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PoNA: Pose-guided Non-local Attention

for Human Pose Transfer
Kun Li†, Member, IEEE, Jinsong Zhang†, Yebin Liu, Member, IEEE, Yu-Kun Lai, Member, IEEE,

and Qionghai Dai, Senior Member, IEEE

Abstract—Human pose transfer, which aims at transferring the
appearance of a given person to a target pose, is very challenging
and important in many applications. Previous work ignores the
guidance of pose features or only uses local attention mechanism,
leading to implausible and blurry results. We propose a new
human pose transfer method using a generative adversarial
network (GAN) with simplified cascaded blocks. In each block,
we propose a pose-guided non-local attention (PoNA) mechanism
with a long-range dependency scheme to select more important
regions of image features to transfer. We also design pre-posed
image-guided pose feature update and post-posed pose-guided
image feature update to better utilize the pose and image features.
Our network is simple, stable, and easy to train. Quantitative
and qualitative results on Market-1501 and DeepFashion datasets
show the efficacy and efficiency of our model. Compared with
state-of-the-art methods, our model generates sharper and more
realistic images with rich details, while having fewer parameters
and faster speed. Furthermore, our generated images can help
to alleviate data insufficiency for person re-identification.

Index Terms—Human pose transfer, generative adversarial
network (GAN), attention

I. INTRODUCTION

HUMAN pose transfer, which synthesizes a new image for

a target person in a new pose, is a very significant task

in many applications such as data augmentation for person re-

identification [1], image processing [2], and video generation

[3]. Given a condition image of a person and an arbitrary pose,

human pose transfer system generates realistic images of the

same person in the specified pose, as illustrated in Figure 1.

Many promising frameworks have been proposed for human

pose transfer [3]–[9]. In order to generate realistic images,

three main ideas are used in previous work. The first kind

of methods [4]–[6], [9] apply an encoder-decoder framework

to implicitly accomplish the transformation. However, they

fuse the pose and image information through simple guide

mechanism without utilizing the pose information for guid-

ance, which leads to blurry and implausible results. The second
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Figure 1: Generated examples by our method based on differ-

ent target poses.

kind of methods [7] break up the whole body into parts (each

body part as a rectangular region), transfer each body part

respectively by computing a set of affine transformations, and

finally combine the information of each body part to deliver

the final results. However, the rectangular regions of image

features are not precise for complex background and large

pattern, which sometimes causes implausible images to be

generated. The third kind of methods [8] propose to guide

the pixel-to-pixel transfer and texture transfer by 3D prior

knowledge, which can generate promising results. But their

results depend on the accuracy of the appearance flow and their

strategies require high computational cost and complicated

training procedure.

The aforementioned existing methods fail to synthesize

photo-realistic images due to the challenges of human pose

transfer. One challenge is how to transfer the information

of the condition image, including the style of clothes and

appearance of the person, from the condition pose to the

target pose. By comparing the image information to a student

and pose information to a teacher, the student should study

under the guidance of the teacher, while the teacher also

needs to change teaching methods according to the aptitude

and feedback of the student. On the one hand, under the

guidance of the teacher, the student will become stronger

and stronger. On the other hand, with the feedback from the

student, the teacher will adjust the way of guidance according

to the state of student to better guide the progress of the

student. In fact, this is a chicken and egg problem between

pose features and image features: good pose features will

help to generate good image information while good image

features will contribute to extracting relevant and important

pose features. In previous network architectures, they ignore

the guidance function between image features and pose fea-

tures or use simple attention mechanism to deal with this
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chicken and egg problem, which is difficult to make the utmost

of image and pose features. Besides, human pose transfer

is further compounded by self-occlusion and high variance

in poses, which induce ambiguities in inferring unobserved

pixels. Some methods deploy deeper networks or use 3D

prior knowledge to cope with this challenge. However, their

strategies require large computation budget and generate blurry

images especially when there is a lot of regions to be inferred

due to significant difference between poses.

The insight that takes human pose transfer as a chicken

and egg problem motivates us to design a cross-modal block,

named as Pose-guided Non-local Attention (PoNA) block,

with pre-posed image-guided pose feature update and post-

posed pose-guided image feature update to better deal with

the chicken and egg problem. With simplified cascaded cross-

modal blocks, the model contributes to gradually transferring

image features from the condition pose to the target pose.

In the pre-posed image-guided pose feature update, we use

self-attention module to merge pose feature and image fea-

ture. In the post-posed pose-guided image feature update,

we propose a pose-guided non-local attention mechanism to

alleviate ambiguities in inferring unobserved pixels, which also

helps to reduce the required number of blocks. With our non-

local attention mechanism, more important regions of image

features can be selected and deformed, which is useful for

inferring unobserved pixels and transferring image features

from the condition pose to the target pose. Experimental

results demonstrate that our method achieves more photo-

realistic human pose transfer results with fewer parameters

and faster speed, compared with five state-of-the-art meth-

ods. Some examples generated by our method are shown

in Fig. 1. The code is available for research purposes at

https://github.com/Zhangjinso/PoNA.

Our main contributions are summarized as follows:

• We propose a simple yet effective generator with simpli-

fied cascaded blocks for human pose transfer, which is

easy to train with fewer parameters. We will make the

code publicly available online.

• We propose a cross-modal block with pre-posed image-

guided pose feature update and post-posed pose-guided

image feature update, to better deal with the chicken and

egg problem. This copes well with high variance between

the source image and target image, because the pre-

posed image-to-pose transfer gives a better initialization

for image-based transfer, which is similar to the effect of

rigging for model-based animation.

• We propose a pose-guided non-local attention mechanism

in the image feature update to help select and deform im-

portant regions of image features, which deals well with

the information missing and self-occlusion problems.

• We demonstrate the advantage of our method over the

state-of-the-arts by quantitative and qualitative evaluation,

and show the capability to alleviate data insufficiency for

person re-identification.

The rest of this paper is organized as follows. Section II

presents a brief review of related work. Section III describes

the proposed network with pose-guided non-local attention

blocks. Experimental results are presented in Section IV, and

the paper is concluded in Section V.

II. RELATED WORK

A. Generative Adversarial Networks (GANs)

The Generative adversarial network (GAN) [10] is com-

posed of a generator and a discriminator where the discrim-

inator tries to identify real images and synthesized images

while the generator tries to fool the discriminator by generat-

ing realistic images. GANs usually generate realistic images

through training in an adversarial way [10]–[12]. Conditional

generative adversarial networks (CGANs) [13], which have

achieved remarkable success, are proposed for the purpose of

synthesizing realistic images with some condition constraints,

e.g., generating images at new viewpoints. Besides, as a

commonly used structure in generators, U-Net [14] captures

the input information of encoder and conveys it to decoder

using skip connection, which is suitable for pixel-wise aligned

tasks. However, human pose transfer is an unaligned task

due to the deformation between the condition pose and target

pose. Self-attention GAN [15] applies long-range dependency

instead of local spatial dependency, solving the limitation of

convolution operator. It calculates the attention map through

transforming image features into two feature spaces to gain

global information, and then acts on image features to get new

image features with long-range dependency. However, self-

attention mechanism can only gain the long-range dependency

of itself but can not guide the transformation of other features,

i.e., guiding the transformation of image features using pose

features. In this paper, we propose an improved attention

mechanism for human pose transfer, which helps to deal with

missing information and self-occlusions.

B. Person Image Generation

Lassner et al. [16] combine variational auto-encoder [17]

and GAN to generate random person images with different

appearance for the full body. Xian et al. [18] present a model

for controlling the texture of synthesized image with input

sketch and texture patches. Zhu et al. [19] propose a novel

pipeline to synthesize novel views of human body from a

monocular image. Balakrishnan et al. [20] decompose the

person image generation task into multiple foregrounds with

different body parts and background generation. Si et al.

[21] adopt multi-stage adversarial losses for pose transformer

network, foreground transformer network and background

transformer network to generate more realistic images. Several

methods [22]–[24] focus on the virtual try-on application and

make remarkable progress in transferring clothes of a given

person image while containing the condition pose and shape

of that person. Previous existing researches ignore the chicken

and egg problem in conditional generation. In this paper, we

propose a cross-modal block with pre-posed image-guided

pose feature update and post-posed pose-guided image feature

update to cope with the chicken and egg problem in human

pose transfer.
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Figure 2: Structure of our proposed generator.

C. Human Pose Transfer

Human pose transfer is an important part of person image

generation. Ma et al. [5] propose a coarse-to-fine framework,

which first generates a coarse image and then refines it.

However, this two-stage model is inefficient in computation

and complex to train. Ma et al. [6] improve their previous

work using a decomposition strategy. Esser et al. [4] combine

a variational auto-encoder to sample appearance and a U-Net

[14] to preserve shape information, modeling the interplay

of shape and appearance. Neverova et al. [25] propose to

form a warping module to preserve texture and a prediction

module to generate plausible images and then use a blending

module to deliver final results. Their work exploits a dense

pose estimation system, which maps body pixels to UV surface

coordinates, to generate pose presentation. Li et al. [8] use a

3D flow map and a visibility map from the condition pose

and target pose to guide the transformation of image features

and pixels. However, they need a flow regression module pre-

trained by the dataset obtained through fitting a SMPL [26], a

3D human model with 6890 vertices and 13766 faces. Liu

et al. [27] use a 3D body mesh recovery module [28] to

disentangle the pose and shape, and propose a novel block to

propagate the source information. However, the 3D body mesh

recovery method cannot estimate pose and shape precisely,

which leads to some blurry results. Zhu et al. [9] propose

a progressive pose attention transfer network to utilize pose

features to guide the image features transfer. They consider the

guidance role of pose features, but local attention mechanism

cannot capture long-range dependency to transfer the precise

regions of the image features. In this paper, we cascade several

pose-guided non-local attention blocks for better pose transfer

using fewer parameters.

III. METHOD

A. Notations

Given a person image, we aim at generating an image for the

person in another pose. To transfer pose arbitrarily, we adopt

the commonly used pose representations to guide the transfer.

Specifically, we use 18 human keypoints extracted by Human

Pose Estimator (HPE) [29] and represented by heatmaps. The

heatmap includes 18 channels, and each channel encodes the

location of each joint of human body. Denote Pc and Pt as

the heatmaps of the conditional pose and the target pose, Ic
and It as the condition image and the target image.

Instead of directly using the keypoints Kc and Kt that are

extracted from the condition image Ic and the target image

It using HPE, we encode the pose as 18 heatmaps to provide

widespread information about each joint location. Specifically,

the condition pose Pc and the target pose Pt are represented

as two tensors Pc = P(Kc) and Pt = P(Kt), where the slice

Pi (1 ≤ i ≤ 18) is a 2D matrix with the same dimension as

Ic and It. Mathematically,

Pi = exp−
(k − ki)

2

σ2
, (1)

where ki is the i-th joint location and σ = 6 pixels, which is

the same as that in Deform [7] and PATN [9]. During training,

the model takes a pair of the condition and the target images

(Ic, Ip) and a pair of the condition and the target pose (Pc, Pt)

as inputs. The generator is fed with a triplet (Ic, Pc, Pt) and

outputs Ig as close as possible to It.

B. Encoders

Figure 2 shows the architecture of our generator. The

generator has two encoders, several pose-guided non-local

attention blocks and one decoder. The input of the generator

is (Ic, Pc, Pt), a triplet of the condition image, condition pose
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and target pose. The output is our generated image Ig , which

is expected to be similar to the target image It. The task is

transferring the information in condition image Ic, including

texture, body shape, clothes style, etc., from condition pose Pc

to target pose Pt. The encoders, pose encoder and appearance

encoder, have the same structure with two down-sampling

convolution layers. We concatenate condition pose and target

pose as the input of the pose encoder. The pose encoder

encodes the transformation between condition pose and target

pose and preserves the information of both. The appearance

encoder takes a condition image as input and encodes the

information of the condition image. After going through two

encoders, pose code CP
0

and image code CI
0

are obtained.

C. Pose-guided Non-local Attention Block

We propose pose-guided non-local attention (PoNA) blocks,

which are cross-modal blocks, to make pose features truly

guide the transformation of image features. With several PoNA

blocks, image features can be transferred by pose features from

the condition pose to the target pose gradually. Each PoNA

block is separate and has the same structure. The inputs of

the tst PoNA block are image code CI
t−1

and pose code CP
t−1

from the (t−1)st PoNA block, and the outputs are image code

CI
t and pose code CP

t . Several PoNA blocks finally output the

final image code CI
T which is put into the decoder to generate

the final image, while the final pose code CP
T is discarded.

As explained before, PoNA block is used to make pose

features guide the transformation of image features. In each

PoNA block, two pathways, image pathway and pose pathway,

are designed for pose code and image code, respectively.

Image pathway and pose pathway are connected with our im-

proved non-local attention mechanism, which can accomplish

the task of pose-guided transformation. As shown in Figure

2, image code CI
t−1

and pose code CP
t−1

from the t− 1st

PoNA block are first concatenated along the depth (channel)

axis to get the fusion code. Pose code is updated with the

fusion code as CP
t , which contains both image features and

pose features, and then attention map is computed using the

updated pose code. Besides, image code is updated by going

through four convolution layers. To get the final image code

CI
t , the attention map is modulated on the updated image

features, which accomplishes the transformation of image

features guided by pose features. Details about PoNA block

is described in the following.

Image-guided Pose Code Update. Before going through

image pathway and pose pathway, we concatenate the image

code and the pose code along the depth (channel) dimension

as fusion features to make pose features know the information

about transformation of image features. With fusion code, we

deploy a self-attention module [15] to better integrate fusion

features and select more important regions for the guidance.

Mathematically:

CF
t−1

= self attention(CP
t−1

||CI
t−1

). (2)

where || is cited as concatenation along the depth (channel)

dimension.

For pose pathway, a block with four convolution layers is

used to encode the information of fusion features and prepare

for the following guidance. The four convolution layers (each

layer with a normalization layer [30], [31] and a ReLU [32])

help the pose code know about the transformation of image

features, which benefits for the following guidance. These four

convolution layers are capable of extracting useful features

from the fusion code. One of these layers also reduces the

number of channels to half, making the size of the output

equal to the input. The pose code is updated by:

CP
t = convP (C

F
t−1

). (3)

Pose-guided Non-local Attention. The pose transfer is to

move patches from the condition pose to the target pose and to

deal with the relationship between different patches. From this

point of view, the pose guides the transfer by finding where

to extract condition patches and where to put target patches

and meanwhile maintaining the relationship between patches.

In our PoNA block, such transformation is realized by the

attention map denoted as αt, which are values between 0 and

1 calculated by softmax, indicating the importance of every

element in the updated pose code and the extent to which

the model attends to one location when synthesizing other

locations.

Traditional non-local attention mechanism embeds query,

key and value from the same feature, calculates the attention

map by computing the similarity between key and query,

and updates the value with this attention map to select more

important regions. For the guided attention mechanism, key

and value are embedded from the feature to be guided, and

query is embedded from the feature as guidance. However, in

our task, the pose feature and the image feature are in the

different latent spaces, and it is hard to compute similarity

between image feature and pose feature. To get a reliable

attention map, we embed key and query from the updated pose

feature. The map αt is calculated from the pose code CP
t−1

.

The pose code CP
t−1

is transformed into two feature spaces,

key and query space, by two different 1 × 1 convolutional

layers, denoted as mappings f and g, where f(x) = Wfx and

g(x) = Wgx. Mathematically:

αt,j,i = softmax(mt,i,j), (4)

where αt,j,i indicates the relationship between the ith location

and the jth location in the tth PoNA block, and mt,i,j is

calculated as

mt,i,j = f(CP
t i)

T
· g(CP

t j). (5)

Pose-guided Image Code Update. Image code is updated

by going through four convolution layers and embedded into

value space by a 1× 1 convolutional layer. The attention map

αt from the pose-guided non-local attention mechanism can

select important regions from the image code and deform the

original image code by rearranging the image feature. The out-

put of the attention layer is ot = (ot,1, ot,2, . . . , ot,j , . . . , ot,N ),
where

ot =

N∑

i=1

αt,j,iWt(convI(C
I
t−1

)i),

h(xi) = Whxi.

(6)
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In the above formulation, N is the number of locations of the

features from the previous hidden layer, and Wh and Wt are

the learned weight matrices, which are implemented as 1×1

convolution layers.

In addition, we combine the output of the attention layer

with the input image code by a learnable parameter γ which

is initialized as 0. Therefore, the final output is given by

CI
t = γot + convI(C

I
t−1

). (7)

The learnable coefficient γ enables the block first to rely on

local features and then gradually to learn to combine the non-

local evidences.

D. Discriminator

We adopt two discriminators, appearance discriminator DA

and pose discriminator DP , to judge how likely Ig contains

the same person as Ic (appearance consistency) and how well

Ig aligns with the target pose Pt (pose consistency). The two

discriminators are similar in structures, where the inputs of

them are Ig concatenated with either condition image Ic or

target pose Pt along the depth axis. These inputs go through

a convolutional layer (with normalization and ReLU after

it) and several residual blocks (with self-attention module)

after down-sampling. The outputs of the discriminators are

the appearance consistency score SA and the pose consistency

score SP , calculated by softmax layers.

E. Loss Function

Previous methods on human pose transfer [4]–[9] utilize

multiple loss functions to supervise the training process. In

this work, we adopt a combination of three loss functions as

the full loss function Lfull, including a conditional adversarial

loss LCGAN , an L1 loss LL1 and a perceptual loss Lpercep,

which are described in details as follows.

The full loss function is defined as

Lfull = λ1LCGAN + λ2LL1 + λ3Lpercep, (8)

where λ1, λ2, λ3 represent the weights of LCGAN , LL1,

Lpercep that contribute to Lfull, respectively.

Conditional adversarial loss. The conditional adversarial loss
is defined as

LCGAN = EPt∈P,(Ic,It)∈I{log[DA(Ic, It) ·DP (It, Pt)]}+

EPt∈P,Ic∈I,Ig∈Î
{log[(1−DA(Ic, Ig)) · (1−DP (Ig, Pt))]},

(9)

where P , I and Î denote the distributions of person poses,

real person images and fake person images, respectively.

L1 loss. LL1
loss represents the pixel-wise differences be-

tween the generated image Ig and the ground truth It, which

is defined as

LL1 = ||Ig − It||1. (10)

Perceptual loss. Previous work [4]–[9] shows that L1-distance

between feature maps extracted from two images by a pre-

trained CNN could make the generated images look more

natural and reduce the structural differences, which performs

well in style transfer [11] and pose transfer [5]–[8]. The

perceptual loss is defined as

Lpercep =

Cρ∑

i=1

||φρ(Ig)i − φρ(It)i||1, (11)

where φρ denotes the outputs of the ρth layer from the

VGG-19 model [33] pre-trained on ImageNet [34], and φρ(·)i
denotes the ith feature map of the outputs of φρ.

In practice, we find that it is good enough to use the features

from Conv1 2 of VGG-19.

F. Training Procedures

We train the generator and the discriminators alternately.

When training, the input of the generator is a triplet (Ic, Pc,

Pt), and the output is a generated image Ig which has the same

pose as the target image It. Specifically, Ic is fed to the image

stream and (Pc, Pt) are fed to the pose stream. To train the

discriminators, the appearance discriminator DA takes (Ic, It)

and (Ic, Ig) as inputs to calculate the appearance consistency

score SA, and the pose discriminator Dp takes (Pt, It) and

(Pt, Ig) as inputs to calculate the pose consistency score SP .

G. Implementation Details

We use 3 PoNA blocks in the generator. For images from

Market-1501 dataset that are low resolution, we apply batch

normalization [30] in the generator for all the normalization

layers. Instance normalization [31] which is a better choice

for the transfer task, is applied for DeepFashion dataset. The

coefficients in the loss function (λ1, λ2, λ3) are set to be

(5,10,10) for Market-1501 dataset and (5,1,1) for DeepFashion

dataset. Leaky-ReLU [32] is adopted after each convolution

layer or normalization layer in the discriminators, and its

negative slope coefficient is set to be 0.2. For all models, we

adopt the Adam optimizer [35] with β1 = 0.5 and β2 = 0.999
to train for 90k iterations.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the datasets and the metrics

in Section IV-A, and compare our method with the state-of-

the-art methods in Section IV-B, and then we perform an

ablation evaluation to study the importance of the different

components of our approach in Section IV-C. We show the

application on data augmentation for person re-identification

which helps to improve the performance in Section IV-D and

finally analyze the limitations of our model in Section IV-E.

A. Datasets and Metrics

1) Datasets: Person re-identification dataset Market-1501

[36] and the In-shop Clothes Retrieval Benchmark DeepFash-

ion [37] are commonly used datasets for the evaluation of hu-

man pose transfer. Images in Market-1501 are low resolution

(128×64) with large variation in pose and background, which

makes human pose transfer more challenging. Compared with

Market-1501, the images in DeepFashion are higher resolution

(256×176) with clean background. Zhu et al. [9] use HPE [38]
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Table I: Quantitative comparison with five state-of-the-art methods on Market-1501 and DeepFashion.

Model
Market-1501 DeepFashion

SSIM IS mask-SSIM mask-IS PSNR PCKh SSIM IS PSNR PCKh

PG2 [5] 0.261 3.495 0.782 3.367 28.135 0.73 0.773 3.163 30.785 0.89

VUnet [4] 0.266 2.965 0.793 3.549 28.071 0.92 0.763 3.440 30.856 0.93

Deform [7] 0.291 3.230 0.807 3.502 28.227 0.94 0.760 3.362 31.022 0.94

PATN [9] 0.311 3.323 0.811 3.773 28.228 0.94 0.773 3.209 31.160 0.96

LWG [27] - - - - - - 0.696 3.478 28.396 0.80

Ours (3 PoNA blocks) 0.315 3.487 0.814 3.867 28.257 0.94 0.775 3.338 31.382 0.95

Real Data 1.000 3.890 1.000 3.706 ∞ 1.00 1.000 4.053 ∞ 1.00

as pose joints detector and collect 263632 training pairs and

12000 testing pairs for Market-1501 and 101966 training pairs

and 8570 testing pairs for DeepFashion, when proposing their

PATN method. In both of these datasets, the person identities

in the test set are different from those in the training set. In

order to ensure the fairness of the comparison results, we adopt

the training pairs and the testing pairs used in PATN [9] for

both datasets.

2) Metrics: Ma et al. [5] use Structural SIMilarity (SSIM)

and Inception Score (IS) as their metrics. SSIM can measure

the similarity between synthesized images and ground-truth

images, and IS is a common method used to measure the

quality of image generation. For Market-1501 dataset, Ma et

al. [6] further introduce the mask version of SSIM (mask-

SSIM) and the mask version of IS (mask-IS) by masking

the background out, which reduces the influence of blurry

background of images. Besides, Zhu et al. [9] introduce the

slightly modified version of Percentage of Correct Keypoints

(PCKh) [39], which measures shape consistency by computing

pose joints alignment using pre-trained Human Pose Estimator

(HPE) [29]. Moreover, we use Peak Signal to Noise Ratio

(PSNR) to measure the difference between the synthesized

image and the ground-truth image in pixel level.

B. Comparison with Previous Work

1) Qualitative Evaluation: We evaluate the visual results

of our method on Market-1501 and DeepFashion datasets,

compared with five state-of-the-art methods: PG2 [5], VUnet

[4], Deform [7], PATN [9], and LWG [27]. Because LWG

[27] does not provide pre-trained model on the Market-1501

dataset, we compare with LWG [27] only on the DeepFashion

dataset.

For poor quality images in Market-1501, as shown in Figure

3, our method generates clearer images than the other methods.

It is worth noting that our method gives the correct leg layouts

even when the legs are crossed in the target pose (in the first

and third rows). Besides, even if the condition image is blurred

(in the second row) or has complex clothing patterns (in the

third row), our method can learn the style of the garments and

maintain these features in the generated images. Moreover,

our method also keeps appearance consistency, e.g., the bag

is preserved in our results (in the first and third rows). For

high quality images in DeepFashion, as shown in Figure 4,

our method yields the sharpest person images with better

facial details while the generated images of the other methods

have some blur contents (in the third and fifth rows). Besides,

the texture (in the first and third rows) and clothing styles

(in the first, second and fifth rows) in condition images are

preserved in our generated images, which indicates that our

model has the power of capturing global styles and local

details for generation. Although LWG preserves fine details

in the condition image (in the fifth row), it fails to generate

sharp and plausible images with precise pose. Moreover, our

method keeps appearance consistency, e.g., the hat in the third

row.

To further validate the performance of our model, we

try to generate person images based on the same condition

image and several different poses from the testing sets of

Market-1501 and DeepFashion, respectively. Some examples

are shown in Figure 5-7. We only compare with PATN [9] and

LWG [27] since they are the latest state-of-the-art methods

and the space is limited. LWG [27] cannot generate good

results on the Market-1501 dataset, and hence we do not

compare this method on that dataset. Because LWG [27]

fails to generate sharp image when the condition image and

reference image have different camera coordinates, we select

some full-body images that have similar camera coordinates

as condition images and reference images from DeepFashion

dataset. As shown in Figure 5 and Figure 6, for images in

Market-1501 dataset, our model can generate more realistic

and plausible images even for poses with large variation.

Moreover, our generated images keep shape consistency while

the results of PATN [9] lose some details and are blurry.

Compared with PATN [9] on DeepFashion dataset, our model

generates sharper images with better facial details and less

noise. As shown in Figure 7, the results of LWG are blurry

and sensitive to different camera coordinates, although LWG

can preserve some details. Besides, due to its dependency on

3D mesh recovery module to get pose and shape information,

the persons in the generated images from different condition

images have different shapes and inaccurate pose when the

results of 3D mesh recovery module are not precise. As

shown in the third and last columns of the second example,

LWG cannot cope well with large differences of camera

coordinates between the condition image and the estimated

image, which explains why the quantitative results of LWG

are not good (see Table I). Besides, we compare with five

state-of-the-art methods on DeepFashion dataset in Figure 8
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𝑃𝑐 𝑃𝑡 PG2 VUnet Deform PATN Ours

Figure 3: Qualitative comparisons on Market-1501 dataset. From left to right are the results of PG2 [5], VUnet [4], Deform [7],

PATN [9] and ours, respectively.

to show the performance conditioned by different poses for

the same person. Our model generates more realistic images

and preserves the pattern of clothes. Moreover, the unseen

regions synthesized by our model are more reasonable with

less artifacts.

2) Quantitative Evaluation: Table I gives quantitative re-

sults compared with five state-of-the-art methods: PG2 [5],

VUnet [4], Deform [7], PATN [9] and LWG [27]. We use

the same training set and testing set used in PATN. Because

other methods do not give their data split scheme, we run their

well-trained models on our testing set. It is inevitable to have

some test images in their training sets. Even in this case, our

method still outperforms them on most metrics. For Market-

1501, although our IS metric is slightly lower than Ma et al.

[5], our mask-IS metric, which is more convincing for Market-

1501, is the highest score. The quantitative results on Market-

1501 demonstrate that the images generated by our method

maintain structure similarity and shape consistency even if

the condition images are low resolution and vary significantly

in the pose and background. For DeepFashion, our method

has the best results in terms of SSIM, which means that our

generated images keep structure similarity to the ground truth.

Our PSNR value is the highest on both Market-1501 and

DeepFashion datasets, which demonstrates that our generated

images have the minimum pixel-level errors.

3) Efficiency Evaluation: Table II shows our computation

complexity and efficiency compared with five state-of-the-art

methods: PG2 [5], VUnet [4], Deform [7], PATN [9], and

LWG [27]. We test all the methods on the same desktop with

one NVIDIA Titan Xp graphics card. We discard the time of

data preparation, and compute the testing time on DeepFashion

dataset. Through the comparison of model size and speed, our

model significantly outperforms the other five state-of-the-art

methods. Compared with PATN [9], our method has fewer

parameters and faster running speed, but get better results,

especially for our model with 2 PoNA blocks. Note that the
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𝑃𝑐 𝑃𝑡 PG2 VUnet Deform PATN OursLWG

Figure 4: Qualitative comparisons on DeepFashion dataset. From left to right are the results of PG2 [5], VUnet [4], Deform

[7], PATN [9], LWG [27] and ours, respectively.

Table II: Comparison of model size and speed on DeepFashion

dataset.

Method Parameters Speed

PG2 [5] 437.09 M 16.36 fps

VUnet [7] 139.36 M 44.27 fps

Deform [4] 82.08 M 25.49 fps

PATN [9] 41.36 M 97.37 fps

LWG [27] 97.45 M 7.31 fps

Ours with 3 PoNA blocks 34.33 M 105.18 fps

Ours with 2 PoNA blocks 23.31 M 179.32 fps

results of our model with 2 PoNA blocks are slightly lower

than PATN (with 9 blocks) in SSIM and mask-IS metrics,

but higher than their model in IS and mask-SSIM metrics, as

shown in Table I and Table III. In a word, our model has the

fewest parameters and the fastest speed, even when using 3

PoNA blocks.

C. Ablation Study

1) Effectiveness of Cascaded PoNA Blocks: The generator

we proposed has several cascaded PoNA blocks with improved

non-local attention mechanism, to deal with the challenging

cases of human pose transfer. In order to demonstrate the

effectiveness of cascaded PoNA blocks, we test different

numbers of PoNA blocks on Market-1501 dataset. Table II
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Figure 5: Image generation results conditioned by different poses on the Market-1501 dataset. For each condition image, the

first row shows the images generated by PATN [9], and the second row shows our results.

and Figure 9 show the quantitative and qualitative results

using different numbers of PoNA blocks, respectively. When

we only use 1 PoNA block in our model, the quantitative

results decrease in all metrics except mask-IS, and slightly

lower than the other state-of-the-art methods (please refer to

Table I). This verifies the effectiveness of our pose-guided

non-local attention mechanism. As shown in Figure 9, even

using 1 PoNA block, our model can still obtain reasonable

results. For simple clothing patterns, e.g., uniform color skirt

(in the third row) and knapsack (in the fourth row), 1 PoNA

block is enough. Using 2 or more PoNA blocks, our model

can capture fine details of complex appearance and generate

plausible images, especially for 3 PoNA blocks. With the

increase of PoNA blocks, some artifacts may appear (in the

second and third rows). Therefore, in our experiments, we

use 3 PoNA blocks to generate plausible and robust results.

The images in the last column of Figure 9 are generated by

PATN [9] with 9 blocks, which has the best performance

in their paper. Compared with PATN [9], our PoNA blocks

can capture more details and generate more realistic images.

With non-local attention mechanism, our network can transfer

the details in the condition image, even for the images with

complex clothing patterns, and hence our network generates

sharper and more realistic images.

2) Effectiveness of different components of PoNA Block:

The PoNA block is composed of self-attention module and

cross-modal attention module. To validate the effectiveness of

these two components, we conduct experiments on Market-

1501 dataset by training the model without cross-modal mod-

ule and the model without self-attention module. Table IV and

Figure 10 show the quantitative and qualitative results. It can

be seen that the cross-modal attention module plays a key

role in improving the performance. The cross-modal attention

Table III: Resluts of different numbers of PoNA blocks.

Number SSIM IS mask-SSIM mask-IS PCKh

1 0.298 3.367 0.806 3.806 0.91

2 0.309 3.419 0.812 3.745 0.94

3 0.315 3.487 0.814 3.867 0.94

4 0.309 3.481 0.809 3.783 0.92

5 0.306 3.449 0.808 3.872 0.92

module is designed for post-posed pose-guided image feature

update, and it is the only way that pose feature plays a role

in guiding the transformation of image feature. Without the

cross-modal attention module, our model cannot obtain pose

information, which causes that the generated person does not

have the similar pose to the ground truth. Besides, there are

some different target poses and target images for the same

source image as paired training data, which means that the

same source image has different target images. Therefore,

without pose information, the model may learn to synthesize

images with mean shape and mean pose to minimize the loss.

In our model, the self-attention module is used to merge pose

feature and image feature to select more important features.

Without self-attention module, the pre-posed image-guided

pose feature update cannot select important features to embed

key and value to obtain the attention map, and hence generates

some wrong estimates in the final image. Our full model

achieves the best performance.

3) Place and Importance of Fusion Code: This section

will demonstrate our design of the cross-modal block with

pre-posed image-guided pose feature update and post-posed

pose-guided image feature update. The improved attention

mechanism can make pose features guide the transfer of image
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Figure 6: Image generation results conditioned by different poses on the DeepFashion dataset. For each condition image, the

first row shows the images generated by PATN [9], and the second row shows our results.

Table IV: Quantitative results without different components of

the PoNA block.

SSIM IS mask-SSIM mask-IS PCKh

w/o Cro. 0.155 3.034 0.729 3.628 0.15

w/o Self. 0.307 3.331 0.809 3.755 0.93

Full model 0.315 3.487 0.814 3.867 0.94

features after getting fusion code and updating pose code, as

illustrated in Section III. However, because concatenating pose

code and image code is the only way to let pose features

know the process of image feature transfer, when and where

to concatenate image code and pose code to update fusion code

is important for the follow-up operations. Images in Market-

1501 dataset are more challenging for human pose transfer and

suitable for validating the place and importance of fusion code.

We call the fusion code before and after pose code updating

as the head and tail fusion, and deploy fusion code in the

middle of four convolution layers in pose code updating as

middle fusion. To validate the importance of fusion code, we

also remove it from PoNA block as none fusion. We test our

model with 3 PoNA blocks. Figure 11 shows the structures of

head, middle and tail fusions.

Table V shows the quantitative results of different places of

fusion code. It can be seen that the head fusion, i.e., pre-posed

image-guided pose feature update, has the best performance,

because the head fusion can fuse pose features and image

features before pose code updating and help to understand

the structured information of image features. The tail fusion

cannot maintain the structured information and understand
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LWG
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Ours

Figure 7: Image generation results conditioned by different poses on the DeepFashion dataset. For each condition image, the

first row shows the images generated by LWG [27], and the second row shows our results.

Table V: Results of different places of fusion code.

Fusion place SSIM IS mask-SSIM mask-IS PCKh

Head 0.315 3.487 0.814 3.867 0.94

Middle 0.310 3.501 0.811 3.897 0.93

Tail 0.307 3.680 0.807 3.884 0.93

None 0.297 3.427 0.804 3.705 0.91

the image features compared with head fusion and middle

fusion. Even though we remove the fusion code, owing to

our improved attention mechanism, our model can obtain

promising results, which are higher or slightly lower than

the other state-of-the-art methods illustrated in Table I in all

metrics. This verifies the effectiveness of our post-posed pose-

guided image feature update.

The qualitative results are shown in Figure 12. The model

with head fusion generates more plausible results based on

condition images (in the fourth and fifth rows), especially

when the legs in the target image are crossed (in the second

row). PATN [9] with 9 blocks (in the last column), with local

attention mechanism, is not able to capture the details in the

condition image, e.g., the white hat (in the first row), the bag

(in the third and fourth rows) and the white collar (in the

fifth row). Note that the images generated by our model are

sharper and have rich details, even if we remove the fusion

code updating. This further proves the effectiveness of our

improved attention mechanism.

4) Visualization of Features in Our Model: In this section,

we visualize all the core features of our model to get an

intuitive understanding on the transformation of pose feature

and image feature. Figure 13 shows the visualization of

features in our model. In pre-posed image-guided pose feature

update, the images represent the features before and after the

encoder and the features before and after the pose code update

in each PoNA block from top to down. It can be seen that the

pose feature becomes denser, which is beneficial to obtain a

reliable attention map to deform the image feature. In post-

posed pose-guided image feature update, the first row gives

the input image and the output feature of image encoder, and

the middle three rows show the image features before and

after deforming by cross-modal attention module. As shown

in Figure 13, the cross-modal attention module deforms the

image feature from condition pose to target pose gradually

and focuses on different regions in each block.
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Condition pose PG
2

VUnet Deform PATN LWG OursCondition image

Figure 8: Image generation results conditioned by different poses on the DeepFashion dataset. From left to right are the results

of PG2 [5], VUnet [4], Deform [7], PATN [9], LWG [27] and ours, respectively.

D. Data Augmentation for Person Re-identification

Human pose transfer is able to generate images of the same

person in different poses, which is useful to augment person

re-identification (re-ID) [40] dataset to solve the problem of

lacking training data and improve the performance of person

re-ID. To some degree, the performance of augmenting dataset

depends on the performance of human pose transfer model.

In order to illustrate the performance of our model, we test

on Market-1501 dataset [36], which is a main person re-ID

dataset. We exploit our generated images to replace the images

in Market-1501. Specifically, we first obtain a reduced training

set by selecting a portion p to randomly preserve the images in

the whole training set. Then, we use our human pose transfer

method to generate missing images conditioned on preserved

images and the pose of missing images. Finally, we combine

the reduced training set and the generated training set to obtain

the new training set. Note that the images in the new training

set has the same identities and each identity has the same

number of images with the same pose as original images. We

select the portion from 20% to 80% at intervals of 20%, and

get four reduced training sets and four new augmented training

sets. We use the Person re-ID baseline Framework [41] based

on ResNet-50 [42] as our training and testing protocols.

The training sets we created are suitable for showing the per-

formance of data augmentation using our human pose transfer

method. First, the reduced training set provides an environment

with insufficient data and helps us know the lower bound of

performance. Second, the original training set with realistic

images gives the upper bound of performance. With lover

bound and upper bound, we can measure the performance

of data augmentation using the human pose transfer method.
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Input Target 1 PoNA 2 PoNAs 3 PoNAs 4 PoNAs 5 PoNAs PATN 

Figure 9: Results on Market-1501 dataset with different numbers of PoNA blocks.

Table VI shows the re-ID results using the reduced training

sets (referred to as None) and the new training sets generated

by VUnet [4], Deform [7], PATN [9], and our method. We did

not compare PG2 [5] and LWG [27] since they cannot generate

good results on this Market-1501 dataset. For fair comparison,

we use the same settings (e.g., condition images and target

poses) to generate the images for all the methods. We use

mean Average Precision (mAP) as the metric to measure

the re-ID performance. With the same model and the same

parameters, the re-ID performance relies on the photorealism

of generated images and the texture consistency of the same

identity. As shown in the table, the model augmented by our

method achieves the most accurate re-ID estimation, which

indicates that our method generates more realistic images with

consistent textures.
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Input Target w/o Cro. w/o Self Full model

Figure 10: Generated images without different components of

the PoNA block.
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Figure 11: Structures of different places of fusion code. Note

that the legend is as the same as Figure 2.

Table VI: Results of re-ID.

Aug. Model
Portion p of the original dataset

0.2 0.4 0.6 0.8 1.0

None 42.3 58.9 66.7 69.5 71.8

VUnet [4] 54.1 59.6 66.2 68.6 71.8

Deform [7] 55.8 60.7 67.4 69.4 71.8

PATN [9] 57.2 61.4 67.9 69.7 71.8

Ours 58.8 63.8 68.7 70.4 71.8

E. Limitations

Our model can deform the image feature from the condition

pose to the target pose by pose-guided attention mechanism,

which also alleviates the negative effects of occlusion. Al-

though our model generates impressive results, the quality

of generated images can be further improved, especially for

occlusion cases. Figure 14 shows some failure cases using our

method. Our model treats large areas of occlusion as part of the

texture, resulting in blurry areas and incorrect textures (e.g.,

dress and shorts). Pose-guided attention mechanism, as a non-

local attention mechanism, can select and deform important

regions, but cannot cope well with the invisible areas in the

condition image by the weighted sum. In future work, we will

try to use human parsing map to extract semantic information

to deal with occlusion and add local attention mechanism to

enhance the quality of texture.

V. CONCLUSION

In this paper, we propose a pose-guided non-local atten-

tion (PoNA) block with an improved attention mechanism

to deal with the challenging human pose transfer. With the

improved attention mechanism, each block selects precise

regions of image features to transfer based on pose features.

The generator of our network is composed of several PoNA

blocks and transfers image features progressively. Compared

with previous work, our network generates more realistic

and sharper images with rich details, and get the highest

scores in the reasonable mask-SSIM and mask-IS metrics.

At the same time, our network has fewer parameters and

faster speed. Moreover, the proposed network can generate

training images for person re-identification to alleviate the data

insufficiency. Our improved attention mechanism with pre-

posed and post-posed fusion is suitable for other conditioned

generation tasks. In the future, we will deploy the improved

attention mechanism to other conditioned generation tasks,

such as facial animation.
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