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Randomized controlled trials are the gold standard for measuring the causal effects of treatments on clinical outcomes. 
However, randomized trials are not always feasible, and causal treatment effects must, therefore, often be inferred 
from observational data. Observational study designs do not allow conclusions about causal relationships to be drawn 
unless statistical techniques are used to account for the imbalance of confounders across groups while key assumptions 
hold. Propensity score (PS) and balance weighting are two useful techniques that aim to reduce the imbalances 
between treatment groups by weighting the groups to look alike on the observed confounders. There are many methods 
available to estimate PS and balancing weights. However, it is unclear a priori which will achieve the best trade-off 
between covariate balance and effective sample size. Weighted analyses are further complicated by small studies with 
limited sample sizes, which is common when studying rare diseases. To address these issues, we present a step-by-
step guide to covariate balancing strategies, including how to evaluate overlap, obtain estimates of PS and balancing 
weights, check for covariate balance, and assess sensitivity to unobserved confounding. We compare the performance 
of a number of commonly used estimation methods on a synthetic data set based on the Physical Activity and Exercise 
Outcomes in Huntington Disease (PACE-HD) study, which explored whether enhanced physical activity affects the 
progression and severity of the disease. We provide general guidelines for the choice of method for estimation of PS 
and balancing weights, interpretation, and sensitivity analysis of results. We also present R code for implementing the 
different methods and assessing balance. 

1. Introduction 
In a randomized controlled trial (RCT), the assignment to treatment1 or control group is done using 
randomization, to ensure that there is no systematic bias from observed and unobserved 
confounders when estimating the effect of the treatment. For sufficiently large sample sizes, the 
two groups will usually have similar baseline characteristics so that the groups are comparable to 
one another (Altman & Bland, 1999). Unfortunately, such is not the case with observational studies 
where randomization to treatment assignments is not possible. In observational studies, group 
assignment might be due to factors that the researcher cannot control, such as underlying 

	

1	An	intervention	in	lifestyle	is	a	special	form	of	treatment.	



conditions of the individual. These differences between the groups will introduce bias in to the 
estimated effects of a treatment. For example, the choice to exercise among individuals with a rare 
disease might be influenced in part based on the severity of their disease: those with more severe 
disease might be less keen or able to exercise, and any subsequent comparison between those who 
did and did not exercise will be distorted, as it will compare groups with different pretreatment 
levels of disease severity. Our motivating example is based on the Physical Activity and Exercise 
Outcomes in Huntington Disease (PACE-HD) study (Drew et al., 2019), a trial-within-
observational cohort study where individuals in treatment group of the RCT receive an intervention 
of supervised physical activity, and the goal is to explore the impact of exercise on the progression 
and severity of HD versus controls from the RCT as well as a cohort of controls for a larger 
observational study. 

Estimation of accurate causal treatment effects (Holland, 1986) is the main goal of many 
observational studies. The causal effect of a treatment for each individual is defined as the 
difference in the outcome for an individual had they received that treatment compared to the 
outcome had they not received it. This is practically impossible to measure directly since typically, 
only one treatment condition will be assigned to each individual (Rosenbaum & Rubin, 1983). As 
a consequence, we design longitudinal, observational studies, where two (or more) groups receive 
different treatments overtime, and then we estimate the causal treatment effect from the difference 
in the outcomes of the groups. Without adjustments for confounding, however, this estimate will 
almost certainly be biased. 

The propensity score (PS) (Rosenbaum & Rubin, 1983) is the probability of an individual’s 
allocation to the treatment group, given their observed baseline (pretreatment) characteristics. The 
PS can be used to create comparable treatment groups by either weighting, matching, adjusting or 
stratifying on the PS. By minimising the imbalance of known and observed confounders between 
the treatment groups, PS methods reduce the bias in the estimation of the causal treatment effect 
due to the observed confounders. Here we consider only PS weighting (Hernán et al., 2000; Robins 
et al., 2000) (as opposed to PS matching, stratification and adjustment) given the notable increase 
in methods for estimating weights that have arisen (Elze et al., 2017; Harder et al., 2010; Olmos 
& Govindasamy, 2015; Posner & Ash, 2012). In addition to PS weights, we consider the closely 
related balancing weights via entropy balancing (Hainmueller, 2012). Entropy Balance computes 
the balancing weight directly, as opposed to traditional PS algorithms, which at first compute the 
PS and then transform it to weights. Thus, we are focusing only on PS and balancing weights 
methods to allow for a direct comparison of the performance of different algorithms. 

There are several estimation methods for both PS and balancing weights, including parametric and 
non-parametric modeling and machine learning techniques. However, there is no clear indication 
that a single method performs best in every dataset (Griffin et al., 2017; Setodji et al., 2017; 
Setoguchi et al., 2008). This is the reason, we suggest, that one should consider multiple methods 
and finally estimate the causal treatment effect based on the one that best balances the treatment 
groups without reducing the effective sample size unduly. This tutorial will present an 
implementation of some of the more commonly used PS estimation methods, namely Logistic 
Regression (LR) (Agresti, 2018; Wright, 1995), Generalized Boosted Model (GBM) (McCaffrey 
et al., 2004), and Covariate Balance Propensity Score (CBPS) (Imai & Ratkovic, 2014). We will 
also consider the use of balancing weights via Entropy Balance (EB) (Hainmueller, 2012) and 
provide a summary of the advantages and disadvantages of each approach. The performance of the 



methods will be illustrated by applying them to a synthetic dataset with a structure that is 
characteristic of many studies in rare disease populations with small sample sizes. 

The rest of the article is organised as follows. Section 2 summarizes the six key steps needed to 
estimate causal treatment effects of a treatment in observational studies. Then, the PS and EB 
estimation algorithms we use are described in section 3, and the measures of performance of the 
different balancing methods are briefly discussed in section 4. Section 5 describes the data example 
and section 6 uses the data to walk through the 6 key steps needed to estimate causal effects. 
Section 7 concludes. The code for each step of section 6 is provided in 8. 

2. The 𝟔 Key Steps towards Estimating Causal Treatment Effects 
There is a wide discussion in the literature, regarding the number of steps necessary to estimate 
causal treatment effects using balancing and PS weights (Bergstra et al., 2019; Caliendo & 
Kopeinig, 2008; Setodji et al., 2017). Here, we follow 6 key steps, uniquely considering the 
relative performance of several estimation methods for the balancing and PS weights as well as 
demonstrating the needed and, often underutilized, use of omitted variable sensitivity analyses. 



 

1. Step 1. Choose which estimand one is interested in(ATE, ATT, ATC). 

  In order to define the commonly used causal treatment effects, we first introduce potential 
outcomes notation first introduced by Rubin (Griffin et al., 2014). For each individual, we 
define 𝑌'( to denote their potential outcome under treatment and 𝑌)( to denote their potential 
outcome under control for 𝑖 = 1, . . . 𝑁. While these potential outcomes exist in theory for all 
individuals in our study, we only get to observe one potential outcome for each individual in 
the study. Namely, we observed the outcome for which treatment they were observed to 
receive. We define our treatment indicator as 𝑇( where values of 1 denote that individual 
received treatment and 0 denotes receipt of the control condition. Then we can define 𝑌(*%+ =
𝑌'( ⋅ 𝑇( + 𝑌)( ⋅ (1 − 𝑇(). 
The most commonly used causal treatment effects are: 



– the Average Treatment Effect on the Entire population 

𝐴𝑇𝐸 = 𝐸[𝑌'] − 𝐸[𝑌)],								(1) 

– the Average Treatment Effect on the Treated population 

𝐴𝑇𝑇 = 𝐸[𝑌'|𝑇 = 1] − 𝐸[𝑌)|𝑇 = 1],								(2) 

– the Average Treatment Effect on the Control population 

𝐴𝑇𝐶 = 𝐸[𝑌'|𝑇 = 0] − 𝐸[𝑌)|𝑇 = 0].								(3) 

  Each estimand is used for a different purpose, depending on the research question a study is 
trying to answer. ATE allows one to understand the average causal treatment effect for the 
entire population of individuals in both the treatment and control groups. In contrast, ATT 
allows one to understand the effect of the treatment among only individuals like those in the 
treatment group and ATC to understand the effect of the treatment among only individuals 
like those in the control group. For example, considering the PACE-HD study, the ATE would 
measure the effect of exercise for all people with HD like those enrolled in the study, while 
ATT and ATC would quantify the effect of exercise for individuals with HD who are and are 
not exercising, respectively. Since individuals who exercise will tend to be different from 
those who do not (e.g., healthier), the populations to which ATT and ATC generalize will be 
different. 

2. Step 2. Assess sample for any obvious overlap concerns and adjust as needed. 

  Rubin’s Causal Model (RCM) is the first widely known approach to the statistical analysis of 
causal treatment effects, considering potential (not necessarily observed) outcomes. It is 
based on two critical assumptions (Rosenbaum & Rubin, 1983) — stable unit treatment value 
assumption and strong ignorability. SUTVA implies that the distribution of potential 
outcomes for each individual is independent of the potential outcomes of other individuals 
(Cox & Cox, 1958). Strong ignorability includes two key parts related to the PS (or treatment 
assignment mechanism), defined here as 𝑃(𝑇( = 1|X() where X( denotes the vector of 
observed pretreatment confounders used in the PS model. First, that there are no unobserved 
confounders in the PS model. We discuss how to address this assumption in more detail in 
Step 6. The second part states that each individual has a positive probability to be assigned to 
the treatment group (0 < 𝑃(𝑇( = 1|X() < 1) (Rosenbaum & Rubin, 1983). In observational 
studies, where the group assignment is likely to be determined by the medical and personal 
characteristics of the individual, it is possible to be able to predict the group allocation 
perfectly based on the baseline characteristics (Bergstra et al., 2019) if certain groups of 
individuals in the study only ended up in one group versus another. For this reason, it is 
important to report some summary statistics of the baseline covariates (like mean, sd, max, 
min) per group to check that the distributions of the covariate values of the groups overlap. 
Unfortunately, there is no formal way to test this overlap assumption in a given sample. 
Instead, we recommend some simple checks that can be done to assess obvious areas of the 
covariate distributions where there is a lack of overlap. For example, overlap can be checked 
by comparing the minimum and maximum of the same covariate in the two groups or by 
distribution plots shown in Figure 1. 



  If there are ranges of covariate values that only occur in one group, one might have to exclude 
some individuals, such that the two groups are adequately overlapped, or consider other 
estimands, like the Average Treatment Effect on the Overlapping Population (ATO) (Li et 
al., 2018; Mlcoch et al., 2019), which measures the causal treatment effect on the region 
where there are representatives of both groups. 

  We use figure 1, to illustrate how plotting the density functions of a single covariate for each 
of the treatment groups can be a helpful way to identify obvious areas of the covariate 
distributions when a study lacks overlap. It is apparent from figure 1 that the support of the 
control group (blue area), extends beyond the support of the treatment group — this is the 
area to the right of the vertical line. In such a case, one should consider how to handle this 
issue, either by estimating the balancing weight only for the common area or by estimating 
the treatment effect only for the region of overlap (ATO) (Li et al., 2018). 

	 	

Figure 1: Density plot of control and treatment group, where there is lack of overlap in the support of the two 
groups. The data used for this plot are artificial to demonstrate the issue.  

 
  Consideration of overlap prior to estimation of the balancing and PS weights is an important 

part of the process of estimating causal treatment effects. Often researchers dive into 
estimation of the balancing and PS weights without careful consideration of overlap and find 
themselves frustrated by obtaining balancing weights that do not successfully balance their 



groups. If lack of overlap exists, it can be difficult to obtain high quality balancing and PS 
weights. 

3. Step 3. Estimate the propensity score or balancing weights needed, ideally using multiple 
methods 

  There have been several articles comparing PS and balancing weighting methods (for 
example, (Griffin et al., 2017; Setodji et al., 2017; Setoguchi et al., 2008)). Under different 
settings, different methods perform better, and this depends on the structure of the given 
dataset — the sample size, the number of covariates to be balanced (especially relative to 
sample size), and the true underlying form of the treatment assignment model (e.g., linear 
versus non-parametric). If one has a small sample and the natural relation between the 
confounders and the allocation mechanism is a sigmoid function with main effects only, 
Logistic Regression seems a natural choice. In general, however, there is a lack of guidance 
on how to choose from the multitude of methods available in any particular analysis, in a way 
to achieve sufficient covariate balance without reducing the effective sample size more than 
necessary, to achieve (near) unbiased estimation of a causal treatment effect. It is not 
immediately obvious in any given setting which method is optimal. Thus, in this tutorial, we 
recommend the consideration of several methods and to make inference based on the one that 
achieves the best trade-off between balance and effective sample size (ESS) as explained in 
more detail in Step 4. (Ridgeway et al., 2017). 

4. Step 4. Assess balance and effective sample size for all methods and choose the best one for 
outcome analysis 

  Once PS or balancing weights are estimated, the balance (or comparability) among the groups 
needs to be assessed. The theory behind PS and balancing weights suggests that balance 
should be obtained on the full multivariate distribution of the observed confounders after one 
applies the weights. However, in practice, this is often not checked and it is challenging to 
properly test if the full multivariate distribution of the observed confounders balances 
between the treatment conditions. 

  Here, we propose to use both the standardized mean difference (SMD) and the Kolmogorov-
Smirnov Statistic (KS) as a way to assess how comparable the two treatment groups are. The 
SMD allows one to assess the comparability of the means for each observed confounder while 
the KS statistic allows us to assess balance in the tails of the distributions for a given 
confounder between the two treatment groups. These metrics are commonly used in the 
literature (Austin, 2009; Franklin et al., 2014; Gail & Green, 1976; Setodji et al., 2017; 
Setoguchi et al., 2008). Both metrics are explained in detail in Section 4. 

  Additionally, we also carefully consider the impact of the weighting on the power of a study. 
The PS and balancing weights act in the same way as survey or sampling weights and add 
increased variability into the statistical models and treatment effect estimates. We can assess 
the impact of different PS and balancing weight methods by computing the ESS, which 
denotes the remaining sample size, after the reduction due to the variability in the weights. 
When balance across multiple methods is similar, one would naturally prefer to select as 
optimal the PS or balancing weight with the lowest reduction to the ESS. The ESS is also 
explained in more detail in Section 4. 



5. Step 5. Model the outcome and estimate the causal treatment effect. 

  Before proceeding with any outcome analyses, researchers must assess whether they will be 
able to estimate robust causal effects with their sample. To do so, researchers need to ensure 
adequate balance has been obtained with the PS or balancing weights being used in a given 
analysis. If the weights do not balance the groups being compared well2, a study will not be 
able to robustly estimate the causal effect of the treatment of interest. It is important that 
researchers understand when this is not happening, the study can only be used to examine 
associations since the findings will be less robust and must be caveated as such. 

  Assuming one does have adequate balance and sufficient ESS, there are several possible 
options for the estimation of the needed treatment effects. The simplest estimate is to compare 
weighted means between the treatment and control groups. Given the balancing weights 𝑤(, 
for every individual 𝑖, an estimation of the causal treatment effect could be obtained by the 
formula: 

𝐴𝑇__ =
∑ 𝑤(,∈.! 𝑌(*%+

∑ 𝑤((∈.!
−
∑ 𝑤(,∈." 𝑌(*%+

∑ 𝑤((∈."
 

  where 𝐶' is the set of individuals in the treatment group, and 𝐶) the set of individuals in the 
control group. 

  However, it is more common practice to combine the weights with a multivariable regression 
adjustment that ideally includes all of the observed confounders used in the estimation of the 
weights (Austin, 2011; Ridgeway et al., 2017). When using PS weights, an estimated 
treatment effect that comes from a regression model that includes all observed confounders 
along with the PS weights is a doubly robust treatment effect (Bang & Robins, 2005; Kang 
et al., 2007). The estimated treatment effect is consistent so long as one part of the doubly 
robust model is correct (i.e., either the PS weight model or the multivariable outcome model). 
For balancing weights, this doubly robustness property has not yet been established. 
However, the use of covariate adjustment in the regression model is still seen as useful for 
minimizing bias in the estimated treatment effect and increasing precision in the model. In 
cases where sample sizes are restricted and might not support fully adjusting for all covariates, 
it can be useful to control for a subset of the observed confounders, namely those that have 
the greatest lingering imbalance in the SMD or KS statistic. 

6. Step 6. Assess sensitivity of the results to unobserved confounding. 

  A key assumption in all weighted analyses is that we have not left out any potential 
unobserved confounders when estimating the PS or balancing weights. Unfortunately, as with 
the overlap assumption, the assumption of no unobserved confounders is impossible to test 
formally in practice. Yet, it is important to assess how robust a study’s findings might be to 
unmeasured factors that have not been included in the weights. It is most common to utilize 

	

2	Two,	or	more,	groups	are	considered	to	be	perfectly	balance	as	soon	as	SMD	and	KS-
Statistiv	values	are	below	0.1	threshold.	



sensitivity analyses that assess the sensitivity of the estimated treatment effects and/or 
statistical significance of analysis to potential unobserved confounders. Despite their 
importance, such analyses are underutilized in the literature. Here, we showcase the use of a 
graphical tool to describe how sensitive both treatment effect estimates and statistical 
significance (as measured by the p-value) will be to an unobserved covariate (Griffin et al., 
2020). 

3. Propensity Scoring and Balancing Weight Analysis Methods 
We will now introduce some notation, which will be useful in the description of PS and balancing 
weight estimation algorithms. Consider a simple random sample of N observations from a 
population P. For each unit i, we observe a binary treatment variable 𝑇( and 𝐾 −dimensional 
column vector of observed pre-treatment covariates 𝑋(. The PS is defined as the conditional 
probability of receiving the treatment given the covariates 𝑋(, i.e.𝜋(𝑋() = 𝑃𝑟(𝑇( = 1|𝑋(). From 
(Rosenbaum & Rubin, 1983), the ignorability of treatment assignment says that the treatment 
assignment is ignorable given the (true) propensity score 𝜋(𝑋(). This implies that the unbiased 
estimation of treatment effect is possible by conditioning on the PS alone instead of the entire 
covariate vector 𝑋(. However, in observational studies the PS must be estimated from the dataset. 
Normally, one assumes a parametric PS model 𝜋/(𝑋(). That is 𝑃𝑟(𝑇( = 1|𝑋() = 𝜋/(𝑋(), where 
𝛽 ∈ 𝛿 is an 𝐿 − dimensional column vector of unknown parameters. 

In the following few paragraphs, four commonly used algorithms for obtaining PS and balancing 
weights are described. 

3.1 Logistic Regression 

  The simplest and most commonly used parametric model method to estimate the PS of each 
individual is logistic regression (LR) (Agresti, 2018) since treatment assignments are often 
binary. The basic logistic regression model for estimating the PS assumes that the logit of the 
probability of receiving treatment is equated with a linear combination of covariates 𝑋(0𝛽. 
The coefficient vector 𝛽 is usually estimated with maximum likelihood estimation. The PS, 
in this case, is then computed from the estimated parameters as follows: 

𝜋/(𝑋() =
𝑒𝑥𝑝(𝑋(0𝛽)

1 + 𝑒𝑥𝑝(𝑋(0𝛽)
 

  An implementation of LR for PS estimation in R software is discussed in (Olmos & 
Govindasamy, 2015)o. An extension of LR is Multinomial Logistic Regression which could 
be used to estimate generalized PS if there are more than two treatment conditions. The main 
problem with the LR approach is that the PS model can easily be mis-specified, leading to 
biased estimates of treatment effects. It is nearly impossible to know the best way to specify 
the right hand side of the LR model. 

3.2 Covariate Balance Propensity Score 



  To overcome the shortcoming caused by mis-specification of the model and create a 
parametric option focused on achieving good balance between the treatment groups, the 
covariate balancing PS method was developed by (Imai & Ratkovic, 2014). 

  The authors used the covariate balancing property of parametric models by employing inverse 
PS weighting: 

𝐸(
𝑇(𝑓(𝑋()
𝜋/(𝑋()

−
(1 − 𝑇()𝑓(𝑋()
1 − 𝜋/(𝑋()

) = 0 

  where 𝑓(𝑋() is an 𝑀 −dimensional vector-values measurable function of 𝑋( specified by the 
researcher. For instance, if 𝑓(𝑋() is the first derivative of 𝜋/(𝑋(), the assumed parametric 
model is logistic. 

  This method has the advantage of being robust to mild model misspecification with regard to 
balancing confounders compared to direct maximum likelihood estimation used in a standard 
LR. Additionally, the CBPS method can improve the covariate balance in observed datasets 
and improve the accuracy of estimated treatment effects over parametric models even if there 
is no misspecification (Choi et al., 2019; Imai & Ratkovic, 2014; Setodji et al., 2017; Wyss 
et al., 2014; Xie et al., 2019). 

  The covariate balance method uses a generalized method of moments or an empirical 
likelihood estimation approach to find estimates that come closest to optimizing the 
likelihood function while concurrently meeting the balance condition for the weighted means 
of the covariates in the parameter estimation procedure. 

3.3 Generalized Boosted Model 

  GBM is a flexible, nonparametric machine learning approach to estimating PS weights. It 
predicts the binary treatment indicator by fitting a piecewise-constant model, constructed as 
a combination of simple regression trees (Burgette, McCaffrey, and Griffin in press, (Burgette 
et al., 2015)), namely Recursive Partitioning Algorithms and Boosting. To develop the PS 
model, GBM uses an iterative, “forward stagewise additive algorithm”. Starting with the PS 
equal to the average of treatment assignment on the sample, such an algorithm starts by fitting 
a simple regression tree to the data to predict treatment from the covariates by maximizing 
the following function. 

𝑙(𝑥) =o𝑇(

1

(2'

𝑔(𝑋() − 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝑔(𝑋())), 

  where 𝑔(𝑋() is the 𝑙𝑜𝑔𝑖𝑡 of treatment assignment. Then, at each additional step of the 
algorithm, a new simple regression tree is added to the model from the previous iterations 
without changing any of the previous regression tree fits. The new tree is chosen to provide 
the best fit to the residuals of the model from the previous iteration. This chosen tree also 
provides the greatest increase to the log-likelihood for the data. When combining trees, the 
predictions from each tree are shrunken by a scalar less than one to improve the smoothness 
of the resulting piecewise-constant model and the overall fit. 



  The number of iterations that are performed by the algorithm or the number of trees in the 
model determines the model’s complexity. When choosing the number of iterations to yield 
the final PS model, one must pick a value that balances between underfitting (i.e. a GBM 
does not capture important features of the data) and overfitting the data. One selects the 
“final” model of the treatment indicator (and correspondingly, the PS and PS weights needed 
for analysis) by selecting a particular number of iterations considered “optimal” where 
optimization is done based on achieving the best balance. The TWANG package in R 
implements optimization of the PS model using GBM optimized on best balance rather than 
best model fit (Ridgeway et al., 2020). 

  A detailed tutorial of GBM for PS estimation, balance evaluation, and treatment effect 
estimation in R software, is discussed in (Ridgeway et al., 2017). GBM methods could also 
be used when there are more than two treatments (McCaffrey et al., 2013). 

3.4 Entropy Balance 

  Entropy balance is a method that aims to estimate the weights directly rather than the PS of 
the individuals. The method promises to achieve exact balance on as many moments as 
defined by the user. 

  Assuming that one is interested to estimate the ATT, the quantity that is tricky to estimate is 
𝐸[𝑌(|0)|𝑇( = 1], since these values are not observed. Thus, an estimation of the above quantity 
is 

𝐸[𝑌)|𝑇 = 1]r =
∑ 𝑤()." 𝑌(*%+

∑ 𝑤()
4"
(2'

, 

  where 𝑤( are the balance weights and need to be estimated. Entropy Balance method 
calculates weights through a reweighting scheme (until adequate balance in the pre-advised 
moments is achieved), while at the same time attempting to match the first 𝑘 moments of 
thedistributions of the two groups (𝑘 is defined by the user). Entropy balance re-weighting 
schemes can be considered as generalizations of the traditionally used IPW (Hainmueller, 
2012). However, the weights here are not defined by the PS, thus a direct estimation of PS is 
not feasible. 

  Entropy balance can be implemented in R, with the package 𝑒𝑛𝑡𝑏𝑎𝑙 (Vegetabile BG. A 
Tutorial on Entropy Balancing and Weighted Estimation of Causal Effects: A Guide to the 
‘entbal‘ Package in R. R package. RAND Tool. RAND Corporation. Under review.), however, 
the package is designed to match only the first moment. 

We note that the PS weights 𝑤( are defined in a different way, depending on the components of 
equations (1), (2) or (3) we wish to estimate. The weights are defined as follows: 

𝑤( = 𝑇(	
1

𝜋(𝑥()
+ (1 − 𝑇(	)

1
1 − 𝜋(𝑥()

, 𝑓𝑜𝑟	𝐴𝑇𝐸										(4) 

𝑤( = 𝑇(	 + (1 − 𝑇(	)
𝜋(𝑥()

1 − 𝜋(𝑥()
, 𝑓𝑜𝑟	𝐴𝑇𝑇										(5) 



𝑤( = 𝑇(	
1 − 𝜋(𝑥()
𝜋(𝑥()

+ (1 − 𝑇(	), 𝑓𝑜𝑟	𝐴𝑇𝐶										(6) 

	

Logistic regression, GBM and CBPS produces PS, which we transform to balancing weights 
through the formula described above, whereas Entropy Balance estimates the weights directly. For 
LR we will use the 𝑔𝑙𝑚() function, which is part of the 𝑠𝑡𝑎𝑡𝑠 package in R. For GBM we will use 
the 𝑡𝑤𝑎𝑛𝑔 package (Ridgeway et al., 2020), while for CBPS, the 𝐶𝐵𝑃𝑆 package (Fong et al., 
2019) (which is accompanied with 𝐶𝑂𝐵𝐴𝐿𝑇 package (Greifer, 2020) for plots and diagnostics) 
will be used. Finally, for Entropy Balance we will use the package 𝑒𝑛𝑡𝑏𝑎𝑙. 

4. Measures to Evaluate Balance 
Once the estimation of weights is available, it is important to evaluate the balance on the two 
groups achieved. To do so we will utilize three tools: standardized mean difference (SMD), 
Kolmogorov-Smirnov statistic (KS) and effective sample size (ESS). The first two are measures of 
the balance of the two distributions, while the latter is a measure of the sample power lost by 
weighting. 

4.1 Standardized Mean Difference 

SMD (Austin, 2009; Franklin et al., 2014) is a measure of the distance of the means of two groups. 
It is defined as the difference of the means, divided by an estimate of the standard deviation for a 
given covariate — depending on the causal treatment effect one wishes to estimate. For ATE, it is 
formally defined as: 

𝑆𝑀𝐷 =
𝑋‾678!69846 − 𝑋‾$*467*:

}(𝑛678!69846 − 1)𝑠𝑑678!69846
; + (𝑛$*467*: − 1)𝑠𝑑$*467*:;

𝑛678!69846 + 𝑛$*467*: − 2

, 

where 𝑋678!69846 and 𝑋$*467*: are the sample means, 𝑠𝑑678!69846 and 𝑠𝑑$*467*: are the standard 
deviations and 𝑛678!69846 and 𝑛$*467*: are the sample sizes of treatment and control group, 
respectively. For ATT, the standard deviation used would be 𝑠𝑑678!69846, while for ATC, in the 
denominator one should consider 𝑠𝑑$*467*:. 

SMD values lie between 0 and 1, and the lower the value, the better the balance achieved. In the 
literature, 0.1 is recommended as a threshold  to define groups as balanced. By definition, it 
quantifies the similarity of the means of the two groups for each variable, thus it expresses how 
close the two mean values are. 

4.2 Kolmogorov-Smirnov Statistic 

KS is a statistical test (Gail & Green, 1976) which checks the hypothesis that the two samples are 
from the same distribution. Its test statistic is formally defined as 

𝐾𝑆 = max
<
~𝐹89=678!69846(𝑧) − 𝐹89=$*467*:(𝑧)~, 



where 𝐹89=678!69846(⋅) and 𝐹89=$*467*:(⋅) are the empirical distributions of treatment and control, 
respectively. The empirical distribution of a sample 𝑥', 𝑥;, . . . , 𝑥4, is: 

𝐹89=(𝑥) =
#𝑥( ≤ 𝑥

𝑛 . 

By definition, the 𝐾𝑆 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 takes values in [0,1], and the lower the value, the closer the two 
distributions. Unlike SMD, it is a measure that quantifies the similarity of the entire distribution 
of the two groups, rather than the means only. The is no clear guidance on what is the best threshold 
for the KS but values over 0.1 would be consider notable large and thus, we propose to use 0.1 as 
the threshold for balance for the KS as well as the SMD. 

4.3 Effective Sample Size 

Given the weights of each group, the ESS (Ridgeway et al., 2017) is defined as: 

𝐸𝑆𝑆 =
(∑ 𝑤((∈. );

∑ 𝑤(;(∈.
, 

where 𝑤( are the weights of the group 𝐶 — this could be either treatment or control group, if we 
are interested in the estimation of ATC or ATT, respectively, or the entire sample, if we wish to 
estimate ATE. 

ESS expresses the number of observations from a random sample one needs to use, to obtain an 
estimate with the same variance as the one obtained from the weighted group. It, therefore, can be 
used to help understand the power/precision a study has after using PS or balancing weights. 

5. Study Data 
The data example used in this tutorial is based on the PACE-HD study (Drew et al., 2019). It is an 
observational cohort study with a nested randomized trial of long term (e.g. 12 months) exercise 
compared to usual physical activity on progression and severity of Huntington’s Disease (HD). 
Data consist of 120 people with a confirmed genetic diagnosis of HD that satisfy inclusion-
exclusion criteria were included in the PACE-HD study. The allocation mechanism between the 
wider control and treatment group is not random. Therefore, for the purposes of this tutorial, we 
will utilize the part of the control group that does not contain the control group of the nested 
randomized trial. 

There are baseline data for 111 individuals, 58 of which are allocated to the control group, and 
the rest being split between control (27) and treatment (26) groups through a randomization 
process. Due to the small size of the available dataset, care is required to select both the method 
and covariates to use for balancing. In this tutorial, we will control for the 3 main confounders 
𝑉𝑂2𝑚𝑎𝑥, 𝑐𝑈𝐻𝐷𝑅𝑆_𝑌1 and 6′ 𝑊𝑎𝑙𝑘 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (for formal definitions of these covariates see 9). 
In brief, 𝑐𝑈𝐻𝐷𝑅𝑆_𝑌1 denotes the baseline severity of HD for each individual while 𝑉𝑂2𝑚𝑎𝑥 and 
6′ 𝑊𝑎𝑙𝑘 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 measure the physical fitness levels of each individuals. These confounders 
were chosen based on scientific advice from the study team — dealing with variable selection for 
PS and outcome model is beyond the goal of this current tutorial (Brookhart et al., 2006; Hirano 
& Imbens, 2001). Our key outcome is 𝑐𝑈𝐻𝐷𝑅𝑆_𝑌12 measured 12-months after intake. 



Since it is not feasible to publish the original data (for identification reasons), we simulated 
synthetic data (using the same mean and covariance matrix with the original data) to demonstrate 
our step-by-step procedure to obtain an estimation of causal treatment effect of exercise in section 
6. It is common in observational studies to have a mixture of binary and continuous covariates, 
thus it is often questionable how to simulate binary and continuous covariates at the same time to 
preserve the correlation across the covariates of different types. We will utilize the R package 
𝑠𝑦𝑛𝑡ℎ𝑝𝑜𝑝 (Nowok et al., 2019), which is based on (Nowok et al., 2016) and generates synthetic 
data based on the structure of an original dataset. 

6. Obtaining PS Weighting estimates and assessing their 
performance 

6.1 Choose which estimand one is interested in (ATE, ATT, ATC) 

Since we would expect individuals who are exercising to be healthier on average than those who 
do not, we felt that it would be most meaningful for the PACE-HD study to estimate the ATT of 
exercise among HD individuals like those who were selecting to exercise. Thus, we estimate ATT 
in our illustration. 

6.2 Assess Sample for any obvious Overlap Concerns and Adjust Sample size 
as Needed 

After step 1 we continue with assessment of the overlap between the control and treatment groups. 
To do so, we create a table of minimum and maximum value per group, per variable (table 1), as 
well as distribution plot (figure 2), which provides a visualisation of the overlap, such that any 
regions of concern can be detected. The code to implement this analysis may be found in 8.1. 



	

Figure 2: Density plots of 6′ Walk, V O2max and cUHDRS (with light blue is the control group and with light red 
the treatment group). The vertical line in 6′ Walk plot indicates the point beyond of which, the two densities do not 
overlap.  

	

	



Table 1: Table of mean, standard deviation, minimum and maximum value per variable, per group. 
Based on min/max values per group, it seems that there is a lack of overlapping on 6′ 𝑊𝑎𝑙𝑘 for 
the two group, which will be checked on the distribution plots. 

 Control 
Group 

   Treatme
nt Group 

   

 Mean SD min max Mean SD min max 

6’ Walk 509.48 122.4
1 

230.00 1012.0
0 

407.01 95.74 230.00 666.20 

cUHDRS_Y
1 

11.28 3.30 4.76 16.46 10.65 4.36 3.45 16.46 

VO2max 2615.62 685.6
1 

1163.1
9 

3730.8
7 

2243.57 710.5
7 

1166.4
6 

3504.0
6 

Table 1: Table of mean, standard deviation, minimum and maximum value per variable, per group. Based on min/max 
values per group, it seems that there is a lack of overlapping on 6′ Walk for the two group, which will be checked on 
the distribution plots.  

From table 1, it seems that there is a lack of overlap on the maximum value of 6′ 𝑊𝑎𝑙𝑘 for the 
two groups, since for control group the maximum value is 1012 metres, while for treatment it is 
666.2 metres. This is clear in figure 2, where the 6′ 𝑊𝑎𝑙𝑘 plot shows a lack of overlap in the right 
tail of the distribution of the control group. For this reason, we remove these two outlying 
individuals from the analysis to ensure adequate overlap in our two groups. After the removal of 
the two outliers, the distribution plots are as depicted in figure 3. This corrects the overlapping 
issue, although we report balance measures for both datasets, with and without outliers, to check 
whether outliers reduce the resulting balance.	 



	

Figure 3: Density plots of 6′ Walk, V O2max and cUHDRS, without the outliers individuals. 

6.3 Estimation of Propensity Scores or Balancing Weights, ideally using 
Multiple Methods 

Next, we estimate balancing weights using the four methods presented in Section 3. Here, we are 
interested in the estimation of ATT, thus the relevant formulae for estimation of balancing weights 
from PS for LR, GBM and CBPS — for estimation of ATE and/or ATC, one should use formulas 
([ATE_weights]) and ([ATC_weights]) to transform PS to balancing weights, respectively, and 



shift the relevant option in 𝐸𝑛𝑡𝐵𝑎𝑙 function. The code to implement this analysis can be found in 
8.2. 

6.4 Assess balance and Effective Sample Size for all methods and choose the 
best one for Outcome Analysis 

Having estimated the balancing weights, we next assess balance. The code to compute SMD, KS 
and ESS for each balancing method is described in 8.3. Table  2 reports the SMD and KS values 
per method, per variable (rounded to 2 decimal places), as well as the ESS per method. 

Table 2: Standardized Mean Difference (SMD), Kolmogorov-Smirnov Statistic (KS) and Effective 
Sample Size (ESS) per estimation method. For SMD and KS 0.1 is considered as a widely accepted 
threshold, while ESS should be as close to unweighted as possible. 

 SMD        

 Unweighted LR GBM GBM CBPS EB #1 EB #2 EB #3 

SIX MIN Walk 0.91 0.07 0.06 0.04 0.04 0.00 0.00 0.00 
VO2max 0.52 0.02 0.13 0.17 0.03 0.00 0.00 0.00 
cUHDRS_Y1 0.12 0.11 0.05 0.04 0.01 0.00 0.00 0.00 
mean 0.52 0.07 0.08 0.08 0.03 0.00 0.00 0.00 
max 0.91 0.11 0.13 0.17 0.04 0.00 0.00 0.00 
 KS Statistic        

 Unweighted LR GBM GBM CBPS EB #1 EB #2 EB #3 

SIX MIN Walk 0.43 0.15 0.18 0.17 0.19 0.18 0.21 0.27 
VO2max 0.37 0.10 0.14 0.16 0.11 0.10 0.12 0.17 
cUHDRS_Y1 0.21 0.17 0.12 0.12 0.14 0.13 0.12 0.15 
mean 0.34 0.14 0.15 0.15 0.15 0.14 0.15 0.20 
max 0.43 0.17 0.18 0.17 0.19 0.18 0.21 0.27 
 ESS        

 Unweighted LR GBM GBM CBPS EB #1 EB #2 EB #3 

 56.0 20.2 15.0 16.5 23.2 21.4 18.9 13.1 

Table 2: Standardized Mean Difference (SMD), Kolmogorov-Smirnov Statistic (KS) and Effective Sample Size (ESS) 
per estimation method. For SMD and KS 0.1 is considered as a widely accepted threshold, while ESS should be as 
close to unweighted as possible.  

For SMD and KS statistic, 0.1 is a widely accepted threshold  — any difference under this 
threshold is not considered as evidence for imbalance. As observed in table 2, 𝐸𝐵 achieves the 
best balance in terms of SMD (absolutely 0 for all covariates), followed closely by 𝐶𝐵𝑃𝑆, which 
reports mean SMD 0.03 with a maximum value of 0.04. Both methods perform well in terms of 



SMD, especially when considering the unweighted SMD of 6′ 𝑊𝑎𝑙𝑘 of 0.91 — which is 
considered as an extreme case of imbalance. 

In terms of KS statistic, no method achieves an acceptable level of balance. 𝐿𝑅 and $EB#1$ give 
the lowest values, although the other methods are similar. This lack of balance may be explained 
by the high initial KS and the small sample sizes per group (58 in the control group and 26 in the 
treatment group). This is also reflected in the big losses of effective sample size for all methods, 
with 𝐶𝐵𝑃𝑆 giving the highest ESS (losing over 50% compared to the unweighted analysis). Losses 
of 50% are relatively common for analyses with meaningful differences between the groups being 
compared and such reductions in sample size should not be shocking. The impact is more difficult 
for small studies. 

EB (controlling for the 1+6 moment, and CBPS seem to perform identically, however, given that 
the results are rounded to 2 decimal places, we pick EB as the method with the best balance (the 
SMD scores are exactly 0). Thus, we apply the outcome and sensitivity analysis to 𝐸𝐵 #1. 

6.5 Model Outcome and Estimate the Causal Treatment Effect 

Once adequate balance is achieved, the next step is to estimate the causal treatment effect, using 
the balancing weights obtained in previous steps. To do so, we fit a weighted linear regression on 
𝑐𝑈𝐻𝐷𝑅𝑆>8!7; (this is the 𝑐𝑈𝐻𝐷𝑅𝑆 at the end of the treatment period) considering as predictors 
the 6′ 𝑊𝑎𝑙𝑘, 𝑐𝑈𝐻𝐷𝑅𝑆_𝑌1 and 𝑉𝑂2𝑚𝑎𝑥 at the baseline, and the treatment status. The coefficient 
of treatment status represents the estimand of interest. 

Table 3: Estimation of ATT 
 

Estimate S.E. t-val p-val CI Lower CI Upper 
(Intercept) -3.29948 0.07041 -46.86 <2e-16 -3.440 -3.159 
treat 0.18083 0.03148 5.74 1.75e-07 0.118 0.244 
SIX_MIN 0.00064 0.00024 2.70 0.008 0.000 0.001 
VO2max 0.00001 0.00002 0.54 0.591 -0.000 0.000 
cUHDRS_Y1 0.26367 0.00396 66.64 <2e-16 0.256 0.272 

Table 3: Estimation of ATT 

In table 3 we report the estimation of ATT (treatment coefficient), its standard error, the associated 
𝑝 − 𝑣𝑎𝑙𝑢𝑒, and the 95 percent confidence intervals. According to table 3, the treatment effect is 
estimated to be equal to 0.181, and the associated 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is 1.75𝑒 − 07 (< 0.05), which means 
that the effect of the treatment is considered statistically significant. This is also evident from the 
largely positive confidence interval. The estimation treatment effect on treated population (ATT) 
indicates that, physical activity leads to a reduction of 𝑐𝑈𝐻𝐷𝑅𝑆 value, with the amount of decrease 
on individuals who do not receive the treatment to be on average 0.181 lower compared to 
individuals who do receive the treatment — thus individuals on treatment group have on average 
𝑐𝑈𝐻𝐷𝑅𝑆 value higher by 0.181, a year after the initial measurement. 

The code for the above analysis is provided in 8.4. Outcome and sesitivity analysis parts, 
performed under the 𝑂𝑉𝑡𝑜𝑜𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒, which is currently under review (Pane, J., Griffin, B. A., 



Burgette, L., & McCaffrey, D. Assessing Sensitivity to Omitted Variables: A Tutorial for the 
OVtool Package. R package. RAND Tool. RAND Corporation. Under review.). 

6.6 Assess Sensitivity of the Results to Unobserved Confounding 

Sensitivity analysis is performed to assess the robustness of the treatment effect estimation in the 
presence of potential unobserved confounders (a scenario which is often present). This is 
performed through a visual tool produced by 𝑂𝑉𝑡𝑜𝑜𝑙 package in R. 

The output is a contour plot, which represent the treatment effect levels, and the effect of a potential 
unobserved confounder is considered. The 𝑥 − 𝑎𝑥𝑖𝑠 displays the Association with Treatment 
Indicator — this is the unweighted standardized mean difference of the potential unobserved 
confounder between the treatment and control group —, and the 𝑦 − 𝑎𝑥𝑖𝑠 displays the Absolute 
Association with the Outcome Covariate — this is the absolute correlation of the unobserved 
confounder with the outcome covariate. The plot also provides the estimated treatment effect and 
the associated p-value (lower-right corner) from the original analysis, which is an indicator of the 
significance of the effect. The solid black lines of the contour show how the size of the treatment 
effect changes as a function of the unobserved confounder’s relationship with treatment 
assignment and the outcome, while the red contours show how the size of the p-value changes as 
a function of the unobserved confounder focusing on commonly used cut-offs. Considering a fixed 
level of association of a potential unobserved confounder with outcome and treatment assignment 
(through correlation and SMD respectively) gives a measure of the shift in treatment effect value, 
and its significance. 



	

Figure 4: x−axis indicated the SMD of potential confounders and y−axis the correlation with the outcome. of the 
contour stand for the size of the treatment effect, while the red ones represent the p-value cut-offs. In our case, the 
observed confounders are V O2max (SMD −0.52, correlation with the outcome 0.15) and SIX MIN (SMD −0.91, 
correlation with the outcome 0.52)  

 

Figure 4 depicts the output plot of sensitivity analysis for our data. The observed confounders 
considered for the estimation of treatment effect are 6′ 𝑊𝑎𝑙𝑘, 𝑉𝑂2𝑚𝑎𝑥 and 𝑐𝑈𝐻𝐷𝑅𝑆_𝑌1 at the 
baseline, with SMD values −0.91, −0.52 and 0.15, and association with the outcome (correlation) 
0.52, −0.15 and 0.99, respectively (we cannot see the confounder 𝑐𝑈𝐻𝑅𝐷𝑆_𝑌1 in the plot, 
because of the extreme association with the outcome — correlation almost 1). The summary output 
of the package is as follows: 

• "The sign of the estimated effect is expected to remain consistent when simulated unobserved 
confounders have the same strength of association with the treatment indicator and outcome 



that are seen in the observed confounders. In the most extreme observed case, the estimated 
effect size is reduced by 7 percent." 

• "Statistical significance at the 0.05 level is expected to be robust to unobserved confounders 
with strengths of associations with the treatment indicator and outcome that are seen in the 
observed confounders. In the most extreme observed case, the p-value would be expected to 
increase from 0.000 to 0.002." 

Clearly our findings in this case study are extremely robust, most likely due to the inclusion of the 
baseline outcome in our models. The baseline outcome is always going to be one of the most highly 
correlated variables with the outcome and thus it explains a lot of the confounding bais in our 
analysis. We would have to miss something larger than this to wipe away our findings and this is 
highly unlikely to exist. Consider the 𝐶𝐴𝑃 covariate which is meaningful measure of HD onset in 
individuals with the HD gene (description in 9) as a candidate unobsered confounder we did not 
get to include, with 𝑆𝑀𝐷 −0.06 and absolute association with the outcome (correlation) 0.57, the 
graph above showcases how including this type of confounder would not change our findings in 
any notable way (again likely because we have the baseline outcome in our list of confounders). 

7. Discussion/Conclusion 
In this paper, we present a step-by-step guide to making inference on causal treatment effects using 
observational data. This tutorial represents an advancement over prior work (Ali et al., 2016; 
Garrido et al., 2014; Lee & Little, 2017; Olmos & Govindasamy, 2015) in that we explicitly deal 
with addressing two key assumptions for PS methods (overlap and unobserved confounding) and 
recommend the use of multiple estimators for the potential PS and balancing weights in order to 
ultimately select the best method for a given study. It is difficult to be able to project which PS or 
balancing method will do best in any given study and thus, we believe it is better for it to become 
standard practice (before looking at any outcome models) to use multiple methods and carefully 
compare balance and ESS to select the one that is optimal. 

Observational studies are widely used in the research of causal treatment effects. Thus, the accurate 
estimation of the effect of interest is of primal importance. Since the treatment and control groups 
are not balanced a priori, unlike in a (large) RCT, propensity score and balancing weights are a 
useful tool for every researcher who wishes to make inference based on observational data. 

Observational studies, though, can pose several challenges, including extreme values on baseline 
covariates in one group, as well as limitations related to sample size. When dealing with small 
samples, a case which is quite often when dealing with rare diseases, one should be careful with 
the number of confounders which one attempts to balance, because there is always the danger of 
model overfitting. Variable selection is beyond the scope of this tutorial. We used scientific advice 
to choose the covariates we are interested to control for in the PACE-HD dataset, however, there 
is some literature covering the topic of variable selection for PS models (Brookhart et al., 2006; 
Hirano & Imbens, 2001). 

It is crucial to investigate the data a priori for potential overlapping issues or outliers issues, and 
adjust as needed. We highly recommend considering more than one method when it comes to 
algorithms that produce balancing weights and then evaluate the balance for each method and 



select the best performing one. Following outcome analysis it is important to perform an analysis 
of the sensitivity of the outcome estimation and significance, to access the generalization abilities 
of the outcome results. 
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Appendix A. R-Code 
A.1 Choose which estimand one is interested in (ATE, ATT, ATC) 

No	technical	code	required	for	step	1.	

A.2 Assess Sample for any obvious Overlap Concerns and Adjust Sample size 
as Needed 

The code below describes the procedure to compute the mean, standard deviation, minimum and 
maximum per variable, for each group separately. The treatment status (variable $"treat"$) has 
entry 0 for the control group, and 1 for the treatment group. Thus, in the beginning, we create 
vectors with the positions of control and treatment individuals, then computing the desired statistic 
for each group separately, and finally round them at 2 decimals. 

control_group <- which(data_full[,"treat"]==0) 
treatment_group <- which(data_full[,"treat"]==1) 
 
table_overlap <- cbind(colMeans(data_full[control_group,-1], na.rm=TRUE),  
                apply(data_full[control_group,-1], 2, sd, na.rm = TRUE), 
                apply(data_full[control_group,-1], 2, min, na.rm=TRUE), 
                apply(data_full[control_group,-1], 2, max, na.rm=TRUE), 
                colMeans(data_full[treatment_group,-1], na.rm=TRUE),  
                apply(data_full[treatment_group,-1], 2, sd, na.rm = TRUE), 
                apply(data_full[treatment_group,-1], 2, min, na.rm=TRUE), 
                apply(data_full[treatment_group,-1], 2, max, na.rm=TRUE)) 
 
table_overlap <- round(table_overlap[,c("SIX_MIN", "VO2max", "cUHDRS_Y1")],2) 

We produce density plots for each covariate, using 𝑔𝑔𝑝𝑙𝑜𝑡2 (install and load the relevant package) 
to visualize the overlapping of the distributions of the two groups. In each case, we define a 
𝑑𝑎𝑡𝑎. 𝑓𝑟𝑎𝑚𝑒 including only two columns (treatment status and the desired covariate), and rename 
the entries 0/1 in treatment status to 𝑐𝑜𝑛𝑡𝑟𝑜𝑙/𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡. In 6′ 𝑊𝑎𝑙𝑘, we add a vertical line 
(𝑔𝑒𝑜𝑚_𝑣𝑙𝑖𝑛𝑒()) at the end of treatment group distribution, to underlie the lack of overlapping 
beyond this point. 



library(ggplot2) 
##6' Walk 
gg_data_6_min <- data_full[,c("treat", "SIX_MIN")] 
gg_data_6_min[which(gg_data_6_min[,"treat"]==0),"treat"] <- "Control"  
gg_data_6_min[which(gg_data_6_min[,"treat"]==1),"treat"] <- "Treatment"  gg_data_6_min <- data.fram
e(treat=as.factor(gg_data_6_min[,"treat"]), 
six_min=as.numeric(gg_data_6_min[,"SIX_MIN"])) 
 
#density plot 
p_dens <- ggplot(gg_data_6_min, aes(x=six_min, fill=treat)) + 
geom_density(alpha=0.4) + geom_vline(xintercept = 770) + 
geom_vline(xintercept = range(gg_data_6_min[gg_data_6_min$treat== 
"Treatment", ]$six_min), linetype="dashed", colour="#00BFC4") + 
geom_vline(xintercept = range(gg_data_6_min[gg_data_6_min$treat== 
"Control", ]$six_min), linetype="dashed", colour="#F8766D") + 
labs(title="Distributions of control and treatment group", 
y="Rel. Frequency",x="6' Walk",fill="Treatment Group") 
 
p_dens 

##VO2max 
gg_data_vo2max <- data_full[,c("treat", "VO2max")] 
gg_data_vo2max[which(gg_data_vo2max[,"treat"]==0),"treat"] <- "Control"  
gg_data_vo2max[which(gg_data_vo2max[,"treat"]==1),"treat"] <- "Treatment"  
gg_data_vo2max <- data.frame(treat=as.factor(gg_data_vo2max[,"treat"]), 
vo2max=as.numeric(gg_data_vo2max[,"VO2max"])) 
 
#density plot 
p_dens <- ggplot(gg_data_vo2max, aes(x=vo2max, fill=treat)) + 
geom_density(alpha=0.4) + 
geom_vline(xintercept = range(gg_data_vo2max[gg_data_vo2max$treat== 
"Treatment", ]$vo2max), linetype="dashed", colour="#00BFC4") + 
geom_vline(xintercept = range(gg_data_vo2max[gg_data_vo2max$treat== 
"Control", ]$vo2max), linetype="dashed", colour="#F8766D") + 
labs(title="Distributions of control and treatment group", 
y="Rel. Frequency",x="VO2max",fill="Treatment Group") 
 
p_dens 

##cUHDRS 
gg_data_cuhdrs <- data_full[,c("treat", "cUHDRS_Y1")] 
gg_data_cuhdrs[which(gg_data_cuhdrs[,"treat"]==0),"treat"] <- "Control"  
gg_data_cuhdrs[which(gg_data_cuhdrs[,"treat"]==1),"treat"] <- "Treatment"  
gg_data_cuhdrs <- data.frame(treat=as.factor(gg_data_cuhdrs[,"treat"]), 
cuhdrs=as.numeric(gg_data_cuhdrs[,"cUHDRS_Y1"])) 
 
#density plot 
p_dens <- ggplot(gg_data_cuhdrs, aes(x=cuhdrs, fill=treat)) + 
geom_density(alpha=0.4) + 
geom_vline(xintercept = range(gg_data_cuhdrs[gg_data_cuhdrs$treat== 
"Treatment", ]$cuhdrs), linetype="dashed", colour="#00BFC4") + 



geom_vline(xintercept = range(gg_data_cuhdrs[gg_data_cuhdrs$treat== 
"Control", ]$cuhdrs), linetype="dashed", colour="#F8766D") + 
labs(title="Distributions of control and treatment group", 
y="Rel. Frequency",x="cUHDRS",fill="Treatment Group") 
 
p_dens 

Since in figure 3 it is apparent that there is an overlapping problem on the right tail of 6′ 𝑊𝑎𝑙𝑘, 
we will check for outliers on the right tail of the control group. The code below describes how to 
find the individuals in the control group with entries over the maximum value of the treatment 
group. 

treatment_6_min_max <- max(data_full[treatment_group,"SIX_MIN"]) 
outliers_obs <- which(data_full[,"SIX_MIN"]>750) 
 
data_full <- data_full[-outliers_obs,] 

A.3 Estimation of Propensity Scores or Balancing Weights, ideally using 
Multiple Methods 

In this section, we estimate PS for 𝐿𝑅, 𝐺𝐵𝑀 and 𝐶𝐵𝑃𝑆, and then use the formula described in (5) 
to obtain the balancing weights, while 𝐸𝑛𝑡𝐵𝑎𝑙 estimates directly the balancing weights. 

To obtain PS estimation using 𝐿𝑅, we consider treatment status (𝑡𝑟𝑒𝑎𝑡) as a response, and the rest 
covariates (6′ 𝑊𝑎𝑙𝑘, 𝑉𝑂2𝑚𝑎𝑥 and 𝑐𝑈𝐻𝐷𝑅𝑆) as predictors — the same formula is used in every 
method. As 𝑓𝑎𝑚𝑖𝑙𝑦 is used 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 since the nature of treatment status is 0/1. The fitted values 
(𝑓𝑖𝑡𝑡𝑒𝑑()) of the model are the desired PS, which are transformed with formula (5) to obtain the 
ATT balancing weights. 

##LR 
set.seed(5) 
ps_data <- data.frame(data_full) 
##logistic 
ps.logit <- glm(treat ~ SIX_MIN + VO2max + cUHDRS_Y1, 
               data = ps_data, family = binomial) 
PScores <- fitted(ps.logit) 
logistic_weights <- with(ps_data,ifelse(treat==1,1,PScores/(1-PScores))) 

To obtain PS estimation using 𝐺𝐵𝑀, we utilize 𝑡𝑤𝑎𝑛𝑔 package  (install and load). The maximum 
number of trees (𝑛. 𝑡𝑟𝑒𝑒𝑠), interaction degree (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑑𝑒𝑝𝑡ℎ), shrinkage level (𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒) 
are set to the default values , will we utilize 𝐾𝑆9!? and 𝐸𝑆98!4 as stopping methods (stop.method) 
— also 𝐸𝑆9!? and 𝐾𝑆98!4 exist. The estimand we wish to estimate is ATT (𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑), and 
finally, we transform the PS according to (5) to derive the ATT balancing weights. 

library(twang) 
##gbm 
ps.gbm <- ps(treat ~ SIX_MIN + VO2max + cUHDRS_Y1, data = ps_data,  
            n.trees=5000, interaction.depth=2, shrinkage=0.01,  
            stop.method=c("es.mean","ks.max"),  
            estimand = "ATT", verbose=FALSE) 



PScores <- ps.gbm$ps$es.mean.ATT 
gbm_es_weights <-  with(ps_data,ifelse(treat==1,1,PScores/(1-PScores))) 
PScores <- ps.gbm$ps$ks.max.ATT 
gbm_ks_weights <-  with(ps_data,ifelse(treat==1,1,PScores/(1-PScores))) 

𝐶𝐵𝑃𝑆 package  is used to obtain 𝐶𝐵𝑃𝑆 estimations of PS. 𝐴𝑇𝑇 is set to 1, since we are interested 
in ATT (0 is used ATE), and the maximum number of iteration for the estimation of the parameters 
of the model (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) is set to 1000 (default value). Since 𝐶𝐵𝑃𝑆 returns estimations of PS as 
fitted values, we transform PS to ATT according to formula (5). 

library(CBPS) 
##cbps 
cbps_fit <- CBPS(treat ~ SIX_MIN + VO2max + cUHDRS_Y1, data=ps_data,  
                ATT=1, iterations=1000)  
PScores <- cbps_fit$fitted.values 
cbps_weights <- with(ps_data,ifelse(treat==1,1,PScores/(1-PScores))) 

Finally, the 𝑒𝑛𝑡𝑏𝑎𝑙 package (Vegetabile BG. A Tutorial on Entropy Balancing and Weighted 
Estimation of Causal Effects: A Guide to the ‘entbal‘ Package in R. R package. RAND Tool. RAND 
Corporation. Under review.) is used to obtain balancing weight from 𝐸𝑛𝑡𝐵𝑎𝑙. The 𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑 we 
wish to estimate is ATT, and optimization method (𝑜𝑝𝑡𝑖𝑚9𝑒𝑡ℎ𝑜𝑑) is set to default. The number 
of moments (𝑛9𝑜𝑚𝑒𝑛𝑡𝑠) we wish to match here is 1, but one could demand higher moments to 
be matched — this will deteriorate the ESS value in such small samples though. 

library(devtools) 
require(devtools) 
devtools::install_github("bvegetabile/entbal") 
library(entbal) 
##EB 
ps.entbal <- entbal(treat ~  SIX_MIN + VO2max + cUHDRS_Y1, data = ps_data, 
                eb_pars = list(exp_type = "binary", 
                estimand = "ATT", n_moments = 1, max_iters = 1000,  
                verbose = FALSE, optim_method = "L-BFGS-B")) 
entbal_weights_1 <- ps.entbal$wts 

A.4 Assess balance and Effective Sample Size for all methods and choose the 
best one for Outcome Analysis 

The SMD and KS statistic as described in section 4, are computed in function 𝑏𝑎𝑙. 𝑠𝑡𝑎𝑡, included 
in the 𝑡𝑤𝑎𝑛𝑔 package. The function takes as input the data, the names of the variables (𝑣𝑎𝑟𝑠) we 
with to compute the balance measures, the treatment variable (𝑡𝑟𝑒𝑎𝑡. 𝑣𝑎𝑟), the balancing weights 
(𝑤. 𝑎𝑙𝑙), the sample weights (if any) (𝑠𝑎𝑚𝑝𝑤), a verbose for when there are more than two 
treatment groups (𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚) and the estimand of the treatment effect we wish to estimate 
(𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑). 

rep_1_weights <- rep(1, dim(data_full)[1]) 
variables_names <- c("SIX_MIN", "VO2max", "cUHDRS_Y1") 
 
unweighted_smd <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=rep_1_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 



multinom=FALSE)$results$std.eff.sz 
logistic_smd <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=logistic_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$std.eff.sz 
cbps_smd <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=cbps_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$std.eff.sz 
entbal_smd_1 <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=entbal_weights_1, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$std.eff.sz 
gbm_es_smd <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=gbm_es_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$std.eff.sz 
gbm_ks_smd <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=gbm_ks_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$std.eff.sz 

unweighted_ks <- bal.stat(ps_data, vars=variables_names, 
treat.var="treat", w.all=rep_1_weights, sampw=rep_1_weights, get.ks=TRUE, 
estimand="ATT", multinom=FALSE)$results$ks 
logistic_ks <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=logistic_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$ks 
cbps_ks <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=cbps_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$ks 
entbal_ks_1 <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=entbal_weights_1, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$ks 
gbm_es_ks <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=gbm_es_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$ks 
gbm_ks_ks <- bal.stat(ps_data, vars=variables_names, treat.var="treat", 
w.all=gbm_ks_weights, sampw=rep_1_weights, get.ks=TRUE, estimand="ATT", 
multinom=FALSE)$results$ks 

Finally, ESS is computed based on the formula in section 4. The function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒8𝑠𝑠 tales as 
input a vector of weights, and returns the ESS. 

compute_ess <- function(w) 
{ 
    ess_final <- (sum(weights)^2)/sum(weights^2) 
    return(ess_final) 
} 
control_group <- which(data_full[,"treat"]==0) 
 
weights <- rep(1, length(control_group)) 
unweighted_ess <- compute_ess(weights) 
weights <- logistic_weights[control_group] 
logistic_ess <- compute_ess(weights) 
weights <- gbm_es_weights[control_group] 



gbm_es_ess <- compute_ess(weights) 
weights <- gbm_ks_weights[control_group] 
gbm_ks_ess <- compute_ess(weights) 
weights <- cbps_weights[control_group] 
cbps_ess <- compute_ess(weights) 
weights <- entbal_weights_1[control_group] 
entbal_ess_1 <- compute_ess(weights) 
weights <- entbal_weights_2[control_group] 
 
ess <- round(c(unweighted_ess,logistic_ess,gbm_es_ess,gbm_ks_ess, 
cbps_ess,entbal_ess_1),1) 

A.5 Model Outcome and Estimate the Causal Treatment Effect 

The estimation of ATT and relevant statistics from the outcome covariate (𝑐𝑈𝐻𝐷𝑅𝑆>8!7; as 
described in section 6.5, are computed by function 𝑜𝑢𝑡𝑐𝑜𝑚𝑒9𝑜𝑑𝑒𝑙, included in the 𝑂𝑉𝑡𝑜𝑜𝑙 
package (Pane, J., Griffin, B. A., Burgette, L., & McCaffrey, D. Assessing Sensitivity to Omitted 
Variables: A Tutorial for the OVtool Package. R package. RAND Tool. RAND Corporation. Under 
review.). The function takes as input the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, the outcome covariate (𝑐𝑈𝐻𝐷𝑅𝑆_𝑌2), the 
model covariates (𝑉𝑂2𝑚𝑎𝑥 and 𝑐𝑈𝐻𝐷𝑅𝑆>8!7'), and the 𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑 of interest (in our case this is 
𝐴𝑇𝑇). 

devtools::install_github("jpane24/OVtool")  
library(OVtool) 
results <- outcome_model(ps_object = NULL, 
                        stop.method = NULL,  
                        data = data_full, 
                        weights = entbal_weights_1,  
                        treatment = "treat", 
                        outcome = "cUHDRS_Y2",  
                        model_covariates = c("SIX_MIN", "VO2max", "cUHDRS_Y1"), 
                        estimand = "ATT") 
output_table <- summary(results$mod_results)$coefficients 

A.6 Assess Sensitivity of the Results to Unobserved Confounding 

𝑜𝑣_𝑠𝑖𝑚 function of 𝑂𝑉𝑡𝑜𝑜𝑙 package, takes as input the results of 𝑜𝑢𝑡𝑐𝑜𝑚𝑒9𝑜𝑑𝑒𝑙 function, and 
evaluates the treatment effect (and it’s significance), considering an unobserved confounder, on a 
range of association with treatment (SMD) and with the outcome (correlation). By default the 
function considers SMD range (−0.4,0.4), and correlation (𝑟ℎ𝑜_𝑔𝑟𝑖𝑑) range (0,0.4). 

The 𝑠𝑢𝑚𝑚𝑎𝑟𝑦. 𝑜𝑣 function, produces a summary report of the sensitivity analysis output. 

ovtool_results <- ov_sim(model_results=results,  
                        weight_covariates=c("SIX_MIN", "VO2max"), 
                        s_grid = NULL, 
                        rho_grid = seq(0, 0.40, by = 0.20),  
                        n_reps = 50, 
                        progress = TRUE, 
                        add=FALSE) 



 
plot.ov(ovtool_results, print_graphic = "3", col = "color") 
 
summary.ov(object = ovtool_results, model_results = results) 

Appendix B. Candidate Variables 
• BRUNEL lifestyle physical activity questionnaire (BLPAQ)  is used to collect data on planned 

and unplanned physical activity. The questionnaire includes 9 questions with five possible 
answers, scored from 1 to 5. The average score from the first six questions is used as a planned 
physical activity score (PBRFS) and the average score for the last three questions is used as 
an unplanned physical activity score (UBRFS). 

• International physical activity questionnaire (IPAQ)[3]. MET is a measure in minutes and 
represents the amount of the energy expended carrying out physical activity. MET is a 
continuous variable and is calculated by adding up products of walking, medium activity, and 
vigorous activity METs. That is, 
IPAQ 𝑀𝐸𝑇 = 3.3 ⋅ 𝑤𝑎𝑙𝑘𝑖𝑛𝑔𝑀𝐸𝑇 + 4 ⋅ 𝑚𝑒𝑑𝑖𝑢𝑚𝑀𝐸𝑇 + 8 ⋅ 𝑣𝑖𝑔𝑜𝑟𝑜𝑢𝑠𝑀𝐸𝑇. 

• Body Mass Index (BMI) is defined as the body mass divided by the square of the body height 
and is expressed in units of 𝑘𝑔/𝑚;. 

• CAP score has been widely utilized in HD related studies to model the effect of age and CAG 
length on various measures of HD disease. We used the definition introduced in  to calculate 
CAP; 𝐶𝐴𝑃 = 𝐴𝐺𝐸 ⋅ (𝐶𝐴𝐺 − 𝐿)/𝐾, where 𝐿 and 𝐾 are constant. 𝐿 is an estimate of the lower 
limit of the CAG expansion at which phenotypic expression of the effect of the mutant 
huntingtin could be observed, and 𝐾 is normalizing constant. When 𝐿 = 30 and 𝐾 = 6.27, 
CAP will be equal to 100 at the subject’s expected age of onset of motor symptoms. CAP 
might be considered as a measure of a subject’s cumulative exposure to the toxic effects of 
mutant huntingtin. 

• Anti-depressant and Anti-psychotic use, using Anatomical Therapeutic Chemical 
Classification System (ATC) coding groups such that antidepressants begin with the ATC 
code N06A and Anti-psychotics, N05A. 

• Six minutes’ walk distance is a maximum distance in meters that HD patient can walk in 6 
minutes. 

• Composite Unified Huntington Disease Rating Scale (cUHDRS)  is a composite measure that 
is used to examine the progressive brain atrophy characteristic of HD in the early HD 
population. cUHDRS is defined as follows; 

𝑐𝑈𝐻𝐷𝑅𝑆 = �
𝑇𝐹𝐶 − 10.4

1.9 −
𝑇𝑀𝑆 − 29.7

14.9 +
𝑆𝐷𝑀𝑇 − 28.4

11.3 +
𝑆𝑊𝑅 − 66.1

20.1 � + 10 

• where TFS, TMS, SDMT, and SWR stand for Total functional capacity, Total Motor score, 
Symbol Digit Modality Test, and Stroop word reading test, respectively. 



• VO2Max is a gender-specific measurement that calculates the maximum oxygen consumption 
during exercise with increasing intensity. It is defined as 

𝑉𝑂2𝑚𝑎𝑥 = 9.39(𝑊) + 7.7(𝑘𝑔) − 5.88(𝑦𝑟) + 136.7	𝑚𝑙 ⋅ 𝑘𝑔@'𝑚𝑖𝑛@', 	𝑓𝑜𝑟	𝐹𝑒𝑚𝑎𝑙𝑒𝑠
𝑉𝑂2𝑚𝑎𝑥 = 10.51(𝑊) + 6.35(𝑘𝑔) − 10.49(𝑦𝑟) + 519.3	𝑚𝑙 ⋅ 𝑘𝑔@'𝑚𝑖𝑛@', 	𝑓𝑜𝑟	𝑀𝑎𝑙𝑒𝑠
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