Citation for final published version:

Yarova, Polina L., Huang, Ping, Schepelmann, Martin W., Bruce, Richard, Ecker, Rupert, Nica, Robert, Telezhkin, Vsevolod S., Traini, Daniela, Gomes dos Reis, Larissa, Kidd, Emma J., Ford, William R., Broadley, Kenneth J., Kariuki, Benson M., Corrigan, Christopher J., Ward, Jeremy P.T., Kemp, Paul J. and Riccardi, Daniela 2021. Characterisation of negative allosteric modulators of the calcium-sensing receptor, CaSR, for repurposing as a treatment for asthma. Journal of Pharmacology and Experimental Therapeutics 376 (1), pp. 51-63. 10.1124/jpet.120.000281

Publishers page: http://dx.doi.org/10.1124/jpet.120.000281

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Recruitment / activation

- Th2, eosinophils

Recruitment / activation

- Dendritic cells

Inflammation

- Cytokines, mediators

- Polycations, Ca^{2+}

Mucus

Allergen

Activation

- Epithelial cells

Goblet cell hyperplasia

Asthmatic airways

Inhaled CaSR NAMs

Suppress

- Airway smooth muscle hyperresponsiveness

- Recruitment / activation

- Th2, eosinophils

CaSR

= Tissues known to express CaSR

Figure: Inhaled CaSR NAMs suppress asthma. CaSR is expressed in tissues known to cause asthma, such as airway smooth muscle. Inhaled CaSR NAMs suppress airway smooth muscle hyperresponsiveness and recruitment of Th2 and eosinophils.