
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 5 6 5/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Kós, G., M a r tin, R alph Rob e r t a n d Vára dy, T. 2 0 0 0. M e t ho ds to r ecove r cons t a n t

r a diu s rolling b all bl en ds in r eve r s e e n gin e e rin g. Co m p u t e r Aide d Geo m e t ric Desig n

1 7 (2) , p p . 1 2 7-1 6 0. 1 0.1 01 6/S0 1 6 7-8 3 9 6(99)00 0 4 3-6

P u blish e r s p a g e: h t t p://dx.doi.or g/10.10 1 6/S 01 6 7-8 3 9 6(99)00 0 4 3-6

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Methods to recover constant radius rolling ball

blends in reverse engineering

Géza Kós

Dept. of Computer Science

Cardiff University∗

Ralph R. Martin

Dept. of Computer Science

Cardiff University

Tamás Várady

Computer and Automation Research Institute, Budapest

May 3, 2002

1 Introduction

Reverse engineering of geometric shape is the process of converting large amounts
of measured data points into concise and consistent computer representations of
geometry. Applications include the reproduction of engineering parts with no avail-
able documentation or CAD definition for such purposes as redesign, analysis and
visualisation. Other applications include the creation of various mating surfaces for
parts of the human body, for example. As described in a recent survey [18], re-
verse engineering typically consists of four phases: data acquisition, preprocessing,
segmentation and geometric model creation. Each of these four phases is quite com-
plicated and they are strongly interrelated. Depending on the basic assumptions
made and the quality and quantity of the measured data, there is a great variety of
applied algorithms and computer models, as reflected in many recent publications
which investigate various aspects of reverse engineering of shape.

The topic of this paper, recovering constant radius rolling ball blends, is mainly
of interest when reconstructing mechanical engineering parts. From a geometric
point of view, we assume that these objects are bounded by trimmed primary

surfaces, which determine the basic shape of the object. These are relatively large in
comparison to smaller blending surfaces which provide smooth transitions between
the primary surfaces. Blends strongly depend on the primary surfaces, and are often
used for reasons of aesthetics, manufacturability, stress reduction etc. As discussed
in [21], there are many methods to create blends and represent them in various
mathematical forms. Here we restrict our interest to the most widely used class of
constant-radius rolling ball blends due to their simplicity and intuitive behaviour.
Such blends are nominally generated by sweeping a rolling ball moving in contact
with two adjacent primary surfaces. We assume that edge blends are small enough
that they do not interfere with each other, except where they run together at the
vertices; here vertex blend faces may need to be inserted to complete the object.

The purpose of the current investigation is to present and compare algorithms
for recovering constant radius rolling ball blends. This is a particular subproblem
of the final model building phase of reverse engineering. We do not go into de-
tails concerning the various steps of preprocessing—algorithms to perform filtering,
triangulation and decimation are described elsewhere [10, 17], but we assume that

∗Visiting from Computer and Automation Research Institute, Budapest

1

the blend data points are in some triangulated format. We also neglect the real
practical difficulties arising in segmenting data points in the current discussion (see
[3, 9, 13, 20]. Here we simply assume that the data points belonging to the primary
surfaces have already been separated from the rest, and accurate surface representa-
tions for the primary surfaces have already been created by applying various surface
fitting methods. After this phase, we assume that any remaining data points not
belonging to one of the primary surfaces (within tolerance) are points belonging
to a blend surface lying between two adjacent primary surfaces. In the case of
constant radius rolling ball blends, determining the radius of the blend enables the
computation of the whole blending surface once the primary surfaces are known.
(We do not consider in this paper the more specialised behaviour of blends near
vertices—see [19].)

Of course, building a complete and consistent topological structure for a whole
solid model is a difficult task. Related work is discussed in [2, 6, 8]. We do not
consider such issues in this paper.

As a basic principle, we believe that the recovery of blends should be a process
without user interaction. Edge blends should be automatically derived based on
the primary surfaces, and similarly, vertex blends should be automatically derived
based on the edge blends and the primary surfaces. Algorithms to extend the
current methods to variable radius rolling ball blends and vertex blends are the
subject of further research.

The outline of the rest of this paper is as follows. In the first section, algorithms
for various basic tools used by one or more of the main algorithms are presented
briefly. These cover known results with several useful improvements. The next sec-
tion is devoted to three general strategies for generating blends based on curvature
estimation, spine generation and local fitting of maximal spheres. Although these
are applicable for primary surfaces with either algebraic or parametric surface repre-
sentations, our main aim is to exhaustively handle cases for certain regular (simple)
surfaces throughout the whole paper. In particular, classes of special blends are
identified and analysed, in order to gain efficiency, accuracy and robustness wher-
ever possible. The last section evaluates the algorithms developed. Several test
examples and tables provide a systematic comparison of the various methods in
terms of speed, accuracy and robustness. A summary of the preferred methods and
open research topics for the future concludes the paper.

2 Tools

In this section we summarise several tools used in our algorithms. Some of these
methods are well-known, while others are new. Here only brief details are given.

2.1 Plane and line fitting

For plane and line fitting, the well-known least squares method is used. This means
that we minimise the sum

∑

i(n · xi − d)2, under the normalisation |n| = 1, where
n is the normal to the plane (or line), d is its distance from the origin, and the xi

are the data points. This problem leads to a simple eigenvalue problem, and the
result is independent of the co-ordinate system.

In several cases we want a plane which passes through the origin; this means
that d must be 0.

2

2.2 Normal estimation

To estimate the surface normal at some point x0, we take the closest n neighbouring
points, denoted by x1, . . . ,xn (n = 20 in our experiments). To do this, we use
the neighbourhood information from the triangulation. Then we build a local co-
ordinate system with the origin at x0, and find the implicit quadric of the form

Q(x) = xtAx + n · x

satisfying the condition |n| = 1, for which

∑

i

Q2(xi)

is minimal. Then the normal of the surface Q(x) = 0 at the origin is simply n.
After some elimination, this leads to a very simple eigenvalue-problem.

The more usual method used in the literature is to fit a least squares plane
(equivalent to setting A = 0) and optimise only n. If the curvature is high, the
error in this method can be very large at points near the surface boundary. In the
case of blends this would affect too many points, as many are near the edge of the
blend.

We want all estimated normals to point to the same side of the surface, so we
must reverse the sign of the normal at some points.. To distinguish the two sides,
the average of the triangle normals around each point is used. After this operation,
the side to which the normals point will be referred to as the positive side, and the
opposite side is the negative side.

2.3 Principal curvature and direction estimation

Some of our methods need the principal curvature values and the principal directions
of the blend. It is possible to compute the principal curvature values from the
quadric used for normal estimation, but we found that the result is very sensitive
to noise. Thus, the well-known parabolic method is used which was found more
stable.

First a new local co-ordinate-system is built using the normal as a local z-axis.
Then we find the real numbers a, b and c for which

∑

i

(ax2
i + 2bxiyi + cy2

i − zi)
2

is minimal, then compute the principal curvature values and directions from the
paraboloid z = ax2 + 2bxy + cy2.

There is also a correction added to the curvature values, to reduce the effect that
the paraboloid has maximum curvature at its vertex. Take a surface with principal
radii R1 and ±R2, given by

z =

(

R1 −
√

R2
1 − x2

)

±

(

R2 −
√

R2
2 − y2

)

.

Let us assume that we have several points on the surface and the pairs (x, y)
are uniformly distributed in the circle x2 + y2 < r2. An easy but relatively long
computation shows that the parabolic method gives a correct estimate of the prin-
cipal directions at the origin. Furthermore, instead of the correct curvature values
1

R1

and 1
R2

,

k1 =
1

R1
+

21

128
·

r2

R3
1

∓
3

128
·

r2

R3
2

+ O

(

r4

R5
1

)

+ O

(

r4

R5
2

)

3

and

k2 = ±
1

R2
±

21

128
·

r2

R3
2

−
3

128
·

r2

R3
1

+ O

(

r4

R5
1

)

+ O

(

r4

R5
2

)

.

So we take

r =

√

√

√

√

2

N

N
∑

i=1

(x2
i + y2

i), N = 20

and use

k̃1 = k1 −
21

128
r2k3

1 +
3

128
r2k3

2 and k̃2 = k2 −
21

128
r2k3

2 +
3

128
r2k3

1

instead of k1 and k2.
This correction doubles the number of correct digits in the curvature estimates.

2.4 Circle and sphere fitting

For fitting a sphere of radius R and centre c, we use the quasi-least-squares method
of Pratt [16], which works by minimising the sum

S(c, R) =
∑

i

(

(xi − c)2 − R2

2R

)2

. (1)

For points lying on the sphere, the gradient of the function 1
2R

(

(x − c)2 − R2
)

is of unit length. Thus, if the points are close to the sphere or circle, the value of S
is approximately equal to the sum of the squares of the Euclidean distances.

The advantage of this method is that S is a rational function of the parameters c
and R, and (1) can be easily computed. To optimise the parameters an equation of
degree 5 needs to be solved. (In the corresponding case of circle fitting, the equation
is of degree 4.)

In degenerate cases, the method will fit planes or lines respectively, giving 1
R

= 0
as result. (For this reason, it is better to use 1

R
as a parameter instead of R.)

Note that minimising
∑

i

(

(xi − c)2 − R2
)2

does not work in practice. It makes the computation straightforward, but, if the
points are taken from a relatively small part of the sphere, noise can make the
estimated radius much smaller than desired.

2.5 Cylinder fitting

The idea of Pratt can be used to fit cylinders, as noted by Lukács, Marshall and
Martin [14]. We take three unit vectors, u, v and w, which are perpendicular to
each other. w is the direction of the axis (see Fig. 1), au+ bv is a vector to a point
on the axis, and R is the radius of the cylinder. We want to minimise the sum

S(u,v,w, a, b, R) =
∑

i

(

(u · xi − a)2 + (v · xi − b)2 − R2

2R

)2

.

This is a quasi-least-squares fit again, and S is a rational function of the parameters.
Of course, the optimum does not change if the directions u and v are rotated around
w.

After computing the coefficients in S, we use an iterative method to optimise the
parameters. For a given w, the vectors u and v can be taken arbitrarily (satisfying

4

au+bv

u

v
w

O

axis

R

Figure 1: Parametrisation of the cylinder

perpendicularity), and the best a, b and R can be computed explicitly. We compute
them and the value of S, together with their first and second derivatives with respect
to w. Knowing the derivatives of the error, optimising is simple.

For the initial value of w, we take the normals at 25 random points, and fit a
plane containing the origin to them.

The speed of cylinder fitting is high and this method works well in practice.
Just as the circle fitting algorithm can fit lines, this algorithm can fit planes in

degenerate cases.

2.6 Cone fitting

For cones and tori, similar quasi-least-squares methods need to be performed over
all points for each iteration. This makes cone and torus fitting much slower.

For cone fitting, we follow a similar approach to cylinder fitting. The axis of the
cone is parametrised with unit vectors u, v, and w and real numbers a and b. The
direction of the axis is w, and it passes through the point au + bv. If u, v, w, a
and b are given, the task is easy. The points are rotated about the cone axis into a
plane, then a least squares line is fitted to them. The error of this line fitting and
the error of the cone fitting are identical.

Again, we compute the error and its first and second derivatives respect to
changes in w, a and b (4 real parameters). Then the derivatives are used to deter-
mine the change in the parameters at each iteration.

The initial axis is computed in the following way. First we take 100 points
and the normals at these points. Fit a plane to the normals, which gives the axis
direction. Then project the points onto a plane which is perpendicular to the axis.
The direction of projecting a point is perpendicular to the normal, and is in the
same plane as the axis direction and the normal at the point. Last, a circle is fitted
to the projected points. The centre of this circle lies on the axis.

In degenerate cases, this method can fit a cylinder or a plane, when the line
fitted to the rotated points is parallel or perpendicular to the axis respectively.

2.7 Torus fitting

This is done using a similar iterative method to cone fitting. We take the same
parametrisation of the axis. After rotating the points into a plane, we fit a circle to
them and find the error of circle fitting, together with its first and second derivatives.

To compute the initial axis, we use a modified version of the method due to
Pottmann and Randrup [15] (see below). In most cases there are two candidate

5

initial axes, so we run the iteration for both of them. At the end, the axis producing
the better fit is chosen.

Torus fitting can fit self-intersecting tori, or it can degenerate to finding cones,
cylinders or planes.

2.7.1 Modified Pottmann’s method

Pottmann and Randrup’s method determines the axis of a rotationally symmetric
surface. A set of sample points and the normal vectors at each point are required.
A line through each point is taken in the normal direction, and the axis line needs
to be computed which intersects all of these normal lines.

Let the points be x1, . . . ,xN and the normals n1, . . . ,nN . Denote the axis
direction by d, and let a be an arbitrary point of the axis and a0 = a × d. Also,
denote the angle between d and ni by ϕi, and the distance between the normal line
xi + tni and the axis by δi.

The natural method would be to minimise
∑

δ2
i , which is difficult to handle.

Instead, Pottmann and Randrup suggest minimising

S(d,a) =
∑

(δi sin ϕi)
2,

because
δi sin ϕi =

∣

∣(d × ni) · (a − xi)
∣

∣

and

(d × ni) · (a − xi) = (a × d) · ni + (xi × ni) · d = ni · a0 + (xi × ni) · d

is a linear function of a0 and d. Due to this linearity, S can be written as a simple
quadratic form on a0 and d. We need to find its minimum under the conditions
|d| = 1 and a0 · d = 0.

At this point, Pottmann discards the condition a0 · d = 0, changing the prob-
lem to a simple generalised eigenvalue problem. The price of this step is that the
algorithm gives 0 as error for the axes of helical surfaces.

We use Pottman’s method to give an initial estimate for another iterative method.
For a given d, the best a0 and the value of S can be computed explicitly. We com-
pute them together with their first and second derivatives (with respect to d), and
compute the change of d for each iteration from the derivatives.

In some cases, especially in the case of a torus, the function S may have two
local minima, giving two candidate axes (see Figure 2.)

If the normals are accurate, Pottman’s method gives 0 as the error for the
correct axis, and a positive value for the wrong one. Due to the noise, the normals
are inaccurate and this increases the error of both axes. Unfortunately, the increase
in error is greater for the correct axis if its distance from the points is greater. This
phenomenon may lead to the choice of a wrong axis as described in [1, 2].

We take the two better eigenvectors computed by the original method of Pottmann,
and compute both local best axes.

3 Estimating the blend radius in the general case

In this section we describe several algorithms that can be used to estimate the blend
when the primary surfaces are arbitrary (parametric or implicit) surfaces. The first
method does not require these surfaces to be known. The other two methods require
some explicit representation of these surfaces, even though they may be of any type.

6

Figure 2: The two axes produced by Pottman’s method

3.1 The average principal curvature method

This method works by estimating the principal curvature values at each blend point.
We do not use any information about the two primary surfaces and we try to
determine the radius of the blend as a piece of a general canal surface.

Before describing the concrete algorithm, we summarise the method and the
related problems to be solved.

3.1.1 Relation between the blend radius and the principal curvature
values

Theoretically, one of the principal curvature directions is always perpendicular to
the spine curve (the locus of the centre of the rolling ball which generates the blend)
and the other is parallel to the tangent to the spine. If the radius of the blend is R,
the principal curvature value in the perpendicular direction is always 1

R
. The other

principal curvature value may vary (see Figure 3).

R

Figure 3: Two principal directions on the blend

3.1.2 Choosing the correct side

A problem is to decide on which side of the blend the rolling ball lies. We can
distinguish two cases:

7

• The ball rolls on the positive side of the surface (the side to which the normals
point). We call this the positive case.

• The ball rolls on the negative side of the surface (negative case).

Let us assume that we have the normal direction at some point pi and signed
principal curvature values k1,i ≤ k2,i. In the positive case, the signed curvature
value in the perpendicular direction is + 1

R
, and it can not be greater than 1

R
in the

parallel direction unless the blend is self-intersecting. We thus have k2,i = + 1
R

and
k1,i ∈ (−∞, 1

R
].

In the negative case the signs and the order of k1,i and k2,i are reversed, k1,i =
− 1

R
and k2,i ∈ [− 1

R
,∞).

If the blend is convex, k1,i and k2,i have the same sign, and we can choose
max(|k1,i|, |k2,i|). But for concave blends, there is no information about the relation
between |k1,i| and |k2,i| (see Figure 4).

kparallel

kparallel

>
R
1

<
1
R

Figure 4: Relation between |kparallel| and 1
R

In most cases, the curvature value in the parallel direction is not constant, and
thus we can decide which curvature is which by comparing the variation of the k1,i

and k2,i values. Unfortunately, there are exceptions. On blends involving cylinders,
curvature is constant and such variation does not exist. For cylinder blends, we
have to decide by comparing the magnitudes of k1,i and k2,i.

To give a unique rule for the decision, we suggest that the ratio of the average
and the deviation of the k1,i and k2,i values respectively should be compared.

3.1.3 The problem of bad points

If a relatively high level of noise is present, curvature estimation is very unstable.
The error in the curvature estimates can be larger than the curvature values them-
selves, and the estimated principal curvature values and directions can be wrong
too.

To reduce the effect of such bad estimates, we classify each point as good or bad.
For this classification, we compare the estimated principal curvature directions at
neighbouring points. A point is called good if its principal curvature directions are
similar to those of its neighbours (see Figure 5). Curvature estimates at bad points
are discarded.

3.1.4 Averaging vs. choosing the median

After determining whether the positive or the negative case applies, and bad points
have been thrown away, we have a set of k2,i or k1,i values as estimates of 1

R

respectively, and we have to compute a single value as the result.
We have tried three different methods for doing this:

8

‘‘bad’’ point

Figure 5: Good and bad points

• Averaging all values

• Throwing away the upper and lower 25% and averaging only the middle 50%

• Taking the median value.

Experiments show that the best results are obtained by averaging the middle
half. The reason why it is better than averaging all values is that at some points,
even though the principal curvature directions may be good, the curvature values
are wrong.

3.1.5 Detailed algorithm

1. Estimate the signed principal curvature values k1,i ≤ k2,i and principal direc-
tions d1,i, d2,i at each point.

2. Classify points as good and bad, and throw away bad points. To classify
the ith point, we take the neighbours of pi from the triangulation (denote
their indices by j1, . . . , jn), and compute the average of the angles between
the direction d1,i and the directions d1,j1 , . . . ,d1,jn

, and between the direction
d2,i and the directions d2,j1 , . . . ,d2,jn

, respectively. We call the point pi good
if both average angles are less than 15◦. (Note that both computations are
needed as d1,i, d2,i and d1,j , d2,j span different planes).

3. Sort the sets of the resulting k1,i and k2,i values. Throw away the upper and
lower 25%, then compute the average and the deviation of the middle 50%
(denote them by M(k1), M(k2) and D(k1), D(k2) respectively).

4. Determine which case we have. If both M(k1) and M(k2) are positive or neg-
ative, we have the positive or negative case, respectively. If M(k1) is negative
and M(k2) is positive, we compare the ratios of averages and deviations; if
|M(k1)|
D(k1) > |M(k2)|

D(k2) or |M(k1)|
D(k1) < |M(k2)|

D(k2) , we assume we have the negative or

positive case, respectively.

5. The estimate for R is 1
|M(k2)| in the positive case and 1

|M(k1)| in the negative
case.

3.2 The spine reconstrucion method

As is well-known, the blend can be generated from the spine curve which is the path
of the centre of the rolling ball. For an arbitrary radius R, the spine is determined by

9

R

R

R

R

spine

Figure 6: The spine as the intersection of offset surfaces

R

R

b

c
R

Figure 7: Spine points are a distance R from both primary surfaces and the blend
surface

offsetting each primary surface by a distance R and intersecting the offset surfaces
(see Figure 6).

For an arbitrary point x and positive R, denote by c(x, R) the closest point
of the spine for radius R to x. If x is on the blend of radius R then c(x, R) is
the centre of the rolling ball in the position which generates x. In this case the
distances between c(x, R) and either of the primary surfaces, or x, are all R, and
the directions of these three distances are perpendicular to the tangent of the spine
at c(x, R) (see Figure 7). The algorithm is based on this property of the spine.
Denoting the measured points on the blend by b1, . . . ,bN , the method works by
minimising the sum

S(R) =
∑

i

(

∣

∣c(bi, R) − bi

∣

∣ − R
)2

.

To find the best R, we use an iterative method. We first give a brief outline then
describe the steps in more detail.

1. Decide on which sides of the primary surfaces the blend lies.

2. Compute an initial estimate R0 of the radius of the blend.

3. From the estimate Rn, compute the points c(b1, Rn), . . . , c(bN , Rn).

4. Compute the values S(Rn), and its first two derivatives S ′(Rn) and S′′(Rn).

5. If |S′(R)| is not small enough, compute a new Rn+1 value and go to step 3.

10

3.2.1 Deciding which sides of the primary surfaces the blend lies on

To decide on which side of a primary surface the blend lies, we compute the signed
distances of b1, . . . ,bN from the surface. The sign of the average distance deter-
mines on which side the blend lies.

After deciding this for both primary surfaces, for an arbitrary point x, denote
the signed distances between x and the primary surfaces by d1(x) and d2(x), and
the unit gradient vectors of these quantities by v1(x) and v2(x) respectively (i.e.
v1 and v2 are unit vectors, and point in the directions of the signed distances from
the surfaces.)

3.2.2 The initial radius

We compute the initial radius R0 by estimating the curvature at 25 points: at an
arbitrary point bi of the blend, we compute the normal ni and the signed principal
curvatures k1,i ≤ k2,i as in the method in Section 3.1.

We can see that the rolling ball is on that side of the blend into which the
vector v1(bi) + v2(bi) points. Thus, if the angle between the directions ni and
v1(bi)+v2(bi) is less than 90◦ we use |k2,i| to compute R0, and use |k1,i| otherwise.

The initial radius R0 is the reciprocal of the median of the 25 principal curvature
values computed.

3.2.3 Computing the projection of the blend points

In the general case we use a nested iteration to compute the projection of each
blend point onto the spine. The point ci = c(bi, Rn) has to satisfy the following
conditions:

• Both distances d1(c) and d2(c) are approximately R

• The vectors ci − bi, v1(ci) and v2(ci) are in the same plane.

We more carefully specify the definition of the tolerances for these conditions in
Section 3.2.6.

To find point ci, we define a sequence of points x0,x1, . . . which converges to
ci. In the case of the first outer iteration, n = 0, we choose x0 = bi. In subsequent
outer iterations, n > 0, we use the previous projection, choosing x0 = c(bi, Rn−1).

To compute xk+1 from the point xk, we first take the distances and vectors
d1(xk), d2(xk), v1(xk) and v2(xk).

If d1(xk) or d2(xk) is not approximately R, we choose xk+1 in the plane which
passes through xk and is parallel to both v1 and v2. This means that xk+1 =
xk + αv1(xk) + βv2(xk) for some real parameters α and β (see Figure 8). It is
easy to see that if the change of v1 and v2 is negligible, the distances between
xk+1 and the primary surfaces will be d1(xk+1) ≈ d1(xk) + α + (v1 · v2)β and
d2(xk+1) ≈ d2(xk)+ (v1 ·v2)α+β. Thus we choose α and β as the solutions to the
linear system

d1(xi) + α +
(

v1(xi) · v2(xi)
)

β = R

d2(xi) +
(

v1(xi) · v2(xi)
)

α + β = R.

If d1(xk) and d2(xk) are both R, then the point xk is on the spine. We check
whether the vectors ci − bi, v1(ci) and v2(ci) are in the same plane. To do this,
we compute the tangent direction of the spine at xk which is

t =
v1 × v2

|v1 × v2|
.

11

xk

v1

v2

d2

d1

xk+1α

β

Figure 8: Moving perpendicular to
the spine

xkd2

d1

v2

v1

xk +1

bi

t

Figure 9: Moving parallel to the
spine

The signed distance between the point bi and the plane which intersects perpen-
dicularly the spine at xk is t · (bi − xk). If this is sufficiently small, the iteration is
finished, and we can set c(bi, Rn) = xk.

If t · (bi − xk) is not small enough, we choose xk+1 on the tangent line of the
spine at xk (see Figure 9), namely

xk+1 = xk +
(

t · (bi − xk)
)

t

3.2.4 Iteratively improving the radius estimate

To modify the radius, we use the error S(Rn) and its first two derivatives with
respect to Rn, but we ignore changes in the vectors v1(bi) and v2(bi). These affect
only S′′(Rn).

The derivative of the point ci = c(bi, R) with respect to R is

d

dR
ci =

v1(ci) + v2(ci)

1 + v1(ci) · v2(ci)
.

This implies that the first two derivatives of |ci − bi| are

d

dR
|ci − bi| =

v1(ci) + v2(ci)

1 + v1(ci) · v2(ci)
·

ci − bi

|ci − bi|

and

d2

dR2
|ci − bi| =

2
(

1 + v1(ci) · v2(ci)
)

|ci − bi|
−

(

(v1(ci) + v2(ci)) · (ci − bi)
)2

(

1 + v1(ci) · v2(ci)
)2
|ci − bi|3

.

By summing these quantities, the first two derivatives of S(Rn) can be computed
easily. Then, because our goal is to eliminate S ′(Rn), we change Rn to

Rn+1 = Rn −
S′(Rn)

S′′(Rn)

using a Newton-Raphson step for S ′.

3.2.5 Explicit computation of the spine

In the cases where the primary surfaces are plane-plane, plane-sphere, plane-cylinder
or plane-cone, the spine for a given R is always a conic curve, which can be computed
explicitly from the parameters of the primary surfaces. This can make the method
faster, because projection of blend points onto the spine can be computed directly.

To compare the speed of the general method and the explicit method for special
cases, we conducted experiments in the plane-cylinder case.

12

3.2.6 Thresholds and stopping conditions

Suppose we want at least 5 correct digits in the results. Because of accumulation
of errors, we insist that every step should give at least 6 correct digits. Thus in the
inner iteration, we say that dj is approximately equal to R if

∣

∣

∣

∣

dj

R
− 1

∣

∣

∣

∣

< 10−6.

The threshold used for the distance
∣

∣t · (xk − bi)
∣

∣ is 10−6 too.
The main iteration stops when the change between Rn and Rn+1 is less than

10−6 × Rn, so we require

∣

∣S′(R)
∣

∣ ≤ 10−6 · R ·
∣

∣S′′(R)
∣

∣.

3.3 The maximum ball method

This method works by computing an estimate for the blend radius at each measured
point on the blend.

For a blend point bi, we attempt to reconstruct the position of the rolling ball
which generates the point bi. This is the largest sphere which contains bi and is
tangent to both primary surfaces.

After computing the largest sphere at each blend point, we average the radii of
these spheres (or take the median value) to give an estimate of the blend radius.

The maximum ball method is in some sense the dual of the iterative spine
reconstruction. That method works by optimising the sum of the local errors for
the same radius, this works by averaging the local best radii.

We use here the same notation as in the iterative spine reconstruction method.

bi

v1

v2

ci

R

R

R

Figure 10: The maximum ball for
point bi

bi

Figure 11: The maximum and mini-
mum balls

Let us denote the centre of the current ball by ci. The point ci has to satisfy
the following conditions (see Figure 10):

• The distances d1(ci), d2(ci) and |ci − bi| must all be equal to R, the radius
of the ball.

• The vectors v1(ci), v2(ci) and ci − bi must be in the same plane.

Note that there are two centre points with these properties. The second one
is the centre of the smallest sphere which contains bi and is tangent to the two
primary surfaces (see Figure 11).

13

3.3.1 Computing the maximum ball in the plane-plane case

In the case where both primary surfaces are planes the vectors v1 and v2 are
constant, and c can be computed explicitly. We may write ci in the form

ci = bi + αv1 + βv2

using the second condition above, and then α, β and R must satisfy the equations

d1(bi) + α + (v1 · v2)β = R,

d2(bi) + (v1 · v2)α + β = R,
∣

∣αv1 + βv2

∣

∣ = R

resulting from the first condition.
If the signed distances d1(bi) and d2(bi) are positive, this system leads to a

quadratic equation for R with two positive roots which are the radii of the minimum
and maximum balls. We need the larger root.

3.3.2 Computing the maximum ball in the general case

In the general case, we apply an iterative method to find ci. The iteration is very
similar to the iteration described in Section 3.2.3, and we can refer to Figures 8 and
9 again. We define a sequence of points x0,x1, . . . which converges to ci.

The initial estimate is x0 = bi.
Given xk, we compute the distances d1 = d1(xk), d2 = d2(xk) and d3 = |xk−bi|,

the gradient vectors v1(xk), v2(xk), and the direction

t =
v1(xk) × v2(xk)

∣

∣v1(xk) × v2(xk)
∣

∣

which is perpendicular to the plane of v1(xk) and v2(xk).
The condition that vectors v1(ci), v2(ci) and ci − xk are in the same plane is

equivalent to t · (ci −xk) = 0. If the value
∣

∣t · (ci −xk)
∣

∣ is greater than a threshold,
we compute xk+1 by moving xk in the direction of t:

xk+1 = xk −
(

t · (xk − b))t.

If
∣

∣t · (ci −xk)
∣

∣ is below the threshold, we compare the distances d1(xk), d2(xk)
and |xk − bi|. If they are approximately the same, the iteration is finished and our
estimate for the centre of the maximum ball is ci = xk.

If the distances d1(xk), d2(xk) and |xk − bi| are different, we use a similar
method to find xk+1 to that used in the plane-plane case. We choose xk+1 to be in
that plane which contains xk and is parallel to both v1 and v2. This means that
xk+1 = xk + αv1(xk) + βv2(xk) for some real parameters α and β. If the changes
of the gradient vectors v1 and v2 are negligible, then the new distances will be

d1(xk+1) = d1(xk) + α + (v1 · v2)β

d2(xk+1) = d2(xk) + (v1 · v2)α + β
∣

∣xk+1 − bi

∣

∣ =
∣

∣(xk − bi) + αv1 + βv2

∣

∣.

We thus choose α and β to be the solutions of the system

d1(xk) + α + (v1(xk)v2(xk))β = d2(xk) + (v1(xk)v2(xk))α + β =

=
∣

∣(xk − bi) + αv1 + βv2

∣

∣.

This system leads to a quadratic equation. Having found α, β, we can then compute
xk+1.

Note that the first step of this iteration is exactly the same as the explicit
computation in the plane-plane case.

14

3.3.3 Problems when points are close to the primary surfaces

Figure 12: Points on the wrong sides
of the primary surfaces

ci

bi

d2

d1

Figure 13: Instability of estimates
from points which are close to the
primary surfaces

The method works for any point bi for which d1(bi) ≥ 0 and d2(bi) ≥ 0.
However, there are two problems which may arise for blend points which are close
to the primary surfaces.

The first problem is that such points, due to noise, can be on the wrong side of
one of the primary surfaces (see Figure 12). For such points there is no maximum
(or any) ball, and the iteration would result in an infinite loop.

The second problem is that points which are close to the primary surfaces give
unstable estimates. If the point bi is on one of the primary surfaces, the distances
d1(ci), d2(ci) and |ci −bi| are the same with respect to any ci lying in the tangent
direction of the bisector of the primary surfaces (see Figure 13).

To avoid such problems we compute the maximum ball only for those blend
points bi, for which d1(bi) and d2(bi) are positive and

1

10
≤

d1(bi)

d2(bi)
≤ 10.

3.3.4 Thresholds

Again, suppose we want at least 5 correct digits in the result and that we restrict
every step to give at least 6 correct digits.

The threshold for the distance
∣

∣t · (xk − bi)
∣

∣ is 10−6.
The distances d1, d2 and d3 are considered to be approximately the same if

∣

∣

∣

∣

d3

d1
− 1

∣

∣

∣

∣

< 10−6 and

∣

∣

∣

∣

d3

d2
− 1

∣

∣

∣

∣

< 10−6.

3.3.5 Averaging vs. taking the median

After finding the maximum ball at each measured blend point, we have a set of
radii of the maximum balls, and from these we must compute a single value as the
result. The maximum ball method is much more stable than curvature estimation,
and the computed radii of all balls are very similar. We thus use the average of all
computed radii, rather than a median or other estimates.

15

4 Special case algorithms for estimating the blend

radius

There are specific methods for estimating blend radius that work only when the
blend is a cylinder or a torus, cases which often arise in practice for engineering
objects defined using simple regular primary surfaces. While these methods work
only in these special cases, some of them are very simple, have much higher speed,
and great accuracy. Such methods are described in this section.

The cases when the blend is a cylinder involve the following primary surface
configurations:

• plane-plane; any angle

• plane-cylinder; axis of the cylinder parallel to the plane

• cylinder-cylinder; axes parallel

The cases when the blend is a torus involve:

• plane-sphere; any distance

• plane-cylinder, plane-cone, plane-torus; axis of the cylinder/cone/torus per-
pendicular to the plane

• sphere-cylinder, sphere-cone, sphere-torus; centre of the sphere on the axis of
the cylinder/cone/torus

• cylinder-cone, cylinder-torus, cone-cone, cone-torus, torus-torus; axes of the
two surfaces the same.

4.1 Direct surface fitting method

This method works by fitting the best cylinder or torus to the blend points (see [14]).
We use the primary surfaces only to determine that the blend should be a cylinder
or a torus, then fit the appropriate type of surface to the blend points.

We have implemented this method only for comparison with the other special
methods.

4.2 Simple circle fitting method

In the special cases mentioned, the primary surfaces and the blend all belong to
the same composite translationally or rotationally symmetric surface. Knowing the
parameters of the primary surfaces, the direction of the translation or the axis of
the rotation can be computed.

Then all blend points can be projected onto or rotated into a plane which is
perpendicular to the translation or includes the axis, respectively. The images of
the primary surfaces will be lines or circular arcs, and the image of the blend will
be a circular arc.

The simple circle fitting method works by fitting a circle to the transformed
blend points. The radius of the circle is the desired blend radius. The images of
the primary surfaces are not used.

16

(,)u v

surfaces
the primary
Images of

R

bisector

Figure 14: The constrained circle

4.3 Constrained circle fitting method

In this method we also project or rotate the blend points into a plane as above and
fit a circle to them, but this time we compute the images of the primary surfaces
and constrain the circle fitted to the images of the blend points to be tangent to
these primary surface images (see Figure14).

We can distinguish three cases when the images of the primary surfaces are

• line-line

• line-circle

• circle-circle.

In the plane, we build a new (x, y) co-ordinate system, and parametrise the
circle by (u, v, R), where (u, v) is its centre and R is its radius.

4.3.1 Direct fitting by equation solving

We have investigated two algorithms to fit a constrained circle. The first explicitly
computes the parameters of the circle by solving a system of equations.

The distance of the centre (u, v) should be R from the images of the primary
surfaces.

If the image of a primary surface is the line n1x + n2y − d = 0 where the unit
normal vector (n1, n2) points to that side of the line which contains the blend, the
condition can be written as

n1u + n2v − d = R.

If the image of a primary surface is a circle with the centre (c1, c2) and radius
r, we have the equation

(u − c1)
2 + (v − c2)

2 = (r + R)2 or (u − c1)
2 + (v − c2)

2 = (r − R)2

depending on whether the blend is outside or inside the circle, respectively.
In the line-line case the bisector of the images of the primary surfaces is a line,

and u, v can be parametrised by linear functions of R.
In the line-circle case the bisector is a parabola and u, v can be parametrised

by quadratic functions of R.
In the circle-circle case the parametrisation is more difficult. The solution of

the system of the two equations in the (u, v, R) parameter space is a conic curve,
which can be parametrised by rational functions. Thus, we parametrise u, v and R
by rational functions of a common parameter t.

17

Next, we compute the coefficients of the error function

S(u, v, R) =
∑

(

(xi − u)2 + (yi − v)2 − R2

2R

)2

. (2)

which is another rational function of R or t respectively. Finally, we compute the
minimum of S and the corresponding value of R.

We have implemented this method only in the plane-plane, plane-sphere and
plane-perpendicular cylinder cases.

The degree of the equation which has to be solved to find the optimal radius is 3
in the line-line case, 5 in the line-circle case and 7 in the circle-circle case. Thus, the
method is not fully explicit, and in the second two cases it needs iterative numerical
solution.

4.3.2 Iterative solution

This alternative algorithm finds the best circle using iteration. First, we compute
the coefficients of the error function S(u, v, R) above. This is a rational function of
u, v and R, and the denominator is R2.

We now define a sequence of circles in the transformed plane by their centres
ci = (ui, vi) and radii Ri, which converge to the best circle. The iteration is similar
to the iterative spine reconstruction, but this time we do not need to iterate over
the points at each step.

Initially, we fit a circle to the transformed blend points, and choose the point c0

to be its centre.
From (uk, vk), we compute the distances d1 and d2 between this point and the

images of the primary surfaces, and the gradients of the distance functions: v1 and
v2. We choose Rk = 1

2 (d1 + d2).

d2

d1

v2

v1
ck

ck+1

Figure 15: Projecting ck onto the bi-
sector

d2

d1
v2

v1
ck

Figure 16: Moving ck in the tangent
direction

If the difference between distances d1 and d2 is greater than a threshold, we
choose ck+1 by projecting ck onto the bisector (see Figure 15). We ignore the
change in v1 and v2, and choose the direction of the projection to be v1 − v2. An
easy calculation shows that the best choice (when the new distances are equal) is

ck+1 = ck +
d2 − d1

|v1 − v2|2
(v1 − v2).

However, if the distances d1 and d2 are approximately the same, we choose ck+1

to lie on the tangent line of the bisector at ck, which can be parametrised as

ck+1(t) = ck + t(v1 + v2)

18

(see Figure 16). To find the best value for the real parameter t, we assume that
Rk+1(t) = Rk +(1+v1.v2)t, and compute the error S(ck+1(t), Rk+1(t)) and its first
two derivatives with respect to t. Then, to eliminate S ′, we choose t = −S′/S′′.

To obtain at least 5 correct digits, we say that d1 and d2 are approximately the
same if

∣

∣

∣

∣

d1

d2
− 1

∣

∣

∣

∣

< 10−6.

The iteration stops if d1 and d2 are approximately the same and the difference
between Rk and Rk+1 would be less than 10−6Rk.

We have implemented the iterative method for every case of primary surface
pairs given earlier.

5 Evaluation and comparison of the methods

In order to evaluate the methods, various simulated datasets were created using
the ACIS test harness. Results using this test data are presented in Sections 5.1–
5.5, where we compare the methods and their advantages and disadvantages with
respect to

• accuracy of results,

• speed,

• cases for which the methods reliably work.

We also briefly comment on their relative ease of implementation. Finally, an ex-
ample using real measured data is presented in Section 5.6.

5.1 Simulated datasets for testing

Each dataset contained three segments: the two primary surfaces and the blend.
Each surface was triangulated to provide neighbourhood information.

The blend radius was set to 10mm for the ease of comparison. Each dataset
was generated at three resolutions, namely 5, 10 and 20 points per cm. In most
cases, each dataset was transformed into such a position that the whole surface was
visible from the z-direction. Gaussian noise was added to the z-coordinates of the
points, with deviation 3% of the resolution, a value representative of that claimed
by commercial scanners. We did not generate artificial outliers.

The names of the test cases below have the form t1t2n.rr, where t1 and t2
are abbreviations for the types of the two primary surfaces (plane=p, sphere=s,
cylinder=c, cone=n, torus=t), n is the number of the particular test case of that
type and rr is the resolution. For example, dataset pp3.05 is the third of the
plane-plane examples, and the average spacing between points is 10/5 = 2mm.

In these experiments, we fitted surfaces of known type to the noisy primary
surface data where an explicit primary representation was required, rather than
using our prior knowledge of the ideal primary surfaces.

The datasets used in our tests were as follows:

pp1 Two planes. The angle between them was 90◦.

pp2 Two planes. The angle between them was 60◦.

pp3 Two planes. The angle between them was 157◦.

ps1 A 90◦ sector of the union of a plane and a sphere. The radius of the sphere
was 70mm, and the distance between its centre and the plane was 40mm.

19

pc1 A plane and a 120◦ sector of a cylinder. The cylinder’s axis was perpendicular
to the plane, and its radius was 50mm. The blend was inside the cylinder.

pc2 A plane and a 120◦ sector of a cylinder. The cylinder’s axis was perpendicular
to the plane, and its radius was 30mm. The blend was outside the cylinder.

pc3 A plane and a cylinder. The cylinder’s axis was perpendicular to the plane,
and its radius was 5mm. The blend was outside the cylinder.

pc3a Same as pc3, but only a 120◦ sector.

pc4 A plane and a cylinder. The angle between the cylinder’s axis and the plane
normal was 30◦, and its radius was 5mm. The blend was outside the cylinder.

pc4a Same as pc4, but only a 120◦ sector of the cylinder.

pc5 A plane and a cylinder. The radius of the cylinder was 50, and its axis was in
the plane.

pn1 A plane and a cone. The axis of the cone was perpendicular to the plane. The
radius of the cone was 46mm at the intersection with the plane, and its semi
angle was 22◦.

pn1a Same as pn1, but only a 90◦ sector.

pn2 A cone and a plane. The semi angle of the cone was 31◦. The angle between
the axis and the plane normal was 20◦.

pt1 A plane and a piece of a torus. The torus’ major and minor radii were 50
and 20mm, respectively. The axis of the torus was parallel to the plane, at a
distance of 50mm (the same as the major radius).

ct1 A cylinder (radius=50mm) and torus (major radius=15mm, minor radius 10mm)
in a general position. The angle between the axes was 75◦.

nn1 Two congruent cones. Their semiangle was 34.5◦. The axes were identical,
and the cones intersect each other in a circle radius of 3.7mm.

nn1a Same as nn1, but only a 90◦ sector.

cc1 Two pieces of cylinders. Their radii were 70mm and 20mm, respectively. The
axes were perpendicular and intersect each other. The blend was outside both
cylinders.

cc2 Two cylinders. Their axes were parallel, and their radii were 70mm and 50mm.
The distance between the axes was 90mm. The blend was outside the larger
and inside the smaller cylinder.

ss1 Two spheres of radii 50mm and 70mm. The distance between their centres was
70mm. The dataset was a 120◦ segment.

ss2 The difference of two spheres. The spheres were the same as in ss1. The blend
was inside the larger and outside the smaller sphere.

st1 A sphere (radius=160mm) and a torus (major radius=50mm, minor radius=30mm)
in general position. The blend was inside the sphere and outside the torus.

tt1 Pieces of two congruent tori (major radius=60mm, minor radius=50mm). They
were in such a position as to form a link of a chain. The blend was outside
both.

20

These datasets are illustrated below.

pp1 pp2 pp3 ps1

pc1 pc2 pc3 pc3a

pc4 pc4a pc5 pn1

pn1a pn2 pt1 ct1

nn1 nn1a cc1 cc2

ss1 ss2 st1 tt1

Figure 17: Blends used for testing

The test results presented in the rest of the paper only give results for some of
these objects, and fuller results can be found in a technical report [12].

21

5.2 Applicability of each method

The curvature estimation method works for any type of primary surfaces, and it
needs only the blend points. It can be used for any constant radius canal surface.

The iterative spine reconstruction and the maximum ball methods work in those
cases when the primary surfaces are known. These methods can be used for para-
metric surfaces as well as implicit surfaces, but in this case they need another nested
iteration to find the projections of points onto the primary surfaces.

The special purpose methods work when the blend is a cylinder or a torus.
The direct surface fitting methods do not need any information about the primary
surfaces. However, these are iterative methods requiring initial estimates of the
axis and curvatures, which may be computed from surface normal estimates at the
blend points. In turn, to estimate the normals, a dense set of neighbours is needed
around each blend point.

Simple circle fitting needs the parameters of the primary surfaces. It can be
used to compute the blend radius if the primary surfaces are both translationally
or rotationally symmetric surfaces with the same direction or axis, respectively.

Constrained circle fitting can be generalised to compute the radius of a blend
between two parametric translational or rotational surfaces with the same direction
or axis respectively. In this case the projections of points onto the images of the
primary surfaces can be computed by an iterative method.

5.3 Accuracy of each method

5.3.1 General purpose methods

Results of the general methods

Dataset Curv. est. It. spine rec. Max. ball
Name Clean Noisy Clean Noisy Clean Noisy

pp3.05 10.0714 10.7846 10.0000 10.0029 10.0000 9.9927
pp3.10 10.0086 12.3538 10.0000 10.0056 10.0000 10.0221
pp3.20 10.0019 10.3853 10.0000 9.9976 10.0000 10.0079
pc1.05 10.1046 10.2908 10.0000 10.0080 10.0000 10.0103
pc1.10 10.0071 10.6763 10.0000 9.9965 10.0000 9.9967
pc1.20 10.0016 9.9276 10.0000 9.9977 10.0000 9.9983
pc3a.05 9.9176 10.1218 10.0000 10.0110 10.0000 10.0066
pc3a.10 10.0828 10.3424 10.0000 9.9981 10.0000 10.0003
pc3a.20 10.0073 8.3505 10.0000 9.9986 10.0000 9.9980
nn1a.05 9.9634 9.9382 10.0000 9.9974 10.0000 10.0061
nn1a.10 9.9898 6.7135 10.0000 9.9969 10.0000 9.9966
nn1a.20 10.0015 6.3623 10.0000 10.0023 10.0000 10.0028
st1.05 11.8786 12.3756 10.0000 10.0041 10.0000 10.0302
st1.10 9.8563 12.0367 10.0000 9.9961 10.0000 10.0291
st1.20 9.3835 10.7353 10.0000 9.9930 10.0000 10.0192
tt1.05 10.8646 10.7339 10.0000 9.9935 10.0000 9.9920
tt1.10 10.9222 10.2379 10.0000 9.9919 10.0000 9.9964
tt1.20 10.2550 10.3628 10.0000 10.0035 10.0000 10.0027

Table 1: Accuracy of general methods

Tables 1 and 2 show the estimated radii obtained by the general purpose methods
and the distributions of errors respectively.

22

Error of general methods

Clean Noisy
Method Average Maximum Average Maximum

Curvature estimation 2.668% 18.786% 8.486% 41.917%
Iterative spine 0.000% 0.001% 0.051% 0.685%
Maximum ball 0.000% 0.001% 0.079% 0.715%

Table 2: Error of general methods

The curvature estimation method gives relatively poor results, even for clean
data. If noise is present, the error can be greater than 20%. For concave blends,
when the curvature is greater along the blend direction, for example in the cases of
datasets pc3a.20, nn1a.10 and nn1a.20, the program chooses the wrong side. In
these cases, the difference between variation of the k1 and k2 values disappears in the
noise. The only advantage of this method is that it does not need any information
about the primary surfaces.

The accuracy of the iterative spine reconstruction is much better. It gives highly
accurate results for clean data. Even when noise is present, the error in the result is
less than 0.1% in most cases. The largest error was 0.69% during our experiments.
The accuracy does not depend on whether the method of projecting the blend points
onto the spine is iterative or explicit.

The results for the maximum ball method are similar to those for the iterative
spine method, although the errors are slightly greater.

5.3.2 Special purpose methods

Results of the special methods

Dataset Cylinder fit Torus fit Simple circle Constrained circle
Name Clean Noisy Clean Noisy Clean Noisy Clean Noisy

pp3.05 10.0000 9.9830 — — 10.0000 9.9817 10.0000 10.0016
pp3.10 10.0000 9.9731 — — 10.0000 9.9731 10.0000 10.0043
pp3.20 10.0000 10.0171 — — 10.0000 10.0118 10.0000 9.9962
ps1.05 — — 10.0001 9.9833 10.0000 9.9833 10.0000 9.9973
ps1.10 — — 10.0000 9.9664 10.0000 9.9664 10.0000 9.9992
ps1.20 — — 10.0000 10.0019 10.0000 10.0019 10.0000 10.0042
pc5.05 10.0000 9.9951 — — 10.0000 9.9959 10.0000 10.0002
pc5.10 10.0000 10.0115 — — 10.0000 10.0262 10.0000 9.9913
pc5.20 10.0000 9.9972 — — 10.0000 10.0001 10.0000 9.9977
pn1a.05 — — 10.0000 9.9858 10.0000 9.9858 10.0000 10.0053
pn1a.10 — — 10.0000 9.9883 10.0000 9.9885 10.0000 10.0053
pn1a.20 — — 10.0000 9.9932 10.0000 9.9933 10.0000 10.0004
cc2.05 10.0000 10.0110 — — 10.0000 10.0137 10.0000 10.0095
cc2.10 10.0000 10.0081 — — 10.0000 10.0065 10.0000 9.9982
cc2.20 10.0000 9.9994 — — 10.0000 9.9239 10.0000 10.0393
ss2.05 — — 10.0000 9.9969 10.0000 9.9969 10.0000 9.9940
ss2.10 — — 10.0000 9.9962 10.0000 9.9962 10.0000 9.9991
ss2.20 — — 10.0000 10.0031 10.0000 10.0031 10.0000 10.0004

Table 3: Accuracy of special methods

Table 3 shows results for the special purpose methods. Table 4 shows the dis-
tributions of errors for these methods and for the general purpose methods when

23

Errors of methods in special cases

Clean Noisy
Method Average Maximum Average Maximum

Direct cylinder fitting 0.000% 0.000% 0.081% 0.269%
Direct torus fitting 0.000% 0.001% 0.072% 0.336%
Simple circle fitting 0.000% 0.000% 0.092% 0.761%
Constrained circle fitting 0.000% 0.000% 0.048% 0.393%

Curvature estimation 0.735% 4.986% 8.578% 37.167%
Iterative spine 0.000% 0.000% 0.049% 0.685%
Maximum ball 0.000% 0.000% 0.065% 0.715%

Table 4: Error of special methods

used on the same datasets.
The special purpose methods are all very accurate.
The simple circle fitting and the direct surface fitting methods give very similar

results. The direct surface fitting methods do not use the parameters of the primary
surfaces, but find the translation direction or the axis of the blend by iteration. The
circle fitting methods use the parameters of the primary surfaces to compute the
translation direction or axis respectively.

The constrained circle fitting method is roughly twice as accurate as the simple
circle fitting method.

5.3.3 Overall conclusion

Clearly the curvature estimation method is much less accurate than the other meth-
ods, and is only useful if nothing is known about the primary surfaces. The max-
imum ball, iterative spine and simple circle fitting all have similar accuracies, the
first two being of use for general primary surfaces. The constrained circle fitting and
direct torus or cylinder fitting are about twice as accurate as the previous category,
but rely on the blend and primary surfaces being of a particular type.

5.4 Speed of each method

5.4.1 General purpose methods

Tables 5 and 6 are organised in a similar way to Tables 1 and 2, but show computa-
tion times rather than accuracies. Times for fitting primary surfaces and building
triangulations are excluded.

The slowest method is curvature estimation, the fastest is the maximum ball
method.

A disadvantage of the curvature estimation method is that this method requires
neighbourhoods to be constructed at each blend point, which is a time consuming
process.

5.4.2 Special purpose methods

Similarly, Table 7 gives timing results for the special purpose methods.
There is no essential difference between the speeds of the simple and constrained

(explicit or iterative) circle fitting methods. Direct cylinder fitting is slower, and
torus fitting is very slow.

Comparisons with the general purpose methods are shown in Table 8.
Table 9 shows the times needed by the iterative spine reconstruction using iter-

ative and explicit projection methods respectively.

24

Computation times of the general methods

Dataset Curv. est. It. spine rec. Max. ball
Name Clean Noisy Clean Noisy Clean Noisy

pp3.05 0.40s 0.40s 0.08s 0.10s 0.00s 0.00s
pp3.10 1.36s 1.36s 0.12s 0.17s 0.01s 0.01s
pp3.20 5.23s 5.23s 0.28s 0.45s 0.04s 0.04s
pc1.05 0.64s 0.64s 0.12s 0.12s 0.00s 0.02s
pc1.10 2.42s 2.42s 0.20s 0.28s 0.03s 0.05s
pc1.20 9.50s 9.49s 0.58s 0.83s 0.10s 0.16s
pc3a.05 0.31s 0.31s 0.09s 0.11s 0.00s 0.01s
pc3a.10 1.21s 1.21s 0.15s 0.21s 0.01s 0.04s
pc3a.20 4.83s 4.84s 0.39s 0.64s 0.05s 0.14s
nn1a.05 0.45s 0.45s 0.13s 0.17s 0.00s 0.05s
nn1a.10 1.63s 1.64s 0.24s 0.37s 0.03s 0.09s
nn1a.20 5.69s 5.69s 0.50s 0.97s 0.11s 0.37s
st1.05 1.28s 1.28s 0.50s 0.47s 0.07s 0.07s
st1.10 4.08s 4.09s 0.71s 1.00s 0.23s 0.24s
st1.20 8.26s 8.24s 1.57s 1.98s 0.47s 0.48s
tt1.05 0.63s 0.63s 0.21s 0.22s 0.03s 0.03s
tt1.10 1.01s 1.00s 0.32s 0.38s 0.03s 0.03s
tt1.20 3.81s 3.79s 0.65s 0.97s 0.19s 0.20s

Table 5: Computation times of the general methods

Average computation times of general methods

Clean Noisy
Method Average Maximum Average Maximum

Curvature estimation 3.275s 13.74s 3.273s 13.71s
Iterative spine 0.345s 1.57s 0.503s 2.54s
Maximum ball 0.076s 0.47s 0.101s 0.63s

Table 6: Average computation times of the general methods

In blends between a cylinder and a plane, if the axis of the cylinder is perpendic-
ular to the plane, the iterative method is faster. The iteration finds the projection
of an arbitrary point onto the spine in a single step, because the vectors v1 and v2

do not change. If the axis is not perpendicular to the plane, the results show that
explicitly computing the spine approximately doubles the speed.

5.4.3 Overall conclusion

Again, curvature estimation is a slow method which should only be used if nothing
is known about the primary surfaces. Of the other general purpose methods, the
maximum ball method is about four times faster than the iterative spine approach.
For the special purpose methods, both circle fitting methods are very much faster
than the surface fitting methods; they are also faster than the general purpose
maximum ball method.

5.5 Ease of implementation of each method

It is difficult to compare the ease of implementation of the different methods. We
implemented all the methods in C++.

25

Computation times of the special methods

Dataset Cylinder fit Torus fit Simple circle Constrained circle
Name Clean Noisy Clean Noisy Clean Noisy Clean Noisy

pp3.05 0.07s 0.15s — — 0.00s 0.01s 0.00s 0.00s
pp3.10 0.10s 0.17s — — 0.01s 0.01s 0.00s 0.01s
pp3.20 0.22s 0.29s — — 0.02s 0.01s 0.01s 0.02s
ps1.05 — — 7.17s 7.22s 0.00s 0.00s 0.01s 0.00s
ps1.10 — — 38.40s 26.26s 0.01s 0.00s 0.00s 0.01s
ps1.20 — — 147.31s 334.20s 0.03s 0.03s 0.03s 0.03s
pc5.05 0.07s 0.14s — — 0.00s 0.01s 0.01s 0.00s
pc5.10 0.11s 0.14s — — 0.00s 0.00s 0.00s 0.00s
pc5.20 0.24s 0.30s — — 0.02s 0.02s 0.02s 0.02s
pn1a.05 — — 10.84s 10.88s 0.00s 0.00s 0.00s 0.01s
pn1a.10 — — 25.83s 31.38s 0.00s 0.01s 0.00s 0.00s
pn1a.20 — — 53.43s 64.64s 0.01s 0.01s 0.01s 0.01s
cc2.05 0.08s 0.15s — — 0.01s 0.00s 0.00s 0.00s
cc2.10 0.13s 0.20s — — 0.01s 0.01s 0.01s 0.01s
cc2.20 0.32s 0.39s — — 0.03s 0.03s 0.03s 0.03s
ss2.05 — — 14.35s 30.32s 0.01s 0.00s 0.00s 0.01s
ss2.10 — — 105.36s 105.25s 0.02s 0.02s 0.02s 0.02s
ss2.20 — — 78.22s 122.75s 0.04s 0.04s 0.04s 0.04s

Table 7: Computation times of the special methods

Average computation times in special cases

Clean Noisy
Method Average Maximum Average Maximum

Direct cylinder fitting 1.846s 10.04s 1.867s 10.04s
Direct torus fitting 57.002s 334.20s 68.997s 334.20s
Simple circle fitting 0.013s 0.04s 0.013s 0.04s
Constrained circle fitting 0.013s 0.04s 0.015s 0.04s

Curvature estimation 4.070s 13.74s 4.067s 13.71s
Iterative spine 0.316s 0.95s 0.487s 2.54s
Maximum ball 0.058s 0.26s 0.093s 0.63s

Table 8: Average computation times of the special methods, and comparison with
general methods

Implementing the iterative spine reconstruction with explicit spine computation
is messy, and works only in special cases. We have implemented only one of the
simplest cases, when the primary surfaces are a plane and a cylinder, and the spine
is an ellipse. In more general cases the spine can be any conic curve, and the type
of the parametrisation depends on the nature of the conic.

The explicit constrained circle fitting is similar. We implemented only some of
the relatively easy line-line and line-circle cases, when the blend radius itself can be
used as the parameter of the bisector. In more general cases we have to distinguish
at least four types of bisector.

5.6 Performance on real measured data

The algorithms were also tested on real measured datasets captured by a commercial
REPLICA 3D scanner. One such example, a plastic bottle is shown in Figure 18.

26

Computation times of the iterative spine reconstruction
with iterative and explicit spine computing

Dataset Iterative method Explicit method
Name Clean Noisy Clean Noisy

pc1.05 0.12s 0.12s 0.14s 0.48s
pc1.10 0.20s 0.28s 0.10s 1.05s
pc1.20 0.58s 0.83s 0.22s 4.85s
pc2.05 0.10s 0.11s 0.08s 0.14s
pc2.10 0.18s 0.25s 0.10s 0.63s
pc2.20 0.55s 0.97s 0.21s 1.27s
pc3.05 0.13s 0.15s 0.15s 0.14s
pc3.10 0.32s 0.44s 0.14s 0.52s
pc3.20 0.73s 1.35s 0.91s 1.75s
pc3a.05 0.09s 0.11s 0.10s 0.11s
pc3a.10 0.15s 0.21s 0.09s 0.21s
pc3a.20 0.39s 0.64s 0.51s 0.60s
pc4.05 0.49s 0.46s 0.26s 0.26s
pc4.10 0.49s 0.55s 0.28s 0.28s
pc4.20 0.53s 0.62s 0.33s 0.32s
pc4a.05 0.21s 0.26s 0.14s 0.16s
pc4a.10 0.21s 0.23s 0.15s 0.17s
pc4a.20 0.28s 0.31s 0.19s 0.21s

Table 9: Comparison of speed of the spine reconstruction

The top part of the object was scanned at a resolution of 0.5mm. Two blends are
present. The lower blend occurs where the neck of the bottle meets the shoulder,
while the upper blend occurs where the neck meets the topmost face. The primary
surface regions and the blend regions are shown in Figure 19. Blends between a
sphere and a cylinder were sought for both blend regions.

The number of data points used to estimate the radius of each blend were:

• Upper blend: sphere 730, cylinder 499, blend 613;

• Lower blend: sphere 1253, cylinder 2624, blend 1370;

The estimates produced for the radii of the blends are given in Table 10. On
the lower blend, the centre of the sphere is not on the axis of the cylinder, and the
special methods therefore could not be used. As can be seen, in the upper case
these estimates were almost the same for the various methods, while in the lower
case there is a larger difference between the radii obtained.

Upper blend
Method Radius
Curvature estimation 2.71
Spine iteration 2.61
Maximum ball 2.60
Direct torus fit 2.62
Simple circle fit 2.77
Restricted circle fit 2.77

Lower blend
Method Radius
Curvature estimation 3.29
Spine iteration 3.71
Maximum ball 4.35

Table 10: Results on measured data

Clearly the results obtained for practical data are not as good as for the sim-

27

Figure 18: Plastic bottle
Figure 19: Segmentation of data into
primary and blend surfaces

ulated data, but they are still quite usable for the intended purpose of reverse
engineering. The practical results are more variable for a variety of reasons. Two
of the most important are probably that errors in real scanner data do not follow a
Gaussian distribution, and may contain outliers, and the segmentation of the data
points is unlikely to be perfect.

6 Conclusions

We have investigated the problem of determining the radius of rolling ball blends
from point data, a very important step in the reverse engineering of mechanical
components and other objects. We have assumed that the measured data has been
preprocessed and segmented, and most of our methods assume that representations
of the primary surfaces have been determined.

We have described a variety of methods, some of which are of general use, while
others are particular to certain special, but common, blending situations. Exper-
imental tests have been performed on these methods which lead to the following
conclusions.

The curvature estimation method is both slow and inaccurate, and should be
avoided whenever possible, i.e. when information about the primary surfaces is
known.

When a general purpose method must be used, and information about the pri-
mary surfaces is available, the maximum ball method is our method of choice, as it
has comparable accuracy to the iterative spine method, but it is about four times
faster.

When the blend surface takes the special form of a cylinder or torus, while the di-
rect surface (torus or cylinder) methods are slightly more accurate than constrained
constant circle fitting, the speed advantage of the latter suggests that in practice it
should almost always be used instead. The unconstrained circle fitting method is
about the same speed but less accurate, and so can be ignored.

In summary, while previous work on reverse engineering of geometric models has

28

concentrated on the recovery of primary surfaces, it is clear that complete, realistic
models also require the determination of blend characteristics. The new methods
and analysis given in this paper hopefully provide an appropriate basis for achieving
this goal.

7 Acknowledgements

The bulk of this project was accomplished while the first author was a visiting re-
searcher at the Computer Science Department, Cardiff University, whom he wishes
to thank. All authors are grateful for support from EU COPERNICUS grant (REC-
CAD 1068), which provided an ideal framework for this joint research. The support
of the National Science Foundation of the Hungarian Academy of Sciences grant
26203 is also highly appreciated.

The authors would also like to thank other members of the RECCAD team for
many helpful discussions.

References

[1] P. Benkő, G. Kós, T. Várady Region growing for regular surfaces. Geometric
Modelling Studies, GML 98/3 (1998), Computer and Automation Research
Institute, Budapest

[2] P. Benkő, G. Kós, G. Lukács, T. Várady Reverse engineering solid objects

bounded by regular surfaces. Geometric Modelling Studies, GML 98/4 (1998),
Computer and Automation Research Institute, Budapest

[3] P. J. Besl, R. C. Jain Segmentation through Variable-Order Surface Fitting.

IEEE PAMI, Vol 10, No 2, (1988) pp 167–192

[4] R. M. Bolle, B. C. Vemuri On Three-Dimensional Surface Reconstruction Meth-

ods. IEEE PAMI, Vol 13, No 1, (1991), pp 1–13

[5] O. D. Faugeras, M. Hebert, E. Pauchon Segmentation of Range Data into

Planar and Quadric Patches. Proc. 3rd Comp. Vision and Patt. Recog. Conf.,
Arlington, VA, (1983) pp 8–13

[6] A.W. Fitzgibbon, D. Eggert, R.B. Fisher High-level CAD Model Acquisition

from Range Images. Computer-Aided Design, Vol. 29, No 4, (1997) pp 321–
330

[7] C. M. Hoffmann Geometric and Solid Modelling, An Introduction. Morgan
Kaufmann, San Mateo, CA, (1989)

[8] A. Hoover, D. Goldgof, K. W. Bowyer Extracting a valid boundary represen-

tation from a segmented range image. IEEE PAMI, Vol 17, No 9, (1995) pp
920–924

[9] A. Hoover et al. An Experimental Comparison of Range Image Segmentation

Algorithms. IEEE PAMI, Vol. 18, No. 7 (1996), pp 673–689

[10] H. Hoppe et al. Mesh optimization. Computer Graphics (SIGGRAPH’93 Pro-
ceedings), Vol 27, (1993), pp 19–26

[11] J. Hoschek, D. Lasser Fundamentals of Computer Aided Geometric Design. A.
K. Peters, (1993)

29

[12] G. Kós, R. R. Martin, T. Várady Methods to recover constant radius rolling ball

blends in reverse engineering. RECCAD Deliverable Document 4, Copernicus
project No. 1068, Geometric Modelling Studies, GML 98/4 (1998), Computer
and Automation Research Institute, Budapest

[13] A. Leonardis, A. Gupta, R. Bajcsy Segmentation of Range Images as the Search

for Geometric Parametric Models. Int. J. Computer Vision, Vol 14 (1995) pp
253–277

[14] G. Lukács, R. R. Martin, D. Marshall Faithful least-squares fitting of spheres,

cylinders cones and tori for reliable segmentation. Computer Vision-ECCV
98, Vol. 1406 of Lecture Notes in Computer Science, Eds: H. Burkhardt and
B. Neumann, Springer-Verlag (1998), pp 671–686. (Proceedings of 5th Euro-
pean Conference on Computer Vision–ECCV’98 Freiburg, Germany, June 2-6,
1998)

[15] H. Pottmann, T. Randrup Rotational and helical surface reconstruction for

reverse engineering. Computing (1998), pp 307-322

[16] V. Pratt Direct least-squares fitting of algebraic surfaces. Computer Graphics,
Vol 21, ACM, (Procs. of SIGGRAPH’87), (1987), pp 27-31

[17] W. J. Schroeder, J. Zarge, W.E. Lorensen Decimation of triangle meshes. Com-
puter Graphics (SIGGRAPH’92 Proceedings), Vol 26, (1992), pp 65-70

[18] T. Várady, R. R. Martin, J. Cox Reverse Engineering of Geometric Models —

An Introduction. Computer-Aided Design, Vol. 29, No 4, (1997) pp 255-268

[19] T. Várady, C. M. Hoffmann Vertex blending: problems and solutions. Fourth
Intl. Conf. on Math. Methods for Curves and Surfaces, Eds. M. Daehlen, T.
Lyche, L. L. Schumaker, Vanderbilt University Press, (1998) pp 501–527

[20] T. Várady, P. Benkő, G. Kós Reverse Engineering regular objects: simple seg-

mentation and surface fitting procedures. International Journal of Shape Mod-
eling, Vol. 4, No. 3&4 (1998) pp 127–141

[21] J. Vida, R. R. Martin, T. Várady A survey of blending methods that use para-

metric surfaces. Computer-Aided Design, Vol 26, No 5, (1994), pp 341–365

30

