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Abstract: The use of model organisms as tools for the
investigation of human genetic variation has significantly
and rapidly advanced our understanding of the aetiolo-
gies underlying hereditary traits. However, while equiva-
lences in the DNA sequence of two species may be readily
inferred through evolutionary models, the identification
of equivalence in the phenotypic consequences resulting
from comparable genetic variation is far from straightfor-
ward, limiting the value of the modelling paradigm. In this
review, we provide an overview of the emerging statistical
and computational approaches to objectively identify
phenotypic equivalence between human and model
organisms with examples from the vertebrate models,
mouse and zebrafish. Firstly, we discuss enrichment
approaches, which deem the most frequent phenotype
among the orthologues of a set of genes associated with
a common human phenotype as the orthologous
phenotype, or phenolog, in the model species. Secondly,
we introduce and discuss computational reasoning
approaches to identify phenotypic equivalences made
possible through the development of intra- and interspe-
cies ontologies. Finally, we consider the particular
challenges involved in modelling neuropsychiatric disor-
ders, which illustrate many of the remaining difficulties in
developing comprehensive and unequivocal interspecies
phenotype mappings.

Introduction

Given a candidate gene mutation thought to underlie a human

phenotype, a question commonly asked by human geneticists

investigating this candidacy is, ‘‘Does a mutation in this gene have

a comparable effect in another species?’’ To answer this, animal

models have either been made or identified that possess a genetic

aetiology relevant to a human disorder. These models have proved

themselves incredibly useful by (i) allowing repeated observations

of pathologies germane to often-rare, human genetic disorders

within an environmentally and genetically controlled background;

(ii) enabling observations of early stages of a disorder that are often

presymptomatic in humans; (iii) offering access to tissues not

normally available from human patients; and (iv) providing a

platform for therapeutic development and testing.

For many decades, the study in a model organism of the

equivalent gene, or orthologue, of a gene associated with human

phenotypic traits has delivered enormous gains in understanding

[1]. Animal models carrying null mutations, or knock-outs, in the

orthologues of human Mendelian disease genes have rapidly

advanced our understanding of this particular class of genetic

disorders, while directed mutagenesis techniques have similarly

advanced our understanding of penetrant gain-of-function

mutations. The ready-made, often-systematic availability of

animals carrying a wide range of determined disruptions has

enabled more resources to be focused on the analysis of the model

rather than its generation, and projects such as the International

Mouse Phenotyping Consortium are promising to revolutionise

our understanding of the molecular basis of human disease by

providing systematic and standardised analyses of the phenotypic

relevance of nearly all mouse genes [2–8].

With the availability of ever more phenotype data from model

organisms, the issue of what computational and algorithmic

resources will be required to make optimal use of the data is

becoming progressively more pressing. In this review, we will

discuss how phenotypes can be mapped between humans and

model species and provide a selective overview of successful

approaches to cross-species phenotype mapping. Finally, we will

focus on the area of neurobehavioral phenotypes, which is perhaps

the most difficult of all classes of phenotypes to map between

species and is representative of the challenges that remain for

comprehensive cross-species mapping.

What Is a Phenotype?
In biology, a widely accepted definition of phenotype is, ‘‘The

observable traits of an organism.’’ In medical contexts, however,

the word ‘‘phenotype’’ is more often used to refer to some

deviation from normal morphology, physiology, or behaviour, and

this is the definition that we will use here. Thus, physicians

characterise the phenotype of their patients (although they rarely

speak of it in this way) by taking a medical history or by means of a

physical examination, diagnostic imaging, blood tests, psycholog-

ical testing, and so on, in order to make the diagnosis [9].
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In some contexts, the word ‘‘phenotype’’ is commonly used to

refer to a disease entity. However, it is important to distinguish

between diseases and phenotypic features. A disease usually has

multiple phenotypic features; e.g., the disease ‘‘common cold’’ can

have the features ‘‘sneezing,’’ ‘‘runny nose,’’ ‘‘fatigue,’’ and

‘‘fever.’’ On the other hand, a feature can occur with multiple

diseases. For instance, ‘‘fever’’ occurs not only with the common

cold, but also with hyperthyroidism, leukaemia, rheumatoid

arthritis, and many other infectious and non-infectious diseases.

Thus, there is a complex, many-to-many relationship between

diseases and phenotypic features, which likely reflects the

underlying pleiotropy of biochemical pathways and cellular

networks.

From Gene to Phenotype
Perhaps the most obvious starting point for mapping pheno-

types between species is to investigate animal models with a

mutation in a gene that is orthologous to a human gene associated

with a disease (Figure 1A). Geneticists invoke evolution to bestow a

degree of universality to the function of a gene, inferring that

similarity in the encoded protein sequences implies similarity in

function, and that function is most likely to be conserved between

unique, 1:1 orthologous genes [10,11]. However, the expectation

that an equivalent mutation in an orthologous pair of genes will

yield the same phenotype in two different species fails to

acknowledge the differences that define distinct species. A

phenotype is an often complex and emergent property of a

biological system that is usually influenced directly and indirectly

by many genes. Even for highly penetrant mutations in close and

well-conserved orthologues, significant differences in outcomes

have been observed; neither the disruption of HPRT (Lesch-Nyhan

syndrome) nor mutations in DMD (Duchenne’s muscular dystro-

phy) give strong phenotypes in the mouse [12,13]. Phenotypic

differences may be observed more frequently when comparing

systems, for example, immunity, that are rapidly evolving and/or

subject to large environmental influence, the latter obviously not

well modelled through a laboratory upbringing [14]. However, to

dwell on these differences would be to deliberately ignore the

many more examples of animal models that have yielded

considerable insight into human genetic disease. For instance, at

present, 3,829 mouse models associated to human diseases are

listed in the Mouse Genome Database [15] (http://www.

informatics.jax.org/vocab/omim).

Despite obvious species differences, phenotypic equivalences can

be objectively discovered. The orthologues of genes that function

together in a particular molecular pathway often also function

together in the orthologous pathway in another species even when

separated by a considerable evolutionary distance [16]. As

disruptions to different genes that operate within the same pathway

often produce similar phenotypes [17], disruptions of the ortholo-

gues of genes that yield a given phenotype in human can plausibly

be predicted to yield the equivalent phenotype in a model organism

if they are disrupting the orthologous pathway (Figure 1B).

Marcotte and colleagues systematically demonstrated this

equivalence by forming groups of human genes that shared a

human phenotype and then asking whether there was an unusually

common phenotype amongst any one group’s orthologues in

another species [18]. They termed these evolutionary phenotypic

associations between groups of orthologous genes ‘‘phenologs.’’

The thousands of phenologs discoverable through this approach

included over 150 identified between human and yeast, a

divergence of over 1.5 billion years. Marcotte and colleagues

demonstrated that this objective approach could identify

non-obvious phenologs that were of significant predictive value,

showing, for example, that genes associated with lovastin

sensitivity in yeast, the phenolog of abnormal angiogenesis in

mice, were indeed involved in vasculature formation in Xenopus. In

a similar approach, Webber and colleagues were able to

objectively map phenotypes between human and mouse by

examining the genes affected by mutations in individuals with

neurodevelopmental phenotypes [19,20]. However, while the

phenolog associations revealed by these approaches are often

relevant, they may not be the most specific. For example, while

individuals with psychosis harbour mutations that are enriched in

the orthologues of genes associated with the phenotype abnormal

prepulse inhibition in the mouse, an abnormal prepulse inhibition is

not synonymous with psychosis in humans [21]. The many-to-

many relationship between genes and phenotypes makes the

process of reliably mapping human phenotypes through phenologs

vulnerable to pleiotropic effects and genetic interactions [22].

Perhaps the greatest difficulty in comprehensively mapping

phenotypes lies in the necessary assumption that genes whose

function is not associated with a particular phenotype have been

examined and found not to influence that phenotype: this

assumption is prolifically untrue, with only a fraction of possible

phenotypes examined for only a minority of non-randomly

selected genes, particularly in species such as the mouse and

zebrafish that are less amenable to large-scale screening. To

address this, it would be particularly valuable to identify putative

phenologs in organisms amenable to high-throughput screening

and thereby obtain systematic coverage (see Box 1). However, the

ability to identify equivalent phenotypes between different species

allows one to use genotype-phenotype associations discovered in

one species to infer unexamined associations in another.

Phenotype Ontologies
Other approaches to computational cross-species phenotype

analysis do not begin with the identification of orthologous genes

but rather directly estimate the similarity between phenotypic

abnormalities seen in human disease and animal models.

Ontologies have become an indispensable tool to measure cross-

species phenotypic similarity. An ontology is a representation of

knowledge that uses a controlled vocabulary to enable knowledge

sharing and computer reasoning. ‘‘Ontology’’ was famously

defined as a specification of a conceptualization [23], meaning

that an ontology provides a representation of the concepts of a

domain of knowledge (conceptualization) together with the

semantic relations between them (specification). Ontologies can

be used to represent items of a domain of knowledge, for example,

the Chemical Entities of Biological Interest (ChEBI) ontology

provides a comprehensive representation of biologically relevant

small molecules [24], but also to represent the attributes of domain

concepts. Perhaps the most well-known ontology of this type is the

Gene Ontology [25], which describes the functions, roles, and

locations of gene products. Similarly, phenotype ontologies

describe the phenotypic abnormalities associated with diseases or

found in individual patients or model organisms. In this review, we

will concentrate on the use of the Human Phenotype Ontology

[26,27] (HPO) to describe human genetic disease, and the

Mammalian Phenotype Ontology (MPO) [28,29] to describe

genetically modified mouse models [30]. Each ontology consists of

thousands of terms, each of which represents a single phenotypic

abnormality such as ‘‘atrial septal defect.’’ The terms in the HPO

and MPO are related to one another by subclass (‘‘is a’’) relations,

such that the ontology can be represented as a so-called ‘‘directed

acyclic graph.’’ This structure enables annotation propagation

whereby more specific phenotypic terms are also described by

more general parent terms and, thus, all ancestral terms. For
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instance, if a patient has an abnormality of the cerebellum, he or she can

also be said to have an abnormality of the hindbrain, a term that is an

ancestor of abnormality of the cerebellum (Figure 2).

The phenotypic terms themselves do not describe any specific

disease but may be used to list the phenotypic features that

characterise a particular disease. For instance, to assert that

patients with neurofibromatosis type I have Lisch nodules of the

iris, we annotate the disease neurofibromatosis type I with the

corresponding HPO term, ‘‘Lisch Nodules.’’ Mouse models that

display a given phenotypic abnormality are annotated to MPO

terms in an analogous fashion. The network of diseases, associated

phenotypic features, and genes can now be used for a number of

purposes, including differential diagnostics, prioritization of

candidate genes, and research into the relationships between

genotype and phenotype (Figures 1 and 3).

For some applications, it is sufficient to assert that a given

genetically modified mouse is a good model of some human

disease. For instance, mouse genotypes that have been used to

study specific human diseases are curated by the Mouse Genome

Informatics (MGI) group using disease terms found in the Online

Mendelian Inheritance in Man (OMIM) [31]. While this is useful

to find models for a specific disease, when starting with a set of

Figure 1. Interspecies phenotype mapping strategies. This review highlights three major methodologies to identify phenotypes in the mouse
that are relevant to a human disease. (A) Classical approach. A mouse model is made or identified that possesses a genotype equivalent to a
penetrant mutation that in human underlies the disease of interest (termed construct validity). The mouse model is examined for phenotypes that
resemble those that define the human disorder (face validity). (B) Phenolog mapping. A group is formed containing candidate genes for a disease of
interest. The respective mouse models for the orthologues of these genes are then examined for any unusually overrepresented phenotypes among
them and these phenotypes (termed phenologs) are deemed relevant to the disease. (C) Direct phenotype mapping. Given the phenotype(s) that
describe a human disease, the corresponding phenotypes in mouse are inferred by means of computational reasoning using interspecies phenotype
ontology analysis. In the example shown, the HPO term Aortic stenosis is defined on the basis of the PATO term constricted and aortic valve (term from
the Foundational Model of Anatomy ontology of human anatomy [35]). Similarly, the MPO term aortic valve stenosis is defined using the same PATO
term constricted and aortic valve (term from the Mouse Anatomy ontology [77]). Since both the Mouse Anatomy and FMA terms for aortic valve are
children of the cross-species anatomy ontology (Uberon [40]) term for aortic valve, automatic reasoning places the HPO term Aortic stenosis and the
MPO term aortic valve stenosis in the direct vicinity of one another in a cross-species phenotype ontology [42]. Therefore, these terms display a high
semantic similarity to one another.
doi:10.1371/journal.pgen.1004268.g001
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observed phenotypes the relations described in the HPO or MPO

allow us to identify all diseases (or models) characterised by those

phenotypic features. Similarly, by identifying equivalent pheno-

types between the HPO and the MPO, a search would be able to

return both relevant mouse models and relevant human diseases.

In addition to phenolog mapping described above, another

approach to creating phenotypic equivalences might be to

manually assign phenotype terms from one ontology to the other.

For instance, one could assert that the MPO term hypoglycemia

(MP:0000189) is equivalent to the HPO term Hypoglycemia

(HP:0001943). While this particular mapping seems perfectly

reasonable, it is not possible to map every individual term in one

ontology to the equivalent term in the other ontology; many

individual phenotypic features do not have a clear match in the

other species, and the way a phenotype is observed and recorded

in mice is often quite distinct from phenotypic analysis performed

in the course of a medical examination. For instance, there is no

obvious match in humans for the MPO term abnormal tail movements

(MP:0001391), and there is no obvious match in mice for the HPO

term Expressive language delay (HP: 0002474). Another important

issue is that phenotypes elicited in the course of scientific

experiments on mouse models are not equivalent to medical

phenotypes. For instance, it is not uncommon to subject mouse

hearts to ischemia and reperfusion to induce cardiac damage, and

then to compare the hearts of mice with a certain genetic defect to

those of wild-type mice. If the mutant mice exhibit larger

infarctions than the wild-type mice, the MPO term increased

myocardial infarction size (MP:0003037) is used to annotate them.

Obviously, there is no corresponding HPO term, and in fact it is

not even entirely clear what the relationship of increased myocardial

infarction size to the HPO term Myocardial infarction should be.

For this reason, a different strategy was chosen to develop

semantic mappings between the HPO and the MPO. A crucial

part of this strategy is the use of logical definitions to enable

sophisticated semantic reasoning over ontology terms. Logical

definitions of phenotype terms use building block ontologies to

represent the various anatomical, cellular, physiological, and

metabolic abnormalities, combining them into ontology classes

using semantic constructs of the ontology language OWL. The

Phenotype, Attribute, and Trait Ontology (PATO) is a key tool in

this effort because it provides an abstract representation of the

abnormal qualities encountered in the phenotypic abnormalities

(Figure 1C) [32–34]. PATO consists of a single hierarchy of

qualities designed to be used in conjunction with other ontologies

representing entities that are the bearers of abnormal phenotypic

qualities, including the Foundational Model of Anatomy (FMA)

ontology [35], the Gene Ontology (GO) [36], and the cell ontology

[37]. Many phenotype terms can be defined using the Entity/

Box 1. Comparing Phenotypes with More Distant Species.

This review has concentrated on interspecies ontology
analysis of mouse, the model organism with the highest
number of genes orthologous to human and the highest
number of explicit models for distinct human diseases.
However, while mouse models of disease often appear to
most resemble their human counterparts, other model
organisms offer important advantages for studying specific
areas of physiology and disease-related biology. For exam-
ple, the zebrafish is particularly amenable to understanding
early development, due to the externally developing,
transparent embryos and ease of molecular perturbation.
Large-scale screens of the fruit fly Drosophila melanogaster,
the zebrafish Danio rerio, and the nematode worm
Caenorhabditis elegans mutants have been performed for
several decades, and a large and diverse amount of
phenotypic information has been collected. These data,
while inclined towards the specific beneficial features of each
model system, are complementary to one another and to
mouse in their scope. Furthermore, unlike with mouse, they
tend not to be as biased towards the investigation of a
specific disease, as is often the case for mouse studies. The
nematode worm C. elegans is used as a model to study
cellular differentiation and basic biological processes, with
the developmental fate of each of its up-to1,031 somatic
cells having been mapped. The relative ease of genetic
manipulation in C. elegans by techniques such as RNA
interference [80] has enabled large-scale and largely unbi-
ased investigations of the phenotypic consequences of
alterations of gene function, and over 420,000 Worm
Phenotype Ontology (WPO) annotations are available from
the Wormbase [81]. Similarly, the fruit fly Drosophila is one of
the most widely used model organisms in genetics since
Thomas Hunt Morgan’s discovery of chromosomes as the
carriers of genes in D. melanogaster. Currently, over 358,000
phenotype annotations are available in the model organism
database for Drosophila genetics, Flybase [82].
To support annotation and analysis of these models, many
model organism consortia are developing phenotype

ontologies that are amenable to the kind of cross-species
semantic analysis described in this review, because of their
use of modular definitions that make use of existing
ontologies from the Open Biological Ontology (OBO)
Foundry initiative [41] as building blocks. Depending on
the species in question, building block ontologies repre-
senting anatomy, pathology, gene function, embryology,
biochemistry, and others are used to provide computational
definitions of phenotypic abnormalities. Interoperable phe-
notype ontologies and annotations are thus now available
for human [26], mouse [29], zebrafish [75], nematode worm
C. elegans [81,83], fruit fly Drosophila [84], rat [85], and fission
yeast [86]. However, one of the issues is that the nature of
the genotype-phenotype annotations in each of these
sources differs. In one source, the phenotypes are linked to
an allele or gene, whereas in another they might be linked to
a full genotype. Furthermore, since the ontologies were
constructed independently and according to different
principles or focus, relating them requires some sophisticat-
ed ontological engineering techniques [40]. Interoperation of
these ontologies and the genotype-phenotype annotations
is a primary goal of the Monarch Initiative (monarchinitiati-
ve.org), which provides integrated data and phenotype
comparison analysis resources that are available to the
community. Inclusion of these diverse phenotype data bring
the phenotype coverage up to approximately 80% of human
genes based on orthology, which may be beneficial for the
identification of rare and undiagnosed genetic disease
causes. Additionally, other efforts such as the Phenotype
Ontology Research Coordination Network (RCN) [87] are
aiming to develop standards and best practices for accurate
phenotype representations across a range of plants, verte-
brates, and arthropods for evolutionary biology. In the
future, it will be important to improve computational
methodologies for phenotypic analysis over a large range
of species to make best use of the advantages that each
model organism has to offer.
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Quality paradigm. In the following example, we consider an HPO

term that describes increased width of the big toe.

Class: HP:0010055

Annotations: label ‘‘Broad hallux’’

EquivalentClassOf:

has_part some:

increased width (PATO_0000600) and

inheres_in some Big toe FMA:25047

That is, the HPO class ‘‘Broad hallux’’ is defined as being

equivalent to a phenotype of increased width that inheres in (is located in)

a Big toe. Many phenotype terms require more complicated definitions

that include references to multiple domain ontologies. For instance,

the following definition of the HPO term Hyperalaninemia uses

references both to the FMA term for blood and to ChEBI for alanine.

Class: HP: 0003348

Annotations: label ‘‘Hyperalaninemia’’

EquivalentClassOf:

has_part some:

increased concentration (PATO:0001162) and

inheres_in Portion of blood (FMA:9670) and

towards alanine (CHEBI:16449)

These definitions enable interoperability of the HPO with the

other ontologies in the sense that it becomes possible to search for

all phenotype terms that involve entities from one of the domain

ontologies, comprising not only anatomy and small molecules as

shown above, but also gene function [36], cell types [37], proteins

[38], pathology [39], and others. Also, thanks to Uberon, an

integrated cross-species ontology, it is possible to map anatomical

terms across species [40]. Thus, by using logical definitions for

mouse and human phenotypes that have been developed using

interoperable ontologies from the Open Biomedical Ontology

(OBO) Foundry [41], a common computational basis is created

that in turn makes it possible to identify equivalent or similar terms

between phenotype ontologies for different species by using

automatic reasoning [42–44].

A number of different approaches to interspecies phenotype

mapping have been applied by several groups, and we will refer to

the original publications for algorithmic details [32,43,45–47].

However, for the most part the algorithms make use of logical

definitions as shown above to identify equivalencies or similarities

between terms of phenotype ontologies for two or more species

(Figure 1C). Each animal disease model or human disease is then

annotated to one or more ontology terms. For instance, the human

disease Marfan syndrome is annotated to a number of HPO terms

including Tall stature (HP:0000098), Kyphoscoliosis (HP:0002751),

Ectopia lentis (HP:0001083), and Aortic root dilatation (HP:0002616).

The mgR mouse model of Marfan syndrome [48] is annotated to a

number of MPO terms including increased length of long bones

(MP:0004695), which is similar to the HPO term Tall stature (which

in Marfan syndrome results from overgrowth of the long bones);

kyphosis (MP:0000160), which is similar to the HPO term

Kyphoscoliosis; and aortic aneurysm (MP:0006278), which is similar

to the HPO term Aortic root dilatation (an aneurysm is a protruding

sac formed by the dilation of the wall of the aorta, whereas the

term Aortic root dilatation refers to an increase in the diameter of the

proximal section of the aorta). The mgR model does not display an

ocular phenotype, so there is no obvious match for the HPO term

Ectopia lentis (a dislocation of the lens of the eye). To calculate a

phenotypic similarity between the human disease and the mouse

model, the algorithms mentioned above search over each of the

terms of the human disease and look for the best match amongst

the terms used to annotate the mouse model and vice versa. The

sum of the similarities, which are usually expressed using their

information content, is then used as a measure of the similarity

between the diseases. The information content is calculated based

on the frequency with which a given ontology term is used to

annotate diseases in a database and thereby provides a way of

weighting the matches based on the specificity of the phenotypic

features: the less specific a phenotype is, the lower the information

content. Many algorithms have been presented to calculate this

kind of semantic similarity with ontologies, and the field represents

an area of active research in bioinformatics [49]. Another recent

Figure 2. Phenotype ontologies. Phenotype ontologies (an excerpt
from the Human Phenotype Ontology is shown here) consist of
thousands of terms describing phenotypes arranged in a hierarchical
system of subclasses and superclasses. The structure of an ontology
enables annotation propagation whereby more specific phenotypic
terms are also described by more general parent terms, and thus all
ancestral terms. The terms are related to one another by subclass (‘‘is
a’’) relations, such that the ontology can be represented as a so-called
directed acyclic graph. The terms themselves do not describe any
specific disease. Instead, annotations to terms are used to state that a
certain disease is characterised by a certain phenotypic feature.
doi:10.1371/journal.pgen.1004268.g002
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approach to the use of ontologies for differential diagnostics in

human medicine did not rely on semantic similarity algorithms but

rather embedded the HPO and the diseases annotated to terms of

the HPO into a Bayesian network, thereby providing a principled

framework to deal with noise in phenotypic data and demonstrating

a substantially improved performance on simulated data [50].

Although the field of semantic phenotype matching is still in its

infancy, even now mouse data are demonstrably better at

identifying genes that influence the same human phenotypes than

other commonly used gene annotations such as Gene Ontology or

Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Figure 3).

Robinson and colleagues have also recently shown that cross-species

phenotype matching is a powerful method for the prioritization of

candidate genes in whole-exome sequencing studies [51].

Cross-Species Analysis of Behavioural
Phenotypes and Elucidating the Genetic
Architecture of Psychiatric Disease

Behavioural disorders, notably psychiatric disorders, present a

particularly difficult challenge to both phenotype ontologies and

cross-species analysis. For example, determining the presence in a

mouse model of any of the new Diagnostic and Statistical Manual

of Mental Disorders, Fifth Edition (DSM V) positive symptoms

required in the diagnosis of schizophrenia (‘‘hallucinations,’’

‘‘delusions,’’ or ‘‘disorganised speech’’) is clearly problematic

[52]. Furthermore, current psychiatric diagnostic classifications

similarly label patients presenting with a broad spectrum of

phenotypes, and heterogeneous presentations likely result from

heterogeneous aetiologies. However, given a well-characterised

and large cohort of patients harbouring likely highly penetrant

mutations, relevant mouse model phenotypes can still be

objectively discovered: considering genes affected by de novo

copy-number variations in 186 individuals with autism, Webber

and colleagues were able to associate over 40 phenologs which

were well correlated to the phenotypes already observed in existing

mouse models of autism-associated genes [53]. However, while the

association identified between autism and the mouse phenotype

stereotypic behaviour is readily comparable to the autistic phenotype

of repetitive behaviours and interests, there were no clear and specific

associations to the impaired social interaction and verbal and non-

verbal communication deficits that also define autism [54].

Results of genome-wide association studies (GWAS) suggest that

current approaches to the diagnosis and classification of psychi-

atric diseases are inadequate. For instance, GWAS findings have

challenged the traditional distinction between schizophrenia and

bipolar disorder by identifying genes such as CACNA1C that

harbour risk alleles for both disorders [55]. Such findings did not,

perhaps, come as a complete surprise given the fact that relatives

of probands with either disorder have increased risks of both

schizophrenia and bipolar disorder [56], as well as the well-known

clinical overlap between the two: patients with bipolar disorder

can have episodes of psychosis during either manic or depressed

phases. In fact, more recent findings show that specific single

nucleotide polymorphisms can be associated with a range of

psychiatric disorders of childhood or adult onset [57].

We join with others to suggest that it may be beneficial to take a

new approach to the analysis of neurobehavioural disorders that

will focus on the individual components of the disorder rather than

just the final diagnostic category [58]. This new approach has two

potential benefits. While the main clinical purpose of a diagnostic

category is to allow therapeutic and prognostic decision making, it

is arguable that the most useful clinical categories, phenotypic

features, dimensional definitions, and measures for psychiatric

disease are still unknown [55]. Therefore, the act of reducing

probably heterogeneous groups of patients to a single clinical

category such as bipolar disorder is likely to reduce the power of

GWAS or sequencing studies to elucidate the molecular pathology

of psychiatric disease. Studies based on richer representations of

the phenotype may, in contrast, allow new hypotheses to be tested,

such as that a certain genetic variant is a risk factor for psychosis,

rather than schizophrenia or bipolar disorder per se [59].

The second potential benefit of this approach for neurobehav-

ioral clinical research is an improved ability to make use of animal

models to understand psychiatric disease by allowing more

accurate interspecies phenotypic comparisons on the basis of

individual phenotypic aspects of a disorder rather than on complex

emergent phenomena associated with a disorder. For instance,

glucocorticoids influence neuronal function in the brain, and are

thought to be involved in the onset of depression when levels are

abnormally high [60]. However, it is still unclear how glucocor-

ticoid signalling is linked to affective disorders. A zebrafish mutant

with a mutation in the glucocorticoid receptor was shown to

become immobile (‘‘freeze’’) and to show reduced exploratory

behaviour when placed into an unfamiliar aquarium (‘‘novel

Figure 3. Predicting human genotype-phenotype relations
from functional genomics data. The mouse phenotypes associated
with the orthologues of human genes are a better predictor of genes
that share human phenotypes than other popular gene annotations of
the same genes, such as GO or KEGG. As both GO and KEGG include
information derived from multiple sources, including annotations from
the mouse, the success of the mouse phenotypes is likely due both to
the genetic relevance of the mouse models and the fact that human
and mouse phenotypic annotations both describe abnormalities (see
Figure 1C). Resnik’s [78] measure, together with the GraSM approach
[79], was used to calculate the similarity of terms organised in these
hierarchical ontologies, defining the semantic similarity between any
two terms as the average information content of their disjunct
common-ancestor terms. Gene pairs were ordered by their semantic
similarity scores based on either the human KEGG pathway annotations
(pink circles), human GO biological process (grey circles), or MPO
annotations to genes (blue circles). For each of KEGG, GO, and MPO
annotations, gene pairs were ordered in decreasing annotation
similarity and grouped into bins of 2,000, and then the median
semantic similarity score between gene pairs’ Human Phenotype
Ontology annotations was calculated. The dashed line marks the
degree of similarity expected from pairs of random genes.
doi:10.1371/journal.pgen.1004268.g003
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tank’’), abnormalities that could be reversed by the addition of the

antidepressant fluoxetine to the holding water [61]. While it

appears quite reasonable to infer that this zebrafish is modelling

some aspect of depressive psychopathology, it is presumably not a

faithful model of any specific human disorder, such as major

depressive disorder, with symptoms such as feelings of excessive or

inappropriate guilt or suicidal ideation.

The above considerations fit well with the so-called endophe-

notype concept in psychiatric genetics. An endophenotype in

psychiatry refers to an internal process that can be objectively

measured. An endophenotype is an individual feature that may be

a component of a psychiatric disease. Psychiatric endophenotypes

are defined as being heritable features that tend to manifest in

individuals with psychiatric diseases whether or not the disease

itself is active, and that not only cosegregate in families together

with the disease but also tend to be found in unaffected relatives of

an individual with a psychiatric disease at a higher rate than in the

general population [62]. One main reason why endophenotypes

have attracted attention is the assumption that if an endopheno-

type represents a more or less atomic component of a complex

disease entity, then the number of genes required to produce

variations in these traits may be fewer than those involved in

producing a psychiatric diagnostic entity, making it easier to

identify genetic factors for endophenotypes than for disease entities

[63]. Although a meta-analysis published in 2007, i.e., before the

publication of large-scale psychiatric GWAS, failed to show an

advantage for the analysis of endophenotypes in the identification

of risk alleles for schizophrenia [62], more recent results have

identified loci significantly associated with various endophenotypes

in schizophrenia [64,65]. However, it should not necessarily be

assumed that endophenotypes themselves have a simpler genetic

architecture than psychiatric illnesses. Additionally, what appears

to be an equivalent endophenotype in human and mouse may

actually reflect a different pathophysiology. For instance, deficits in

mouse spatial working memory have recently been reported to be

based in the hippocampus, questioning the face validity of this

phenotype for deficits in working memory associated with scz/bpd

in humans, the latter based in the frontal cortex [66]. That said, in

many cases genetically altered mice do seem to provide valid

models for aspects of human psychiatric diseases. For instance,

schizophrenic patients report oversensitivity to sensory stimulation

that possibly could be related to the cognitive fragmentation seen

in this disorder. Experiments with cortical event-related potentials

and the prepulse inhibition of startle responses have shown that

schizophrenic patients also have impaired central nervous system

inhibition (sensorimotor gating) [67]. Correspondingly, neuregulin

1 (NRG1) is a schizophrenia susceptibility gene in humans, and

mice lacking any one of the several isoforms of Nrg1 display deficits

in sensorimotor gating [68], among other abnormalities that

resemble some of the features of human schizophrenia. Similarly,

the SNAP25 gene has been linked to schizophrenia in association

studies [69], and mouse models with abnormalities in SNAP25

have been shown to have abnormalities in rest and activity

rhythms, reminiscent of the disturbed sleep patterns observed in

schizophrenia [70]. Therefore, if appropriate caution is exercised

in the interpretation of results, a case can be made that it may be

simpler to investigate the genetic correlates of psychiatric

endophenotypes in mouse models. Indeed, analogous touch-screen

tests performed by humans and by mice, both carrying mutations

in DLG2, a gene implicated in schizophrenia, have demonstrated

comparable cognitive impairments, illustrating that endopheno-

types can be much more directly and readily equated between

species [71]. It has been proposed that one way of improving our

understanding of the underlying molecular mechanisms of

neurobehavioural diseases such as schizophrenia lies in the

statistical cross-comparison of datasets arising from analyses of

animal models and human studies, which will identify experimen-

tal and clinical biomarkers. Such findings would lend credibility to

the animal models and could potentially be used to monitor

treatment effects in these models [72]. To achieve this goal, we

suggest that targeted work on developing comprehensive and

consistent ontological representations of the neurobehavioral

phenotypes in humans, mice, and zebrafish would be quite

valuable.

Conclusions
The human genome project was compared by Victor McKusick

to the anatomical atlas of Vesalius published in 1543, in that both

works provided for the first time a comprehensive list of parts that

the human body (or genome) contains, but did not actually explain

how the parts work together to mediate function. William Harvey

capitalised on the knowledge contained in the Vesalius atlas to

describe the basic principles of the circulation 85 years after the

publication of the atlas [73]. Similarly, the challenge for the

coming decades will be to assign physiological functions and

medical roles to the parts of the genomic atlas and to begin to

understand how the parts fit together into larger systems. Current

large-scale projects, including the International Mouse Phenotyp-

ing Consortium [74] and the ever-growing amount of data being

organised by resources such as the Zebrafish Model Organism

Database [75], stand to play a transformative role in this effort by

providing a comprehensive view of the phenotypic consequences

of the majority of protein-coding genes in the vertebrate and

mammalian repertoire. Similar resources are being developed for

the investigation of microRNA genes [76], and it is a good bet that

regulatory sequences such as tissue-specific enhancers will be next

in line. Computational analysis of the phenotype will play a critical

role in these efforts. In this review, we have highlighted a number

of computational resources and algorithms that have been

developed to address current challenges in the field, but it seems

fair to say that the field of computational phenotype analysis is still

in its infancy. Nonetheless, computational interspecies phenotype

analysis will play a crucial role to make full use of the data

emerging from large-scale projects, such as the International

Mouse Phenotyping Consortium and the Zebrafish Mutation

Project, that stand to translate the genomic atlas into functional

and medical discoveries that will improve our ability to treat

human disease.
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to thank Sebastian Köhler, Damian Smedley, Chris Mungall, Sandra

Doelken, Sebastian Bauer, George Gkoutos, Paul Schofield, Barbara Ruef,

Monte Westerfield, Nicole Washington, Melissa Haendel, and Suzi Lewis.

References

1. Schofield PN, Hoehndorf R, Gkoutos GV (2012) Mouse genetic and phenotypic

resources for human genetics. Hum Mutat 33: 826–836.

2. Mohun T, Adams DJ, Baldock R, Bhattacharya S, Copp AJ, et al. (2013)

Deciphering the Mechanisms of Developmental Disorders (DMDD): a new

programme for phenotyping embryonic lethal mice. Dis Model Mech 6: 562–

566.

3. Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, et al. (2012) Mouse large-

scale phenotyping initiatives: overview of the European Mouse Disease Clinic

PLOS Genetics | www.plosgenetics.org 7 April 2014 | Volume 10 | Issue 4 | e1004268



(EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics

Project. Mamm Genome 23: 600–610.

4. Brown SD, Moore MW (2012) The International Mouse Phenotyping

Consortium: past and future perspectives on mouse phenotyping. Mamm

Genome 23: 632–640.

5. Delprato A, Aransay AM, Kollmus H, Schughart K, Falcon-Perez JM (2013)

Meeting report of the European mouse complex genetics network SYSGENET.

Mamm Genome 24: 190–197.

6. Morgan H, Simon M, Mallon AM (2012) Accessing and mining data from large-

scale mouse phenotyping projects. Int Rev Neurobiol 104: 47–70.

7. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E,

et al. (2013) A systematic genome-wide analysis of zebrafish protein-coding gene

function. Nature 496: 494–497.

8. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, et al. (2013) Genome-

wide generation and systematic phenotyping of knockout mice reveals new roles

for many genes. Cell 154: 452–464.

9. Robinson PN (2012) Deep phenotyping for precision medicine. Hum Mutat 33:

777–780.

10. Altenhoff AM, Studer RA, Robinson-Rechavi M, Dessimoz C (2012)

Resolving the ortholog conjecture: orthologs tend to be weakly, but signifi-

cantly, more similar in function than paralogs. PLOS Comput Biol 8: e10025

14.

11. Chen X, Zhang J (2012) The ortholog conjecture is untestable by the current

gene ontology but is supported by RNA sequencing data. PLOS Comput Biol 8:

e1002784.

12. Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal

model for Lesch-Nyhan syndrome through introduction of HPRT mutations

into mice. Nature 326: 295–298.

13. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked

muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81: 1189–

1192.

14. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, et al. (2013)

Genomic responses in mouse models poorly mimic human inflammatory

diseases. Proc Natl Acad Sci U S A 110: 3507–3512.

15. Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE (2013) The mouse

genome database: genotypes, phenotypes, and models of human disease. Nucleic

acids research 41: D885–891.

16. Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, et al. (2003) Conserved

pathways within bacteria and yeast as revealed by global protein network

alignment. Proc Natl Acad Sci U S A 100: 11394–11399.

17. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clinical

genetics 71: 1–11.

18. McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, et al. (2010)

Systematic discovery of nonobvious human disease models through orthologous

phenotypes. Proc Natl Acad Sci U S A 107: 6544–6549.

19. Shaikh TH, Haldeman-Englert C, Geiger EA, Ponting CP, Webber C (2011)

Genes and biological processes commonly disrupted in rare and heterogeneous

developmental delay syndromes. Hum Mol Genet 20: 880–893.

20. Webber C, Hehir-Kwa JY, Nguyen DQ, de Vries BB, Veltman JA, et al. (2009)

Forging links between human mental retardation-associated CNVs and mouse

gene knockout models. PLOS Genet 5: e1000531.

21. Hoenig K, Hochrein A, Quednow BB, Maier W, Wagner M (2005) Impaired

prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol

Psychiatry 57: 1153–1158.

22. Boulding H, Webber C (2012) Large-scale objective association of mouse

phenotypes with human symptoms through structural variation identified in

patients with developmental disorders. Hum Mutat 33: 874–883.

23. Gruber TT (1993) A translation approach to portable ontologies. Knowledge

Acquisition 5: 199–220.

24. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, et al. (2008)

ChEBI: a database and ontology for chemical entities of biological interest.

Nucleic acids research 36: D344–350.

25. The Gene Ontology Consortium (2010) The Gene Ontology in 2010: extensions

and refinements. Nucleic Acids Res 38: D331–335.
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