffening material 

(this may be because the volume fraction of the latter is usually much smaller).  As 

almost all the single-phase solid isotropic materials have a positive Poisson’s ratio, a 

very small Poisson’s ratio is preferred for the matrix material in order to enhance the 

auxetic behaviour of the composites.  For the aforementioned materials as the potential 

reinforcement and matrix phases, the Poisson’s ratios of TangoPlus and VeroWhite are 

approximately 0.49 and 0.3 [65,146], which are not ideal for an isotropic auxetic 

composite.  Carbon matrix may have a very low Poisson’s ratio from approximately 0 

to 0.05 [187], while the Poisson’s ratio of SiC matrix is around 0.14 to 0.35. In metal 

matrix composites, beryllium which is used as the matrix material in AlBeMet for 

aerospace and commercial applications has a very low Poisson’s ratio of 0.03 [188]. 

The Poisson’s ratios of Al and Al2O3 are approximately 0.35 and 0.25, separately, and 

the carbon fibre has a Poisson’s ratio between 0.05 and 0.1. Table 4-3 gives the 

combination of the Poisson’s ratios of the possible matrix and fibre materials. 



Chapter 4. Auxetic interpenetrating composites 

90 
 

Table 4-3. Poisson’s ratios of the fibre and matrix materials. 

𝜐𝑓 0.35 0.25  

𝜐𝑚 0 0.1 0.2 

4.2.2 Computational method 

The RVE models of the composites reinforced by the three different types of auxetic 

fibre-networks are constructed in ANSYS. Both the fibre and matrix materials are 

assumed to be homogeneous and isotropic solids, and they both are partitioned into 

higher order 3D, 10-node tetrahedra (Solid187) elements. As all the three types of 

composites are periodic, periodic boundary conditions are applied to the RVE models 

in the finite element simulations.  To obtain the Young’s modulus and Poisson’s ratios, 

a small tensile strain of 0.1% is applied to the RVE models in all the simulations. 

4.3 Results 

The three types of composites studied in this thesis can be used as either structural or 

functional materials in engineering applications. The focus of this study is on their 

function side, e.g., the negative or zero Poisson’s ratios. As all the three types of 

composites have cubic symmetry in their geometric structure, they have only three 

independent elastic constants and their elastic properties are nearly isotropic, e.g., their 

Poisson’s ratios are the same in their three orthogonal symmetric planes. 

4.3.1 Effects of fibre volume fraction on the Poisson’s ratio of the 

composites 

The Poisson’s ratios of the three different types of composites significantly depend on 

the fibre volume fraction. When the fibre angle is fixed at 𝛼 = 20° for all the three 

different types of composites (see Figure 4-2), Figure 4-3 (a) shows the dependencies 
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of their Poisson’s ratios on the fibre volume fraction while other parameters are fixed 

at 𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25,  𝐸𝑓 𝐸𝑚⁄ = 1000 ; and Figure 4-3 (b) presents the similar 

relationships when 𝜈𝑚 = 0, 𝜈𝑓 = 0.25, 𝐸𝑓 𝐸𝑚⁄ = 1000. 

 

Figure 4-3. Effects of fibre volume fraction on the Poisson’s ratio of the composites when 

α = 20° . (a) 𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25, 𝐸𝑓 𝐸𝑚⁄ = 1000 ; (b) 𝜈𝑚 = 0, 𝜈𝑓 = 0.25, 𝐸𝑓 𝐸𝑚⁄ =

1000.   

As can be seen in Figure 4-3, all the three different types of composites exhibit a very 

strong negative Poisson’s ratio when the fibre volume fraction is in range from 3% to 

35%. The focus of this research is on the negative Poisson’s ratio (i.e., the auxetic 

behaviour). Outside this fibre volume fraction range, the composites may not exhibit a 

negative Poisson’s ratio. Obviously, all the three different types of solid composites 

could be designed to have a ‘zero’ Poisson’s ratio. Comparison between the results in 

Figure 4-3 (a) and Figure 4-3 (b) illustrates that the Poisson’s ratio of the matrix 

material can strongly affect the auxetic behaviour (i.e., the negative Poisson’s ratio) of 

the composites, the smaller the Poisson’s ratio of the matrix material, the larger the 

magnitude of the negative Poisson’s ratio of the composites. 

4.3.2 Effects of fibre angle 𝛼 on the Poisson’s ratios of the composites 

Figure 4-4 shows the effects of the fibre angle 𝛼  on the relationships between the 

Poisson’s ratio and the fibre volume fraction for the three different types of composites 

(b) 

 

(a) 
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when all the other parameters are fixed at 𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25, 𝑎𝑛𝑑 𝐸𝑓 𝐸𝑚⁄ = 1000. 

As can be seen in Figure 4-4, in order to achieve large magnitude of negative Poisson’s 

ratio for the composites, a suitable (or an optimal) fibre angle 𝛼 is critical. This is 

consistent with the experimentally measured results in anisotropic composites [147] 

which showed that it is possible to obtain different Poisson’s ratio structure by changing 

defined fibre angle 𝜃. 

 

Figure 4-4. Effects of the fibre angle 𝛼 on the relationships between the Poisson’s ratio and 

the fibre volume fraction for the different types of composites. (a) Type I; (b) Type II; (c) 

Type III. 

4.3.3. Effects of 𝐸𝑓 𝐸𝑚⁄  on the Poisson’s ratio of the composites 

When 𝛼 = 20° , 𝜈𝑚 = 0.1  and 𝜈𝑓 = 0.25 , the effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship 

between the Poisson’s ratio and the fibre volume fraction of the type III composites are 

(b) 
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illustrated in Figure 4-5. As can be seen, the larger the ratio of 𝐸𝑓 𝐸𝑚⁄ , the more obvious 

auxetic behaviour the composites may have. With the reduction of 𝐸𝑓 𝐸𝑚⁄ , the auxetic 

behaviour gradually disappears, being consistent with the experimental finding in 

anisotropic composites [147]. 

 

Figure 4-5. Effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship between the Poisson’s ratio and the fibre 

volume fraction of the type III composites with  𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25, and fibre angle 𝛼 =

20°. 

4.3.4. Effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship between the Young’s modulus 

and the fibre volume fraction of the composites 

Although the focus of this chapter is on the auxetic behaviour (i.e., negative Poisson’s 

ratio) of the solid composites, the stiffness is a very important property to enable the 

desired function in applications. When the fibre angle is fixed at 𝛼 = 20°, Fig. 6 shows 

the effects of the ratio 𝐸𝑓 𝐸𝑚⁄  on the relationship between the Young’s modulus and 

the fibre volume fraction of the type I composites with 𝜈𝑚 = 0.1,  𝜈𝑓 = 0.25. It is noted 

that the Young’s moduli of the composites have been normalised by that of the matrix 

material. As can be seen, the larger the ratio 𝐸𝑓 𝐸𝑚⁄  , the larger the Young’s modulus 

of the composites. 
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Figure 4-6. Effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship between the Young’s modulus and the fibre 

volume fraction of the type I composites with 𝜈𝑚 = 0.1,  𝜈𝑓 = 0.25. 

4.4 Discussion 

4.4.1. Young’s moduli compared to conventional particle composites 

Negative Poisson’s ratio has important applications and extensive research works have 

been done on the auxetic behaviour/properties of cellular/porous materials [80,82] and 

anisotropic materials [81,83,84,90,91,189]. Although cellular/porous materials [80,82] 

can be designed to have a large magnitude negative Poisson’s ratio, they are obviously 

much weaker and softer compared to their counterpart solid or composite materials 

without any pore.  Some single crystal materials [82,84,86], single layered graphene 

ribbons [88], and 2D puckered structure of PdSe2 monolayer [89], and nanolayered 

graphene/Cu composites [90] also exhibit the auxetic behaviour, however, their 

properties are anisotropic. Moreover, they are very expensive and very hard to produce. 

All the three different types of composites studied in this thesis do not contain any pore 

and their elastic properties are almost isotropic. Because of their negative Poisson’s 

ratio behaviour, the unique indentation response of these auxetic composite makes them 

ideal materials for impact resistance applications such as helmet and body armour. As 

the Poisson’s ratio of those composites can be tuned to zero or anywhere near zero, they 

can be used in biomedical application to imitate the Poisson’s ratio of bones, tissue or 
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joints of human body. Besides, a shell with an overall Poisson's ratio of zero is optimal 

when object is moving in a barrel or tube because they can reduce the lateral expansion 

under the thrust force, thus lower the drag force. To enable the desired auxetic function 

in applications, the composites may need a sufficiently large stiffness.  Here we 

compare the Young’s moduli of the three different types of auxetic composites with the 

experimentally measured Young’s moduli of their conventional counterpart isotropic 

particle composites [35,184,185]. Table 4-4 gives the elastic properties of the 

constituent materials of these conventional particle composites.  

Table 4-4. The elastic properties of the constituent materials in particle composites. 

Composites 𝐸𝑓 (MPa) 𝜈𝑓 𝐸𝑚 (MPa) 𝜈𝑚 

SiC /Al [35] 410000 0.19 74000 0.33 

Glass/Polystyrene [190] 70000 0.22 3250 0.34 

Glass /Epoxy [185] 69000 0.15 3000 0.35 

In order to compare the Young’s moduli of auxetic interpenetrating composites with 

those of the conventional particle composites, the component properties 𝐸𝑓, 𝐸𝑚, 𝜈𝑓, 𝜈𝑚 

and the fibre volume fractions of the auxetic interpenetrating composites are chosen to 

be same as those given in table 4. Figure 4-7 shows the comparison between the 

Young’s moduli of the three different types of auxetic interpenetrating composites and 

those of the particle composites, where the Young’s moduli of the composites are 

normalised by the Voigt limit (i.e., 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚), 𝑉𝑓 and 𝑉𝑚 are the volume fractions 

of the fibre (or particle in literature) and the matrix, respectively. The fibre angles of 

the three types of auxetic composites are chosen as  𝛼 = 20° for type I, and 𝛼 = 12° 

for types II and III. 
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Figure 4-7. Comparison between the normalized Young’s moduli of auxetic interpenetrating 

composites and those of the conventional particle composites. (a) with the SiC/Al particle 

composites [35], (b) with the glass/polystyrene particle composites [190], and (c) with the 

glass /epoxy particle composite [185] 

As can be seen in Figure 4-7, the Young’s moduli of all the three different types of 

auxetic interpenetrating composites are clearly larger than those of the conventional 

particle composites [35,184,185] ,and  the type I interpenetrating composites obviously 

have the largest Young’s moduli among the three different types of auxetic composites.  

Thus, the three types of composites can be used not only as functional materials 

(negative Poisson’s ratio), but also as structural materials (high stiffness). It is noted 

that the stiffness of auxetic composites is usually smaller than that of non-auxetic 

interpenetrating composites. For example, the interpenetrating composites reinforced 

by a self-connected fibre network with a cubic lattice structure [75] which could have 

(a) (b) 

(c) 



Chapter 4. Auxetic interpenetrating composites 

97 
 

an almost isotropic Young’s modulus much larger than the Voight limit.  Moreover, 

composites [74] reinforced by a perfect regular closed-cell foam with identical cubic 

cells of a uniform wall thickness are almost isotropic, and have the largest Young’s 

modulus compared to any other type of isotropic composites.  

 

Figure 4-8. Illustration of the type-III hierarchical and self-similar composite in which the 

‘matrix’ of the level-2 composite (a) is the level-1 composite (b). 

4.4.2. Self-similar structures and structural hierarchy to enhance auxetic 

behaviour 

Structural hierarchy has been demonstrated to be able to significantly enhance the 

mechanical properties of composites [74,75]. Here, the three types of interpenetrating 

composites can be assumed to be hierarchical and self-similar with a few levels of 

structural hierarchy, and the ‘matrix’ in a higher-level composite is made of the similar 

lower-level composite, as shown in Figure 4-8. The Young’s modulus and Poisson’s 

ratio of the three types of level-1 composites, in which the matrix is a single-phase solid 

material, are already obtained as illustrated in Figure 4-3 to Figure 4-7. To demonstrate 

the effects of structural hierarchy, we use the type III hierarchical and self-similar 

composites with a fixed fibre angle of 𝛼 = 20° as example. The level-1 composite is 

made of two different single-phase solids, and their elastic properties are 

(a) level-2 composite (b) level-1 Composite 
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𝐸𝑓 𝐸𝑚 = 1000⁄ , 𝜈𝑚 = 0.1 and 𝜈𝑓 = 0.25 .  For the level-2 composites, the main 

strengthening fibre network is made of the same solid material (i.e.,  𝐸𝑓 𝐸𝑚 = 1000⁄  

and 𝜈𝑓 = 0.25) and the ‘matrix’ is made of self-similar level-1 composite whose 

Young’s modulus and Poisson’s ratio are obtained by simulation. Thus, the Poisson’s 

ratio of the level-2 and level-3 hierarchical and self-similar type III composites can be 

obtained as shown in Figure 4-9.  As can be seen, structural hierarchy can significantly 

enhance the auxetic behaviour of the composites and their negative Poisson’s ratio 

could reach a large magnitude. 

 

Figure 4-9. The relationship between the Poisson’s ratio and the fibre volume fraction of 

hierarchical and self-similar type III composites with a fixed fibre angle of 𝛼 = 20°. 

4.4.3. Possible explanation of different trend of auxetic behaviour with the 

concavity 

As Figure 4-4 showed, a smaller fibre angle leads to more significant auxetic behaviour 

under small deformation in Type I and II. This is probably because when model (a) and 

(b) with different angle 𝛼 are stretched within a same small deformation, a smaller fibre 

angle α will results a relatively larger deformation in the cross point of the fibres, 

leading to a larger deformation in the transverse section surfaces. As illustrated in 

Figure 4-10, three different lines represents the fibre located below the cubic RVE 

surfaces. If the fibre length is unchanged, the orbit of middle point of the fibre during 

deformation process is the circle located in the centre of the RVE facet. The same 

         

                    

     

     

     

     

     

     

 
 
  
 
 
 
  
  
 
  
 

    

    

    



Chapter 4. Auxetic interpenetrating composites 

99 
 

longitude deformation 𝑎 causes deformation of the fibre connection point 𝑏 and 𝑐 in 

small and large fibre angle 𝛼, seperately. It is obvious that 𝑏 > 𝑐. Furthermore, the 

fibres with small angles are more closing to the RVE surface of the matrix. That may 

also enable the negative Poisson’s ratio behaviour to be easier to occur.  

Displacement

a a

b

c

 

Figure 4-10. Illustration of fibre angle influence in Type I and Type II. Three different 

straight-line shapes in white represents the fibre located below the cubic RVE surfaces. The 

fibres are stretched more likely in the surface. With the same initial displacement 𝑎 , the 

smaller fibre angle structure gets the larger overall deformation. 

Conversely, larger absolute value of negative Poisson’s ratio appears when the fibre 

angle is small in Type III. The reason for this phenomenon lies in the existence of face 

links. The face link is the only connection part between RVEs and the deformation of 

most RVEs begin at the face links when load is applied at the boundary of the composite 

structure. When tensile displacement load is applied, the deformation begins from the 

fibre connection point in the centres of the facets of each RVE. Based on the same 

analysis of auxetic structure Type I and Type II, the same longitude deformation 𝑎 are 

initiated underneath the centres of the facets of each RVE, driven by the face links, as 

shown in Figure 4-11. The deformation of the vertices of the fibre connection points 𝑏 

and 𝑐. It is a reversed procedure and it is obvious that 𝑐 < 𝑏. Moreover, the auxetic 

structure fibres in each RVE are relatively more ‘deeply’ embedded in the matrix and 

linked together by face links. Thus, the influence of the relative positions of fibres and 
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matrix are weakened compare to Type I and II. The larger fibre α causes a more intense 

negative Poisson’s ratio behaviour. 

Displacement

c b

a

a

 

Figure 4-11. Illustration of fibre angle influence in Type III. Three different lines represents 

the fibre located below the cubic RVE surfaces. The connection point of the fibres is where 

the initial deformation begins. With the same initial displacement 𝑎, the larger fibre angle 

structure gets the larger overall deformation. 

4.5 Conclusion 

Most materials with a negative Poisson’s ratio are either cellular/porous materials or 

highly anisotropic materials. Solid interpenetrating composites reinforced by three 

different types of fibre-networks are studied in this Chapter. The geometric structures 

are modelled by Boolean operations and meshed with full solid elements. The results 

of the Poisson’s ratios of different structures show they all could have either a positive, 

or a negative, or a ‘zero’ Poisson’s ratio. The magnitude of the Poisson’s ratio depends 

on the combination between the fibre angle 𝛼, the type of the fibre-network, the fibre 

volume fraction, and the mechanical properties of the component materials: 𝐸𝑓 𝐸𝑚⁄ , 𝜈𝑓 

and 𝜈𝑚. The degree of auxetic behaviour of the composite grows as 𝐸𝑓 𝐸𝑚⁄  increases. 

The fibre angle 𝛼 represents the concavity of the lattice reinforcement. A larger fibre 
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angle 𝛼 can lead to large absolute value of negative Poisson’s ratio in type I and type II 

structures, while a small fibre angle 𝛼 can do the same in type III structure. 

As the composites do not contain any pore in structure and the strengthening phase is a 

self-connected network, the Young’s moduli of the three types of composites are 

obviously larger than those of the porous auxetic materials and conventional particle 

composites.  

In addition, as all the three types of composites have cubic symmetry, their mechanical 

properties are almost isotropic. Moreover, structural hierarchy can significantly 

enhance the auxetic behaviour of the composites. Therefore, the three different types of 

auxetic interpenetrating composites could be used not only as functional materials, but 

also as structural materials in engineering applications.   
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Chapter 5 3D Voronoi network reinforced 1 

interpenetrating composites 2 

5.1 Introduction  3 

Although additive manufacturing gives us the possibility to precisely control the 4 

architectures and microstructures of materials, most of the open foams and fibre 5 

reinforced composites existing in nature or fabricated by other alternatives have 6 

randomly connected fibre network microstructures. The simplest way to model the 7 

random open foams and reinforcements in composites is based on idealised unit-cell 8 

structures. Simplified RVEs was used to predict the mechanical properties of open 9 

foams and composites. Warren et al. [191] presented a prediction of linear elastic 10 

properties of open-cell foams by single tetrahedral unit cell with four half-struts of 11 

length L in 1988.  Nine year later in 1997, Warren et al. [192] studied the linear elastic 12 

behaviour of the Kelvin foam, which consists of 14-sided polyhedral cells containing 13 

six squares and eight hexagons, with open cell. A series of detailed research has been 14 

done by Zhu et al. [158,193,194] about the elastic properties, high strain compression 15 

analysis, and creep of open-cell foams with Kelvin open cells. However, a significant 16 

disadvantage of the unit-cell modelling approach is that it does not account for the 17 

natural variations in microstructure that are typical for most foam structures.  18 

Modelling the real structures for the RVEs by random inclusion/fibre distribution 19 

methods is considered an improved approach to analyse the mechanical properties of 20 

composites than representing it with simple regular structures, as the random fibre 21 

distribution is closer to what the pattern of structures really like in most cases except 22 

additive manufacturing. For composites reinforced by unidirectional fibres, Yang et al. 23 

[195] modelled a non-uniform spatial arrangement of fibre reinforcements to generate 24 

the RVE of a ceramic matrix composite in 1997. The distribution of fibres in the  25 

transversal cross-section of the unidirectional fibre reinforced composite can be created 26 

by random sequential expansion [196] and random fibre removal [197]. For randomly 27 
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created fibres and its composites, novel fibre generation methods such as element-1 

carving [198], and other different techniques [199–201] were introduced to model the 2 

random fibre distributions in different types of composites. The experimental image 3 

such as scanning electron microscopy and X-ray tomography could be as references in 4 

modelling the random fibre distribution in the open-cell foams and composites. 3D 5 

probabilistic model of fibres with random horizontal and vertical orientation 𝜃 and 𝜑 6 

between 0 and π was generated based on structural information obtained from 7 

experiments. The fibre curve is generated by Kochanek’s algorithm [202]. This model 8 

was used to represent the microstructure of fibrous networks in low density wood-based 9 

fibreboards [203].  10 

Among various techniques, Delaunay triangulation and Voronoi tessellation are still the 11 

most popular and effective way to model a fabricated interpenetrating composite. In 12 

mathematics and computational geometry, a Delaunay triangulation for a given set P 13 

of discrete points in a plane is a triangulation DT(P) of the convex hull of the points in 14 

which every circumcircle of a triangle is an empty circle, that is to say, no point in P is 15 

inside the circumcircle of any triangle in DT(P). Delaunay triangulation is named after 16 

Boris Delaunay for his work on this topic from 1934 [204]. Delaunay triangulation of 17 

a random point set Pr is proper to represent the randomly connected fibre network as it 18 

maximizes the minimum angle of all the angles of the triangles in the triangulation. 19 

Thus, the fibres created based on the Delaunay triangulation of Pr could avoid triangles 20 

with extremely acute angles, hence a long/thin shape, which does not match the real 21 

circumstance and has undesirable properties when loading on a certain direction. A 22 

typical 2D Delaunay triangulation of 10 random points is shown in Figure 5-1. The 23 

circumcircles are shown in light grey colour. It can be seen that no point is inside the 24 

circumcircles of any triangle. For a set P of points in the 3D space, a Delaunay 25 

triangulation is a triangulation DT(P) such that no point in P is inside the circumsphere 26 

of any d-simplex in DT(P). As Delaunay triangulation can be done in 3D space, it can 27 

also be used to model the reinforcements of 3D composite materials.  28 
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Figure 5-1. A 2D Delaunay triangulation of 10 random points with circumcircles shown. 

The circumcentres of Delaunay triangles are the vertices of the Voronoi tessellation, 1 

which is also called Voronoi diagram or Voronoi partition. Figure 5-2 (a) shows the 2 

centres of circumcircles in red of the Delaunay triangulation DT(P) of a set of points P. 3 

Voronoi cells are shown in Figure 5-2 (b) in red as closed convex hulls of the points.  4 
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Figure 5-2. (a) Delaunay triangulation with all the circumcircles and their centres (b) Voronoi 

diagram can be generated by connecting the centres of the circumcircles 

In the schematic diagram of a 2D Voronoi tessellation of 1.0×1.0 box as Figure 5-3 1 

shows, a finite set of points {p1, ..., pn} in the plane are given. For each point pi, its 2 

corresponding Voronoi cell Ri consists of every point in the plane whose distance to pi 3 

is less than or equal to its distance to any other pi. Or more precisely,  4 

𝑅𝑖 = {𝑥 ∈ 𝑿|𝑑𝑖𝑠𝑡(𝑥, 𝑝𝑖) ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑝𝑗)}, (𝑖 ≠ 𝑗) (5. 1) 5 

X is a metric space with distance function dist, in this chapter dist is the Euclidean 6 

distance function (Different distance functions to define various variations of Voronoi 7 

diagrams, for example Manhattan distance). Voronoi diagram is named after George 8 

Voronoy for his work on this domain from 1908 [205].  9 

(a) (b) 
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Figure 5-3. Schematic diagram of a 2D Voronoi tessellation of 20 random points with x, y 

coordinates from (0,0) to (1,1). 

Based on similar definition, 3D Voronoi cells can be generated. A 3D Voronoi RVE 1 

containing a set of 64 points is shown in Figure 5-4.  2 

 

Figure 5-4. 3D Voronoi cells generated with 64 site points. 

Van der Burg et al. [206] modelled foam structure by random Voronoi cells using finite 3 

element analysis. They started from regular body-centred cubic (BCC) and face-centred 4 

y 

x 
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cubic (FCC) lattice nuclei distributions, subsequently gave the nuclei positions an 1 

increasing random offset and constructed the random structure using the Voronoi 2 

procedure. Open-cell foams were depicted by Voronoi tessellation in order to 3 

investigate the effect of cell irregularity on the elastic properties of open foams [109]. 4 

Voronoi model was used to model the microstructure of fibrous materials and it is found 5 

that the strength of the fibrous material was linearly proportional to its volume fraction 6 

[207]. Voronoi model is also suitable for random fibre networks with crosslinks and 7 

inter-fibre adhesion. Negi and Picu [208] demonstrated that 2D networks of Delaunay 8 

and Voronoi suited the prediction of mechanical behaviour of these kind of materials. 9 

Lake et al. [209] and Zhang et al. [210,211] have proposed a 3D isotropic two-phase 10 

numerical model of collagen-agarose tissue in which a non-periodic Voronoi network 11 

is generated to represent collagen and a neo-Hookean solid to represent the matrix. An 12 

algorithm based on event-driven molecular dynamics theory was developed to rapidly 13 

generate periodic RVEs, and this technique is used to generate Voronoi RVEs for 14 

composite [212]. 15 

In this chapter, the microstructure of a randomly connected fibre network is modelled 16 

via controlled 3D Voronoi tessellation for periodicity. Assemble the fibre network with 17 

solid matrix, RVEs of 3D Voronoi two-phase interpenetrating composites with perfect 18 

periodicity are created. Automatic searching & coupling technique is used to speeds up 19 

the modelling of IPCs with large numbers of Voronoi fibres. The elastic properties of 20 

the 3D Voronoi fibre network reinforced IPCs are predict via finite element analysis. 21 

The effect of numbers and irregularity of the Voronoi fibres in an RVE on the 22 

mechanical properties of the composite is discussed. Moreover, the influence of 23 

mechanical properties of the constituent materials to those of the IPCs is considered. 24 

 25 

 26 

 27 
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5.2 Geometric structures and computational methods 1 

5.2.1 Voronoi fibre network construction 2 

In this chapter, we intend to create an isotropic 3D Voronoi fibre network reinforced 3 

IPC. Cubic RVEs with a length L is selected for periodicity of the materials. In real 4 

foams, the cross-section of the struts is a plateau border and the area of the cross-section 5 

is variable along the strut length, thickening continuously as the vertices are approached. 6 

For simplicity of the model, all the struts are assumed to have the same and constant 7 

plateau border cross-section with diameter d. Uniformly distributed random numbers 8 

are generated in an 𝐿 × 𝐿 × 𝐿 cubic RVE space for the x, y, and z coordinates of the 9 

first point for Voronoi tessellation. After the first point is specified, each subsequent 10 

random point is accepted only if it is greater than a minimum allowable distance 𝛿 from 11 

any existing point, until required number of points n are seeded in the cube. The point 12 

set w0 consists of n points is copied to the rounded (3 × 3 × 3 − 1) cubic spaces to 13 

form an 3𝐿 × 3𝐿 × 3𝐿 RVE construction space for fibre periodicity. A new point set w 14 

of 27 × 𝑛 points is formed and then the Voronoi tessellation is executed based on the 15 

new point set w. A simplified 2D version of this technique are also demonstrated for 16 

illustration, as Figure 5-5 (b) shows. The 3𝐿 × 3𝐿 RVE construction area containing 17 

3 × 3 cubic squares. 18 
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Figure 5-5. The Voronoi diagram of points in construction areas. The points are copied from 

random RVE to (a) 3 × 3 × 3 cubic spaces and (b) 3 × 3 square areas. 

As the distribution of points in each cubic area of the 3 × 3 × 3 cubic spaces are copied 1 

form the middle one, they are the same. Thus, this technique ensures the perfect fibre 2 

reinforcement periodicity on every six facets of the middle RVE.  3 

The uniformly distributed random Voronoi points are generated in 3𝐿 × 3𝐿 × 3𝐿 space 4 

in MATLAB. After this, two different ways to give the points a Voronoi tessellation 5 

and to put the tessellation results into ANSYS APDL automatically are achieved. The 6 

first one is to generate the Voronoi tessellation via a random search method. The 7 

Voronoi tessellation and APDL coding is completed in MATLAB. The second 8 

alternative draws the help from the QuickHull algorithm for convex hulls [213]. A free 9 

convex hull software QHull from qhull.org is used to quickly compute the Voronoi 10 

diagram of the point sets generated. Then the results of Voronoi diagram are sent into 11 

ANSYS via APDL codes for RVE modelling and solving. As the point set size is not 12 

very big for the QuickHull algorithm, the time saving is not obvious. 13 

(a) (b) 
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Figure 5-6. Flowchart of build the 3D Voronoi fibre reinforced composites RVE and calculate 

them in ANSYS. 

5.2.2 Coefficient of regularity 1 

As mentioned before, a minimum allowable distance 𝛿 is introduced to control distance 2 

between the points seeded for Voronoi tessellation. 𝛿 can be used to control the degree 3 

of irregularity. A fully regular 3D Voronoi tessellation is effectively a cubic lattice of 4 

𝑑0 < 𝛿𝑚𝑎𝑥? 

Set 𝑑, 𝐸𝑓, 𝐸𝑚, 𝜈𝑓, 𝜈𝑚 
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tetrakaidekahedral cells. To construct a regular lattice with 𝑛  identical 1 

tetrakaidekahedral cells in the volume V0, a minimum distance d0 between any two 2 

adjacent points is given by [109], 3 

𝑑0 =
√6

2
(

𝑉0

𝑛√2
)

1 3⁄

(5. 2) 4 

To obtain n cells by tessellating a space of volume V0 with Voronoi tessellation, the 5 

maximum 𝛿 should be less than d0; otherwise, it will result in a lack of cells. In this 6 

cubic RVE case, to construct a random Voronoi tessellation with 𝑛 cells in an 𝐿 × 𝐿 × 𝐿 7 

cubic RVE space, the maximum 𝛿 should be 8 

𝛿𝑚𝑎𝑥 =
√6

2

𝐿

21 6⁄ 𝑛1 3⁄
(5. 3) 9 

The coefficient of regularity a 3D Voronoi tessellation with 𝑛 cells in an 𝐿 × 𝐿 × 𝐿 10 

cubic RVE space can be denoted as 11 

𝑐𝑜𝑟 =
𝛿

𝛿𝑚𝑎𝑥

(5. 4) 12 

For a fully regular Voronoi tessellation with tetrakaidekahedral cells, 𝑐𝑜𝑟 = 1; while 13 

for a completely random one, 𝑐𝑜𝑟 = 0; The method to define coefficient of regularity 14 

coincident with the Voronoi network regularity control in reference [109]. 15 

5.3.3 Pre-process techniques for finite element analysis 16 

The 3D Voronoi network is designed as the reinforcement of the composite structure. 17 

Beam elements is used to represent the 3D Voronoi fibre reinforcement instead of solid 18 

elements used in the previous 2 chapters. If two or more solid cylinder struts crosses 19 

with a small angle, e.g. less than 10°, cross section surfaces of curved silver triangles 20 

with very sharp angles will be created. The meshing quality to both fibres and the matrix 21 

would be very low with solid elements due to the sharp surfaces introduced in some of 22 

the joints of the fibres at the vertices of Voronoi cells with small angles. Manually 23 

control those angles are possible, but not coincident with really reinforcement foam 24 

fabricated. Moreover, the test shows that even a model with 50 fibres, which is far from 25 

enough to establish a transversely isotropic structure, generates approximately 1~2 26 
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million solid elements [214]. Such many elements dramatically increase the pre-1 

processing time and slow down the computing speed. Therefore, beam element is a 2 

better option in representing Voronoi fibres with much fewer meshing elements. As 3 

there are no overlaps in a Voronoi fibre network, it will be discussed later that the result 4 

variation between beam elements and its solid counterparts is not significate in 5 

predicting the mechanical properties of 3D Voronoi fibre reinforced IPCs. A solid circle 6 

cross section is used to represent the diameter of the fibres. Rigid connection is applied 7 

on the vertices of the Voronoi cells to link all the fibres together. Part of a periodic 3D 8 

Voronoi fibre network generated from 27 Voronoi points meshed with beam elements 9 

is shown in Figure 5-7. 10 

 

Figure 5-7. 3D Voronoi fibre network meshed with beam element. This figure is plotted from 

x axis perspective of the fibre network. 

An 𝐿 × 𝐿 × 𝐿 solid cube with the same size as the RVE representing the matrix is 11 

modelled to match the 3D Voronoi fibre network. The matrix is meshed by SOLID186 12 

cuboid elements and is embedded by the 3D Voronoi fibre network. However, the fibre 13 

network and the matrix are still independent from each other with no bond or constraint 14 

on their nodes after meshing. Constraints must be applied to the corresponding nodes 15 

of the fibre network and the matrix to ensure that they have the same translation 16 

displacements to transfer load between fibres and matrix. A two-step automatic 17 



Chapter 5. 3D Voronoi network reinforced interpenetrating composites 

114 
 

searching & coupling (ASC) technique [215] is applied to constrain the nodes on 3D 1 

Voronoi fibre network to the most proper nodes of the solid matrix: finding the nearest 2 

matrix nodes to every fibre nodes; then coupling the fibre nodes with the matrix nodes 3 

found.  4 

 

Figure 5-8. The sketch for the ASC technology [215]. 

As Figure 5-8 shows, Nf represent a node on one of the fibres and Nm is the 5 

corresponding node closest to node Nf. For each Nf, the node Nm is found by searching 6 

a node with the smallest distance between Nf and the nodes of the matrix. After that, 7 

each pair of nodes Nm and Nf are coupled by a constraint equation. The process can be 8 

indicated by coupling the translational degree of freedoms Uf of the node Nf and the 9 

corresponding translational degree of freedoms Um of a matrix node Nm as  10 

 𝑈𝑓 = 𝑈𝑚 (5.5) 11 

When Nm lies on the facets, edges, or vertex of an RVE, the constraint equation of 12 

periodic boundary condition is also applied on 𝑁𝑚 and the matrix node 𝑁𝑚′  as 13 

 𝑈𝑚 − 𝑈𝑚′ = 𝑈𝑗 − 𝑈𝑗′  (5.6) 14 

Where 𝑈𝑚 and 𝑈𝑚′ are the translational degree of freedoms of 𝑁𝑚 and 𝑁𝑚
′ , and 𝑈𝑗 and 15 

𝑈𝑗′  are the translational degree of freedoms of another pair of nodes which locate on 16 

the same facets of the RVE. To remove the over-constraint caused by Equation 5.5 and 17 

Equation 5.6, we substitute Equation 5.5 into Equation 5.6 to have 18 
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 𝑈𝑓 − 𝑈𝑚′ = 𝑈𝑗 − 𝑈𝑗′  (5.7) 1 

By this procedure the over-constraint is eliminated. Therefore, ASC technique can 2 

avoid the conflict between PBC and the fibre/matrix nodes coupling, and PBC can be 3 

successfully applied on the RVEs. By the aforementioned procedures the fibre network 4 

and matrix are assembled together, and the interpenetrating composite is constructed. 5 

In order to compensate the additional stiffness introduced by the beam element 6 

representing the fibres embedded in the solid element representing the matrix, the 7 

Young’s modulus of fibre is modified as reference [215] shows 8 

 𝐸𝑓 = 𝐸𝑓 − 𝐸𝑚 (5.8) 9 

A simple validation is conducted by using a composite structure with only one beam in 10 

the middle of a cubic RVE. Both the ASC technique and full solid model as Figure 5-9  11 

shows are used to compare the Young’s moduli results. 𝐸𝑚 = 1, 𝐸𝑓 = 10, 𝜈𝑚 = 0.3 12 

and 𝜈𝑓 = 0.2 are used in this validation. The element size of the fibres and the matrix 13 

are denoted as esf and esm. In this case, esf=2 and esm=1.  14 

 

(a) 
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(b) 

Figure 5-9. Simple validation model with single beam in the cubic matrix. (a) full solid 

model. (b) ASC model. 

With the same denotation in Chapter 3, a small uniaxial translational load of 0.1% of 1 

the RVE length L along x axis is applied on face 𝐹𝑥𝑝 of both ASC model and solid 2 

model. The opposite face 𝐹𝑥𝑛  is fixed. 3 

The results of the Young’s moduli of the composite are listed in Table 5-1 below. 4 

Table 5-1. Validation results of Young’s moduli obtained from ASC and full solid model. 5 

Volume 

fraction 

Model 

5% 10% 15% 20% 25% 30% 

Full solid 1.4507 1.9013 2.3518 2.8022 3.2525 3.7028 

ASC 1.4824 1.9321 2.3817 2.8314 3.2810 3.7307 

Difference 2.19% 1.62% 1.27%  1.04% 0.88% 0.75% 

It can bees seen from the results that the difference between full solid model and ASC 6 

technique is around 1% to 2%, which is acceptable.  7 

It is also necessary to take the accuracy of bending into consideration when using ASC 8 

technique. 9 
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To validate this, a small normalized uniaxial force load of 1 on face 𝐹𝑥𝑝 along z axis is 1 

applied on face 𝐹𝑥𝑝 of both ASC model and solid model. The opposite face 𝐹𝑥𝑛  is fixed. 2 

The results of the displacement along z axis on face 𝐹𝑥𝑝 are listed in Table 5-2 below. 3 

Table 5-2. Validation results of Young’s moduli obtained from ASC and full solid model. 4 

Volume 

fraction 

Model 

5% 10% 15% 20% 25% 30% 

Full solid 1.2350 1.0833 0.9368 0.8024 0.6870 0.5904 

ASC 1.2158 0.9667 0.8373 0.6872 0.5741 0.4730 

Difference 1.58% 8.33% 11.88%  16.76% 19.66% 24.82% 

It can bees seen from the results that the difference between full solid model and ASC 5 

technique varies from 1.6% to 24%. It is acceptable when the fibre volume fraction is 6 

smaller than 20%. 7 

An RVE of 3D Voronoi fibre network created by 64 Voronoi points is show in Figure 8 

5-10 (a). RVE of 3D Voronoi fibre network constrained with the matrix created by 12 9 

Voronoi points is show in Figure 5-10 (b). 10 



Chapter 5. 3D Voronoi network reinforced interpenetrating composites 

118 
 

 

Figure 5-10 RVE of 3D Voronoi fibre networks: (a) 3D Voronoi fibre network created by 64 

Voronoi points. The rotational degrees of freedom of the beam element nodes on facets, edges 

and vertices of the RVEs are constrained, shown in yellow. (b) 3D Voronoi fibre network 

created by 12 Voronoi points. This small points number is selected to show to ASC coupling 

(in light blue) of the fibre nodes to the matrix nodes (not shown). 

A general periodic boundary condition is added at each vertex, edge, and facet of the 1 

cubic RVE, as Chapter 3.2 showed. In addition, it is worth to mention that the nodes 2 

created by solid elements have no rotational degrees of freedom. However, the nodes 3 

created by beam elements outputs both translations and rotations after solving. As there 4 

are six degrees of freedom in beam fibres while only three degrees of freedom in the 5 

solid matrix, the rotational degrees of freedom of the fibre nodes which are couple on 6 

the facets, edges or vertices of the RVEs have to be constrained in the same periodic 7 

way as the translational degrees to achieve a perfect PBC. 8 

In order to predict the elastic performance of the composites by tracking how Young’s 9 

Modulus of the composite 𝐸𝑐 is affected by different constituent material properties and 10 

volume fractions. 𝐸𝑚 = 1 is assumed for generality and simplicity.  11 

The parameters used in this chapter are listed in Table 5-3. 12 

Table 5-3. Parameters of constituent materials for the elasticity of 3D Voronoi reinforced IPCs. 13 

(a) (b) 
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𝐸𝑓 5 10 50 100  

𝜈𝑓 0.1 0.2 0.49 0.05 0.05 

𝜈𝑚 0.3 0.3 0.05 0.49 -0.8 

𝑉𝐹𝑓 1% 5% 10% 15% 20% 

5.3 Results 1 

5.3.1 Accuracy and mesh sensitivity of ASC technique 2 

The coupling quality of the nodes of the fibres and matrix is largely affected by the 3 

element size. When meshed with large elements, it is more possible that the distance 4 

between closest Nm for Nf is too far to obtain proper results. However, the element size 5 

used in mesh cannot be too small as the solving time of the model is unacceptable for a 6 

very large meshed model. RVE length 𝐿 = 30  is used in all these Voronoi fibre 7 

networks. To give an overview of the effect of element size used in the mesh of fibres 8 

and matrix on the mechanical properties of the composite, different combinations of esf 9 

and esm are considered in this section. Instead of different sizes of element used in the 10 

matrix and fibres, the ratio between the fibre and matrix is what matters most. The ratio 11 

between the element sizes of matrix and fibre with the length of the cube affects the 12 

result as well. Different element sizes of the fibres with beam elements are given in 13 

Table 5-4, while the element size of the matrix is set as 1. The coefficient of regularity 14 

is chosen to be 𝑐𝑜𝑟 = 0.5. The number of Voronoi points and cells presenting the 15 

number of fibres and volume fraction used in the mesh sensitivity check are 𝑛 =16 

4 × 4 × 4 = 64 and 𝑓𝑓 = 10%, respectively. The other parameter such as mechanical 17 

properties of the constituent materials are specified as 𝐸𝑚 = 1, 𝐸𝑓 = 100, 𝜈𝑚 = 0.3 18 

and 𝜈𝑓 = 0.1.  19 

Table 5-4. Element sizes used in Mesh Group 1 20 
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Mesh 

Number 

Mesh 

1 

Mesh 

2 

Mesh 

3 

Mesh 

4 

Mesh 

5 

Mesh 

6 

Mesh 

7 

Mesh 

8 

Mesh 

9 

Mesh 

10 

esf  0.0625 0.125 0.25 0.5 1 2 4 8 16 32 

esm  1 1 1 1 1 1 1 1 1 1 

With the element size combination of Mesh Group 1 shown in Table 5-4, the Young’s 1 

moduli of the same RVE in x direction Ex are listed in Table 5-5. A more direct 2 

illustration is given in Figure 5-11 (a). 3 

Table 5-5. Young’s moduli obtained by solving the models with mesh group 1. 4 

Mesh 

Number 

Mesh 

1 

Mesh 

2 

Mesh 

3 

Mesh 

4 

Mesh 

5 

Mesh 

6 

Mesh 

7 

Mesh 

8 

Mesh 

9 

Mesh 

10 

Young’s 

moduli of 

the 

composite 

59.79 30.22 15.44 8.32 4.51 2.58 2.01 1.95 1.95 1.95 

 5 
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Figure 5-11. Mesh sensitivity of ASC technique for 3D Voronoi fibre network reinforced 

IPCs (a) Young’s moduli of the composite as a function of fibre element size. (b) Young’s 

moduli of the composite as a function of matrix element size. 

It can be seen that if fibre element size is relatively small while the matrix element size 1 

is relatively large, the Young’s Moduli of the composite obtained can be extraordinarily 2 

large. It is almost impossible for a random fibre reinforced composite with fibre volume 3 

fraction 𝑉𝑓 = 10% to reach that a large number, almost 5 times larger than its Voigt 4 

limit (𝐸𝑐)𝑉𝑜𝑖𝑔𝑡 = 10.9. This can be caused by the big difference between fibre element 5 

size and matrix element size, which lead to the constraint of different nodes on the fibres 6 

to the same nodes on the matrix. When the fibre element size is as small as around 0.1 7 

while the matrix size is 1 as the mesh 1 and mesh 2 shown in Table 5-4, that means 10 8 

nodes of the fibre will be constrained on the same node of the matrix. That is highly 9 

over constrained than that to represent a normal fibre-matrix interface, thus lead to the 10 

extreme overestimation of the fibre stiffness in Figure 5-11 a. When the fibre mesh size 11 

is large enough (larger than 5 in Figure 5-11 a), even larger than the length of most of 12 

the fibres, the fibres are all meshed with a single beam element. As the mesh condition 13 

is the same for one element per fibre, the results are steady. Another mesh group is 14 

given in Table 5-6 as the element size of the fibre remains unchanged while the element 15 

size of the matrix varies from 1/10 of the fibre element size and 4 times of the fibre 16 

element size. The results are provided in Figure 5-11 (b). 17 

(a) (b) 
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Table 5-6. Young’s moduli obtained by Mesh Group 2 

Mesh Number 
Mesh 

1 

Mesh 

2 

Mesh 

3 

Mesh 

4 

Mesh 

5 

Mesh 

6 

Mesh 

7 

Mesh 

8 

esf 2 2 2 2 2 2 2 2 

esm 0.2 0.3 0.4 0.5 1 2 4 8 

Young’s moduli of 

the composite 
1.805 1.809 1.838 1.878 2.583 5.030 10.661 31.774 

According to Table 5-5 and Table 5-6 above, rules of element size can be summarized. 1 

Firstly, a proper element size combination of the two constituent materials must be with 2 

a relatively large 𝑒𝑠𝑓 𝑒𝑠𝑚⁄  to make the ASC coupling nodes as close as possible. This 3 

can avoid overestimation of the elastic properties of the composite. Secondly, the 𝑒𝑠𝑓 4 

need to be small enough to give a good description of the fibres. Finally, as the esf need 5 

to be small enough and 𝑒𝑠𝑓 𝑒𝑠𝑚⁄  need to be large, the corresponding esm need to a small 6 

number as well. However, it cannot be too small for the FE analysis will take too long 7 

to finish solution.  8 

Following these three rules, four different combinations of 𝑒𝑠𝑓 and 𝑒𝑠𝑚 are selected in 9 

Table 5-7. ASC technique with these 𝑒𝑠𝑓  and 𝑒𝑠𝑚  combinations are compared with 10 

pure solid models of structures Type I and Type III used in Chapter 3. 11 

Table 5-7. Three different combinations of esf and esm 12 

Combination number 

Element size 
Set 1 

Set 3 
Set 4 

esf 2 1 1 

esm 1 0.5 0.2 

Figure 5-12 illustrates the RVEs of Type I and Type III built by ASC technique with 13 

beam elements for the fibres and solid elements for the matrix.  14 
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Figure 5-12. Illustrations of RVEs of Type I and Type III structures built by ASC technique 

with beam elements for the fibres and solid elements for the matrix. 

It is worthwhile to mention that Type III structure cannot be modelled with the same 1 

RVE selection as that in chapter 3 because solid element fibres can be intersected in 2 

axial direction while the beam element fibres cannot. 3 

Figure 5-13 gives a comparison of the composite elastic moduli predicted by ASC 4 

coupled models and full solid models.  5 

(a) (b) 
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Figure 5-13. Comparisons of 𝐸𝑐 predicted by ASC coupled models and full solid models. (a) 

regular structured model Type I. (b) regular structured model Type III. 

In Figure 5-13 (a), the prediction of 𝐸𝑐 under different 𝑒𝑠𝑓 and 𝑒𝑠𝑚 settings are almost 1 

exactly the same. However, in Figure 5-13 (a), the difference between the full solid 2 

model and ASC model becomes larger as the fibre volume fraction increases. As we 3 

only consider volume fractions between 1% and 20%, the accuracy of ASC technique 4 

is acceptable. The largest difference between the results of solid model and ASC model 5 

is less than 10% in Figure 5-13 (a) and is less than 13% in Figure 5-13 (b), when 𝑒𝑠𝑓 =6 

2 and 𝑒𝑠𝑚 = 1 . The results are slight better when 𝑒𝑠𝑓 = 1  and 𝑒𝑠𝑚 = 0.5 , but the 7 

calculations time is much longer. In summary, a combination of element sizes 𝑒𝑠𝑓 = 2 8 

and 𝑒𝑠𝑚 = 1 is proper for the simulations. 9 

 10 

5.3.2 Impact of random fibre distribution 11 

The 3D Voronoi fibre structures are constructed by randomly generated points in 12 

𝐿 × 𝐿 × 𝐿 space. All the fibre networks are different in structure with all the same 13 

parameters such as 𝑐𝑜𝑟 , fibre density and the mechanical properties of constituent 14 

materials. Therefore, the elastic behaviour of the RVEs of the composite varies from 15 

specimen to specimen. To test the impact of random fibre distributions to the elastic 16 

properties of the 3D Voronoi fibre reinforced composites, ANSYS batch model for 17 

(a) (b) 
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massive calculation is used. Means and standard variances of the elastic properties are 1 

obtained from a number of independent models with the same parameters. This will 2 

determine the Voronoi points needed to obtain a nearly isotropic RVE to represent the 3 

composite. 10 random models of the 3D Voronoi fibre network composite RVEs 4 

constructed by 𝑛 = 4 × 4 × 4 = 64  and 𝑛 = 6 × 6 × 6 = 216  Voronoi points are 5 

created and solved to obtain the Young’s moduli of the composite. The volume fractions 6 

of the fibres are chosen as 1% and 10%. The elastic properties of the constituent 7 

materials are 𝐸𝑚 = 1, 𝐸𝑓 = 100, 𝜈𝑚 = 0.3 and 𝜈𝑓 = 0.1. The Young’s moduli of the 8 

composites constructed with 64 Voronoi points with 1% fibre volume fraction are listed 9 

in Table 5-8. The standard variances 𝑆𝑡𝑉𝑎𝑟 of the Young’s moduli 𝐸𝑐𝑥, 𝐸𝑐𝑦, and 𝐸𝑐𝑧 10 

obtained from 10 RVEs constructed by 64 Voronoi points with 1% fibre volume 11 

fraction are around 1%, small enough to be ignored in the prediction of the mechanical 12 

properties of the composite. In addition, the standard variances between the Young’s 13 

moduli Ecx, Ecy, and Ecz obtained from each RVEs are also small enough. Most of them 14 

are less than 1%. 15 

Table 5-8. Young’s moduli of 10 3D Voronoi fibre network composite RVEs constructed with 16 

64 Voronoi points and 1% fibre volume fraction 17 

 

Sets  

1 2 3 4 5 6 7 8 9 10 StVar 

Ecx 1.164 1.160 1.160 1.152 1.154 1.158 1.153 1.144 1.144 1.173 0.009 

Ecy 1.167 1.151 1.160 1.137 1.145 1.162 1.145 1.152 1.152 1.167 0.010 

Ecz 1.163 1.172 1.153 1.148 1.163 1.174 1.140 1.163 1.160 1.146 0.011 

StVar 0.002   0.011  0.004   0.009   0.009 0.008 0.007 0.010 0.008 0.014 - 

For 10% fibre volume fractions, the Young’s moduli of the composites constructed with 18 

64 Voronoi points are listed in Table 5-9. From Table 5-9, the standard variances of the 19 

Young’s moduli Ecx, Ecy, and Ecz obtained from 10 RVEs constructed by 64 Voronoi 20 

points at 10% fibre volume fraction are larger than those obtained at 1% fibre volume 21 

fraction. However, the figures are still small enough to be ignored in the prediction of 22 
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the mechanical properties of the composite. In addition, the standard variances between 1 

the Young’s moduli Ecx, Ecy, and Ecz obtained from each RVEs are also small enough. 2 

Most of them are less than 5%. 3 

Table 5-9. Young’s moduli of 10 3D Voronoi fibre network composite RVEs constructed with 4 

64 Voronoi points and 10% fibre volume fraction. 5 

 

Sets  

1 2 3 4 5 6 7 8 9 10 StVar 

Ecx 2.648 2.642 2.566 2.538 2.679 2.579 2.575 2.691 2.588 2.532 0.057 

Ecy 2.579 2.588 2.585 2.665 2.578 2.663 2.542 2.565 2.668 2.674 0.051 

Ecz 2.637 2.502 2.553 2.586 2.655 2.652 2.659 2.635 2.655 2.700 0.059 

StVar 0.037 0.071 0.016 0.064 0.053 0.046 0.060 0.063 0.043 0.090 - 

The Young’s moduli of the RVEs constructed with same parameters but 216 Voronoi 6 

points at 1% and 10% fibre volume fractions are listed in Table 5-10 and Table 5-11.  7 

Table 5-10. Young’s moduli of 10 3D Voronoi fibre network composite RVEs constructed with 8 

216 Voronoi points and 1% fibre volume fraction. 9 

 

Sets  

1 2 3 4 5 6 7 8 9 10 StVar 

Ecx 1.179 1.180 1.173 1.175 1.172 1.178 1.181 1.178 1.180 1.180 0.0032 

Ecy 1.173 1.182 1.181 1.180 1.179 1.180 1.175 1.176 1.175 1.173 0.0034 

Ecz 1.173 1.178 1.176 1.172 1.178 1.180 1.180 1.172 1.179 1.173 0.0032 

StVar 0.004 0.002 0.004 0.004 0.004 0.001 0.003 0.003 0.003 0.004 - 

Table 5-11. Young’s moduli of 10 3D Voronoi fibre network composite RVEs constructed with 10 

216 Voronoi points and 10% fibre volume fraction. 11 
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Sets  

1 2 3 4 5 6 7 8 9 10 StVar 

Ecx 2.706 2.713 2.691 2.718 2.711 2.709 2.712 2.696 2.716 2.700 0.0087 

Ecy 2.704 2.712 2.692 2.710 2.692 2.699 2.707 2.712 2.692 2.710 0.0084 

Ecz 2.716 2.691 2.713 2.693 2.693 2.709 2.712 2.719 2.700 2.707 0.0104 

StVar 0.007 0.013 0.013 0.013 0.011 0.006 0.003 0.011 0.012 0.005 - 

This discussion is summarized in Figure 5-14 below. The standard variances of the 1 

Young’s moduli Ecx, Ecy, and Ecz obtained from 10 RVEs constructed by 216 Voronoi 2 

points are relatively smaller than those obtained from 64 Voronoi points. However, the 3 

RVE model size of the 216 Voronoi points is more than 4 times larger than the RVE 4 

model size of 64 Voronoi points (16MB to 4MB). It needs to be emphasized that the 5 

solving time of the 216 Voronoi points model is more than 10 times larger than that of 6 

the 64 Voronoi points model. The standard variances between Young’s moduli Ecx, Ecy, 7 

and Ecz also reduce from 64 Voronoi points to 216 Voronoi points. However, as the 8 

standard variances are small, but the 64 and 216 cell 3D Voronoi fibre composites can 9 

both be regarded as nearly isotropic. 10 
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Figure 5-14. Young’s moduli of 10 random RVEs from four combinations of Voronoi points 

and volume fractions 

5.3.3 Impact of number of fibres in an RVE 1 

In order to review the impact of fibre numbers in an RVE, composites with the same 2 

volume fraction but different numbers of Voronoi fibres in same RVEs need to be 3 

modelled.  For beam elements, the volume fraction of the fibre is determined by both 4 

the total fibre length and fibre cross section diameter. The shape and dimensions of the 5 

cross section can be defined in ANSYS. It is assumed that al the fibres have the same 6 

cross section with diameter d. The total fibre length can be precisely calculated by 7 

commercial computer aided analysis software such as ANSYS before mesh is generated. 8 

Therefore, the volume fraction of the fibres can be calculated by  9 

𝑉𝐹𝑓 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑏𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
=

𝑙𝑡 × 𝜋 × (
𝑑
2)

2

𝐿3
(5. 9)

 10 

 11 

where 𝑙_𝑡 is the total fibre length calculated by ANSYS after fibre entity modelling. 12 

Then the fibre diameter can be derived as 13 

𝑑 = 2 × √
𝑉𝐹𝑓 × 𝐿3

𝑙𝑡 × 𝜋

2

(5. 10) 14 
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The influence of the intersection part is small enough to be ignored. Then we can control 1 

the fibre volume fractions of RVEs with different fibre density to be with same by 2 

define different fibre cross section diameters.  3 

Different fibre density is achieved by build networks with different number of Voronoi 4 

points. Figure 5-15 shows the fibre density difference between four type of 3D Voronoi 5 

fibre network reinforced composites created by n = 3 × 3 × 3 = 27, n = 4 × 4 × 4 =6 

64, n = 6 × 6 × 6 = 216 and n = 7 × 7 × 7 = 343 Voronoi points. For transparency 7 

the matrices are not shown on the figures. Elastic properties of the constituent materials 8 

are 𝐸𝑚 = 1, 𝐸𝑓 𝐸𝑚⁄ = 100 and 2, 𝜈𝑚 = 0.3, 𝜈𝑓 = 0.1. 9 
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Figure 5-15. Fibre density of four types of 3D Voronoi fibre network reinforced composites 

created by different number of Voronoi points: (a) Type I: fibre network create from 27 

points, (b) Type II: fibre network create from 64 points, (c) Type III: fibre network create 

from 216 points, (d) Type IV: fibre network create from 343 points. 

To reach the same fibre volume fractions, the radius (d/2) of the fibres for each type of 1 

the four 3D Voronoi composites are given in Table 5-12. The total fibre length 𝑙_𝑡 2 

varies in different rando models even the other parameters are the same. Therefore, the 3 

fibre diameter is also different in order to reach the same fibre volume fractions. Table 4 

5-12 is presented regarding one of the 10 random models of each Type. 5 

(a) (b) 

(c) (d) 
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Table 5-12. Radius of the fibres in four types of RVEs of 3D Voronoi IPCs*. 

 1% 5% 10% 15% 20% 

d/2 Type I 0.2349 0.5253 0.7430 0.9099 1.0507 

d/2 Type II 0.1768 0.3954 0.5592 0.6848 0.7908 

d/2 Type III 0.1177  0.2633 0.3723 0.4560 0.5266 

d/2 Type IV 0.1006  0.2250 0.3182 0.3897 0.4500 

*The numbers listed above is calculated by 1 RVE under each Type and fibre volume fraction 1 

combination 2 

The Young’s moduli of each volume fraction and Voronoi points combination such as 3 

Type I 1% and Type IV 10% are all calculated by statistical average of 10 random 4 

models.  5 

Table 5-13. Young’s moduli of different types of 3D Voronoi fibre reinforced composites. 6 

 1% 5% 10% 15% 20% 

𝐸𝑐 Type I 1.140 1.616 2.344 3.092 3.938 

𝐸𝑐 Type II 1.167 1.747 2.629 3.515 4.515 

𝐸𝑐 Type III 1.186 1.869 2.716 3.786 4.805 

𝐸𝑐 Type IV 1.206 1.906 2.905 3.951 5.091 

It is noticed that the Young’s moduli of the composites built with more fibres larger 7 

than those which have less fibres with same volume fractions. For example, the 8 

Young’s moduli of the composites build with 216 Voronoi points are larger than those 9 

acquired from the 64 Voronoi points ones when their volume fractions are both 10%. 10 

The reason may lie in that the increase of fibres creates more contact areas. Because 11 

when two different fibre networks have the same volume, longer fibres with smaller 12 
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cross section diameters have larger surface areas. A simple schematic figure is given 1 

below as Figure 5-16 shows. 2 

r1

r2l 1

l 2

 

Figure 5-16. A possible explanation of why the Young’s moduli of the composite at the same 

volume fraction with more fibres are larger than those which have less fibres. 

It is obvious that given that the fibre volume fraction is the same and the fibres are all 3 

with same cross-section diameter, more random fibres means a larger total fibre length. 4 

If 𝜋𝑟1
2𝑙1 = 𝜋𝑟2

2𝑙2 and 𝑙1 > 𝑙2, than it can be referred that the surface area 4𝜋𝑟1𝑙1 >5 

4𝜋𝑟2𝑙2. In the perspective of FE analysis, more fibres can get more meshed elements, 6 

thus more nodes. Then more couplings of the node pairs are created in the boundary 7 

conditions of the FE model. By increasing the fibre density, the elastic performance of 8 

3D Voronoi fibre reinforced composite can be enhanced with same volume of 9 

reinforcement material, thus improve its weight-stiffness ratio. When the fibre volume 10 

fraction goes large, the effect of fibre density on the Young’s moduli of the composite 11 

is enlarged. The Young’s moduli of these composites are given in Figure 5-17. The 12 

vertical error bars represent the standard variances of the Young’s moduli of 10 13 

different random RVEs. The different of the Young’s moduli of Type I is large, while 14 

that difference is very small when the point number reaches 216 and 343 (a standard 15 
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variance from 3‰ to 5‰ at 216 Voronoi points and less than 0.5‰ at 343 Voronoi 1 

points, almost fully invisible in Figure 5-17).  2 

 

Figure 5-17. Effect of the fibre density of 3D Voronoi IPCs with same fibre volume fraction 

on their Young’s moduli. 

5.3.4 Effect of coefficient of regularity on elastic modulus 3 

The coefficient of regularity determines the randomness of the distribution of Voronoi 4 

points. Therefore, the fibre distribution is largely affected by the coefficient of 5 

regularity. To reveal the effect of cor on the elastic properties of 3D Voronoi fibre 6 

reinforced composite, four different cors are considered as Table 5-14 shows. 7 

 8 

Table 5-14. coefficient of regularities of the 3D Voronoi fibre reinforced composite 9 

cor 0.1 0.3 0.5 0.7 

An illustration of 3D Voronoi fibre reinforcement build with 64 Voronoi points at 10 

different cors are shown in Figure 5-18, while 3D Voronoi fibre reinforcement build 11 

with 27 and 216 Voronoi points at different cors are shown in Figure 5-19 and Figure 12 

5-20. As an RVE of 3D Voronoi fibre build with 64 Voronoi points contains around 13 
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1000 fibres, the regularity factor shows little difference regarding the microstructures 1 

of the RVEs. 2 

 

Figure 5-18. 3D Voronoi fibres network build with 64 Voronoi points at different cors: (a) 

𝑐𝑜𝑟 = 0.1; (b) 𝑐𝑜𝑟 = 0.3; (c) 𝑐𝑜𝑟 = 0.5; (d) 𝑐𝑜𝑟 = 0.7; 

 3 

(a) (b) 

(c) (d) 
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Figure 5-19. 3D Voronoi fibres network build with 27 Voronoi points at different cors: (a) 

𝑐𝑜𝑟 = 0.1; (b) 𝑐𝑜𝑟 = 0.3; (c) 𝑐𝑜𝑟 = 0.5; (d) 𝑐𝑜𝑟 = 0.7; 

 1 

(c) (d) 

(b)  (a)  
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Figure 5-20. 3D Voronoi fibres network build with 343 Voronoi points at different cors: (a) 

𝑐𝑜𝑟 = 0.1; (b) 𝑐𝑜𝑟 = 0.3; (c) 𝑐𝑜𝑟 = 0.5; (d) 𝑐𝑜𝑟 = 0.7; 

The structure different between different cors is hard to observe in RVE models. To 1 

determine the effect of cors to the elastic properties of the 3D Voronoi fibre reinforced 2 

composite, the Young’s moduli of the composites with different cors as a function of 3 

the fibre volume fractions are calculated by statistical average of 10 random models. 4 

The elastic properties of the constituent materials are 𝐸𝑚 = 1, 𝐸𝑓 = 100, 𝜈𝑚 = 0.3 and 5 

𝜈𝑓 = 0.1. The error bars are the standard variances of the Young’s moduli in x, y and z 6 

directions of the 10 models (30 Young’s moduli). 7 

(a) (b) 

(a) (b) 
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Figure 5-21. Young’s moduli of the composites with different cors as a function of the fibre 

volume fractions, RVEs are create with 27 Voronoi cells. 

Figure 5-21 shows that even the number of Voronoi cells is as small as 27 (3 × 3 × 3), 1 

the Young’s moduli of the composite obtained by the average of 10 random models are 2 

not with too much difference between different cors. As the cor increases, the Young’s 3 

moduli of the composite increase a very small amount in the same fibre volume 4 

fractions. The Young’s moduli of the composite at 𝑐𝑜𝑟 = 0.7 and 𝑓𝑓 = 20% is 1.8% 5 

larger than that at 𝑐𝑜𝑟 = 0.1 and 𝑓𝑓 = 20%. However, cors can affect the standard 6 

variance between random models and the standard variance between x, y and z 7 

directions.  8 
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Figure 5-22. the standard variance of RVE’s Young’s moduli between random RVEs: (a) 27 

cells (b) 64 cells (c) 216 cells (d) 343 cells. 

It can be seen from each subfigure in Figure 5-22 that the standard variance of RVE’s 1 

Young’s moduli becomes smaller when cor is larger. The most important factor to 2 

determine the stability of 𝐸𝑐 is the fibre number. As the Voronoi increases, the standard 3 

variance of 𝐸𝑐 decreases in order of magnitude.  4 

5.3.5. Influence of Young’s moduli of the constituent materials on the 5 

Young’s moduli of the composite 6 

In order to find the influence of the elastic properties of constituent materials, their 7 

Young’s moduli 𝐸𝑓 and 𝐸𝑚 are considered. Young’s modulus of the matrix 𝐸𝑚 is fixed 8 

as 𝐸𝑚 = 1 for generality, while Young’s moduli of the fibre 𝐸𝑓  are chosen as 𝐸𝑓 =9 

(a) (b) 

(c) (d) 
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5, 10, 50 and 100. The combination of constituent’s Poisson’s ratios 𝜈𝑓 and 𝜈𝑚 is kept 1 

constant at 𝜈𝑓 = 0.1 and 𝜈𝑚 = 0.3. The coefficient of regularity is 𝑐𝑜𝑟 = 0.5 in this 2 

case. As the RVEs of 3D Voronoi fibre reinforced composite is nearly isotropic, the 3 

Young’s moduli of the composite 𝐸𝑐 is calculated by averaging the 𝐸𝑐𝑥, 𝐸𝑐𝑦 and 𝐸𝑐𝑧. 4 

For time consuming issue in calculation, the of Young’s moduli of the composite 𝐸𝑐 is 5 

calculated by a mean of 10 random RVEs when Voronoi cell is less than 100 and by 1 6 

random RVE when over 100. The prediction of Young’s moduli of the composite 𝐸𝑐 as 7 

a function of the fibre volume fraction is given in Figure 5-23 (a) to (d) with different 8 

fibre densities. 9 

 

Figure 5-23. Young’s moduli of the composite 𝐸𝑐 as a function of the fibre volume fraction 

(a) 27 Voronoi cells. (b) 64 Voronoi cells. (c) 216 Voronoi cells. (d) 343 Voronoi cells. 

Figure 5-23 shows that the Young’s moduli of the composite increases with the increase 10 

of the fibre volume fraction when 𝐸𝑓 𝐸𝑚⁄ > 1. The larger the volume fractions are, the 11 

(c) (d) 

(a) (b) 
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bigger differences between small and large 𝐸𝑓 𝐸𝑚⁄  combinations will be. Moreover, the 1 

error bars in Figure 5-23 (a) and (b) shows that the standard variance of the Young’ 2 

modulus 𝐸𝑐 also goes larger when 𝐸𝑓 𝐸𝑚⁄  is larger. The standard variances of 𝐸𝑐 are 3 

not shown in Figure 5-23 (c) and (d) as they are too small to show in the figures and 4 

thus can be ignored. Therefore, only one random RVE is considered in each of these 5 

two subfigures. Besides, it can be observed that the Young’s moduli obtained with 6 

larger fibre densities are larger than those with small fibre densities. A comparison is 7 

given in Figure 5-24 below. 8 

 

Figure 5-24. Comparison of the effect of the combination of 𝐸𝑓 𝐸𝑚⁄  and Voronoi cell number 

on the relationship between 𝐸𝑐 and 𝑉𝐹𝑓; (a) 𝐸𝑓 𝐸𝑚⁄ = 100. (b) 𝐸𝑓 𝐸𝑚⁄ = 10 

The difference between the Young’s modulus of the composite 𝐸𝑐 is as large as 20% 9 

when 𝐸𝑓 𝐸𝑚⁄ = 100 and 𝑓𝑓 = 20%, as Figure 5-24 (a) shows. In Figure 5-24 (b), when 10 

𝐸𝑓 𝐸𝑚⁄ = 10 , the standard variances of 𝐸𝑐  are relatively large, indicating that a 11 

statistical approach to predict the mechanical properties of the 3D Voronoi composite 12 

with low fibre numbers and low fibre/matrix stiffness ratio is necessary. In addition, 13 

normalized Young’s modulus 𝐸𝑛 =  𝐸𝑐 𝐸𝑐𝑉𝑜𝑖𝑔ℎ𝑡 ⁄  is used to determine the impact of 14 

𝐸𝑓 𝐸𝑚⁄  on stiffness of the composite, as Figure 5-25 shows. The standard variances of 15 

𝐸𝑐  is also normalized by the corresponding Voigt limit. When 𝐸𝑓 𝐸𝑚⁄ = 5 , the 16 

normalized Young’s modulus 𝐸𝑛  is the largest among those with different 𝐸𝑓 𝐸𝑚⁄  17 

values. This means that 𝐸𝑛 get larger value when the stiffness of the fibre and the matrix 18 

(a) (b) 
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is close to each other. This is also coincident with the results in Chapter 3 and Chapter 1 

4.  2 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-25. Normalized Young’s moduli of the composite 𝐸𝑐  as a function of the fibre 

volume fraction (a) 27 Voronoi cells. (b) 64 Voronoi cells. (c) 216 Voronoi cells. (d) 343 

Voronoi cells. 

5.3.6 Influence of the Poisson’s ratio of constituent material’s  1 

Poisson’s ratios of the constituent materials have also been proved to be one of the 2 

important factors in the prediction of the mechanical properties of the composite. To 3 

check the effect of different Poisson’s ratios of the constituent materials on the elastic 4 

moduli of the composite, different combinations of 𝜈𝑓  and 𝜈𝑚  (𝜈𝑓 = 0.1, 𝜈𝑚 = 0.3;  5 

𝜈𝑓 = 0.2, 𝜈𝑚 = 0.3; 𝜈𝑓 = 0.05, 𝜈𝑚 = 0.49; 𝜈𝑓 = 0.49, 𝜈𝑚 = 0.05; 𝜈𝑓 = 0.06, 𝜈𝑚 =6 

−0.6;  𝜈𝑓 = 0.05, 𝜈𝑚 = −0.8) are considered. Young’s modulus of the matrix 𝐸𝑚 is 7 

fixed as 𝐸𝑚 = 1 for generality, while Young’s modulus of the fibre 𝐸𝑓  is chosen as 8 

𝐸𝑓 = 100 and 𝐸𝑓 = 2. The number of Voronoi cells in one RVE is fixed at 64 and the 9 

coefficient of regularity is 𝑐𝑜𝑟 = 0.5 in this case. 10 
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(a) 

 

(b) 

Figure 5-26. Young’s moduli of the composite 𝐸𝑐  with different constituent material 

Poisson’s ratio combinations; (a) 𝐸𝑓 = 100; (b) 𝐸𝑓 = 2. 

It can be seen in Figure 5-26 that the 𝐸𝑐 obtained when 𝜈𝑓 = 0.2, 𝜈𝑚 = 0.3 is slightly 1 

larger the that when 𝜈𝑓 = 0.1, 𝜈𝑚 = 0.3. However, the different between the two is 2 

very small compared with difference between 𝜈𝑓 = 0.05 , 𝜈𝑚 = 0.49 . When the 3 

Poisson’s ratio of the matrix goes to negative, the elastic moduli of the composite is 4 

significantly enhanced. Normalized Young’s modulus 𝐸𝑛 =  𝐸𝑐 𝐸𝑐𝑉𝑜𝑖𝑔ℎ𝑡 ⁄  is also used 5 

to check in influence of different Poisson’s ratio combinations on the Young’s moduli 6 

of the composite 𝐸𝑐. 7 
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(a) 

 

Figure 5-27. Normalized Young’s moduli of the composite 𝐸𝑐  with different constituent 

material Poisson’s ratio combinations; (a) 𝐸𝑓 = 100; (b) 𝐸𝑓 = 2. 

Figure 5-27 shows that when Poisson’s ratio of the matrix goes to negative, the 1 

composite outperformed those with positive Poisson’s ratio constituents in stiffness. 2 

The normalized Young’s moduli of the composite are large than 1 when 𝐸𝑓 𝐸𝑚⁄ = 2 3 

and 𝜈𝑚 = −0.6 or −0.8, which means the Young’s modulus of the 3D Voronoi fibre 4 

reinforced composite can reach and surpass the Voigt limit under proper combination 5 

of mechanical properties of the constituent materials. 6 

5.4 Discussion 7 
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In order to validate the simulation results and to show the advantage of the 3D Voronoi 1 

fibre reinforced composite in terms of elastic properties, we compared the Young’s 2 

moduli obtained in this Chapter to those obtained from different types of particle and 3 

fibre reinforced composites, both experimentally and numerically. 4 

For the random particle and short fibre reinforced composites [198], aspect ratios 𝜉 =5 

1 (which means sphere particle reinforcement) and 𝜉 = 5 (which means short fibres 6 

reinforcement), is selected. The reinforcement volume fraction is 𝑓𝑟 = 0.2 . Other 7 

parameters are 𝐸𝑟 = 70 GPa, 𝜈𝑟 = 0.2  and 𝐸𝑚 = 3 GPa, 𝜈𝑟 = 0.35  for the 8 

reinforcements and fibres, respectively. The geometry of this work is shown in Figure 9 

5-28 (a) and (b). Completely random oriented fibre reinforcement which can construct 10 

an isotropic composite is also considered in the 4th case of Babu et al.’s work [200]. 11 

The constituent materials considered in that study was AS4 carbon fibre and 3501-6 12 

Epoxy matrix. The elastic properties of the constituent materials are 𝐸𝑟1 = 225GPa, 13 

𝐸𝑟2 = 15GPa, 𝜈𝑟 = 0.2  and 𝐸𝑚 = 4.2GPa, 𝜈𝑟 = 0.35 . The volume fractions were  14 

𝑓𝑟 = 15.23%, 19.23% and 21.64% for RVE generation in Babu et al.’s work. The 15 

geometry of this work is shown in Figure 5-28 (c).  16 

 

Figure 5-28. The RVE geometric models of isotropic discrete fibre reinforced composite: (a) 

Ref [198], 𝜉 = 1. (b) Ref [198], 𝜉 = 5. (c) Ref [200], Case 4. 

The same parameters are applied to the 3D Voronoi network reinforced model, 17 

coefficient of regularity 𝑐𝑜𝑟 = 0.5, number of Voronoi cell 𝑛 = 64. The comparisons 18 

(a) (c) (b) 
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in terms of Young’s moduli of the composite with those in reference [198] are presented 1 

in Table 5-15 and the comparisons with reference [200] are presented in Figure 5-29. 2 

Table 5-15. Young’s moduli of the composite in reference [198] and 3D Voronoi fibre reinforced 3 

composite. 4 

Composite 𝑉𝐹𝑟 = 0.2 𝐸𝑐 

Reference [198], 𝜉 = 1 0.2 6.6233 

Reference [198], 𝜉 = 5 0.2 6.7700 

3D Voronoi composite 0.2 7.8970 

From Table 5-15 we can infer that the Young’s moduli 𝐸𝑐 is 16.7% larger than that of 5 

the random short fibre reinforced fibre composite in reference [198] when aspect ratio 6 

𝜉 = 5. Besides, the Young’s moduli 𝐸𝑐 is far larger than those predicted in reference 7 

[200] with same volume fractions as Figure 5-29 shows.  8 

Furthermore, it is necessary to compare different lattice structure reinforced composites 9 

in this thesis to determine which one have the best elastic performance under different 10 

constituent materials.  11 
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Figure 5-29. Young’s moduli of the composite in reference [200], case 4 and 3D Voronoi 

fibre reinforced composite. 

To compare the Young’s moduli of the composites, the regular lattice structured IPCs 1 

type I and type III discussed in Chapter 3, auxetic lattice structured IPCs type II and 2 

type III discussed in Chapter 4 with fibre concavity angle 𝛼 = 18° and the 3D Voronoi 3 

composite created with coefficient of regularity 𝑐𝑜𝑟 = 0.5 and Voronoi cell number 4 

𝑛 = 64 in this Chapter are listed for comparison below in Figure 5-30.  5 
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Figure 5-30. RVEs of lattice structure reinforced interpenetrating composites listed for 

comparison. (a) regular lattice reinforced IPC type I; (b) regular lattice reinforced IPC type 

III; (c) auxetic lattice reinforced IPC type II; (d) auxetic lattice reinforced IPC type III; (e) 

3D Voronoi fibre network reinforced IPC type II (matrix not shown). 

Four sets of parameters for the constituent materials as listed in Table 5-16: the first 1 

two sets represent strong fibre and polymer matrix combination such as carbon/epoxy 2 

or aluminium/epoxy; the last two sets represent metal-metal or polymer-polymer 3 

composites which the fibres and the matrix have closer mechanical properties. 4 

Table 5-16. Three sets of constituent material parameters. 5 

 𝐸𝑓 𝐸𝑚 𝜈𝑓 𝜈𝑚 

Set 1 100 1 0.1 0.3 

Set 2 100 1 0.1 -0.5 

Set 3 5 1 0.1 0.3 

Set 4 5 1 0.1 -0.5 

The Young’s moduli of different types of IPCs are plotted in Figure 5-31.  6 

(a) (c) (b) 

(d) (e) 
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Figure 5-31. The Young’s moduli of different types of IPCs constructed with same constituent 

materials. (a) 𝐸𝑓 𝐸𝑚⁄ = 100 , 𝜈𝑓 = 0.1 , 𝜈𝑚 = 0.3  (b) 𝐸𝑓 𝐸𝑚⁄ = 100 , 𝜈𝑓 = 0.1 , 𝜈𝑚 = −0.5  

(c) 𝐸𝑓 𝐸𝑚⁄ = 5, 𝜈𝑓 = 0.1, 𝜈𝑚 = 0.3  (d) 𝐸𝑓 𝐸𝑚⁄ = 5, 𝜈𝑓 = 0.1, 𝜈𝑚 = −0.5.  

An overview of Figure 5-31 (a), (b) and (c) shows that the best structure in terms of 1 

stiffness is apparently the type I of regular cubic lattice reinforced composites when  𝜈𝑓 2 

and 𝜈𝑚  is positive. When 𝜈𝑚  is negative, the stiffness of regular lattice reinforced 3 

composite type I is the largest among those of different IPC structures at 5%, 10% and 4 

15% fibre volume fractions. However, the stiffness regular lattice reinforced composite 5 

type III and that of auxetic IPC type II come close to the stiffness of regular IPC type I 6 

at 20% volume fractions. The only condition to consider other type of IPCs to be the 7 

best is when 𝐸𝑓 𝐸𝑚⁄ = 5 , 𝜈𝑓 = 0.1 , 𝜈𝑚 = −0.5 . Interestingly, the auxetic 8 

interpenetrating composite type II and regular lattice reinforced IPC type III show the 9 

similar stiffness behaviour, while the stiffness as a function of the fibre volume fraction 10 

(a) (b) 

(c) (d) 
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of auxetic interpenetrating composite type III and that of the 3D Voronoi fibre network 1 

reinforced composite type II (𝑐𝑜𝑟 = 0.5, 𝑛 = 64) are similar. This can be found in all 2 

the subfigures of Figure 5-31, especially in (b) and (d). 3 

The normalized Young’s moduli 𝐸𝑛 is also considered in this comparison as Figure 4 

5-32 shows. 5 

 

Figure 5-32. Normalized Young’s moduli of different types of IPCs constructed with same 

constituent materials. (a) 𝐸𝑓 𝐸𝑚⁄ = 100 , 𝜈𝑓 = 0.1 , 𝜈𝑚 = 0.3  (b) 𝐸𝑓 𝐸𝑚⁄ = 100 , 𝜈𝑓 = 0.1 , 

𝜈𝑚 = −0.5  (c) 𝐸𝑓 𝐸𝑚⁄ = 5, 𝜈𝑓 = 0.1, 𝜈𝑚 = 0.3  (d) 𝐸𝑓 𝐸𝑚⁄ = 5, 𝜈𝑓 = 0.1, 𝜈𝑚 = −0.5 

The results of 𝐸𝑛 are the same in terms of structure rankings with the results of 𝐸𝑐. 6 

However, it can be seen that the normalized Young’s moduli of different types of the 7 

composites are under 1.0 except the restrict condition when  𝑓𝑓 = 5%, 𝐸𝑓 𝐸𝑚⁄ = 5, 8 

𝜈𝑓 = 0.1 and 𝜈𝑚 = −0.5.  9 

 10 

(c) (d) 

(a) (b) 
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5.5 Conclusion 1 

In this chapter, the 3D Voronoi fibre network is generated via Voronoi tessellation and 2 

is used as the reinforcement of the composite. Compared to regular lattice structures 3 

studied in Chapter 3 and Chapter 4, the 3D Voronoi network could give a better 4 

description of some fabricated interpenetrating composites. The periodicity of the 5 

random fibre network is ensured by filling multiple tessellation space with groups of 6 

Voronoi points. and then divided them into fully periodic RVEs. Furthermore, the 7 

coefficient of regularity cor and fibre numbers contained in an RVEs n is defined when 8 

constructing the Voronoi fibre network. In order to reduce pre-processing and solving 9 

time of the composite models, beam element instead of solid elements used in Chapter 10 

3 and Chapter 4 is applied to the fibres. Afterwards, an automatic searching & coupling 11 

(ASC) technique is introduced to coupling the nodes of the nodes of fibres and matrix 12 

as Boolean operation cannot be done between line (beam fibre) and volumes (matrix). 13 

The periodic boundary conditions stated in Chapter 3 is modifies to adapt the ASC 14 

technique to avoid the over constraints which would occur when applying PBCs at both 15 

beam fibres and matrix. The total fibre length is confirmed to be different between every 16 

random RVEs even the Voronoi cell number is the same. Thus, the fibre volume 17 

fractions as a function of total fibre length corresponding to individual RVE and fibre 18 

diameter is given.  19 

The mesh sensitivity of fibre and matrix is discussed. A reasonable element size ratio 20 

of esf
 /esm is determined. Moreover, the best esf is found by comparing the ASC RVEs 21 

to full solid RVEs. The impact of random fibre distribution, number of fibres in an RVE 22 

and the coefficient of regularity is discussed. It is found the when the number of fibres 23 

in an RVE is large, which means more Voronoi cells in an RVE, the effect of coefficient 24 

of regularity on the Young’s moduli of the composite 𝐸𝑐 is reduced. However, when 25 

there are less fibres in an RVE, the random fibre distribution and coefficient of 26 

regularity make a relatively big different on the mechanical properties of the composite. 27 
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The 3D Voronoi fibre reinforced composite is nearly isotropic. The stiffness of the 1 

composite shows a linear relation with the fibre volume fraction. The Young’s modulus 2 

of the composite 𝐸𝑐  increase as 𝐸𝑓  and 𝐸m  increase. However, the study of the 3 

normalized Young’s moduli 𝐸𝑛 indicates that 𝐸𝑛 increases when 𝐸𝑓 𝐸m⁄  approaches 1 4 

and |𝜈𝑓−𝜈𝑚| get the largest possible value. However, as the volume fraction is limited 5 

up to 20%, no peak of 𝐸𝑛 is found in the range of 1% to 20% fibre volume fraction and 6 

𝐸𝑛 increases with the increase of fibre volume fraction. 7 

The comparison of existing journal results of random fibre reinforced composites shows 8 

that the 3D Voronoi composite performs better than the discrete particle and short fibre 9 

reinforced composites in terms of elastic moduli. To determine the best structure in 10 

different given conditions, the structures investigated in Chapter 3, 4 and 5 is compared 11 

in terms of the stiffness. It is found that regular lattice structure type I is the most 12 

effective structure in build high stiffness composites in small fibre volume fractions. 13 

The auxetic IPC type II and regular lattice reinforced IPC type III shows the similar 14 

elastic behaviour as the fibre volume fraction changes, while the stiffness as a function 15 

of the fibre volume fraction of auxetic interpenetrating composite type III and that of 16 

the 3D Voronoi fibre network reinforced composite type II (𝑐𝑜𝑟 = 0.5, 𝑛 = 64) are 17 

similar. 18 

 19 
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Chapter 6 Conclusions and further work 

6.1 Conclusions 

This thesis numerically predicts the elastic properties of different types of quasi-

isotropic fibre network reinforced interpenetrating composites. Representative volume 

elements and periodic boundary conditions are customized and applied.  

For regular lattice structured interpenetrating composites, four different types of IPC 

structures are considered. It is found that the Young’s modulus of the composite rises 

as a function of the reinforcement volume fraction. At the same time, the Young’s 

modulus of the composite 𝐸𝑐  also becomes larger when 𝐸𝑓  and 𝐸m  goes larger. 

However, the study of the normalized Young’s moduli 𝐸𝑛 indicates that 𝐸𝑐 is larger 

when 𝐸𝑓 𝐸m⁄  approaches 1 |𝜈𝑓−𝜈𝑚|  get the largest possible value. The largest 

normalized Young’s modulus can be obtained in a fibre volume fraction around 30% 

to 40%. The elastic properties of the composites have strong relationship with the 

Poisson’s ration of the two constituent materials. The Young’s modulus of different 

types of composites can be much larger than the HS upper limit and can drastically 

exceed the Voigt limit when the Poisson’s ratio of the matrix is negative and the 

Young’s moduli of the two phases are close enough. This are coincident with the 

analytical results by Zhu, Fan and Zhang [74] in 2015. By comparing the normalized 

Young’s moduli 𝐸𝑛 , we can see that the tetrakaidekahedron structure (Type III) 

performs well with negative Poisson’s ratio matrix. On the contrary, the simplest cross-

cubic model performs the best with positive Poisson’s ration matrix. These kind of 

latticed interpenetrating composites are better than its conventional counterparts like 

particle and unidirectional fibre reinforced composites. 

As negative Poisson’s ratio matrices are considered in regular lattice structured IPCs, 

the possibility to tune the Poisson’s ratio of the composite to negative, or zero is studied. 

To solve the congenital disadvantages such as weak stiffness of porous auxetic 



Chapter 6. Conclusions and further work 

154 
 

materials, solid interpenetrating composites reinforced by three different types of fibre-

networks are studied. They all could have a positive, negative, or ‘zero’ Poisson’s ratio. 

The magnitude of the Poisson’s ratio depends on the combination between the fibre 

angle 𝛼, the type of the fibre-network, the fibre volume fraction, and the mechanical 

properties of the component materials: 𝐸𝑓 𝐸𝑚⁄ , 𝜈𝑓  and 𝜈𝑚 . A smaller fibre angle 𝛼 

leads to lager auxetic behaviour in Type I and Type II composites with no face-links in 

their structure, while the absolute value of the negative Poisson’s ratio is large with a 

relatively larger fibre angle 𝛼 under its structural limit. The largest the absolute value 

of negative Poisson’s ratio is around -0.3 for an auxetic interpenetrating composite with 

common constituent materials. In addition, as all the three types of composites have 

cubic symmetry, their mechanical properties are almost isotropic. Moreover, structural 

hierarchy can significantly enhance the auxetic behaviour of the composites. Therefore, 

the three different types of auxetic interpenetrating composites could be used not only 

as functional materials, but also as structural materials in engineering applications.  As 

the composites do not contain any pore in structure and the strengthening phase is a 

self-connected network, the Young’s moduli of the three types of composites are 

obviously larger than those of the conventional particle composites. This result provides 

an alternative to manufacture non-porous negative and zero Poisson’s ratio materials, 

which have many applications as functional materials and biomaterials. 

Furthermore, to simulate natural and fabricated random fibre networks and their 

composites, 3D Voronoi fibre network reinforced composite is investigated. Periodic 

3D Voronoi fibre network is generated from random points by both random search and 

QuickHull Voronoi tessellation and embedding to solid matrix in FE model. It is tested 

that ASC coupling with beam element fibres and solid element matrix is valid in 

predicting the mechanical property of the Voronoi fibre composite. It is found that the 

fibre number and coefficient of regularity can both affect the isotropy of the composite. 

Larger fibre number n and coefficient of regularity cor can result in a more isotropic 

structure. The effect of the Young’s modulus and Poisson’s ratio of the constituent 

materials on the mechanical properties of the 3D Voronoi fibre reinforced composite is 
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similar as that of the regular lattice structure. A linear relationship between the Young’s 

modulus of the composite and the fibre volume fraction is found and the Young’s 

modulus of the composite can also surpass the Voigt limit under negative Poisson’s 

ratio matrix. The relationship between normalized stiffness of the composite and the 

elastic properties of the constituent materials also shares the same trend with the regular 

latticed structures. 

6.2 Future work 

This thesis investigated the elastic properties of different types of fibre network 

reinforced composites including regular lattice structured ones, negative Poisson’s ratio 

ones and 3D Voronoi ones. They are compared and discussed to answer the ‘which is 

the best’ question under different conditions. As the work of this thesis are mostly done 

by simulation, convincible validation methods are worth investigating. For example, 

the build the structures discussed in this thesis by 3D printing and then validate the 

results by tensile test would be a good choice.  

Apart from validation work, there are also three directions for the future work. 

The first perspective is from the mechanical and physical properties of the composite. 

Only elastic properties are considered in this thesis. The elastoplastic and viscoelastic 

properties of the cellular fibre network reinforced composite could be considered under 

the same RVE models and boundary conditions. Besides, the thermal and electrical 

conductivity of the composite is worth to be examined as cellular fibre network 

reinforced composite is also good candidate in thermal and electrical industries. 

Furthermore, the fracture toughness would also be a very important research direction. 

The second direction is the architectures and microstructures of the composite. Only 6 

regular structures and 1 randomly created structure are considered in this thesis. 

However, a lot of different structures are promising in various applications. Future work 

could be done to determine what kind of cellular fibre structure is best under given 

conditions and targets. For example, which lattice structure has the best stiffness if 3D 
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printed by VeroWhite and TangoPlus under 10% of VeroWhite? It is possible for some 

of these questions to be converted as an optimization problem with constraints. 

Traditional mechanics as well as modern machine learn methods maybe alternative 

approaches to these problems. 

The third direction is the interfaces between the fibres and matrix of these models. The 

corresponding nodes in the same positions of the interfaces are coupled in solid-solid 

fibre and matrix models, while a few of those nodes coupled in beam-solid fibre and 

matrix models are not in the same position. Although the accuracy of these two methods 

are both good, it is obvious that they represent slightly different interfaces. Furthermore, 

the accuracy of full coupled interfaces varies when representing different type of 

material combinations. Coating and other treatment of the fibre may affect the 

interfaces as well. 
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