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ABSTRACT

Motivation: A common question in genomic analysis is whether two

sets of genomic intervals overlap significantly. This question arises, for

example, when interpreting ChIP-Seq or RNA-Seq data in functional

terms. Because genome organization is complex, answering this

question is non-trivial.

Summary: We present Genomic Association Test (GAT), a tool for

estimating the significance of overlap between multiple sets of gen-

omic intervals. GAT implements a null model that the two sets of

intervals are placed independently of one another, but allows each

set’s density to depend on external variables, for example, isochore

structure or chromosome identity. GAT estimates statistical signifi-

cance based on simulation and controls for multiple tests using the

false discovery rate.

Availability: GAT’s source code, documentation and tutorials are

available at http://code.google.com/p/genomic-association-tester.
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1 INTRODUCTION

A common question in genomic analysis is whether two sets of

genomic intervals, for example, ChIP-seq peaks and gene anno-

tation classes, overlap significantly more than expected by

chance alone. Interval overlap is easy to compute, but the sig-

nificance can be computed analytically only for trivial situations.

Hence, significance is usually estimated by simulation under

some null model. This model must account for genome organ-

ization; a model that assumes independent and uniform place-

ment of both interval sets is almost always inappropriate when

testing for association with gene annotations because gene dens-

ity strongly correlates with GþC content, and datasets of inter-

est often also show GþC biases.
Here, we introduce Genomic Association Test (GAT), a tool

for computing the significance of overlap between multiple

sets of genomic intervals. GAT permits the restriction of the

analysis to parts of a genome relevant to the experiment and

accounts for chromosomal and isochore biases. Additional gen-

omic features can be controlled for by providing additional seg-

mentation files.

GAT’s approach was developed originally to test for the as-

sociation of non-coding transcripts with other genomic elements

(Ponjavic et al., 2007), but has since been applied to a variety of
problems, including:

� Conservation of non-coding transcription between human

and mouse (Church et al., 2009);

� Enrichment of histone marks and evolutionarily conserved
genomic regions within non-coding transcripts (Marques

and Ponting, 2009);

� Functional prediction of non-coding transcripts via their

neighboring genes (Marques and Ponting, 2009); and

� Enrichment of ChIP-Seq binding events within signatures of

open chromatin or disease-associated intervals (Ramago-
palan et al., 2010).

GAT’s re-implementation delivers to the scientific community

the extended functionality of the Ponjavic et al. (2007) methods.

2 USAGE

GAT is controlled from the command line. It requires at least

three bed-formatted files that delimit genomic intervals (tuples of
chromosome, start and end). The principal output of GAT is a

table listing significant overlaps.

2.1 Input

Example: does a set of transcription factor binding site intervals

from a ChIP-Seq experiment overlaps more than expected by

chance with a set of DNaseI-hypersensitive sites? To perform
this analysis, GAT requires three files:

(1) A bed-formatted file with the intervals from the ChIP-Seq

experiment (Segments S). Several experiments can be sup-
plied as multiple files or as a single file with multiple

tracks.

(2) A bed-formatted file with DNaseI-hypersensitive sites

(Annotations A). These could be obtained directly from

the UCSC Genome Browser (Rosenbloom et al., 2012).
Several annotations from, for example, multiple cell lines

can be supplied as multiple files or as a single file with

multiple tracks.

(3) A bed-formatted file with the workspace (W). The work-

space defines the sequence that is accessible for the*To whom correspondence should be addressed.
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simulation. The simplest workspace contains the full
genome assembly. In this example, the analysis should be

restricted to only repeat-free regions, as only these are re-

liably mappable by short read data and thus could contain

ChIP-Seq intervals. Again, appropriate bed-formatted files

are available from the UCSC Genome Browser.

By default, the randomization procedure accounts for differ-

ences among chromosomes; for example, the X chromosome

contains many sequence features that are atypical of autosomes.

In addition to chromosome identity, local genomic GþC con-

tent is another common confounding factor. For example, GþC

content might cause experimental biases in sequencing and
hybridization protocols, while it is also a correlate of gene density

(Lander et al., 2001). To correct for GþC content, an optional

bed-formatted file with the isochore structure of the genome can

be supplied. GAT will then normalize by isochore and by

chromosome. Here, isochores are discretized, for example, the

genome is partitioned into windows falling into eight bins of

different regional GþC content.

2.2 Output

In the aforementioned example, GAT will compute the overlap

of ChIP-Seq binding events and DNaseI-hypersensitive sites.
GAT will also estimate if the overlap is larger or smaller than

expected by chance and will provide an empirical P-value of the

statistical significance. If multiple ChIP-Seq experiments or mul-

tiple annotations have been submitted, GAT will compute the

overlap for each combination of experiment and annotation and

will estimate its significance. Storey’s q-value (Storey and

Tibshirani, 2003) or the Benjamini–Hochberg method

(Benjamini and Hochberg, 1995) is used to control for multiple
testing using a False discovery rate (FDR) procedure.

3 IMPLEMENTATION

3.1 Overview

GAT is a python script (http://python.org) requiring only

common and freely available numerical and scientific libraries.

The memory and time-critical parts are implemented in cython

(http://cython.org). It requires two collections of genomic inter-

vals: Segments (S) and Annotations (A). Each collection can con-

tain one or more lists of genomic intervals (S1, S2 , . . . , Sm; A1,

A2 , . . . , An). Intervals within a list of genomic intervals are
required to be non-overlapping, and any overlapping intervals

within S or A are merged prior to analysis. In addition, GAT

requires a Workspace W describing the part of the genome ac-

cessible to the simulation. The analysis proceeds as follows. For

each pair of interval lists Sx and Ay (x2 {1 , . . . ,m},

y2 {1 , . . . , n}), GAT computes the overlap between the intervals

in Sx and Ay within workspace W: observed¼ jSx\Ay\Wj.

jHere,j is the overlap operator and defaults to the number of
nucleotides overlapping, but other operators (such as the

number of segments) can be used. GAT subsequently creates

randomly placed intervals in the genome with the same size dis-

tribution of Sx within the workspaceW. See below for simulation

details. The overlap between each simulated set and Ay is re-

corded. The average over all simulations represents the expected

overlap. GAT reports the fold enrichment as the ratio of observed

and expected overlap and associates an empirical P-value with it.

GAT’s runtime and memory usage scale linearly with the

number of simulations and the number and size of the genomic

interval sets S, A and W.

3.2 Sampling method

The sampling method creates a list R of randomly placed inter-

vals from an interval list Sx within a workspaceW. The sampling

is done on a per-chromosome basis. For each chromosome c,

randomly placed intervals are created by a two-step procedure:

(1) Select an interval size from the empirical interval size dis-

tribution Sx,c.

(2) Select a position within the workspace Wc.

Sampled intervals are added to Rc until exactly the same

number of nucleotides are in Rc as are in Sx,c. For reasons of

performance, intervals are initially sampled without checking for

overlap. Overlaps and overshoot are subsequently resolved in an

iterative procedure once the sampled number of nucleotides ap-

proximates the target number.
The current sampling protocol is restricted to non-overlapping

single segment intervals. Although amenable to many genomic

features, it notably leaves discontinuous genomic segments, such

as transcripts, untreated.

3.3 Isochores

Isochores are defined within GAT as chromosomal segments

within a workspace. For each isochore i, the workspace W is

subdivided into a workspace Wi¼W\ Ii. The sampling is

performed separately for each Wi and samples combined at the

end. Isochores are thus treated in an equivalent manner to

chromosomes. Isochores can be defined by GþC content, but

can reflect any segmentation of the genome, such as chromatin

marks.

4 CONCLUSIONS

GAT provides critical functionality for genomic analyses. By

using standard BED files, it may be used alongside major data

resources, such as the UCSC Genome Browser and Galaxy

(Giardine et al., 2005). GAT can be used in a similar context

to GREAT (McLean et al., 2010) and other tools, but can ad-

dress a more diverse range of questions because of its simulation

approach that takes into account both segment and annotation

size distributions.
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