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Computational modelling is now integrated into almost all areas of science; and as well as

being widely used for gaining insight and guidance in analysing and explaining experi-

mental data, modelling has acquired an increasingly predictive capacity. This editorial

will provide a brief review of its current status and role in structural science and will

consider the likely future developments of the field. We focus first on our ability to model

and predict crystal structures, after which we consider the challenges posed by disordered

solids.

The use of computational methods in modelling crystal structures goes back many

decades and in the 1970s and 1980s rapid progress was made with the use of methods

based on interatomic potentials or force fields, coupled with energy minimization, to

model accurately the crystal structures of a wide range of solids, both inorganic materials,

including oxides, halides and silicates, and organic, molecular solids. These methods could

be used to refine approximately known structures, as was also widely done in structural

molecular biology. They could be enhanced by the use of molecular dynamical (MD)

simulation methods and later by the use of density functional theory (DFT) based

quantum mechanical methods, which as well as further refining crystallographic struc-

tures, generated models for the electronic structures of the materials. The article of

Takada et al. (2018) provides an illustration of how MD methods can be used to gain

insight into complex structures, in this case, those associated with tridymite, while many

examples of the applications of DFT techniques will be found in recent issues of IUCrJ.

Structure modelling, based on known structures, which may be approximate, remains a

useful tool. Far more challenging, however, is structure prediction based simply on the

composition of the solid. Indeed, a celebrated challenge was issued over thirty years ago

in a ‘News and Views’ article in Nature by John Maddox, who provocatively wrote: ‘One

of the continuing scandals in the physical sciences is that it remains impossible to predict

the structure of even the simplest crystalline solids from a knowledge of their composition.’

The field has responded well to the Maddox challenge over recent years and successful

structure prediction has now been achieved for many classes of material, as discussed in

the reviews of Woodley & Catlow (2008), Price (2018), Oganov (2018) and Woodley et al.

(2020). The general approach is to navigate the configurational space defined by the

structural parameters, using a rapidly computable ‘cost function’ which may be a simple

energy evaluation; regions of low cost function are identified and the resulting structures

may then be refined using energy minimization coupled with a more accurate energy

evaluation employing a force field or quantum mechanical technique. The navigation of

configurational space can use a variety of techniques and algorithms, including simulated

annealing, genetic algorithms, and topological and molecular packing approaches.

An elegant recent example of the success of structure prediction in inorganic materials

is provided by the work of Collins et al. (2017), who used a Monte-Carlo-based simulated

annealing algorithm to predict a new structure in the complex phase field of an Y–Sr–Ca–

Ga-oxide; the material was subsequently synthesized and the predicted structure

confirmed experimentally. Prediction methods have also been successfully applied to

organic materials, especially porous organic solids as illustrated by the recent work of

Pulido et al. (2017).

Structure prediction is also extensively used in nano-science as reviewed by Catlow et

al. (2010) for nano-clusters of inorganic systems. Recent work of Lazauskas et al. (2018)

provides a good illustration of the application to metallic nano-clusters with the structures

for titanium clusters with 2 to 32 atoms predicted by combining an MC search procedure

using a force field with DFT refinement. The resulting structures are shown in Fig. 1.

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252520011793&domain=pdf&date_stamp=2020-08-29


An important recent development is the growing use of

machine learning techniques, as discussed by Woodley et al.

(2020). More generally, the field continues to take advantage

of both developments in technique and algorithms and the

continuing expansion of computer power. Crystal structure

prediction is still far from routine, but it is an increasingly

important tool in structural science. As structure prediction

becomes more widespread, it will be essential that the meta-

data accompanying the structure make it clear whether the

structure is experimentally determined, predicted or some

combination of the two.

Turning now to disordered solids there are many challenges

to both experiment and computation as shown by several

articles in IUCrJ over recent years. The first concerns the

structures and energies of defects in crystalline solids.

Modelling of point defects in solids was indeed one of the

earlier successes of computational condensed matter science,

where work in the 1970s and 1980s using force-field-based

methods was able to achieve good agreement between

calculated and experimental defect properties, especially in

inorganic materials. The field was extended to include more

complex defect structures, including point defect clusters and

line and planar defects, and it has continued to develop

rapidly. Contemporary work still makes some use of force-

field methods, but is increasingly based on quantum mechan-

ical methods using quantum mechanical/molecular mechanical

(QM/MM) methods and periodic DFT techniques. Modelling

is now an integral tool in the physics and chemistry of defec-

tive solids.

Heavily disordered solids including solid solutions and

systems with high defect concentrations are attracting growing

attention as again shown by articles over recent years in

IUCrJ, and pose substantial challenges to theory and model-

ling. A common approach is to set up a supercell, aiming to

model a disordered distribution within that cell. Realistic

models may require very large cells and sampling of large

numbers of configurations, although these requirements can

be reduced by the use of symmetry as in the widely applied site

occupancy disorder (SOD) approach developed by Grau-

Crespo et al. (2007). Monte-Carlo techniques including those

available in the knowledge led master code (KLMC) approach

developed by Woodley and co-workers (see e.g. Lazauskas et

al., 2017) also assist in modelling complex disordered solids,

but the field is one of the most difficult and demanding in

structural science.

Computational methods have for many years been used to

construct models of amorphous solids. The general approach

is to mimic the way by which glasses have traditionally been

made, that is to quench from the liquid state. The process is

simulated by a molecular dynamics ‘melt quench’ cycle in

which MD is used to simulate the melting of the crystalline

form of the material, followed by rapid cooling in which the

system freezes into the amorphous state. Due to limitations in

the time sampled by even the most ambitious MD simulations,

the method has the problem that the timescale of the MD

quench is far shorter that of an experimental quench. A

number of approaches have been developed to mitigate this

problem and the MD modelling of disordered materials has

enjoyed considerable success, although challenges remain. A

detailed discussion of the field is given in the monograph of

Massobrio et al. (2015); and there is no doubt that the struc-

tural science of amorphous solids will continue to gain valu-

able input and insight from modelling techniques.

The capabilities of modelling tools are advancing rapidly

and the range and ambitions of applications will grow. IUCrJ

will continue to welcome articles which develop and apply

modelling techniques as a tool in structural science.
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Figure 1
Predicted structures for titanium clusters with 2 to 32 atoms, after Lazauskas et al. (2018) (published by the PCCP Owner Societies).
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