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ISOPERIMETRIC PROBLEMS FOR SPACELIKE DOMAINS IN

GENERALIZED ROBERTSON-WALKER SPACES
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Department of Mathematics, University College London, Gower Street, London
WC1E 6BT, UK

JULIAN SCHEUER
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USA

Abstract. We use a locally constrained mean curvature flow to prove the
isoperimetric inequality for spacelike domains in generalized Robertson-Walker
spaces satisfying the null convergence condition.

1. Introduction

For a bounded domain Ω of the two-dimensional Euclidean, hyperbolic or spher-
ical space the isoperimetric inequality is given by

L2 ≥ 4πA, L2 ≥ 4πA+A2, L2 ≥ 4πA−A2,

respectively, where L is the boundary length of Ω and A the area of Ω. Equality
holds precisely when Ω is a metric ball. For open sets Ω of (n + 1) dimensional
Euclidean space this becomes

(1.1) |∂Ω| ≥ cn|Ω|
n

n+1 ,

with an explicit dimensional constant cn, where again, equality holds precisely
on balls. Here |·| is the Hausdorff measure of a submanifold of the appropriate
dimension. In higher dimensional hyperbolic and spherical spaces no explicit form
like (1.1) is available. However, the isoperimetric problem is solved, [18, 19, 20]:
For any bounded domain Ω in hyperbolic or spherical space and any geodesic ball
Br with |Ω| = |Br| there holds

|∂Ω| ≥ |∂Br|
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2 B. LAMBERT AND J. SCHEUER

with equality precisely when Ω = Br. We can describe this result in an alternative
way: Define

f0(r) = |Br|, f1(r) = |∂Br|,
then

|∂Ω| ≥ |∂Br| = f1(r) = f1 ◦ f−1
0 (|Br|) ≡ ϕ(|Ω|),

which is an implicit form of the isoperimetric inequality. In more general Riemann-
ian warped product spaces such an implicit isoperimetric inequality was deduced in
[13], while also on other Riemannian spaces isoperimetric inequalities have received
lots of attention. We do not provide a full bibliography but mention [6, 7, 8, 14, 22].

Much less seems to be known about the comparison of the volume of a domain in
Lorentzian spaces which is bounded by spacelike hypersurfaces. Here the question
is, which hypersurfaces maximize area under volume constraint. Some results are
available in Minkowski space [4], on two-dimensional Lorentzian surfaces satisfying
a curvature bound [3] and in warped product spaces, such as in a certain class of
Friedman-Robertson-Walker spaces [1].

The goal of this paper is to solve the isoperimetric problem for spacelike domains
in a large class of Lorentzian warped product manifolds, which we describe in the
following.

A spacetime
N = (a, b)× S0, ḡ = −dr2 + ϑ2(r)ĝ,

with a < b real numbers, a compact n-dimensional Riemannian manifold (S0, ĝ)
and positive warping factor ϑ ∈ C∞([a, b)) is called generalized Robertson-Walker
space.

In this paper we use the locally constrained mean curvature flow, that is, a time
dependent family of spacelike parametrisations x : [0, T )× S0 → N such that

(1.2) ẋ = (∆Σt
Θ)ν,

to solve an isoperimetric problem in N . Here Θ′(r) = ϑ(r), Θ is understood to be
defined on the ambient manifold and ν is the future directed timelike (i.e. ḡ(ν, ν) =
−1) normal vector to the flow hypersurfaces Σt. The terminology used for this flow
stems from the fact that (1.2) may equivalently be defined by

(1.3) ẋ = (uH − nϑ′(ρ))ν,

whereH is the mean curvature of the flow hypersurfaces with respect to−ν, ρ(t, ·) =
r|Σt

and u is the support function

u = −ḡ(ϑ∂r, ν).

The key observation is that, if N satisfies the null convergence condition below,
(1.3) deforms a hypersurface so as to keep the volume enclosed by a hypersurface
constant while increasing the area of the hypersurface, and the flow converges to
a totally umbilic hypersurface as t → ∞. This idea and the suitable adaption of
(1.3) to the Riemannian setting was introduced in [12] and further studied in [13].

A Lorentzian manifold N is said to satisfy the null convergence condition if for
all lightlike vectors X,

(1.4) Rc(X,X) ≥ 0.

We also say that the null convergence condition is satisfied strictly, if (1.4) holds
with strict inequality for all nonzero lightlike X. We observe that this condition is
implied by the more commonly used timelike convergence condition which is well
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known to be important in prescribed mean curvature equations, see for example
the work of Bartnik [5], Ecker and Huisken [10] and Ecker [9]. However, it is also
valid on any Einstein manifold, while the timelike convergence condition is not.

We prove the following isoperimetric inequality for domains bounded by a time-
slice and a closed spacelike hypersurface. For its formulation we first require some
further terminology. A hypersurface Σ ⊂ N is called spacelike, if the induced metric
is positive definite. Σ̂ is the region enclosed by {a}×S0 and Σ, see Section 2. Such
a spacelike hypersurface is called achronal if no timelike curve meets Σ more than
once (see [17, p. 425] for more details). Also note that this is automatically satisfied
if N is simply connected, [17, p. 427].

1.1. Theorem. Let n ≥ 2 and Nn+1 be a generalized Robertson-Walker space
which satisfies the null convergence condition. Let Σ ⊂ N be a spacelike, compact,
achronal and connected hypersurface. Then there holds

ϕ(vol(Σ̂)) ≥ |Σ|,
where ϕ : [0, vol(N)) → R+ is the function which gives equality on the coordinate
slices. Furthermore:

(i) If equality holds, then Σ is totally umbilic.
(ii) If N satisfies the null convergence condition strictly, then equality is attained

precisely on the timeslices of N .

2. Conventions and some hypersurface geometry

2.1. Basic notation. Throughout this paper we use the curvature conventions
from [17], in particular the Riemann tensor of a semi-Riemannian manifold with
metric ḡ and Levi-Civita connection ∇ is defined by

Rm(X,Y )Z = ∇Y ∇XZ −∇X∇Y Z −∇[Y,X]Z

for all vector fields X,Y, Z on N .
Given any orthonormal frame E1, . . . , En+1 where En+1 is timelike, define the

Ricci curvature by

Rc(X,Y ) = ḡ(Rm(Ei, X)Ei, Y )− ḡ(Rm(En+1, X)En+1, Y ).

Here the summation has been chosen so that the Ricci curvature of the Lorentz
product metric on S

n × R is non-negative.

Spacelike hypersurfaces. Let Σ ⊂ N be a spacelike, compact, connected and
achronal hypersurface given by an embedding x. The manifold N is globally hy-
perbolic [11, Thm. 1.4.2] and S0 is a Cauchy hypersurface. Thus Σ is a graph over
S0,

Σ = {(ρ(xi), xi) : (xi) ∈ S0},
see [11, Prop. 1.6.3]. Latin indices range between 1 and n and greek indices range
from 0 to n. Sometime we will write

x0 = r.

We state the relations between the geometric quantities of Σ and the graph
function ρ. Details can be found in [11, Sec. 1.6]. We use the coordinate based
notation, e.g. the induced metric g is

gij = g(∂i, ∂j)



4 B. LAMBERT AND J. SCHEUER

and we denote its Levi-Civita connection by ∇i = ∇∂i
. We also write

xi := ∂ix.

Let ν be the future directed timelike normal, i.e.

ḡ(∂r, ν) < 0,

and define the shape operator S = (hi
j) of Σ with respect to −ν. Then we call

A = hij := gikh
k
j = −ḡ (II (∂i, ∂j) , ν) = g(∇iν, xj).

the second fundamental form of Σ, which has eigenvalues with respect to g ordered
by

κ1 ≤ · · · ≤ κn.

For any spacelike hypersurface the Codazzi–Mainardi equations may be written [17,
Prop. 33, p. 115]

ḡ(Rm(X,Y )Z, ν) = ∇Xh(Y, Z)−∇Y h(X,Z).

The second fundamental form of the slices {x0 = r} is

h̄ij :=
ϑ′(r)

ϑ(r)
ḡij ,

[11, (1.6.13)], while the induced metric is

gij = −∂iρ∂jρ+ ϑ2(ρ)ĝij = −∂iρ∂jρ+ ḡij .

With the definition

v2 = 1− ϑ−2ĝij∂iρ∂jρ,

the second fundamental form satisfies

v−1hij = ∇ijρ+ h̄ij ,

[11, (1.6.11)]. Note that in this reference the past directed normal is used.
Suppose Θ solves Θ′(r) = ϑ(r), and by abuse of notation we identify Θ = Θ(r)

so that Θ : N → R. As a function on N we have

∇2

αβΘ = −ϑ′gαβ ,

while on Σt,

∇ijΘ(ρ) = ϑ′∂iρ∂jρ+ ϑ∇ijρ = −ϑ′gij +
ϑ

v
hij .

In particular we observe that (1.2) and (1.3) are the same flows.
We define the support function

u :=
ϑ

v
= −ḡ(ϑ∂r, ν) = g(∇Θ, ν),

and observe that this is related to ∇Θ by the identity

|∇Θ|2 ≡ gij∂iΘ∂jΘ = u2 − ϑ2.

We will use the following important inequality in several places.

2.1. Lemma. If N satisfies the null convergence condition and Σ ⊂ N is a spacelike
graph as above, then

(2.1) Rc(∇Θ, ν) ≥ 0.
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Proof. In a GRW space ∇Θ is an eigenvector of Rc, [17, Cor. 43, p. 211], and so

(2.2)

Rc(ν,∇Θ) = Rc(ν,∇Θ+ uν)

= uRc(ν, ν) + Rc(ν,∇Θ)

= uRc

(

V − ∇Θ

ϑ

u

ϑ
, V − ∇Θ

ϑ

u

ϑ

)

+Rc

(

V − ∇Θ

ϑ

u

ϑ
,∇Θ

)

= u

[(

u2

ϑ2
− 1

)

Rc

(∇Θ

ϑ
,
∇Θ

ϑ

)

+Rc (V, V )

]

= uRc(W,W ),

where V is the projection of ν onto (∇Θ)⊥ and

(2.3) W = V +

√

u2

ϑ2
− 1

∇Θ

ϑ
.

Since |V |2 = u2ϑ−2 − 1, W is a lightlike vector and the result follows. �

Area and volume calculations. Let Σ be graphical as above. We define the
integral of a function f ∈ C∞(Σ) by

ˆ

Σ

f :=

ˆ

S0

f dωg.

Here dωg is the Riemannian volume form on Σ. For

Σ̂ := {(r, ξ) ∈ N : a ≤ r ≤ ρ(ξ), ξ ∈ S0}
we define the enclosed volume (see [17, p. 194]) by

vol(Σ̂) :=

ˆ

S0

ˆ ρ(·)

a

√

det(ḡij(s, ·))
√

det(ḡij(a, ·))
ds dωa =

ˆ

Σ̂

d volḡ,

where dωa is the volume form on the time slice {a} × S0 and locally

d volḡ =
√

|det(ḡαβ)|.
The surface area of Σ is

|Σ| =
ˆ

Σ

1.

Suppose Σ̂ ⊂ N is open with compact closure such that ∂Σ̂ may be written as a
union of smooth spacelike hypersurfaces with outward pointing normal ν. If X is a
smooth vector field on Σ̂ then

ˆ

Σ̂

divX d vol = −
ˆ

∂Σ̂

〈ν,X〉 .

This follows from Stoke’s theorem and [17, Lemma 21, p. 195].

We now suppose that Σ̂ ⊂ N is a time dependent set which is bounded by
spacelike hypersurfaces Σ0 and Σ, where Σ varies with time and Σ0 is fixed. Let x
be a time dependent parametrization of Σ then the above divergence theorem and
[17, Lemma 21, p. 195] imply that

(2.4) ∂t vol(Σ̂t) = −
ˆ

Σ

〈ẋ, ν〉 .

Throughout the subsequent computations of this paper, differential operators
∇ and ∆ are always those induced on the flow hypersurfaces Σt. We suppress the
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subscript Σt for the sake of a shorter notation. Differential operators of the ambient
space are always furnished with an overbar.

2.2. Lemma. Let n ≥ 2. Along the flow (1.2)

(i) the volume vol(Σ̂) is preserved and
(ii) the surface area increases, provided (N, ḡ) satisfies the timelike convergence

condition.

If ∂t|Σt| = 0, then Σ is umbilic.

Proof. By equations (2.4) and (1.2) we have that

∂t vol(Σ̂t) =

ˆ

Σt

∆Θ = 0.

We recall that

σ2 =
1

2

(

H2 − |A|2
)

, σ
ij
2 = Hgij − hij ,

so

∇iσ
ij
2 = ∇jH −∇ih

ij = −ḡ(Rm(xi, x
j)xi, ν) = −Rc(xj , ν).

Therefore, by the divergence theorem

(2.5)

ˆ

Σt

(2σ2u− (n− 1)ϑ′H) =

ˆ

Σt

σ
ij
2 ∇2

ijΘ =

ˆ

Σt

Rc(ν,∇Θ).

Using Lemma 3.2 we get

(2.6)

∂t|Σt| =
ˆ

Σt

(H2u− nϑ′H)

=

ˆ

(

H2 − 2n

n− 1
σ2 +

n

u(n− 1)
Rc(∇Θ, ν)

)

u

≥ n

n− 1

ˆ

Σt

|Å|2u.

where we used (2.5) on the second line and (2.1) on the last line. �

3. Evolution equations

We now calculate several required evolution equations.

3.1. Lemma. On Σt the function Θ satisfies

Θ̇− u∆Θ = 0.

Proof. We calculate that

Θ̇ = ḡ(∇Θ, ẋ) = ḡ(∇Θ, ν)∆Θ = u∆Θ.

�

3.2. Lemma. On Σt the induced metric gij satisfies

ġij = 2hij∆Θ
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Proof.

∂tḡ(xi, xj) = ḡ

(

∂

∂xi
(∆Θν), xj

)

+ ḡ

(

∂

∂xj
(∆Θν), xi

)

= 2hij∆Θ.

�

3.3. Lemma. On Σt the future oriented normal ν satisfies

∇ẋν = ∇∆Θ = u∇H +H∇u− n
ϑ′′

ϑ
∇Θ.

Proof. We have

ḡ
(

∇ẋν, xi

)

= −ḡ
(

ν,∇ẋxi

)

= −ḡ
(

ν,∇xi
ẋ
)

= −ḡ
(

ν,∇xi
(∆Θν)

)

= ∇i∆Θ

and observe

∇i(−nϑ′) = −nϑ′′ḡ(∇r, xi) = −n
ϑ′′

ϑ
ḡ(∇Θ, xi).

�

3.4. Lemma. On Σt the function u satisfies

u̇− u∆u = −|Å|2u2 −
(

Hu√
n
−

√
nϑ′

)2

− n
ϑ′′

ϑ
(u2 − ϑ2)

− uRc(∇Θ, ν) +Hḡ(∇u,∇Θ).

Proof. We calculate

u̇ = ḡ
(

∇ẋν,∇Θ
)

+ ḡ
(

ν,∇ẋ∇Θ
)

= uḡ(∇H,∇Θ) +Hḡ(∇u,∇Θ)− n
ϑ′′

ϑ
|∇Θ|2 +∆Θ∇2

ννΘ.

We also see that
∇iu = hk

i∇kΘ+∇2

iνΘ = hk
i∇kΘ

and

∇2
iju = ∇jhik∇kΘ+ hk

i hkju+ hk
i∇

2

xkxj
Θ = ∇jhik∇kΘ+ hk

i hkju− ϑ′hij .

Taking a trace, and applying Codazzi Mainardi on the first term we see that

∆u = ḡ(∇H,∇Θ) + ḡ(Rm(xj ,∇Θ)xj , ν) + |A|2u− ϑ′H

= ḡ(∇H,∇Θ) + |A|2u+Rc(∇Θ, ν)− ϑ′H.

Overall we have
u̇− u∆u

= − |A|2u2 +Hḡ(∇u,∇Θ)− n
ϑ′′

ϑ
(u2 − ϑ2) + ϑ′∆Θ− uRc(∇Θ, ν) + ϑ′uH

= − |A|2u2 − uRc(∇Θ, ν) + 2ϑ′uH − n
ϑ′′

ϑ
u2 + n(ϑ′′ϑ− (ϑ′)2) +Hḡ(∇u,∇Θ)

= − |A|2u2 +
1

n
H2u2 − 1

n
H2u2 + 2ϑ′Hu− nϑ′2 − n

ϑ′′

ϑ
u2 + nϑ′′ϑ

− uRc(∇Θ, ν) +Hḡ(∇u,∇Θ)

= − |Å|2u2 −
(

Hu√
n
−

√
nϑ′

)2

− n
ϑ′′

ϑ
u2 + nϑ′′ϑ− uRc(∇Θ, ν) +Hḡ(∇u,∇Θ).
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�

4. Gradient estimate

4.1. Lemma. There exist uniform bounds

inf
Σ0

Θ ≤ Θ(p, t) ≤ sup
Σ0

Θ

Proof. This follows directly from Lemma 3.1 and the maximum principle. �

4.2. Lemma (Gradient bound). The support function is uniformly bounded along
the flow.

Proof. Define

w = u+Θ2.

Then w satisfies

ẇ − u∆w ≤ −H2u2

n
+ 2Huϑ′ +Hḡ(∇u,∇Θ)− 2u|∇Θ|2 + c(u2 + 1)

≤ −H2u2

n
+ 2Huϑ′ − 2HΘ(u2 − ϑ2)− 2u3

+ c(u2 + 1) +Hḡ(∇w,∇Θ)

≤
(

ǫ− 1

n

)

H2u2 − 2u3 + cǫ(u
2 + 1) +Hḡ(∇w,∇Θ),

where we estimated using Young’s inequality on the final line. At a large maximal
point of w, u must also be very large, as ρ is bounded. Setting ǫ = 1

n
, the result

follows from the maximum principle.
�

4.3. Corollary. Along (1.3) we have uniform Cm-estimates for every m and long-
time existence of the flow.

Proof. Under (1.3), the graph function ρ(·, t) satisfies a quasi-linear parabolic equa-
tion which, by Lemmas 4.1 and 4.2, is uniformly parabolic. Lemmas 4.1 and 4.2
and standard application of the Nash–Moser–De Giorgi theorem [16, Ch. XII] pro-

vides uniform C1+α; 1+α
2 bounds on ρ, and then Schauder theory [15, Thm. IV.10.1,

p. 351-352] implies uniform estimates to all orders. Standard parabolic existence
theory completes the proof. �

5. Completion of the proof

Proof. We have to prove that the flow converges to a coordinate slice {r = const}
and finish the proof of Theorem 1.1. We will prove that the function Θ on the
flowing hypersurface converges to a constant as t → ∞ using similar methods to
[2, Thm. 3.1] and [21, Sec. 6.2]. Recall that Θ satisfies

Θ̇− u∆Θ = 0,



ISOPERIMETRIC PROBLEMS IN GENERALIZED ROBERTSON-WALKER SPACES 9

where u∆ is uniformly elliptic due to the support function estimates. Hence Θ
enjoys the validity of the strong maximum principle for parabolic operators and
hence the oscillation of Θ,

ω(t) = oscΘ(t, ·) = maxΘ(t, ·)−minΘ(t, ·)

is strictly decreasing, unless Θ is constant at some (and hence all) t > 0, in which
case we would be done.

Suppose that ω does not converge to zero as t → ∞. Then it converges to
another value ω∞ > 0. Define a sequence of flows by

xi(t, ξ) = x(t+ i, ξ)

and the corresponding functions Θi. Due to Corollary 4.3, on a given time interval
[0, T ] we can apply Arzéla-Ascoli and obtain smooth convergence of a subsequence
of xi to a limit flow

x∞ : [0, T ]× S0 → N,

which solves the same flow equation (1.2). By construction, the oscillation of the
associated limiting function Θ∞ is ω∞ > 0 constantly, which is a contradiction to
the strong maximum principle, which holds for Θ∞ as well. We conclude that

lim
t→∞

ω(t) = 0

and hence every subsequential limit of the original flow x must be a time-slice of
the spacetime N . By the barrier estimates in Lemma 4.1, this timeslice is unique
and we obtain that the whole flow x converges to a timeslice.

We conclude the proof by showing that the isoperimetric inequality holds. Hence
let Σ satisfy the assumption of Theorem 1.1 and evolve Σ by the flow (1.2). Define

SR = {r = R}, f0(R) = vol(ŜR), f1(R) = |SR|.

Clearly f0 is monotonically increasing in R, and ϕ = f1 ◦ f−1
0 . As vol(Σt) is

fixed, this defines a unique slice SR∞
to which the flow must converge with area

ϕ(vol(SR∞
)). By the monotonicity properties of Lemma 2.2 the claimed isoperi-

metric inequality holds.

If equality holds and Σ was not umbilic, then equation (2.6) implies that varia-
tions of Σ along (1.2) would violate this inequality. Hence in the equality case Σ
must be umbilic.

It remains to prove item (ii) of Theorem 1.1. On a time slice equality holds
by construction. Hence assume equality holds on Σ and evolve Σ by (1.2). The
variation formula for the area (2.6) and (2.2) show that

∂t|Σt| ≥
n

n− 1

ˆ

Σt

uRc(W,W ).

Hence we must have

Rc(W,W ) = 0,



10 B. LAMBERT AND J. SCHEUER

for otherwise we would reach a contradiction to what we have already proved. Due
to the strict null convergence condition we obtain W = 0 and from (2.3) we deduce

0 =

√

u2

ϑ2
− 1 =

√

1

v2
− 1,

hence v = 1 and ∇Θ = 0. This shows that Σ is a timeslice. �
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krümmung, Math. Z. 46 (1940), no. 1, 204–230.
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