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Abstract

Variable Angle Tow (VAT) composites always exhibit in-plane variable stiffness property,

which provides the designer with an extended freedom in stiffness tailoring to achieve

higher structural performance for lightweight composite structures. In this paper, a

methodology based on a generalised Rayleigh-Ritz formulation is developed to study

the thermomechanical buckling response of symmetrical VAT composite plates with gen-

eral in-plane boundary constraint. It is assumed that the material is of temperature-

independent and the panel is exposed to an arbitrary in-plane temperature change. In

the framework of thermoelastic theory, the principle of thermoelastic complementary en-

ergy in conjunction with Airy’s stress function formulation, for the first time, is applied

to solve the in-plane thermoelastic problem of the tow-steered plate. The non-uniform

distribution of in-plane force resultant over the entire plane is determined by utilizing

the Rayleigh-Ritz formulation enhanced by Lagrangian multiplier method. The merit

of the proposed modelling strategy lies in that the application of Lagrangian multiplier

method removes the restrictions inherent in conventional Rayleigh-Ritz formulation and

thus provides generality to model general in-plane boundary constraint against thermal

expansion or contraction. During the buckling analysis, the governing equation of ther-

momechanical buckling problem of the tow-steered plate under a combination of both
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temperature change and general in-plane boundary constraint is derived based on the

third-order shear deformation theory of Reddy’s type. The accuracy and robustness of the

proposed Rayleigh-Ritz model is validated against finite element solutions and previously

published results. Effects of boundary condition, fibre orientation angle and temperature

change on the in-plane thermoelastic and thermomechanical buckling behaviours of VAT

composite plates are studied by numerical examples. Finally, the mechanism of applying

tow-steered technology to improve the thermomechanical buckling resistance of composite

plates is explored.

Keywords: Variable angle tow, Thermomechanical buckling, Rayleigh-Ritz method,

Airy’s stress function, The principle of thermoelastic complementary energy, Third-order

shear deformation theory

1. Introduction

Variable angle tow placement technology allows fibre orientations to continuously vary

with position over the entire plane of each ply, which provides the designer of aircrafts

with a considerable opportunities in stiffness tailoring to design lightweight composite

structures with enhanced performance. Previous studies [1, 2, 3, 4, 5, 6, 7, 8, 9] reveal

that substantial improvement in buckling performance can be obtained by appropriately

steering fibre path over each ply of the panel and the reason for this enhanced performance

is mainly attributed to benign load redistribution offered by the VAT layup configuration.

However, an experimental investigation conducted by Wu et al. [10] has shown that

residual thermal stresses induced by cooling the panel from high curing temperature to

room temperature play a key role in the accurate evaluation of buckling response of

variable stiffness composite panels. On the other hand, it had been well established that

the wings of aircrafts when flying at supersonic speeds are prone to be aerodynamically

heated from room temperature to high working temperature, which may lead to premature

buckling of the skin [11]. In view of this, composite plates should be designed to operate

in a certain range of temperature so as to increase structural efficiency. Therefore, there

remains a strong demand for having an insight into the thermoelastic buckling behaviour

of VAT composite plates exposed to temperature change.

A considerable amount of research effort has been devoted to the study of thermoe-

lastic buckling problem of isotropic or straight-fibre composite plates undergoing uniform
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or nonuniform temperature change. In earlier stage, research works of thermal buck-

ling problem mainly focused on isotropic plates [12, 13, 14, 15, 16, 11]. For instance,

Gossard, Seide and Roberts [12] initially conducted a theoretical and experimental in-

vestigation on thermal buckling of isotropic plates subjected to a tent-like temperature

distribution. In their work, the Rayleigh-Ritz energy method was applied to determine

the critical buckling temperature of isotropic plates with all edges restrained against

normal expansion, while the Galerkin method was applied to solve the strong-form par-

tial differential equation derived from the von Kármán large-deflection theory during the

postbuckling stage. Later, Hoff [13, 14] studied the thermal buckling behaviour of the

cover plate bounded by two shear webs in supersonic wing structure. Prabhu and Durva-

sula [15] applied the Galerkin method to perform the thermal buckling analysis of skew

plates with all edges restrained against expansion. The Galerkin method was also used

in the work of Chen et al. [16], in which the thermal stability problem of a transversely

isotropic thick plate with thermal effects in a general state of nonuniform initial stress

was solved. Bargmann [11] adopted Airy’s stress function expressed by infinite harmonic

series to derive the expression of thermal stress distribution acting on an isotropic plate

and discussed the thermal buckling response of initially stress-free, elastic plates under

nonuniform temperature field. On the other hand, the study on thermal buckling problem

has also been extended to straight-fibre composite plates by several researchers. Whit-

ney and Ashton [17] applied the generalized Duhamel-Neumann form of Hooke’s law to

derive displacement-based governing equations including the effect of expansional strains

induced by temperature and humidity and investigated the thermal buckling response of

layered composite plates with all edges restrained against normal expansions. Tauchert

and Huang [18] applied the Rayleigh-Ritz energy method to solve the thermal buckling

problem of symmetric angle-ply laminated plates subjected to a uniform temperature

change. Meryers and Hyer [19] extended the work of Tauchert and Huang [18] to study

the thermal buckling and postbuckling response of symmetrically laminated composite

plates. Sun and Hsu [20] presented a Navier solution of critical buckling temperature for

simply supported, symmetric cross-ply laminates including the effect of transverse shear

under uniform temperature distribution. Librescu et al. [21] investigated the static post-

buckling of simply-supported flat panels exposed to a stationary nonuniform temperature

field and subjected ’to a system of subcritical in-plane compressive edge loads. Dona and
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Hyer [22] developed a theoretical model based on a Rayleigh-Ritz minimization of the total

potential energy to predict thermally induced deformation behavior of general unsymmet-

ric laminates. Shen [23] studied the thermomechanical postbuckling response of imperfect

laminated plates using a higher-order shear deformation theory. Jones [24] employed the

equivalent mechanical loading concept to derive simple solutions to the most fundamental

thermal buckling problems for uniformly heated unidirectional and symmetric cross-ply

laminated fibre-reinforced composite rectangular plates. Shariyat [25] investigated the

thermal buckling analysis of rectangular composite multilayered plates with temperature-

dependent properties under uniform temperature rise using the layerwise plate theory.

Recently, Li [26] derived an analytical solution of thermal buckling response of the com-

posite laminated plate under fully clamped boundary condition. Cetkovic [27] applied

layerwise displacement model to derive both finite element and closed-form solution for

the thermal buckling analysis of laminated composite plates. Tran et al. [28] employed

isogeometric approach to study the thermal bending and buckling analyses of laminated

composite plates. Gutiérrez Álvarez and Bisagni [29] derived a closed-form solution for

thermomechanical buckling of orthotropic composite plates under the effect of thermal

and mechanical loads. In addition, the thermoelastic buckling response of the straight-

fibre plate was also widely investigated by using finite element approach [30, 31, 32, 33].

Based on the previous literature survey, it appears that for isotropic or straight-fibre plates

with symmetric layups, the prebuckling analysis is required to determine the distribution

of in-plane stress resultant before the thermoelastic buckling analysis, especially for the

plates undergoing nonuniform temperature change. Closed-form solutions of prebuckling

resultants for some specific cases can be found in the woks of Sun and Hsu [20], Tauchert

and Huang [18], Meryers and Hyer [19], Li et al. [26] and Gutiérrez Álvarez and Bisagni

[29]. For more general cases, however, the analytical methods based on a variational prin-

ciple such as Rayleigh-Ritz energy method may offer an efficient means to analyse in-plane

thermoelastic behaviour of isotropic or composite plates. In previous works [18, 19], the

prebuckling problem was solved by minimising the potential energy expressed in terms

of two unknown displacement variables. However, the resulting weak-form solution fails

to satisfy the natural (or force) boundary conditions along four edges of the plate [18].

Airy’s stress function formulation, in the framework of thermoelastic theory, is much more

convenient for dealing with various in-plane boundary conditions than using the displace-
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ment function formulation, especially for pure stress or mixed (stress and displacement)

boundary constraints [34, 35, 11]. Therefore, in the present work, Airy’s stress function

formulation is employed to represent the in-plane force resultant component. Further-

more, the first variation of the thermoelastic complementary energy expressed in terms

of Airy’s stress function formulation, for the first time, is applied to solve the prebuckling

problem of symmetric composite plates exposed to temperature change.

On the other hand, a considerable research works have been done on buckling of

variable stiffness composite plates induced by mechanical loadings. Hyer et al. [36, 37]

initially used curvilinear fibre paths aligned along the principal directions of the stress

fields to improve the buckling resistance of composite panel with a central hole. Later,

Gürdal and his coworkers [38, 39] conducted a theoretical investigation on the in-plane

stress and buckling behaviours of variable stiffness laminates. They employed a numerical

tool (ELLPACK) to directly solve a set of coupled elliptic partial differential equations

for the in-plane stress problem and applied the Rayleigh–Ritz method to deal with the

eigenvalue equations for the buckling problem. Following the pioneering works of Gürdal

et al [38, 39], several semi-analytical and reduced order models were developed to study

enhanced buckling behaviors of VAT composite plates. Wu et al. [3, 40, 41] applied the

Rayleigh-Ritz method to determine the buckling behaviour of VAT composite plates sub-

jected to compression loadings. Raju et al. [4, 42] developed a numerical methodology

based on the Differential Quadrature Method (DQM) for the prebuckling, buckling and

postbuckling analysis of VAT composite panels. Zucco et al. [43] developed a mixed

quadrilateral 3D finite element based on the Hellinger–Reissner variational principle for

linear static and buckling analyses of VAT composite plates under constant shear loading

or compression loading. In addition, Coburn et al. [44] and Oliveri and Milazzo [45] stud-

ied the buckling response of stiffened VAT panels. Chen et al. [7] investigated the buckling

behaviour of VAT composite plates with delamination. Vescovini et al. [46] developed

a semi-analytical method for the analysis of composite stiffened panels where stiffness

variability is achieved through a combination of fiber steering and curvilinear stringers.

Although buckling of VAT composite plates or structures under mechanical loadings has

been extensively studied, the thermoelastic buckling of VAT composite plates or struc-

tures has received little attention. Recently, Haldar et al. [47] extended the Rayleigh-Ritz

minimization technique proposed by Dano and Hyer [22] to study thermally induced mul-
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tistable behavior of unsymmetric laminates with curvilinear fibre paths. Vescovini and

Dozio [48] studied the thermal buckling of VAT composite plates in the framework of

a variable-kinematics approach based on Carrera’s Unified Formulation (CUF). In their

work, closed-form solutions of prebuckling results are presented four different sets of in-

plane boundary constraints. Other works [49, 50, 51, 52, 53, 54, 55, 56] on thermal buck-

ling analysis of VAT composite plates or structures mainly relied on the finite element

approach, in which a significant computational effort was required to solve the thermal

buckling problem, especially coupled with optimisation algorithms. To the best of the

authors’ knowledge, no research has been published in which an attempt has been made

to study the thermomechanical buckling behaviour of VAT plates with general in-plane

boundary constraint. Actually, the plate edges may be partially or completely restrained

against thermal expansion or contraction, and in particular scenarios, may be even free

of external forces. Therefore, to explore an effective modeling strategy for dealing with

general in-plane boundary constraint is of crucial importance to fully understand the ther-

moelastic behavior of composite plates, especially enhanced with curvilinear fibre path. In

the present work, an efficient model based on a generalised Rayleigh-Ritz energy method

is developed to study the thermomechanical buckling behaviour of VAT composite panels

with general boundary constraint. The merit of the proposed modelling strategy lies in

that the Lagrangian multiplier method is applied to remove the restrictions on admis-

sibility requirement inherent in conventional Rayleigh-Ritz formulation, which provides

generality to model general in-plane boundary constraint against thermal expansion or

contraction.

The content of this paper is arranged as follows. In the next section, the concept

of VAT laminates is introduced. Section 3 presents the theoretical formulation for both

prebuckling and thermomechanical buckling problems of VAT composite plates under a

combination of temperature change and general boundary constraint. In Section 4, the

accuracy and reliability of the proposed Rayleigh-Ritz energy model are validated by

finite element analysis and with prior results. Effects of boundary condition, fibre orien-

tation angle and temperature change on the in-plane thermoelastic and thermomechanical

buckling behaviours of VAT composite plates are studied by numerical examples. The

mechanism of exploiting variable stiffness properties to improve the thermomechanical

buckling resistance of composite plates is also explored. Finally, some conclusions are
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drawn in Section 5.

2. VAT laminates

The orientation of fibre angles of each ply of the VAT composite plate are continuously

varied with respect to the coordinates x and y, which has the dual purpose of represent-

ing variable stiffness properties. As such, VAT composite plates provide extended design

flexibility to potentially enhance structural performance. Generally, the fibre angle vari-

ation of a VAT plate is represented in a mathematical form using a small number of fibre

angle parameters [3]. In this work, for simplicity, the VAT plate with a linear fibre angle

variation is considered, as shown in Fig. 1, and the angle variation along the x′ direction

is [1]

θ(x′) = φ+
(T1 − T0)

d
| x′ | +T0 with x′ = xcosφ+ ysinφ (1)

where T0 and T1 are fibre orientation angles at two prescribed reference points. d is

the distance between the starting and ending points; φ is the angle of rotation of the

fibre path. In the present work, two types of laminates are considered, that is, φ = 0◦

and φ = 90◦. The layup configuration for the VAT laminates can be characterised by

[φ〈T0|T1〉].

3. Theoretical formulation

3.1. Legendre polynominals

Compared to other orthogonal and complete series such as trigonometric Fourier series

and beam functions, the Legendre polynomials always exhibit better convergence and

stability in capturing local response of composite structures [3, 7, 9]. In the present work,

the Legendre polynomials are therefore adopted to characterize the admissible functions

implemented in the Rayleigh-Ritz formulation and defined as:

L0(x) = 1

L1(x) = x

Lp(x) =
2p− 1

p
xLp−1(x)− p− 1

p
Lp−2(x), p = 2, 3, ...

(2)
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where p is the polynomial degree. This set of polynomials represents an orthonormal

basis, and their roots are identical with integration points of Gauss quadrature rules.

They also satisfy the Legendre differential equation.

3.2. Prebuckling analysis

In the present work, the material properties of the plate are assumed to do not vary

with temperature, that is, the material is of temperature-independent. On the other

hand, it is assumed that there exists no variation in temperature through the thickness

of the plate, that is, the temperature is independent of the thickness direction, which is

reasonable when the speed of flight does not exceed Mach Numbers of 3 or 4 [13]. Note

that, if this is not the case, the panel will, in general, not remain plane and thus lead to

the occurrence of bending and/or twisting moments within the panel [35, 57], which is

beyond the scope of this paper. However, the panel considered is exposed to an arbitrary

in-plane temperature distribution ∆T (x, y). The problem is thus one of generalised plane

stress. For symmetric VAT composite plates, the relationship between in-plane and out-

of-plane behaviours within the plate is uncoupled. Therefore, the plane-stress stress-strain

relations with free thermal strain effects included can be expressed using
ε0
x

ε0
y

γ0
xy

 =


a11(x, y) a12(x, y) a16(x, y)

a12(x, y) a22(x, y) a26(x, y)

a16(x, y) a26(x, y) a66(x, y)



N0
x

N0
y

N0
xy

+


εthx

εthy

γthxy

 (3)

where aij(i, j = 1, 2, 6) are the in-plane compliance coefficients [58]; N0
x , N0

y and N0
xy are

the in-plane force resultants; ε0
x, ε

0
y and γ0

xy are the in-plane total strains, while εthx , εthy

and γthxy are the in-plane thermal strains. The in-plane mechanical strains εmex , εmey and

γmexy are then represented as ε0
x − εmex , ε0

y − εmey and γ0
xy − γmexy , respectively.

The in-plane thermal strains (εthx , εthy and γthxy) within the plate are expressed as


εthx

εthy

γthxy

 =


a11(x, y) a12(x, y) a16(x, y)

a12(x, y) a22(x, y) a26(x, y)

a16(x, y) a26(x, y) a66(x, y)



N th
x

N th
y

N th
xy

 (4)
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with
N th
x

N th
y

N th
xy

 =
K∑
k=0

∫ zk

zk−1


Qk

11(x, y) Qk
12(x, y) Qk

16(x, y)

Qk
12(x, y) Qk

22(x, y) Qk
26(x, y)

Qk
16(x, y) Qk

26(x, y) Qk
66(x, y)



αkx(x, y)∆T

αky(x, y)∆T

αkxy(x, y)∆T

 dz (5)

where N th
x , N th

y and N th
xy are the in-plane thermal force resultants; αkx, α

k
y and αkxy are the

thermal expansion coefficients of the kth layer of the plate, which can be expressed as

αkx(x, y) = α1 cos2 θk(x, y) + α2 sin2 θk(x, y)

αky(x, y) = α1 sin2 θk(x, y) + α2 cos2 θk(x, y)

αkxy(x, y) = 2(α1 − α2) sin θk(x, y) cos θk(x, y)

(6)

where α1 and α2 are the thermal expansion coefficients along the principal directions of

the material [58].

In the framework of thermoelastic theory, both the in-plane equilibrium equation and

compatibility condition require to be simultaneously satisfied in the derivation of the

governing equation [35]. The Airy’s stress function Φ, which automatically satisfies the

in-plane equilibrium equations [34, 35, 59, 11], is thus introduced to represent the in-plane

force resultants (N0
x , N0

y and N0
xy), that is,

N0
x =

∂2Φ

∂y2
, N0

y =
∂2Φ

∂x2
, N0

xy = − ∂2Φ

∂x∂y
(7)

Additionally, in the framework of thermoelastic theory [35], the compatibility condition

of the plate is described in terms of the in-plane total strains (ε0
x, ε

0
y and γ0

xy) instead of

the in-plane thermal strains (εthx , εthy and γthxy) or mechanical strains (εmex , εmey and γmexy ) .

In view of the plane-stress state, the compatibility condition of the plate can be expressed

using

∂2ε0
x

∂y2
+
∂2ε0

y

∂y2
−
∂2γ0

xy

∂x∂y
= 0 (8)

Substituting Eqs. 3, 4 and 7 into Eq. 8, the compatibility equation expressed in terms of
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Airy’s stress function for the tow-steered plate is obtained as follows,

∂2

∂y2
[a11(x, y)Φ,yy + a12(x, y)Φ,xx − a16(x, y)Φ,xy]+

∂2

∂x2
[a12(x, y)Φ,yy + a22(x, y)Φ,xx − a26(x, y)Φ,xy]−

∂2

∂x∂y
[a16(x, y)Φ,yy + a26(x, y)Φ,xx − a66(x, y)Φ,xy] = −Ω∗(x, y)

(9)

with

Ω∗(x, y) =
∂2

∂y2
[a11(x, y)N th

x + a12(x, y)N th
y + a16(x, y)N th

xy]

+
∂2

∂x2
[a12(x, y)N th

x + a22(x, y)N th
y + a26(x, y)N th

xy]

− ∂2

∂x∂y
[a16(x, y)N th

x + a26(x, y)N th
y + a66(x, y)N th

xy]

(10)

where a comma denotes differentiation of the Airy’s stress function with respect to the

subscript. In particular, for the case of no external forces on four edges, the in-plane

stress boundary conditions of the plate can be directly expressed in terms of the Airy’s

stress function Φ, as shown in Eq. 11, which are found to be of homogeneous type.

x = ±a/2 : Φ,yy(±a/2, y) = 0 Φ,xy(±a/2, y) = 0

y = ±b/2 : Φ,xx(x,±b/2) = 0 Φ,xy(x,±b/2) = 0
(11)

The above compatibility equation and its corresponding stress boundary condition, which

govern the in-plane thermoelastic problem of the tow-steered plate undergoing an ar-

bitrary temperature change ∆T (x, y), constitute a typical boundary value problem of

Partial Differential Equation (PDE). Expanding the derivatives in Eq. 9, it was found

that the compatibility equation involves additional higher order derivative terms with

respect to the in-plane flexibility aij(i, j = 1, 2, 6). For straight-fibre plates under uniform

temperature rise or drop (∆T (x, y) ≡ ∆T ), both the in-plane thermal force resultants

(N th
x , N th

y and N th
xy) and compliance coefficients aij(i, j = 1, 2, 6) remain constant over

the entire panel. As such, the compatibility equation in Eq. 9 tends to be homogeneous

(Ω∗(x, y) ≡ 0), which means that there exists no in-plane force resultants (N0
x , N0

y and

N0
xy) over the entire plane of the plate. Under such circumstance, the plate uniformly

expand or contract due to the temperature rise or drop. However, for VAT plates un-
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der uniform temperature change or straight-fibre plates under nonuniform temperature

change, the function Ω∗(x, y) on the right-hand side of Eq. 9 varies with respect to the co-

ordinates x and y, and thus the compatibility equation in Eq. 9 becomes inhomogeneous,

which will inevitably lead to the occurence of in-plane force resultants (N0
x , N0

y and N0
xy)

within the plate domain. In these cases, one may directly solve the governing equation by

applying several powerful mathematical methods such as Galerkin method [15], Differen-

tial Quadrature Method (DQM) [4, 60, 61], Complex Function Method (CFM) [62] and

Fourier Series Method (FSM) [34, 35, 59]. In the present work, however, the Rayleigh-

Ritz formulation based on the weak-form variational principle is adopted to deal with the

in-plane thermoelastic problem of the VAT plate under an arbitrary temperature change

∆T (x, y). The obvious advantages of this approach lie in that the derivative terms of

stiffness coefficients are avoided, and this leads to the analysis procedure for a VAT lami-

nate analogous to a constant stiffness laminate [41]. Huang and Tauchert [18] and Meyers

and Hyer [19] solved the in-plane thermoelastic problem of straight-fibre plates under

temperature change through the first variation of the total thermoelastic strain energy

or potential energy, which are expressed in terms of two unknown displacement fields (u0

and v0),

δΠP (u0, v0) =

∫∫
Ω

[
(N tot

x −N th
x )δε0

x + (N tot
y −N th

y )δε0
y + (N tot

xy −N th
xy)δγ

0
xy

]
dxdy (12)

A more detailed description of the expanded form in Eq. 12 can be found in Refs. [18]

and [19]. However, the resulting weak-form solution fails to satisfy the natural (or force)

boundary conditions along four edges of the plate [18]. To this aim, the first variation of

the thermoelastic complementary energy of the plate is thus adopted in the present work

and written as follows [63]:

δΠC(Φ) =

∫∫
Ω

[
(εmex + εthx )δN0

x + (εmey + εthy )δN0
y + (γmexy + γthxy)δN

0
xy

]
dxdy (13)
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which can be expanded as,

δΠC(Φ) =

∫∫
Ω

[(
a11(x, y)

∂2Φ

∂y2
+ a12(x, y)

∂2Φ

∂x2
− a16(x, y)

∂2Φ

∂x∂y

)
δ
∂2Φ

∂y2

+
(
a12(x, y)

∂2Φ

∂y2
+ a22(x, y)

∂2Φ

∂x2
− a26(x, y)

∂2Φ

∂x∂y

)
δ
∂2Φ

∂x2

−
(
a16(x, y)

∂2Φ

∂y2
+ a26(x, y)

∂2Φ

∂x2
− a66(x, y)

∂2Φ

∂x∂y

)
δ
∂2Φ

∂x∂y

+
(
εthx (x, y)δ

∂2Φ

∂y2
+ εthy (x, y)δ

∂2Φ

∂x2
− γthxy(x, y)δ

∂2Φ

∂x∂y

)]
dxdy

(14)

In the Rayleigh-Ritz formulation, the Airy’s stress function Φ can be constructed by

employing admissible functions that fully satisfy the stress-free boundary conditions along

four edges of the panel (see Eq. 11) and is thus expressed as [3, 64, 9]

Φ(ξ, η) = (1− ξ2)2(1− η2)2

P∑
p=0

Q∑
q=0

φpqLp(ξ)Lq(η) (15)

where ξ = 2x/a and η = 2y/b; Lp(ξ) and Lq(η) are the pth and qth Legendre polyno-

mials with respect to ξ and η, respectively. By substituting Eqs. 7 and 15 into Eq.

14 and setting the first variation of the thermoelastic complementary energy δΠC(φpq)

(p = 0, 1, · · · , P ; q = 0, 1, · · · , Q) to zero, that is,

δΠC(φ00, φ01, · · · , φPQ) = 0 (16)

a set of linear algebraic equations is then generated and expressed in the following matrix

form:

Kφ = Ψth (17)

where K is the membrane stiffness matrix of the plate; Ψth is the thermally induced load

vector. With the solution of Airy’s stress function given by Eq. 15, the non-uniform

in-plane force resultants (N0
x , N0

y and N0
xy) of the VAT plate under an arbitrary temper-

ature change ∆T (x, y) can be determined from Eq. 7. It is noted that the weak-form

equation (Eq. 17) based on the thermoelastic complementary energy principle is equiv-

alent to the strong-form compatibility equation (Eq. 9). However, the linear governing

12



equation given by Eq. 17 is only applicable to predict the in-plane thermoelastic response

of the plate that is free of external forces on the edges. If the plate is further subjected

to in-plane boundary constraints such as non-uniform shear loadings, combined normal

and shear loadings or mixed stress and displacement loadings, an additional in-plane

boundary condition requires to be considered in the Rayleigh-Ritz formulation. To this

aim, the appropriate admissible functions need to be chosen in constructing the Airy’s

stress function Φ. Unfortunately, a challenging issue in the conventional Rayleigh-Ritz

formulation lies in the implementation of complex in-plane boundary constraints. Re-

cently, Chen and Nie [9] proposed an generalised Rayleigh-Ritz formulation enhanced by

the Lagrangian multiplier method to successfully predict the in-plane response of VAT

composite plates with general boundary constraints. With the aid of the Lagrangian mul-

tiplier method, the individual admissible functions need not satisfy the natural (or force)

boundary conditions but the series as a whole is forced to satisfy these by introducing

additional constraint equations, which greatly relaxes the admissibility requirement in the

Rayleigh-Ritz formulation and is thus suitable to a more general in-plane boundary con-

straint. In the present work, the generalised Rayleigh-Ritz formulation proposed by Chen

and Nie [9] is therefore extended to deal with the thermomechanical coupling problem

of VAT composite plates with general in-plane boundary constraints. In the following,

three kinds of in-plane boundary constraints are included, that is, pure stress boundary

constraint (Case A), pure displacement boundary constraint (Case B) and mixed stress

and displacement boundary constraint (Case C). Note, for each case, the panel is also

exposed to an arbitrary temperature change ∆T (x, y).

Case A

In this subsection, the Rayleigh-Ritz formulation enhanced by the Lagrangian mul-

tiplier method is applied to solve the in-plane thermoelastic problem of VAT composite

plates subjected to a combination of both temperature change and pure stress boundary

constraints. The Airy’s stress function Φ in the generalised Rayleigh-Ritz formulation is

now redefined as:

Φ(ξ, η) =
P∑
p=0

Q∑
q=0

φpqLp(ξ)Lq(η) (18)

13



Substituting Eq. 18 into Eq. 7, the in-plane force resultants N0
x , N0

y and N0
xy in the

framework of thermoelastic theory can then be expanded as:

N0
x =

4

b2

P∑
p=0

Q∑
q=2

φpqLp(ξ)
∂2Lq(η)

∂η2

N0
y =

4

a2

P∑
p=2

Q∑
q=0

φpq
∂2Lp(ξ)

∂ξ2
Lq(η)

N0
xy = − 4

ab

P∑
p=1

Q∑
q=1

φpq
∂Lp(ξ)

∂ξ

∂Lq(η)

∂η

(19)

It is assumed that the prescribed boundary stress components (Ñ0
x , Ñ0

y and Ñ0
xy) along

the edges (ξ = ±1, η = ±1) of the plate are known in advance. Then, we can easily

obtain the following in-plane stress boundary conditions:

Ñ0
x(η)

∣∣∣
ξ=−1

=
4

b2

Q∑
q=2

Λ1
q

∂2Lq(η)

∂η2
, Ñ0

x(η)
∣∣∣
ξ=1

=
4

b2

Q∑
q=2

Λ2
q

∂2Lq(η)

∂η2

Ñ0
y (ξ)

∣∣∣
η=−1

=
4

a2

P∑
p=2

Λ3
p

∂2Lp(ξ)

∂ξ2
, Ñ0

y (ξ)
∣∣∣
η=1

=
4

a2

P∑
p=2

Λ4
p

∂2Lp(ξ)

∂ξ2

Ñ0
xy(η)

∣∣∣
ξ=−1

= − 4

ab

Q∑
q=1

Λ5
q

∂Lq(η)

∂η
, Ñ0

xy(η)
∣∣∣
ξ=1

= − 4

ab

Q∑
q=1

Λ6
q

∂Lq(η)

∂η

Ñ0
xy(ξ)

∣∣∣
η=−1

= − 4

ab

P∑
p=1

Λ7
p

∂Lp(ξ)

∂ξ
, Ñ0

xy(ξ)
∣∣∣
η=1

= − 4

ab

P∑
p=1

Λ8
p

∂Lp(ξ)

∂ξ

(20)

with

Λ1
q =

P∑
p=0

φpqLp(−1), Λ2
q =

P∑
p=0

φpqLp(1)

Λ3
p =

Q∑
q=0

φpqLq(−1), Λ4
p =

Q∑
q=0

φpqLq(1)

Λ5
q =

P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

, Λ6
q =

P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

Λ7
p =

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=−1

, Λ8
p =

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=1

(21)
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where Λi
j (i = 1, 2, · · · , 8; j = p, q) is defined as the boundary stress coefficient, which is

related to the prescribed stress distribution on the ith stress boundary condition. From Eq.

20, it is found that for each stress boundary condition, the corresponding boundary stress

coefficient Λi
j (i = 1, 2, · · · , 8; j = p, q) can be determined by applying the appropriate

mathematical fitting method and thus can be known in advance. From this point of view,

Eq. 21 can be regarded as another form of the stress boundary constraint along the edges

of the plate. In view of this, efforts must be concentrated on determining the boundary

stress coefficient Λi
j (i = 1, 2, · · · , 8; j = p, q). In the present work, a linear fitting method

combined with a set of control points is adopted to retrieve the boundary stress coefficients

from the in-plane stress boundary conditions in Eq. 20. The Chebyshev–Gauss–Labotto

point distribution, due to its non-uniformity and stability, is superior to the uniform point

distribution in capturing the local feature of the boundary stress distribution and is thus

chosen to be distributed on the boundary edges (ξ = ±1, η = ±1) of the plate, which are

given as

ξ = ±1 : ηj = cos(
j − 1

N η
CGL − 1

π) j = 1, 2, · · · ,N η
CGL

η = ±1 : ξi = cos(
i− 1

N ξ
CGL − 1

π) i = 1, 2, · · · ,N ξ
CGL

(22)

where N η
CGL and N ξ

CGL are the number of the Chebyshev–Gauss–Labotto points, which

equals to the number of terms in each stress boundary condition of Eq. 20. Substituting

the Chebyshev–Gauss–Labotto points into Eq. 20, a set of linear algebraic equations

corresponding to each stress boundary condition can be obtained. A detailed process of

determining the boundary stress coefficients can be found in Ref. [9]. In particular, for

the case of no external forces on four edges (see Eq. 11), all boundary stress coefficients

equal to zero, and therefore the stress constraint equations from Eq. 21 can be directly
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written as

0 =
P∑
p=0

φpqLp(−1), 0 =
P∑
p=0

φpqLp(1)

0 =

Q∑
q=0

φpqLq(−1), 0 =

Q∑
q=0

φpqLq(1)

0 =
P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

, 0 =
P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

0 =

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=−1

, 0 =

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=1

(23)

Furthermore, the stress constraint equations given by Eq. 21 need to be included into

the first variation of the thermoelastic complementary energy δΠC shown in Eq. 14 by

applying the Lagrangian multiplier method, which can be expressed using

δLA(φ00, φ01, · · · , φPQ, χ1
2, χ

1
3, · · · , χ8

P ) = δΠC(φ00, φ01, · · · , φPQ) + δΠ∗LM (24)

with

Π∗LM =
4

b2

Q∑
q=2

χ1
q

(
P∑
p=0

φpqLp(−1)− Λ1
q

)
+

4

b2

Q∑
q=2

χ2
q

(
P∑
p=0

φpqLp(1)− Λ2
q

)

+
4

a2

P∑
p=2

χ3
p

(
Q∑
q=0

φpqLq(−1)− Λ3
p

)
+

4

a2

(
P∑
p=2

χ4
p

Q∑
q=0

φpqLq(1)− Λ4
p

)

− 4

ab

Q∑
q=1

χ5
q

(
P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

− Λ5
q

)
− 4

ab

Q∑
q=1

χ6
q

(
P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1
− Λ6

q

)

− 4

ab

P∑
p=1

χ7
p

(
Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=−1

− Λ7
p

)
− 4

ab

P∑
p=1

χ8
p

(
Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=1
− Λ8

p

)
(25)

where Π∗LM denotes the stress constraint function generated by applying the Lagrangian

multiplier method, which is equivalent to the stress boundary condition along the edges of

the plate; χij (i = 1, 2, · · · , 8; j = p, q ) are the jth Lagrangian multiplier corresponding to

the ith stress boundary condition. Substituting Eqs. 14, 18 and 25 into Eq. 24 and setting

the first variation of the Lagrangian function δLA(φ00, φ01, · · · , φPQ, χ1
2, χ

1
3, · · · , χ8

P ) to

16



zero, that is, [65]

δLA(φ00, φ01, · · · , φPQ, χ1
2, χ

1
3, · · · , χ8

P ) = 0 (26)

a set of linear algebraic equations can be obtained and expressed in the following matrix

form: K LM

LMT O

φ

χ

 =

Ψth

Λ

 (27)

where K and Ψth are similar to those in Eq. 17, but both of them are obtained based

on the Airy’s stress function given by Eq. 18; LM is the Lagrangian multiplier matrix

generated by the the first variation of the stress constraint function, that is, δΠ∗LM ; LMT

is the transposed form of the Lagrangian multiplier matrix LM; O is the null matrix;

φ and χ are the unknown vectors to be determined; Λ is the boundary stress vector,

which collects all the boundary stress coefficients Λi
j (i = 1, 2, · · · , 8; j = p, q). It is

noted that the linear algebraic equations LMTφ = Λ in Eq. 27 are equivalent to the

stress constraint equations from Eq. 21. Once the boundary stress coefficients in Eq. 20

are determined by applying the mathematical fitting method, the Legendre polynomial

coefficients φpq(p = 0, 1, · · · , P ; q = 0, 1, · · · , Q) can be obtained by using Eq. 27 and thus

the in-plane thermoelastic problem of VAT composite plates subjected to a combination

of both temperature change and pure stress boundary constraints is solved. In particular,

for the case of no external forces on four edges of the plate, Eq. 27 can be reduced to K LM

LMT O

φ

χ

 =

Ψth

Ŏ

 (28)

where Ŏ is the null vector. Note that, for this particular case, the in-plane response of

the tow-steered plate is only controlled by temperature change. On the other hand, if no

temperature change occurs within the plate domain, that is, ∆T (x, y) ≡ 0, the thermally

induced load vector Ψth will vanish in Eq. 27 and thus the governing equation given by
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Eq. 27 is reduced into K LM

LMT O

φ

χ

 =

Ŏ

Λ

 (29)

For such a special case, the in-plane response of the tow-steered plate is fully determined by

pure stress boundary constraints, which has been studied in details in Ref. [9]. However,

from a mathematical point of view, Eq. 27 can be regarded as a linear superposition of

Eq. 28 and Eq. 29, which means that the in-plane force resultants of the tow-steered

plate obtained under a combination of thermal and mechanical loadings can be regarded

as a superposition of those obtained under their respective loadings.

Case B

In this section, the Rayleigh-Ritz formulation is extended to the case of a combination

of both temperature change and pure displacement boundary constraint. Without loss

of generality, the in-plane displacement boundary conditions along the edges (ξ = ±1,

η = ±1) of the plate can be expressed in the following form:

ξ = −1 :

u0 = ũ0
1(η)

v0 = ṽ0
1(η)

; ξ = 1 :

u0 = ũ0
2(η)

v0 = ṽ0
2(η)

η = −1 :

u0 = ũ0
3(ξ)

v0 = ṽ0
3(ξ)

; η = 1 :

u0 = ũ0
4(ξ)

v0 = ṽ0
4(ξ)

(30)

where ũ0
i and ṽ0

i (i = 1, 2, 3, 4) are the prescribed in-plane displacements along the ith

boundary edge of the plate. As the boundary conditions on four edges are specified solely

in terms of displacements, there exists no stress boundary constraints along the edges of

the plate. As such, the stress constraint function Π∗LM in Eq. 25 obtained by applying

the Lagrangian multiplier method is unnecessary. However, the displacement boundary

constraints on four edges of the plate require to be satisfied in boundary integral form
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and given by [9]

Π∗D =
2

b

∫ 1

−1

[
∂2Φ

∂η2
ũ0

1

]
ξ=−1

dη − 2

a

∫ 1

−1

[
∂2Φ

∂ξ∂η
ṽ0

1

]
ξ=−1

dη+

2

b

∫ 1

−1

[
∂2Φ

∂η2
ũ0

2

]
ξ=1

dη − 2

a

∫ 1

−1

[
∂2Φ

∂ξ∂η
ṽ0

2

]
ξ=1

dη−

2

b

∫ 1

−1

[
∂2Φ

∂ξ∂η
ũ0

3

]
η=−1

dξ +
2

a

∫ 1

−1

[
∂2Φ

∂ξ2
ṽ0

3

]
η=−1

dξ−

2

b

∫ 1

−1

[
∂2Φ

∂ξ∂η
ũ0

4

]
η=1

dξ +
2

a

∫ 1

−1

[
∂2Φ

∂ξ2
ṽ0

4

]
η=1

dξ

(31)

where Π∗D denotes the displacement constraint function representing the work done by the

unknown force along the applied boundary displacement. Furthermore, the first variation

of the displacement constraint function δΠ∗D need to be included into the first variation

of the thermoelastic complementary energy δΠC in Eq. 14, that is,

δΠTot(φ00, φ01, · · · , φPQ) = δΠC(φ00, φ01, · · · , φPQ) + δΠ∗D(φ00, φ01, · · · , φPQ) (32)

By substituting Eqs. 14 and 31 into Eq. 32 and setting the first variation of the total

thermoelastic complementary energy δΠTot(φ00, φ01, · · · , φPQ) to 0, that is,

δΠTot(φ00, φ01, · · · , φPQ) = 0 (33)

a set of linear algebraic equations is then generated and expressed in the following matrix

form:

Kφ = Ψdis + Ψth (34)

where K and Ψth are similar to those in Case A; Ψdis is the load vector induced by the

prescribed displacement along the boundary edges of the plate, which is obtained from

Eq. 31. In particular, if the in-plane displacements on four edges of the plate are fully

constrained, that is, ũ0
i = ṽ0

i = 0 (i = 1, 2, 3, 4), the displacement-induced load vector

Ψdis will vanish in Eq. 34 and thus the resulting equation given by Eq. 34 has a form

similar to that in Eq. 17. For such a particular case, the in-plane behaviour of the plate

is only driven by the thermal loadings. The robustness and effectiveness of the proposed

Rayleigh-Ritz model for this particular case will be demonstrated in Section. 4. On the
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other hand, if there exists no temperature change within the plate, that is, ∆T (x, y) ≡ 0,

the thermally induced load vector Ψth will vanish in Eq. 34 and the governing equation

is expressed as

Kφ = Ψdis (35)

For this case, the in-plane response of the panel is dominated by the pure displacement

boundary constraints, which has been studied in details in Ref. [9].

Case C

In this part, a more general situation where there simultaneously exists both in-plane

stress and displacement boundary conditions is considered. The panel is assumed to be

exposed to a combination of both temperature change and mixed in-plane boundary con-

straints. As in the case of pure stress boundary constraints, the Rayleigh-Ritz formulation

enhanced by the Lagrangian multiplier method continues to be employed. However, both

the stress constraint function Π∗LM and displacement constraint function Π∗D need to be

included into the first variation of the thermoelastic complementary energy δΠC , that is:

δLB(φ00, φ01, · · · , φPQ, χ1
2, χ

1
3, · · · , χ8

P ) = δΠC + δΠ∗LM + δΠ∗D (36)

Substituting Eqs. 14, 25 and 31 into Eq. 36 and setting the first variation of the La-

grangian function δLB(φ00, φ01, · · · , φPQ, χ1
2, χ

1
3, · · · , χ8

P ) to zero, that is,

δLB(φ00, φ01, · · · , φPQ, χ1
2, χ

1
3, · · · , χ8

P ) = 0 (37)

a set of linear algebraic equations, which governs the in-plane thermoelastic problem of

the VAT plate subjected to a combination of both temperature change and mixed in-plane

boundary constraints, can be obtained and expressed in the following matrix form: K LM

LMT O

φ

χ

 =

Ψdis + Ψth

Λ

 (38)

where K and Ψth are similar to those in Case A, while Ψdis is the same as that in Case

B. However, it is noted that the in-plane stress and displacement boundary constraints in

the same direction (ξ or η) of each panel edge are conjugate, which indicates that if the
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in-plane displacement boundary constraint in that direction of the panel edge is activated,

the conjugate stress constraint tends to be suppressed, and vice versa. From this point of

view, there exists two special cases of governing equation. For example, when the in-plane

stress boundary constraints are applied on all four edges of the panel, the corresponding

displacement boundary constraints remain dormant and thus the first variation of the

displacement constraint function δΠ∗D needs to be removed from Eq. 36. For this case,

the governing equation given by Eq. 38 is reduced into that in Eq. 27. On the other

hand, when the in-plane displacement boundary constraints are imposed on all four edges

of the panel, the corresponding stress boundary constraints are suppressed and thus the

first variation of the stress constraint function δΠ∗LM needs to be removed from Eq. 36.

Under such circumstance, the governing equation given by Eq. 38 is reduced into that

in Eq. 34. However, in most cases, there appears mixed boundary constraints on the

boundary edges of the plate. For example, the plate in thermal environment is assumed

to be subjected to uniform end-shortening with transverse edges free to deform, which

has been extensively studied in previous researches [1, 3, 7, 9]. This is a mixed in-plane

boundary condition and given by

x = ±a/2 : u0(±a/2, y) = ∓∆x; N0
xy(±a/2, y) = 0

y = ±b/2 : N0
y (x,±b/2) = 0; N0

yx(x,±b/2) = 0
(39)

For this case, the boundary stress coefficients related to prescribed stress boundary con-

ditions equal to zero, that is,

0 =

Q∑
q=0

φpqLq(−1), 0 =

Q∑
q=0

φpqLq(1)

0 =
P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

, 0 =
P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

0 =

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=−1

, 0 =

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=1

(40)
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As such, the stress constraint function Π∗LM given by Eq. 25 can be simplified as

Π∗LM =
4

a2

P∑
p=2

χ3
p

Q∑
q=0

φpqLq(−1) +
4

a2

P∑
p=2

χ4
p

Q∑
q=0

φpqLq(1)

− 4

ab

Q∑
q=1

χ5
q

P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

− 4

ab

Q∑
q=1

χ6
q

P∑
p=1

φpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

− 4

ab

P∑
p=1

χ7
p

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=−1

− 4

ab

P∑
p=1

χ8
p

Q∑
q=1

φpq
∂Lq(η)

∂η

∣∣∣
η=1

(41)

Moreover, the displacement constraint function Π∗D given by Eq. 31 can be degenerated

into

Π∗D =−
∫ 1

−1

2

b

∂2Φ

∂η2
∆xdη −

∫ 1

−1

2

b

∂2Φ

∂η2
∆xdη (42)

Finally, the governing equation given by Eq. 38 is reduced into K LM

LMT O

φ

χ

 =

Ψdis + Ψth

Ŏ

 (43)

In particular, if the in-plane longitudinal displacement on the edges (x = ±a/2 ) of the

plate are fully constrained, that is, ∆x = 0, the displacement-induced load vector Ψdis

will vanish in Eq. 43. Under such circumstance, the in-plane behaviour of the plate is

only controlled by the temperature rise or drop. On the other hand, if there exists no

temperature change within the plate, that is, ∆T (x, y) ≡ 0, the thermally induced load

vector Ψth will vanish in Eq. 43. In such case, the governing equation given by Eq. 43

is then reduced to Eq. 44 and the in-plane response of the plate is driven by uniform

end-shortening, which has been studied in details in Ref. [9].

 K LM

LMT O

φ

χ

 =

Ψdis

Ŏ

 (44)

It is noted that for all the cases above, only the assumption of mid-plane symmetry

is applied on the VAT composite plate, as described before. Therefore, this proposed

Rayleigh-Ritz model is suitable to a more general layup configuration, even with extension-

shear coupling, that is, A16 6= 0 and A26 6= 0.
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3.3. Thermomechanical buckling analysis

In this section, the thermomechanical buckling analysis of VAT composite plates under

the non-uniform in-plane force resultants (N0
x , N0

y and N0
xy) obtained by the previous

in-plane thermoelastic analysis is performed by employing the Rayleigh-Ritz method.

In the present work, the governing equation of thermomechanical buckling problem is

derived based on the third-order shear deformation theory of Reddy’s type, which has

been extensively employed for thermal or mechanical buckling analysis [66, 67, 28, 68].

The in-plane displacement fields (u and v) and the out-of-plane displacement field (w) of

the plate in its buckled state can be expressed as [58]:

u(x, y, z) = u0 + zφ0
x(x, y)− 4

3h2
z3

(
φ0
x +

∂w0

∂x

)
v(x, y, z) = v0 + zφ0

y(x, y)− 4

3h2
z3

(
φ0
y +

∂w0

∂y

)
w(x, y, z) = w0(x, y)

(45)

where φ0
x and φ0

y are the independent rotations of the normal to the middle surface about

the y and x axis, respectively; u0, v0 and w0 is the in-plane and out-of-plane displacements

of the middle surface, respectively. Herein, the in-plane displacement fields of the panel

induced by the deflection and rotation of the middle surface are considered. As such, the

strain–displacement relationship of the plate in the linear regime can be written as [58]:

ε =
{
εx εy γxy

}T

= zε(1) + z3ε(3)

γ =
{
γyz γxz

}T

= γ(0) + z2γ(2)

(46)

with (c2 = 3c1 and c1 = 4/3h2)

ε(1) =
{
ε

(1)
x ε

(1)
y γ

(1)
xy

}T

=


∂φ0x
∂x

∂φ0y
∂y

∂φ0x
∂y

+
∂φ0y
∂x

 (47a)

ε(3) =
{
ε

(3)
x ε

(3)
y γ

(3)
xy

}T

= −c1


∂φ0x
∂x

+ ∂2w0

∂x2

∂φ0y
∂y

+ ∂2w0

∂y2

∂φ0x
∂y

+
∂φ0y
∂x

+ 2∂
2w0

∂x∂y

 (47b)
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γ(0) =
{
γ

(0)
yz γ

(0)
xz

}T

=

φ0
y + ∂w0

∂y

φ0
x + ∂w0

∂x

 (47c)

γ(2) =
{
γ

(2)
yz γ

(2)
xz

}T

= −c2

φ0
y + ∂w0

∂y

φ0
x + ∂w0

∂x

 (47d)

The constitutive equation of the VAT composite pate is given as in the following matrix

formM

P

 =

D F

F H

ε(1)

ε(3)

−
Mth

Pth

 (48a)

Q

R

 =

A D

D F

γ(0)

γ(2)

 (48b)

with

(Aij, Bij, Dij, Eij, Fij, Hij) =
K∑
k=0

∫ zk

zk−1

Qk
ij(x, y)(1, z, z2, z3, z4, z6)dz (49a)

(Aij, Dij, Fij, ) =
K∑
k=0

∫ zk

zk−1

Qk
ij(x, y)(1, z2, z4)dz (49b)

where the stiffnesses in Eq. 49a are defined for i, j = 1, 2, 6 and those in Eq. 49b are

defined for i, j = 4, 5. The thermal moment resultant vectors Mth and Pth are expressed

as

Mth =


M th

x

M th
y

M th
xy

 =
K∑
k=0

∫ zk

zk−1


Qk

11(x, y) Qk
12(x, y) Qk

16(x, y)

Qk
12(x, y) Qk

22(x, y) Qk
26(x, y)

Qk
16(x, y) Qk

26(x, y) Qk
66(x, y)



αkx(x, y)∆T

αky(x, y)∆T

αkxy(x, y)∆T

 zdz (50a)
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Pth =


P th
x

P th
y

P th
xy

 =
K∑
k=0

∫ zk

zk−1


Qk

11(x, y) Qk
12(x, y) Qk

16(x, y)

Qk
12(x, y) Qk

22(x, y) Qk
26(x, y)

Qk
16(x, y) Qk

26(x, y) Qk
66(x, y)



αkx(x, y)∆T

αky(x, y)∆T

αkxy(x, y)∆T

 z3dz (50b)

It is noted that for symmetric layups, all three components of the vector Mth or Pth are

zero and thus will vanish in the constitutive equation given by Eq. 48a.

The total potential energy of the VAT composite plate in its buckled shape can be

expressed as in condensed form:

Π = Ub + Us + V (51)

in which

Ub =
1

2

∫∫
Ω

[
M0

xε
(1)
x +M0

y ε
(1)
y +M0

xyγ
(1)
xy + P 0

xε
(3)
x + P 0

y ε
(3)
y + P 0

xyγ
(3)
xy

]
dxdy (52a)

Us =
1

2

∫∫
Ω

[
Q0
yzγ

(0)
yz +Q0

xzγ
(0)
yz +R0

yzγ
(2)
xz +R0

xzγ
(2)
xz

]
dxdy (52b)

V =
1

2

∫∫
Ω

[
N0
x

(
∂w0

∂x

)2

+N0
y

(
∂w0

∂y

)2

+N0
xy

∂w0

∂x

∂w0

∂y

]
dxdy (52c)

where Ub and Us are the bending and shear strain energies of the plate in its buckled

state, respectively; V is the external work of the plate done by the non-uniform in-plane

force resultants (N0
x , N0

y and N0
xy). Note that, the above expressions need to be converted

into a non-dimensional form for analysis.

The Rayleigh-Ritz method is then adopted to solve the buckling problem of the VAT

plate under a combination of thermal and mechanical loads. Because the analytical mod-

elling is derived from a weak form formula, only the essential or geometrical boundary

conditions need to be satisfied. As such, the out-of-plane boundary constraints in terms

of displacements will be applied on the edges of the panel. For the panel with four edges
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clamped, the out-of-plane boundary conditions are given by:

ξ = −1 :


w0(−1, η) = 0

φ0
x(−1, η) = 0

φ0
y(−1, η) = 0

; ξ = 1 :


w0(1, η) = 0

φ0
x(1, η) = 0

φ0
y(1, η) = 0

η = −1 :


w0(ξ,−1) = 0

φ0
x(ξ,−1) = 0

φ0
y(ξ,−1) = 0

; η = 1 :


w0(ξ, 1) = 0

φ0
x(ξ, 1) = 0

φ0
y(ξ, 1) = 0

(53)

For the panel with four edges simply supported, the out-of-plane boundary conditions can

be expressed as:

ξ = −1 :

w0(−1, η) = 0

φ0
y(−1, η) = 0

; ξ = 1 :

w0(1, η) = 0

φ0
y(1, η) = 0

η = −1 :

w0(ξ,−1) = 0

φ0
x(ξ,−1) = 0

; η = 1 :

w0(ξ, 1) = 0

φ0
x(ξ, 1) = 0

(54)

Herein, the displacement w0 and rotations φ0
x and φ0

y used for the buckling analysis can

be constructed by Legendre polynomials multiplying with functions that satisfy essential

or geometrical boundary conditions along four edges of the panel. For the panel with four

edges clamped, the displacement fields can be written as:

w0(ξ, η) = (1− ξ2)(1− η2)
M∑
m=0

N∑
n=0

AmnLm(ξ)Ln(η)

φ0
x(ξ, η) = (1− ξ2)(1− η2)

R∑
r=0

S∑
s=0

BrsLr(ξ)Ls(η)

φ0
y(ξ, η) = (1− ξ2)(1− η2)

G∑
g=0

H∑
h=0

CghLg(ξ)Lh(η)

(55)

For the panel with four edges simply supported, the displacement fields can be written

26



as:

w0(ξ, η) = (1− ξ2)(1− η2)
M∑
m=0

N∑
n=0

AmnLm(ξ)Ln(η)

φ0
x(ξ, η) = (1− η2)

R∑
r=0

S∑
s=0

BrsLr(ξ)Ls(η)

φ0
y(ξ, η) = (1− ξ2)

G∑
g=0

H∑
h=0

CghLg(ξ)Lh(η)

(56)

where Amn, Brs and Cgh are the polynomial coefficients of the displacement fields w0,

φ0
x and φ0

y, respectively. Other boundary conditions can be dealt with in a similar way.

Substituting Eqs. 48, 52 and 55 or 56 into Eq. 51 and minimizing the total potential

energy Π with respect to Amn(m = 0, 1, · · · ,M ;n = 0, 1, · · · , N), Brs(r = 0, 1, · · · , R; s =

0, 1, · · · , S), Cgh(g = 0, 1, · · · , G;h = 0, 1, · · · , H), that is,

∂Π

∂Amn
= 0;

∂Π

∂Brs
= 0;

∂Π

∂Cgh
= 0 (57)

a set of algebraic equations is then obtained and expressed in the following matrix form:


K11 K12 K13

K12 K22 K23

K13 K23 K33

+ λ


L11 0 0

0 0 0

0 0 0




A

B

C

 =


0

0

0

 (58)

where Kij (i, j = 1, 2, 3) is the stiffness matrix of the panel; L11 is the stability matrix

due to the in-plane force resultant distribution obtained under a combination of thermal

and mechanical loadings; λ is the eigenvalue; {A B C}T is the vector of unknown

coefficients corresponding to the shape functions. The detailed expressions of the elements

in the matrices are presented in the Appendix. The buckling load and the corresponding

mode shape of the VAT plate under a combination of thermal and mechanical loads can

then be obtained by solving the eigenvalue equation given by Eq. 58. However, the in-

plane force resultants of the tow-steered plate obtained under a combination of thermal

and mechanical loadings can be regarded as a superposition of those obtained under their
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respective loadings. In view of this, Eq. 58 can be divided into:


K11 K12 K13

K12 K22 K23

K13 K23 K33

+ λ(1)


L

(1)
11 0 0

0 0 0

0 0 0

+ λ(2)


L

(2)
11 0 0

0 0 0

0 0 0




A

B

C

 =


0

0

0

 (59)

where L
(1)
11 and L

(2)
11 are the stability matrices obtained under the unit thermal and unit

mechanical loadings, respectively; λ(1) is the temperature difference, while λ(2) is the

mechanical load multiplier when critical buckling occurs.

4. Results and discussion

This section presents a detailed investigation on both prebuckling and buckling be-

haviours of VAT composite plates under a combination of both temperature change and

general in-plane boundary constraint. Firstly, a comparsion study is carried out to val-

idate the accuracy of the proposed novel Rayleigh-Ritz model. Afterwards, the gener-

alized Rayleigh-Ritz formulation is extended to discuss the effects of fibre orientation

angle, temperature change and in-plane boundary constraint on both thermal and ther-

malmechanical buckling response of the plate. The mechanism of applying tow-steered

technology to improve the thermo-mechanical buckling resistance of composite plates is

also explored. In order to validate both prebuckling and buckling results obtained by

the present Rayleigh-Ritz model, FE modelling of the plate was also carried out using

ABAQUS (6.12-1 version). The S4R element was chosen to discretize the panel structure

and very fine meshes (60× 60) were selected to achieve the desired accuracy. Each finite

element was assumed to have a constant fibre orientation for each lamina to model the

linear fibre angle distribution. In addition, a subroutine was developed to generate the

composite element with independent fibre orientations. Note that, the thickness variation

within the tow-steered plate due to tow overlap or gaps were not considered and thus the

ply-thickness was regarded as a constant in the present work.

4.1. Model validation and boundary effects

This section firstly conducted a detailed study for the model validation on the in-

plane thermoelastic behaviour of VAT composite plates under a combination of both

temperature change and general in-plane boundary constraint. In this case, a square
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plate (a = b = 150mm) made of Kevlar/Epoxy material is considered and a four-layer

symmetric-balanced layup configuration with linear variation of fibre orientation angle

is used. Note, the chosen layup configuration, that is, [±〈66.05|11.73〉]s, is the optimal

result for the Kevlar/Epoxy composite material according to the optimization performed

by Duran et al. [50, 51]. The ply thickness is 0.254 mm and thus the plate total thickness

is h = 1.016 mm. The material properties of each lamina are presented in Table. 3,

that is, E11 = 80GPa, E22 = 5.5GPa, G12 = 2.2GPa and v12 = 0.34 with the thermal

expansion coefficients α1 = −2.0 × 10−6/◦C and α2 = 60 × 10−6/◦C. The plate studied

herein is exposed to a unit uniform temperature change, that is, ∆T = 1◦C. On the other

hand, six different in-plane boundary constraints, as shown in Fig. 2, are imposed on the

edges of the plate, that is, Type-A, Type-B, Type-C,Type-D, Type-E and Type-F, which

are described as follows:

• Type-A: all four edges free of external forces;

• Type-B: all four edges fixed against both in-plane normal and tangential displace-

ments;

• Type-C: all four edges restrained against in-plane normal displacements but free to

move tangentially;

• Type-D: uniform end shortening in the longitudinal direction with two transverse

edges restrained against normal expansion;

• Type-E: two longitudinal edges restrained against normal expansion with two trans-

verse edges free to deform;

• Type-F: uniform end shortening in the longitudinal direction with two transverse

edges free to deform.

Type-A belongs to the case of pure stress boundary constraint, while Type-B belongs

to the case of pure displacement boundary constraint. Others belong to the case of

mixed stress and displacement boundary constraint. The distributions of in-plane force

resultants (N0
x , N0

y and N0
xy) of the plate for different combinations of temperature change

and in-plane boundary constraint obtained using the present Rayleigh-Ritz method and

FE method are shown in Figs. 3-8 and a good agreement between the present results
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and FE solutions is reached, which approves that the proposed Rayleigh-Ritz model can

accurately predict the in-plane thermoelastic behaviour of VAT composite plates, even

under a more general in-plane boundary constraint. It is noted that for both Type-C and

Type-D boundary constraints, the longitudinal force resultant N0
x are constant over the

entire plane, while the in-plane shear force resultant N0
xy are zero, and therefore both of

them are not illustrated in Figs. 5 and 6.

From Figs. 3-8, it is observed that for different in-plane boundary constraints, the plate

undergoing a unit uniform temperature rise always exhibits a significant difference in the

distribution of in-plane force resultant over the panel domain, which indicates that the in-

plane boundary constraint has a certain influence on the in-plane thermoelastic behaviour

of variable stiffness composite panels. In particular, as shown in Fig. 3, even for the case

of no external forces (Type-A), the tow-steered plate still exhibits a highly non-uniform

distribution of in-plane residual stresses over the entire plane, which is quite different from

that of the straight-fibre plate. For the straight-fibre format, the values of the material

properties, namely, the transformed reduced stiffnesses and thermal expansion coefficients,

remain unchanged over the plate domain [57] and thus the plate free of external forces will

expand or contract uniformly when temperature rises or drops. As such, the in-plane total

displacement at arbitrary point of the reference surface is exactly equal to the displacement

induced by the free thermal strains and thus no residual stresses develop within the

straight-fibre plate that is free of external forces. For VAT layups, however, both material

reduced stiffnesses and thermal expansion coefficients are the function of x and y, and thus

the plate inevitably suffers from nonuniform residual stresses even if subjected to uniform

temperature change, as shown in Fig. 3. These results indicate that non-negligible in-

plane residual stresses will appear when tow-steered plates free of external forces are

cooled from high curing temperature to room temperature or aerodynamically heated

from room temperature to high working temperature.

For the case of fully constrained boundary constraint (Type-B), if the straight-fibre

format is considered, the in-plane total strains at arbitrary point of the reference surface

are equal to zero [19], which means that each element of material within the plate is fully

constrained and thus the in-plane residual stresses are primarily caused by the thermal

strains. In so doing, the in-plane force resultants (N0
x , N0

y and N0
xy) within the plate can

be explicitly written in terms of the thermal force resultants (N th
x , N th

y and N th
xy) as follows
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[19]:

N0
x = −N th

x , N0
y = −N th

y , N0
xy = −N th

xy (60)

However, this is not the case for VAT layup configurations. Even though both the in-

plane normal and tangential strains on all four edges are zero, variable stiffness properties

inherent in VAT composite plates, in general, lead to the non-zero total strains on the

reference surface, and therefore the mechanical strains are not everywhere equal to the

thermal strains over the entire plane, which means that the in-plane force resultants of

VAT composite plates can not be determined by the thermal strains. Ignoring this fact

would result in an incorrect prediction of pre-buckled load and thus have a certain effect

on the evaluation of buckling load of VAT composite plates. A comparsion study has been

examined on the distributions of in-plane force resultant obtained by the Rayleigh-Ritz

method, FE method and Eq. 60 for the tow-steered plate [±〈66.05|11.73〉]s under Type-B

boundary constraint. It was found that the results obtained by the present Rayleigh-Ritz

method are very close to FE solutions, however, there exists a considerable discrepancy

between the result given by Eq. 60 and FE solutions These results further demonstrate

that the expressions given by Eq. 60 are not applicable for the evaluation of in-plane force

resultant of variable stiffness composite panels under Type-B boundary constraint.

It is worth highlighting that for the straight-fibre format, if the symmetric-balanced

layup is considered (N th
xy = 0), the distributions of in-plane force resultant of the plate for

both cases of Type-B and Type-C boundary constraints are identical [57]. In this regard,

Eq. 60 can also be applied to predict the in-plane force resultants of symmetric-balanced

straight-fibre plates subjected to Type-C boundary constraint, namely, all four edges are

fixed against the in-plane normal displacements but are free to move tangentially. How-

ever, for symmetric-balanced VAT layups, there exists a considerable difference between

the distributions of in-plane force resultant obtained under Type-B and Type-C boundary

constraints. For the case of Type-C boundary constraint, the longitudinal force resultant

N0
x of the plate is found to be constant over the entire plane, and meanwhile the in-plane

shear force resultant N0
xy are zero everywhere, as described before. However, from Fig.

4, it can be clearly seen that both the longitudinal force resultant N0
x and in-plane shear

force resultant N0
xy obtained under Type-B boundary constraint exhibit a highly nonuni-

form distribution over the entire plane, which are quite different from those obtained
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Table 1: Critical buckling temperature ∆Tcr for both simply supported and clamped isotropic plates
(unit: ◦C)

Boundary conditions
∆Tcr (◦C)

Present Gossard [12] Shariyat [25] Prabhu [69] Singha [70] Nath [71]

Simply supported 63.23 63.27 62.14 63.21 63.266 63. 3

Clamped 167.26 168.71 166.91 169.07 167.856 168.0

Table 2: Critical buckling temperature ∆Tcr for single-layer square orthotropic plates with φ = 0◦ under
clamped boundary condition (unit: ◦C)

Fibre orientation angle
∆Tcr (◦C)

Present Shariyat [25] Nath [71] Huang [72]

T0 = T1 = 0◦ 151.59 151.6 153.0 152.47

T0 = T1 = 45◦ 131.77 130.43 133.3 131.88

under Type-C boundary constraint. These results again demonstrate that the in-plane

boundary constraint has a significant influence on the in-plane thermoelastic behaviour

of the tow-steered plate. Furthermore, by comparing the results obtained under Type-C

and Type-D boundary constraints (Fig. 5 vs Fig. 6), it is clear that the distribution

of in-plane force resultant is also greatly altered by the existing of uniform mechanical

compression. Similar conclusions can be also drawn from Figs. 7 and 8, in which the

distributions of in-plane force resultant are obtained under Type-E and Type-F boundary

constraints, respectively.

Next, a model validation is performed on the thermal buckling analysis of isotropic

plates (a/h = 100, a/b = 1, µ = 0.3 and α = 2.0× 10−6/◦C), which was initially studied

by Gossard et al. [12]. As shown in Table. 1, the critical buckling temperatures predicted

using the present Rayleigh-Ritz model for both simply supported and clamped isotropic

plates correlate well with results previously published by Gossard et al [12], Prabhu and

Dhanaraj [69], Singha et al [70], Nath and Shukla[71] and Shariyat [25].

A second verification of thermal buckling analysis is concentrated on a single-layer

square orthotropic plate (a/h = 40 and a/b = 1) with clamped boundary conditions. Note,

all four edges are fixed against in-plane normal and tangential displacements (Type-B

boundary constraint). The Young’s moduli, shear moduli, Possion’s ratio and coefficients

of thermal expansion for this composite material can be found in Ref. [72], in which

critical buckling temperatures for plates have been calculated using both the Fourier series
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method (FSM) and the finite element method (FEM). The critical buckling temperatures

obtained using the present Rayleigh-Ritz model are compared with the existing ones in

Table. 2, and an excellent agreement between these results is reached, even for angle-ply

layup configuration, which exhibits a considerable bending-twisting coupling.

To further validate the results, a model validation study on thermal buckling analysis

is then extended to VAT composite plates. The layup configuration and geometric dimen-

sion of the plate are the same as those from the prebuckling model validation. However,

several composite materials shown in Table. 3 are taken into account, which have been

used for the thermal buckling optimization of VAT composite plates [50, 51]. In addition,

the simply supported tow-steered plate is exposed to uniform temperature change and

all four edges are fixed against the in-plane normal displacements but are free to move

tangentially, that is, Type-C boundary constraint. The results of critical buckling tem-

perature obtained by the present Rayleigh-Ritz method for VAT composite plates made

of different composite materials are listed in Table. 4. The results published by Duran et

al. [50], Vescovini and Dozio [48] and Zhao et al. [54] and FE solutions are also included

for comparison purposes. It is noted that all VAT layup configurations listed in Table. 4

are the optimal results achieved by maximizing the thermal buckling load according to

the optimization search [50]. From Table. 4, it is clear that the results of critical buckling

temperature predicted by using the present Rayleigh-Ritz model are very close to those

obtained by Vescovini and Dozio [48] and Zhao et al. [54] and FE solutions for all the com-

posite materials studied. The ability of the proposed Rayleigh-Ritz model to accurately

predict the thermal buckling response of VAT composite plates is thus demonstrated.

However, for either Kevlar/Epoxy or Carbon/Epoxy materials, there is a big discrepancy

in critical buckling temperature among results in Ref. [50] and obtained by other meth-

ods. The primary reason is that in Ref. [50], the distribution of pre-buckled load of VAT

composite plates are predicted by directly using the thermal force resultants given by Eq.

60. These results further indicate that Eq. 60 is not applicable for accurately predicting

the in-plane thermoelastic behaviour of symmetric-balanced tow-steered plates with Type

C boundary constraint. A further investigation shows that for either Kevlar/Epoxy or

Carbon/Epoxy materials, the difference in the buckling temperature between the results

obtained using Eq. 60 and the present Rayleigh-Ritz results gradually decreases when the

thermal expansion coefficient α1 is changed from negative to positive. Similar phenomena
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Table 3: Material and thermal properties of different composites

Material E11(Gpa) E22(Gpa) G12(Gpa) v12 α11(×10−6/◦C) α22(×10−6/◦C)

Graphite/Epoxy 155 8.07 4.55 0.22 -0.07 30.1

E-Glass/Epoxy 41 10.04 4.3 0.28 7.0 26

S-Glass/Epoxy 45 11.0 4.5 0.29 7.1 30

Kevlar/Epoxy 80 5.5 2.2 0.34 -2.0 60

Carbon/Epoxy 147 10.3 7.0 0.27 -0.9 27

Carbon/Peek 138 8.7 5.0 0.28 -0.2 24

Carbon/Polyimide 216 5.0 4.5 0.25 0.0 25

Boron/Epoxy 201 21.7 5.4 0.17 6.1 30

can also be found in Ref. [73], in which a comparsion study of the thermal buckling tem-

perature between the results predicted by the proposed finite element method combined

with Eq. 60 and those computed using NASTRAN is conducted. Therefore, it can be

conducted that the negative thermal expansion coefficient α1 is responsible for this dis-

crepancy, and in particular the greater the absolute value of thermal expansion coefficient

α1, the larger the discrepancy.

It is also noted that the numerical convergence of both prebuckling and buckling

solutions of tow-steered plates with respect to the number of Legendre polynomial terms

used in the Rayleigh-Ritz formulation has been examined in details. It was found that nine

terms of displacement shape-function terms (M + 1, N + 1; R + 1, S + 1; G+ 1, H + 1) in

the expressions of Eq. 55 or Eq. 56 are sufficient to yield accurate evaluation of buckling

response of tow-steered plates as shown in Table. 4. On the other hand, in order to

obtain the convergent results in prebuckling analysis, nine terms of Legendre polynomial

(P + 1, Q+ 1) are required in the expansion form of Airy’s stress function φ.

4.2. Thermal buckling response of VAT plates

This section mainly focuses on the influence of fibre orientation angle and boundary

condition on the thermal buckling response of the tow-steered plate. The particular

laminates exposed to uniform temperature change are square, approximately 25.4mm by

25.4 mm, and made of four 0.127mm-thick plies of graphite-epoxy prepreg, resulting in a

total thickness h = 0.508mm. The layup configuration is denoted as [φ±〈T0|T1〉]s, similar

to that used in previous sections. The lamina properties are given by E11 = 171GPa,

E22 = 8.756GPa, G12 = G23 = G13 = 7.1GPa and v12 = v13 = v23 = 0.335, which
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Table 4: Critical buckling temperature ∆Tcr for VAT composite plates made of different composites
(unit: ◦C)

Materials 〈T0|T1〉
Present M(N)× P (Q)×R(S)

FEM Vescovini [48] Zhao [54] Duran [50]
4× 4× 4 6× 6× 6 8× 8× 8 10× 10× 10 12× 12× 12

Graphite/Epoxy 〈60.70|32.19〉 34.3634 33.4503 33.2280 33.1186 33.0607 33.084 33.0033 31.99 34.26

E-Glass/Epoxy 〈6.710|58.04〉 5.5860 5.5625 5.5546 5.5519 5.5507 5.556 5.5546 5.48 5.58

S-Glass/Epoxy 〈16.12|54.74〉 5.0604 5.0414 5.0358 5.0333 5.0321 5.037 5.0355 4.96 5.04

Kevlar/Epoxy 〈66.05|11.73〉 17.3440 16.6074 16.5256 16.4915 16.4749 16.544 16.2708 16.09 22.18

Carbon/Epoxy 〈69.00| − 5.705〉 38.5031 35.0856 34.7786 34.6607 34.5983 34.715 33.6616 33.80 57.79

Carbon/Peek 〈63.07|29.50〉 37.3379 36.3547 36.1276 36.0186 35.9628 35.989 35.8670 34.93 38.08

Carbon/Polyimide 〈56.30|36.68〉 81.2362 78.8101 78.1723 77.8440 77.6580 77.640 77.6006 74.89 78.28

Boron/Epoxy 〈−6.57|63.28〉 7.7118 7.6108 7.5677 7.5555 7.5487 7.554 7.5541 7.35 7.50

has been used for predicting thermally-induced deformation behaviours of unsymmetric

laminates [22]. The thermal expansion coefficients are chosen to be α1 = 0.283× 10−6/◦C

and α2 = 15.34×10−6/◦C such that the plate will expand when heating or contract when

cooling. Both simply supported (SSSS) and clamped (CCCC) boundary conditions are

considered. Moreover, all four edges are fixed against the in-plane normal displacements

but are free to move tangentially, that is, Type-C boundary constraint. The angle of

rotation of the fibre path, due to the symmetry of boundary condition, is only chosen to

be φ = 0◦, and meanwhile both fibre orientation angles T0 and T1 increase from 0◦ to 90◦

with a step of 15◦. For the convenience of using as the benchmark for FEM and other

numerical results, the results of critical buckling temperature of tow-steered plates with

various layup configurations obtained using the present Rayleigh-Ritz model are presented

in Tables. 5 and 6 for SSSS and CCCC boundary conditions, respectively.

From Tables. 5 and6, it is clear that for each case, the critical buckling temperature

of the tow-steered plate varies with both fibre orientation angles T0 and T1, which pro-

vides more additional freedom in stiffness tailoring to achieve better thermal buckling

resistance when compared to those with straight-fibre formats. In particular, for the case

of CCCC boundary condition, the maximum buckling temperature of the plate subjected

to Type-C boundary constraint is achieved by the VAT layup configuration [±〈60|0〉]s, in

which a 15.66% increase in thermal buckling resistance is observed when compared to the

maximum value given by the straight-fibre format. These results highlight the distinct su-

periority of using the tow-steered technology to enhance the thermal buckling response of

composite laminates. Furthermore, it is found that the critical buckling temperature ob-
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Table 5: Critical buckling temperature ∆Tcr for simply supported tow-steered plates under Type-C
boundary constraint (unit: ◦C)

T0

T1
0 15 30 45 60 75 90

0 230.2 256.2 319.9 372.5 366.8 319.4 253.8

15 251.2 298.6 352.3 376.4 365.3 313.1 249.1

30 302.1 325.4 361.8 383.0 365.9 310.5 250.9

45 304.6 334.1 371.1 387.6 366.0 311.9 260.5

60 304.5 337.0 371.5 383.2 361.8 317.4 278.1

75 297.9 328.9 356.5 361.9 344.5 298.6 247.9

90 296.9 322.9 340.2 336.8 304.4 256.1 230.2

tained under CCCC boundary condition is always higher than that obtained under SSSS

boundary condition, which means that the thermal buckling resistance can be improved

to a certain degree by strengthening out-of-plane boundary constraints. In addition, it is

interesting to note that if the symmetric-balanced layup configuration is considered, the

results of critical buckling temperature of the straight-fibre plate obtained under either

the Type-B or Type-C boundary constraint are the same as each other. However, this

may be not the case for VAT layup configurations. A further in-depth study on tow-

steered plates shows that even though there exists a considerable difference between the

distributions of in-plane force resultant obtained under Type-B and Type-C boundary

constraints, the maximum difference between the critical buckling temperatures obtained

under Type-B and Type-C boundary constraints is kept within 2%, which indicates the

in-plane shear constraint along the boundary edges of the plate has only a slight influ-

ence on the evaluation of critical buckling temperature of symmetric-balanced tow-steered

plates.

4.3. Thermomechanical buckling response of VAT plates

In this section, the thermomechanical buckling response of VAT composite plates is

investigated with emphasis on considering the influence of the temperature change on

the compressive performance of the tow-steered plate. The mechanism of applying tow-

steered technology to improve the thermomechanical buckling resistance of composite

plates is also explored. The geometric dimension, material property and layup config-

uration of the plate are the same as those in Section. 4.2. Herein, the plate is simply
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Table 6: Critical buckling temperature ∆Tcr for clamped tow-steered plates under Type-C boundary
constraint (unit: ◦C)

T0

T1
0 15 30 45 60 75 90

0 521.2 531.0 546.1 571.3 589.4 546.7 524.7

15 559.9 589.4 629.3 675.5 622.7 575.5 554.8

30 679.4 739.8 787.2 733.3 670.2 625.7 609.1

45 880.3 877.9 840.4 787.1 734.4 697.2 669.0

60 910.5 901.6 871.3 831.4 787.2 686.6 623.3

75 905.9 885.2 845.2 748.3 654.3 589.4 557.9

90 823.3 754.4 684.2 620.1 568.6 536.3 521.2

supported on four edges and subjected to Type-D boundary constraint. A preliminary

study was conducted on the thermal buckling analysis for the tow-steered plate under

Type-C boundary constraint. It was found that the lowest bucking temperature is ob-

tained by the straight-fibre format [±90]s, that is, ∆Tcr = 230.2◦C. In view of this, a

200◦C temperature difference between the stress-free and operational temperatures will

be imposed on the plate such that the tow-steered plate with each layup configuration

still remains unbuckled before uniform mechanical compression is applied. As such, three

cases of temperature change, that is, ∆T = −200◦C, ∆T = 0◦C and ∆T = 200◦C, are

taken into account. ∆T = −200◦C and ∆T = 200◦C denotes the cooling and heating

process on the plate, respectively, while ∆T = 0◦C represents the stress-free temperature

state, in which the buckling of the plate is only governed by uniform mechanical com-

pression. Two types of laminates are used for study, that is, φ = 0◦ and φ = 90◦, such

that the fibre angle and thus the stiffness within the plate are only a function of the x

or the y coordinate, respectively. For the former case, the longitudinal force resultant N0
x

is constant everywhere, whereas for the latter case, the longitudinal force resultant N0
x is

only a function of the y coordinate. Note that, the average critical buckling load Nav
xcr is

evaluated by the following expression [49]:

Nav
xcr = λ(1)Nav(1)

xcr + λ(2)Nav(2)
xcr (61)

where N
av(1)
xcr and N

av(2)
xcr are the average longitudinal load along x = ±a/2 obtained

under pure thermal and mechanical loadings, respectively. For comparison purposes, the
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buckling coefficient Kcr is introduced to normalize the the average critical buckling load

Nav
xcr [1], that is,

Kcr = Nav
xcra

2/E11h
3 (62)

Normalized critical buckling loads of the tow-steered plate with various layup configura-

tions obtained using the present Rayleigh-Ritz model are shown in Fig. 9-11 for different

combinations of plate-type and temperature change. Note that, each curve in the figures

represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to 90◦

at the right-end, but with a same value of T0, which is labelled in each figure. From Fig.

9-11 and Figs. 13-15, it is clear that for each combination of plate type and temperature

change, the critical buckling load of the plate varies with both fibre orientation angles

T0 and T1, which further indicates that the VAT layup configurations always exhibit an

extended freedom in stiffness tailoring to achieve better buckling performance.

For the case of φ = 0◦, if no temperature change is taken into account, that is,

∆T = 0◦C, the maximum value of buckling coefficient Kcr is 1.17, and is achieved by

the VAT layup configuration of T0 = 0◦ and T1 = 45◦, which is 16.21% higher than the

maximum value offered by the straight-fibre format [±0]s. This slight increase in buckling

coefficient over straight-fibre plates is primarily attributed to the favorable distribution

of transverse force resultant N0
y over the plate domain, as explained by Gürdal et al. [1].

Similar conclusion can also be observed from Figs. 9 and 11, in which VAT composite

plates are respectively subjected to cooling and heating loadings in addition to uniform

compression loadings. These findings indicate that the mechanism behind a slight im-

provement of buckling performance almost remains in effect in the thermomechanical

buckling regime. For example, when the temperature change is ∆T = 200◦C, the tow-

steered plate [±〈0|45〉]s exhibits higher buckling performance compared to other linear

fibre variations, and in particular, a 16.47% increase in buckling coefficient is observed

when compared to the maximum value of the straight-fibre format [±30]s.

By comparing the results presented in Figs. 9-11, it can be found that the buckling

performance of the tow-steered plate is also greatly affected by the temperature change.

For most VAT layup configurations, the buckling coefficient of the plate increases when the

temperature falls below the reference temperature, and decreases when the temperature

rises above the reference temperature. However, a further investigation reveals that the
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variation of buckling load with temperature difference is closely related to the difference

of mechanical and thermal buckling coefficients, that is, ∆Kcr = K
(2)
cr −K(1)

cr . Note that,

the mechanical and thermal buckling coefficients (K
(2)
cr and K

(1)
cr ) are obtained under pure

mechanical and thermal loadings, respectively. For VAT layups with ∆Kcr > 0, the

buckling coefficient of the tow-steered plate increases when ∆T < 0◦C and decreases

when ∆T > 0◦C, whereas for VAT layups with ∆Kcr < 0, the tow-steered plate give a

completely opposite result. For example, for both VAT layups [±〈0|45〉]s and [±〈60|75〉]s,

the difference between mechanical and thermal buckling coefficients is positive (∆Kcr >

0) and negative (∆Kcr < 0), respectively. For the former case, the plate at ∆T =

−200◦C exhibits a 27.57% increase in the buckling load when compared to that at the

reference temperature, whereas for the latter case, the plate at ∆T = −200◦C shows

a lower buckling coefficient than that at ∆T = 0◦C, even though the residual thermal

stresses reduce the combined resultant stress near the panel center. There results indicate

that the buckling performance of the tow-steered plate under a combination of thermal

and mechanical loadings is a result of the thermomechanical coupling interaction. The

normalized buckling loads for both VAT layups [±〈0|45〉]s and [±〈60|75〉]s are plotted in

Fig. 12 as a function of temperature difference ∆T .

For the combination of φ = 90◦ and ∆T = 0◦C, the VAT layup [90± 〈0|90〉]s has the

highest buckling coefficient among all the VAT layup configurations [φ ± 〈T0|T1〉]s with

linear variation of fibre angles, and in particular a 23.09% increase in the buckling load

is found when compared to the maximum value given by the straight-fibre format [±0]s.

However, this improvement is due to the redistribution of the longitudinal compression

load away from the central region towards the simply supported edge, which is different

from that in the case of φ = 0◦. Furthermore, it is clearly seen from Figs. 13 and

15 that for both combinations of φ = 90◦,∆T = −200◦C and φ = 90◦,∆T = 200◦C,

the overall curves that represent normalized buckling loads of VAT composite plates are

nearly the same as those in Fig. 14, which indicates that the load redistribution is still the

main driver for the improvement in buckling resistance, even if there exists temperature

change. For instance, for the case of ∆T = −200◦C, the VAT layup [90 ± 〈0|90〉]s still

exhibits higher buckling performance when compared to other linear fibre variations, and a

31.69% increase in buckling coefficient is observed when compared to the maximum value

offered by the straight-fibre format [±0]s. These results further demonstrate the distinct
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superiority of applying the variable angle tow concept to improve buckling resistance of

composite plates under combinated thermal and mechanical loadings.

In addition, the temperature change also has a significant influence on the buckling

behaviour of the tow-steered plate. It is found that even for the case of φ = 90◦, the

variation of buckling load with temperature difference also has a close connection with the

difference of the mechanical and thermal buckling coefficients, that is, ∆Kcr = K
(2)
cr −K(1)

cr .

As described before, for VAT layups with ∆Kcr > 0, a certain increase in buckling

resistance is achieved by the tow-steered plate when ∆T < 0◦C , while a certain decrease in

buckling resistance is obtained by the tow-steered plate when ∆T > 0◦C. For VAT layups

with ∆Kcr < 0, however, the tow-steered plate gives a completely opposite result. The

thermomechanical coupling interaction is responsible for this variation of buckling load

with temperature difference. In particular, for the VAT layup [90± 〈0|90〉]s, the buckling

load obtained under pure compression loadings is higher than that obtained under pure

thermal loadings, that is, ∆Kcr > 0. Accordingly, the buckling load at ∆T = −200◦C

exhibits 47.97% higher than that at the reference temperature. This result further explains

the experimental phenomenon in tests of variable stiffness composite plates under residual

thermal stress condition, which were observed by Wu et al. [10]. However, for some

particular VAT layups such as [90 ± 〈45|0〉]s, the buckling load obtained under pure

compression loadings is lower than that obtained under pure thermal loadings, that is,

∆Kcr < 0. For this case, the plate at ∆T = −200◦C shows a lower buckling coefficient

when compared to that at stress-free temperature state, even though the residual thermal

stress resultant distribution reduce the combined resultant stress near the panel center.

The normalized buckling loads for both VAT layups [90± 〈0|90〉]s and [90± 〈45|0〉]s are

plotted in Fig. 16 as a function of temperature difference ∆T .

5. Conclusion

In this paper, methodologies based on the generalised Rayleigh-Ritz method were

applied for the in-plane thermoelastic and thermomechanical buckling analysis of sym-

metrical VAT composite plates under a combination of temperature change and general

boundary constraint. In the framework of thermoelastic theory, the in-plane thermoelastic

problem was firstly solved to determine the non-uniform distribution of in-plane force re-

sultant of the tow-steered plate and the governing equation of thermomechanical buckling
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problem was then derived based on the third-order shear deformation theory of Reddy’s

type. The proposed modelling methodology has two novel aspects: First, the principle of

thermoelastic complementary energy combined with Airy’s stress function formulation, for

the first time, was applied to solve the in-plane thermoelastic problem of the tow-steered

plate; Second, the Lagrangian multiplier method was applied to release the restrictions

inherent in the conventional Rayleigh-Ritz formulation, which provides generality to deal

with general in-plane boundary constraint against thermal expansion or contraction. Nu-

merical results on VAT plates under various in-plane boundary conditions demonstrated

the accuracy and robustness of the proposed Rayleigh-Ritz model. Effects of the boundary

constraint, fibre orientation angle, temperature difference on both in-plane thermoelastic

and thermomechanical buckling performances of VAT composite plates were examined

through various numerical case studies. Results have shown that both the in-plane ther-

moelastic and thermomechanical buckling behaviours of the tow-steered plate is strongly

dependent on the in-plane boundary constraint and fibre orientation angle. Furthermore,

the benign load redistribution mechanism offered by the VAT layup configuration was

found to remain in effect even if there exists the temperature change. Also, it was found

that the variation of buckling load with temperature difference is closely related to the

difference of the mechanical and thermal buckling loads.
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Appendix

The elements of the matrices in Eq. (58) are expressed as following:

K11(mn,mn) =∫ 1

−1

∫ 1

−1

c2
1

{(
4b

a3
H11X

w0

m,ξξY
w0

n +
4

ab
H12X
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m Y w0
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(63)

K12(mn, rs) = K21(rs,mn) =∫ 1
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L11(mn,mn) =∫ 1

−1

∫ 1

−1

{(
b

a
N0
xX

w0

m,ξY
w0

n +N0
xyX

w0

m Y w0

n,η

)
Xw0

m,ξY
w0

n +(a
b
N0
yX

w0

m Y w0

n,η +N0
xyX

w0

m,ξY
w0

n

)
Xw0

m Y w0

n,η

}
dξdη

(69)

where m,m = 0, 1, 2 · · · ,M ; n, n = 0, 1, 2 · · · , N ; r, r = 0, 1, 2 · · · , R; s, s = 0, 1, 2 · · · , S;

g, g = 0, 1, 2 · · · , G; h, h = 0, 1, 2 · · · , H. The terms Xw0

m , Y w0

n , X
φ0x
r , Y

φ0x
s , X

φ0y
g , Y

φ0y
h
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are constructed by Legendre polynomials multiplying with the functions that satisfy the

geometrical boundary condition at the edges of VAT composite plates. For instance, if the

plate is clamped on four edges, the terms Xw0

m , Y w0

n , X
φ0x
r , Y

φ0x
s , X

φ0y
g , Y

φ0y
h can be written

as:

Xw0

m (ξ) = (1− ξ2)Lm(ξ); Y w0

n (η) = (1− η2)Ln(η)

Xφ0x
r (ξ) = (1− ξ2)Lr(ξ); Y φ0x

s (η) = (1− η2)Ls(η)

X
φ0y
g (ξ) = (1− ξ2)Lg(ξ); Y

φ0y
h (η) = (1− η2)Lh(η)

(70)

If the plate is simply supported on four edges, the terms Xw0

m , Y w0

n , X
φ0x
r , Y

φ0x
s , X

φ0y
g , Y

φ0y
h

can be written as:

Xw0

m (ξ) = (1− ξ2)Lm(ξ); Y w0

n (η) = (1− η2)Ln(η)

Xφ0x
r (ξ) = Lr(ξ); Y φ0x

s (η) = (1− η2)Ls(η)

X
φ0y
g (ξ) = (1− ξ2)Lg(ξ); Y

φ0y
h (η) = Lh(η)

(71)
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[38] Z. Gürdal, R. Olmedo, In-plane response of laminates with spatially varying fiber

orientations: variable stiffness concept, AIAA J 31 (1993) 751–758.

48
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Figure 1: The geometry and layup configuration of a VAT plate: (a) geometric dimension; (b) linear
variation of fibre orientation for the case of φ = 0◦
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Figure 2: The in-plane boundary conditions and loading cases of VAT composite plates: (a) Type-A:
all four edges free of external forces; (b) Type-B: all four edges fixed against both in-plane normal and
tangential displacements; (c) Type-C: all four edges restrained against in-plane normal displacements
but free to move tangentially; (d) Type-D: uniform end shortening in the longitudinal direction with
two transverse edges restrained against normal expansion; (e) Type-E: two longitudinal edges restrained
against normal expansion with two transverse edges free to deform; (f) Type-F: uniform end shortening
in the longitudinal direction with two transverse edges free to deform
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Figure 3: Comparison of FEM and Rayleigh–Ritz results on in-plane force resultant distribution of the
VAT plate with linear fibre orientation distribution [±〈66.05|11.73〉]s under a combination of unit uniform
temperature change (∆T = 1◦C) and Type-A boundary constraint (all four edges free of external forces):
(a) longitudinal force resultant N0

x ; (b) transverse force resultant N0
y ; (c) in-plane shear force resultant

N0
xy
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Figure 4: Comparison of FEM and Rayleigh–Ritz results on in-plane force resultant distribution of the
VAT plate with linear fibre orientation distribution [±〈66.05|11.73〉]s under a combination of unit uniform
temperature change (∆T = 1◦C) and Type-B boundary constraint (all four edges fixed against both in-
plane normal and tangential displacements): (a) longitudinal force resultant N0

x ; (b) transverse force
resultant N0

y ; (c) in-plane shear force resultant N0
xy
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Figure 5: Comparison of FEM and Rayleigh–Ritz results on in-plane transverse force resultant distribu-
tion of the VAT plate with linear fibre orientation distribution [±〈66.05|11.73〉]s under a combination of
unit uniform temperature change (∆T = 1◦C) and Type-C boundary constraint (all four edges restrained
against in-plane normal displacements but free to move tangentially)
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Figure 6: Comparison of FEM and Rayleigh–Ritz results on in-plane transverse force resultant distribu-
tion of the VAT plate with linear fibre orientation distribution [±〈66.05|11.73〉]s under a combination of
unit uniform temperature change (∆T = 1◦C) and Type-D boundary constraint (uniform end shortening
∆ = 1.0× 10−3mm in the longitudinal direction with two transverse edges restrained against normal
expansion)
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Figure 7: Comparison of FEM and Rayleigh–Ritz results on in-plane force resultant distribution of the
VAT plate with linear fibre orientation distribution [±〈66.05|11.73〉]s under a combination of unit uniform
temperature change (∆T = 1◦C) and Type-E boundary constraint (two longitudinal edges restrained
against normal expansion with two transverse edges free to deform): (a) longitudinal force resultant N0

x ;
(b) transverse force resultant N0

y ; (c) in-plane shear force resultant N0
xy
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Figure 8: Comparison of FEM and Rayleigh–Ritz results on in-plane force resultant distribution of
the VAT plate with linear fibre orientation distribution [±〈66.05|11.73〉]s under a combination of unit
uniform temperature change (∆T = 1◦C) and Type-F boundary constraint (uniform end shortening ∆ =
5.0× 10−3mm in the longitudinal direction with two transverse edges free to deform): (a) longitudinal
force resultant N0

x ; (b) transverse force resultant N0
y ; (c) in-plane shear force resultant N0

xy
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Figure 9: Buckling coefficients of simply supported VAT composite plates with various layup configura-
tions [φ± 〈T0|T1〉]s for a combination of plate-type φ = 0◦ and temperature ∆T = −200◦C. (Each curve
in the figure represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to 90◦ at
the right-end, but with a same value of T0, which is labelled in figure)
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Figure 10: Buckling coefficients of simply supported VAT composite plates with various layup configu-
rations [φ ± 〈T0|T1〉]s for a combination of plate-type φ = 0◦ and temperature ∆T = 0◦C. (Each curve
in the figure represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to 90◦ at
the right-end, but with a same value of T0, which is labelled in figure)
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Figure 11: Buckling coefficients of simply supported VAT composite plates with various layup configura-
tions [φ ± 〈T0|T1〉]s for a combination of plate-type φ = 0◦ and temperature ∆T = 200◦C. (Each curve
in the figure represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to 90◦ at
the right-end, but with a same value of T0, which is labelled in figure)
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Figure 12: The variation of buckling coefficient Kcr with temperature change ∆T for simply supported
VAT composite plates with two different layup configurations, that is, [±〈0|45〉]s and [±〈60|75〉]s. (The
blue and yellow areas represent the heating and cooling temperatures with respect to the reference
temperature, respectively)
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Figure 13: Buckling coefficients of simply supported VAT composite plates with various layup configu-
rations [φ ± 〈T0|T1〉]s for a combination of plate-type φ = 90◦ and temperature ∆T = −200◦C. (Each
curve in the figure represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to
90◦ at the right-end, but with a same value of T0, which is labelled in figure)
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Figure 14: Buckling coefficients of simply supported VAT composite plates with various layup configu-
rations [φ± 〈T0|T1〉]s for a combination of plate-type φ = 90◦ and temperature ∆T = 0◦C. (Each curve
in the figure represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to 90◦ at
the right-end, but with a same value of T0, which is labelled in figure)
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Figure 15: Buckling coefficients of simply supported VAT composite plates with various layup configura-
tions [φ± 〈T0|T1〉]s for a combination of plate-type φ = 90◦ and temperature ∆T = 200◦C. (Each curve
in the figure represents a series of VAT panels generated by varying T1 from 0◦ at the left-end to 90◦ at
the right-end, but with a same value of T0, which is labelled in figure)
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Figure 16: The variation of buckling coefficient Kcr with temperature change ∆T for simply supported
VAT composite plates with two different layup configurations, that is, [90 ± 〈0|90〉]s and [90 ± 〈45|0〉]s.
(The blue and yellow areas represent the heating and cooling temperatures with respect to the reference
temperature, respectively)
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