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Summary of thesis

There have been a number of gravitational wave events detected by the LIGO and
Virgo detectors in recent years. Aside from simply detecting these signals we want
to be able to make confident statements about the properties of the systems that
emit them– such as the masses and spins of the compact objects that make up the
binaries that produce gravitational waves. Inferring these properties enables us to
draw conclusions about the population of compact binaries in the universe and their
formation mechanisms. To do this we compare the detected signals with theoretical
predictions of the signals from sources with known properties.

The aim of this thesis has been to provide a precision description of precessing
black-hole-binary systems and the gravitational wave signals they produce. Due to
the non-linearity of the Einstein equation, we can only obtain analytical solutions for
the gravitational waves emitted by a source while the two black holes are inspiralling
towards each other. Obtaining the waveforms during merger and ringdown requires
numerical relativity.

In order to explore the phenomenology of precessing signals we produced a cat-
alogue of single spin numerical relativity simulations spanning the precessing pa-
rameter space up to mass ratio 8 and spin magnitude 0.8. The waveforms from
these simulations can be used for direct comparisons with detected signals or for the
development of waveform models. The catalogue presented here provides the basis
of the tuned precessing model that forms the bulk of this thesis.

We also further developed a method to reliably specify the orientation of a pre-
cessing binary at a given point in the waveform. For waveforms extracted from
numerical relativity simulations this method also gives us a way of estimating the
time shift between the waveform and dynamics data, thus giving us a way to specify
the spins at the same point in the waveform. This is useful both for performing
a direct comparison between a numerical waveform and a detected signal and for
developing a tuned model of precessing systems based on numerical waveforms.

It is too computationally expensive to perform the number of numerical simu-
lations required to densely sample the parameter space of precessing binaries. We
therefore produced a phenomenological model of the signal from precessing binaries.
This model is based on the idea that it is possible to “twist up” a non-precessing
waveform in order to get a precessing waveform. The model presented here focusses
on modelling the precession effects rather than the non-precessing waveform. We
used a model from post-Newtonian theory for the precession effects during inspiral
and produced a phenomenological model for the effects during merger and ring-
down. This phenomenological model has been tuned to the catalogue of numerical
simulations described above.
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Collaborative work

Parts of this thesis are the result of collaborative work.

• Chapter 2 presents a catalogue of 40 new numerical relativity simulations in
addition to a further nine simulations at differing resolutions. I produced ap-
proximately one-fifth of these simulations and performed the accuracy analysis
presented in this chapter. This will be published as part of a forthcoming paper
presenting the catalogue.

• Chapter 3 is based on work published in [82] in collaboration with Mark Han-
nam. I was the lead author on this paper.

• Chapter 4 presents a tuned waveform model of precessing systems based on
the catalogue presented in Chapter 2. I led the development and assessment
of this model. This work should be published presently.
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Chapter 1

Introduction

The General Theory of Relativity [71] was published in 1915 and describes how

gravity arises as a geometric property of space-time and relates the curvature of this

space-time to the energy and momenta of the matter and radiation contained within

it. Gravitational waves are disturbances to space-time as a result of the motion of

matter or radiation. One possible source of gravitational waves are accelerating

massive bodies; known astrophysical sources are compact objects (such as black

holes) orbiting each other and coalescing. The first detection of such a source was

made by the LIGO and Virgo collaborations in 2015 [7] and there have since been a

number of further detections [6, 9, 10,13–16].

The detection of gravitational waves is greatly assisted by models of the signals

being searched for. Since General Relativity is a highly non-linear theory, it can

only be solved analytically for very simple systems and analytic approximations

can only be developed under certain simplifying assumptions. In order to accurately

determine the signals emitted by complicated sources we therefore require numerical

solutions of the Einstein equation, but this is very computationally expensive. It

is therefore necessary to develop models of the signals based on available analytic

and numerical data. The family of models on which I will focus in this thesis

are phenomenological models. We need models which describe the signals from all

the different types of binary systems which can be observed, including systems in

which the black holes are spinning in ways such that the orbital plane of the binary

precesses.

The intention of this thesis is to provide a precision description of the gravita-

tional waves emitted by precessing black hole binaries. In Chapter 2 I present and

discuss the accuracy of a catalogue of numerical simulations of precessing binaries

upon which the rest of the work presented in this thesis is based. In Chapter 3 I

present a method of reliably relating the dynamical information extracted from a

numerical simulation to the waveform information, enabling the exact configuration

of the binary to be stated at a given point in the waveform. In Chapter 4 I present

a model of the precessional motion of black hole binary systems.
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1.1. Gravitational Waves

In the rest of this introduction I will discuss gravitational waves and methods

of modelling and detecting them, as well as possible sources. In section 1.1 I will

introduce gravitational waves and show how they emerge from General Relativity

followed by some discussion of analytic treatments of gravitational waves. In section

1.2 I will then discuss how the nonlinear equations of General Relativity can be

solved numerically and various numerical codes which are used to do this. Following

this, section 1.3 is a description of various sources of gravitational waves and methods

of detecting them. Section 1.4 contains a more in depth description of precessing

systems in particular, while section 1.5 describes attempts to model such sources so

far. Finally, section 1.6 describes the method commonly used for quantifying the

accuracy of such models.

1.1 Gravitational Waves

Gravitational waves are ripples in the curvature of space-time. They are described

by the Einstein equation [70,72]

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.1)

where Rµν is the Ricci tensor, gµν is the metric tensor, Tµν is the stress-energy tensor,

G is the gravitational constant and c is the speed of light in a vacuum. This equation

relates the geometry of space-time to matter. Gravitational waves can most simply

be seen to emerge from General Relativity in linearised theory [73, 74]. Linearised

theory also allows for the derivation of some of the key features of gravitational

waves, such as the leading order term in the multipole expansion of gravitational

waves and the angular distribution of the radiation. To go beyond linearised theory

requires post-Newtonian theory, which is applicable to slow-moving sources in the

weak-field region. To solve the Einstein equation in full General Relativity without

any such approximations requires numerical relativity, which is discussed in the next

section.

1.1.1 Linearised theory

As gravitational waves propagate away from their source, they reach an asymp-

totic region in which they can be treated as a weak perturbation on top of a flat

background metric. In this region we can clearly see the wave-like solutions to the

Einstein equation. To do this we expand the Einstein equation about a flat space

metric following [116], which gives us the linearised theory of gravity.

In linearised theory, the metric gµν is given by

gµν = ηµν + hµν , (1.2)
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Chapter 1. Introduction

where ηµν is the flat space Minkowski metric and hµν is the perturbation; |hµν | � 1.

Expanding equation 1.1 to linear order in hµν yields

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = − 16πG

c4
Tµν , (1.3)

where h̄µν = hµν − 1
2ηµνh. We now make use of the gauge freedom in general

relativity to choose the Lorentz gauge:

∂µh̄µν = 0, (1.4)

which reduces the Einstein equation in linearised gravity to

�h̄µν = − 16πG

c4
Tµν , (1.5)

which is in the form of a simple wave equation.

Outside a source of gravitational waves, Tµν = 0 so the wave equation becomes

�h̄µν = 0. We can therefore see that gravitational waves travel at the speed of

light. We can now make use of the residual gauge freedom to transform in the

transverse-traceless gauge defined by

h0µ = 0, hii = 0, ∂ihij = 0. (1.6)

For a plane wave propagating along the z-direction the metric perturbation is now

given by

hTT
µν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


µν

cos

[
ω

(
t− z

c

)]
, (1.7)

where h+ and h× are the plus and cross polarisations of the gravitational wave.

The metric perturbation due to gravitational waves causes a change in the proper

distance between two points, which is characterised by the strain h. We define the

complex strain to be given by

h = h+ − ih×. (1.8)

1.1.2 Quadrupole formula

From basic physical arguments we can see that the lowest order term in a multipole

expansion of the gravitational wave strain must be the quadrupole term. Mass is con-

served to linear order in general relativity, precluding the possibility of a monopole

term while general covariance and the conservation of angular momentum to linear
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1.1. Gravitational Waves

order prevent the presence of a dipole term. This is a general feature and not re-

stricted to the linearised theory. Linearised theory does however provide a useful

approximation which can inform us about the key features of this quadrupole term.

Inside the source we no longer have Tµν = 0. For astrophysically interesting

sources of gravitational waves, the assumptions that went into deriving the linearised

theory are no longer valid. Nevertheless we assume that we are in the weak-field

regime and that the sources have low velocities so we can still use the wave equation

1.5. This equation can be solved by the method of Green’s functions, giving

hTT
ij (t,x) =

4G

c4
Λij,kl (n̂)

∫
d3x′

1

|x− x′|
Tkl

(
t−

∣∣x− x′
∣∣

c
,x′

)
, (1.9)

where Λij,kl is the Lambda tensor which projects two-tensors onto a plane which is

transverse to the direction of propagation n̂. It is given by Λij,kl = P ki P
l
j − 1

2PijP
kl

where Pij = ηij − ninj . x points from the source to the observer at the time at

which the gravitational waves are emitted. x′ points from the source to the observer

at the time at which the waves are detected.

We now make two assumptions: (i) that the gravitational waves are a long way

from the source (weak-field regime) and (ii) that the wavelength of the radiation

is much greater than the size of the source (slow-velocity source). The metric per-

turbation hij can then be expanded in terms of the momenta of the stress-energy

tensor Tkl. These can be related to the momenta of the energy density T 00:

M =
1

c2

∫
d3xT 00 (t,x) , (1.10)

M i =
1

c2

∫
d3xT 00xi (t,x) , etc. (1.11)

To leading order, the metric perturbation becomes

hTT
ij (t,x)quad =

1

r

2G

c4
Λij,kl (n̂) M̈kl

(
t− r

c

)
(1.12)

=
1

r

2G

c4
Q̈TT
ij

(
t− r

c

)
, (1.13)

where r = |x|, QTT
ij = Λij,klQ

kl and Qij ≡ M ij − 1
3δ
ijMkk, which is traceless by

construction. Qij is the quadrupole moment.

We can find the form of the quadrupole formula for an observer far away from

the source of the gravitational waves. Considering a Cartesian co-ordinate system

in which the waves propagate along the z-direction,

Pij =

1 0 0

0 1 0

0 0 0


ij

, (1.14)
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so for an arbitrary matrix Akl,

Λij,klAkl = P ki P
l
jAkl −

1

2
PijP

klAkm (1.15)

= (PAP )ij −
1

2
PijTr (PA) (1.16)

=


1
2 (A11 −A22) A12 0

A21 −1
2 (A11 −A22) 0

0 0 0


ij

. (1.17)

Substituting this into 1.12 and comparing it to 1.7, the polarisations of a gravita-

tional wave propagating in an inertial frame where the z-direction is aligned with

the direction of propagation are given by

h+ =
1

r

G

c4

(
M̈11 − M̈22

)
, (1.18)

h× =
1

r

G

c4
M̈12. (1.19)

If instead we consider a system in which a gravitational wave is propagating in a

general direction n̂, written with respect to the z-direction using standard spherical

polar co-ordinates, then this frame is related to the previous frame by the rotation

R =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 . (1.20)

As before, h+ = 1
r
G
c4

(
M̈ ′11 − M̈ ′22

)
and h× = 1

r
G
c4
M̈ ′12 where M ′ij are calculated in

the frame in which the gravitational wave propagates along the z-direction. In terms

of the components of the momenta of the energy density in the original frame, the

polarisations are given by

h+ =
1

r

G

c4

[
M̈11

(
cos2 φ− sin2 φ cos2 θ

)
+ M̈22

(
sin2 φ− cos2 φ cos2 θ

)
−M̈33 sin2 θ − M̈12 sin 2φ

(
1 + cos2 θ

)
+M̈12 sinφ sin 2θ + M̈23 cosφ sin 2θ

]
, (1.21)

h× =
1

r

G

c4

[(
M̈11 − M̈22

)
sin 2φ cos θ + 2M̈12 cos 2φ cos θ

−M̈13 cosφ sin θ + M̈23 sinφ sin θ
]
. (1.22)

This expression allows the angular distribution of the radiation to be computed if

the mass distribution of the source is known.

Following [86], we consider the simple example of two Newtonian bodies of mass

M orbiting each other in the x− y plane with separation 2R and orbital frequency
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1.1. Gravitational Waves

ω. These bodies follow the trajectory described by

x (t) = R cosωt, (1.23)

y (t) = R sinωt, (1.24)

z (t) = 0. (1.25)

The non-zero second mass moments are therefore

M̈11 (t) =
1

2
MR2 (1 + cos 2ωt) , (1.26)

M̈22 (t) =
1

2
MR2 (1− cos 2ωt) , (1.27)

M̈12 (t) =
1

2
MR2 sin 2ωt. (1.28)

If we consider only the dependence on θ and so take φ = 0 the two polarisations are

given by

h+ ∝
(

1 + cos2 θ
)
, (1.29)

h× ∝ cos θ. (1.30)

Therefore the majority of the power in the gravitational wave is radiated in the

direction perpendicular to the orbital plane. This is true for any gravitational wave

source formed by two orbiting compact objects, not merely in this simple example.

1.1.3 Post-Newtonian theory

Linearised theory, as described above, assumes that the background space-time cur-

vature and the motion of a gravitational wave source can be treated independently.

Treating gravitational waves as a perturbation on top of a flat background metric

implies that the motion of the source must be Newtonian. However, for astrophysi-

cal sources of gravitational waves this assumption is false. If such sources are slow

moving and weakly self-gravitating, their dynamics can be treated using a post-

Newtonian formalism instead.

Post-Newtonian theory [36] consists of a series of corrections to linearised theory

written as an expansion in powers of v
c , where v is the typical internal speed of the

gravitational wave source. It is necessary to find general-relativistic corrections to

the equations of motion and to compute the gravitational waves emitted by such

a source. Furthermore, gravitational waves carry energy away from the source and

so influence the equations of motion. Additionally, since a gravitational field is a

source of gravitational waves (as general relativity is a non-linear theory) low order

terms in the post-Newtonian expansion will produce additional gravitational waves

at higher order.
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1.1.4 Spherical harmonics

The gravitational wave strain h is often decomposed into a set of modes using the

spin −2 weighted spherical harmonics given by

Y s
`m (θ, φ) = (−1)m

√
(`+m)! (`−m)! (2`+ 1)

4π (`+ s)! (`− s)!
sin2`

(
θ

2

)

×

`− s
r

 `+ s

r + s−m

 (−1)`−r−seimφ cot2r+s−m
(
θ

2

)
. (1.31)

These modes are given by

h`m =

∫ 2π

0

∫ π

0
h (θ, φ)Y −2

`m (θ, φ) sin θdθdφ. (1.32)

The spin-weighted spherical harmonics form an orthonormal basis. They can be

written as a set of traceless symmetric tensors Y`mij [159]. The five ` = 2 tensors

form a basis for the space of traceless symmetric tensors, such as the mass quadrupole

Qij . The majority of the power radiated by gravitational waves is therefore in the

` = 2 modes. From the form of the Y2m
ij we can see that for a binary in the x − y

plane with the gravitational wave propagating along the z-direction, the majority of

the power will reside in the (`,m) = (2,±2) modes.

1.2 Numerical Relativity

The Einstein equation, given in equation 1.1, determines the dynamical evolution

of a physical system. However, it can only be solved analytically for very simple

systems or under a series of assumptions as described above. Solving the set of 10

differential equations for more complicated systems requires numerical relativity [30].

In order to solve the Einstein equation numerically it is necessary to cast it into

a form that is suitable for numerical integration. One such method is known as

the “3+1 decomposition” of the Einstein equation [165]. Another is the system of

generalised harmonic co-ordinates [60, 135].

1.2.1 3+1 decomposition

The basic interpretation of the 3+1 decomposition is that we specify the metric

components and their first order derivatives with respect to time everywhere on a

three-dimensional space-like hypersurface at a constant time t. Different points on

the hypersurface are labelled by their spatial co-ordinates xi. The metric quantities

can now be integrated forward in time and computed, along with their derivatives,

on a new spatial hypersurface at a time t+ δt.

These hypersurfaces can be thought of as foliations of space-time. If we consider
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a 4-dimensional space-time manifold M described by the metric gµν then we assume

that this space-time can be foliated into a family of non-intersecting space-like 3-

surfaces Σ, each at constant t. We define the normal to a surface to be nµ ≡ gµν∇νt.
The spatial metric induced on each hypersurface Σ is given by γµν = gµν + nµnν .

The way in which each surface is embedded in the space-time M is described by the

extrinsic curvature, which calculates how much the direction of nµ changes across the

spatial hypersurface. We define it to be Kµν ≡ Lnγµν , where Ln is the Lie derivative

along nµ. The spatial metric γµν can differ between two different hypersurfaces Σ

by an amount proportional to Kµν .

The temporal evolution of the spatial co-ordinates are determined by two quan-

tities: the lapse and the shift vector. The lapse α measures how much proper time

elapses between neighbouring surfaces along the normal nµ to a surface and is defined

by 1
α2 ≡ gµν∇µt∇νt. The shift vector βµ measures the amount by which the spatial

co-ordinates are shifted within a surface. Two points with the same spatial co-

ordinates on neighbouring hypersurfaces are therefore connected by tµ = αnµ + βµ.

In the 3+1 decomposition, the Einstein equation is replaced by the constraint

and evolution equations. These are a coupled set of partial differential equations

which are first order in time. The constraint equations involve only the spatial

metric and the extrinsic curvature as well as their spatial derivatives and describe a

three-dimensional hypersurface Σ with gravitational field data
(
γµν ,Kµν

)
embedded

in a 4-dimensional manifold M . The evolution equations determine the evolution of(
γµν ,Kµν

)
.

In order to be able to stably solve these equations numerically they must be

well-posed. This means that the solutions to the equations cannot increase more

rapidly than exponentially. In order for a system to be well-posed, it can be shown

that it must by strongly hyperbolic [81]. In order to avoid numerical instabilities,

even exponentially growing terms must also be controlled. This further rules out

some formulations of the Einstein equation. The most commonly used form of

the Einstein equation in numerical relativity are the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) equations [29,153], which are strongly hyperbolic [143].

1.2.2 Generalised harmonic co-ordinates

The generalised harmonic co-ordinates method instead starts with the original 4-

dimensional Einstein equation and introduces a gauge by defining some gauge source

functions. This yields a non-linear wave equation for the space-time metric gµν along

with a set of constraint equations. This non-linear wave equation can be integrated

directly.

This approach differs to the 3+1 decomposition method in several ways [110,

135]. Firstly, the wave equation which must be evolved contains second order time

derivatives rather than just the first order terms present in the evolution equations
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of the 3+1 decomposition. Further, the choice of an appropriate co-ordinate system

is not as clear with this approach since it is determined by the gauge source functions

rather than quantities which are directly related to the geometry of the spatial slices.

1.2.3 Waveform extraction

Gravitational wave information is typically extracted from numerical simulations

using the Newman-Penrose scalar,

ψ4 = − Cαβγδnαm̄βnγm̄δ, (1.33)

where Cαβγδ is the Weyl tensor and n and m̄ form part of the null tetrad `, n,

m and m̄. ` and n are in-going and out-going null vectors respectively while m

is constructed from two spatial vectors orthogonal to ` and n. The choice of the

definition of this tetrad is a convention which varies between numerical codes.

It is useful to be able to relate this quantity to the gravitational wave strain h.

In the Bondi gauge, which applies to all the numerical codes mentioned here, the

two are related by the simple relation [91]

ψ4 = ḧ. (1.34)

However, performing two integrations in the time domain (in order to get h from

ψ4) causes unphysical artefacts to appear in the signal as a result of amplifications

of numerical noise. The integration is therefore typically performed in the frequency

domain, where one simply divides twice by the angular frequency ω (once for each

integration). In order to avoid spectral leakage, fixed frequency integration [140] is

used where one divides by ω0 instead of ω for |ω| < ω0.

1.2.4 Numerical codes

The two main numerical relativity codes referred to in this thesis are BAM [49]

and SpEC [89, 148]. Also referenced are the GT-MAYA [87, 90, 126, 161] and RIT

codes [166]. These codes simulate black-hole-binary configurations. BAM, GT-

MAYA and the RIT code are all moving puncture codes [28, 54]. Moving puncture

codes use the BSSN formulation of the 3+1 decomposition of Einstein’s equations.

SpEC is a pseudo-spectral code which uses a first-order representation of the gener-

alised harmonic co-ordinates. The simulations upon which the majority of work in

this thesis are based were performed using BAM, which is described in more detail

below.

BAM

As noted above, BAM is a moving puncture code. The initial geometry employed by

the puncture method for N black holes is the Brill-Lindquist wormhole topology [47]
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with N + 1 asymptotically flat ends. The asymptotically flat ends are compactified

and form co-ordinate singularities, labelled punctures. Since moving puncture codes

use the 3+1 decomposition of the Einstein equation, they require initial data for

the spatial metric and extrinsic curvature
(
γij ,Kij

)
on a spatial hypersurface Σ

with unit normal ni. These quantities are related to their background space-time

analogues by the conformal factor ψ, which diverges at the punctures. In the moving

puncture approach, a new variable χ = ψ−4 is defined. χ vanishes at the puncture

and is evolved instead of the conformal factor. This gauge choice avoids any finite-

differencing of a singularity. BAM uses Bowen-York initial data [41] along with

the gauge quantities α = ψ−2 and βi = 0. The initial data is then evolved using

the BSSN system with the gauge chosen to be the “covariant” form of “1+log”

slicing [21,28,40,54].

The numerical method employed by BAM utilises the method of lines with fi-

nite differencing in space and Runge-Kutta time stepping [133]. Berger-Oliger type

adaptive mesh refinement [32] is used. The grid set up of a simulation consists of a

hierarchy of nested Cartesian grids. On the lower levels there are two separate grids,

each centred on a puncture. Once the grids reach a size at which they would begin

to overlap, they are replaced by a single grid which encompasses both punctures and

is centred on the centre of motion. The smaller grids track the punctures while the

larger ones remain fixed. The location of the punctures are tracked using the shift

vector. The grid spacing on level ` is given by h` = h0
2`

, where h0 is the grid spacing

of the coarsest, outermost level.

The code is expected to be fourth-order accurate. Sixth order finite differencing is

used for spatial derivatives of the Einstein equation [92] while sixth order polynomial

interpolation is used in the space between refinement levels. The Runge-Kutta time

stepping is also fourth order. There are a few sources of second order errors: (i)

the initial data solver (though this is run with sufficiently high resolution that it

is not expected to impact the evolution), (ii) the implementation of the radiative

boundary condition and (iii) the boundary values for intermediate time-levels which

come from second order interpolation. Only the third of these sources of error is

expected to be non-negligible but it is not expected to dominate at the resolution

at which the simulations included in this thesis were performed.

1.3 Gravitational wave sources

There are multiple possible sources of gravitational waves, including stellar sources

and processes in the early Universe [65, 144]. Different sources emit gravitational

waves at different frequencies. This spectrum of frequencies can be grouped into

four distinct frequency bands. The first of these is known as the high frequency band

(1Hz ≤ f ≤ 104Hz). This band can be detected with current generation ground-

based detectors, such as GEO [18,69,115], LIGO [3], Virgo [17] and Kagra [27,155].
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Possible sources that emit in this band include compact stellar-mass binaries (the

most promising source), stellar core collapse, rotating neutron stars and stochastic

backgrounds. The low frequency band (10−5 Hz ≤ f ≤ 1Hz) may be detectable

by future space-based detectors, such as LISA [23] and contains sources such as

supermassive black holes and white dwarf binaries. The very low frequency band

(10−9 Hz ≤ f ≤ 10−7 Hz) is emitted by non-stellar sources and may be detectable

by pulsar timing arrays [101, 127, 137]. The ultra low frequency band (10−18 Hz

≤ f ≤ 10−13 Hz) is also emitted by non-stellar sources, such as quantum fluctuations

in the early Universe and may be detectable through an imprint left on the cosmic

microwave background [100].

In this thesis I will focus on signals from stellar sources– black-hole-binary sys-

tems in particular. The signal produced by a black-hole-binary system has three

regions: inspiral, merger and ringdown. During the inspiral phase, the binary slowly

spirals inwards as a result of the emission of gravitational waves and the amplitude

and frequency of the signal increase. In the merger phase the objects plunge towards

each other and merge. During ringdown the remnant object settles down to its final

state by radiating away any remaining energy. The inspiral can be approximated

analytically using post-Newtonian theory while aspects of the ringdown can be cal-

culated using perturbation theory. However, the merger is highly non-linear. It

is therefore necessary to use Numerical Relativity to accurately describe the whole

signal.

1.3.1 Black hole binaries

A black hole binary consists of two black holes orbiting each other. Labelling the

primary black hole 1 and the secondary black hole 2, these black holes have masses

m1 and m2 where m1 ≥ m2. The binary therefore has mass ratio q = m1
m2
≥ 1. Each

black hole can be spinning with spin angular momentum Si and the dimensionless

spin is defined to be χi = Si
m2
i

which obeys the Kerr limit |χi| < 1. The binary

therefore has total spin angular momentum S = S1 + S2. The binary also has

orbital angular momentum L and total angular momentum J = L + S. The binary

may also have some eccentricity, but for most sources this is expected to have been

radiated away a long time before the signal enters the detector’s sensitivity band.

Assuming the system evolves solely through the emission of gravitational waves,

it can be described completely by 15 parameters. These can be broken down into

8 intrinsic parameters and 7 extrinsic parameters. The intrinsic parameters are

Ξ = {M,η,Si} where M = m1 +m2 is the total mass of the binary and η = q
(1+q)2

is the symmetric mass ratio. The total mass of the binary M influences only the

scale of the signal. There are therefore only 7 fundamental intrinsic parameters.

The extrinsic parameters are the luminosity distance to the source, its sky position

(polar and azimuthal angles), the polarisation angle, the source inclination and the
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Figure 1.1: Idealised sensitivity curve for aLIGO at design sensitivity.

reference time and phase.

The total mass of the binary affects which part of the signal is “seen” in the

detector band [65]. As can be seen from figure 1.1, a signal can be seen in the

aLIGO sensitivity band at design sensitivity above ∼10Hz. We can estimate that

for systems with a total mass of less than ∼20M� most of the signal seen by the

detector is expected to be in the inspiral regime. For systems with a mass between

20M� and 200M� the merger region dominates, while for systems with a mass above

200M� but below 1000M� both the merger and ringdown regions contribute equally.

It is therefore necessary to have a model of the entire gravitational wave signal for

analysis.

Predictions of the gravitational waveform are necessary to measure the masses

and spins of the black holes which make up the binary using “matched-filtering”

techniques [22]. It is too computationally expensive to produce the number of grav-

itational wave templates required for such analyses using Numerical Relativity sim-

ulations alone. It is therefore necessary to develop inspiral-merger-ringdown models

covering all possible types of black-hole-binary systems.

1.3.2 Ground based interferometers

Compact binary coalescences, such as stellar mass black hole binaries, can be de-

tected with ground based interferometers (as well as other types of detectors).

Ground based interferometers are essentially Michelson-Morley interferometers. A

laser beam is split by a beam splitter into two beams which are sent down the

orthogonal arms of the detector. They are reflected by mirrors at the end of the

arms and recombine again at the beam splitter. Any passing gravitational waves

distort the relative length of the two arms of the interferometer and so modify the

interference pattern of the returning light beams.
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In practice the detectors are more complicated than a traditional Michelson-

Morley interferometer. In addition to being built on kilometre length scales in

order to increase the sensitivity of the detector to small distortions in the lengths

of the arms, they also employ a number of sophisticated techniques in order to

amplify the signal. These include reflecting the beam back and forth along each

of the arms before it recombines in order to further increase the distance it travels

as well as techniques for reducing various sources of noise [11] experienced by the

detectors [146].

The main way in which the detectors manifest themselves in the work presented

in this thesis is through the sensitivity curves of the detector. We use the sensitivity

curve for Advanced LIGO at design sensitivity [114], which is shown in figure 1.1.

As can be seen from this curve, at design sensitivity the detectors are expected to

be sensitive to signals from 20Hz to approximately 8kHz.

1.4 Precession Angles

If the spins on the black holes are not parallel with the orbital angular momentum

of the binary, the orientation of the spins as well as that of the orbital angular

momentum will vary with time. This causes the orbital plane to precess [24, 105].

The precession of the spins and the orbital plane causes the energy in the emitted

gravitational wave to be shared between the different waveform modes, resulting in

modulations in the gravitational wave amplitude and oscillations in the gravitational

wave frequency. This makes it very difficult to produce an analytic mode of the

waveforms from precessing binaries.

For a non-precessing system we can define a fixed preferred axis as the direc-

tion along which the gravitational radiation is preferentially beamed (the “radiation

axis”), thus defining a preferred inertial frame in which to view the system. This

is not possible for a precessing system. However, it is possible to define a time-

or frequency-dependent co-ordinate system which tracks the radiation axis and so

tracks the precession of the system. A non-inertial co-ordinate system where the

z-axis is aligned with the radiation axis defines a “co-precessing frame” [46,123,150]

(i.e. a frame that precesses along with the binary).

The co-precessing frame as defined above is not unique as there remains an

ambiguity in time- or frequency-dependent rotations about the radiation axis. Fixing

the rotation about the radiation axis defines the “minimal-rotation frame” which is

invariant under rotations of the inertial co-ordinates in which the gravitational wave

was extracted up to a constant overall rotation [46].

The rotations between an inertial frame and the minimal-rotation frame are

described using the z−y−z convention by the Euler angles α, β, γ, two of which are

shown in figure 1.2. Methods to calculate these angles are described below. These

methods can be applied to the Weyl scalar ψ4, the news ḣ or the gravitational wave
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Figure 1.2: The three Euler angles {α, β, γ} which make up the precession angles
which describe the transformation from an inertial frame into the co-precessing
frame. There are different choices for the definition of V; the maximum emission
direction, the Newtonian orbital angular momentum and varying orders of the post-
Newtonian orbital-angular momentum.

strain h. Following [46] I shall use q to represent these quantities in the inertial

frame in which the gravitational wave was extracted and q′ to represent them in a

co-precessing frame. Similarly these methods can be applied in either the time or

frequency domain. For simplicity, I will use the time domain to demonstrate the

methods.

1.4.1 Defining a co-precessing frame

Maximisation procedure

A method to track the optimal emission direction of a precessing binary and use

this to define a preferred axis was first proposed in [150]. The following follows the

treatment presented in this reference. As discussed in section 1.1.4 a gravitational

wave signal can be conveniently expressed in terms of spherical harmonics, which

are dominated by the ` = 2 modes. For a non-precessing system where the black

holes are orbiting in the x − y plane, the dominant modes are the (`,m) = (2,±2)

modes which are emitted approximately perpendicular to the orbital plane, defining

the optimal emission direction. This is as shown in sections 1.1.2 and 1.1.4. Any

rotation of the system that is not simply a rotation about this axis will cause mixing

between “m” modes with a given ` value. It is therefore possible to determine the

preferred direction of the system from the gravitational wave signal alone by finding

the orientation that maximises the amplitude of the
(
2, |2|

)
modes. In other words,

the aim is to maximise the quantity

Q =
∣∣∣q′2,2∣∣∣2 +

∣∣∣q′2,−2

∣∣∣2 =
∑
m=±2

∣∣∣q′2,m∣∣∣2 . (1.35)
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The direction given by maximising this quantity is shown to be approximately along

the direction of the orbital angular momentum of the system.

This quantity can be expressed in terms of inertial frame quantities as well as

the two precession angles α1 and β as follows. First we expand q in a basis of

spin-weighted spherical harmonics

q =
∑
`,m

q`,mY
−2
`,m, (1.36)

where the spin-weighted spherical harmonics Y −2
`,m are formed of a part which is

dependent on the spin-basis and the regular spherical harmonics Y`,m. If R (α, β, γ)

is an arbitrary rotation by the Euler angles α, β, γ then using the z−y−z convention

the spherical harmonics obey the transformation law

Y`,m
(
θ′, φ′

)
=

∑̀
m′=−`

eim
′αd`m′m (β) eimγY`,m′ (θ, φ) , (1.37)

where d`m′m (β) are the Wigner d-matrices given by

d`m′m (β) =
√

(`+m)!(`−m)!(`+m′)!(`−m′)!

×
∑
k

(−1)k+m′−m

k!(`+m− k)!(`−m′ − k)!(m′ −m+ k)!

×
(

sin
β

2

)2k+m′−m(
cos

β

2

)2`−2k−m′+m
. (1.38)

An arbitrary rotation R can also induce a change of spin basis. A quantity η of

spin weight s obeys η′ = ηeisχ under a change of spin basis. Therefore under an

arbitrary rotation by the Euler angles α, β, γ, the spin-weighted spherical harmonics

transform as

Y s
`,m

(
θ′, φ′

)
= eisχ

∑̀
m′=−`

eim
′αd`m′m (β) eimγY`,m′ (θ, φ) . (1.39)

Inverting equation 1.36 and substituting in the inverse of equation 1.39 gives

q`,m =
∑̀
m′=−`

eim
′αd`m′m (−β) eimγq′`,m. (1.40)

Substituting equation 1.40 into equation 1.35 we find

Q (α, β) =
∑
m=±2

∣∣∣∣∣∣
∑̀
m′=−`

eim
′αd`m′m (−β) q`,m

∣∣∣∣∣∣
2

, (1.41)

1in [150] this angle is referred to as γ.
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which depends only on the waveform in the inertial frame and the precession angles

α and β.

The method proposed in [150] to find α and β then involves searching over a

range of values for α and β to find the global maximum in Q. At the initial time

step the direction of the Newtonian orbital angular momentum is used to provide

an initial guess of the values of α and β (α0 and β0). A search is then performed

over the range (α, β) = (α0 ± 10◦, β0 ± 10◦) with angular resolution of 0.1◦ to find

the values of α and β which maximise Q. At subsequent time steps the values of

α and β from the previous time step are used as the initial guess and the search is

repeated over the range (α, β) = (α0 ± 3◦, β0 ± 3◦).

These angles describe a smoothly time-varying radiation axis which is approxi-

mately aligned with the direction of the orbital angular momentum of the system.

More will be said on the approximate relationship between this time-varying axis

and the orbital angular momentum in Chapter 3. Once the waveform from a pre-

cessing binary has been transformed into a frame in which the z-axis is aligned with

the radiation axis it resembles a waveforms from a non-precessing system.

Matrix method

An alternative method to find the radiation axis was proposed in [123]. In this

method one defines the symmetric tensor

〈L(aLb)〉 =
∑
`,m,m′

q∗`,m′〈`,m′|L(aLb)|`,m〉q`,m, (1.42)

composed of the angular momentum operators La and their eigenstates |`,m〉. The

radiation axis is given by the dominant principle axis of the matrix L(aLb), which is

labelled V̂ .

As in quantum mechanics we can define the raising and lowering operators

L+ = Lx + iLy, (1.43)

L− = Lx + iLy, (1.44)

which, along with Lz, act on the eigenstates as

L+|`,m〉 =
√
`(`+ 1)−m(m+ 1)|`,m+ 1〉, (1.45)

L−|`,m〉 =
√
`(`+ 1)−m(m− 1)|`,m− 1〉, (1.46)

Lz|`,m〉 = m|`,m〉. (1.47)
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We can write

L2 = L2
x + L2

y + L2
z, (1.48)

L2
+ = L2

x − L2
y + i(LxLy + LyLx), (1.49)

L+Lz + LzL+ = (LxLz + LzLx) + i(LyLz + LzLy). (1.50)

The tensor 〈L(aLb)〉 can therefore be written

L(aLb) =

 L2
x

1
2(LxLy + LyLx) 1

2(LxLz + LzLx)
1
2(LxLy + LyLx) L2

y
1
2(LyLz + LzLy)

1
2(LxLz + LzLx) 1

2(LyLz + LzLy) L2
z



=

 L2 − L2
z + Re(L2

+) 1
2 Im(L2

+) 1
2Re(L+Lz + LzL+)

1
2 Im(L2

+) L2 − L2
z − Re(L2

+) 1
2 Im(L+Lz + LzL+)

1
2Re(L+Lz + LzL+) 1

2 Im(L+Lz + LzL+) L2
z



=

 S0 + Re(S1) 1
2 Im(S1) 1

2Re(S2)
1
2 Im(S1) S0 − Re(S1) 1

2 Im(S2)
1
2Re(S2) 1

2 Im(S2) S3

 , (1.51)

where

S0 =
∑
`,m

(
`(`+ 1)−m2

) ∣∣q`,m∣∣2 , (1.52)

S1 =
∑
`,m

c`,mc`,m+1q
∗
`,m+2q`,m, (1.53)

S2 =
∑
`,m

c`,m(m+ 1)q∗`,m+1q`,m, (1.54)

S3 =
∑
`,m

m2
∣∣q`,m∣∣2 , (1.55)

and c`,m =
√
`(`+ 1)−m(m+ 1).

The dominant eigenvector of this matrix V̂ gives the radiation axis of the system,

which can also be described by the precession angles α and β:

V̂ =

 cosα sinβ

sinα sinβ

cosβ

 . (1.56)

The precession angles are therefore given by

α = tan−1

(
Vy
Vx

)
and β = cos−1

(
Vz
|V |

)
. (1.57)

If we restrict the tensor 〈L(aLb)〉 to use only the ` = 2 modes, these angles are
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identical to those found using the maximisation procedure.

1.4.2 The minimal-rotation frame

The final Euler angle γ needed to specify the rotation from an inertial frame into

a uniquely defined frame which is independent of the initial inertial frame can be

defined by imposing the “minimal-rotation condition”. This condition was derived

in [46] following the method summarised below.

The rotation of a non-inertial frame can be described by the rotation vector ω.

Relative to an inertial frame, the time derivative of any vector v stationary in the

rotating frame is given by v̇ = ω × v. We want the radiation axis of the system a

to be stationary in the co-precessing frame, so ȧ = ω× a. Taking the cross-product

with a and rearranging using the scalar triple product gives ω = a × ȧ + (a · ω) a,

where the component of ω is undetermined by this equation. In the non-precessing

case ȧ = 0 since the radiation axis remains fixed with respect to the inertial frame

and ω = 0 so we get the condition that a·ω = 0. Imposing this condition even in the

precessing case gives us the minimal-rotation condition since this condition implies

ω has the smallest possible magnitude. This condition is geometrically meaningful

since a is independent of the initial inertial frame.

This condition can be re-expressed in terms of generators of rotations by making

use of the relationship between the Lie group of rotations of R3 about the origin

SO(3) and its Lie algebra so(3) which are the generators of rotations. The isomor-

phism between so(3) and standard 3-vectors V3 can be represented in the Cartesian

frame as

σ : vk 7→ −εijkvk =

 0 −vz vy

vz 0 −vx

−vy vx 0


i

j

, (1.58)

where v = vkxk. The Cartesian basis (x̂, ŷ, ẑ) in V3 therefore maps to (X,Y, Z) in

so(3) where

X =

 0 0 0

0 0 −1

0 1 0

 Y =

 0 0 1

0 0 0

−1 0 0

 Z =

 0 −1 0

1 0 0

0 0 0

 , (1.59)

which obey the commutation relations

[X,Y ] = Z, [Y,Z] = X, [Z,X] = Y. (1.60)

This mapping also allows us to define the following operations:

• cross product: σ (v ×w) =
[
σ(v), σ(w)

]
= [V,W ],
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• scalar product: a · b = σ(a) · σ(b) = A ·B = −1
2A

i
jB

j
i ,

• rotation: Rv 7→ Rσ(v)R−1.

A vector v0 which remains fixed in the rotating frame is given in the inertial

frame by v(t) = R(t)v0. This can be written as V = RV0R
−1. The derivative of

this vector is given by

dV

dt
= [Π, V ] , (1.61)

where

dV

dt
=

d

dt

(
RV0R

−1
)

=
[
ṘR−1,RV0R

−1
]
, (1.62)

and

[Π, V ] =
[
Π,RV0R

−1
]
. (1.63)

Comparing these two expressions we find Π = ṘR−1 in order for 1.61 to hold for

arbitrary v.

We can define the equivalents of the instantaneous rotation axis ω and the ra-

diation axis a as so(3) objects: Π = σ(ω) and A = σ(a). We can therefore rewrite

the minimal rotation condition as

Π ·A = 0. (1.64)

In the minimal-rotation frame the radiation axis will be along the z-axis. In the

inertial frame we therefore have a = Rẑ which is written as A = RZR−1 in terms

of generators. Substituting in the expressions for Π and A into 1.64 we find

R−1Ṙ · Z = 0. (1.65)

The rotation by the Euler angles α, β, γ which transforms between an inertial

frame and the minimal rotation frame is given by

R (α, β, γ) = RαRβRγ = eαZeβY eγZ . (1.66)

The expression in generator notation is co-ordinate independent. If we write R =

RαβRγ then

R−1Ṙ = e−γZR−1
αβṘαβe

γZ + γ̇Z, (1.67)
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meaning

γ̇ = −
(
R−1
αβṘαβ

)
· Z. (1.68)

Expanding R−1
αβṘαβ we get

R−1
αβṘαβ = R−1

β

(
R−1
α Ṙα

)
Rβ + R−1

β Ṙβ. (1.69)

If R(t) ∈ so(3) is a curve such that R(t) = eR(t) then for R(t) 6= 0,

R−1Ṙ = Ṙ− 1− cos r

r

[
R, Ṙ

]
+
r − sin r

r3

[
R,
[
R, Ṙ

]]
, (1.70)

where r is the magnitude of the non-zero eigenvectors of R. If R(t) = 0, R−1Ṙ = 0.

For Rα and Rβ, R(t) lies along one of the Cartesian basis elements which are

constant in time. Therefore
[
R, Ṙ

]
= 0 so

R−1
αβṘαβ = α̇e−βY ZeβY + β̇Y. (1.71)

For A,B ∈ so(3), A 6= 0,

eABe−A = B +
1− cos a

a2

[
A, [A,B]

]
+

sin a

a
[A,B] , (1.72)

where a is the magnitude of the non-zero eigenvalues of A. When A = 0, eABe−A =

B. So,

e−βY ZeβY = Z − (1− cosβ)
[
Y, [Y,Z]

]
− sinβ [Y,Z] (1.73)

= (1 + cosβ)Z − sinβY. (1.74)

This gives

R−1
αβṘαβ = α̇

(
(1 + cosβ)Z − sinβY

)
+ β̇Y. (1.75)

Substituting this into equation 1.68 we find the minimum rotation condition ex-

pressed in terms of the precession angles:

γ̇ = − α̇ cosβ. (1.76)

1.4.3 Physics in the minimal-rotation frame

For a precessing system there are two contributions to the frequency of the binary

motion. The first is due to the motion about the orbital-plane axis ωorb while the

second is due to the precessional motion, which has frequency α̇ cosβ. The total

frequency of the motion is therefore given by ωinertial = ωorb + α̇ cosβ [25]. In
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the minimal rotation frame, the only contribution to the frequency comes from the

motion about the radiation axis ω′orb which coincides with the orbital-plane axis.

ωorb is related to ω′orb by ω′orb = ωorb + γ̇ = ωorb + α̇ cosβ as the motion about the

radiation axis is equal to the motion about the orbital-plane axis plus the original

rotation about the orbital-plane axis by an angle γ. Therefore

ωinertial = ω′orb. (1.77)

Alternatively this relation can be used to infer what the minimal rotation con-

dition should be. If the binary in the minimum rotation frame is required to have

the same angular frequency as in the initial inertial frame then the frequency of the

rotation introduced by the final rotation by γ must exactly cancel that introduced

by the first two rotations by α and β. Therefore we have that γ = −α̇ cosβ.

1.5 Models

As noted in section 1.3, it is necessary to have a complete inspiral-merger-ringdown

model of gravitational wave signals for detection and data analysis. There are

currently three main families of such waveform models: phenomenological models,

effective-one-body models and surrogate models.

1.5.1 Waveform families

The Phenom [20, 78, 85, 94, 102–104, 112, 131, 132, 149, 152] family of models model

the key features of the gravitational wave signal using simple functions parame-

terised by the physical parameters of the binary. The co-efficients in these functions

are obtained by fitting the functions to data from numerical simulations and then

performing a global fit across the parameter space; we say these co-efficients have

been “tuned” to numerical data. These waveforms are constructed in the frequency

domain since this is where the data analysis is performed and are therefore fairly

computationally inexpensive.

The effective-one-body (EOB) [50,52,63,124,158] models use a non-perturbative

method of resumming the post-Newtonian (PN) equations of motion to obtain accu-

rate expressions for a gravitationally interacting system of two compact objects by

mapping it to an effective-one-body problem. The aim is to obtain PN expressions

for the equations of motion up to merger and then attach results from perturbation

theory of the ringdown. In order to improve the accuracy of the models, calibration

co-efficients which have been tuned to numerical relativity are added to the expres-

sions. EOB models are generally computationally expensive since they rely on a

series of ordinary differential equations which must be integrated when evaluating

the model. In order to resolve this, reduced order models [34, 77] have been made

for many EOB approximants.
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The surrogate models [35] interpolate between a finite set of numerical relativity

waveforms, enabling a waveform to be generated at any point in the parameter space

over which the original set of waveforms were generated. This is done by breaking

the waveform down into “waveform data pieces” and producing a parametric fit

of these pieces using a greedy algorithm. A related method can also be applied to

produce reduced order models of existing waveform models in order to increase their

efficiency.

1.5.2 PhenomD

PhenomD [94,103] is a model of aligned-spin black-hole-binaries. It was calibrated to

19 waveforms which cover a parameter space of up to mass ratio 18 and a dimension-

less spin magnitude of 0.85 (and up to 0.98 for equal mass systems). The waveforms

to which the model was calibrated are hybrids of effective-one-body (EOB) wave-

forms for the inspiral and NR waveforms for the merger and ringdown. Within this

calibration region, the model and the NR waveforms typically agree to within 1%.

A formal method of quantifying the agreement between two waveforms is defined

in section 1.6. Beyond the calibration region the results provided by the model

are physically reasonable, but no definitive statements can be made about their

accuracy.

The black-hole-binary system being modelled is defined by its total mass M =

m1 + m2, its mass ratio q (or its symmetric mass ratio η) and the spins S1 and

S2. As noted in section 1.3, the total mass sets the scale and is factored out of the

modelling parameters. Since PhenomD is an aligned spin model, it is only concerned

with the dimensionless spin components parallel to the orbital angular momentum

L given by χi = Si·L̂
m2
i

, where χi ∈ [−1, 1].

The model provides expressions for the ` = 2, |m| = 2 spin-weighted spherical

harmonics since these are the dominant modes of aligned spin systems. We can

express h̃22 in terms of amplitude A and phase φ as

h̃22 (f ; Ξ) = A (f ; Ξ) e−iφ(f ;Ξ), (1.78)

where Ξ ∈ (M,η, χ1, χ2) are the physical parameters of the binary. PhenomD is

comprised of models for A and φ.

The model is split into three regions; an inspiral region, a merger-ringdown region

and an intermediate region. By construction each of the regions are joined together

by C1-continuous conditions. The piecewise regions are then joined together using

step functions. In the inspiral region the model is based on PN expressions and so

parameterised by the masses m1 and m2 and dimensionless spins χ1 and χ2 of the

binary. In the merger-ringdown region the model is parameterised by the symmetric

mass ratio η and the effective spin parameter χ̂ where χ̂ is the normalised PN leading
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order spin effect on the binary’s phase. This is given by

χ̂ =

(
1− 76η

113

)−1

χPN , (1.79)

where χPN = χeff − 38η
113 (χ1 + χ2) and χeff = m1χ1+m2χ2

m1+m2
. The final black hole is

parameterised by the final mass Mf and spin af which come from fits to the NR.

Phase

The phase of the model is given by

φ (f ; Ξ) =


φins f < 0.018

φint 0.018 ≤ f < 0.5fRD,

φMR 0.5fRD < f

where fRD is the ringdown frequency and f is given in dimensionless units.

The inspiral phase is modelled by PN approximant TaylorF2 [26, 67, 68] plus

the next four higher order PN terms where the co-efficients have been tuned to fit

the hybrids used in calibrating the model. These hybrids were constructed using

uncalibrated SEOBNRv2 [158]. The inspiral phase is given by:

φins = φTF2 +
1

η

(
σ0 + σ1f +

3

4
σ2f

4
3 +

3

5
σ3f

5
3 +

1

2
σ4f

2

)
. (1.80)

The intermediate and merger-ringdown sections were modelled using the following

phenomenological ansätze with the co-efficients calibrated to the NR waveforms:

φint =
1

η

(
β0 + β1f + β2 ln (f)− 1

3
β3f

−3

)
, (1.81)

φMR =
1

η

α0 + α1f − α2f
−1 +

4

3
α3f

34 + α4 arctan

(
f − α5fRD
fdamp

) , (1.82)

where fdamp is the ringdown damping frequency. It should be noted that it was in

fact the phase derivative that was modelled and this was then integrated to get an

expression for the phase.
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Amplitude

The amplitude of the model is similarly given by

A (f ; Ξ) =


Ains f < 0.018

Aint 0.018 ≤ f < 0.5fRD.

AMR 0.5fRD < f

The inspiral amplitude is modelled using a PN expression for the amplitude plus

the next three higher order PN terms with their co-efficients tuned to fit the hybrids:

Ains = APN +A0

3∑
i=1

ρif
6+i
3 . (1.83)

The intermediate region uses a phenomenological ansatz with the co-efficients deter-

mined using collocation methods to ensure the inspiral and merger-ringdown regions

connect smoothly:

Aint = A0

(
δ0 + δ1f + δ2f

2 + δ3f3 + δ4f
4
)
. (1.84)

The merger-ringdown region uses a phenomenological ansatz with the co-efficients

calibrated to the NR waveforms:

AMR = A0γ1
γ3fdamp

(f − fRD)
e
− γ2(f−fRD)

γ3fdamp . (1.85)

In all of the above expressions the leading order behaviour has been factored out

and is given by

A0 =

√
2η

3π1/3
f−

7
6 . (1.86)

1.5.3 PhenomP

The PhenomP [85,149,152] series of models are frequency-domain phenomenological

inspiral-merger-ringdown models of precessing black-hole-binaries. These models

are based on the principle described in section 1.4 that a precessing waveform can

be transformed into an accelerated frame in which the waveform appears to be

non-precessing. Conversely, the inverse transformation can be performed on a non-

precessing waveform in order to produce a precessing waveform. Therefore the model

consists of two distinct parts: a model for the underlying non-precessing aligned-spin

binary (hereafter referred to as the co-precessing waveform) and a separate model

of the Euler angles {α, β, γ} which capture the precessional motion.

A precessing binary is fully described by seven parameters; the mass ratio q and

the six components of the two spins S1 and S2 (the total mass M sets the overall
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scale and so can be factored out). PhenomP captures the basic features of this

7-dimensional parameter space with only three parameters. Two of these are the

mass ratio q and the effective inspiral spin χeff which parameterise the underlying

aligned-spin model, as discussed for PhenomD above. The third is the precession

spin parameter χp [152] which parameterises the precessional motion of the binary.

The following discussion follows the treatment presented in [152]. The effective

inspiral spin, which determines the inspiral rate of the binary, depends only on

components of the binary’s spins which are parallel to the binary’s orbital angular

momentum. In order to describe the precession additional information is required

from the components of the spins which lie in the plane orthogonal to L. The leading

order PN precession equation [105] is

L̇ =
L

r3

[
A1S

⊥
1 +A2S

⊥
2

]
× L̂, (1.87)

where r is the separation of the binary and A1 =
(

2 + 2
3q

)
and A2 =

(
2 + 3q

2

)
.

From this we can see that the in-plane spin components drive the evolution of the

orbital angular momentum and thus the orientation of the binary. The magnitude

of these in-plane spin vectors oscillates around a mean value as sometimes they are

parallel and add together while at other times they are anti-parallel and cancel out.

The average of these contributions is then defined to be

Sp :=
1

2

[(
A1S

⊥
1 +A2S

⊥
2

)
+
∣∣∣A1S

⊥
1 −A2S

⊥
2

∣∣∣] ≡ max
(
A1S

⊥
1 , A2S

⊥
2

)
. (1.88)

Since the in-plane spin of the smaller black hole is increasingly negligible with in-

creasing mass ratio, all the precessing spin is placed on the larger black hole. The

dimensionless precession spin parameter is then defined to be

χp =
Sp

A1m2
1

. (1.89)

These approximations do not work in two situations. The first of these is when the

precession is dominated by the in-plane spin on the smaller black hole. The second

is when there is little or no relative rotation of the in-plane spins (which occurs for

q ≈ 1). In this scenario, the precession spin should be the sum of the two spins so

χp underestimates the in-plane spin contribution.

This mapping from a seven-dimensional parameter space to a three-dimensional

parameter space is not bijective and thus multiple physically different configurations

can give the same set of parameters. The parameters
{
q, χeff, χp

}
therefore define

an approximate equivalence class of precessing systems. A consequence of this is

that it is difficult to distinguish the individual spin vectors in gravitational wave

observations; instead it is χeff and χp that can be measured. An advantage of this

parameter space reduction is that it reduces the number of numerical relativity
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simulations required to produce a calibrated model of the precession angles to an

achievable quantity.

For the majority of precessing cases, the direction of the total angular momen-

tum of the system is approximately constant. In such cases, known as simple preces-

sion [24], the orbital angular momentum and total spin angular momentum precess

about this direction. In a small minority of cases where the orbital and spin angular

momentum are almost equal in magnitude and opposite in direction we see transi-

tional precession [24]. In these cases J shrinks as the orbital angular momentum is

radiated away and at some point crosses the orbital plane, changing sign and thus

resulting in a change in direction. The PhenomP models are based on the assump-

tion that the direction of J is fixed and deal only with simple precession. This is

a reasonable assumption since transitional precession is expected to be very rare in

the LIGO sensitivity band [24]. The final spin of the remnant black hole is therefore

taken to be in the direction of J.

The final spin of the black hole is given by

Sfin = S
‖
fin + S⊥fin, (1.90)

where S
‖
fin and S⊥fin are the components of the final spin parallel and perpendicular

to the orbital angular momentum [97]. PhenomP assumes the parallel and per-

pendicular components of the initial spin are conserved but L evolves as angular

momentum is radiated away. The parallel component of the final spin is given by

a fit to the final spin of aligned-spin binaries [94] which depends on the symmetric

mass ratio η and the effective spin χeff. The perpendicular component of the spin

is unchanged. The magnitude of the final spin used in PhenomP [85] is therefore

given by

χfin =

√(
χ
‖
fin (η, χeff)

)2
+

(
m1χp
M

)2

. (1.91)

The suitability of this formula will be examined in Chapter 4.

The radiated energy and thus the final mass of the system depends only weakly

on precession since a precessing waveform can be approximated by a non-precessing

one. The radiated energy is given by a fit to the simulations used in the calibration

of PhenomD (see equations 3.7 and 3.8 in [94]). The final mass is then given by

Mfin = Mini − Erad.

The underlying co-precessing waveform used in the PhenomP models is based

on PhenomD. The inspiral part is given by the equivalent aligned-spin waveform for

the precessing case being considered. This is connected to a ringdown part which

consists of the aligned spin waveform with the correct value of the final spin as

described above.
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PhenomPv2: Angle model

PhenomPv2 [38] uses PN expressions for the Euler angles {α, β, γ} derived using

the stationary phase approximation for the whole model. These expressions are for

single-spin systems and use the mapping defined above to go from a two-spin system

to the appropriate single-spin system. Neither PN expressions nor the stationary

phase approximation are expected to be accurate through merger and ringdown.

However, they have been shown not to significantly degrade the model provided the

mass ratio and the spins are not large.

The angular momenta describing the binary are defined in terms of the orthonor-

mal triad
{
L̂N , n̂, λ

}
, where LN is the Newtonian orbital angular momentum and n

is the orbital separation vector. The total spin of the system is given by S = S‖+S⊥

where S‖ and S⊥ are the components of the spin parallel and perpendicular to the

orbital angular momentum respectively.

The opening angle β is defined to be the angle between LN and J [24]. It is

given by

cosβ =
JL√

J2
L + J2

n + J2
λ

=
L+ S‖√(

L+ S‖

)2
+ S2

⊥

=
(

1 + s2
)− 1

2
(1.92)

where s = S⊥
L+S‖

and the overall sign is chosen to be positive since for L + S‖ < 0,

J has changed sign and the approximation that the direction of J is constant has

broken down. In this expression L is given by the standard 2PN non-spinning

expression. The spin components are assumed to be fixed and are given by [38]

S‖ = m2
1χ
‖
1 +m2

2χ
‖
2, (1.93)

S⊥ = m2
1χp. (1.94)

The expression for α is derived from the PN expression for dα
dt given in [37]

dα

dt
= − ωprec

sinβ

Jn√
J2
n + J2

λ

(1.95)

where ωprec is defined by
˙̂
LN = −ωprecλ. The next-to-next-to-leading-order (NNLO)

spin-orbit contribution to ωprec is given in [39] and is re-expanded and averaged over

one orbit in order to get ωprec as a function of ω, χ‖ and χ⊥ only. Radiation reaction

is then introduced by allowing the orbital frequency to evolve, using the evolution

equation for ω̇
ω2 which includes corrections up to 3.5 PN order. Equation 1.95 is
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then re-written as

dα

dω
=

1

ω̇

dα

dt
(1.96)

where the RHS can be expanded in terms of ω and the equation can then be in-

tegrated up to obtain an expression for α (ω) as a function of ω, χ‖ and χ⊥. The

expression for α used in PhenomPv2 is then

α = − ω−1

[
35

192
+

5δ

64m1

]
− ω−

2
3

[
5m1 (3δ + 7m1)χ‖

128M2
T η

]

− 5ω−
1
3

[
(1103 + 824η)

3072
+
δ (911 + 980η)

7168m1
+

3δ2η

256m2
1

+
m3

1 (3δ + 7m1)χ2
⊥

128M4
T η

2

]

+ 5ω
1
3

[
8024297

9289728
+

36η

9289728
(23817 + 85568η)

+
δ

21676032m1

(
5579117 + 504η (−159 + 7630η)

)
+

δ2η

28672m2
1

(323 + 784η) +
3δ3η2

1024m3
1

+
m2

1χ
2
‖

43008M4
T η

2

(
504δ2η + 35m2

1 (19 + 92η) + 3δm1 (−97 + 812η)
)

+
m1 (3δ + 7m1)

1536M8
T η

4

(
−3m6

1χ
4
⊥ − 96πM6

T η
3χ‖

+2
(

(74δ + 188m1)M4
T η

3 + 6m5
1χ

2
⊥

)
m1χ

2
‖

)]

+ 5 lnω

[
− π

48m1
(3δ + 7m1)−

m5
1χ

2
⊥χ‖

384M6
T η

3

+
χ‖

M2
T η

(
4032δ2η + 7m2

1 (599 + 4072η) + 3δm2 (407 + 7138η)
)]

,

(1.97)

where χ⊥ = χp and χ‖ = 1+q
q χeff, m1 is the mass of the larger black hole (on which

this spin is placed), δ = m2−m1, MT = m1 +m2 = 1 is the total mass of the system

and η = q

(1+q)2
.

An explicit expression for γ as a function of ω, χ‖ and χ⊥ can similarly be found

using the minimal rotation condition γ̇ = −α̇ cosβ. The expression used for γ in
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PhenomPv2 is

γ = − ω−1

[
35

192
+

5δ

64m1

]
− ω−

2
3

[
5m1 (3δ + 7m1)χ‖

128M2
T η

]

− 5ω−
1
3

[
(1103 + 824η)

3072
+
δ (911 + 980η)

7168m1
+

3δ2η

256m2
1

]

+ 5ω
1
3

[
8024297

9289728
+

36η

9289728
(23817 + 85568η)

+
δ

21676032m1

(
5579117 + 504η (−159 + 7630η)

)
+

δ2η

28672m2
1

(323 + 784η) +
3δ3η2

1024m3
1

+
m2

1χ
2
‖

43008M4
T η

2

(
504δ2η + 35m2

1 (19 + 92η) + 3δm1 (−97 + 812η)
)

−
πm1χ‖

16M2
T η

(3δ + 7m1) +
m2

1χ
2
‖

786M4
T η

(3δ + 7m1) (75δ + 188m1)


+ 5 lnω

[
− π

48m1
(3δ + 7m1)

+
χ‖

M2
T η

(
4032δ2η + 7m2

1 (599 + 4072η) + 3δm2 (407 + 7138η)
)]

.

(1.98)

PhenomPv3: Angle model

PhenomPv3 [102] also uses PN expressions for the Euler angles. These expressions,

however, include radiation reaction and spin-orbit and spin-spin effects to leading

order in the conservative dynamics and 3.5PN order in the dissipative dynamics

(ignoring spin-spin terms). They incorporate two spin effects and so describe generic

binary systems. They also do not rely on the stationary phase approximation.

The expressions were derived in the development of the first closed-form analytic

inspiral waveform model for generically precessing binaries presented in [56, 58].

Radiation-reaction effects were introduced by performing a perturbative expansion

to the analytic solution to the conservative precession equations presented in [79]

in the ratio of the precession and radiation-reaction timescales [57, 106], known as

multiple scale analysis [31]. The frequency domain expressions were derived using

shifted uniform asymptotics [107].

The two-spin expressions for the precession angles are given in [58]. In the

following discussion, all appendices referenced are in [58]. α, denoted φz in [58], is

given by

α = α−1 + α0, (1.99)
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where

α−1 =
5∑

n=0

〈Ωα〉(n)α(n) + α0
−1, (1.100)

α0 =
Cφ

ψ̇

√
nc

nc − 1
arctan

[(
1−√nc

)
tanψ

1 +
√
nc tan2 ψ

]

+
Dφ

ψ̇

√
nd

nd − 1
arctan

[(
1−√nd

)
tanψ

1 +
√
nd tan2 ψ

]
, (1.101)

where 〈Ωα〉(n) and α(n) are given in Appendix D and α0
−1 is an integration constant.

Cφ, Dφ, nc and nd are given in Appendix B,

ψ̇ =
A

2

√
S2

+ + S2
3 , (1.102)

ψ = ψ0 −
3g0

4
δmv−3

(
1 + ψ1v + ψ2v

2
)
, (1.103)

where S+, S− and S3 are the three roots of the evolution equation for the total spin

magnitude S, v is the PN expansion parameter, δm is the mass difference, g0 is

given in Appendix C, A is given in Appendix B, ψ1 and ψ2 are given in Appendix

C. β, denoted θL in [58], is given by

cosβ = Ĵ · L̂ =
J2 + L2 − L2

2JL
, (1.104)

where J , L and S are the magnitudes of the total angular momentum, the orbital an-

gular momentum and the spin angular momentum respectively. Finally, γ, denoted

ζ in [58], is given by

γ = γ−1 + γ0, (1.105)

where

γ−1 = ηv−3
5∑

n=0

〈Ωγ〉(n)vn + γ0
−1, (1.106)

γ0 =
Aβ

ψ̇

(
Cφ +Dφ

)
+ 2d0

Bβ

ψ̇

(
Cφ

sd − d2
−

Dφ

sd + d2

)
, (1.107)

where 〈Ωγ〉(n) and γ(n) are given in Appendix F and γ0
−1 is an integration constant,

η is the symmetric mass ratio,

Aβ =
J2 + L2 − S2

+

2JL
, (1.108)

Bβ =
S2

+ − S2
−

2JL
, (1.109)
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and d0, d2 and sd are given in Appendix B.

The expressions for α and γ involve a series expansion in terms of the gravi-

tational wave frequency. The order at which these terms are truncated affects the

accuracy of the model; if the expansion order is too low then the inspiral expression

will not be sufficiently accurate while if it is too high then the expressions will be

inaccurate at high frequencies. For the implementation in PhenomPv3, these expres-

sions are truncated at fifth order, which is the second highest-order available. For β

the 3PN expression which includes spin-orbit terms was used for the magnitude of

the orbital angular momentum.

1.6 Matches

We quantify the disagreement between two waveforms h1 and h2 using the standard

inner product weighted by the power spectral density of the detector Sn (f) [64]:

〈h1|h2〉 = 4Re

∫ fmax

fmin

h̃1 (f) h̃∗2 (f)

Sn (f)
df. (1.110)

The match is given by the inner product between two normalised waveforms opti-

mised over various sets of parameters Θ. For non-precessing waveforms containing

only the (2,2) mode, we optimise over time shifts and the phase of the waveform

since these have no physical effect on the signal; a time shift corresponds only to a

change in the merger time of the binary while a change in the phase corresponds

to a rotation of the black holes in the orbital plane. For more generic waveforms,

we choose different sets of parameters to optimise over depending on what we are

studying. The match is given by

M (h1, h2) = max
Θ
〈h1|h2〉 (1.111)

and the mismatch by

M (h1, h2) = 1−M (h1, h2) . (1.112)

1.6.1 Non-precessing matches

For non-precessing matches neglecting higher order modes it is only necessary to

optimise the inner product over time and phase shifts. To optimise over time shifts

we use the fact that the Fourier transform of any time-shifted function g is given by

F
[
g (t− t0)

]
= e2πift0F

[
g (t)

]
. For an arbitrary time shift of h2 with respect to h1,

the inner product is therefore given by

〈h1|h2〉 = 4Re

∫ fmax

fmin

h̃1 (f) h̃∗2 (f)

Sn (f)
e−2πift0df. (1.113)
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To optimise over time shifts we can calculate the inverse Fourier transform

I (t0) =

∫ fmax

fmin

h̃1 (f) h̃∗2 (f)

Sn (f)
e−2πift0df = F−1

[
h̃1 (f) h̃∗2 (f)

Sn (f)

]
(t0) . (1.114)

This can be evaluated for any t0 to give a value of the inner product for every possible

time shift. Finding the maximum value of the inverse Fourier transform gives the

inner product optimised over time shifts (as well as the corresponding time shift).

Introducing a phase shift ϕ0 the inner product becomes

〈h1|h2〉 = 4Re

[
eiϕ0

∫ fmax

fmin

h̃1 (f) h̃∗2 (f)

Sn (f)
e−2πift0df

]
= 4Re

[
eiϕ0I

]
, (1.115)

where once the optimisation over time shifts has occurred I is given by a single

complex number. Optimising over the phase shift therefore involves finding the

value of ϕ0 for which the real part of the eiϕ0I is maximised. The non-precessing

match is then finally M (h1, h2) = 4|I|.

1.6.2 Precessing matches

The match calculation for precessing waveforms is more involved– two waveforms

can no longer differ from each other by a simple phase shift ϕ0 since they con-

tain additional modes which have differing phases. In order to identify the correct

quantity to optimise over for precessing waveforms, we note that for non-precessing

waveforms, optimising over the phase of the binary is equivalent to optimising over

the polarisation of the binary. We can write a non-precessing waveform as h = Aeiϕ

where A and ϕ are the phase of the (2,2) mode, since this is assumed to be the

dominant contribution to the waveform. A change in the polarisation of the sys-

tem therefore introduces a phase shift of ϕ0. For precessing systems there is not

the same degeneracy between optimisation over the waveform polarisation and over

phase shifts, but phase optimisations are related to optimisations with respect to

the polarisation angle. For precessing waveforms we therefore optimise the match

over polarisation and time shifts. Further to this we also vary the inclination of

the template waveform while keeping the inclination of the signal waveform fixed.

The following treatment of matches for precessing-binary signals closely follows the

presentation in Appendix B of [152].

Optimisation over waveform polarisation and time shifts

It can be shown (e.g. in [145]) that the detector response to a gravitational wave

signal h = h+ − ih× of polarisation ψ is given by

hR (t) = cos 2ψh+ (t) + sin 2ψh× (t) = Re
[
h (t) e2iψ

]
. (1.116)
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The Fourier transform of this is

h̃R (f) =
1

2

[
h̃ (f) e2iψ + h̃∗ (−f) e−2iψ

]
, (1.117)

using the property of Fourier transforms that F
[
g∗ (t)

]
= g̃∗ (−f). In order to

calculate the match between two waveforms– the first detected with polarisation ψ,

h1, and the second with polarisation σ, h2– we compute the inner product weighted

by the detector response defined by

〈h1|h2〉 = 2

∫ ∞
−∞

h̃1 (f) h̃2
∗

(f)

Sn
(
|f |
) df, (1.118)

which can be rearranged to give an expression in the form of equation 1.110 using

the fact that g̃ (f) = g̃∗ (−f). Substituting equation 1.117 into equation 1.118 we

find the inner product between the waveforms h1 and h2 is given by

〈h1
R|h2

R〉 =
1

2

∫ ∞
−∞

df

Sn
(
|f |
)×[

h̃1 (f) e2iψ + h̃1
∗

(−f) e−2iψ
] [
h̃2 (f) e2iσ + h̃2

∗
(−f) e−2iσ

]∗
(1.119)

= Re

[∫ ∞
−∞

h̃1 (f) h̃2
∗

(f)

Sn
(
|f |
) dfe2i(ψ−σ)

]

+ Re

[∫ ∞
−∞

h̃1 (f) h̃2 (−f)

Sn
(
|f |
) dfe2i(ψ+σ)

]
, (1.120)

using the property that
∫∞
−∞ x (f) df =

∫∞
−∞ x (−f) df for any function x. Similarly,

the norm of a waveform is given by

||hR||2 = 〈hR|hR〉 (1.121)

=
1

2

∫ ∞
−∞

1

Sn
(
|f |
) [h̃ (f) e2iψ + h̃∗ (−f) e−2iψ

] [
h̃ (f) e2iψ + h̃∗ (−f) e−2iψ

]∗
(1.122)

=

∫ ∞
−∞

|h̃ (f) |2

Sn
(
|f |
)df

+
1

2

[∫ ∞
−∞

h̃ (f) h̃ (−f)

Sn
(
|f |
) dfe4iψ +

∫ ∞
−∞

h̃∗ (f) h̃∗ (−f)

Sn
(
|f |
) dfe−4iψ

]
.

(1.123)

We wish to optimise this calculation over the polarisation of the waveform. In

order to simplify the optimisation over polarisation we can write the components

of equations 1.119 and 1.123 as complex numbers with a real amplitude and phase.
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Substituting

AeiσA =

∫ ∞
−∞

h̃2
∗

(f)

Sn
(
|f |
) [h̃1 (f) e2iψ + h̃1

∗
(−f) e−2iψ

]
df, (1.124)

B1 =

∫ ∞
−∞

|h̃ (f) |2

Sn
(
|f |
)df, B2e

iσB =

∫ ∞
−∞

h̃ (f) h̃ (−f)

Sn
(
|f |
) df, (1.125)

into equations 1.119 and 1.123 we find

〈h1
R|h2

R〉 = A cos (2σ − σA), (1.126)

||h2
R||2 = B1 +B2 cos (4σ + σB), (1.127)

which gives〈
h1
R

||h2
R||

∣∣∣∣∣ h2
R

||h2
R||

〉
=

A cos (2σ − σA)

||h2
R||
√
B1 +B2 cos (4σ + σB)

(1.128)

=
A (cosσA + sinσAtσ)

||h2
R||
√
B1

(
1 + t2σ

)
+B2

(
cosσB

(
1− t2σ

)
− 2 sinσBtσ

) ,
(1.129)

where tσ = tan 2σ and ||h2
R|| is independent of σ. The value of σ which maximises

this expression is given by

tan 2σ =
B1 sinσB +B2 sin (σA + σB)

B1 cosσB −B2 cos (σA + σB)
, (1.130)

which gives the inner product maximised over polarisation as

max
σ

〈
h1
R

||h2
R||

∣∣∣∣∣ h2
R

||h2
R||

〉
=

A

||h2
R||

√
B1 −B2 cos (σB + 2σA)

B2
1 −B2

2

. (1.131)

The optimisation over time shifts follows the same principle as for the non-

precessing case. In order to calculate the precessing match we take the inverse

Fourier transform of the integrand in each of the quantities A, B1 and B2 in order to

find the optimisation over time and then use equation 1.131 to find the optimisation

over the polarisation angle.

Variation over inclination

Finally, for a precessing waveform we no longer consider only the (2,2) mode. Con-

sequently, changing the orientation of the system with respect to the detector results

in a different combination of the modes.
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As described in section 1.1.4, the waveform can be written as

h (t) =
∑
`,m

Y −2
`,m (θ, φ)h`,m (t) . (1.132)

Substituting this in equation 1.120, we find that

〈h1
R|h2

R〉 = Re

∑
`,m

−2Y ∗`,m

∫ ∞
−∞

h̃1 (f)
(
h̃2
`,m

)∗
(f)

Sn
(
|f |
) dfe2i(ψ−σ)


+Re

∑
`,m

−2Y ∗`,m

∫ ∞
−∞

h̃1 (f)
(
h̃2
`,m

)∗
(−f)

Sn
(
|f |
) dfe2i(ψ+σ)

 , (1.133)

and from equation 1.123

||h2
R||2 =

∫ ∞
−∞

|h̃ (f) |2

Sn
(
|f |
)df + Re

[∫ ∞
−∞

h̃ (f) h̃ (−f)

Sn
(
|f |
) dfe4iσ

]
(1.134)

=
∑
`,m,m′

−2Y`,m
−2Y ∗`,m′

∫ ∞
−∞

h̃2
`,m (f)

(
h̃2
`,m

)∗
(f)

Sn
(
|f |
) df

+Re

 ∑
`,m,m′

−2Y`,m
−2Y ∗`,m′

∫ ∞
−∞

h̃2
`,m (f) h̃2

`,m (−f)

Sn
(
|f |
) dfe4iσ

 . (1.135)

Defining the vectors

A
(1)
`,m =

∫ ∞
−∞

h̃1 (f)
(
h̃2
`,m

)∗
(f)

Sn
(
|f |
) df, A

(2)
`,m =

∫ ∞
−∞

h̃1 (−f)
(
h̃2
`,m

)∗
(f)

Sn
(
|f |
) df, (1.136)

and the following matrices

B
(1)
`,m,m′ =

∫ ∞
−∞

h̃2
`,m (f)

(
h̃2
`,m

)∗
(f)

Sn
(
|f |
) df, B

(2)
`,m,m′ =

∫ ∞
−∞

h̃2
`,m (f) h̃2

`,m (−f)

Sn
(
|f |
) df,

(1.137)

and combining the spherical harmonics into a vector Y we can write

〈h1
R|h2

R〉 =
∑
`

Re
[
A′`e

−2iσ
]

=
∑
`

(
A′ cos (2σ − σA′)

)
`
, (1.138)

||h2
R||2 =

∑
`

[(
B′1
)
`

+ Re

[(
B′2e

iσB′2

)
`
e4iσ

]]
=
∑
`

[(
B′1
)
`

+B′2 cos (4σ + σB′)`

]
,

(1.139)
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where (
A′eiσA′

)
`

=
(
e2iψA(1)

` + e−2iψA(2)
`

)
·Y∗` , (1.140)(

B′1
)
`

= YT
` B(1)

`Y
∗
` , (1.141)(

B′2e
iσB′2

)
`

= YT
` B(2)

`Y`. (1.142)

The precessing match optimised over polarisation and time shifts can now be calcu-

lated as described above.

1.6.3 Power weighted matches

When performing matches between NR waveforms we are limited by the length

of the signal. The signal is often just the last few orbits prior to merger while

for detections of low mass binaries ground-based interferometers will detect many

inspiral cycles prior to merger. Therefore when assessing the accuracy of these NR

waveforms for a range of binary masses we perform power weighted matches [120].

In this case we consider the match between two waveforms over the frequency range

[fmin, fmax], where the portion of the waveform in range [fmin, fmid] is represented

by a post-Newtonian model of the signal and the portion in the range [fmid, fmax] is

given by an NR waveform. From equation 1.111 we can see that for two waveforms

h1 and h2 the match is given by

M (h1, h2) =
1

||h1||||h2||
max

Θ

[
4Re

∫ fmax

fmin

h̃1 (f) h̃∗2 (f)

Sn (f)
df

]
, (1.143)

where ||h|| is the norm of the waveform. If we assume (i) that the main contribution

to the match comes from the dephasing between the two waveforms while their

norms can be considered to be identical and (ii) any error in the model for the

inspiral portion of the waveform is negligible, then we have that

M (h1, h2) =
1

||h||2
max

Θ

[
4Re

∫ fmid

fmin

|h̃|2

Sn (f)
df + 4Re

∫ fmax

fmid

h̃1 (f) h̃∗2 (f)

Sn (f)
df

]
=

1

||h||2
[
||h||2(fmin,fmid) + ||h||2(fmid,fmax)M (h1, h2)(fmid,fmax)

]
, (1.144)

where ||h||2 = ||h||2(fmin,fmid) + ||h||2(fmid,fmax). The mismatch over the complete

waveform is therefore given by

M (h1, h2) =
||h||2(fmid,fmax)

||h||2
×M (h1, h2)(fmid,fmax)

≡ ||hNR||2

||hmodel||2 + ||hNR||2
×MNR, (1.145)
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where the subscripts indicate where the match and overlap have been calculated

using the post-Newtonian model or the NR waveform. This gives an upper bound

on the value for the match since it assumes that the mismatch between the inspiral

portion of the waveform is negligible.
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BAM catalogue

2.1 Introduction

Following the detections of gravitational waves to date by the LIGO and Virgo

collaborations [6, 7, 9, 10, 13–16], we expect an increasing number of detections as

the detectors get increasingly sensitive. Among these detections we expect some

that will show clear evidence of precession. Precession is most easily detectable for

systems with large mass ratios and for those with high spins. We therefore want a

waveform model of precessing systems which is accurate, even in these more extreme

regions of parameter space. The catalogue detailed in this chapter was produced in

order to assist in the creation of such a model.

In producing the first precessing model that has been tuned to Numerical Rela-

tivity (NR) waveforms, we wish to capture the dominant precession effects first. We

therefore consider single spin systems which obey simple precession. Consequently,

the catalogue contains single spin configurations where the spin is placed on the

larger black hole and neglects two spin configurations and those with a varying az-

imuthal spin component, since the effects from these kinds of systems are expected

to be subdominant. Such single spin configurations can be parameterised by three

quantities; their mass ratio, the magnitude of the spin on the larger black hole and

the spin angle between the spin and the orbital angular momentum of the system.

Since precession effects are most noticeable at high mass ratios, the catalogue

must extend up to high mass ratios. The earlier tuned non-precessing model Phe-

nomD [94, 103] was based on a catalogue containing systems up to mass ratio 18.

Producing the number of precessing simulations with mass ratio 18 required to cal-

ibrate the precessing model that will be developed in Chapter 4 is computationally

prohibitive. The catalogue extends up to mass ratio 8. In order to confidently cap-

ture the dependence of precession effects on mass ratio, we produced simulations at

four different mass ratios up to mass ratio 8 that are approximately equally spaced

in symmetric mass ratio. We already have aligned and anti-aligned waveforms at

these mass ratios and for non-aligned spin configurations we chose five equally spaced
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values for the spin angle excluding 0◦ and 180◦. Finally, we expect the dependence

of the precession effects on the spin magnitude to be approximately linear– for ex-

ample consider the leading order spin dependence of the PN expressions for α and

γ given in equations 1.97 and 1.98. We therefore chose only two values of the spin

magnitude.

In this chapter we present a catalogue of 40 NR waveforms for use in a tuned

precessing waveform model. We assess the accuracy of the waveforms that comprise

this catalogue in order to place an upper bound on the accuracy of the model. We

first quantify the numerical errors in the waveform quantities calculated from the

simulation using Richardson extrapolation. We then estimate the mismatch between

NR waveforms and the theoretical “true” analytical waveform.

2.2 Catalogue

The catalogue consists of 40 waveforms produced using the BAM code, which is

described in section 1.2.4 of the Introduction. Each of these are single spin precessing

waveforms where the spin is placed on the larger black hole. The black holes are

labelled by their massesm1 andm2, with total massM = m1+m2 and mass ratio q =
m1
m2

> 1. The spin on the larger black hole has magnitude χ and spin angle θ, which

is taken to be the angle between the spin and the orbital angular momentum of the

system. The waveforms span the parameter space with q ∈ [1, 2, 4, 8], χ ∈ [0.4, 0.8]

and θ (◦) ∈ [30, 60, 90, 120, 150]. More details are given in tables 2.1–2.2. The values

for χ, θ, the effective spin χeff and the precession spin parameter χp given in the

tables are calculated from the initial parameters at a specified reference frequency

used when setting up the simulation and at the relaxed time, which is defined below,

in brackets. The eccentricity e is measured over the region 200 − 1000M using the

method described in [93]. The orbital frequency ωorb is calculated from the dynamics

at the relaxed time. The number of orbits Norb is calculated from the relaxed time

until the peak in the (2,2) mode of the ψ4 waveform.

The relaxed time is the point in the simulation after which an initial burst

of “junk radiation” has died away. We estimate the timescale on which the junk

radiation affects the waveform data by calculating the damping period tD of the

quasi-normal modes of a single perturbed black hole with mass m1 and spin 0.8. We

chose a fixed value for the spin since it has little effect on the damping frequency.

The value of 0.8 was chosen since this is the highest spin included in the catalogue

(which corresponds to the longest damping time). The relaxed time is then given by

trel = tmax + tD, where tmax is the time at which the maximum in the junk radiation

occurs.

The values of the parameters used in the production of the initial data for the

simulations (such as the masses of the black holes, their spins and separation as well

as the starting frequency) are specified at a large separation. The PN equations of
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motion are then evolved to get the values at the reference frequency ωorb. We use a

combination of the Hamilton equations of motion in the standard Taylor expanded

form (as in [84, 93]) and the EOB form [50, 66], as has been done previously– such

as in [94, 136]. More details on these equations are given in Appendix A of [136].

This method of obtaining these parameters does not enable one to specify the exact

values at the reference frequency. In order to do this an iterative algorithm was

developed [98] where the parameters are specified, the PN equations evolved and the

parameters at the reference time are checked to see if they satisfy the requirements

of the simulation. If the spin is not in the desired orientation at the reference time

then the discrepancy between the actual spin direction and the desired direction is

noted and the initial spin is rotated by that amount. The PN equations are then

evolved again and the resulting spin orientation is checked. This process is repeated

until the correct spin orientation occurs at the starting frequency of the simulation,

to within a tolerance of 1% of the starting frequency.

The phase error in the waveform accumulates as the simulation is evolved. The

most effective way to reduce this effect is to increase the resolution at which the

simulation is performed. However this also decreases the speed at which the sim-

ulation runs and so increases the amount of time it takes for the simulation to be

completed. In addition, increasing the resolution increases the memory requirement

of the simulation (which scales as N3 where N is the number of grid points in each

direction). With the computational resources available, we require that the resolu-

tion of the simulations that make up the catalogue run on no more than 256 cores

and take on the order of one month of continuous run time. In order to ensure the

phase error is reasonably small while maintaining a realistic resolution we require

the simulations to have merged by ∼ 2000M. Additionally, since our goal is to pro-

duce a model in the frequency domain, we would ideally like all our waveforms to

cover the same frequency range and so have the same starting frequency. These

requirements determine the reference frequency of the simulations. An initial choice

of Mωorb = 0.023 was made. For some high mass ratio cases with large aligned

spins this leads to simulations with lengths in excess of 3000M, so for these cases

the starting frequency was increased.

We want to be able to assess the accuracy of these waveforms since this will

place a lower bound the accuracy of anything which relies on this data– such as the

precessing waveform model presented in Chapter 4. The simulations which comprise

the catalogue were performed with a grid spacing d = 0.0104 and the waveforms were

extracted at a distance Rext = 90M away from the source.

2.3 Accuracy assessment waveforms

In order to assess the accuracy of the data which comprise this catalogue we studied a

subset of four of the configurations described in tables 2.1 and 2.2. These four config-

– 42 –



Chapter 2. BAM catalogue

urations are (q, χ, θ) =
{

(4, 0.4, 60) , (4, 0.8, 120) , (8, 0.4, 30) , (8, 0.8, 150)
}

. The set

of simulations used in the accuracy analysis of the (4, 0.4, 60) case were performed

with a lower starting frequency of Mωorb = 0.023 to provide an assessment of the

error present in a longer simulation.

The two main sources of error in our waveforms are the finite resolution of the

simulation and the finite radius at which the data are extracted. In order to assess

the effect of the finite resolution, we performed a set of three simulations with low,

medium and high resolution for each of the four configurations listed above. We also

performed an additional simulation with very high resolution for the (8, 0.8, 150)

configuration. The resolution of each of these simulations is given in table 2.3. We

extracted the waveform data at Rext = {50, 60, 70, 80, 90}M which were all on the

same refinement level.

Resolution d (grid spacing) N (number of grid points)

Low 0.0125 80
Medium 0.0104 96
High 0.00833 120
Very high 0.00694 144

Table 2.3: Properties of the various resolutions at which the simulations were per-
formed.

In quantifying the error in the waveforms due to these two sources we focus on

estimating the mismatch between the medium resolution waveforms extracted at a

distance of 90M from the source and an estimate of the “true” waveform at infinitely

good resolution and infinitely far from the source. This estimate is obtained by

extrapolating through the mismatches between different resolutions and extraction

radii. We calculated the convergence order of the BAM code with respect to the

resolution and extraction radius then used this to extrapolate the mismatch. We

also used Richardson extrapolation to estimate the truncation error due to resolution

and extraction radius.

2.4 Quantifying Waveform Accuracy

2.4.1 Richardson Extrapolation

A quantity q calculated at finite resolution or extraction radius can be given by

q∗ = q (∆) + ei∆
i, (2.1)

where ∆ is the expansion parameter ( 1
N for resolution or 1

Rext
for extraction radius),

e is the finite order error and i is the order at which the error contributes. In

this chapter the quantity q we are considering is the waveform extracted from the
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numerical simulation. We therefore have that

q∗ = q (∆) + en∆n +O
(

∆n′
)
, (2.2)

where en∆n is the leading order error contribution, n is the convergence order of

the simulation and n′ > n.

Considering two waveforms computed using different expansion parameters ∆1

and ∆2, we can solve the two simultaneous equations that arise from equation 2.2

to give

q∗ = R (∆1,∆2) +O

((
∆1

∆2

)n′)
, (2.3)

where

R (∆1,∆2) =

(
∆1
∆2

)n
q (∆2)− q (∆1)(
∆1
∆2

)n
− 1

, (2.4)

is the Richardson extrapolation [59] of q (∆1). R (∆1,∆2) has a higher order error

due to the truncation of the expansion in ∆ than q (∆1). R (∆1,∆2)− q (∆1) gives

the truncation error of the quantity q.

2.4.2 Convergence

Considering now three waveforms computed with expansion parameters ∆1 > ∆2 >

∆3 we can eliminate q∗ in equation 2.3. Neglecting higher order error terms, the ratio

of the difference between two sets of numerical waveforms with expansion parameter

∆1 > ∆2 > ∆3 is then given by

C =
q (∆1)− q (∆2)

q (∆2)− q (∆3)
=

∆n
1 −∆n

2

∆n
2 −∆n

3

. (2.5)

This relation holds for features of a waveform, such as its amplitude and phase, but

not for more involved quantities such as the match.

To find how the ratio of two matches between waveforms of differing expansion

parameter depends on the expansion parameter, we must examine how the match

depends on the amplitude and phase of the waveform. From equation 1.111 we can

see that the match goes as

M ∼ Re

[
1

N1N2

∫
h1 (f)h∗2 (f) df

]
, (2.6)

where Ni are the normalisation of each of the waveforms respectively. We take h1

to be the waveform containing either the amplitude or phase error and h2 to be the

“true” waveform.
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If we assume the true waveform to be normalised then a waveform containing

some amplitude error ∆A is given by

h (f) =
(
1 + ∆A (f)

)
eiφ. (2.7)

Substituting equation 2.7 into 2.6 we find

M ∼
[∫

(1 + ∆A)2

]− 1
2

Re

∫
(1 + ∆A) df

= (1 + 2B + C)−
1
2 (1 +B)

' 1−B2 − 1

2
C (1 +B) , (2.8)

where B =
∫

∆Adf , C =
∫

(∆A)2 df and we have assumed that ∆A is small in

order to make the approximation in the final step. The mismatch, as defined in

equation 1.112, therefore goes as B2 + 1
2C and so is dominated by the square of the

amplitude error.

Similarly for a normalised waveform which contains some phase error ∆φ,

h (f) = ei(φ
∗(f)+∆φ(f)), (2.9)

where φ∗ is the “true” phase. Substituting this expression into equation 2.6 we find

M ∼ Re

[∫
ei∆φdf

]
' Re

∫ (
1 + i∆φ− 1

2
(∆φ)2

)
df

=

∫ (
1− 1

2
(∆φ)2

)
df, (2.10)

where again we have assumed that the error in the phase is small in order to perform

the expansion in the middle step. The mismatch is therefore dominated by the square

of the phase error.

Since the mistmatch is dominated by the square of the error in the amplitude

and phase and, as shown in equation 2.2, the numerical errors in the amplitude and

phase vary as ∆n, we have that

M (h1, h2) ≈ κ (∆n
1 −∆n

2 )2 . (2.11)

From this we can see that the ratio of the mismatch M between two pairs of wave-

forms is given by

M (A : B)

M (B : C)
=

(
∆n
A −∆n

B

)2(
∆n
B −∆n

C

)2 . (2.12)
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2.4.3 Combining mismatches

From equation 2.12 we can see that if we have three waveforms with expansion

parameters ∆A, ∆B and ∆C respectively, then we can solve a set of simultaneous

equations to find the relation between the mismatch for each of the sets of waveforms.

This implies that for three waveforms with ∆A > ∆B > ∆C , the correct way to

combine the mismatches M (A : B) and M (B : C) in order to get the mismatch

M (A : C) is given by

M (A : C) =
(√
M (A : B) +

√
M (B : C)

)2
. (2.13)

This is useful for, among other things, combining the mismatch due to different

sources of error in our numerical waveforms.

2.5 Waveform errors

In order to estimate the numerical error in the waveform quantities due to the finite

resolution of the simulation and the finite radius at which the data were extracted, we

performed Richardson extrapolation. This requires an estimate of the convergence

order of the code with respect to these quantities. We first processed the data,

removing the junk radiation from the waveform in the inertial frame in which the

simulation was performed. We aligned the waveforms at merger, where merger is

defined to be the time at which the quantity

A2 =
2∑

m=−2

∣∣A2m (t)
∣∣2 , (2.14)

is maximised and resampled using a constant time step of 0.1M. We then rotated

the waveform into the co-precessing frame and aligned the co-precessing phases at

merger. The quantities for which we are interested in quantifying the numerical

error are the amplitude and phase of the (2,2) mode in the co-precessing frame as

well as two of the Euler angles α and β required to rotate the waveform from the

inertial frame into the co-precessing frame. The Euler angles were calculated using

the matrix method outlined in section 1.4.1 of the Introduction.

The standard way to perform a convergence test with respect to the resolution

is to perform a set of three simulations where the resolution improves by a factor of

two between each of the simulations. This is computationally prohibitive– the high

resolution run would use 26 times as memory as the low resolution run. Similarly

we cannot extract a waveform at three different radii on the same level a reasonable

distance from the source if each of the extraction radii is twice as far away from the

source as the previous one.

In previous work, clean convergence has rarely been demonstrated for both finite-
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difference (such as BAM [49,94]) and pseudo-spectral (such as SpEC [147]) simula-

tions. Since we do not expect to see clean convergence, we estimated the convergence

order of the code to be the value of n for which the quantity

δ =
(
φ (∆1)− φ (∆2)

)
− C

(
φ (∆2)− φ (∆3)

)
, (2.15)

is minimised, where C =
∆n

1−∆n
2

∆n
2−∆n

3
as in equation 2.5. This was done for both wave-

forms of varying resolution and extraction radius for the q = 8, χ = 0.8, θ = 150◦

configuration. We used the medium, high and very high resolution waveforms and

the waveforms extracted at Rext = {90, 70, 60}M. The results of this analysis are

shown in figure 2.1. From section 1.2.4 in the Introduction, we see that the code

can be either second, fourth or sixth order convergent, depending on the dominant

source of error. If out set of waveforms do not all clearly lie within the convergence

regime we will not see clean convergence. From figure 2.1 we can see that aver-

aged across the waveform, our results would imply fifth order convergence. We find

the sixth order spatial differencing dominates the error at early times and fourth

order time stepping dominates at late times as it accumulates faster. We there-

fore make the conservative assumption that the code is consistent with fourth order

finite-differencing. As expected, we see the errors to fall off as 1
Rext

.

1 2 3 4 5 6 7 8
n

0.000

0.005

0.010

0.015

0.020

0.025

1 2 3 4 5 6 7 8
n

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 2.1: The value δ as given by equation 2.15 as a function of convergence order.
The left panel shows the results for waveforms of differing resolution. The right panel
shows the results for waveforms at differing extraction radii. The configuration q = 8,
χ = 0.8, θ = 150◦ was used in this analysis.

We then calculated the Richardson extrapolated values of the amplitude, phase,

α and β using the formula given in equation 2.4. These were used to estimate the

error in each of these quantities. The error in the waveform quantities does not

monotonically increase with decreasing resolution since not all of the resolutions lie

in the convergence regime. The error in the low and medium resolution waveforms is

therefore estimated from the combination of the error between these waveforms and

the very high resolution waveform and between the very high resolution waveform

and the “true” waveform. An example of the growth of the error as a function of

resolution is shown in figure 2.2 and as a function of the extraction radius in figure
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2.5. Waveform errors

2.3. In these examples we show the error in the phase. As can be seen from figure

2.2, the dephasing of the waveform due to the finite resolution is ∼ 0.1 radians for

the medium resolution simulation. Similarly, from figure 2.3, the dephasing due to

the finite extraction radius is ∼ 0.4 radians for the waveform extracted at 90M. The

total phase error in the waveform is therefore estimated to be about 0.4 radians by

combining the errors in quadrature.

2000 1500 1000 500 0
Time (M)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
φ

N= 80

N= 96

N= 120

N= 144

Figure 2.2: Variation of the absolute error in the time domain co-precessing phase
with simulation resolution. The phases have been aligned at merger and are mea-
sured in radians.

2000 1500 1000 500 0
Time (M)

0.0

0.2

0.4

0.6

0.8

1.0

∆
φ

Rext = 90

Rext = 80

Rext = 70

Rext = 60

Rext = 50

Figure 2.3: Variation of the absolute error in the time domain co-precessing phase
with extraction radius. The phases have been aligned at merger and are measured
in radians.

For each of the cases considered in this chapter, the relative error in the amplitude

and phase of the co-precessing waveform are of the order of a few percent, while the

relative error in the precession angles is around half a percent. The exact values

of these errors for the q = 8, χ = 0.8, θ = 150◦ configuration are given in table
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% Error (1s.f.)
Resolution Extraction Radius Total

φ 0.2 1 1
A 0.5 8 8
α 0.3 0.03 0.3
β 0.5 0.1 0.5

Table 2.4: Relative error in the waveform quantities compared with the Richardson
extrapolated quantities for the q = 8, χ = 0.8, θ = 150◦ configuration.

2.4. These are representative of the results for all cases. This is relevant for the

tuned precessing model presented in Chapter 4 since it implies that the model for

the precession angles cannot be accurate to more than 0.5%.

The errors in the amplitude and the precession angles are affected by the de-

phasing in the waveform. Therefore, although these results are a good diagnostic

for the reliability of the code and a good way to compare accuracy between differ-

ent simulations performed with the same code, they are difficult to translate into

meaningful measures of the accuracy from waveform modelling or other gravitational

wave applications. In order to get a more meaningful estimate of the accuracy of the

waveform we performed the mismatch analysis presented in the following section.

2.6 Matches

The waveform quantities examined in the previous section are the traditional quan-

tities used when estimating the convergence order and accuracy of a NR code. When

assessing the accuracy of a waveform it is more useful to look at the mismatch. In

the following section we estimate the mismatch between waveforms at finite resolu-

tion and extraction radius with the “true” waveform which is infinitely well resolved

and infinitely far from the source.

Since these are precessing configurations, we calculated precessing matches as

described in section 1.6.2. The matches used the aLIGO sensitivity curve shown in

figure 1.1. They were performed over the frequency range from 10Hz to 0.11Mf ,

which corresponds to the end of the NR waveform. In order to see how the match

varied over a range of total masses that might be observed by current ground based

detectors, we further calculated the power-weighted match as is described in 1.6.3,

using PhenomPv3 as the model for the low frequency part of the waveform. We

then calculated the mismatch as given by 1.112. These matches use all the ` = 2

modes.

We performed matches between the high resolution waveforms and all other

resolutions available for a given configuration. Each of the waveforms involved in

these matches were extracted at Rext = 90M. These results are shown in figure 2.4.

We also performed matches between waveforms extracted at Rext = 90M and each
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of the other extraction radii on the same level for the medium resolution simulations

for each configuration. These results are shown in figure 2.5. From figure 2.5 we

can see that the matches generally follow a trend implying the waveform is being

extracted sufficiently far from the source so that we are in the convergence regime.

The matches at between waveforms extracted at Rext = 90M and Rext = 50M do

not follow this trend. This is not true for the mismatches with respect to resolution

shown in figure 2.4 where the matches between (i) the low and high resolutions and

(ii) the medium and high resolutions clearly do not follow a trend for most of the

configurations. This implies that the low and medium resolutions do not lie in the

convergence regime.

10 6

10 5

10 4

10 3
q=4, = 0.4, = 60 q = 4, = 0.8, = 120

0 50 100 150 200
M (M )

10 6

10 5

10 4

10 3
q = 8, = 0.4, = 30

0 50 100 150 200
M (M )

q = 8, = 0.8, = 150

N = 80
N = 96
N = 144

Figure 2.4: Mismatch between waveforms at varying resolution against the high
resolution waveform as a function of the total mass of the system.
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M (M )
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Figure 2.5: Mismatch between waveforms at varying extraction radii and the wave-
form extracted at Rext = 90M as a function of the total mass of the system.
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2.6.1 Convergence order

The low and medium resolutions do not lie in the convergence regime. While the low

resolution lies far outside the convergence regime, the medium resolution approaches

the convergence regime. We therefore do not expect analyses involving the medium

resolution waveform to show exact convergence but it can be used to provide an

estimate of the convergence order. This is demonstrated clearly in figure 2.6 where

we show the mismatch between the medium and high and the high and very high

resolutions, as well as the prediction of the medium to high resolution mismatch

based on the high to very high resolution mismatch using equation 2.12 for varying

convergence order. From this analysis it is clear that the mismatch is closest to

being fourth order convergent. This analysis could only be done for the case (q = 8,

χ = 0.8, θ = 150◦) since this is the only case for which we have the very high

resolution run.

0 25 50 75 100 125 150 175 200
M (M )

10 6

10 5

10 4

10 3

N = 96
N = 144
n=2
n=4
n=6

Figure 2.6: Mismatches demonstrating fourth order convergence of the BAM code
with respect to resolution. The solid lines show the calculated mismatch while the
dotted red lines show the predicted mismatch for varying convergence order. This
is for the q = 8, χ = 0.8, θ = 150◦ configuration.

Since the waveforms extracted at varying extraction radii mostly lie within the

convergence regime, we calculated the ratio of the mismatch between each of the

pairs of waveforms from different extraction radii using equation 2.12 for varying

convergence order. For each of the four configurations we investigated, it was found

that the results were most consistent with first order convergence. This is demon-
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strated in figure 2.7 where the solid lines show the calculated mismatch between two

waveforms of different extraction radii and the dotted red line shows the expected

value of the match for first order convergence.
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Figure 2.7: Mismatches demonstrating first order convergence of the BAM code with
respect to extraction radius. The solid lines show the calculated mismatch, while
the dotted red line shows the predicted mismatch for the pair of waveforms shown
in purple based on the mismatch in blue, assuming first order convergence.

Not all the waveforms from the different extraction radii show perfect conver-

gence for every configuration. The mismatch between Rext = 80 and Rext = 90 often

does not follow the trend– we expect this is because the mismatch between these

waveforms is so small
(
O
(
10−6

))
that it is very sensitive to any data processing

performed in the course of calculating the match. The mismatch between Rext = 50

and Rext = 90 also often does not follow the trend and we do not expect it to hold

for small extraction radii.

The convergence order calculated using this method agrees with the estimate
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calculated in the previous section; the code is approximately fourth order convergent

with respect to resolution and first order convergent with respect to the extraction

radius.

2.6.2 Extrapolation

Having estimated the convergence order of the code n, we can calculate the con-

vergence relation of the mismatches shown in figures 2.4 and 2.5. The convergence

relation takes the form

M (∆ : ∆ref) = κ
(
∆n −∆n

ref

)2
, (2.16)

where ∆ref is the value of the expansion parameter at the reference resolution (N =

120) or extraction radius (Rext = 90M) and κ is a co-efficient to be calculated.

The mismatch between the reference waveform and the “true” waveform is therefore

given by κ∆2n
ref.

We first look at the mismatch due to the finite resolution of the simulation.

We assume that the two highest resolution simulations we performed (N = 120

and N = 144) lie in the convergence regime but we know the two lower resolution

simulations do not. Assuming fourth order convergence, we therefore calculate κres

using

κres =
M (∆144 : ∆120)(

1444 − 1204
)2 . (2.17)

From figure 2.8, which shows the convergence relation for the mismatches calculated

for a system with total mass 100M�, we can see that this appears to be a reasonable

assumption. From κres we can estimate the mismatch between the high or very high

resolution waveforms with an infinitely well resolved waveform. However, we want

to know the mismatch for the medium resolution runs since this is the resolution

that was used to perform the simulations for the catalogue of waveforms presented

in tables 2.1 and 2.2. Since this resolution does not lie in the convergence regime

(and the phase error does not improve monotonically from the medium resolution to

the high and very high resolution waveforms) we cannot simply use the calculated

convergence relation in order to estimate the mismatch between a waveform at this

resolution and the “true” waveform. Instead we use the formula given in equation

2.13 to add the mismatch between the medium resolution and the very high reso-

lution waveforms to the mismatch between the very high resolution waveform and
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Figure 2.8: Variation of the mismatch with resolution for a q = 8, χ = 0.8, θ = 150◦

system with a total mass of 100M. The mismatches shown are with respect to the
high resolution run and so the mismatch is 0 at N = 120. The line shows the
relation in equation 2.16 with κres assuming fourth order convergence calculated
using equation 2.17 and is consistent with all resolutions except the lowest one at
N = 80.

the “true” waveform:

M (∆96 : ∆∞) =
(√
M (∆96 : ∆144) +

√
M (∆144 : ∆∞)

)2

=

(√
M (∆96 : ∆144) +

√
κres

1444

)2

. (2.18)

The result of this extrapolation procedure is shown in figure 2.9. We could only

perform this calculation for the case (q = 8, χ = 0.8, θ = 150◦) since this is the only

case for which we have the very high resolution run. However, from figure 2.4 we can

see that the mismatch between the medium and high resolution runs is the worst for

this case, so this estimate should give an upper bound for the mismatch between the

medium resolution run and the “true” waveform. The maximum mismatch between

a medium resolution waveform and an infinitely well resolved one is 6.0× 10−4.

We next examine the mismatch due to the finite distance from the source at

which the waveform is extracted. To calculate the first order convergence relation

with respect to the extraction radius, we performed a fit through each of the mis-

matches which were found to follow the convergence relation. This is demonstrated

for mismatches between waveforms of different extraction radii and the waveform

at Rext = 90M in figure 2.10, for a system with total mass 100M�. This fit gives

the value of κext for every value of the total mass of the system. From this we

can calculate the mismatch between the waveform at Rext = 90M and the “true”

waveform from M (∆90 : ∆∞) = κext
902

.

The mismatch between the waveform extracted at Rext = 90M and the “true”
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Figure 2.9: Projected mismatch between a waveform extracted at a resolution of
N = 96 and one that is infinitely well resolved.
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Figure 2.10: Variation of the mismatch with extraction radius for a system with
a total mass of 100M. The mismatches shown are with respect to the waveform
extracted at Rext = 90M. The line shows the fit based on equation 2.15 assuming first
order convergence. It is consistent with all extraction radii except at Rext = 50M.
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waveform is shown in figure 2.11. The configuration which gives the greatest mis-

match is q = 4, χ = 0.4, θ = 60 since, as noted above, this simulation was much

longer than the others and so has greater opportunity to accumulate phase er-

ror between the two waveforms. The maximum mismatch between a waveform

at Rext = 90 and at Rext →∞ is taken to be 1.4× 10−3.
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Figure 2.11: Projected mismatch between a waveform extracted at a radius of Rext =
90M and one extracted infinitely far away.

We estimate the mismatch between our medium resolution waveform extracted

at Rext = 90M and the true waveform using

M =
(√
Mresolution +

√
Mextraction radius

)2
. (2.19)

A conservative estimate of the mismatch between a waveform extracted at a finite

distance of 90M from the source for a simulation performed with a grid spacing

d = 0.0104 and the theoretical ‘analytical’ solution is therefore 3.83 × 10−3. This

provides a limit on the mismatch error of the waveforms used to tune the precessing

model of 0.4%.

2.7 Conclusion

We have produced a catalogue of 40 single spin precessing NR waveforms for use in

the construction of a tuned precessing model. The catalogue covers more extreme

parts of the parameter space (those with high mass ratio and spin magnitude) where

a tuned precessing model will be most useful. The catalogue does not include two-

spin cases, cases where the azimuthal spin component varies or cases that exhibit

transitional precession since these cases are expected to contribute only to subdom-

inant precession effects, or be extremely rare observations.

We have assessed the convergence order of the BAM code for these simulations
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and found that it is fourth order convergent with respect to resolution and first

order convergent with respect to extraction radius. From this we have been able to

estimate the error in the waveform quantities computed from the simulation using

Richardson extrapolation. Most importantly, we can see that the error in the pre-

cession angles α and β (which are used in the production of the tuned precessing

model) is O
(
10−1

)
%. We also estimated the mismatch between the waveforms pro-

duced by simulations performed at the finite resolution (d = 0.0104) and extracted

at the finite distance (Rext = 90M) used to produce the waveforms in the catalogue

and the “true” infinitely well resolved waveform extracted infinitely far away from

the source. From this we can see that the NR waveforms agree with the “true”

waveform to within 0.4%. We therefore find that the limiting accuracy of the input

waveforms for the tuned precessing model is 0.4%.
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Orbital dynamics

3.1 Introduction

In recent years the LIGO and Virgo detectors [3, 5, 17] have made the first obser-

vations of binary black hole (BBH) systems, through measurements of their grav-

itational wave emission [6, 7, 9, 10, 13–16]. The properties of the black holes can

be measured by comparing the signal against theoretical gravitational wave mod-

els [4,8], which are informed in part by NR solutions of Einstein’s equations for the

last orbits and merger of two black holes (see, e.g., the review [83]). NR waveforms

have also been used to assess the systematic errors of the gravitational wave mea-

surements [12]. To use NR waveforms as proxy signals one must specify the binary’s

orientation and orbital phase at a particular time or signal frequency. There is an

inherent ambiguity in doing this, because the binary’s dynamics cannot be directly

related to the waveform. The purpose of this chapter is to define an effective binary

orientation and phase, which can be calculated directly from the waveform, and

compare it against the co-ordinate dynamics in NR simulations.

The general theory of relativity predicts gravitational waves that travel at the

speed of light, c.1 In principle, we can relate the dynamics of two orbiting black holes

to a gravitational wave signal a distance d away, through a retarded time, tGW = d/c.

This is possible in a PN calculation [36], where the signal can be calculated explicitly

from point-particle dynamics. An equivalent identification has not been rigorously

defined for solutions of the full nonlinear Einstein equations, which are calculated

numerically. The proper distance from the source to the observer is not a well-

defined concept. We lack unique definitions of mass, angular momentum and centre-

of-mass in general relativity [156]; in a numerical simulation the binary dynamics

depend non-trivially on the gauge (co-ordinate) conditions used in the evolution of

Einstein’s equations; proper distances depend on the dynamical curvature across

the intervening spacetime; and gravitational waves are only rigorously defined at

null infinity. In practice, these formal ambiguities lead to negligible uncertainties

1Throughout this chapter we will adopt geometric units, G = c = 1.
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in gravitational wave signal modelling and source measurements; see, for example,

section IV.B of [142] in the case of waveform modelling, and [45] for a discussion of

retarded times in NR simulations.

The situation is different when we wish to use NR waveforms as proxy signals.

A binary configuration is specified by the black-hole masses and spin magnitudes,

but also by the binary orientation, orbital phase, and spin directions at a particular

time or frequency during the binary’s inspiral. Now we must relate the dynamics to

the signal. Given the above, we are forced to make approximations. One way to do

this is to define an approximate retarded time. Another is to note that during the

inspiral the frequency of the dominant signal harmonic is, to a good approximation,

twice the orbital frequency, and to map the dynamics at each orbital frequency to

the corresponding signal frequency. A similar mapping can be made using the orbital

and signal phases, although the two approaches will not give identical results, as we

discuss in section 3.4.1.

In this chapter, we take a different approach. We define a binary orientation

and phase with respect to the gravitational wave signal only. The starting point

is the earlier work in [150], which proposed studying the direction of maximum

gravitational wave emission (or dominant emission direction), which was called the

direction of “quadrupole alignment” (QA). The results in [150] suggested that the

QA direction may track the direction of L̂. If L̂ is calculated using a PN approxima-

tion, then the leading-order (Newtonian) contribution is the normal to the orbital

plane, which exhibits nutation, but when all known PN terms are included, the

full L̂ precesses smoothly. In the NR example studied in [150], the QA direction

precessed smoothly without nutation and agreed well with the (appropriately time-

shifted) direction of L̂. This led the authors to suggest that the QA direction may

track the orbital angular momentum, rather than the orbital-plane direction. More

recent work has shown that this direction varies between different radiation frames,

and also depends on whether the direction is calculated using the gravitational wave

strain h, the Bondi news (the first time derivative of h), or the Weyl scalar ψ4 (the

second time derivative) [44, 113, 119]. Nonetheless, in general these differences are

small, and any given choice of the QA direction provides us with an ideal means

to define a proxy to the binary orientation with respect to the gravitational wave

signal alone. Since the gravitational wave signal is the only invariant observable we

have access to, this orientation provides a robust measure to identify and compare

simulations.

As described in more detail in section 1.4 in the Introduction, the first QA

definitions [123, 150] specified only the two Euler angles needed to transform into

a frame that tracks the precession. A third Euler angle is also needed to uniquely

specify the phase (up to an overall constant). A method to calculate the third angle is

given in [46], completing the definition of a co-precessing frame. In this work we use

that procedure to define a proxy orbital phase, Φ, from the gravitational wave signal,
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which in turn allows us to define a proxy orbital separation unit vector n̂, which

we compare with those quantities calculated directly from the orbital dynamics.

Once again, we show that this does not provide an exact mapping to the phase

calculated directly from the dynamics, even if time shifts and gauge effects could

be removed; but Φ does serve as a phase that is in principle gauge invariant and

uniquely defined. An alternative prescription to find n̂ from the gravitational wave

signal is suggested in [42] although to our knowledge its efficacy for NR waveforms

has not been explored.

To connect our work to the practical problem of constructing proxy gravitational

wave signals from NR waveforms, we describe our work and results using the notation

and conventions of the NR Injection Infrastructure [151], which provides a consistent

way to go from waveforms produced using a variety of NR gravitational wave codes

to waveforms that are suitable for injections as a “discrete” waveform approximant

for use with the LIGO Algorithm Library (LAL). The LAL framework requires

injected waveforms to be in a frame that describes the wave propagation from the

source to gravitational wave detectors on Earth. The NR Injection Infrastructure

rotates the waveforms into this format. These rotations require the unit orbital

angular momentum of the binary, L̂, and the unit separation vector of the two black

holes, n̂. The unit separation vector n̂ can be constructed from the normal to the

orbital plane and the orbital phase; our approach will be to define n̂ from L̂ and Φ.

These quantities are currently calculated using the dynamics information provided

by a simulation. To relate these dynamical data to the gravitational wave signal,

one either uses an estimate of the retarded time tGW (provided along with the NR

waveform, and corresponding to Format 1 in [151]), or maps the orbital frequency

Ω(t) to the signal frequency (Formats 2 and 3). The method we propose is equivalent

to mapping the orbital phase to that of the signal, and without any of the gauge

ambiguities of the black-hole co-ordinate dynamics.

The chapter is organised as follows. In section 3.2 we describe the rotations

performed by the NR Injection Infrastructure. In section 3.3 we summarise the

procedure to find the unit orbital angular momentum, which is described in more

detail in Refs. [46,123,150], and describe how to also find the co-precessing phase and

the unit separation vector from the waveform. Section 3.4 describes the various co-

ordinate ambiguities associated with these calculations. In section 3.5 we compare

L̂, Φ, and n̂, which have been calculated from the waveform, with those found from

the dynamics. We also discuss how the different choices of time shift affect this

comparison and show why it is important to ensure a consistent choice is used.

3.2 Frame conventions

In this section we summarise three co-ordinate systems used to specify gravitational

wave signals. We follow the conventions and notations used in the Numerical Rela-

– 61 –



3.2. Frame conventions

Figure 3.1: The binary properties in the NR simulation frame (black) at a time tref .
The binary is then rotated to the LAL source frame (blue) where ẑ is parallel to the
(Newtonian) orbital angular momentum L̂N at time tref and x̂ is aligned along n̂.

tivity Injection Infrastructure [151]. Gravitational wave signals are represented by

the gravitational-wave strain, which corresponds to the metric perturbation hTT
ij .

Numerical simulations calculate the Weyl scalar ψ4, from which hTT
ij can be found

by integrating twice with respect to time [140]. In numerical simulations this per-

turbation is extracted far from the orbiting black holes, where the spacetime is

approximately flat. This region of spacetime is known as the wave zone [159]. The

waves are extracted at a retarded time tGW. In the wave zone, a Cartesian co-

ordinate system
(
êx, êy, êz

)
is used. This co-ordinate system can be related to polar

co-ordinates
(
êr, êθ, êφ

)
. The strain can then be decomposed into modes in a basis

of spin-weighted spherical harmonics, −2Y`m, and is written as

hNR (tGW; θ, φ) =hNR
+ − ihNR

× (3.1)

=

∞∑
`=2

∑̀
m=−`

H`m (tGW)−2 Y`m (θ, φ) , (3.2)

where the extracted gravitational wave modes can be expressed as

H`m (tGW) = A`m (tGW) e−iΦ`m(tGW). (3.3)

We adopt the convention that for a binary orbiting counter-clockwise in the plane

defined by êx × êy, Φ22 (tGW) is a monotonically increasing function. This is the

opposite convention to that used in [151].
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Once the gravitational wave has been extracted and decomposed as described

above it needs to be prepared for injection. This involves transforming the waveform

from the frame in which it has been generated (the NR simulation frame) into the

frame in which the binary is viewed from Earth. This is done in two stages. First, the

waveform is rotated into a frame defined by certain properties of the binary at a given

reference time. The choice of this frame is arbitrary but must be consistent between

injections. A set of conventions in defining this frame, known as the LAL source

frame [1,151], are therefore chosen. These conventions are described below. In this

frame, waveforms generated by a particular binary should be the same regardless of

the code used to generate them or the choice of co-ordinate system in the original

simulation. From this intermediate frame, the waveform is then rotated into the

final frame, the wave frame, defined by the relationship between the binary and the

observer. The NR simulation frame and LAL source frames are shown in figure 3.1.

In the NR simulation frame one can define the separation vector of the two black

holes as the direction from body 2 to body 1 (where body 1 is the heavier object)

given by

n = r1 − r2, (3.4)

where ri is the position of the centre of the ith body. The Newtonian orbital angular

momentum of the binary can be defined as

LN = L1 + L2 =

2∑
i=1

mi (ri × vi) , (3.5)

where mi is the mass and vi the velocity of the ith object. In moving-puncture codes,

ri will be the puncture positions andmi will be given by the apparent horizon masses,

and in excision codes ri will be the co-ordinate centres of the apparent horizons and

mi will be the Christodoulou masses [61].

The LAL source frame is defined as the frame where the co-ordinate axes satisfy

the following equalities

x̂
ref
= n̂ (3.6)

ŷ
ref
= L̂N × n̂ (3.7)

ẑ
ref
= L̂N (3.8)

at a reference epoch defined either by a reference time tref or a reference orbital

frequency Ωorb
ref where Ωorb (tref) = Ωorb

ref . Choosing a different reference epoch will in

general produce a different source frame.

Finally, the waveform is rotated into the wave frame. In this frame the Ẑ axis

points towards the observer along the line of sight while the X̂ and Ŷ vectors are
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orthogonal to the line of sight. The intersection of the orbital plane with the XY

axis is referred to as the line of ascending node. The transformation to the wave

frame is given in [151]; for the remainder of this chapter we will work in either the

inertial NR simulation frame or the co-precessing (quadrupole-aligned) frame, as

described in section 3.3.

Ambiguities in this procedure arise from the NR simulation data. The NR sim-

ulation frame is the co-ordinate system in which the numerical simulation was per-

formed. The physical interpretation of the co-ordinates in the NR simulation frame

depends on the co-ordinates of the initial data, and on the gauge conditions used

during the numerical evolution. If simulations with two different codes, using differ-

ent initial-data constructions and different gauge conditions, are used to simulate the

same physical system, then in principle we expect the asymptotic gravitational-wave

signals to be the same, but the black-hole dynamics in the respective NR simulation

frames may not be. We aim to circumvent these ambiguities in the method that we

propose in the following sections.

3.3 Determining L̂N and n̂

Currently the NR Injection Infrastructure requires n̂ and L̂N to be provided as

part of the metadata associated with each waveform. It is recommended that these

quantities are calculated using equations 3.4 and 3.5 respectively (and then normal-

ising). The positions and velocities of the black holes required to calculate these

quantities come from the dynamics of the binary. This information, along with the

spins of the black holes, forms part of the metadata provided with each NR wave-

form. There are several sources of ambiguity in the resulting choice of LAL source

frame (as defined via equations 3.6–3.8). One is the gauge dependence of the co-

ordinate dynamics and spin measurements. (Broadly speaking, codes that use vari-

ants of the generalized-harmonic evolution system [134,135], like SpEC [147,157], use

harmonic-like co-ordinates [110], while moving-puncture codes [28,54] use ADMTT-

like co-ordinates [96]. For an example of one comparison between these co-ordinates,

see Appendix D of [48]). The black-hole dynamics information can be mapped to

the waveform using either a retarded time, or relating the gravitational wave fre-

quency with the orbital frequency. Data provided in Format 1 of the NR Injection

Infrastructure specifies the dynamics at the reference time only. The choice of time

shift that relates the reference time in the waveform to the reference time in the

dynamics quantities is made by the group supplying the waveform. Data provided

in Formats 2 and 3 provide the dynamics in formation for the entire time evolution

of the waveform. The dynamics quantities are then mapped to the waveform by

finding the value of n̂ and L̂N at the time at which the gravitational wave frequency

is equal to the orbital frequency. If the retarded time is used, then a further ambi-

guity arises from the definition of retarded time tGW used by a particular NR group.
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These ambiguities could be resolved by finding n̂ and L̂ from the waveform. The

NR waveform includes some error due to extraction at a finite co-ordinate radius, or

due to approximate extrapolation to infinity (as discussed in the previous chapter),

but in general exhibits far less gauge variation than the dynamics. We now describe

a procedure to do this.

3.3.1 Determining L̂ from the waveform

It has already been shown that the approximate direction of the orbital angular

momentum of a binary can be found from the waveform of the emitted gravitational

waves using a variety of methods [123,150]. [123] describes how this quantity can be

found from the dominant principal axis of the quadrupolar part of the radiation axis.

We use the Quadrupole Alignment procedure [150] described in section 1.4.1 of the

Introduction; the two methods can be shown to be equivalent [46] when the method

of [123] is restricted to the ` ≤ 2 modes. This procedure finds the frame in which

|ψ4,22|2 + |ψ4,2−2|2 is maximised. In this frame ẑ ‖ L̂. This transformation requires

two angles (α and β), which define the rotation into a co-precessing frame, i.e. a

frame that precesses along with the binary. In order to uniquely define this frame

(up to an overall constant rotation, corresponding to a constant phase shift in the

waveform in the co-precessing frame) we apply the minimum rotation condition [46],

as defined in equation 1.76 in the Introduction.This angle is determined up to an

integration constant, which corresponds to a constant rotation. A time-dependent

rotation R(γβα) can then be performed between the inertial frame in which the

simulation was performed and the co-precessing frame using the three Euler angles

(α, β, γ). Using the z − y − z convention, the ψ4,`m modes obey the transformation

law

ψQA4,`m =
∑̀
m′=−`

eim
′γd`m′m (−β) eimαψ4,`m′ (3.9)

where ψ4,`m′ are the modes in the NR simulation frame and ψQA4,`m are the modes in

the co-precessing (quadrupole-alinged) frame. d`m′m are the Wigner d-matrices [80,

164].

The co-precessing frame rotates with the orbital angular momentum in order

to ensure L̂ remains parallel to the z-axis at all times. Since L̂ is approximately

perpendicular to the orbital plane, the orbital plane remains approximately in the

xy-plane in the co-precessing frame.

– 65 –



3.3. Determining L̂N and n̂

3.3.2 Determining orbital phase and n̂ from the waveform

During the early inspiral of a non-precessing binary, the orbital phase of the binary

can be found from the phase of the waveform, using

ω`m0 = m d
dtφorb (t0) , (3.10)

where ω`m0 is the angular frequency of ψ4,`m and φorb is the orbital phase of the binary

in the orbital plane. PN corrections to this relation are small [36], the differences

between the phases of h and ψ4 are also small [43], and this approximations holds to

high accuracy even up until a few orbits before merger (see, e.g., equation 7 of [51]),

Consequently, the orbital phase of the binary is half that of the phase of the ψ4,22

mode. The phase of a ψ4,`m mode, Φψ4

`m, is the unwrapped argument of the complex

time series ψ4,`m given by

ψ4,`m = Aψ4

`me
−iΦψ4`m . (3.11)

As stated above, the phase of the (2, 2) mode is a monotonically increasing function.

Therefore, once the orbital phase has been calculated the unit separation vector is

given by

n̂ =

 cosφorb

− sinφorb

0

 ≈


cos

[
1
2

(
Φψ4

22 + Φ0

)]
− sin

[
1
2

(
Φψ4

22 + Φ0

)]
0

 , (3.12)

where Φ0 is the orbital phase offset, which depends on the conventions used in the

NR code used to produce the simulation. It is 0 if the phase of ψ4 is 0 mod 2π

when the black holes are on the x-axis, and ±π if this occurs when they are on the

y-axis.

For a precessing binary, a similar procedure can be performed by rotating the

waveform into the co-precessing frame described in section 3.3.1. The orbital phase

can now be estimated from the co-precessing waveform phase Φψ4,QA
22 in the same

manner as above. This is similar to the way the orbital phase is computed in

equation 6 in [35] except here we use just the phase of the (2,2) mode while [35]

uses the average of the phase of the (2,2) and (2,-2) modes. For the remainder of

this chapter, we will define the orbital phase, as estimated from the waveform, as

Φ = (Φψ4,QA
22 + Φ0)/2.

The unit separation vector can then be found as for a non-precessing waveform.

It then needs to be rotated back into the NR simulation frame using the angles α, β

and γ found above. Since these angles were defined using the z − y − z convention,

the rotations required to rotate a vector from the Quadrupole Aligned frame to the
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NR simulation frame are

• rotate by γ about the z-axis

• then rotate by β about the y-axis

• then rotate by α about the z-axis.

This is given bycosα − sinα 0

sinα cosα 0

0 0 1


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


cos γ − sin γ 0

sin γ cos γ 0

0 0 1


n̂

QA
x

n̂QA
y

n̂QA
z

 =


cosα

(
cosβ

(
cos γn̂QA

x − sin γn̂QA
y

)
− sinβn̂QA

z

)
− sinα

(
sin γn̂QA

x + cos γn̂QA
y

)
sinα

(
cosβ

(
cos γn̂QA

x − sin γn̂QA
y

)
− sinβn̂QA

z

)
+ cosα

(
sin γn̂QA

x + cos γn̂QA
y

)
sinβ

(
cos γn̂QA

x − sin γn̂QA
y

)
+ cosβn̂QA

z

 .

(3.13)

Since the waveform is rotated into the co-precessing frame by the three Euler

angles, the orientation of n̂QA is determined up to a constant phase based on the

choice of integration constant when calculating γ. However, when rotating n̂QA

into the NR simulation frame, the rotation by γ removes this ambiguity, meaning

n̂ is uniquely determined in the NR simulation frame regardless of the choice of

integration constant.

3.3.3 Determining the co-precessing orbital phase

Alternatively, one can rotate the unit separation vector n̂d (calculated from the

positions of the black holes) into the co-precessing frame. This involves performing

the above rotations in the reverse order using the Euler angles calculated from the

Newtonian orbital angular momentum. The co-precessing orbital phase can then

easily be calculated.

Since the Euler angle γ is found using integration a constant is introduced

into the co-precessing phases. We determined this constant using the fact that

arccos (n̂w · n̂d) = Φ− φorb.

3.3.4 Code Conventions

Several convention choices enter into the calculation of ψ4. These determine the

relationship between the phase of ψ4 and the orbital phase of the binary, i.e. they

determine the orbital phase offset Φ0 given in equation (3.12). The three relevant

choices here are the sign convention in the definition of the Riemann and Weyl ten-

sors, the definition of ψ4 itself and the choice of origin of the azimuthal angle ϕ of
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the spherical co-ordinates. The first two of these differences introduce an ambigu-

ity in the definition of ψ4 of ψ4 −→ eiψ0ψ4. The third introduces the ambiguity

ψ4,`m −→ eimϕ0ψ4,`m [53]

An example of the effect of different choices in these conventions is the difference

in the phase of ψ4 calculated by identical simulations produced using the BAM

[49, 92] and SpEC [147, 157] codes. These have been explained in [53]. The two

codes use the opposite sign convention in the definition of the Riemann and Weyl

tensors. Additionally, a different choice of null tetrad is made when defining ψ4; in

the BAM code, ψ4 is defined via ψ4 = −Cαµβνnµnνm̄αm̄β [53], while in the SpEC

code ψ4 is defined by ψ4 = −Cαµβν`µ`νm̄αm̄β (see [128] and figure 4.3.1 of [62]).

(`µ,mµ, m̄µ, nµ) is an appropriate null tetrad where ` and n are ingoing and outgoing

null vectors respectively and −` · n = 1 = m · m̄. Cαµβν is the Weyl tensor. These

choices produce a phase offset of π (ψ0 = −1) between ψ4 calculated by BAM and by

SpEC at equivalent points in the waveform for an identical simulation. The choice of

the origin of ϕ can differ between simulations. However it seems that on the whole

the choices made by BAM and SpEC do not introduce any additional phase offset.

These different choices of conventions mean that for BAM the phase of ψ4 is (0

mod 2π) when the two black holes are on the x-axis (of the co-precessing frame)

whereas for SpEC this happens when the two black holes are on the y-axis. Conse-

quently, in order to calculate a value of n̂ which agrees with the dynamics information

provided along with a simulation,

n̂QA
BAM =

 cos Φψ4,QA
22

− sin Φψ4,QA
22

0

 , (3.14)

while

n̂QA
SXS =

− sin Φψ4,QA
22

− cos Φψ4,QA
22

0

 . (3.15)

The GT-MAYA [87, 90, 161] and RIT [166] codes appear to use the same conven-

tions as the SpEC code. These conventions are also used when producing the PN

waveforms outlined in [25,36].

In general, a consistent convention for Φ0 must be chosen. A choice of Φ0 = π
2

agrees with the PN convention. This will give a consistent definition of n̂ from the

waveform, regardless of the convention choice of the NR code which determines the

dynamics of the simulation. The individual code conventions need to be taken into

account only when we wish to compare back to the co-ordinate dynamics of the

original NR simulation.
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3.4 Co-ordinate ambiguities

In this section we illustrate two co-ordinate ambiguities that we referred to earlier.

The first is in the definition of the retarded time tGW; we consider typical choices

of retarded time that have been used in numerical-relativity studies, and also the

retarded times implied by aligning either the gravitational wave phase or frequency

with the corresponding quantity calculated from the dynamics. The second is in the

estimate of the orbital-plane orientation. We use a PN example to illustrate these

ambiguities, in particular differences in the QA direction calculated using ψ4 and h.

The differences in these directions are nonetheless small, as we illustrate with both

PN and NR examples.

3.4.1 Retarded time

As mentioned above, there is an ambiguity when relating information about the

binary dynamics calculated at the source of the simulation to waveform information

extracted at some finite co-ordinate distance from the source. Different groups use

different conventions to define the relationship between the time at the source t

and the retarded time tGW. The two methods most commonly used are (i) to treat

the spacetime as if it were flat and (ii) to assume the propagation time is given

by the tortoise co-ordinate, as in, for example, [45] (although here an additional

correction to the co-ordinate time is included). The two choices of retarded time

can be summarised as

(i) tGW = t+Rex, (3.16)

(ii) tGW = t+Rex + 2M ln

∣∣∣∣Rex2M
− 1

∣∣∣∣ , (3.17)

where M is the initial total mass of the system and Rex is the co-ordinate radius at

which the gravitational wave signal was extracted from the NR simulation.

A further choice of the retarded time can be defined as the value of tGW where

the phase of the waveform is twice the orbital phase of the binary at a time t. This

gives a time-dependent time shift between retarded time tGW and source time t. An

equivalent time shift can be used to align the angular frequency of the waveform

with the orbital angular frequency.

These different conventions mean the metadata provided with the waveforms

used in the NR Injection Infrastructure are not defined in a consistent manner. The

method described in section 3.3 to find L̂ and n̂ removes this ambiguity and provides

a consistent way of defining L̂ and n̂ for all waveforms. This method is equivalent

to using the time shift that aligns the phase of the waveform with the orbital phase

at each time step, in the co-precessing frame. This time-dependent time shift can

then be used to also report the spins in a consistent manner by relating the values

calculated by the NR simulation to the equivalent point in the waveform.
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Figure 3.2: Simulation SXSBBH0152 (q = 1, Mωstart

22 = 0.0297, χ1 = (0, 0, 0.6) =
χ2). The left hand plot shows the difference between the orbital phase estimate
from the gravitational wave signal, Φ, and the orbital phase φorb for each of the time
shifts shown in the right hand plot.
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Figure 3.3: The same quantities as in figure 3.2, but for the BAM q8 simulation
(q = 8, Mωstart

22 = 0.0625, χ1 = (0, 0, 0.756), χ2 = (0, 0, 0.0945)).
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We will illustrate the difference between these choices with two waveforms from

non-precessing binaries. One is an equal-mass-binary waveform selected from the

SXS catalog of SpEC waveforms [2], and the other is a mass-ratio 1:8 binary sim-

ulated with the BAM code. (These are the SXS 152 and BAM q8 configurations

listed in table 3.1 in section 3.5). We denote the orbital phase of the two black

holes by φorb(t), and the corresponding phase of the gravitational-wave signal by

Φ. As described in section 3.3.2, the orbital phase is given by the change in posi-

tion of the separation vector in the orbital plane and the gravitational-wave phase

is calculated in the co-precessing frame. For each choice of retarded time tGW, we

calculate the phase difference ∆φ(t) = Φ(tGW) − φorb(t). Figures 3.2 and 3.3 show

the results for several choices of retarded time. For the SXS waveform, we consider

three choices of retarded time: as defined by the co-ordinate extraction radius, by

the areal radius of the extraction sphere, Rareal =
√
A/4π, where A is the proper

area of the extraction sphere [2,45], and by the tortoise co-ordinate calculated from

the areal radius. (The tortoise co-ordinate choice was used to produce the Format 1

metadata for SXS waveforms). For the co-ordinate and areal-radius choices, we see

that the phase difference can be as large as 0.5 rad 1000M before merger. The phase

difference when using the tortoise co-ordinate is much smaller, but still non-zero. By

construction the phase difference is zero for the time shift obtained by aligning the

orbital and gravitational wave phases. The signal propagation times implied by each

choice are shown in the right panel. We see that the propagation time varies with

the waveform-based choices, but that is not surprising, given the gauge-dependent

nature of the co-ordinate dynamics. The areal radius has not been calculated for

the BAM waveform, so figure 3.3 shows results only for the co-ordinate extraction

radius, and the tortoise co-ordinate calculated using this value. We again see that

the phase difference is smallest when using the tortoise co-ordinate. The variation

in the time shift required to align the phases is comparable between the SXS and

BAM waveforms.

Based on the results in figures 3.2 and 3.3, we see that the tortoise co-ordinate

provides the best phase alignment between the dynamics and gravitational wave

signal for both codes. We also find that the results based on our procedure give

similar agreement. This procedure has the additional advantages that it can be ap-

plied agnostically to all NR waveforms, and is based directly on the gauge-invariant

gravitational wave signal.

3.4.2 Orbital plane nutation

In precessing configurations the orbital plane exhibits nutation that is not present

in the direction of the full PN orbital angular momentum. [150] showed that the QA

direction calculated from ψ4 also precesses smoothly, suggesting that this method

may be a better approximation to the direction of the orbital angular momentum,
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Figure 3.4: θL calculated from the Newtonian orbital angular momentum (i.e. the
normal to the orbital plane), the post-Newtonian orbital angular momentum, and
from ψ4 and the gravitational wave strain. (See text for discussion).
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Figure 3.5: Difference between the calculation of θL and ϕL from ψ4, and that
calculated from L̂N (black line), L̂PN (red line) and L̂h (dashed blue) for a post-
Newtonian waveform with q = 3, χ = 0.75 on the larger black hole, on average in
the orbital plane.
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than to the orbital plane. We consider a PN example, and illustrate that although

this identification does not hold, the QA direction is nonetheless a good approx-

imation to the binary orientation. For an NR configuration we also quantify the

differences between the ψ4 estimates of the binary orientation and phase, and those

calculated from the orbital dynamics, and show that they are small.

We first consider the example of a PN waveform; the waveform was constructed

using the expressions for the ` = 2 modes given in [25]. These expressions require

as inputs the positions, momenta and spins of the black holes, which were found

by by evolving the full PN equations of motion including non-spinning terms up to

3PN order and up to next-to-leading order contributions to the spin terms. More

details of the method to construct this waveform are summarised in [149]. The

PN waveform has the advantage that there is no time shift required between the

waveform and the dynamics, removing the retarded-time ambiguity. Our example is

a mass-ratio 1:3 system, where the larger black hole has a spin of χ = S/m2 = 0.75,

and the spin lies on average in the orbital plane. We consider a 25 000M -long

segment of a PN waveform for this system; the orbital angular frequency range is

0.00491 − 0.00525. As well as calculating the direction of maximum emission for

this waveform, using both h and ψ4, we calculate the Newtonian orbital angular

momentum (as in equation 3.5) and the post-Newtonian orbital angular momentum

(given by L̂PN = n× p, where p is the momentum of the system [149].

In a simple-precession configuration, the orbital angular momentum precesses

around the total angular momentum, J, and the precession can be described by the

opening angle θL between the orbital and total angular momenta, and the cumulative

precession angle ϕL. In figure 3.4 we show four calculations of θL: the Newtonian

orbital angular momentum direction, L̂N (solid black line), which exhibits nutation;

the post-Newtonian angular momentum direction, L̂PN (solid red line), which pre-

cesses smoothly; and the QA estimates calculated from ψ4 (solid green line) and h

(dashed blue line). From this figure we make several observations. (1) θL calculated

from ψ4 precesses smoothly, but does not agree with the direction of L̂PN. (2) θL

calculated from h exhibits nutation, but does not agree with the direction of L̂N. We

note that if we calculate the PN amplitude using only leading-order contributions

(our full PN waveform used the amplitudes from [25]), then the QA θL calculated

from h agrees perfectly with that of L̂N (which we expect by construction), but θL

calculated from ψ4 still precesses smoothly. This suggests that the apparent agree-

ment between the QA and L̂PN directions in [150] was due only to the use of ψ4

in the QA procedure, with differences masked by gauge ambiguities, and in general

these directions should not be expected to be identical, as is also seen in [44]. Note

also that [44] shows that the nutation in the h-based calculation is reduced if one

includes PN signal amplitude terms that account for the mode asymmetries that

lead to out-of-plane recoil, but some nutation does remain.

In figure 3.5 we show the difference between the maximum gravitational wave
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emission direction L̂ψ4 as calculated from ψ4, and the Newtonian orbital angular

momentum direction, L̂N, the post-Newtonian angular momentum direction, L̂PN

and the maximum gravitational wave emission direction L̂h. We see that although

there are differences between different estimates ∆θLN and ∆ϕLN are oscillatory

while ∆θLPN and ∆ϕLPN are smoothly varying. This is because L̂N shows nutation

while L̂ψ4 and L̂PN do not [150]. Additionally, L̂h shows nutation. Note that similar

behaviour is seen for NR simulations in [113], which considers strain, ψ4, and also

the Bondi news, N = ḣ. We used ψ4 to calculate both L̂ and n̂ in all subsequent

examples. Although L̂ψ4 and L̂PN agree well, they are not equal. This may be due to

differing PN orders in the description of the dynamics and of the waveform; whether

the quantities converge with higher order PN treatments remains to be studied. Note

that the nutation in the dynamics can be removed by using an orbit-averaged PN

treatment, in which case it is the gravitational wave-based precession that exhibits

nutation [119], but this is not consistent with the fully general-relativistic results of

NR simulations, as the later examples will illustrate.
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Figure 3.6: PN waveform (q = 3, χ = 0.75 on the larger black hole, on average in
the orbital plane). A comparison of half the co-precessing gravitational wave phase
Φ and the orbital phase φorb.

We also compared the orbital phase of the waveform with the co-precessing grav-

itational wave phase. The orbital phase was found by integrating the orbital fre-

quency from the PN equations and setting the integration constant using the method

described in section 3.3.3. The result of this comparison is shown in figure 3.6. As

can be seen, they agree very well over the whole 25000M of inspiral.
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Figure 3.7: BAM q1 (q = 1, Mωstart
22 = 0.0354, χ1 = (0,−0.8, 0), χ2 = 0). On the

left is shown the evolution of θL and ϕL as calculated for the Newtonian orbital
angular momentum direction from the dynamics and for the direction of maximum
emission from the waveform. The right hand side shows the difference between the
quantities calculated from the dynamics and those calculated using ψ4 (red) and
those calculated using strain (blue). The time shift used for this comparison is that
obtained by aligning the orbital and signal phases.

Figure 3.7 shows a similar comparison for an NR simulation, the BAM q1 con-

figuration in table 3.1. Here the co-precessing orbital phase is found as described in

section 3.3.3. The quantities calculated using the dynamics are time-shifted assum-

ing a flat space time (the time shift described by equation 3.16). We again see that

the Newtonian dynamics exhibit nutation that is not present in the maximum emis-

sion direction calculated from gravitational wave signal. In this case, the magnitude

of the nutation present in the direction calculated from the strain is much smaller

than seen for the PN example in figure 3.4. The reason for this is not clear but one

possible explanation is that h is calculated from ψ4 for NR simulations using fixed

frequency integration and this process smoothes out the oscillations.

3.5 Numerical Comparisons

In this section we compare our gravitational wave and dynamics based calculations

of the co-precessing phases for NR waveforms produced using a representative set

of current codes. This is complicated by the ambiguities that we discussed in the

previous section, but a direct comparison provides us with a general sense of how well

these different estimates agree, and whether our method gives physically reasonable

results. The NR waveforms that we used are summarised in table 3.1; these are

either private BAM simulations, or simulations available through the SXS, Georgia

Tech, RIT and LVC-NR catalogues [88,95,118].

As for the non-precessing case, we first compared the co-ordinate phases found

from the waveform and the orbital motion. We chose to align the phases using the

static time shift provided with the waveform metadata, i.e. the time shift suggested

by the group that produced the NR simulations. For the BAM, Georgia Tech and
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RIT waveforms, this is the value of the co-ordinate extraction radius, Rex. For

the SpEC waveforms it is the tortoise co-ordinate calculated from the areal radius;

see section 3.4.1. The phases agree well, as can be seen from figure 3.8. The

discrepancy between the two values arises predominantly from the static time shift

used to compare them.
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Figure 3.8: A comparison of the orbital phase Φ estimated from the gravitational
wave signal, and the orbital phase φorb calculated from the dynamics, for the four
precessing waveforms listed in table 3.1. The comparison was made using the time
shifts provided by the group that produced each NR simulation.
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Figure 3.9: A comparison of n̂ calculated from the dynamics (solid black) and using
the waveform phase (dashed red) for the four precessing waveforms listed in table 3.1.
This comparison was made using the time shifts provided by the group that produced
each NR simulation.

We also compared the gravitational wave and dynamics based estimates of n̂ (i.e.

n̂w and n̂d) in order to observe what impact differences in phase estimates had on the

quantities that are directly used by the NR Injection Infrastructure. We calculated

θ, the angle between n̂ and the z-axis, and φ, the cumulative angle between the

projection of n̂ in the xy plane and the x-axis. We then found the difference in the

quantities calculated from the dynamics (d) and those calculated from the waveform

(w), given by ∆θ = θw − θd and ∆ϕ = ϕw − ϕd. These are shown in figures 3.9 and

3.10. For the BAM q1 waveform, J is almost along the x-direction, leading to large

oscillations in the orientation of the orbital plane with respect to the z-axis, and
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Figure 3.10: A comparison of the difference between θ and ϕ (shown in figure 3.9)
calculated from the dynamics and from the waveform for the four precessing wave-
forms listed in table 3.1. This comparison was made using the time shifts provided
by the group that produced each NR simulation.

consequently also in θ. In the other simulations J is approximately aligned in the

z-direction, leading to smaller oscillations. We can see from the general agreement

between the gravitational wave and dynamics based quantities, that our method to

find n̂ is reliable regardless of the simulation’s initial configuration. The SXS, RIT

and GATech simulations all have L̂ approximately aligned in the z-direction at the

beginning of the simulation. For the SXS and RIT waveform this accounts for the

growth in the amplitude of the θ oscillations with time. The oscillations may not

change much in amplitude for the GATech waveform because it is shorter than the

SXS and RIT waveforms and so experiences less of a precession cycle.

We see that our method of estimating the orbital phase Φ and unit separation n̂

using the waveform reproduces the value calculated from the dynamics to reasonable

accuracy. The levels of disagreement are consistent with the retarded-time and co-

ordinate ambiguities, and the approximations inherent in the QA procedure.

3.6 Conclusion

We have extended previous work, which calculates a variant of the orbital angular

momentum L̂ based entirely on the gravitational wave signal [46, 123, 150], to also

calculate an effective orbital phase, Φ. These can be used to prescribe the binary

orientation and orbital phase when using NR waveforms as proxy gravitational wave

signals. The most immediate application is through the NR Injection Infrastructure

used by the LIGO-Virgo collaboration [151], and we follow the same notation and

conventions. Our method makes it possible to orient the source without reference

to the gauge-dependent binary dynamics, or a retarded time, which lacks a unique

definition. The results of this method are in principle gauge invariant (up to finite-

extraction-radius errors in the NR waveforms), and can be used agnostically on all

current BBH NR waveforms.
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As part of the validation of our method, we have compared the results to those

found from the co-ordinate dynamics. The differences between the two approaches

are consistent with ambiguities in the definition of the retarded time, and the

smoother precession of the gravitational wave-based calculation of precession as

compared to that from the orbital dynamics.

We note that the current NR Injection Infrastructure does not specify a choice

of several conventions in the NR wave extraction (see section 3.3.4). In calculating

the orbital phase it is necessary to take into account the choice of conventions used

in extracting the NR waveforms.

The remaining dynamical quantities that are not considered in our method are

the individual black-hole spin vectors, and the separation between the two black

holes. The separation is not used as an observable in gravitational wave astronomy

applications. Potential extensions of our method to include the time-evolution of

the spin vectors is left to future work.

Given that our method provides a unique, gauge-invariant measure of (L̂(t), n̂(t))

to prescribe binary configurations, we recommend it as the standard measure of

these quantities in the NR Injection Infrastructure. However, we note that at the

level of precision required for current analyses, results between different methods for

calculating these dynamics quantities agree well. It also provides a useful check of

the metadata attached to a precessing waveform calculated using more traditional

methods, such as for the waveforms presented in Chapter 2 and used for the model

developed in the following chapter.
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Tuned precessing model

4.1 Introduction

The LIGO and Virgo collaborations are detecting an ever increasing number of

gravitational wave events [6, 7, 9, 10, 13–16]. None of these detections have so far

shown conclusive evidence of precession. This is in part due to the difficulty of

measuring precession [75,76], especially for BBH systems where the masses of the two

black holes are close to equal. Recently some events have been measured with a clear

non-zero spin [16]. The properties of the binary are determined by the process and

environment in which it forms. Systems formed through dynamical processes tend

to have isotropically oriented spins [117, 129, 154] while those formed from isolated

massive binaries (such as through common envelope evolution [33, 130]) generally

have aligned spins [99,160]. If the binaries have an isotropic spin distribution then a

vanishingly small fraction will have aligned spins, meaning the majority of systems

will have some degree of precession. Since we do not know which formation channel

is the most prevalent it is necessary to model generic spin binaries.

As detectors get more sensitive we expect to detect an increasing number of grav-

itational wave events. As a consequence of this, we expect to detect an increasing

number of more unusual events, such as those with particularly loud signal-to-noise

ratio (SNR), higher mass ratios or larger spin magnitudes. In these cases, the

detection of precession is more likely. It is therefore imperative to have accurate

inspiral-merger-ringdown (IMR) models of precessing signals across a wide parame-

ter space.

To date there have been several different families of precessing waveforms. These

can be divided into two main approaches: modelling the underlying non-precessing

waveform and the precession effects separately [85,102,124] and producing a surro-

gate model of the complete precessing waveform [162]. The first of these approaches

has been used by two different waveform families: Phenom and EOB. More detail

is given on these different families in section 1.5 of the Introduction. All of these

models have been used in the analysis of events detected by LIGO and Virgo, al-
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though all have their limitations. The Phenom and EOB models do not have the

precessing component of the model tuned to NR and rely on expressions for the

precession angles that are known to be valid only during the inspiral part of the

waveform while the surrogate models can only be used for events with a high total

mass.

In this chapter we present a phenomenological model for the precession angles

used to “twist up” a non-precessing waveform to produce a precessing waveform as

described in section 1.4 of the Introduction. This model is tuned to NR waveforms

of single spin systems with mass ratios from 1 to 8. A spin of magnitude 0.4 or 0.8

is placed on the larger black hole inclined at an angle from 30◦ to 150◦ to the orbital

angular momentum of the binary. The model is a full IMR model and employs PN

expressions for the angles below the frequencies for which we had NR data available.

4.2 Model Outline

4.2.1 PhenomP: Underlying Principles

The principles and approximations that underpin current models of precessing BBH

signals are described in section 1.4 of the Introduction. A description of current

Phenom models is given in section 1.5. Both of these are summarised here for ease

of reference and to highlight key features relevant to the work that is presented in

the following chapter.

The PhenomP set of precessing waveform models uses the fact that a precessing

waveform can be modelled by a co-precessing waveform, which does not exhibit

amplitude and phase modulations due to precession effects, “twisted up” [85]. This

allows the precessing waveform to be broken down into two separate components: a

model for the underlying co-precessing waveform and a model for the Euler angles

required to perform the time- or frequency-dependent rotation in order to “twist

up” the waveform into the inertial frame, using equation 1.40 [149]. For a BBH

system, the majority of the power radiated through gravitational waves is emitted in

a direction approximately perpendicular to the orbital plane [119,150]. By tracking

the direction of maximum emission we can therefore track the precession of the

orbital plane. In the co-precessing frame, the system does not precess so the rotation

from the inertial frame to the co-precessing frame can be defined using the direction

of maximum emission.

The rotation between an inertial frame in which a waveform is precessing and the

non-inertial co-precessing frame is described by three Euler angles {α, β, γ}. These

angles describe the precessional motion of the direction of maximum emission V

about a given axis. For a consistent definition of the angles, we define the precession

angles where we take this axis to be along the direction of the total angular momen-

tum in the inertial frame. These angles can be found from the waveform as described
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in section 1.4 [123,150]. Two of these precession angles, α and β, are shown in figure

1.2 in the Introduction. β is the angle between V and J while α is the angle between

the projection of V into a plane perpendicular to J and some constant axis. The

third precession angle γ is fixed by the ‘minimal-rotation condition’ [46] in order to

ensure the orbital velocity of the waveform is invariant under the transformation.

The minimal-rotation condition means γ is given by equation 1.76 once the other

two angles have been found.

Current precessing models make a number of approximations when modelling

precessing systems. The first set of approximations are made in modelling the un-

derlying co-precessing waveform. During inspiral, the in-plane spin components

have only a small effect on the phase of the waveform in the co-precessing frame.

This leads to the first of these assumptions; the co-precessing waveform can be ap-

proximated by the equivalent aligned spin waveform [126, 149, 150]. This provides

a simple mapping to a family of non-precessing waveforms. The final spin of the

remnant black hole will not be the same as for the equivalent inspiral aligned-spin

waveform. The ringdown part of the co-precessing waveform is therefore modelled

by an aligned-spin waveform where the final spin has been adjusted to an approxi-

mation of the final spin of the precessing system. These two parts are connected by

an intermediate region to form the model for the co-precessing waveform. PhenomP

versions 1-3 [85, 102] use PhenomD [94, 103] as the underlying aligned spin model

while PhenomPv3HM [104] uses PhenomHM [112] which includes higher modes.

Similarly, PhenomXPHM [131] uses PhenomXHM [78], a higher mode model which

extends PhenomXAS [132]. This approximation is also made by the SEOB family

of models– for example, SEOBNRv4PHM [124] employs SEOBNRv4HM [63] as the

underlying aligned spin model.

The second set of approximations are made in modelling the Euler angles used

to twist up the co-precessing waveform. To date, precessing models have used ex-

pressions for these angles which describe the precessional dynamics of the system–

the motion of the orbital angular momentum L about the total angular momentum

J. L can either be the Newtonian value or a PN description of varying order. The

direction of L is approximately, although not exactly, the same as the direction of

maximum emission [42,82,150]. Further to this, current versions of PhenomP use a

model for these angles derived from PN theory and apply this model through inspi-

ral, merger and ringdown. This is despite the fact that we do not expect them to

be accurate beyond late inspiral. More details are given on the angles used by Phe-

nomPv3 in the Introduction in section 1.5.3. We will see how these angles compare

with those from the NR simulations in later sections of this chapter.

The final approximation made by the PhenomP family is that the direction of

J is fixed and taken to be in the z-direction. The model is therefore only valid for

cases of simple precession where the direction of J is approximately constant and

neglects transitional precession.
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In this chapter we present an improved model for the precession angles and

leave improvements to the underlying co-precessing model to future work. Here

we present a model for the angles which desribes the precession of the optimum

emission direction itself rather than the precession of L. Since these angles can be

calculated from the waveform itself (using the method described in section 1.4.1 of

the introduction) they are the appropriate angles to put the waveform into the co-

precessing frame. Details on how we get PN expressions for these angles are given

in section 4.4.1. The model for the angles presented here is a full IMR model, where

the inspiral angles still use the PN expressions but the merger-ringdown angles are

now given by a phenomenological ansatz where the co-efficients have been tuned to

NR. We still make the assumption that the direction of J remains fixed.

4.2.2 Tuned angle model: A Summary

Here we present a precessing waveform model where the precession angles are tuned

to NR in the merger-ringdown region, while the inspiral angles are calculated from

PN theory [58], as in PhenomPv3 [102]. We tuned these angles to the catalogue

of 40 NR simulations which was presented in Chapter 2. This catalogue covers the

parameter space of single spin configurations with q ∈ [1, 2, 4, 8], χ ∈ [0.4, 0.8] and

θ(◦) ∈ [30, 60, 90, 120, 150] where q is the mass ratio, χ is the dimensionless spin

magnitude and θ is the angle between the orbital angular momentum and the spin

angular momentum. We present the results of using our IMR description of the

precession angles to “twist up” the non-precessing model PhenomD, as was done

for previous versions of PhenomP [85, 102]. However, these angles can be used to

“twist up” any aligned-spin model, such as PhenomHM [112] or PhenomXHM [78].

Additionally, some of the techniques presented here are applicable to any “twisted”

model, such as the improvements in the PN expression for β described in section

4.4.1. The goal of this work is to produce an accurate description of the preces-

sion angles and we leave improvements to the underlying aligned spin co-precessing

waveforms to future work.

The model of the precession angles presented here is a frequency-domain model.

The precession angles are the same for the strain h and for ψ4 in the frequency-

domain, but not in the time-domain. As stated in equation 1.34 in the Introduction,

ψ4 = ḧ. If the modes of the gravitational wave strain are given by

h`m (t) = A`m (t) e−imφ(t), (4.1)

then the ψ4 modes are

ψ4,`m (t) = A′`m (t) e−imφ
′(t), (4.2)
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where

A′`m =

√(
Ä−m2φ̇2A

)2
+m2

(
2φ̇Ȧ+ φ̈A

)2
, (4.3)

φ′ = φ+
1

m
arctan

m
(

2φ̇Ȧ+ φ̈A
)

Ä−m2φ̇2A

 . (4.4)

The distribution of power between the modes is therefore different for h and for ψ4

in the time domain. This means the precession angles required to transform the

waveform into the co-precessing frame in which the majority of the power resides in

the (2,2) mode will be different. By contrast, in the frequency domain we have

ψ̃4 = F.T. [ψ4] = F.T.
[
ḧ
]

= −ω2h̃, (4.5)

where ω = 2πf and f is the gravitational wave frequency. Since ω is an overall factor

in front of all the modes at a given frequency the direction which maximises |h̃|2 will

be the same as that which maximises |ω2h̃|2. The precession angles will therefore

be the same for h and for ψ4. The frequency domain is therefore the natural regime

in which to work.

The merger-ringdown angles presented in this model are tuned to NR. During the

modelling procedure we first transformed the NR waveforms into a frame in which

J is aligned along the z-direction at all times. The final model therefore makes the

approximation that the direction of J is fixed, as is done in other PhenomP models.

The full signal includes asymmetries between the +m and −m modes, which are not

present in non-precessing systems [44, 48]. By using a non-precessing model for the

co-precessing waveform we are, by construction, ignoring mode asymmetries in our

model. Therefore, for consistency, we symmetrise the NR waveforms and associated

precession angles. The waveforms were symmetrised using the method described

in [44].

The calibration co-efficients of the phenomenological expressions used to describe

the merger-ringdown angles can be parameterised by the symmetric mass ratio η,

the dimensionless spin magnitude χ and the cosine of the angle between the orbital

angular momentum and the spin angular momentum cos θ. The model was tuned

to simulations with a single spin placed on the larger black hole where χ and cos θ

are easily defined. As with previous models, a mapping from a two-spin system to

a single spin system is therefore required.

We define the effective spin parameter χeff [19, 142] which parameterises the

rate of inspiral and the precession spin parameter χp [152] which parameterises the

precessional motion of the binary. We expect χeff to be approximately constant
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throughout the inspiral [138]. χeff and χp for a generic two-spin system are given by

χeff =
m1χ

‖
1 +m2χ

‖
2

m1 +m2
, (4.6)

χp =
Sp

A1m2
1

, (4.7)

where Sp = max
(
A1S

⊥
1 , A2S

⊥
2

)
and S

‖
i and S⊥i are the individual spin components

parallel and perpendicular to the orbital angular momentum. χeff parameterises

the spin parallel to the orbital angular momentum while χp parameterises the spin

perpendicular to the orbital angular momentum in the plane of the binary.

The single spin system which corresponds to a two spin system defined by S1

and S2 has a spin
(
χ⊥, 0, χ‖

)
placed on the larger black hole where

χ‖ =
Mχeff

m1
, (4.8)

χ⊥ = χp. (4.9)

χ‖ is parallel to the orbital angular momentum of the system while χ⊥ lies in the

orbital plane. The total spin magnitude χ and the angle between the orbital and

spin angular momenta are then given by

χ =
√
χ2
‖ + χ2

⊥, (4.10)

cos θ =
χ‖

χ
. (4.11)

These reduce to the correct values for the cases to which we tuned the model and

also correctly re-weight two-spin cases and cases where the spin is predominantly on

the smaller black hole.

4.3 Calculating NR precession angles

Using the gravitational wave output of 40 NR simulations, we perform low level data

processing which prepares each waveform to be used in the calculation of the optimal

emission direction and the frequency-domain precession angles {α(f), β(f), γ(f)}.
We calculate the optimal emission direction using the rotationally invariant eigen-

value method described in section 1.4.1 in the Introduction with only the ` = 2

modes. Since each simulation is performed in a different inertial frame and ex-

hibits different numerical artefacts, the data must undergo pre-processing before

the precession angles can be calculated. The result of this pre-processing is a set

of precession angles that describe the simple precession of each of the BBH config-

urations with no imprint of mode asymmetries and no numerical artefacts at early

times.
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4.3.1 Data processing

For each NR simulation, spin weight −2 spherical harmonic multipole moment data,

as defined in equation 1.32 in the Introduction, are stored for the radiative Weyl

scalar. Each ψ4,`m time series contains multipole moment data for inspiral, merger

and ringdown.

Before the calculation of the frequency domain optimal emission direction, the

data are processed in two ways. First, spurious inspiral (“junk”) radiation, due to

imperfect initial data, is windowed away, using a window function that increases

from zero to one over the course of three gravitational wavelengths. It is found that

when windowing over more than two wavelengths, the choice of (smooth) window

function has no significant effect on results. For simplicity, a standard Hann window

is used [121]. The window starts at the first peak in the real part of ψ4,22 such that

the following peak is less than or equal to the largest duration between peaks in

the time series. This most often results in less than 200 M of contaminated inspiral

data being tapered away. The window is applied equally to the real and complex

parts of ψ4 for all multipoles. Similarly, post-ringdown data are windowed such

that the Hann window turns off to the right between the point where numerical

noise overtakes exponential decay, and the end of the data file. The inspiral and

post-ringdown windowing reduces unphysical broadband frequency domain power.

Second, the time domain data are zero-padded to the right such that the fre-

quency domain step size, in geometric units, is less than 5× 10−4. This ensures the

frequency-domain features will be sufficiently well resolved.

4.3.2 Conventions for feature alignment of NR angles

We impose processing choices and conventions towards the alignment of features be-

tween different NR cases, and the ultimate connection with angles from PhenomPv3.

These choices and conventions are summarized below.

Simple Precession

For consistency with PhenomPv3 and its related PN model, we place all NR wave-

forms in a frame where the system angular momentum direction is fixed throughout

coalescence. Therefore, we begin our pre-modelling feature-alignment in a frame

where the radiative angular momentum direction, J(t), is at all times along the z-

direction. This convention amounts to a minor modification of the NR data, whose

radiative J(t) varies by at most ∼ 6◦ from its initial direction. The use of this J(t)-

frame is accomplished by first computing the angular momentum emission rate from

the multipole moments according to [141], where the source’s angular momentum
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rate, dJ/dt, is given by

dJx
dt

= lim
r→∞

r2

32π
Im

{∑
`,m

∫ t

−∞

∫ t′

−∞
ψ`m dt′′dt′

×
∫ t

−∞

(
f`,m ψ

∗
`,m+1 + f`,−m ψ

∗
`,m−1

)}
dt′, (4.12)

dJy
dt

= lim
r→∞

r2

32π
Re

{∑
`,m

∫ t

−∞

∫ t′

−∞
ψ`m dt′′dt′

×
∫ t

−∞

(
f`,m ψ

∗
`,m+1 − f`,−m ψ∗`,m−1

)}
dt′, (4.13)

dJz
dt

= lim
r→∞

r2

16π
Im

{∑
`,m

m

∫ t

−∞

∫ t′

−∞
ψ`m dt′dt′′

×
∫ t

−∞
ψ∗`,m dt′

}
, (4.14)

where f`,m =
√
`(`+ 1)−m(m+ 1) and ∗ denotes complex conjugation. We use

the convention that Im(a+ ib) = b, for a and b real. To minimize the impact of low

frequency numerical noise, integrals in equations 4.12–4.14 are performed using the

fixed frequency method [140].

Numerical integration of equations 4.12–4.14 enables the calculation of J(t). We

chose the integration constant so that J(0) = JADM, as defined by the simulation’s

initial data. JADM is the ADM value of the total angular momentum [41]. While this

choice of integration constant results in J(t) that is sensitive to the removal of early

time spurious radiation, we find that the resulting final spin of the system agrees

closely with that estimated from the remnant’s apparent horizon. Disagreement

is at most 5%. Thus, we conclude that the removal of system junk radiation is a

small source of error in J(t). This is consistent with the expectation that the junk

radiation carries minimal angular momentum, since individual boosted or spinning

black holes are axisymmetric and therefore do not radiate angular momentum.

We use the J(t) to define Euler angles consistent with [46]’s minimal rotation

condition, hence ensuring that our J(t)-frame transformation is invertible and inde-

pendent of the simulation’s initial frame.

Symmetrisation

For consistency with PhenomPv3, we enforce that the co-precessing multipole mo-

ments of our model obey the same symmetry properties of their non-precessing

counterparts. This means that we neglect to model ±m mode asymmetries. Al-

though the asymmetric contributions are weak, there is some evidence that they are

necessary for non-biassed measurements of precessing systems [98], and we plan to
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model these contributions in future work.

We use the following symmetrisation procedure. The J(t)-frame waveform is

rotated into the co-precessing frame using the time-domain precession angles cal-

culated using the matrix method described in section 1.4.1 of the Introduction.

In this frame the (2,±2) modes dominate and for consistency with previous non-

precessing/co-precessing models we consider only these modes. We define the time-

domain symmetrised (2,2) mode to be

ψsym
4,22 =

1

2

(
ψ4,22 + ψ∗4,2−2

)
, (4.15)

which is consistent with the definition given in [44]. The (2,−2) mode is then given

by

ψsym
4,2−2 =

(
ψsym

4,22

)∗
. (4.16)

At this stage there remain asymmetries between the positive and negative fre-

quency domain behaviour of the optimal emission direction angles used to rotate the

co-precessing waveform back into the J(t)-frame. We Fourier transform the sym-

metrised waveform in the J(t)-frame and calculate the precession angles using the

matrix method. We enforce symmetry in negative and positive frequency angles by

averaging positive and negative frequency angles via

ᾱ(f) =
1

2
(α−(|f |) + α+(|f |)) (4.17)

β̄(f) =
1

2
(β−(|f |) + β+(|f |)) (4.18)

γ̄(f) =
1

2
(γ−(|f |) + γ+(|f |)) . (4.19)

In equations 4.17–4.19, subscripts − and + denote angles at positive and negative

frequencies, respectively.

In equations 4.15–4.19 we effectively average over subdominant effects, leaving

their inclusion in modelling to future investigation.

4.4 Inspiral angles

The inspiral angles used in the model are based on the PhenomPv3 angles described

in section 1.5 of the Introduction. The inspiral expression used for α is exactly the

same as in PhenomPv3. We have modified the expression for β as described below.

Figure 4.1 shows the PhenomPv3 angles for the case (q, χ, θ) = (8, 0.8, 60). In this

figure, as elsewhere in this chapter unless otherwise stated, the value for the angles

is given in radians. As can be seen, α and γ agree well with the NR data at low

frequencies but do not capture all the features present in the data as the system

approaches merger. While the expression for β is closer to the NR data during
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Figure 4.1: Comparison of the post-Newtonian expressions for each of the preces-
sion angles (blue line) with the NR data (black dots) for the case with (q, χ, θ) =
(8, 0.8.60).

the inspiral section of the NR waveform and diverges towards merger, there always

appears to be an offset between the PN prediction and the actual value. The cause

and our solution to this discrepancy are described in the following sections.

4.4.1 Higher-order PN corrections to β

In the quadrupole approximation the maximum gravitational wave signal power is

emitted perpendicular to the orbital plane, and therefore the angles that describe

the precession dynamics of the orbital plane are the same as those associated with

the co-precessing frame of the gravitational wave signal [46, 123, 150]. For the full

signal, this identification is only approximate [44, 82, 119, 150], and we expect the

approximation to be less accurate at higher frequencies. Our modelling approach is

based on applying a frequency-dependent rotation to a model of the waveform in the

co-precessing frame, and as such the rotation angles should be those associated with

the signal. However, all current models [85, 102, 125, 158] use the angles associated

with the dynamics.

Figure 4.1 shows that the PhenomPv3 PN dynamics angles α and γ from the

inspiral match well with the NR signal angles for the merger and ringdown. This

suggests that it is possible to identify the dynamics and signal values for these two

angles for the purposes of our model. However, this is not the case for the inclination

angle of the orbital plane. In this section we will refer to the inclination angle of
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Figure 4.2: Inclination angles for the (q = 8, χ = 0.8, θ = 60◦) configuration. Shown
is the NR inclination angle of the QA frame, β (black dots); the PN inclination angle
of the orbital plane, ι (solid blue) and the approximate QA angle β as a function of
ι (dashed magenta). See text for details.

the orbital plane with respect to J as ι, and continue to denote the inclination

angle of the co-precessing frame by β. Figure 4.2 shows ι and β for the (q = 8,

χ = 0.8, θ = 60◦) configuration, where ι is calculated from PhenomPv3, and β

is from the corresponding NR simulation. Although we expect the PN and NR

results to agree at sufficiently low frequencies (where the signal is weaker and the

quadrupole approximation is more applicable), they clearly do not agree well over

the frequency range of our current NR results.

Fortunately, we have access to PN signal amplitudes beyond the quadrupole

approximation, and can use these to calculate a more accurate estimate of the signal

β. One way to do this would be to calculate a full PN waveform, e.g., from the model

in [58], and apply the quadrupole-alignment procedure to calculate β. However,

this will be much more computationally expensive than the current PhenomPv3

approximant, and it is possible to obtain a sufficiently accurate result with a simpler

approach.

To illustrate our approach, consider the rotation from a co-precessing signal that

contains only the (` = 2, |m| = 2) modes, hNP
2,±2, to produce a precessing-binary signal

in the inertial frame. We will focus on only the (2, 2) and (2, 1) modes, and only the
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angles ι, α (since the additional phase rotation γ will not affect our argument),

h2,2 = e−2iα

(
cos4

(
ι

2

)
hNP

2,2 + sin4

(
ι

2

)
hNP

2,−2

)
, (4.20)

h2,1 = −2e−iα

(
cos3

(
ι

2

)
sin

(
ι

2

)
hNP

2,2

− cos

(
ι

2

)
sin3

(
ι

2

)
hNP

2,−2

)
. (4.21)

The non-precessing modes can be written as,

hNP
2,±2 = Ae∓2iΦ, (4.22)

where A and Φ are the time/frequency-dependent amplitude and orbital phase.

When ι is small, hNP
2,2 makes the strongest contribution to the precessing-waveform

modes, and we see that ι determines the relative amplitude of h2,2 and h2,1. We can

isolate the e−2iΦ term as follows,

h̄2,2 =
1

2π

∫ 2π

0
h2,2e

2iΦdΦ (4.23)

= Ae−2iα cos4

(
ι

2

)
, (4.24)

h̄2,1 = −2Ae−iα cos3

(
ι

2

)
sin

(
ι

2

)
. (4.25)

From these we can readily calculate that the inclination ι is

ι = 2 tan−1

(
|h̄2,2|
2|h̄2,1|

)
. (4.26)

At leading (quadrupole) order, ι is the precession angle β.

If we now use higher-order PN amplitude expressions [25], then the dynamics

inclination angle ι will no longer be the same as the signal inclination angle β, but

the expression above will give us an estimate of the orbit-averaged β. Note that the

angles in [58] as used by PhenomPv3 are also orbit-averaged (i.e., nutation effects

are absent), so this is a consistent treatment.

The mode expressions in [25] are given in terms of the orbital phase Φ, the pre-

cession angles α and ι, and the spin components. For the spin components, we make

an approximate reduction to our single-spin systems as follows. The inclination of

the spin from the z-axis is the spin’s inclination from the orbital angular momentum

vector, θ, minus the inclination of the orbital angular momentum from the z-axis,

ι. The projection of the spin onto the x-y plane rotates at a frequency α̇, and so

the azimuthal angle is given as (α + α0); the choice of the initial precession phase
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α0 is unimportant, because the orbital averaging will remove the α dependence in

equations 4.24 and 4.25, so we are free to choose α0 = 0. The final result, for a given

configuration, depends only on the dynamics inclination ι as a function of frequency;

we use the PhenomPv3 expression for ι(f).

In [25] the amplitudes are expanded in powers of v = (πf)1/3. We define δ =

(m2−m1)/(m1 +m2) (where m2 < m1), η = m1m1/(m1 +m2)2, χs = (χ1 +χ2)/2,

χa = (χ1 − χ2)/2, and so,

χs/a,x = ±χ sin(θ − ι) cos(α),

χs/a,y = ±χ sin(θ − ι) cos(α),

χs/a,z = ± cos(θ − ι). (4.27)

If we substitute these into the PN mode expressions for h2,2 and h2,1, and then apply

equation 4.26, we obtain the relatively simple expression,

β = 2 tan−1

(
sec(ι/2)

(
a1v

2 + a2v
3
)

b1 + b2v2 + b3v3

)
, (4.28)

where

a1 = (55η − 65) sin ι,

a2 = 7χ(6δ − 5η − 6)(2 cos ι− 1) sin θ

+
(
66χ(δ + η − 1) cos θ + 84π

)
sin ι,

b1 = 42 cos

(
ι

2

)
,

b2 = (55η − 107) cos

(
ι

2

)
,

b3 = 14χ(−6δ + 5η + 6) sin θ sin

(
ι

2

)
+56 cos

(
ι

2

)(
(δ + η − 1)χ cos θ + 3π/2

)
. (4.29)

Figure 4.2 also shows the modified β(ι) for the (q = 8, χ = 0.8, θ = 60◦) configu-

ration. We see the PN inspiral β(ι) now matches well with the NR merger-ringdown

results. We find similar results across the parameter space that we have considered,

and therefore to calculate β in our model, we use equation 4.28 in conjunction with

ι from PhenomPv3 as calculated in Refs. [58, 102].

4.4.2 Two spin β

The PhenomPv3 expression for ι evaluated for a two spin system show oscillations

which become unphysically large through late inspiral and towards merger and ring-

down which are not seen in the precession angles calculated for two spin NR systems.
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These oscillations also complicate connecting the inspiral expression to the tuned

merger-ringdown ansatz. We therefore taper these oscillations so we recover the

value and gradient of beta for an equivalent single spin system at the point at which

we wish to connect the inspiral and merger-ringdown parts of the model.

For a system described by two spins S1 and S2 we define a mapping to the ap-

propriate single spin system described by S′1 = χp (sin θ, 0, cos θ) and S′2 = (0, 0, 0).

We evaluate the PhenomPv3 expression for ι for both of these configurations and

so find the oscillations introduced by the two-spin effects by taking the difference

between the two:

ιosc = ι (S1,S2)− ι
(
S′1,S

′
2

)
. (4.30)

We then apply a taper to these oscillations that ensures ι will tend to the single spin

value and gradient at a given frequency fc and add them back to the single spin

value. Our final two spin expression for ι is given by

ι = ι
(
S′1,S

′
2

)
+ cos2

(
2πf

4fc

)
× ιosc. (4.31)

fc is the frequency at which the inspiral expression for β is connected to the merger-

ringdown expression. It is defined below in equation 4.48.

Furthermore, for a two spin system the magnitude of the in-plane spin component

oscillates. In order to perform the correct rescaling to obtain β as described in the

previous section we need to obtain an estimate for the frequency-dependent value of

this component. To do this we assume that the component of the spins parallel to

the orbital angular momentum S‖ remains fixed and we use the 3PN expression for

L that is used by the PhenomPv3 expressions to calculate ι in the first place. The

in-plane spin component S⊥ is therefore given by

S⊥ = (L+ S‖) tan ι, (4.32)

where S‖ = S
‖
1 + S

‖
2 . Substituting this expression for Sp in 4.7 we get a value for

χp. We then calculate χ and cos θ as described in equations 4.6 to 4.11 and these

values are used to rescale ι.

The effect of this treatment can be seen in figure 4.3, which shows β for SXS1397

(the intrinsic properties of which are given for Case 24 in table 4.1). The PN

expression for the angle captures the oscillations seen at low frequency very well.

However these oscillations do not continue to high frequency and are greatly over-

estimated by the full two-spin PN expression. Tapering the oscillations to the single

spin value at the connection frequency resolves this issue well. For f > fc the PN

expression is replaced by the merger-ringdown expression described in the following

section so the behaviour of the PN angles here are not an issue.
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Figure 4.3: Various options for the PN expression for the opening angle. The left-
hand panel shows the PN value of ι for a two spin system (blue) and for the equivalent
single spin system (green) calculated using the expressions used in PhenomPv3. In
light blue is shown the effect of tapering the two-spin oscillations to the single-spin
value at the connection frequency fc, shown as a grey vertical line. In the right-hand
panel the value for β used in the model (pink) is compared with the NR value of β
found for this case. The configuration shown is Case 24 in table 4.1.

4.5 Merger-ringdown angle model

The PN expressions for the precession angles cannot be reliably extended through

merger and ringdown and when compared with the NR angles clearly do not capture

the features present at high frequency. We therefore present a phenomenological

description of the precession angles α and β in the merger-ringdown regime. We

describe the functional form of the angles and produce a global fit for each of the

co-efficients of the relevant ansatz. This provides a frequency domain description of

the precession angles across the parameter space.

4.5.1 Alpha

The morphology of the merger-ringdown part of α is qualitatively very similar to

that of the phase derivative, seen in [103]. α shows a 1
f fall off with a Lorentzian dip

centred around what is approximately to ringdown frequency of the BBH system.

This prompted the ansatz

α (f)− 〈α (f)〉 =
A1

f
+

A2

√
A3

A3 + (f −A4)2 , (4.33)

where A1, A2, A3 and A4 are free co-efficients.

The fitting region is based around the Lorentzian dip; it is defined to be the

range Mfdip − 0.0225 ≤ Mf ≤ Mfdip + 0.0075 where M is the total mass of the

binary and fdip is the frequency at which α reaches its minimum. The global fit

for α within this fitting region has a mean percentage error of 8.68% across the 40

calibration waveforms. Some example comparisons of the result of these fits with

the NR value for α are shown in figure 4.4.
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Figure 4.4: Comparison of the phenomenological ansatz presented in equation 4.33
with the NR data over the frequency range to which the co-efficients in the ansatz
were tuned for a selection of the cases which comprise the NR catalogue.

– 95 –



4.5. Merger-ringdown angle model

0.05 0.06 0.07 0.08 0.09
Mf

0.02

0.03

0.04

0.05

β

q=1 χ=0.4 θ=150

0.05 0.06 0.07 0.08 0.09
Mf

0.05

0.10

0.15

β

q=1 χ=0.8 θ=120

0.05 0.06 0.07 0.08 0.09
Mf

0.05

0.10

0.15

0.20

β

q=2 χ=0.4 θ=90

0.06 0.07 0.08 0.09 0.10
Mf

0.1

0.2

β

q=2 χ=0.8 θ=60

0.05 0.06 0.07 0.08 0.09
Mf

0.050

0.075

0.100

0.125

0.150

β

q=4 χ=0.4 θ=30

0.05 0.06 0.07 0.08 0.09
Mf

0.2

0.4

0.6

β

q=4 χ=0.8 θ=90

0.04 0.05 0.06 0.07 0.08 0.09
Mf

0.2

0.3

0.4

0.5

β

q=8 χ=0.4 θ=60

0.04 0.05 0.06 0.07 0.08 0.09
Mf

0.8

1.0

1.2

1.4

β

q=8 χ=0.8 θ=120

Figure 4.5: Comparison of the phenomenological ansatz presented in equation 4.34
with the NR data over the frequency range to which the co-efficients in the ansatz
were tuned for a selection of the cases which comprise the NR catalogue.
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4.5.2 Beta

During merger and ringdown, β drops rapidly as the dominant emission direction

relaxes to its final direction. The ansatz used to describe β is therefore chosen to

grow at low frequencies (as seen in the PN expressions), turnover at the correct

frequency, capture the drop and finally tend asymptotically towards the constant

value to which the dominant emission direction relaxes. The ansatz we chose to

describe this behaviour is

β (f)− 〈β (f)〉 =
B1 +B2f +B3f

2

1 +B4 (f +B5)2 , (4.34)

where B1, B2, B3, B4 and B5 are free co-efficients. We also present a global fit for

B0 = 〈β (f)〉.
The fitting region for β is centred around the inflection point in the turnover

finf ; Mf ∈ Mfinf ± 0.03. Within this fitting region, the global fit for β shows a

mean percentage error of 8.08% across the 40 calibration waveforms. Some example

comparisons of the result of these fits with the NR value for β are shown in figure

4.5.

4.6 The phenomenological co-efficients

The two ansätze given above which describe the merger-ringdown behaviour of α

(equation 4.33) and β (equation 4.34) have 10 free co-efficients between them. Each

of these co-efficients was fitted across the three-dimensional parameter space de-

scribed by the symmetric mass ratio η, the dimensionless spin magnitude χ and the

cosine of the angle between the orbital angular momentum and the spin angular

momentum cos θ.

4.6.1 The fitting procedure

The optimum value of each of the co-efficients for each waveform in the calibration

set was found by fitting the relevant ansatz to the NR data using the non-linear

least-squares fitting function curve_fit from the python package scipy [163]. This

function uses the Levenberg-Marquardt algorithm to perform the least-squares fit-

ting. We then performed a three-dimensional fit of each of the co-efficients using the

fitting algorithm mvpfit [111]. This gives each of the co-efficients as a polynomial

expansion in η, χ and cos θ. Since we have 40 calibration waveforms, the maximum

possible number of terms which can appear in these expressions is 39 in order to

avoid over fitting. The fits are restricted so that the highest order term in each

dimension is one less than the total number of data points in that dimension. Since

the value of each of the co-efficients in the ansatz is to some extent dependent on

the value of each of the other co-efficients, we found a global fit for each co-efficient
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in turn, re-fitting the ansatz to the data while keeping the co-efficients which had

already been fitted fixed.

The general expression for each co-efficient is

Λi =
3∑
p=0

1∑
q=0

4∑
r=0

λipqrη
pχq cosr θ, (4.35)

where Λ ∈ [A,B] are the co-efficients in the ansatz describing α and β respectively

and i ∈ [1, 2, 3, 4] and [0, 1, 2, 3, 4, 5] respectively. The λilmn give the co-efficients of

the polynomial expansion of the multi-dimensional fits of Λi. This expression has a

maximum of 39 terms. The values of the polynomial co-efficients λilmn are given in

Appendix A.

The variation of the co-efficients for α and β across the parameter space can be

seen in figures 4.6 and 4.7 respectively. These figures show that the co-efficients vary

smoothly across the parameter space. As can be seen from the residual plots above

the fit surfaces, the global fits agree closely with the values of the co-efficients found

from fitting the ansatz to each individual simulation.

Figure 4.6: Comparison of the fits for each of the co-efficients for the ansatz for
α given in equation 4.33 with the co-efficients found from the data as described in
section 4.6.1. The fits are shown as two-dimensional surfaces covering the parameter
space described by η and cos θ. On the left in blue are the fits for the simulations
with χ = 0.4 and on the right in red are the fits for χ = 0.8. Above each of these
surfaces are shown the residuals.
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Figure 4.7: Comparison of the fits for each of the co-efficients for the ansatz for
β given in equation 4.34 with the co-efficients found from the data as described in
section 4.6.1. The fits are shown as two-dimensional surfaces covering the parameter
space described by η and cos θ. On the left in blue are the fits for the simulations
with χ = 0.4 and on the right in red are the fits for χ = 0.8. Above each of these
surfaces are shown the residuals.
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4.6.2 Key features of the merger-ringdown model

The key features of the morphology of α are the location, width and height of

the Lorentzian dip. These are described by the parameters A4, 2
√
A3 and A2

π
√
A3

respectively. Figures 4.8 to 4.10 show how these vary over the three-dimensional

parameter space of η, χ and cos θ over which the modelling was performed.

As can be seen from figure 4.8, the dip occurs at higher frequencies for smaller

mass ratios (larger η), and for smaller values of the opening angle θ. This trend is

most pronounced for larger spin magnitudes. Since the location of this feature ap-

proximately corresponds to the ringdown frequency of the system this is as expected.

Close to aligned spin (small θ) we see the hang up effect [55] by which the system

merges at a higher frequency since more angular momentum must be radiated away,

and the opposite is seen for anti-aligned spin. This effect is most pronounced for

larger spin magnitudes.

Figure 4.9 shows that the dip is deepest for small mass ratios and shallowest for

large mass ratios. This disparity is most marked for cases with large spin magnitude.

This is also seen with the phase derivative of non-precessing waveforms– for example

the same trend is seen with the equivalent co-efficient α4 in the model for the phase

derivative used in PhenomD [103].

From figure 4.10 we can see that the width of the dip has a more complicated

variation across the parameter space. In general it is widest for systems with aligned

spins and that the difference between aligned and anti-aligned systems is most pro-

nounced for systems with high spins. In PhenomD, the width of the dip in the

phase derivative was found to be represented by the ringdown damping frequency to

a good approximation [103]. This same identification cannot be made for the width

of the dip in α seen here using the same final mass and spin fits that are used in

PhenomD to calculate the ringdown damping frequency.

Figure 4.8: Variation in the location of the centre of the Lorentzian dip seen in
α across the three-dimensional parameter space over which the modelling was per-
formed.

The key features of β are the mean value B0, the location of the inflection point

finf in the turnover, the width of the turnover and the value of the asymptote at

high frequencies βRD.

– 100 –



Chapter 4. Tuned precessing model

Figure 4.9: Variation in the height of the Lorentzian dip seen in α across the three-
dimensional parameter space over which the modelling was performed.

Figure 4.10: Variation in the width of the Lorentzian dip seen in α across the three-
dimensional parameter space over which the modelling was performed.

Figure 4.11 shows that B0, the mean value of β close to merger, grows as the

mass ratio and spin magnitude increase. This is expected as β is approximately

equal to the angle between J = L + S and L. For a fixed mass ratio, increasing χ

increases the value of |S| and similarly for fixed χ, increasing the mass ratio also

increases the value of |S| = m2
1χ = q2χ/(1 + q)2 when normalising to M = 1. For

constant L and orientation of S, increasing the magnitude of S increases the angle

between L and J, thus increasing β. At small spin magnitudes and mass ratios, β

increases as the angle θ between L and S increases towards 90◦ and then decreases

again. In these cases, |L| > |S| so this corresponds to the angle between L and J

increasing until L and S are perpendicular and then decreasing until L and S are

anti-aligned and J is aligned along L. For higher spin magnitudes and mass ratios,

close to merger |L| < |S|, so the angle between L and J increases as θ increases

until L and S are anti-aligned and J is now also anti-aligned with L. In this case β

simply increases as θ increases.

The inflection point of the ansatz modelling the turnover in β gives a measure of

the location of the drop. It is also used to determine which of the three morphologies

shown in figure 4.13 the ansatz in β is taking and to select the correct part of the

ansatz to ensure β aways displays a drop at merger. The inflection points of an

expression occur at the roots of the second derivative of the expression. The second
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Figure 4.11: Variation in the amplitude of the merger-ringdown part of β across the
three-dimensional parameter space over which the modelling was performed.

derivative of 4.34 takes the form

β′′ (f) =
af3 + bf2 + cf + d(
1 +B4 (B5 + f)2

)3 , (4.36)

where a, b, c and d are functions of the fitting co-efficients B1, B2, B3, B4 and B5.

In order to find the roots of this cubic we re-write it in the form of a depressed cubic

x′3 + px′ + q = 0, (4.37)

where

x′ = x+
b

3a
, (4.38)

p =
3ac− b2

3a2
, (4.39)

q =
2b3 − 9abc+ 27a2d

27a3
. (4.40)

In the case where this expression has three real roots, these are given by

x′ = 2

√
−p

3
cos

1

3
arccos

(
3q

2p

√
−3

p

)
− 2nπ

3

, (4.41)

where n = 0, 1, 2.

We wish to be able to define a single, smoothly varying inflection point which

tracks the location of the turnover in β during merger across the parameter space.

As the co-efficients of the cubic vary, the morphology of equation 4.34 changes, as

shown in figure 4.13. For a < 0 we have the morphology shown in the central panel

of the figure. We therefore select the central root which is the only one with a

negative gradient. For a > 0, we have the morphology shown in the outer panels.

For this morphology we need to differentiate between the two outer roots, which

both have a negative gradient. This is determined by the ‘shift’ of the roots, b
3a . In
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Figure 4.12: Variation in the location of the inflection point in the merger-ringdown
part of β across the three-dimensional parameter space over which the modelling
was performed.

cases where b
3a > h we choose the first root (as seen in the left-hand panel) while in

cases where b
3a < h we choose the final root (as seen in the right-hand panel), where

h = m cos θ + c is the value of the oblique asymptote in the expression for b
3a .

In the case where we have complex roots, two of the roots will be in the complex

plane while one will be on the real axis. In this case we select the only real root.

We also consider the case where a = 0 and the second derivative is a quadratic.

In this case we have only one root with a negative gradient, which is the desired

root. Finally, we consider the case where both a = 0 and b = 0. Here we have only

one root which gives us the desired inflection point.

From figure 4.12 we can see that enforcing these conditions gives us a smoothly

varying value of the inflection point across the parameter space. This value is high-

est for systems where the spin is close to being aligned with the orbital angular

momentum and has a larger magnitude. This is expected as the inflection point is

a measure of the location of the turnover in β which we expect to correspond to

the frequency at which the black holes merge. This occurs at higher frequencies

for systems with higher spin values and smaller angles between the orbital angular
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Figure 4.13: Possible morphologies of the ansatz given by equation 4.34 depending on
the values taken by the co-efficients in different regions of the parameter space. From
left to right the panels show systems with (q, χ, θ) = (8, 0.2, 155), (2.5, 0.4, 90) and
(5, 0.8, 160). The red dots mark the extrema, the green crosses show the inflection
points and the blue dot indicates the inflection point chosen as described in section
4.6.2. The points of maximum curvature around this inflection point are shown by
the black lines, which give a measure of the width of the turnover.
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Figure 4.14: Variation in the width of the turnover of β across the three-dimensional
parameter space over which the modelling was performed.

momentum and the spin. This is due to the “hang-up” effect of the spin-orbit con-

tribution to the PN phasing [36], which becomes much more pronounced closer to

merger, e.g., [55]. This is qualitatively similar to the variation of the location of the

Lorentzian dip in α (shown in figure 4.8) as both are related to the merger frequency

of the binary.

The width of the turnover is defined to be the distance between the extrema of

the curvature given by

C (f) =
β′′ (f)(

1 + β′2 (f)
)3/2

, (4.42)

adjacent to the inflection point shown in figure 4.12. The variation of the width is

shown in figure 4.14.

We define βRD using two different methods depending on the morphology of the

ansatz for β. In cases where β tends towards an asymptote immediately following

the inflection point selected following the method described above, we choose βRD to

be equal to the value of this asymptote. In cases where β reaches a local minimum

immediately following the inflection point we choose βRD to be equal to the value

β reaches at this point. Following this definition we see from figure 4.15 that βRD

varies smoothly across the parameter space, tending close to zero for systems with

small mass ratios and small spin angles θ, regardless of spin magnitude. It is only

for cases with high spin magnitude and large values of θ that βRD has a significant

value. This value increases as the dimensionless spin magnitude increases. This

quantity corresponds to the angle between the optimal emission direction of the final

black hole Vf and the total angular momentum Jf . The optimal emission direction

need not be related to the direction of the black holes’ spin, which will determine

the direction of the final black hole’s total angular momentum. For one possible

explanation of this effect, consider perturbing a stationary spinning BH, such that

gravitational waves were emitted predominantly at and angle ζ to S. Given that the

BH is spinning, the perturbation is dragged around the BH, meaning the optimal
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Figure 4.15: Variation in the final value towards which β tends during ringdown
across the three-dimensional parameter space over which the modelling was per-
formed.

emission direction would precess around S, but the opening angle ζ would stay the

same. The discussion in sections III.C. and III.D. of [122] explains this effect in

terms of the superposition of quasi-normal modes emitted by the final black hole

during ringdown. They show that if the (2,0) mode is negligible then β will decay

to zero, otherwise a variety of behaviours are possible. From our NR data we find

β decays to a constant non-zero value. As noted above, this value is largest for

systems with high anti-aligned spin. These are systems where, prior to merger, β is

largest since |S| > |L| and so L (and therefore the optimum emission direction) is

anti-aligned with J.

4.7 Connecting inspiral angles to merger-ringdown ex-

pressions

The expressions for the precession angles for the two distinct regions, inspiral and

merger-ringdown, are connected so that connection is smooth and the full IMR

expression for the angles agrees with the NR data over the entirety of the region for

which it is available. The method used to connect the two regions was different for

each angle.

4.7.1 Connection method

For α the regions are connected using an interpolating function of the form

αinterp (f) = a0f
2 + a1f + a2 +

a3

f
, (4.43)

defined over the frequency range [f1, f2]. The co-efficients of this expression are

chosen so that

1. αinterp (f1) = αPN (f1) and αinterp (f2) = αPN (f2) since there is freedom in an

overall constant offset in α,
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2. α′interp (f1) = α′PN (f1) and α′interp (f2) = α′MR (f2) in order to ensure the two

parts are connected continuously.

αPN is the PN expression used for α in the inspiral regime. αMR is the merger-

ringdown ansatz given in equation 4.34. The co-efficients are given by

a0 =
1

D

[
2 (f1α1 − f2α2)− (f1 − f2)

((
f1α

′
1 + f2α

′
2

)
+ (α1 − α2)

)]
,

a1 =
1

D

[
3 (f1 + f2) (f1α2 − f2α1)

+ (f1 − f2)
(

(f1 + 2f2)
(
f1α

′
1 + α1

)
+ (2f1 + f2)

(
f2α

′
2 + α2

))]
,

a2 =
1

D

[
6f1f2 (f1α1 − f2α2)

+ (f1 − f2)
(
f2 (2f1 + f2)

(
f1α

′
1 + α1

)
+ f1 (f1 + 2f2)

(
f2α

′
2 + α2

))]
,

a3 =
1

D

[
f1f

2
2 (f2 − 3f1)α1 − f2

1 f2 (f1 − 3f2)α2

+f1f2 (f1 − f2)
(
f2

(
f1α

′
1 + α1

)
+ f1

(
f2α

′
2 + α2

))]
, (4.44)

where αi and α′i are the value of α and its derivative at the limits of the frequency

range and D = (f2 − f1)3.

The frequency region over which the interpolation was performed was chosen to

be as small as possible. The lower frequency limit was chosen to be the highest

frequency for which the inspiral expressions agreed with the NR data while the

upper frequency limit was chosen to be the lower limit for which the fitted merger-

ringdown expressions still agreed well with the NR data. Since the PN expressions

for the angles agree well with the NR data over most of the waveform for most

of the parameter space, there is a wide range of frequency values over which the

interpolation could be performed. We choose the frequency range to be defined in

terms of the location l of the dip: f1 = 2l
7 = 2A4

7 and f2 = l
3 = A4

3 .

For β the agreement between the PN expression and the NR data is not as good.

Even including the higher order amplitude corrections described in section 4.4.1, the

starting frequency of the NR simulations is not low enough to cover the region in

which the PN expression closely matches the data for all cases. We therefore cannot

use the same interpolation method as was employed for connecting the inspiral

and merger-ringdown expressions for α. Instead, we employ a rescaling function

which leaves the PN expression invariant at low frequencies but ensures it smoothly

connects with the merger-ringdown value of β at the connection frequency fc. This

rescaling function is given by

k (f) = 1 + b1f + b2f
2, (4.45)
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which tends to one at low frequencies thus leaving the PN expression unchanged. In

order to ensure the value of β and its derivative match at the connection frequency,

the co-efficients b1 and b2 are given by

b1 = − 1

β2
1fc

[
−2β1 (β2 − β1) +

(
β1β

′
2 − β2β

′
1

)
fc

]
, (4.46)

b2 = − 1

(β1fc)
2

[
β1 (β2 − β1)−

(
β1β

′
2 − β2β

′
1

)
fc

]
, (4.47)

where β1 and β′1 are the value of β and its derivative at the connection frequency

given by the original PN expressions while β2 and β′2 are the values from the merger-

ringdown expression at the connection frequency.

The definition of the connection frequency depends on the morphology of β for

a particular case. As has been seen previously, in some parts of the parameter space

β rises steadily until just before merger then turns over and drops rapidly. However,

in other parts of the parameter space this turnover is much more gradual and begins

at much lower frequencies. Our ansatz for β captures both of these morphologies

well. In cases where the turnover occurs within the fitting region, we define the

connection frequency fc as the frequency at which the merger-ringdown part has a

particular gradient dβc. This is found by expanding the gradient of the curve about

the maximum as a Taylor series. We find the connection frequency is given by

fc = fmax +
1

β′′′

[
−β′′ +

√
β′′2 + 4β′′′dβc

]
, (4.48)

where fmax is the frequency at which the maximum occurs, dβc = β′ (fc − fmax)

is the gradient of the curve at the connection frequency, and β′′ and β′′′ are the

second and third derivatives of β evaluated at the maximum. The gradient at which

we wish to perform the connection varies across the parameter space. We therefore

define the connection frequency by

dβc = 2.5× 10−4 × dβ2
inf, (4.49)

where dβinf is the gradient at the inflection point. In cases where the turnover is

not present within the fitting region we instead define the connection frequency to

be the lower frequency limit of the fitting region, thus ensuring β is still falling at

this frequency. In this case, fc = finf − 0.03, where finf is the inflection point.

4.7.2 Full IMR expressions

The expressions describing the precession angles in each of the different regions are

connected using piece-wise C1-continuous functions.

The full IMR expression for α is
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αIMR (f) =


αPN 0 ≤ f < f1

αinterp f1 ≤ f < f2

αMR f2 ≤ f

where αPN, αinterp and αMR are the PN expression used to describe α during inspiral,

the interpolating function used to describe the late inspiral angles in the region f1

to f2 and the phenomenological ansatz which has been tuned to NR to describe the

merger-ringdown angles respectively.

In cases where β has a minimum immediately following the inflection point chosen

as described in section 4.6.2, the full IMR expression for β is

βIMR (f) =


kβPN 0 ≤ f < fc

βMR fc ≤ f < ff

βRD ff ≤ f

,

while in cases where β tends towards an asymptote immediately following the in-

flection point, the full IMR expression for β is

βIMR (f) =

kβPN 0 ≤ f < fc

βMR fc ≤ f
.

βPN is the PN expression for β including the higher-order amplitude corrections

discussed in 4.4.1, k is the rescaling function applied to these expressions as outlined

above, βMR is the phenomenological ansatz which has been tuned to NR in the

merger-ringdown regime and βRD is the constant value of β to which the system

settles down as discussed in section 4.6.2. In this model it is given by the value of β

at the minimum in the merger-ringdown expression. ff is correspondingly given by

the frequency at which the minimum occurs.

γ is then calculated over the entirety of the frequency range for which the wave-

form is produced by enforcing the minimal-rotation condition given in equation 1.76.

The decision to do this rather than produce a separate model for γ was made as it

was found that γ must be very accurate in order to consistently transform between

an inertial frame and the co-precessing frame. The very small discrepancy between

the expression for γ presented in [58] and the numerically calculated value required

by the minimal-rotation condition is sufficient to seriously degrade the model. This

discrepancy is exacerbated here since we are no longer using the dynamical expres-

sion for β presented in [58].

The full model of these angles is shown for two examples in very different parts

of the parameter space in figures 4.16 and 4.17.
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Figure 4.16: Comparison of the complete model for each of the precession angles
(red line) with the NR data (black dots) for the case with (q, χ, θ) = (1, 0.4, 30).
The vertical black lines show the connection frequencies for α and β.
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Figure 4.17: Comparison of the complete model for each of the precession angles
(red line) with the NR data (black dots) for the case with (q, χ, θ) = (8, 0.8, 60).
The vertical black lines show the connection frequencies for α and β.
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Figure 4.18: A comparison of the ` = 2 modes between the NR data (shown in
black on both panels) with PhenomPv3 (top panel) and the new model (bottom
panel). PhenomPv3 does not show the hierarchy in the turnover frequency if each
of the ` = 2 modes, which is now seen in our new model. The system plotted here
has q = 4, χ = 0.4, θ = 90◦ with a total mass of 100 solar masses at a distance of
100Mpc.

4.8 Model validation: qualitative behaviour

The improved model for the precession angles presented here enables us to capture

key features of precessing waveforms which were not seen previously. These features

include the hierarchy in the turnover frequency of the ` = 2 modes and the time-

domain behaviour of the precession angles.

4.8.1 Hierarchy in the turnover frequency of the ` = 2 modes

From equation 4.26 we can see that β is approximately given by the ratio of the

amplitude of the (2,2) and (2,1) modes. The rapid drop in β therefore implies that

the amplitude of the (2,1) mode must have decreased relative to the (2,2) mode and

so the (2,1) mode will begin to experience ringdown decay before the (2,2) mode.

Once both modes are decaying exponentially (at roughly the same rate) β levels off.

This trend continues for all of the ` = 2 modes. The mode hierarchy that we see is

consistent in the NR waveforms with this.

By capturing the turnover in β in our model we reproduce the hierarchy in the

turnover frequency of the ` = 2 modes, as seen in the lower panel of figure 4.18.

This feature has not been modelled in previous precessing Phenom models, which is
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shown in the upper panel of figure 4.18 where each of the ` = 2 modes turnover at

the same frequency.

4.8.2 Time domain comparisons

Accurately modelling the merger-ringdown features of the angles in the frequency

domain has also enabled us to reproduce key features of the angles in the time

domain after merger. The time domain angles were calculated by “twisting up” the

frequency-domain co-precessing NR waveform using the frequency-domain model

for the angles. We then performed an inverse Fourier transform on the resulting

frequency-domain precessing waveform and calculated the precession angles in the

time domain using the matrix method. Since this procedure involves an inverse

Fourier transform of the NR data, the resulting angles contain some noise artefacts.

These could be reduced with additional tuning but this is not required for the basic

check of the phenomenology performed here.

The results of this calculation are shown in figures 4.19 and 4.20. Most notably,

the time domain α now continues rising after merger rather than levelling off. If α

takes a constant value it implies the precession of the optimum emission direction has

stopped. As has been noted previously [122], this is clearly not seen in the NR data.

This is a further feature of the precessional motion captured by the model presented

here. Additionally, the time domain β now drops rapidly instead of continuing to

rise. This shows we have managed to capture the closing up of the opening angle as

the angular momentum is radiated away through gravitational wave emission.

4.8.3 Behaviour beyond calibration region

As with any tuned model, beyond the calibration region there is no guarantee of the

accuracy of the model for the angles. However, we want to ensure that they do not

display pathological or physically incorrect behaviour.

For α we see pathological behaviour for A3 < 0 and physically incorrect be-

haviour for A1 < 0 (α would decrease as a function of frequency) or A2 > 0 (the dip

in α would have the wrong sign). As it is only a small region of parameter space in

which this might happen, we enforce the conditions that A1, A3 > 0 and A2 < 0 by

taking the absolute value of the co-efficients with the appropriate sign. For A2 we

replace any positive values with zero.

For β we see unphysical behaviour when the final value drops below zero. For

cases with βRD < 0 we therefore revert to the value for β calculated in section

4.4.1 rescaled to the value the merger-ringdown ansatz would take at the connection

frequency. We see pathological behaviour for A4 . 0. Physically incorrect behaviour

starts to emerge when A4 drops below O
(
102
)
. In order to avoid such behaviour

we require A4 ≥ 150 and replace the fitted value of A4 by 150 where it falls below

this value. Since A4 ∼ 103 across the majority of the parameter space this concern
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Figure 4.19: Comparison of the time domain precession angles from both the Phe-
nomPNR and PhenomPv3 models with the NR data. These angles are for the case
with (q, χ, θ) = (4, 0.4, 60).
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only arises for very extreme configurations (χ ≈ 1) where the accuracy of the model

cannot be guaranteed.

4.9 Model validation: Matches

We now wish to test the accuracy of our angle model in the context of gravitational

wave signal analysis. To do this we calculate the match (using the method detailed

in section 1.6 of the Introduction) between the NR waveform and a model for the

precessing waveform for a given configuration as a test of the accuracy of the model.

In order to assess the accuracy of the angle model itself we model the precessing

waveform by twisting up the co-precessing NR waveform with the model angles.

We also assess the accuracy of a complete model produced by twisting up modified

PhenomD waveforms using the angle model. The mismatch calculated between the

NR waveform and the complete model will contain errors introduced by inaccuracies

in the underlying co-precessing model in addition to inaccuracies in the angle model.

Since we do not aim to model mode asymmetries in this work, our model does

not capture them. We therefore perform matches testing the angle model using

the symmetrised NR waveform (in both the J-aligned and co-precessing frame).

The matches assessing the accuracy of the full model are performed against both

symmetrised NR waveforms and the full non-symmetrised waveforms in order to

assess the effect of not including mode asymmetries.

4.9.1 Verification waveforms

We performed matches against the calibration waveforms as well as an additional set

of verification waveforms. The additional set of waveforms used to test the accuracy

of the model for configurations for which it was not tuned is given in table 4.1. This

set includes two spin configurations which belong to the SXS catalogue.

4.9.2 Matches: Accuracy of the angle model

In order to test the accuracy of the angle model we constructed a set of precess-

ing waveforms by calculating the symmetrised frequency-domain co-precessing NR

waveform containing only the ` = 2 modes and “twisting” this waveform up with

the model for the angles. We constructed two sets of precessing waveforms in this

fashion; the first using the model for the angles presented in this chapter and the

second using the PhenomPv3 angles in order to quantify the effect of modelling the

merger-ringdown behaviour of the angles. We then calculated the precessing match

between these waveforms and the symmetrised NR waveforms comprising only the

` = 2 modes. These matches were calculated at a fixed total mass M = 100M� and

distance 100 Mpc. For ease of presentation, the full precessing match is calculated
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for a range of inclinations as described in section 1.6.2 of the Introduction, but we

plot only the mean of these values for the majority of cases.

From figure 4.22 we can see that the matches between the model waveforms and

the NR for each of the calibration waveforms are above 0.99 across the majority

of the parameter space. The only cases for which this is not true are in the most

extreme corner of the parameter space we modelled; cases with q = 8, χ = 0.8

and θ ≥ 90◦. In these cases we find the PN expressions used for α during inspiral

deviate from the NR waveform at reasonably low frequencies– in the case of q = 8,

χ = 0.8, θ = 120 before the start of the NR waveform (as shown in figure 4.21).

Improving the model for these cases would require a model for the intermediate

region between where the PN expression ceases to be accurate and where the current

model begins, which in itself would require longer NR waveforms to be produced.

However, despite the matches falling below the level we might wish, they still show

significant improvement on the previous model.

10-2 10-1

Mf

4

3

2

1

0

α

NR
PN

Figure 4.21: Comparison of the value of α from the PN expression with the value
calculated from the NR waveform. In order to see a region over which the two values
agree well we would need a longer NR waveform. In order to have a complete IMR
model for α in this case we would also require a model of the ‘intermediate’ region
which was tuned to the NR data.

The best matches are seen in the least extreme part of parameter space; namely

for low mass ratio systems. However this is the region of parameter space where

existing models for the angles already perform reasonably well. The biggest im-

provement in the matches as a result of the improved model for the angles is seen at

higher mass ratios, particularly for larger θ. A selection of these cases are demon-

strated in figure 4.23. As expected, the matches against symmetrised NR waveforms

are symmetric about an inclination of 90◦.

Figure 4.24 shows the matches between the model waveforms and a set of single-

spin cases which the model was not tuned to, while figure 4.25 shows the matches

for a set of two-spin cases. Since none of the single spin cases are towards the more
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Figure 4.22: Precessing matches for each of the 40 NR waveforms used to calibrate
the model, averaged over inclination. These matches are between the symmetrised
NR waveforms in the J-aligned frame and the co-precessing NR waveform twisted
up with the angle model presented here (blue) and twisted up with the angle model
used by PhenomPv3 (green). The plots show cases with χ = 0.4 on the left and
χ = 0.8 on the right. Starting from the top, each of the rows show q = 1, 2, 4 and 8
respectively.
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Figure 4.23: Precessing matches for four of the 40 NR waveforms used to calibrate
the model. These matches are between the symmetrised NR waveforms in the J-
aligned frame and the co-precessing NR waveform twisted up with the angle model
presented here (blue) and twisted up with the angle model used by PhenomPv3
(green).
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extreme part of the parameter space, all the matches are above 0.99. As a general

trend we can see that the improvement in the match obtained by modelling the

merger-ringdown region is greatest towards for more extreme cases; particularly for

higher mass ratios. The majority of the single spin cases are also for fairly low mass

ratios and spin magnitudes. We see good matches for these cases with both the

new model for the angles and the PhenomPv3 angles. However, for two cases (29

and 30) which have higher mass ratios and spin magnitudes we see a measurable

improvement in the match. The good matches for these two-spin cases also provides

an important verification of the mapping from the two-spin case to the appropriate

single-spin configuration for the merger-ringdown part of the model described in

section 4.2.2 as well as the tapering of the oscillations apparent in the PN two-spin

expression for β, which is described in section 4.4.2.
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Figure 4.24: Precessing matches for the single spin verification NR waveforms, aver-
aged over inclination. These matches are between the symmetrised NR waveforms
in the J-aligned frame and the co-precessing NR waveform twisted up with the
angle model presented here (blue) and twisted up with the angle model used by
PhenomPv3 (green).
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Figure 4.25: Precessing matches for the two spin verification NR waveforms, aver-
aged over inclination. These matches are between the symmetrised NR waveforms
in the J-aligned frame and the co-precessing NR waveform twisted up with the
angle model presented here (blue) and twisted up with the angle model used by
PhenomPv3 (green).
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4.9.3 Matches: Accuracy of the full model

The complete precessing model is made by “twisting up” a model for the underlying

co-precessing waveform using a model for the precession angles. Here we use the

modified PhenomD model as the co-precessing waveform, as has been used in previ-

ous versions of PhenomP. The modified model has adjusted the ringdown part of the

waveform to have the correct final spin for the remnant of the precessing system as

described in section 1.5.3 of the Introduction. PhenomPNR is formed by “twisting

up” this waveform using the model for the angles presented earlier in the chapter.

We show the match between PhenomPNR and the symmetrised ` = 2 modes of the

NR waveform in figure 4.26 and the match with the unsymmetrised ` = 2 modes of

the NR waveform in figure 4.27. The match between PhenomPv3 and the same NR

waveforms is shown for reference.

As we can see from figure 4.26, the match between the complete model and the

NR waveforms is significantly worse than the matches testing the angle model shown

in figure 4.22. In most cases, this is dominated by inaccuracies in the co-precessing

model, as can be seen in figure 4.28. In cases with high mass ratio, high spin and

a large opening angle, the co-precessing model performs well. Inaccuracies in the

approximation that the co-precessing waveform can be modelled by an aligned-spin

model in the strong field regime were first discussed in [139]. The main inaccuracy

we observed in the model is in the estimation of the location of the dip in the co-

precessing phase derivative. For cases where the co-precessing model performs well,

the dip in the co-precessing phase derivative occurs at lower frequencies meaning less

of the inspiral part of the signal contributes. This reduces the de-phasing between

the model and the co-precessing NR waveform. It can also be seen from figure

4.26 that PhenomPv3 performs better in certain regions of the parameter space

than PhenomPNR, which is not seen in the matches testing the angle model alone.

We think this is because the model for the angles used in PhenomPv3 is much

smoother than the model used in PhenomPNR and does not include any of the

merger-ringdown features. This means the change in the phase of the waveform

is less marked between inspiral and merger-ringdown so the overall match of the

two waveforms is better, whereas with the current version of PhenomPNR we can

obtain a good match during either inspiral or merger-ringdown but not over the

whole of the waveform. We expect this will be improved by an improved model of

the co-precessing phase (and amplitude) but this is left for future work.

Comparing figures 4.26 and 4.27, we can see that the exclusion of mode asym-

metries in our co-precessing model and in the model for the angles further degrades

the match. The largest degradation occurs for large mass ratios where precession

effects are most likely to be strongest and we are therefore most likely to be able to

identify precession in the signal. In order to have a fully accurate precessing model

we therefore need to include the effects of mode asymmetries. This is left to future
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Figure 4.26: Precessing matches for each of the 40 NR waveforms used to calibrate
the model, averaged over inclination. These matches are between the symmetrised
NR waveforms in the J-aligned frame and complete precessing model– PhenomPNR
is shown in blue and PhenomPv3 is shown in green.
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Figure 4.27: Precessing matches for each of the 40 NR waveforms used to calibrate
the model, averaged over inclination. These matches are between the unsymmetrised
NR waveforms in the J-aligned frame and complete precessing model– PhenomPNR
is shown in blue and PhenomPv3 is shown in green.
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Figure 4.28: Non-precessing matches for each of the 40 NR waveforms used to
calibrate the model. These matches are between the symmetrised co-precessing
NR waveforms in the J-aligned frame and modified PhenomD which provides the
co-precessing model employed by PhenomP versions 1-3.
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work.

4.10 Conclusion

We have produced a complete IMR model for the precession angles {α, β, γ}. This

model uses the most accurate PN expressions for the angles available, including a

new technique to calculate β that describes the precessional motion of the direction

of optimal emission rather than of the orbital angular momentum. This technique is

also presented here. These expressions are connected to a phenomenological expres-

sion for the merger-ringdown angles, enforcing C1-continuity. The merger-ringdown

expressions have been tuned to a catalogue of 40 NR simulations of single spin sys-

tems covering the parameter space of mass ratios from one to eight, spin magnitudes

of 0.4 and 0.8 and an inclination angle between the spin and the orbital angular mo-

mentum between 30◦ and 150◦, where the spin has been placed on the larger black

hole. The expressions are therefore single spin expressions. By making use of a non-

bijective mapping between the six spin components required to describe a two spin

system and the two required to describe a single spin system we have produced an

IMR model for the precession angles of a two spin system. We leave to future work

the production of a model for the angles that employs merger-ringdown expressions

tuned to a catalogue of NR simulations containing two spin systems.

This model for the angles can be used to “twist up” any co-precessing waveform

model to produce a model for precessing systems. The matches presented in section

4.9.2 show the result of using angle model to twist up the co-precessing NR wave-

form. From this, we can see that across the majority of the parameter space the

model for the angles reproduces the precessing waveform with a very high degree of

accuracy. However, section 4.9.3 it is shown that when using modified PhenomD as

the underlying co-precessing model the matches are much poorer. This is a result of

the poor agreement between the modified PhenomD model and the co-precessing NR

waveform, especially in the more extreme regions of the parameter space. A com-

plete, accurate model of precessing systems will also need to include higher modes

and mode asymmetries. These improvements are left to a future work.

The improved model of the angles allows us to capture features of the precessing

waveform which have not previously been modelled. The key features that have

been captured by this model are the hierarchy in ` = 2 modes seen in section 4.8.1

and the merger-ringdown features seen in the time-domain angles in section 4.8.2.
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Conclusion

As we settle into the era of gravitational wave astronomy with an ever increasing

number of gravitational wave events [6,7,9,10,13–16] detected by the LIGO [3] and

Virgo [17] detectors, we need to be prepared to analyse the wide range of systems

which may be detected in the future. The detectors themselves are increasing in

sensitivity. In the fourth observing run of the current generation of ground-based

gravitational wave detectors (O4), which is scheduled to start in late 2021 or early

2022, the LIGO detectors will be nearing design sensitivity and Virgo will have

completed phase 1 of their final upgrade. This increases both the signal-to-noise

ratio at which events will be detected and the volume of the Universe observable by

the detectors– between the third and fourth observing runs the search volume for

BBH systems is expected to go from 3.4× 108 Mpc yr to 1.5 Gpc yr. The number

of detectors is also increasing with the addition of KAGRA [27, 155] for O4 and

IndIGO [108] in approximately 2025. This will hopefully lead to an increased fraction

of time for which two or more detectors are operating and so an increased number

of confident detections. The full four-detector network expected to be operational

by O4 is predicted to make 79+89
−44 confident BBH detections as opposed to the 17+22

−11

predicted during the third observing run and the 10 BBH signals detected in the

first and second observing runs [109].

We expect that in detecting more events we will consequently encounter more

events in extreme parts of the parameter space– signals from systems with high mass

ratios and high spin magnitudes. These are systems for which precession effects will

be greater and so more easily detectable. The greater signal-to-noise ratio at which

some of these events will be detected will also enable us to make more detailed

inferences about the properties of the system emitting the gravitational waves. This

means we will be able to detect more subtle properties, such as the spins and–

crucially– the amount of precession. We therefore need to be able to confidently

identify, describe and model the gravitational wave signals emitted by precessing

black-hole-binaries.

The main focus of this thesis has been to provide a precision description of pre-
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cessing BBH systems. We have made crucial steps towards achieving this. Firstly, we

have produced a catalogue of 40 NR waveforms from single spin precessing systems

which systematically covers previously unexplored parts of the precessing parameter

space. Secondly, we have developed a method to reliably and accurately relate the

dynamical properties of a BBH system to the waveform quantities for data from NR

simulations. Finally, we developed the first model of signals from precessing BBH

waveforms where the precession effects have been tuned to NR.

In Chapter 2 we presented the NR catalogue of precessing systems which forms

the basis of the tuned precessing model presented in Chapter 4. We assessed the

accuracy of these waveforms and found that they agree with the extrapolated “true”

signal to within 0.4%. This provides an estimate of the limit on the mismatch error

of the waveforms used to tune the precessing model.

In Chapter 3 we provided a method for prescribing the configuration of the BBH

system at a given point in the waveform. It has been previously shown how to

calculate the direction of optimal emission from a waveform [149], which provides

the direction of the orbital angular momentum to a good approximation. In this

chapter we presented a method for finding the unit separation vector of the black

holes from the waveform. We also showed how this method can be used to calculate

the time shift between the dynamical and waveform quantities extracted from a

simulation. This enables us to confidently relate the black holes’ spins to a given

point in a waveform although the value of the spins will still contain ambiguities

due to gauge choices. Being able to accurately and reliably specify the configuration

of a BBH system at a given point in a waveform has two main uses. Firstly it is

useful when using NR waveforms as templates to compare against detected signals.

Secondly it is useful when developing, testing and using a waveform model that

has been tuned to NR waveforms as it enables us to know the exact system we are

studying.

In Chapter 4 we presented a complete IMR model of the Euler angles {α, β, γ }
that describe the precession of the direction of maximum emission of a BBH system–

the precession angles. The model for α and β uses expressions derived from PN

theory for the inspiral part of the waveform and phenomenological expressions for

the merger-ringdown part where the co-efficients in the expressions have been tuned

to NR. The inspiral expression for β employs a technique to get the inclination of

the direction of maximum emission of the gravitational waves as opposed to the

inclination of the orbital angular momentum of the system. This technique can be

applied to any PN expression for β derived using the orbital angular momentum and

provides a more appropriate value of β since it is the precession of the waveform, not

the dynamical quantities that we wish to track. The phenomenological expression

used to describe the merger-ringdown angles agree with the NR data to within 10%

on average. In the model for the precession angles presented here we calculate γ

numerically using the minimal rotation condition since the very small inaccuracies
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in the closed form PN expressions for gamma are sufficient to have a serious impact

on the accuracy of the final precessing model.

Using this model for the precession angles we can produce a waveform model for

precessing systems by “twisting up” a non-precessing waveform with the angles using

the method first described in [149]. We found that if we assume our model for the

underlying co-precessing waveform is completely accurate (which can be achieved

by using the NR co-precessing waveform) then the resulting precessing waveform is

accurate to within 1% across the majority of the precessing parameter space (except

for systems with mass ratio 8, spin magnitude 0.8 and spin angle greater than or

equal to 90◦) and within 3% across the whole of the single spin space to which the

model was tuned. This is a good test of the accuracy of the angle model itself. We

see significant improvement in the accuracy of the angle model in the most extreme

parts of parameter space (mass ratios greater than 4 and spin magnitudes around

0.8) as well as a reasonable improvement across the whole parameter space. This

is an important achievement since, although there may not be many gravitational

wave events detected with such extreme properties, the more extreme regions of

parameter space still need to be reliably sampled while analysing the properties of

less extreme events. The LVC has already detected a system with a mass ratio of

around 3 which showed strong evidence of non-zero spin [16]. It is therefore already

necessary to have a reliable precessing model for systems up to mass ratios of 8 at

least.

The results presented in Chapter 4 also show that the current co-precessing

model is not sufficient to translate these improvements in the model for the preces-

sion angles into improvements in the overall waveform model. An improved model

for the co-precessing waveform which has been tuned to NR simulations is there-

fore necessary to obtain an accurate precessing model at high mass ratios and spin

magnitudes. Such a model is left to future work.

Although modelling precessing systems has been greatly simplified by the real-

isation that they can be modelled by twisting up non-precessing waveforms using

a model for the precession angles, it remains an extremely complicated task with

many outstanding challenges. In order to have a complete waveform model for pre-

cessing systems we must also incorporate higher order modes (with ` ≥ 2), mode

asymmetries and two-spin effects. These features will all need to be calibrated to

NR through merger and ringdown.

To produce a complete precessing model will therefore require the production

of a tuned co-precessing model for each of the higher modes, which incorporates

mode asymmetries, as well as a tuned model for the angles which includes two-spin

systems. As a first attempt to incorporate higher modes into this tuned precessing

model we could produce a tuned model of the (2,2) mode in the co-precessing frame

and then extend this to a higher-mode co-precessing waveform model using the

same techniques employed in PhenomHM [112]. Although this is not as accurate as
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a fully tuned higher-mode co-precessing model it would enable us to take advantage

of the improvements to the model for the precession angles presented here. These

improvements increase the accuracy of the precessing waveform model, particularly

at higher mass ratios where higher modes are most likely to be important.

The current tuned model for the angles could be improved by calibrating it

to an increased number of NR waveforms which cover the single spin parameter

space more densely. A particular improvement might come from simulations with

an increased number of spin magnitudes in order to extend the current fits beyond

their linear dependence on χ. Furthermore, if we are extending the model to higher

modes then we should use the modes which compose the co-precessing model to

calculate the precession angles for consistency. We do not expect the inclusion of

these higher order modes to greatly impact the morphology of the precession angles

so the model presented here may remain sufficient. However, the effect should be

investigated. Finally, as was seen in Chapter 4, the NR waveforms used to tune the

model are not long enough to match up well with the PN angles at low frequencies.

This is true for β for the majority of cases and for α in the most extreme part of

the parameter space. To be confident we have produced the most accurate model

possible will therefore require longer NR waveforms and a tuned model for the

intermediate region connecting the PN expressions to the current merger-ringdown

model or more accurate PN expressions.

Incorporating two-spin effects when modelling the angles also poses a significant

challenge. We do not see the oscillations in the precession angles for simulations of

the length of those presented in the catalogue in Chapter 2. They are only visible

in the SXS waveform shown in figure 4.3, which has a starting frequency around a

third of that chosen for our BAM simulations. Producing a catalogue of simulations

of an equivalent length with the BAM code would be computationally prohibitive

as a result of the high resolution required to limit the dephasing of the waveform.

The tapering of the oscillations is not seen in the PN expression for the precession

angles, rather the amplitude of the oscillations grows monotonically towards merger.

A tuned model of the precession angles for two-spin systems will therefore require

either PN expressions which are more accurate to higher frequencies and show the

tapering of the oscillations or a tuned model of the envelope used to taper the

oscillations. This would require the production of a set of two-spin NR waveforms

over the specific frequency range over which the oscillations taper off. We will also

need to produce a higher dimensional parameter space fit of the merger-ringdown

model presented in Chapter 4 that can be tuned to two-spin NR simulations. This

would require a much larger catalogue of simulations than that presented in Chapter

2 as we would need to systematically explore this higher dimensional space.

Before embarking on the production of such a comprehensive model we should

first assess the accuracy of the existing model to see whether all the effects listed

above need to be incorporated. The hierarchy as to which effects have the greatest
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impact can then be established. From the analysis presented so far, it appears that

a tuned model for the (2,2) mode of the co-precessing waveform will produce the

largest improvement across the majority of the parameter space. We will need to

perform further studies to assess whether including higher modes or mode asymme-

tries produce the next greatest improvement and what the impact of having a tuned

higher mode co-precessing model would be. A tuned model for the intermediate

region for the precession angles is clearly required to improve the model in the more

extreme regions of parameter space. Such studies will be useful to guide where the

most effort should be applied to the development of models in the near future.

It may also be worthwhile extending the parameter space coverage of the current

model. This would require the production of further NR simulations at higher mass

ratios or spin magnitudes. Increasing the parameter space coverage up to mass

ratio 18 would require the production of a further ten simulations. Assuming these

simulations would be of a similar length to the simulations which make up the current

catalogue, this would require around 350000 CPU hours per simulation which, while

costly, is not impossibly prohibitively so. However, the inclusion of additional spin

magnitude simulations might begin to make it unfeasible. Since we are more likely

to see systems with lower mass ratios and a range of spin magnitudes it is probably

more valuable to focus on filling in the existing parameter space first.

Alternative modelling techniques have been developed which do not have prob-

lems incorporating the wide range of features enumerated above range of features–

such as the surrogate model NRSur7dq4 [162]. However, these techniques face other

challenges. For example, NRSur7dq4 can only be used for the analysis of high mass

systems where we detect only the last few orbits before merger since this is the

length of the NR simulations used to build the model. Overcoming this will require

the production of a large catalogue of hybrid waveforms for two spin precessing

systems, which must include higher modes and mode asymmetries. This entails its

own difficulties. Thus, it is necessary to continue to develop a complete precessing

model in order to meet the challenges posed by ever more sensitive gravitational

wave detectors.
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Appendix A

Ansatz co-efficients

In this appendix we provide tables containing the values of the co-efficients λipqr

of the global fits described by equation 4.35. We provide fits for each of the co-

efficients in the merger-ringdown expressions for α (equation 4.33) and β (equation

4.34). These fits take the form of a polynomial expansion in each of the three model

parameters. They were tuned to a catalogue of 40 NR simulations and so we limit

them to a total of 39 terms with the highest order term in each dimension restricted

to one less than the number of simulations in that dimension. As can be seen from

the tables, none of the fits require the full 39 terms.
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Szilágyi. Numerical relativity waveform surrogate model for generically pre-

cessing binary black hole mergers. Physical Review D, 96(2):024058, 2017.

[36] Luc Blanchet. Gravitational Radiation from Post-Newtonian Sources and In-

spiralling Compact Binaries. Living Rev. Rel., 17:2, 2014.

[37] Luc Blanchet, Alessandra Buonanno, and Guillaume Faye. Tail-induced spin-

orbit effect in the gravitational radiation of compact binaries. Phys. Rev. D,

84:064041, 2011.

– 141 –



Bibliography

[38] Alejandro Bohe, Mark Hannam, Sascha Husa, Frank Ohme, Michael Pürrer,

and Patricia Schmidt. LIGO Document T1500603-v4.

[39] Alejandro Bohe, Sylvain Marsat, Guillaume Faye, and Luc Blanchet. Next-to-

next-to-leading order spin-orbit effects in the near-zone metric and precession

equations of compact binaries. Class. Quant. Grav., 30:075017, 2013.

[40] C. Bona, J. Masso, E. Seidel, and J. Stela. First order hyperbolic formalism

for numerical relativity. Phys. Rev. D, 56:3405–3415, 1997.

[41] Jeffrey M. Bowen and Jr. York, James W. Time asymmetric initial data for

black holes and black hole collisions. Phys. Rev. D, 21:2047–2056, 1980.

[42] Michael Boyle. Angular velocity of gravitational radiation from precessing

binaries and the corotating frame. Physical Review D, 87(10):104006, 2013.

[43] Michael Boyle, Duncan A. Brown, Lawrence E. Kidder, Abdul H. Mroue, Har-

ald P. Pfeiffer, Mark A. Scheel, Gregory B. Cook, and Saul A. Teukolsky. High-

accuracy comparison of numerical relativity simulations with post-Newtonian

expansions. Phys. Rev., D76:124038, 2007.

[44] Michael Boyle, Lawrence E. Kidder, Serguei Ossokine, and Harald P. Pfeiffer.

Gravitational-wave modes from precessing black-hole binaries. 2014.
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[156] László B. Szabados. Quasi-Local Energy-Momentum and Angular Momentum

in General Relativity. Living Rev. Rel., 12:4, 2009.

[157] Bla Szilgyi. Key Elements of Robustness in Binary Black Hole Evolutions

using Spectral Methods. Int. J. Mod. Phys., D23(7):1430014, 2014.

[158] Andrea Taracchini et al. Effective-one-body model for black-hole binaries with

generic mass ratios and spins. Phys. Rev. D, 89(6):061502, 2014.

[159] Kip S Thorne. Multipole expansions of gravitational radiation. Reviews of

Modern Physics, 52(2):299, 1980.

[160] AV Tutukov and LR Yungelson. The merger rate of neutron star and black hole

binaries. Monthly Notices of the Royal Astronomical Society, 260(3):675–678,

1993.

[161] Birjoo Vaishnav, Ian Hinder, Frank Herrmann, and Deirdre Shoemaker.

Matched filtering of numerical relativity templates of spinning binary black

holes. Physical Review D, 76(8):084020, 2007.

[162] Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Davide

Gerosa, Leo C. Stein, Lawrence E. Kidder, and Harald P. Pfeiffer. Surrogate

– 151 –



Bibliography

models for precessing binary black hole simulations with unequal masses. Phys.

Rev. Research., 1:033015, 2019.

[163] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
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