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a b s t r a c t

The share of intermodal transportation, which is often considered as a sustainable transportation

alternative, is rather low compared to road transportation. There are several reasons for this situation,

including the increased need for coordination of scheduled transport services and the reduced reliability

of intermodal transport chains in case of disruptions. In this regard, developing an advanced algorithmic

approach can help to handle real-time data during the execution of transportation and react adequately

to detected unexpected events. In this way the reliability of intermodal transport can be increased, which

might help to increase its usage and to minimize the negative externalities of freight transportation. This

paper proposes a novel real-time decision support system based on a hybrid simulation-optimization

approach for intermodal transportation which combines offline planning with online re-planning

based on real-time data about unexpected events in the transportation network. For each detected

disruption, the affected services and orders are identified and the best re-planning policy is applied. The

proposed decision support system is successfully tested on real-life scenarios and is capable of delivering

fast and reasonably good solutions in an online environment. This research might be of particular benefit

to the transport industry for using advanced solution methodologies and give advice to transportation

planners about the optimal policies that can be used in case of disruptions.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the increasing internationalization of trade, the tasks of

transportation planners are becoming more complex (Bontekoning

et al., 2004). Whereas the efficiency in the past meant the minimi-

zation of transportation costs (Agamez-Arias and Moyano-Fuentes,

2017), the discussions about negative influence of transportation

operations on environment and society have put more focus to

sustainability in recent years (Hoen et al., 2014). In this respect,

especially the consideration of greenhouse gas emissions (GHGs) in

road transportation planning in form of CO2 or CO2-equivalent

(CO2e) emissions is an evolving field (see, e.g., Demir et al., 2019b;

Moghdani et al., 2021).

Even though transportation plans can be optimized by available

Transport Management System (TMS) software, the exact execution

of these plans in real life cannot be guaranteed. Since the infra-

structure capacity is limited, small disturbances in traffic flow (e.g.,

accidents, congestion, road maintenance) can cause delays and

infeasibility of any transportation plan. Besides that, the occurrence

of unexpected events can also lead to disruptions lasting for several

hours or even days (e.g., due to severe weather) (Xia et al., 2013),

which should be dealt with within disruption management. How-

ever, disruptionmanagement is often not seen as an important point

by the managers since they have to focus on other problems within

their responsibility area (Ludvigsen and Klaeboe, 2014).

Reactions to disruptions are relatively easy in case of road

transportation, which is the mostly used transportation mode in

freight transportation in Europe (Eurostat, 2018a). Various ap-

proaches have been applied to mitigate the influence of disruptions

on short-haul transportation. However, extensive use of long-

distance road transportation might not be suitable for reducing the

negative externalities of transportation, especially the increasing

amount of CO2e emissions (Eurostat, 2017; Van Fan et al., 2018).

One of the alternatives is intermodal transportation, combining
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multiple transportation modes and using standardized loading

units in order to facilitate the transshipment of goods between

different modes (Crainic and Kim, 2005). In this setting, more

environmentally friendly transportation modes such as rail or

inland waterway can be used to transport goods for longer dis-

tances, which reduces the overall negative environmental impacts

of transport. Although this option offers numerous advantages, the

usage of intermodal transportationwithin the European Union (EU)

is still relatively low (Eurostat, 2018b). There are multiple reasons

for this situation, including the current situation on the European

railway market, which is still dominated by big state-owned com-

panies (De Langen et al., 2017), or geographical reasons, where

often the goods are transported over relatively short distances

where it is not competitive to use the intermodal transport

(Fr�emont and Franc, 2010). Moreover, most of the ports, which are

used for import and export of goods, are located in the Western

Europe, therefore the density of the intermodal network is much

higher there than in the Eastern Europe (UIC, 2019). However, in

addition to these strategic reasons, there are also operational issues

in intermodal transport planning, since it requires higher effort to

coordinate all involved actors and to ensure reliability and flexi-

bility of transportation (Grue and Ludvigsen, 2006). Therefore this

paper focuses mainly on the operational level of planning, where it

proposes a novel planning approach that should support the

planners by including disruption management techniques and in

this way help to increase the usage of intermodal transport.

To be able to respond to potential transportation disruptions, it is

necessary to identify unexpected events as potential sources of

disruptions and to analyze their influence on transportation. More-

over, an appropriate re-planning strategy should be proposed to

minimize the impact of such events by offering a fast and effective

alternative solution. For this purpose it is necessary to integrate

planning with transportation execution and monitoring in order to

achieve the desired results (Fazi et al., 2015). As a response to this

problem, we propose a decision support system (DSS) based on a

hybrid simulation-optimization to integrate different phases of the

transportation process at the operational level.

Hybrid simulation-optimization is a viable option for dealing

with such complex networks. For the distribution network design

of third party logistics (3 PL) service providers, Ko et al. (2006)

proposed a hybrid simulation-optimization model using genetic

algorithm for optimization and capturing uncertainties in several

performance measurements in simulation. Another application of

hybrid simulation-optimization model is studied by Zeng and Yang

(2009) for loading operations in container terminals. In another

study, De Keizer et al. (2015) studied a cost-optimal network design

problem under product quality requirements using mixed-integer

linear programming combined with simulation. Hru�sovský et al.

(2018) used hybrid simulation-optimization approach for offline

intermodal transportation planning problem in a stochastic envi-

ronment. The contributions of this research are listed as follows.

� The proposed DSS focuses on intermodal freight transportation

and analyzes the effect of unexpected events on individual

transportation orders, in contrast to the available literature

where the focus is put on passenger transportation and global

impact of unexpected events (see, e.g., Cacchiani et al., 2014;

Mattson and Jenelius, 2015).

� The hybrid simulation-optimization model integrates various

phases of transportation planning and execution process. It

starts with the optimization of transportation plans and con-

tinues with real-time transportation monitoring where unex-

pected events can be detected and their impact can be analyzed.

Afterwards a re-planning approach is applied to obtain

alternative plans for transportation orders which are disrupted

by an unexpected event.

� Within the online planning, several basic policies are defined to

obtain alternative plans within a short time. The applicability of

these policies is then analyzed based on scenarios with different

event durations. As a result, important insights could be gained

with regards to the situations in which the policies can be used.

� The proposed DSS is applied to a real-world case study covering

several European countries, which is based on realistic schedules

and integrates three transportation modes, i.e. road, rail and

inland waterway. In this extensive case study, important mana-

gerial insights could be derived regarding the disruption man-

agement based on the characteristics of the unexpected events.

The rest of the paper is structured as follows. Section 2 gives a

short overview about possible disruptions and methods used in

disruption management literature. Section 3 defines the problem

and discusses factors which need to be considered in defining the

DSS. In Section 4 the proposed DSS is described. Section 5 focuses

on the application of the proposed methodology to a case study

based on real-life European intermodal transportation network.

Conclusions are provided in Section 6.

2. Literature review

Intermodal transportationplanning needs to address a number of

interrelated and important planning problems covering strategic,

tactical and operational level decisions as discussed byMacharis and

Bontekoning (2004). As shown in the review of Mathisen and

Hanssen (2014), numerous optimization models have been devel-

oped to solve such complex problems. However, the operational

level of planning, especially disruption management in this context,

is still not sufficiently covered (SteadieSeifi et al., 2014). This section

provides a brief literature review on synchromodality and disruption

management in transportation and highlights the differences be-

tween the available literature and this paper.

Synchromodality is a promising concept to promote modal shift

bymotivating logistics service providers (LSPs) tomove from a single

mode to multimodal (intermodal) transportation. In this concept,

transportation of goods is carried through the most reliable trans-

portationmode. It also helps to reduce transportation costs, improve

utilization and offer environmentally-friendly transportation. This

topic is studied in the literature by several researchers but it is still

limited. Lin et al. (2016) proposed a decision-making system for

perishable good LSPs to reduce loss of freshness using synchromodal

transportation. Extensive simulation experiments illustrated how

the proposed approach can improve the quality and reduce the

operation time during the transportation processes. In another

study, Resat and Turkay (2019) presented a multi-objective mixed-

integer programming problem for integrating various characteristics

of synchromodal transportation. The authors investigated three

different objective functions including total transportation cost,

travel time and GHGs emissions. The authors solved the proposed

linear model by using a customized implementation of the epsilon

constraint method. In related study, Qu et al. (2019) provided a

mixed-integer programming model to replan hinterland freight

transportation, based on the framework of synchromodality. The

authors showed that the replanning can benefit from a high opera-

tional flexibility and coordination via a split of shipment and aligning

the departure time of service flows with the shipment flows. Inter-

ested readers are referred to the survey on real-life developments on

synchromodality by Giusti et al. (2019).

Transportation operations are negatively influenced by unex-

pected events that cause vulnerability and reduced serviceability of

transportation networks (Mattson and Jenelius, 2015; Pizzol, 2019;
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Hong et al., 2019). The impact of the event depends on its type and

duration, sincedifferent events pose different risks to the network. As

an example, a small accident on a local road usually has a smaller

impact than a tree blocking an important railway corridor. Therefore

the events should be distinguished based on their frequency and

impact.

Risk sources for unexpected events can be classified into

different categories. Treitl et al. (2013) differentiate between hu-

man failures, exogenous factors, endogenous factors and other

events. Out of these, exogenous factors cannot be influenced by the

responsible managers/planners, so that reaction to these events is

only possible after their occurrence. These events include mainly

natural disasters and adverse weather conditions that can range

from low-impact events up to blockages of multiple days (see, e.g.,

Brazil et al., 2017; Ludvigsen and Klaeboe, 2014). Another important

category is the endogenous factors which include transportation

mode-specific disruptions. In this context, Amrouss et al. (2017)

studied the influence of disruptions on road transports in

forestry, Azad et al. (2016) and Gedik et al. (2014) dealt with rail

disruptions and potential disruptions in inland waterway trans-

portation (IWT) were analyzed by Eberdorfer andWolfinger (2010).

Despite the high variety of unexpected events, their impact can

be summarized to three categories: demand changes due to

changing order quantities (see, e.g., Lium et al., 2009), capacity

restrictions due to vehicle problems (see, e.g., Wang, 2016; Soltani-

Sobh et al., 2016) or changed travel times due to delays (see, e.g.,

Kalinina et al., 2013). Whereas the first two categories have been

extensively investigated in the literature, consideration of travel

time uncertainties is still an emerging field.

Possible travel time uncertainties can already be considered in

the planning phase where historical data or statistical travel time

distribution help to create more reliable plans. This has been

applied by Colicchia et al. (2010) for various stages in a global

supply chain and Kalinina et al. (2013) analyzed the impact of un-

certain delivery times in an intermodal network. In addition to that,

Demir et al. (2016) integrated travel time uncertainty into the

service network design approach for creating reliable intermodal

transportation plans and Hru�sovský et al. (2018) extended the

model by developing an integrated simulation-optimization

approach. The results and differences between the last two

models were then compared in Demir et al. (2017). However, these

models are only able to cover smaller disturbances since including

long delays would lead to extensive buffer times in transportation

chains resulting in high costs. Consequently, approaches dealing

with long delays by adjusting infeasible plans according to the

actual traffic situation in real-time need to be developed.

The topic of re-planning and dynamic adjustments of plans to

unexpected changes in freight transportationwas mainly discussed

in vehicle routing problems (see, e.g., Ichoua et al., 2000; Pillac

et al., 2013; Ferrucci and Bock, 2014). In contrast to that, the pub-

lications in intermodal freight transportation context are rather

limited and focusing more on overall network reliability than on

the specific solutions for individual transportation orders (Rosyida

et al., 2018; Fikar et al., 2016). However, disruption management

has been extensively studied in the area of passenger trans-

portation, which can be also helpful for freight transportation.

In passenger transportation context, the models are generally

classified according to the severity of unexpected events (i.e., dis-

turbances and disruptions) and the level of details (i.e., microscopic

and macroscopic models). As described by Cacchiani et al. (2014),

disturbances can be defined as small delays with minor impact on

transportation operations, whereas disruptions are events with

major impact where re-planning is necessary. Louwerse and

Huisman (2014) state that the available literature is rather

concentrated on disturbances and studies on dealing with

disruptions are scarce. In case of microscopic models, all infra-

structure details, including factors such as number of tracks,

signaling equipment, etc., are considered (Corman et al., 2017;

D’Ariano et al., 2007). Infrastructure modeling in macroscopic ap-

proaches is more abstract and therefore usually used for disrup-

tions, where detours and changes on multiple links within the

network might be necessary (Zhan et al., 2016; Binder et al., 2017).

The definition of disruptions and their duration is highly

dependent on the analyzed case. Whereas Khosravi et al. (2012) find

delays between 15 and 30 min as sufficient for disrupting passenger

railway services, Fischetti and Monaci (2017) consider disruptions

lasting for 15e60 min. Binder et al. (2017) found out that average

disruption duration for Dutch railways was 1.7 h and Zhan et al.

(2016) analyzed the impact of disruptions lasting for 2 h. However,

such short delays might not have high impact on intermodal ser-

vices, where the frequencies of services are much lower and trans-

shipment times in terminals are longer. Therefore, in intermodal

context, Burgholzer et al. (2013) studied disruptions lasting between

two and 24 h, Ludvigsen and Klaeboe (2014) identified 12 h as critical

for dividing services into different priority categories and Fikar et al.

(2016) dealt with disruptions of 24 and 72 h.

When developing a re-planning model that reacts to network

disruptions, the speed of obtaining a solution is more important

than the efficiency of the plans, since the involved actors have to be

informed as fast as possible (Cacchiani et al., 2014). According to

Fischetti and Monaci (2017), solutions should be obtained within

two to 10 s whereas Sato and Fukumura (2012) give an overview of

available models that are able to deliver a solution within 120 s. In

order to achieve such short solution times, pre-defined policies are

usually used as a solution approach, with a pre-defined simple rule

used in case of a disruption. These policies usually include waiting,

rerouting, changing transportation modes, canceling some of the

affected services or using emergency services which should help to

solve the problem (Louwerse and Huisman, 2014; Zhan et al., 2016;

Binder et al., 2017).

Since the literature review shows that the topic of disruption

management is not sufficiently covered in intermodal context, this

paper aims to analyze the best possibilities to react to disruptions in

real-time and to create alternative plans in a fast way. The focus is

put on individual transportation orders and services which have to

be re-routed in the available transportation network, therefore the

macroscopic approach is suitable for this research. In order to be

able to analyze the reactions to disruptions, it is necessary to create

the transportation plans at the beginning and then to monitor the

transportation and identify potential disruptions. Therefore a

hybrid simulation-optimization approach is created which in-

tegrates the different phases of the transportation process as

described in the next sections.

3. Problem description

As mentioned in the previous sections, planning and execution

of intermodal transportation is highly complex due to the need for

coordination of different transportation modes with specific char-

acteristics in one transportation chain. As an example, some modes

(e.g., rail) are running according to fixed schedules and/or have only

limited network available (e.g., IWT), whereas others have a quite

dense network and flexible departure times (e.g., road). These

factors influence planning as well as possible reactions to disrup-

tions. Consequently, an appropriate TMS is needed in order to cover

all these issues.

In this research, our aim is to develop a decision support system

which covers all important phases of a transportation process,

including planning, monitoring of execution and disruption man-

agement. In this way, the system should support transportation
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planners and facilitate their decisions since it should show them

available alternatives and suggest the best possibility how to deal

with an occurred unexpected event.

In this context, twoplanning phases can be distinguished: offline

planning and online planning. Within offline planning, a trans-

portation plan has to be created for each order received from a

customer before the transport is started. For this, a network of ter-

minals connected by transportation services is used to find the best

route for each order according to its characteristics (origin, desti-

nation, pick-up and delivery time, etc.) and objectives (e.g., minimal

costs or CO2e emissions). Consideration of unexpected events in this

phase is rather limited since the models are either deterministic

(see, e.g., Crainic, 2007) or include demand or travel time uncer-

tainty to increase the reliability of the plans (see, e.g., Demir et al.,

2016; Hru�sovský et al., 2018). However, these plans are only resis-

tant to smaller disturbances since extensive buffer times and ca-

pacities would be needed for including all possible disruptions.

Major disruptions are handled in online planning, which is

activated whenever a plan becomes infeasible. This usually hap-

pens during transportation execution, when a new plan has to be

found in a fast way, so that vehicles can be rerouted before they

arrive to the disruption location. Moreover, it is important to

consider only services and orders which are really affected by the

disruption instead of re-optimizing the whole network, since

frequent changes of plans could cause chaos in the system. There-

fore, an effective re-planning approach has to be used in order to

find new plans for affected orders.

Offline and online planning require diverse inputs and granu-

larity, as shown in Fig. 1. In general, the network consists of

different types of nodes that are linked together. The basic inter-

modal terminals represent the nodes which are origins and desti-

nations of the available planned intermodal services. In addition to

these basic terminals, there might be additional transshipment

nodes without regular services or simple waypoints where two

links are crossing. In general, each service has a strictly defined

route including all links located between its origin and destination

node. However, this granularity is not necessary in offline planning,

where the task is to find the best sequence of services connecting

the origin and destination of an order, whereby the number of

available services can be high and the details about the exact route

of a service are not necessary. Therefore in offline planning a service

is only considered as a direct connection between two terminals in

order to decrease the network complexity. This is also shown in

Fig. 1a for Service 1 and Service 2.

When it comes to transportation monitoring and online plan-

ning, it is necessary to adapt the network and consider the exact

route with additional nodes and links as shown in Fig. 1b. Although

this network representation is more complex, it allows a quick

identification of possible alternative routes. In addition to that, it

also shows which links are used and shared by the planned ser-

vices. As an example, despite the fact that Service 1 and Service 2

are treated as separate services for offline planning, Fig. 1b shows

that they use the same network links between additional trans-

shipment node T2 and their destination B. Therefore, if an unex-

pected event occurs on this part of the route, both servicesmight be

potentially affected. However, this might not be necessarily the case

as shown in the following example, which is based on the network

from Fig. 1b and illustrated in Fig. 2.

In this example, it is assumed that bothService 1andService2are

rail services. As shown in Fig. 2, an unexpected event occurs on the

last link before terminal B at themomentwhen Service 1 already left

node T2 and Service 2 is close to its origin C. For Service 1 thismeans

that it will probably be delayed, since it is close to the event location.

Therefore, it is necessary to evaluate possible reactions to this event.

In this case, the service can either wait (Alternative 1) and arrive

with delay to terminal B, or alternative routes can be used - either

detour via anotherwaypoint (Alternative2) ordetour tonodeT3and

from there using another service (e.g., road) to terminal B (Alter-

native 3). The best alternative is dependent on the event duration

and the planned following services for orders transported byService

1 and has to be chosen within the online planning process. For

Service2, the situation is different - since it is still quite far away from

the event location, itmight not be affected at all if the event duration

is relativelyshort. Even if the event duration is longer andService2 is

affected, there are much more links and nodes available for alter-

native routes than it is the case for Service 1.

As also illustrated by the example, the effect of an unexpected

event on the services and orders has to be evaluated individually in

order to avoid re-planning of orders which are not affected and find

the best solution for affected orders. This can help transportation

planners to find an alternative solution quickly and immediately

communicate it to drivers of the vehicles en route, so that changes

can be implemented very fast. However, before looking at trans-

portation monitoring and online planning, it is necessary to create

offline plans, since they are the basis for each transport. Therefore

the proposed decision support system combines offline and online

planning as it is described in the next section.

4. Decision support system based on hybrid simulation-
optimization

A hybrid simulation-optimization approach is used combining

offline planning, transportation monitoring, detection of unex-

pected events and online planning. The components of the model

Fig. 1. Transportation network representation for offline and online planning.

M. Hru�sovský, E. Demir, W. Jammernegg et al. Journal of Cleaner Production 280 (2021) 124826

4



and the connections between them are depicted in Fig. 3 and will

be described in this section.

The simulationmodel mimics the transportation system and the

influence of planning and unexpected events on transportation

execution. Here, the transportation network and movements of

vehicles and orders are modeled in real time. Simulation time is

stopped every time when offline or online planning is started so

that changes can be implemented immediately. The model com-

bines agent-based and discrete-event simulation, where separate

agents are created for each node, vehicle and order within the

network. The agents for vehicles have their own internal state-

charts which regulate the travel speed, the links which the vehicle

is traveling on, and possible changes or intermediate stops on the

route. It can be distinguished between vehicles with fixed (e.g., rail,

IWT) and flexible (e.g., road) departure times, where in case of

flexible departure the vehicle agent is responsible for waiting until

all orders are ready to be picked up. The discrete-event elements

are used to model the loading and unloading processes in termi-

nals, the transportation of goods as well as sourcing of vehicle and

order agents.

The whole system is coordinated by the transportation moni-

toring component which is responsible for controlling the model

execution. This includes calling offline planning in regular intervals,

updating the database and creating unexpected events which

trigger the online planning process.

All components are connected to the database, where all

Fig. 2. Online planning example.

Fig. 3. Components of the proposed DSS model.
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necessary information is stored either as static or as dynamic data.

The static data defines all nodes, services and orders with their

characteristics. Examples for dynamic data are available service

capacities, transportation plans for orders, changed arrival times

and delays due to disruptions or changes in routes and costs due to

online planning.

The actual process starts with the offline planning component,

which is responsible for creating offline plans for received orders.

The arriving orders are stored in the database and the plans have to

be created for all orders received until the time of planning. Offline

planning is repeated in regular intervals in order to reflect the work

of planners who are usually planning the orders on a daily basis. In

order to limit the size of the planning instance, the number of

services is limited since only services departing within a certain

planning horizon from the time of planning (e.g., one week) are

included. After all necessary data is prepared for planning, the

optimization model is called by the offline planning component.

The optimization model is based on the service network design

approach, which is suitable for representing specific characteristics

of different transportation modes (see, e.g., Crainic, 2007). Since

this paper focuses on the combination of optimization and simu-

lation and on the online planning, we adopted a mixed-integer

linear programming model previously used by Hru�sovský et al.

(2018), which is in detail described in their paper. This model

combines multiple optimization objectives (i.e. costs, time, emis-

sions) and takes into account the specific constraints of intermodal

transport, such as (partly) fixed schedules, transshipments or

limited capacities of the different services.

When the offline plans are created, they are added to the

database and the free capacities of each used service are decreased

accordingly, so that the booked capacity cannot be used for further

planning. Besides that, the departure times of services with flexible

departures are adjusted according to the results from planning.

Afterwards, the transportation execution process is simulated,

where all activities are monitored in order to be able to identify

every deviation from the plan.

The deviations are usually caused by unexpected events occur-

ring randomly on different locations within the network. Each

unexpected event affects a certain pair of links between two nodes

(one link in each direction) whereby its exact location on the link is

chosen randomly. In addition to the location, the event is charac-

terized by its duration and its starting and ending time, which are

assumed to be deterministic and known. Each unexpected event

can potentially cause a disruption of the transportation plan,

therefore each unexpected event automatically triggers the online

planning module.

The online planning module is responsible for reactions to dis-

ruptions. However, since not every unexpected event might lead to

a disruption causing infeasibility of the plan, the first step is to find

out whether and for which orders a new plan has to be found. The

identification of affected orders is the task of the so-called feasi-

bility check, where the aim is to reduce the number of orders and

services considered in online planning and to reduce the number of

changes in the network.When affected orders are identified, the re-

planning process can be started. Since these two phases of the

online planning process are one of the main contributions of this

paper, they are described in more detail in Section 4.1 and Section

4.2. They are also shown in Fig. 4 and a pseudocode of the whole

process is given in Algorithm 1 and Algorithm 2.
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4.1. Feasibility check

Before the effect on services and orders is investigated, the

feasibility check starts with the affected link pair and searches for

potential active events on that link (lines 2e5 of Algorithm 1). If

there is still an active event from the past which ends after the end

time of the current event and is located before the new event in the

transportation direction, then the new event does not have any

effect at all, because the services using the link are blocked by the

previous event. In this case no re-planning is needed and the pro-

cess terminates, in all other cases a new potential disruption is

defined and its time of occurrence and end time are saved to the

affected link. Afterwards, the feasibility check continues with the

search for affected services.

In order to identify a service as affected (lines 6e13), it is

necessary to knowwhether the affected link is included in its route

and what is the exact location of the service when the unexpected

event occurs. Therefore, the planned arrival times to each inter-

mediate node on the route are stored in the database and the exact

service location on each link based on the planned travel time can

be detected. In this way it can be decided whether the service will

arrive to the affected place before the planned end time of the

unexpected event or, if the service is already on the affected link,

whether it still did not pass the affected place before the event has

occurred. In these cases the service is affected and the planned

delay is added to its travel time. This delay is the time which the

service has to wait until the disruption is resumed, whereby it is

assumed that the service can continue with its planned speed until

the event location and then wait there until the event is resumed.

The delay is added to the planned arrival times of all intermediate

nodes on the rest of the route and the expected arrival time to the

destination is adjusted. Finally, the service is added to the set of

affected services and the process continues with the next step.

When the new expected arrival time of the affected service is

known, the last step is to identify the affected orders (lines 14e21).

Since containers need to be transshipped between services with

mostly fixed schedules, offline plans usually include some buffer

time between two planned services. If the planned delay is shorter

than this time, then the original plan of the order is not affected,

since the next planned service can be used without problems.

However, if the delay is longer than the buffer time, the order is

affected and a new plan is needed. When all orders transported by

an affected service are checked, the feasibility check is concluded

and the affected orders are further treated in the re-planning

process.

4.2. Re-planning process

The aim of the re-planning process is to find a new plan for the

affected orders in a fast way based on the current network situa-

tion. The plans are optimized by the same optimization model that

is used for offline planning. However, since a quick solution is

needed, the number of considered services has to be reduced. In

order to achieve this, pre-defined policies in form of simple rules

are used which define how the affected service will continue. Since

all orders on a service are transported together on one vehicle, only

one policy can be chosen for all orders on a particular service. In this

paper, three possible policies are considered: waiting, trans-

shipment at the next node, and detour. The applicability of these
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policies is dependent on the position of the vehicle at the time

when the event is announced. It is assumed that the vehicle cannot

turn back easily and therefore if the vehicle is already on the

affected link, only the waiting policy is applicable. If the vehicle did

not reach the affected link yet, all policies can be used (lines 5e9 of

Algorithm 2).

Policy #1 (Waiting, lines 1e4): In case of the waiting policy, the

service uses the planned route, waits in front of the disruption

location and arrives to the destination with delay. As a conse-

quence, the orders need a new plan from the destination of the

service. Therefore, the service destination is set as a new origin of

the order and the delayed service arrival time is set as a new order

release time. Afterwards the optimization model is used to find a

new planwhereby the number of services is reduced including only

services which have not started yet. The advantage of this policy is

that re-planning can be started earlier and therefore available ca-

pacities, which might be already blocked by other orders at the

time of arrival to the destination, can be used. Moreover, if no

feasible plan can be found within the existing network, an emer-

gency truck service can be organized for the direct delivery of goods

to their destination.

Policy #2 (Transshipment at the next node, lines 10e15): The

second policy can be applied if there is a transshipment terminal on

the route before the vehicle reaches the affected link. In such case

the vehicle can be stopped at this node and containers can be

transshipped to an alternative service. In this case the arrival time

to this node is known and it is assumed that the service waits in the

terminal until containers are unloaded. However, the service has to

continue to its destination, as the vehicle might be planned for

another service starting from the service destination. Therefore

there still exists a possibility to use the original service for orders

which are loaded on the vehicle but are not affected by the

disruption, but additional delay is possible. However, the un-

planned stop offers additional possibilities for re-planning of

affected orders. In order to find a new plan, the intermediate node

is set as a new order origin and the arrival time to that node is set as

a new order release time. Moreover, since this node might not have

any regular services, additional truck services from this node to all

basic network nodes are considered in addition to planned services

in order to facilitate the search for the new route, including also the

direct emergency truck, since the destination of each order is al-

ways a basic terminal.

Policy #3 (Detour, lines 16e18):Within the third policy, a detour

is used to bypass the affected link. The detour is defined as the

shortest path which minimizes the increase in total costs and re-

duces the planned delay. The costs are calculated based on average

costs for each link and the travel time is based on average speed of

the vehicle according to the planned travel time. If a detour can be

found, then the delay can be reduced, which means that orders can

be transported according to the original plan or can use services

with departures between the arrival time of the detour policy and

the arrival time of the waiting policy.

The optimal plans for each applicable policy are created sepa-

rately and the total costs based on the preferences of the customers

are calculated for each plan and policy.When all plans are available,

they are compared and the plan with the lowest total costs is

chosen as relevant plan for implementation. This plan is then valid

for all orders loaded on the affected service (line 19).

The last step within the online planning component is the

implementation of the chosen plan (lines 20e24). This means that

the route of the service has to be adapted if the third policy is

chosen, arrival times to all nodes on the route have to be changed,

and possible delay in the intermediate terminal if the second policy

is chosen has to be considered. The changed plans for orders mean

that the capacities of the original services which are not used

anymore and the capacities of the newly used services have to be

changed accordingly. Moreover, the new route is implemented and

additional costs, times and CO2e emissions connected to the new

route are recorded for each order. Analogically, the costs, times and

emissions for the services in the canceled part of the route are not

considered in real total costs. In this way the additional costs

caused by the disruption and the need for re-planning can be

calculated.

5. Case study: Disruption management in European
intermodal network

To investigate various planning stages of the proposed solution

methodology, we developed a case study based on real-life

network. Intermodal transportation is mainly used for long-

Fig. 4. Online planning process.
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distance routes, therefore intermodal services of various European

countries are included. These services are not only used for intra-

continental transports, but represent also hinterland network of

intercontinental transports going through the port of Hamburg. The

basic network was already used for a case study in Demir et al.

(2019a), but it has been extended for this paper by increasing the

Table 1

Basic terminals with available transportation modes and connecting services.

Terminal no Terminal name Road Rail IWT Connecting services by

Road to terminals Rail to terminals IWT to terminals

1 Hamburg x x 2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,20,22 29

2 Duisburg x x x 3 1,4,8,13,15,17,20,22,23 7

3 G€ottingen x x 2,7,29 1

4 Leipzig x x 28 1,2,5,13

5 Schwarzheide x x 4,22 1

6 Cologne x 1,11,12,13,14

7 Frankfurt x x x 3 1 2,10

8 Ludwigshafen x x 9 1,2,13,15

9 Mannheim x x 8,12 1

10 Nuremberg x x x 12,29 1,13 7,28

11 Ulm x x 13 1,6

12 Kornwestheim x x 9,10 1,6

13 Munich x x 11,14,19,28 1,2,4,6,8,10

14 Basel x x 13 1,6

15 Wels x x 18,19 2,8,17,20

16 Enns x x 18,24 1

17 Vienna x x x 21,27 1,2,15,25 18,20

18 Linz x x 15,30 17,28

19 Salzburg x x 13,15 23

20 Budapest x x 1,2,13,15,17,21 17

21 Dunajska Streda x x 17,26 20,25

22 Lovosice x x 5,23 1,2

23 Prague x x 22 2,19,24,25

24 Plzen x x 16 23

25 Ceska Trebova x 17,21,23,26,27

26 Ostrava x x 21 25

27 Zlin x x 17 25

28 Regensburg x x 4,13 10,18

29 Magdeburg x x 3,10 1,30

30 Riesa x x 18 29

Fig. 5. An illustration of basic terminals in the network.
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number of services and possible connections as well as by devel-

oping the detailed network with its links and intermediate nodes.

The transportation network, input parameters as well as the results

are described in the following subsections.

5.1. Transportation network and inputs

The intermodal transportation network includes 30 basic ter-

minals, which are located in Germany, Austria, Czech Republic,

Slovakia and Hungary. Each terminal, which can be both a starting

and an ending point for transportation orders, is connected to other

terminals by means of road, rail or inland waterway transportation

(IWT), depending on the available infrastructure and schedules. As

a result, only selected connections are available, which are sum-

marized in Table 1. The position of all basic terminals in the network

is depicted in Fig. 5.

The available connections are served by transportation services

running at different intervals ranging from once per week up to

multiple times per day. Thereby rail and IWT services are operated

based on real-world fixed schedules (Metrans, 2019; Kombiverkehr,

2019) which are repeated in weekly cycles. These services are

extended by flexible truck services that cover mainly the areas with

insufficient rail and IWT connections.

In order to show the ability of the proposed methodology to

adapt online as well as offline plans according to occurred unex-

pected events, the planning andmonitoring processes over a longer

time horizon need to be considered. Therefore, the simulation is

run over onemonth, with services departing on each of the 31 days.

In total, 2792 services are available during one month, out of which

74% are rail services, 21% are road services and 5% are IWT services,

covering mainly the rivers Danube and Elbe. This means that on

average 90 services are dispatched per day with higher number of

services during the working days and lower number during the

weekends. We define service with its origin, departure and travel

time, costs and CO2e emissions (per container) and destination

information.

Transportation costs and CO2e emissions for each service are

pre-calculated before the simulation is started. As a result, a fixed

cost factor and a fixed emission factor per TEU is calculated for each

service. The cost factors are dependent on the distance, travel time,

vehicle characteristics (e.g., engine, capacity, utilization, traction)

and route characteristics (e.g., gradient, infrastructure charges). The

necessary parameters are calculated based on PLANCO (2007), via

donau (2007) and PTV (2019). In case of CO2e emissions, a spe-

cific method for each transportation mode is used for calculation.

As also described in detail by Hru�sovský et al. (2018), the important

factors are again vehicle and route characteristics. As an example,

emissions for trucks aremainly dependent on the fuel consumption

and vehicle utilization, whereas train emissions are influenced by

the traction (diesel or electric) and total weight of the train. In case

of IWT, the sailing direction is an important factor since sailing

upstream requires much more energy than sailing downstream.

Since the emissions are considered in form of emission costs in the

model, a reference value of 70 Euro per ton of CO2e emissions was

used to convert emissions into costs (PLANCO, 2007). As the

described factors might vary between the services, the cost and

emission factors are also different. Table 2 shows the ranges of used

costs and emissions per TEUekm.

Each transportation service connecting two basic nodes has

assigned a certain route consisting of different network links and

nodes which the vehicle is passing through. This is necessary to be

able to identify the effect of an unexpected event on a specific

vehicle. Therefore, the basic network consisting of 30 terminals is

extended by 78 additional nodes, consisting of 32 additional

transshipment nodes and 46 waypoints. The basic terminals and

additional transshipment nodes can be used by multiple trans-

portation modes whereas the waypoints are separate for each

transportation mode. These nodes are connected by a total of 570

links, whereby each connection is bi-directional and includes two

links. Each link is also transportation mode-specific. The available

links are illustrated in Fig. 6.

In addition to the network and services, transportation orders

have to be considered. The orders are characterized by their origin,

destination, release time and due date, penalty costs for late de-

livery, inventory costs for each hour in transit and the number of

containers. They were created randomly over the whole simulation

period, which means that the number of orders can fluctuate from

day to day.

The routes for the orders are optimized in regular offline plan-

ning cycles that are performed every day at midnight. Within one

cycle, all orders with release times during the following day are

planned and the planning horizon is limited to seven days,

including 623 services on average. This means that 25 offline

planning cycles are performed within the one month, so that also

the last cycle can have the full planning horizon of seven days. In

total, 247 orders are considered, which means that on average 10

orders are planned per day, fluctuating between seven and 16 or-

ders. The number of TEU for each order varies between one and 30,

the planned due date is between 24 and 168 h after release time

and the cost factors are 10 EUR/h as penalty costs for late delivery

and one euro per hour as inventory costs.

The decision support tool is run on an Intel(R) Core(TM) i5-

5300U CPU with 2.3 Hz and 8 GB of memory. The mathematical

model is solved with CPLEX 12.63 (IBM ILOG, 2020) and Anylogic

University 7.2.0 was used for simulation model (AnyLogic, 2016).

The analysis can be divided into two parts: at first, the effect of

different objectives on the optimal routes is analyzed in Section 5.2.

Afterwards the effect of unexpected events and the necessary

changes in online planning are examined in Section 5.3.

5.2. Offline planning

The aim of offline planning is to find an optimal transportation

plan for each transportation order based on the defined objectives.

Since the optimization model combines three different objectives

(costs, time and CO2e emissions), which can have different weights

based on planner’s preferences, this section analyses the influence

of these objectives on the resulting plans without taking the effect

of unexpected events into consideration. For this purpose, various

offline planning cycles were run over the whole planning horizon

considering all objectives together and also each objective

individually.

Inmost of the considered cases the optimal plans could be found

relatively quickly (up to 720 s per planning instance for one day).

However, if only the time objective was considered, the increase in

computational times was very high and often no optimal solution

could be found even after more than 3600 s, since in this case there

might exist multiple alternative solutions with equal or very similar

time costs. Therefore, this case was excluded from the analysis and

the results are compared for the following three cases: in Case A, all

three objectives are considered with equal weight for each

Table 2

Cost and CO2e emission factors for transportation services.

Transportation Mode Transportation costs

(EUR/TEUekm)

CO2e emissions

(kg/TEUekm)

Road transportation 0.6e0.8 0.55e0.65

Rail transportation 0.2e0.6 0.15e0.30

Inland waterway transportation 0.2e0.4 0.1e0.4
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objective, in Case B, only transportation costs are considered in

optimization and in Case C only the CO2e emissions are minimized.

In order to represent each objective, we now provide mathematical

formulations for the three studied cases as follows.

Case A : min
X

p2P

X

s2S

xspcs þ
X

j2N

njcj þ

þ
X

p2P

cpt

�

ADp�G
p
release

�

þ
X

p2P

X

s2S

ap
delay

cppen

þcemi

X

p2P

X

s2S

xspes þ
X

j2N

njej (1)

Case B : min
X

p2P

X

s2S

xspcs þ
X

j2N

njcj (2)

Case C : min cemi

X

p2P

X

s2S

xspes þ
X

j2N

njej (3)

where P represents the set of orders, S represents the set of

services and N is the set of locations. We define four decision

variables: ðiÞ xsp is the number of containers of order p carried via

service s, ðiiÞ nj is the number of containers transshipped at ter-

minal j, ðiiiÞ ADp is the arrival time of order p to its destination, and

finally ðivÞ ap
delay

shows the delay of order p at its destination.

The parameters include the transportation costs per container

and service cs (i.e., the fixed transportation costs per service allo-

cated to one container as well as the direct transportation costs per

container) and transshipment costs per container (cj). The time-

related costs are used to represent in-transit inventory costs for

the total time spent since the release of containers at the origin

until the arrival of the order to the destination. We also consider

charges for delayed deliveries (cppen) in time-related costs. Gp
release

shows the earliest release time of order p. Furthermore, CO2e

emissions-related costs per kilogram (cemi) for the emissions

consumed per container serviced (es) and transshipped (ej) are also

included.

The resulting costs and computational times are summarized in

Table 3.

The results show significant differences with regard to the

resulting routes and the computational times needed to solve each

case. The variation in computational times between the daily in-

stances can be explained by the varying number of orders and

services per day (see Section 5.1) and the resulting differences in

the problem complexity. In addition to that, differences between

the three cases can be observed: whereas Case B and Case C need

only 20e160 s to solve the planning instance for one day, the time

increases to 45e720 s in Case A. This is due to the increased

complexity of the problem caused by including the time objective.

However, the time objective has a positive impact on the total costs,

since the optimal routes in Case A tend to minimize waiting times

in intermediate terminals in order to reduce the inventory costs

and avoid penalty costs for late delivery. This is a difference to

optimal routes in Case B and Case C, where the optimal solution

often suggests to wait for a later service which has slightly lower

costs or emissions, since inventory and penalty costs are not

considered. Case Awas also used for online planning in Section 5.3,

since the unexpected events have here the highest impact due to

the minimized waiting times in intermediate terminals.

The results in Table 3 also show the clear dominance of trans-

portation costs, since the optimal plans are different only for five

orders between Case A and Case B. However, these changes lead to

savings of 3.6% within the time costs due to faster transports and

reduced penalty costs. The changes in transportation costs and

emissions costs are not significant. If Case A and Case C are

compared, differences between the transportation plans for 70

orders can be observed, mainly aiming at the reduction of emission

costs, which are decreased by 7.4% in Case C. However, this also

leads to increases in transportation and time costs bymore than 5%,

Fig. 6. Transportation network with nodes and network links.

Table 3

Comparison of total costs for different optimization objectives.

Case Optimization according to Transportation costs

(EUR)

Time costs

(EUR)

Emission costs

(EUR)

Total costs

(EUR)

Computational time

(seconds)

A Costs&Time&Emissions 1,202,427 436,881 40,971 1,680,279 45e720

B Costs 1,201,925 453,134 40,952 1,696,011 20e160

C Emissions 1,269,887 460,459 37,946 1,768,281 20e160
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which means that Case C has the highest total costs.

The changes in costs between the cases can be explained when

the usage of services is analyzed. In each case between 650 and

700 services are used, with the highest number of services in Case

A and the lowest number of services in Case C. The reason is that

Case A uses more truck services due to the time costs and 76% of

used services only transport one order. If the emissions are

minimized, consolidation takes place so that only 72% of used

services transport one order whereas 2e4 orders are transported

by 28% of the services. The maximum of orders transported by one

service is four.

When looking at the modal split of the used services depicted in

Fig. 7, it can be seen that train services are dominating for all three

cases. However, whereas in the first two cases the share of train

services is 45% and truck and IWT services have both about 27%, the

situation changes when emissions are minimized in Case C. Here

the share of train services increases to 58% whereas the shares of

both truck and IWT services decrease to slightly more than 20%.

This clearly shows the preference for electrical trains with very low

emissions before the truck services. The decrease in the usage of

IWT services can be explained by the fact that many services are

sailing upstream, which also leads to increased emissions. The

similar results for Case A and Case B can be explained by the fact

that the transportation costs still have a very high weight for Case A

and the consideration of time only leads to the situation where in

both cases the optimal routes are the same but in Case A services on

the same route with earlier departures (but slightly higher trans-

portation costs) are chosen, as described before.

5.3. Online planning

This section discusses the influence of unexpected events (UE),

whereby the aim is to identify which policies should be used for

different durations of these events. To this end, offline plans are

created taking into account all three objectives (Case A) and the

extended network from Fig. 6 is used. Out of the 570 links in that

network, 324 links are used by planned services and therefore can

be possible locations for an UE. The rest of the links are used for

detours. Out of the used links, about 75% are used by 1e3 services

per day, but the number of services per link can go up to 15 per day.

The longest service uses 18 links, whereby most of the services use

2e3 links and a significant number of services have seven and 11

links in their route. For comparing possible detours with the

planned route, each link has specific costs and CO2e emissions

assigned based on the proportional costs and emissions of services

using the link. The travel time for a service on a certain link is based

on its average speed according to its schedule.

Unexpected events are created in regular intervals whereby the

affected links and the precise location of the event on the link are

chosen randomly. In order to increase the significance of the re-

sults, the model was run 10 times with different randomly chosen

event locations in each scenario and the average results over all

runs are presented in this paper. The duration and frequency of

occurrence of UE have been chosen based on the available literature

as described in Section 2. In total, four scenarios were tested with

durations of 2, 6, 12 and 24 h. The intervals between two UE were

2 h for the first two scenarios, since shorter events usually occur

with higher frequency. For the rest of the scenarios, three events

Fig. 7. Modal split of used services for different optimization objectives.

Table 4

Effect of unexpected events on services.

Duration of UE (hours) Interval of UE (hours) Total number of UEs Number of affected services Total delay (hours) Average delay (hours) Modal split of affected

services (%)

Road Rail Inlandwaterway

2 2 396 113 110.65 0.98 8.93 88.32 2.75

6 2 396 350 1043.01 2.98 8.68 89.08 2.25

12 8 99 171 1008.45 5.90 11.05 87.50 1.45

24 8 99 355 4244.52 11.98 9.10 89.25 1.65
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per day were created as suggested by Burgholzer et al. (2013).

Although the time period used for planning was 31 days, it took

another two days until all services have arrived to their destination,

therefore 396 disruptions were analyzed in the first two scenarios

and 99 disruptions were recorded in the two scenarios with longer

durations.

As a first step of the feasibility check, Table 4 summarizes the

affected services. In all scenarios multiple affected services could be

identified whereby the average number of affected services per UE

is increasing with its increasing duration. Whereas 396 events for

the first scenario affect only 113 services, 99 events with durations

of 12 and 24 h are sufficient to affect 171 and 355 services,

respectively. The average delay per service is in all cases around half

of the event durationwith delays evenly distributed throughout the

whole range, reaching from 1 min up to almost the duration of the

unexpected event. With regards to the transportation mode of the

affected services, a clear dominance of rail can be observed in all

scenarios with about 90% of affected services. This corresponds to

the expectations since rail services have major share on all services

and usually have longer routes, which increases the probability that

they will be affected by an UE. In contrast to that, trucks usually

operate on shorter distances and IWT services are limited in this

case study, therefore their share is much lower.

The affected services might carry orders which can be poten-

tially affected by the UE. However, this might not be valid for all

orders as it is also shown in Table 5. Here the potentially affected

orders are all orders that are carried by the affected services,

ranging from 16 in the first scenario up to 48 in the last scenario.

However, if only affected orders with infeasible plans are consid-

ered, these numbers are reduced to five and 24 orders respectively,

which means that only 30e50% of potentially affected orders

require re-planning. As a result, only five orders out of 247 have to

be re-planned on average in the first scenario. This also illustrates

the relevance of the feasibility check, since the number of re-

planning activities can be significantly reduced, which contrib-

utes to higher stability of the whole system.

In addition to that, the computational time needed for optimi-

zation in the re-planning process can be also reduced. Whereas one

offline planning cycle can last more than 10 min (see Table 3), the

reduced number of orders and services in re-planning process re-

duces the computational time to less than 10 s for one run of the

optimization model. As a result, the whole re-planning process

including the comparison of all policies and implementation of the

best plan can be concluded in less than 1 min.

As described in Section 4.2, three policies are considered within

the re-planning process: Policy 1 is waiting until the problem is

resolved, Policy 2 suggests transshipment at the next possible node

and Policy 3 tries to find a detour which is more convenient than

the disrupted original route. Although all policies are checked in

every re-planning process, their availability is dependent on the

affected link and the position of the affected service when the UE is

announced. As a consequence, some policies might not be always

available. This is illustrated in Table 6 which shows that Policy 3

was available in less than 50% of the re-planning processes in the

first scenario. The reason is the relatively short event duration

where the vehicles are usually very close to the event location

when the event is announced, mostly one link before or directly on

the affected link. In these cases the detour possibilities are very

limited. With the increasing event duration, vehicles are usually far

away from the affected link and more detours are available, which

results in increased availability of Policy 3. Similarly, the options to

transship containers to other services are limited when the vehicle

is very close to the affected link, therefore the availability of Policy 2

is also limited. In contrast to that, the waiting policy can be used in

every situation.

The limitations of the policies are reflected in the shares of the

implemented policies which are also shown in Table 6. Although

the waiting policy has the highest share in all four scenarios, its

dominance is especially clear in the first scenario where it is used

by almost 98% of re-planned orders. The reason for this is the

relatively short event duration where it is more convenient to wait

and accept additional penalty costs for late delivery than to orga-

nize a detour which is in most cases longer than the delay itself.

Sometimes it is also possible to postpone the departure of the next

service if this is a truck.

When the event duration increases, Policy 1 loses its share in

favor of Policy 3. If the event duration reaches 24 h, for more than

43% of the orders a detour was the optimal solution. Although the

transportation costs were higher for the majority of the detours,

this increase was compensated by significant delay reductions

resulting in reduced inventory and penalty costs. In some cases

even faster and cheaper solutions than the original route could be

found where the vehicle used alternative links that are usually not

used under regular conditions. However, it cannot be claimed that

the detour policy would be the best option in general, since its

advantages are dependent on various factors.

Table 5

Effect of unexpected events on orders.

Duration of UE (hours) Potentially affected orders Affected orders Share of affected orders (%) Modal split of affected orders (%)

Road Rail IWT

2 16.2 4.9 29.22 7.15 79.20 13.65

6 48.6 17.5 35.84 11.69 79.34 8.97

12 24.8 10.7 42.92 16.51 77.37 6.12

24 48.1 24.5 50.99 17.24 74.98 7.77

Table 6

Availability and implementation of re-planning policies.

Duration of UE (hours) Availability of re-planning policies Implemented re-planning policies

Policy 1 Policy 2 Policy 3 Policy 1 Policy 2 Policy 3

(%) (%) (%) (%) (%) (%)

2 100.00 77.63 49.12 97.98 1.11 0.91

6 100.00 78.97 60.67 87.13 6.77 6.11

12 100.00 85.02 73.72 73.13 4.83 22.05

24 100.00 90.28 80.49 53.72 2.75 43.53
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First, the location of the vehicle at the time of event occurrence

is important. Although longer distance of the vehicle from the

affected link is in general more convenient, if the distance is too

long and the effect of the event on the service is thus relatively

short, usually the detour is more expensive than waiting.

Second, the network density plays an important role. In this

respect it could be observed that the detour policy was mainly used

for disruptions in Germany, where the network density is high

especially around Munich, Frankfurt, Cologne and their links to

Hamburg, so that an alternative route can be found easily. On the

other hand, detour possibilities were limited in Austria where only

the main corridor between Vienna and Salzburg was modeled, so

that only long detours via Czech Republic were possible.

Thirdly, the average speed of the vehicle is also important. This

is especially valid for some rail services with very long travel times

and low average speed, so that waiting is better than the detour. In

contrast to that, fast services usually use the detour. In this way the

services can be also prioritized, since fast services use the scarce

capacity on the detour and slower services wait until the problem is

resolved.

Last but not least, the detour policy is also limited by trans-

portation modes since vessels sailing on the river usually do not

have any alternative routes.

Policy 2, transshipment at the next node, has clearly the lowest

share in all scenarios. This is partly caused by the fact that very

often transshipment nodes are not available on the route, but the

main reason is that this policy is too expensive because in most

cases the solution is to use an emergency truck to the destination at

high costs. Therefore this policy was mainly used when the vehicle

was too close to the affected link to find a detour and the delay was

too long for employing the waiting policy or in cases where IWT

service was affected and this policy was the only option. In a few

cases it also happened that the next nodewas the destination of the

order, where the service should not stop according to the plan, but

employing Policy 2 led to the earlier and cheaper delivery of the

goods to their destination.

The re-planning process and the implemented solutions also

influence the total costs for the affected orders. Since the propor-

tion of affected orders to all orders is rather low, the effect of

changes on total costs of the system is also very low, ranging from

0.26% to 0.81% increase across the four scenarios. Therefore the

focus here is put only on changes in costs of re-planned orders

illustrated in Table 7.

As the table shows, the costs are changing in accordance with

the implemented policies. In the first scenario, the vast majority of

orders used the waiting policy and therefore almost no changes in

transportation and emission costs took place. The small negative

change in transportation costs was caused by the orders where

Policy 2 was implemented and the direct emergency trucks were

cheaper than the original solution. The highest increase was

recorded for time costs since goods arrived later than planned, but

the delays were not too long due to short event duration. A similar

situation was in the second scenario, where the share of Policy 2

was the highest among all scenarios, thus the transportation costs

were decreasing. In the third scenario, the use of direct trucks in

Policy 2 still had some influence on decreasing transportation costs,

but the emission costs increased due to the negative impact of

trucks on environment. In the fourth scenario a substantial increase

in time costs can be observed, since the long delays influence the

penalty costs for late deliveries. This increase was only partly

mitigated by the time savings of orders which used the detour

policy. However, some of the detours weremore expensive than the

original plan which resulted in higher transportation and emission

costs.

6. Conclusions

Intermodal transportation is a viable alternative to single-mode

transports since it combines advantages of various modes and

contributes to economic as well as environmental efficiency.

Despite this fact, its usage is quite low in Europe due to several

reasons, one of them being insufficient support for intermodal

transportation planning and monitoring within the existing TMS

software. In order to respond to this problem, we developed a DSS

model which combines transportation planning and monitoring

and is able to react to potential disruptions. This approach was

tested on several scenarios with different durations of unexpected

events that have occurred on different links all over the trans-

portation network. Thereby different policies were employed and

their suitability for different situations was analyzed. As the results

based on a real-world case study covering wide parts of the Euro-

pean transportation network highlight, the chosen policies are

helpful when dealing with unexpected events with different du-

rations in intermodal transportation chains. In general, the pro-

posed policies can be used for the following situations:

� The waiting policy can be used for all scenarios, but it is espe-

cially convenient for shorter delays up to 2 h where other

Table 7

Changes in costs for re-planned orders.

Duration of UE (hours) Cost category Planned costs (EUR) Actual costs (EUR) Change in actual vs. planned costs (%)

2 Transportation 26,637.40 26,620.80 �0.02

Time 7234.60 7581.10 4.14

CO2e emission 925.88 925.31 0.00

Total 34,797.88 35,127.22 0.91

6 Transportation 96,360.40 93,878.70 �2.39

Time 24,055.10 26,487.90 10.46

CO2e emission 3102.01 3077.84 �0.81

Total 123,517.51 123,444.44 0.07

12 Transportation 57,843.90 57,535.50 �0.63

Time 14,752.40 16,968.60 14.09

CO2e emission 1932.90 1950.89 1.04

Total 74,529.20 76,454.99 2.22

24 Transportation 139,572.50 140,361.50 0.54

Time 27,275.70 33,197.90 23.53

CO2e emission 4758.33 4987.11 4.78

Total 171,606.53 178,546.51 4.13
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policies lead to much higher costs. However, these short delays

could be included into offline planning where uncertainties in

travel times can be considered.

� Transshipment of the goods at the next node often leads to high

costs since many of the nodes do not have regular planned

intermodal services, which means that an expensive emergency

truck service needs to be organized, which in reality also re-

quires additional time and effort to find a suitable vehicle.

Therefore, this option is not preferred to react to disruptions.

� Increasing delays increase the usage of detour policy, if the

vehicle is not very close to the affected link and if the network

density is sufficient. Its applicability is also dependent on the

affected transportationmode: whereas inland vessels usually do

not have any option for detour, trucks can use the dense

network and find an alternative route easily. In case of rail, even

if a detour is found, in practice it still needs to be checked

whether the train can be diverted since other factors such as

track capacity or other barriers could cause infeasibility of this

solution. However, these factors were not part of the developed

model and would need to be considered by the actual planner.

Generally, the consideration of real-time and stochastic data is

very limited in current TMS software. The future developments in

such software packages and platforms should enable aggregation of

information from several sources that is shared between partners

and transportation information providers. Using advanced models

and algorithms can help improve the modal split and reduce

transportation times and slack, as well as response times to unex-

pected events during transportation. Future research directions

include:

� More effective hybrid algorithms that can support very large-

scale network simulations.

� Incorporating well-studied complex time-space service

network design problems with simulation.

� Focusing on social impacts of intermodal transportation policies

at local, regional and international levels.
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