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Abstract

Image-to-image translation has been widely studied. Since real-world images can often be described by multiple attributes,

it is useful to manipulate them at the same time. However, most methods focus on transforming between two domains, and

when they chain multiple single attribute transform networks together, the results are affected by the order of chaining, and

the performance drops with the out-of-domain issue for intermediate results. Existing multi-domain transfer methods mostly

manipulate multiple attributes by adding a list of attribute labels to the network feature, but they also suffer from interference

of different attributes, and perform worse when multiple attributes are manipulated. We propose a novel approach to multi-

attribute image-to-image translation using several parallel latent transform networks, where multiple attributes are manipulated

in parallel and simultaneously, which eliminates both issues. To avoid the interference of different attributes, we introduce a

novel soft independence constraint for the changes caused by different attributes. Extensive experiments show that our method

outperforms state-of-the-art methods.

CCS Concepts

• Computing methodologies → Image manipulation;

1. Introduction

Image-to-image translation is a widely studied problem in com-
puter vision. It transfers images from a source domain to a
target domain, while keeping the content (other than those re-
lated to domain differences) unchanged. With the development
of generative adversarial networks (GANs) [GPAM∗14, MO14,
RMC15, MLX∗17, ACB17] in recent years, image-to-image trans-
lation has achieved impressive results in many applications.
Some of them help remove image defects and improve vi-
sual quality, such as denoising [CCCY18, KBJ19, WW19], col-
orization [CZZY17, NNE18], harmonization [TSL∗17, WZZH19],
super-resolution [LTH∗17, WYW∗18, LGLS19, LAD∗19], and in-
painting [YCYL∗17,YLY∗18], while others are dedicated to image
attribute transformation, including style transfer [IZZE17,ZPIE17],
facial attribute transfer [LZZ16, CCK∗18], etc.

Although existing methods achieve promising results in image
attribute transfer, most of them can only manipulate one attribute at
a time. For example, existing works can well achieve “smiling” and
“male” attributes for a facial image respectively, but most methods
cannot simultaneously manipulate “smiling” and “male” attributes
on one image, as illustrated in Fig. 1. A naive solution is to chain
multiple translation tasks one after another, and use the output of
the previous task as the input of the next task. But there are at least
two problems with this approach:

(a)Input (b)Smiling (c)Male (d)Smiling+Male

Figure 1: Illustration of the simultaneous multi-attribute transla-

tion problem. (a) is the input, (b) and (c) are our single attribute

translation results for “Smiling” and “Male” respectively, and (d)

is our simultaneous translation of both attributes.

1. Order affects results. For example, the result of making a facial
image “aged” and then “smiling” is usually different from the
result of making it “smiling” and then “aged”.

2. Out-of-domain issue. The output of the first task does not nec-
essarily fall strictly within the input domain of the next task.

Post print submitted to Computer Graphics Forum (Pacific Graphics special issue)



Sen-Zhe Xu & Yu-Kun Lai / Simultaneous Multi-Attribute Image-to-Image Translation Using Parallel Latent Transform Networks

Therefore it will cause the image quality to degrade after going

through the consecutive networks.

The fundamental cause of these two problems is, when the

network edits a certain attribute, the modification is distributed

throughout the whole latent space. Therefore, when manipulating

multiple attributes in succession, these latent changes at different

stages will interfere and affect each other.

In recent years, methods like StarGAN [CCK∗18],

STGAN [LDX∗19] have been put forward to learn trans-

forms of single or multiple attributes. They map between multiple

domains with one model by adding a list of attribute (0, 1) labels to

the network feature. But these methods mix all attributes together,

ignoring the inherent differences of attributes. Since the difficulties

of manipulating different attributes vary, this strategy makes the

learning of different attribute transforms uneven. When applying

multiple attributes at the same time, these methods often lead to

interference between attributes, which degrades the quality of the

resulting images.

Disentangled representations have also been used to solve this

problem. The idea is to restrict the representation of a certain at-

tribute to be in a fixed area of the latent vector, such as some spe-

cific channels, thereby the coupling of different attributes in the

latent vector is eliminated, and exact editing of different attributes

can be achieved at the latent vector level.

However, disentangled learning also has its disadvantages.

Firstly, disentangling is at the expense of learning efficiency. Since

every attribute is different in complexity, the latent space require-

ment of the representation for each attribute should also be dif-

ferent. Disentangled learning restricts the representation of any at-

tribute to be in some artificially specified latent size, which will

cause a waste or deficiency of the corresponding latent space in rep-

resentation ability, thereby increase the training burden. Secondly,

when applying a disentangled representation to attribute transfer, a

key idea is to exchange some channels of the latent vector, so such

methods require a reference image that carries desired channels for

swapping. Different choices of reference images would lead to dif-

ferent results, so they cannot automatically transfer the image’s do-

main using a single input image.

We take a different approach to tackle this problem. To address

the dependencies on ordering, we achieve multi-attribute image-

to-image translation simultaneously using parallel latent transform

networks, one for each attribute. We further introduce a soft inde-

pendence constraint loss term to ensure that different attributes do

not interfere with each other in the latent space, while not affecting

the attribute transform learning. Unlike disentangled learning, our

method does not need to restrict the representation of an attribute

to be in a fixed area of the latent vector.

Specifically, we firstly propose a novel unsupervised image-to-

image translation framework, which consists of an Encoder, a De-

coder, and multiple parallel Latent Transform Networks (LTNs) in

the middle. The framework does not require dual training like Cy-

cleGAN, and this facilitates our multi-attribute translation learning.

We then constrain all the attribute changes to only occur in the mid-

dle LTNs, with each LTN corresponding to one attribute conver-

sion. Finally the increment of the latent vector of each LTN is con-

strained to be decoupled from each other, so that multiple attributes

can be modified at the same time independently by increasing or

decreasing the latent increments.

2. Related Work

2.1. Image-to-image Translation with GANs

Recently image-to-image translation has shown rapid devel-

opment with the adoption of convolutional neural networks

(CNNs). Pix2pix [IZZE17] has shown impressive results on

paired image translation learning by applying a conditional

GAN (cGAN) [MO14] to learn a conditional generative model.

Pix2pixHD [WLZ∗18] makes one step further to generate High-

Definition (HD) images by using a coarse-to-fine generator and

multi-scale discriminators. As the paired data is often scarce,

many unpaired image-to-image translation frameworks [ZPIE17,

YZTG17, KCK∗17, LT16, LBK17] have been proposed. Cycle-

GAN [ZPIE17] uses cycle consistency loss to constrain the learned

mapping to be cycle-consistent, which helps to preserve image

content. The concurrent work DualGAN [YZTG17] and Disco-

GAN [KCK∗17] use the same principle as CycleGAN. Co-

GAN [LT16] enforces the decoding layer of high-level features

to share weights, which helps the framework to learn the joint

distribution of images from marginal distributions. The follow-

up work UNIT (Unsupervised Image-to-Image Translation Net-

work) [LBK17] views this constraint as the shared-latent space as-

sumption, and extends CoGAN for unsupervised image-to-image

translation problems using a VAE (Variational Auto-Encoder)-

GAN [KW13] framework. Some other works aim to improve trans-

lation quality from other aspects. Attention-GAN [MRT∗18] intro-

duces unsupervised attention mechanism to the generator and dis-

criminator, and makes quality improvement for individual objects

without altering the background. InstaGAN [MCS18] improves

the shapes of multiple target instances by introducing a context-

preserving loss.

However, these methods are all focused on mapping two oppos-

ing domains, which means they can only transform one attribute at

a time. In recent years several methods are proposed to learn mul-

tiple attribute transforms by adding a list of attribute (0, 1) labels

to the network feature. StarGAN [CCK∗18] concatenates attribute

(0,1) labels as extra channels to the input, to learn the mappings

among multiple domains. Similar to StarGAN, STGAN [LDX∗19]

replaces such attribute labels with attribute status differences, and

introduces skip connections in its networks. AttGAN [HZK∗19]

and FaderNet [LZU∗17] both make the encoded latent code not

contain attribute information, and use attribute labels to guide the

decoded images to have the desired attributes. However, these

methods mix all attributes together, ignoring the inherent differ-

ences of attributes. Since the difficulty of manipulating different

attributes is different, the transform learning of different attributes

tends to be uneven. And they also have no internal mechanism to

avoid interference between mappings of different attributes. When

manipulating multiple attributes, their performance is not as good

as manipulating a single attribute.
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Figure 2: The parallel framework of our simultaneous multi-attribute transform method. Enc and Dec are the encoder and decoder. They

do not change the attributes of an image or latent vector. Latent transform networks (LTNs) are embedded in the middle of Enc and Dec

in parallel, in charge of transforming specific attributes. Increments produced by LTNs do not interfere with each other, so they can be

accumulated to manipulate multiple attributes at the same time.

2.2. Disentangled Representation

Learning to disentangle the latent representation by specified fac-
tors of variation is a challenging problem. We discuss the current
methods in two categories.

The first category is dedicated to distilling a single factor of vari-
ation from the representation, and is mainly used for generating im-
ages while keeping certain invariance. InfoGAN [CDH∗16] learns
to disentangle representations by providing the generator with an
incompressible noise and a latent code, and maximizing the mutual
information between the latent code and data variation. It can dis-
cover meaningful hidden representations in an unsupervised way,
but the user cannot specify a fixed attribute to disentangle. Liu et

al. [LWS∗18] disentangle identity of facial images by breaking an
autoencoder into the “identity distilling” and “identity dispelling”
branches, and it can be used for face editing while keeping the iden-
tity unchanged. Lee et al. [LTH∗18] divide the latent space to a
content space and a domain-specific attribute space, which helps
to keep the content unchanged when changing the image style.
Kazemi et al. [KIN19] also learn to disentangle the representations
of style from content of the data. Since these methods only focus
on a certain aspect of the representation, they generally cannot be
used to transfer multiple specified attributes simultaneously.

The other category of methods tries to disentangle multiple fac-
tors of specified attributes into the latent vector, and is mainly used
for attribute transfer. DNA-GAN [XHM17] tries to disentangle dif-
ferent attributes in a supervised way, and each piece of the latent
vector represents an attribute. ELEGANT [XHM18] is a similar
work which also encodes all specified attributes in the latent space
in a disentangled manner. Hu et al. [HSP∗18] propose an unsuper-

vised method to learn disentangled representations without exploit-
ing any manual labeling or data domain knowledge. It is achieved
by using a Mixing/Unmixing Autoencoder. Feng et al. [FWK∗18]
propose a semi-supervised disentangling method using both labeled
and unlabeled data, which is achieved by using a dual swap mecha-
nism. However, all of these methods pre-allocate different attributes
to different parts of the latent vector, and in practice assign the
same latent size for different attributes, ignoring the inherent dif-
ferences of attributes. They also achieve attribute transfer by swap-
ping/mixing corresponding latent code parts from an exemplar, so
cannot achieve image transform with a single image as input.

3. Our Approach

We propose a novel unpaired image-to-image translation method.
Our method only encodes the input image once to obtain its latent
vector, and calculates its latent increment for each attribute transla-
tion. The latent increments are calculated by parallel internal latent
transform sub-networks. The latent increments are constrained to
be in their own spaces and do not affect each other. By adding dif-
ferent attribute transform increments to the original latent vector,
multiple attributes of an image can be changed simultaneously with
decoding only once.

3.1. Principle

Denote the input image as x ∈ X where X is a collection of 2D
images. A = {a1,a2, . . . ,ak} are k attributes of X , which are mean-
ingful inherent features to describe the images in X . For example, if
X is a collection of facial images, A may include attributes such as
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Figure 3: The training flow of a single attribute. The figure takes attribute “Smiling” as an example. p and n are samples from the positive

and negative domains for training. Their latent vectors zp and zn are used for the learning of the auxiliary classifier Clsi. LT Ni learns to

transfer the latent vector to gain the target attribute, and its output is represented as the input vector plus an increment. Output pi for p is

supposed to keep appearance, while output ni is constrained such that its re-encoded vector must get the positive classification, and be able

to reconstruct the original image n.

Smiling, Male, Pale skin, Blond hair, etc. The value of attribute
ai of image x is denoted as vi (x). We stipulate vi (x) ∈ {0,1},
which represents whether x has the attribute ai. Therefore, the
full attributes information of x can be represented as a vector
V (x) = (v1 (x) ,v2 (x) , . . . ,vk (x)). Suppose x does not have several
attributes in A, our goal is to generate a synthesized image x that
gains multiple specified attributes at the same time.

As shown in Fig. 2, our framework consists of an Encoder Enc,
a Decoder Dec, and k parallel latent transform networks LT N =
{LT Ni | 1 ≤ i ≤ k}, where LT Ni ∈ LT N is responsible for the i-th
attribute ai. In our framework, we stipulate the transform process
of all the attributes to only occur in LT N.

Enc encodes the input image x into a latent vector z = Enc(x).
The vector z is generic for transforming all attributes. Dec decodes
any latent vector into an output image. Since there is mutual corre-
spondence between the latent vector and the image, information of
all the attributes in the image will be encoded in its latent vector.
We denote the attributes contained in z as V (z). As neither Enc nor
Dec modifies the attribute information of x, naturally V (z) =V (x).
In addition, decoding z should also get the original input image x,
i.e., Dec(z) = x.

Intuitively, the latent vector z is a high-dimensional vector, and
the attribute information is hidden in it, which can be hard to obtain
by direct observation. On the other hand, the attribute value of the
image x can be easily judged by human eyes, e.g. a person can eas-
ily distinguish whether a facial image is smiling or not. Inspired by
this, we train a set of classifier Cls = {Clsi | 1 ≤ i ≤ k} to classify
the value of every attribute from a latent vector. Since V (z) =V (x),
Cls exploits V (x) as ground-truth to learn the classification from z.

The LT N consists of multiple parallel networks with the same
structure, each corresponding to an attribute to transform. When a
latent vector without attribute ai is inputted, LT Ni will convert it
to get the attribute ai. The latent vector z obtained by Enc passes

through LT N in parallel, and we denote the output latent vector
of LT Ni as zi = LT Ni (z). zi and z have the same size, and it en-
sures that vi (zi) ≡ 1, where vi(·) is the i-th attribute value. Dec

decodes zi to obtain a synthesized image xi = Dec(zi), and simi-
larly vi (xi)≡ 1. The content other than the domain difference of xi

should keep the same as x. If the input image x itself does not have
the attribute ai, i.e., vi (z) = vi (x) = 0, then we are concerned about
the increment of LT Ni to z: di = zi − z. di represents the modifica-
tion that needs to be applied to z in order to gain the attribute ai.
Similarly, for the attribute a j, it is also possible to obtain such an
increment d j by LT N j.

Focusing on the increment rather than absolute values has clear
advantages. We only need to ensure that for any i, j ∈ {1,2, . . . ,k},
i 6= j, if d j does not affect the expression of di, then we can make the
image obtain two attributes by decoding z+di+d j. In this way, the
input x only needs to be encoded and decoded once, and then the
user can manipulate multiple attributes by adding different incre-
ments to its latent vector. Instead of chaining multiple tasks into a
sequence to manipulate multiple attributes, our simultaneous multi-
attribute transfer approach avoids “the order affects results” prob-
lem and the out-of-domain issue.

In the training phase, we take care about one attribute at a time,
and all the attributes are trained in a round robin manner. In the
following we take the i-th attribute ai as an example, as shown in
Fig. 3, and other attributes are trained in the same way. The attribute
ai ∈ A will divide X into two domains, namely the positive domain
Pi = {x | x ∈ X ,vi (x) = 1} with attribute ai and the negative do-
main Ni = {x | x ∈ X ,vi (x) = 0} without attribute ai. Images from
both p ∈ Pi and n ∈ Ni are taken to pass the network individually
for training. For concise description, we define the latent vector of
p and n as zp = Enc(p), zn = Enc(n), the outputs for both types
of inputs are pi = Dec(LT Ni (z

p)), ni = Dec(LT Ni (z
n)). In the

following subsections, we introduce three types of loss terms for
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training, based on encoder/decoder properties, learning of attribute
transform and independence of increments, respectively.

3.2. Encoder and Decoder Properties

We first ensure several properties of Enc and Dec.

Invariance of encoding and decoding. Firstly, for both the input
images p and n, the original image should be obtained by directly
decoding its latent vector, regardless of whether the image has the
attribute ai or not. This makes sure that without the effect of LT Ni

any latent vector will definitely be decoded into the original image,
and guarantees that attribute transform only occurs in the middle
components LT Ni.

LInvL1(Enc,Dec)=Ep,n

[

‖Dec(zp)−p‖1+‖Dec(zn)−n‖1

]

, (1)

LInvV GG(Enc,Dec)=Ep,n

[

‖ϕ(Dec(zp))−ϕ(p)‖1+‖ϕ(Dec(zn))−ϕ(n)‖1

]

,

(2)

where ϕ denotes the features extracted by a pretrained
VGG19 [SZ15] network. The two losses ensure the content is un-
changed in terms of both ℓ1 and VGG-based perceptual losses. Fol-
lowing existing work, using the ℓ1 norm in loss terms related to
image appearance tends to generate images with better details.

Increment stability. Modifying the latent vector will affect the
decoding result. Ideally, we expect such sensitivity to be restricted
to increments generated by LT N, which adds attributes to the input,
but insensitive to other interference increments not generated by
LT N. To achieve this, we add Gaussian noise ε to the latent vector,
and design the following losses (both in ℓ1 and VGG spaces) that
penalize changes of the decoding results:

LStbL1(Enc,Dec)=Ep,n

[

‖Dec(zp+ε)−p‖1+‖Dec(zn+ε)−n‖1

]

, (3)

LStbV GG(Enc,Dec)=Ep,n

[

‖ϕ(Dec(zp+ε))−ϕ(p)‖1

+‖ϕ(Dec(zn+ε))−ϕ(n)‖1

]

, (4)

Latent consistency. For n, the output ni is a fake image with
attribute ai, which aims to be in the same distribution as Pi. Thus
it can be re-encoded by Enc, and the resulting latent vector needs
to be consistent with the vector before decoding, so as to ensure
one-to-one correspondence between latent vectors and images:

LLC(Enc,Dec) = En

[

‖Enc(ni)−LT Ni(z
n)‖1

]

, (5)

Reconstruction. The re-encoded vector of ni, minus the previous
increment generated by LT Ni, is supposed to change back to a vec-
tor without attribute ai. Further, its decoding is expected to be the
original image n:

LRec(Enc,Dec) = En

[

‖Dec(Enc(ni)− (LT Ni(z
n)− zn))−n‖1

]

, (6)

This loss simply guarantees the content consistency of the out-
put and input, eliminating the need of the cycle consistency by an
inverse task like CycleGAN to ensure content consistency.

Total loss for Enc and Dec. The total loss for Enc and Dec is
written as:

LG(Enc,Dec) = λL1(LInvL1 +LStbL1)

+λV GG(LInvV GG +LStbV GG)

+λLCLLC +λRecLRec.

(7)

We use λL1 = 2.5, λV GG = 5.0, λLC = 10.0, λRec = 5.0 as the
hyper-parameters to control the relative importance of the losses.

3.3. Learning for Attribute Transforms

The losses defined so far do not show how to make LT Ni to learn
the attribute transform yet, which we will now address.

Domain classification loss. In order to learn attribute transform,
we propose a classification loss. We first use Clsi to learn attribute
classification for latent vectors encoded by Enc:

LCls(Clsi) = Ep,n [− log(Clsi(z
p))− log(1−Clsi(z

n))] , (8)

Since the ground-truth of the classification task, i.e. attribute values
of p and n are known, the classifier Clsi is well-defined. So we use
this to direct the training for attribute transform of LT Ni. Intuitively,
if the attribute transform by LT Ni is successful, Clsi should classify
the re-encoded vector of ni into the Pi class:

LC(LT Ni) = En [− log(Clsi(Enc(ni)))] , (9)

Adversarial loss. In addition to the domain classification, we also
include k adversarial networks D = {D1,D2, . . . ,Dk} to discrim-
inate genuine and fake images for each attribute. Di ∈ D corre-
sponds to attribute ai. The adversarial loss further ensures that ni

is the same as Pi and increases the realism of ni. Here, we use LS-
GAN [MLX∗17] and PatchGAN [IZZE17] as D for stable training.
The adversarial loss is as follows:

Ladv(LT Ni,Di) = Ep,n

[

‖Di(p)‖2
2 +‖1−Di(ni)‖

2
2

]

, (10)

which is solved by argminLT Ni
maxDi

Ladv(LT Ni,Di). The latent
transform network LT Ni tries to minimize this objective, while the
discriminator Di tries to maximize it.

Total loss for attribute transform. So the total loss for trans-
form is written as:

LT (Cls,LT Ni,D) = LCls +LC +Ladv. (11)

The weights of these losses are all 1.0 in our experiment, so we
omit them in the formula.

3.4. Independence of Increments

The above losses are only competent for learning the transform of
attribute ai. Since the increments di = LT Ni (z

n)− zn and d j =
LT N j (z

n)− zn caused by LT Ni and LT N j are distributed in the
same latent space, if d j has an impact on the expression of di, then
we cannot manipulate both attributes by simultaneously adding in-
crements di and d j.

To eliminate this correlation, we propose a soft independence
constraint for di and d j. Intuitively, if LT Ni is good enough and di

and d j are independent, the increment by LT N j to a latent vector
should not be influenced by the effect of LT Ni. So we expect the
increment d j obtained by applying LT N j to the latent vector zn, and
d′

j, obtained by applying LT N j to the resulting vector of LT Ni(z
n)

to be equal, which is formulated as:

Lind(LT Ni)=
1

k−1 ∑
j 6=i

En

[

‖(LT N j(LT Ni(z
n))−LT Ni(z

n))−(LT N j(z
n)−zn)‖1

]

.

(12)
For LT Ni, it needs to avoid interference with the remaining (k−1)
LTNs in the latent space. Therefore, we normalize the loss term
with 1

k−1 so that its magnitude does not vary with the number of
attributes k. We also tried reducing the cosine similarities of the in-
crements di and d j instead to ensure independence, but found that
it will break the balance of learning transforms and increment inde-
pendence and is hard to train. Our soft independence constraint not
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only enhances the independence of the increments, but also does
not affect the transform learning.

3.5. Full Objective

Finally, our full objective is:

LTotal = LG(Enc,Dec)+LT (Cls,LT Ni,D)+Lind(LT Ni). (13)

where i refers to the attribute index, which is selected from 1 to k

in turn for each iteration of the training phase. The coefficients of
these objectives are all 1.0 in our experiment.

4. Experiments

4.1. Implementation Details

Our Enc is composed of two convolution layers with stride 2 fol-
lowed by two residual blocks [HZRS16]. Dec is symmetric with
Enc, which has two residual blocks followed by two transposed
convolution layers. Each LT Ni consists of five residual blocks. All
auxiliary classifiers Clsi ∈ Cls share a feature extractor with four
convolution layers, and each Clsi has a feature classifier with three
fully connected layers. The activation function is ReLU. We adopt
the PatchGAN discriminator [IZZE17] with a receptive field of
70× 70 as our Di, which is conducive to image detail quality. In-
puts are resized to a fixed size of 256× 256 before inputting, due
to the existence of fully connected layers in Cls. Adam optimizer
with β1 = 0.5 and β2 = 0.999 is used for training. The learning
rate is set to 2 × 10−4. Our framework is implemented with Jit-
tor [HLY∗20], a recently proposed novel deep learning framework,
which is proven to run faster than PyTorch. Our hardware environ-
ment is a PC with an Intel(R) Core(TM) i7-6850K CPU 3.60GHz
and an Nvidia GTX1080Ti GPU.

4.2. Test on Facial Images

Facial images are not only the most common type of images, but
also have a large number of inherent attributes. We firstly evalu-
ate our method on facial images, and use CelebFaces Attributes
(CelebA) dataset [LLWT15] for training.

CelebA consists of 202,599 aligned facial images, and each im-
age is labeled with up to 40 attributes. We randomly select 2000
images for testing, and use the remaining images for training.

Quantitative and qualitative comparisons. We compare our
method with several state-of-the-art multi-attribute transform meth-
ods, namely FaderNet [LZU∗17], AttGAN [HZK∗19], Star-
GAN [CCK∗18] and STGAN [LDX∗19]. Methods that need an
exemplar as input [XHM17,XHM18,CUYH20] are not included in
comparison. Since their inputs are much different from our method,
it is not possible to make a meaningful comparison with them. In
this experiment, we consider manipulating 5 attributes at the same
time, including Blond Hair, Pale Skin, Smile, Male and Young. We
select these attributes because they are representative since they
cover the changes from overall to detail, and are most selected by
relevant works. The qualitative results are shown in Fig. 4. It can
be observed that our method has higher quality results for multi-
attribute manipulation. More importantly, it can be seen that our
results of manipulating multiple attributes are more consistent with

the results of manipulating a single component attribute. We can
find that to all the methods, the problem becomes more challenging
when manipulating more attributes at the same time. Many other
works only show at most three attributes to transform simultane-
ously. Here we take the challenge to manipulate all these five at-
tributes at the same time. It can be seen that although the quality of
our results are also declined, it is much better than the comparative
methods.

To quantitatively measure the attribute generation accuracy, we
use a well-trained attribute classifier for each attribute. To conduct
this, we firstly train an additional deep attribute classifier as a ref-
eree that performs binary classification of whether the attribute is
present or not, whose average classification accuracy is higher than
90%, and then apply this classifier to the results to compute their
classification accuracy. Table 1 shows the result. As can be seen
from Table 1, our method has a relatively high generation accu-
racy. Although our method is inferior to the comparative methods
in some attributes, our method achieves a better balance among all
the attributes.

We then show more results to evaluate the quality of the results.
In order to better show the efficiency of our method in more detail,
we apply two attributes to input images each time. Specifically, we
select three attributes Blond Hair, Pale Skin, Smile (which are ab-
breviated as B, P and S, respectively) and test the results of all their
combinations. Besides the multi-attribute transform methods, we
also include a classic single attribute image-to-image translation
method CycleGAN [ZPIE17] to show its results with two different
orders.

We use Fréchet Inception Distance (FID) [HRU∗17] with im-
ages in the target domain as the quantitative measure. That is when
we transform Blond Hair and Pale Skin, we use the image set with
both Blond Hair and Pale Skin as the target set to calculate FID
scores, so the FID scores not only reflect the image quality, but also
somehow reflect the classification accuracy. Smaller FID values are
better. As shown in Table 4, our method produces consistently bet-
ter results than the comparison methods. The independence con-
straint in our method also contributes to significant improvements
of results. Visual comparisons of different results are presented in
Figs. 5-7. The results of the two different orders of CycleGAN are
slightly different, suggesting that the results are not self-consistent
when a single-attribute transform method is used to transform mul-
tiple attributes. We will evaluate this “order affects results” issue
later. Other comparison methods and our method without the inde-
pendence constraint tend to create blurred results and results with
artifacts, affected by the interference of multiple attributes. In con-
trast, our results are plausible and do not have such artifacts.

Evaluation of the increment independence. We evaluate the in-
crement independence in our framework, to show the effectiveness
of our increment independence constraint. Each time we select two
different LTNs to create their respective latent increments of the
same input, and we use the inner product of the increments di · d j

where di and d j are two increments for attributes i and j to measure
the independence. A smaller inner product means less interference.
The mean score of the test set is taken as the result for each group
of attributes, as shown in Table 2.

By using Lind , the inner product is reduced to about one tenth,
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Figure 4: Facial attribute editing results on the CelebA dataset.

Table 1: Attribute generation accuracy.

Blond Hair Pale Skin Smile Male Young

FaderNet 75.885% 12.123% 40.991% 10.887% 74.233%
AttGAN 88.351% 92.488% 82.664% 91.617% 88.160%
StarGAN 91.072% 15.406% 77.627% 94.937% 89.387%
STGAN 96.897% 90.359% 97.768% 70.005% 93.865%

Ours 95.393% 93.601% 92.200% 92.650% 94.479%

Table 2: Inner products of increments of different attributes for the

same input.

B&P B&S P&S

Ours w/o Lind 1.120×105 5.857×104 3.552×105

Ours 1.601×104 8.168×103 1.184×104

compared with not using this loss, which shows Lind is effective
to ensure the independence between increments and reduces inter-
ference. Although our method does not restrict attributes in fixed
parts of latent code, we achieve a similar effect as the disentangled
representation does.

Note that here the inner product is used as a metric but not as an
objective, because according to our experiments it is too strong a
constraint and will stop the network from learning transforms. Our
soft independence constraint and transform learning complement
each other.

Evaluation of the effect of order on results. When changing two

(or more) attributes together, most methods such as CycleGAN will
need to apply these attribute manipulations one by one. Ideally,
the final results given the same input and same attribute changes
should be the same. In practice, however, the order of applying
these changes affects the results. Here we use four measurements to
evaluate the mean difference of outputs for three pairs of attributes,
and the results are shown in Table 3. Mean Squared Error (MSE)

Table 3: Quantitative evaluation of the “order affects results" ef-

fect. The table shows four measurements for the mean differences

between results obtained by two inference sequences using Cycle-

GAN.

inference order 1 MSE SSIM PSNR LPIPS inference order 2

CycleGAN(B+P) 244.65 0.7472 25.79 0.0254 CycleGAN(P+B)
CycleGAN(B+S) 85.72 0.8059 29.87 0.0165 CycleGAN(S+B)
CycleGAN(P+S) 87.85 0.7924 29.46 0.0197 CycleGAN(S+P)

is the pixel-by-pixel average squared difference between the two
images. Structural Similarity (SSIM) index [WBSS04] uses lumi-
nance, contrast and structure to measure image similarity, and its
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Input Ours B Ours P Ours B&P CycleGAN B+P CycleGAN P+B StarGANOurs w/o ℒ𝑖𝑛𝑑 STGANFaderNet AttGAN

Figure 5: Qualitative comparisons of Blond hair and Pale skin transform.

Input Ours B Ours S Ours B&S CycleGAN B+S CycleGAN S+B StarGANOurs w/o ℒ𝑖𝑛𝑑 STGANFaderNet AttGAN

Figure 6: Qualitative comparisons of Blond hair and Smiling transform.

value extends between [−1,1] and only equals 1 if the two im-
ages are identical. Peak signal-to-noise ratio (PSNR) [HZ10] is a
common measurement for image quality loss, which is calculated
logarithmically via MSE, and the higher the PSNR, the more sim-
ilar the images are. Recently proposed Learned Perceptual Image
Patch Similarity (LPIPS) [ZIE∗18] measures subjective perception
of image differences, and smaller LPIPS means they are more per-
ceptually similar.

We can see from Table 3 that all four measurements agree that
the order has the greatest impact on (Blond hair, Pale skin) trans-
form. This is because these two attributes both affect a wide area
on the image, and their modifications will cause more interference
in the latent space. Our method does not have this problem since it
does multi-attribute transforms simultaneously and has an internal
increment independence mechanism to prevent interference.

Multi-attribute interpolation. Our method uses a parallel archi-
tecture and latent increment mechanism, and it can easily generate
a series of interpolation results by interpolating the increments in
the latent space, as shown in Fig. 8. Since the results of our method
are more self-consistent when simultaneously manipulating multi-
attribute, this property is helpful to make a self-consistent interpo-
lation among two attributes, that is, the attribute transform results
travel from the two attribute paths will meet to a consistent result,
while each attribute is monotonically changing. Latent vector in-
terpolation is generally common in disentangling methods, since
they can interpolate between the source vector and the exemplar
vector. However our method does not rely on explicit latent space
disentangling, but is also fully capable for attribute interpolation.

Ablation study of the auxiliary constraints. To enhance the effect
of our framework, we use several auxiliary constraints, including:
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Figure 7: Qualitative comparisons of Pale skin and Smiling transform.
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Figure 8: Interpolation results of attribute transforms.

1. increment stability loss LStbL1 and LStbV GG to make the de-
coded images insensitive to the interference increments not gen-
erated by LT N;

2. latent consistency loss LLC to enhance the one-to-one corre-
spondence between latent vectors and images;

3. domain classification loss LC to direct the attribute transform
besides the adversarial loss.

In order to verify the effectiveness of these auxiliary constraints, we
remove them separately and observe the effect on the results. We
use the attributes of Blonde hair, Pale skin and their combinations
to conduct our experiments.

Fig. 9 shows the qualitative results of the ablation study. When
LStbL1 and LStbV GG are removed, the decoded images become
more sensitive to all disturbances on the latent vector, and lose

their specific sensitivity to LTN. So there exist some slight artifacts
on the image (eye area and ear area). When LLC is removed, the
one-to-one correspondence between latent vectors and images is
weakened, and the re-encoded latent vector is not necessarily equal
to the latent vector before decoding. This affects the effectiveness
of the method, and the image quality decreases significantly and
the results become distorted. When LC is removed, the networks’
ability to guide the attribute transforms is reduced. Although it is
also possible to learn the attribute transforms by solely relying on
the adversarial loss and reconstruction loss, the results become less
natural than those with LC.
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Table 4: Quantitative comparison for facial image multi-attribute translation. Three sets of target attributes are tested: B for Blond hair, P
for Pale skin and S for Smiling.

CycleGAN
forward order

CycleGAN
reverse order

FaderNet AttGAN StarGAN STGAN
Ours

w/o Lind
Ours

B+P FID (with B∩P domain) 31.872 29.815 60.453 72.240 52.366 29.209 32.266 28.844
B+S FID (with B∩S domain) 27.939 27.687 53.160 30.610 41.047 25.908 33.548 23.241
P+S FID (with P∩S domain) 35.138 34.103 55.748 62.927 51.696 29.302 56.894 31.396

Input B P B&P

Ours

Ours 

w/o ℒ𝐶

Ours 

w/o ℒ𝐿𝐶

Ours 

w/oℒ𝑆𝑡𝑏𝐿1 +ℒ𝑆𝑡𝑏𝑉𝐺𝐺

Input B P B&P

Figure 9: Qualitative results of the ablation study.

4.3. Test on Artistic Style Transform

We further experiment with transferring two artistic styles (Van
Gogh and Ukiyo-e, abbreviated as V and U , respectively), and treat
them as two attributes. We use the images provided by CycleGAN
for training and testing. We compare our method with CycleGAN
and StarGAN. The quantitatively results based on FID are reported
in Table 5 and visual comparisons are shown in Fig. 10. As there
are no ground truth images for the V +U style, FID values are cal-
culated with V and U domains separately. It can be seen that Cycle-
GAN results tend to show stronger effects by the latter transform,
and our results achieve a better balance with both styles. Although
StarGAN can learn both attributes at the same time, it tends to gen-
erate results with artifacts, showing the significant interference be-
tween styles.

5. Conclusion

In this paper, we have proposed a novel approach to multi-attribute
image-to-image translation. Our network architecture only requires
to perform the encoder and decoder once for multiple attributes,
and uses several parallel Latent Transform Networks to simulta-
neously transform multiple attributes. We further introduce an ef-
fective soft independence constraint to avoid interference between
different attributes. Experimental results show that our method out-
performs state-of-the-art methods both qualitatively and quantita-
tively.

Our method has some limitations. Since our method relies on the
parallel LTNs in the middle of the framework for attribute trans-
form, and our LTN is currently unidirectional, our current frame-
work only has the concept of adding attributes. In our framework,
the reverse operation of “removing” attributes is also considered as
an “adding” task. If the forward and reverse LTNs for an attribute
both exist in the framework, the independence constraint between
them is removed. As future work, we will consider introducing pos-
itive and negative LTNs to make the network have two-way func-
tions and improve efficiency.
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