
algorithms

Article

Algorithms for Finding Shortest Paths in Networks
with Vertex Transfer Penalties

Rhyd Lewis

School of Mathematics, Cardiff University, Cardiff, CF10 3AT, Wales, UK; LewisR9@cf.ac.uk

Received: 29 September 2020; Accepted: 18 October 2020; Published: 22 October 2020
����������
�������

Abstract: In this paper we review many of the well-known algorithms for solving the shortest path
problem in edge-weighted graphs. We then focus on a variant of this problem in which additional
penalties are incurred at the vertices. These penalties can be used to model things like waiting
times at road junctions and delays due to transfers in public transport. The usual way of handling
such penalties is through graph expansion. As an alternative, we propose two variants of Dijkstra’s
algorithm that operate on the original, unexpanded graph. Analyses are then presented to gauge
the relative advantages and disadvantages of these methods. Asymptotically, compared to using
Dijkstra’s algorithm on expanded graphs, our first variant is faster for very sparse graphs but slower
with dense graphs. In contrast, the second variant features identical worst-case run times.

Keywords: shortest path problems; Dijkstra’s algorithm; transfer penalties; public transport

1. Introduction

Imagine we want to want to drive from Paris to Madrid using the shortest possible route. Given a
road map in which the distance between each intersection is marked, how might we determine the
shortest path? These days, every time we use online mapping tools or vehicle navigation systems we
are solving instances of the shortest path problem. In their most simple form, such systems will model
a road network using an edge-weighted graph with vertices (nodes) of this graph representing road
junctions. A solution to the shortest path problem is then a series of connected edges that link our
desired start and end points such that a given objective (such as total travel time, distance, or fuel cost)
is minimised.

For such an important problem, it is perhaps unsurprising that methods for identifying shortest
paths in networks existed long before the digital era. One example involves using wooden pegs for
each vertex and then connecting pegs with pieces of string proportional to the corresponding edge
weights. The user then takes two pegs and pulls them apart, and the shortest path between these pegs
is shown by the tight pieces of string [1].

Although transport is the most obvious application area, shortest path problems are also used
in a variety of other settings. For example in telecommunication networks (where vertices represent
the components of the network, edges describe connections between components, and edge weights
describe potential delays along the edges), a shortest path will indicate the path of minimal delay
between two components. In social networks (where vertices represent people and edges describe
friendships between people), shortest paths will indicate the minimum number of connections between
two people (see for example the “six degrees of separation” [2,3]). Further applications also exist in the
areas of currency exchange and arbitrage [4].

In the next section we start by conducting a review of many of the polynomial-time algorithms
available for solving shortest path problems. This review focusses particularly on Dijkstra’s algorithm,
which forms the basis of later sections of this paper. In Section 3 we discuss how many real-world
shortest path problems can feature additional properties that are expressible via vertex transfer

Algorithms 2020, 13, 269; doi:10.3390/a13110269 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-1046-811X
http://www.mdpi.com/1999-4893/13/11/269?type=check_update&version=1
http://dx.doi.org/10.3390/a13110269
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 269 2 of 21

penalties. We also show how standard shortest path algorithms can be applied to such problems
by expanding graphs to include additional vertices and edges. In Section 4 we then propose two
extensions to Dijkstra’s algorithm that allow us to calculate shortest paths in these graphs without
any need for expansion. Section 5 then features a computational comparison of these methods using
artificially-generated and real-world problem instances, before Section 6 concludes the paper.

2. Shortest Path Problems and Algorithms for Solving Them

We begin with some preliminaries. Let G = (V, E) be an edge-weighted, directed graph where V
is a set of n vertices and E is a set of m directed edges. In addition, let Γ(u) denote the set of vertices
that are neighbours of u (that is, Γ(u) = {v : ∃(u, v) ∈ E}). The weight of an edge travelling from
vertex u to vertex v is denoted by w(u, v). The length of a path P = (v0, v1, . . . , vl) is then the sum of
all weights of the constituent edges ∑l

i=1 w(vi−1, vi), where (vi−1, vi) ∈ E for all i ∈ {1, . . . , l}. The
shortest path between a source vertex s and a target vertex t corresponds to the s-t-path in which the
length is minimal.

According to Cormen et al. [5], three problems involving shortest paths on edge-weighted graphs
can be distinguished: (a) the “single-source single-target” problem, which involves finding the shortest
path between a particular source vertex s and target vertex t; (b) the “single source” problem, which
involves determining the shortest path from a source s to all other vertices (thereby producing a
shortest path tree rooted at s); and (c) the “all pairs” problem, where shortest paths are identified
between all pairs of vertices. Examples of (a) and (b) are shown in Figure 1.

Figure 1. An example graph with n = 100 vertices. In this case, edges are drawn with straight lines and
edge weights correspond to the lengths of these lines. This graph is also symmetric in that (u, v) ∈ E if
and only if (v, u) ∈ E, with w(u, v) = w(v, u). The (left) figure shows a solution to the “single-source
single-target” problem, where the source s is at the bottom-left and the target t is at top right. The
(right) figure shows a solution to the “single source” problem—a shortest-path tree rooted at s.

The following three subsections will now review many of the available algorithms for problems
(a) to (c). Note that all of these algorithms are exact in that they are guaranteed to find optimal solutions
for all valid problem instances. They also all feature polynomial-time complexity, though some have
more favourable growth rates than others. The following points should also be made.

• Edge weights in graphs do not need to represent distances. In transportation problems for
example, they could indicate predicted travel times or fuel costs; in currency conversion they
could represent exchange rates. Weights can also be both positive and negative.

• Shortest paths in a graph are nearly always “simple paths” in that they will not visit a vertex
more than once. The exception to this is when a graph contains a cycle in which the edge-weight
total is less than or equal to zero. If a graph contains a negative cycle, then the problem can be

Algorithms 2020, 13, 269 3 of 21

considered ill-defined because shortest paths will involve looping around this cycle indefinitely.
The ability to detect negative cycles is therefore a useful feature of a shortest path algorithm.

• Graphs are not always strongly connected. That is, there may be pairs of vertices u, v ∈ V for
which no u-v-path (and/or v-u-path) exists. If a graph is strongly connected, then a shortest path
tree rooted at any vertex will also be a spanning tree.

• Although typically stated on directed graphs, shortest path problems are also appropriate for
undirected graphs. In this case it is sufficient to covert the undirected graph to its directed
equivalent by replacing undirected edges {u, v} with directed edges (u, v) and (v, u), while
maintaining the weights (as with Figure 1).

• In real-world transportation problems, users may often specify start and end points that occur
somewhere along an edge (road) as opposed to at a vertex (intersection). In such cases it is
sufficient to simply create temporary vertices at these points, and adjust the surrounding edge
weights accordingly.

2.1. Single Source

We first consider the “single source” shortest path problem, where our aim is to produce a
shortest path tree rooted at a source vertex s. Perhaps the most well-known method in this regard
is Dijkstra’s algorithm, which was reportedly designed in just twenty minutes by its creator [6,7].
Dijkstra’s algorithm is only suitable for graphs in which all edge weights are nonnegative and operates
by maintaining a set D of so-called “distinguished vertices”. Initially, only the source vertex s is
distinguished; during a run further vertices are then added to D one by one. A “label” L(v) is also
stored for each vertex v in the graph. During execution, L(v) stores the length of the shortest s-v-path
that uses distinguished vertices only. On termination of a run, L(v) will then store the length of the
shortest s-v-path in the graph. If a vertex v has a label L(v) = ∞, then no s-v-path is possible.

In its most basic form, Dijkstra’s algorithm can be described in just three steps:

1. Set L(v) = ∞ for all v ∈ V. Now set D = ∅ and L(s) = 0.
2. Choose a vertex u ∈ V such that: (a) it value for L(u) is minimal; (b) L(u) < ∞; and (c) u /∈ D. If

no such vertex exists, then end; otherwise insert u into D and go to Step 3.
3. For all neighbours v ∈ Γ(u) that are not in D, if L(u) + w(u, v) < L(v) then set L(v) = L(u) +

w(u, v). Return to Step 2.

Stated in this form, observe that one vertex is added to D in each iteration, giving O(n) iterations
in total. Within each iteration we then need to identify the minimum label amongst vertices not in D
(an O(n) operation) and then update O(n) vertex labels. This leads to an overall complexity of O(n2).

For sparse graphs, run times of Dijkstra’s algorithm can be significantly improved by making use
of a priority queue [5]. During execution, this priority queue is used to hold the label values of all
vertices that have been considered by the algorithm but that are not yet marked as distinguished. It
should also allow the vertex with the minimum label within this queue to be identified in constant
time. In addition, it is also desirable to maintain a predecessor array, which will allow the construction
of shortest paths (vertex sequences) between s and all reachable vertices.

This more advanced version of Dijkstra’s algorithm is given in the pseudocode of Algorithm 1.
As shown, the DIJKSTRA procedure uses four data structures, D, L, P and Q. The first three of these
contain n elements and will typically allow direct access (e.g., by using arrays). D is used to mark
the distinguished vertices, L is used to hold the labels, and P holds the predecessor of each vertex in
the shortest path tree. The priority queue is denoted by Q. As shown, in each iteration Q is used to
identify the undistinguished vertex u with the minimal label value. In the remaining instructions, u is
then removed from Q and marked as distinguished, and adjustments are then made to the labels of
undistinguished neighbours of u (and the corresponding entries in Q) as applicable.

Algorithms 2020, 13, 269 4 of 21

DIJKSTRA (s ∈ V)
(1) for all v ∈ V
(2) Set L(v) = ∞; D(v) = false; and P(v) = NULL
(3) Set L(s) = 0 and Q = {(s, L(s))}
(4) while Q 6= ∅
(5) Let (u, x) be the element in Q with minimum value for x
(6) Remove (u, x) from Q and set D(u) = true
(7) for all v ∈ Γ(u) such that D(v) = false do
(8) if L(u) + w(u, v) < L(v) then
(9) if L(v) 6= ∞ then remove (v, L(v)) from Q
(10) Set L(v) = L(u) + w(u, v); P(v) = u; and insert (v, L(v)) into Q

Algorithm 1: Dijkstra’s algorithm for producing a shortest-path tree from a source vertex s ∈ V.

The asymptotic running time of DIJKSTRA now depends mainly on the data structure used to
represent Q. A good option is to use a binary heap or self-balancing binary tree since this allows
identification of the minimum label in constant time, with look-ups, deletions, and insertions then
being performed in logarithmic time. This leads to an overall run time of O((n + m) lg n), which
simplifies to O(m lg n) for connected graphs (where m ≥ n). Asymptotically, a further improvement
to O(m + n lg n) can also be achieved using a Fibonacci heap for Q, though such structures are often
viewed as slow in practice due to their large memory consumption and the high constant factors
contained in their operations [8].

As noted at the start of this subsection, one limitation of Dijkstra’s algorithm is its requirement that
all edge weights are nonnegative. This is because once a vertex v has been marked as distinguished, it
is assumed that the shortest s-v-path has been found and that any path extending this will necessarily
have an equal or greater length. However, this property does not hold in graphs featuring negative
edge weights. One simple way of dealing with such graphs is to extend DIJKSTRA so that, in Line 7
of Algorithm 1, rather than only looking at undistinguished neighbours of u, all neighbours of u are
considered. Then, if a distinguished vertex has its label changed, it is reinserted into the priority
queue, and is once again marked as undistinguished. However, although this algorithm is correct,
unfortunately it exhibits an exponential growth rate in the worst case [4].

Perhaps a better alternative for graphs with negative edge weights is the Bellman–Ford algorithm,
which operates in O(nm) time [5]. Although this growth rate is higher than Dijkstra’s algorithm,
this approach also has the added advantage of being able to detect the presence of negative cycles
in the graph. Bellman–Ford can also be augmented with additional data structures to form Moore’s
algorithm [9] (also sometimes known as the “shortest path faster algorithm”). This augmentation
generally results in faster run times than Bellman–Ford, particularly on sparse graphs. The worst case
complexity of the method is still O(nm), however.

In graphs for which all edge weights are relatively small integers, further methods are also known
to be efficient in producing shortest path trees. For example, Ahuja et al [10] describe an algorithm
that runs in O(m + n

√
lg W) time on graphs with nonnegative edge weights, where W is the value of

the largest edge weight in the graph. For graphs with negative edge weights, Gabow and Tarjan [11]
have also proposed an algorithm with the slightly higher complexity of O(

√
nm lg(nW)).

2.2. All Pairs

Solving the all pairs shortest path problem in a graph involves populating a matrix Dn×n, where
each element Dij holds the length of the shortest vi-vj-path. A very elegant approach for this problem
is the Floyd–Warshall algorithm, which operates in Θ(n3) time and is also correct in the presence of
negative edge weights [5]. Pseudocode is given in Algorithm 2.

Algorithms 2020, 13, 269 5 of 21

FLOYD-WARSHALL

(1) for all vi, vj ∈ V
(2) if i = j then set Dij = 0
(3) else if (vi, vj) ∈ E then set Dij = w(vi, vj)
(4) else set Dij = ∞
(5) for all vi ∈ V
(6) for all vj ∈ V such that Dji < ∞
(7) for all vl ∈ V such that Dil < ∞
(8) if Djl > Dji + Dil then set Djl = Dji + Dil

Algorithm 2: The Floyd–Warshall algorithm for calculating the shortest distance Dij between each pair
of vertices vi, vj ∈ V.

Another intuitive way of solving the all pairs problem is to simply solve n instances of the single
source problem, producing one shortest path tree for each v ∈ V. For graphs with nonnegative edge
weights, n applications of DIJKSTRA (using a binary heap) gives an overall complexity of O(nm lg n),
which is more favourable than the Floyd–Warshall algorithm with sparse graphs. In graphs with
negative edge weights we might also choose to carry out n applications of the Bellman–Ford algorithm,
giving an overall complexity of O(n2m). However, a usually better alternative is to use the algorithm
of Johnson [5,12]. This operates by first transforming the graph into one with no negative weights but
which maintains the same shortest-paths structure as the original. An appropriate transformation can
be achieved using a single application of the Bellman–Ford algorithm, after which n applications of
DIJKSTRA can then be performed.

2.3. Single-Source Single-Target

As noted, the single-source single-target shortest path problem involves the identification of a
shortest s-t-path, where s and t are specified in advance by the user. Note that although this problem
seems simpler than that of producing an entire shortest path tree rooted as s, no algorithms are known
that run asymptotically faster than the best single source algorithms in the worst case [5].

A straightforward way of tackling this problem is to again use Dijkstra’s algorithm, perhaps
now modifying it slightly so that it halts as soon as t becomes distinguished. (In Algorithm 1, Line 4
would be replaced by “while D(t) 6= true”). In cases where t happens to be the nth vertex to become
distinguished, this leads to equivalent behaviour to the single source version.

In many cases, a more favourable option is the A* heuristic algorithm of Hart et al. [13,14].
This can be seen as an extension on Dijkstra’s algorithm in that, when selecting a vertex to become
distinguished (Line 5 of Algorithm 1), we choose the vertex u that minimises the value L(u) + H(u).
Here, L(u) is interpreted as before—the length of the shortest path from s to u—whereas H(u) is a
heuristic value used to estimate the length of the shortest path from u to t. The aim of this heuristic is to
prioritise the selection of vertices that are more likely to be in a shortest s-t-path, therefore encouraging
t to be marked as distinguished earlier in the run and leading to shorter run times. The worst case
run times are still equivalent to Dijkstra’s algorithm, however. An effective application of A* can be
seen with road maps, where edge weights represent physical distances and H(u) is calculated using
the straight-line distance from u to t. In general, however, the heuristic function is problem-specific;
moreover, if the heuristic is not classed as “admissible” (in that H(u) can overestimate the length of
the shortest u-t-path), then its final results may be inaccurate. Properties of admissible heuristics are
outlined in [13,14]. A survey on the A* algorithm and its variants is also due to Fu et al. [15].

Variants of the single-source single-target shortest path problem have also been studied by Yen [16]
and Bhandari [17]. Yen has proposed an algorithm for finding the K shortest s-t-paths, where K is a
parameter supplied by the user. The method operates on graphs with nonnegative weights and starts
by first identifying the shortest s-t-path. For i = 2, . . . , K, the ith shortest s-t-path is then determined by
modifying the graph according to the first i− 1 shortest s-t-paths and calculating the shortest s-t-path
of this new graph. Using Dijkstra’s algorithm with a binary heap, this algorithm has a complexity
of O(Kn(m lg n)). The methods of Bhandari, meanwhile, are used to produce pairs of edge-disjoint

Algorithms 2020, 13, 269 6 of 21

s-t-paths in a graph. After determining the shortest s-t-path, modifications are made to the graph by
deleting some edges of the path and negating the weight of others. A subsequent run of an appropriate
shortest path algorithm then produces the desired second path. Similar techniques can also be used to
produce vertex-disjoint paths [17].

2.4. Review Summary

Table 1 summarises the worst case running times of the algorithms considered in this section.
Apart from the Floyd–Warshall algorithm, note that all of these bounds are quite conservative and, in
many practical applications, may not be particularly helpful in predicting computational performance.

Table 1. Review summary of shortest path algorithms for edge-weighted graphs. Here, D represents
the worst case run time bound of the chosen variant of Dijkstra’s algorithm.

Algorithm Worst case run- Neg. Comments
time bound weights?

Single Source:
Dijkstra (basic form) O(n2) No Optimal bound for dense graphs.
Dijkstra (binary heap) O(m lg n) No More efficient than the basic form with sparse graphs.
Dijkstra (Fibonacci heap) O(m + n lg n) No More efficient than the basic form with sparse graphs.
Bellman–Ford O(nm) Yes Also able to detect the presence of negative cycles.
Moore O(nm) Yes Often faster than Bellman–Ford, but same worst case bound.
Ahuja O(m + n

√
lg W) No Useful when the maximum edge weight W is small.

Gabow-Tarjan O(
√

nm lg(nW)) Yes Useful when the maximum edge weight W is small.
All Pairs:
Floyd–Warshall Θ(n3) Yes Bound exhibited with all graphs. Detects negative cycles.
Dijkstra (n applications) O(nD) No Dijkstra’s algorithm is run from each source s ∈ V.
Johnson O(nm) +O(nD) Yes Bellman–Ford is used to convert all edge weights to non-

negative values. Dijkstra is then applied n times.
Single-Source Single-Target:
Dijkstra (any form) O(D) No Can halt as soon as the target vertex becomes distinguished.
A* O(D) No If a suitable (and admissible) heuristic is used, usually

faster than Dijkstra’s algorithm.
Yen O(KnD) No Produces the K shortest paths between source and target.
Bhandari O(nm) No Produces pairs of edge- or vertex-disjoint paths between

source and target.

3. Shortest Paths with Vertex Transfer Penalties

As we have seen, a multitude of efficient algorithms exist for the shortest path problem in
edge-weighted graphs. However, in many real world applications complications can arise due to the
occurrence of “transfer penalties” at the vertices. Consider the graph in Figure 2, for example. This
might depict some small public transport system with edge colours representing transport lines and
weights representing travel times. Now suppose that we want to find the shortest path from vertex v1

to v9. By inspection, this is (v1, v4, v5, v9) with a length of 2 + 1 + 2 = 5. However, this path involves
changing lines at v4 which, in reality, might also incur some time penalty (e.g., if the commuter needs
to change vehicles). If this penalty is more than three units, then the shortest path from v1 to v9 now
becomes (v1, v4, v7, v8, v9) with a length of eight.

v1

v7

v4

v2

v8

v5

v3

v9

v6

2 2

2 2

2

2

2

2

1

3 2

2

1 = Black
2 = Blue
3 = Red

Figure 2. A small network comprising n = 9 vertices, m = 16 edges and k = 3 colours. As per
Definition 1 we have, for example, E−(v1) = {(v2, v1, 1), (v2, v1, 2)}, E+(v1) = {(v1, v2, 2), (v1, v4, 1)},
C−(v1) = {1, 2} and C+(v1) = {1, 2}.

Algorithms 2020, 13, 269 7 of 21

To incorporate vertex transfer penalties, consider the following model, which extends the one
given in Section 2. Let G = (V, E) be an edge-weighted, loop-free, directed multigraph using k
different edge colours. As before, V is the set of n vertices and E is a set of m directed, coloured, and
weighted edges (E ⊆ {(u, v, i) : u, v ∈ V ∧ u 6= v ∧ i ∈ {1, . . . , k}}. The weight of an edge of colour i
travelling from vertex u to vertex v is now denoted by w(u, v, i). The following notation is also useful
and is exemplified in Figure 2:

Definition 1. Let E−(v) = {(u, v, i) : (u, v, i) ∈ E} be the set of edges of which the endpoint is vertex v, and
C−(v) = {i : ∃(u, v, i) ∈ E−(v)} be the set of distinct colours that enter v. Similarly, E+(v) = {(v, u, i) :
(v, u, i) ∈ E} is the set of edges of which the starting point is v and C+(v) is the set of colours that leave v.

Finally, we also need to define a set of transfers T. A transfer occurs when we arrive at a vertex v
on an edge of colour i and leave v on an edge of colour j. Hence T = {(v, i, j) : v ∈ V ∧ i ∈ C−(v)∧ j ∈
C+(v)}. The penalty cost of a transfer is denoted by t(v, i, j) and it is assumed that if i = j, then
t(v, i, j) = 0.

Edge-coloured graphs like these have many practical uses. As noted, an obvious example is
with public transport networks where additional costs (such as financial or time) can be incurred
when switching between different lines. Another example is with the multimodal shortest path
problem where we are in interested in transporting goods efficiently between two locations using a
combination of different travel modes (sea, train, road, etc.), and where transfer penalties represent the
cost of moving the goods from one mode to another [18]. Constraints stemming from real-world road
networks can also be defined using this model. For example:

Intersection delays. Often vehicles will need to wait at an intersection due to crossing traffic and
pedestrians. Such delays can be modelled using an appropriate transfer penalty at the vertex.

Kerbside routing. Vehicles will often need to arrive at a location from a particular direction (e.g., if a
road contains a central reservation and crossing is not permitted). In this case, the shortest path
problem will be constrained so that we must arrive at the destination vertex on a particular subset
of edge colours. Note that this can result in shortest paths that contain repeated vertices (cycles);
for example, in Figure 2 the shortest v1-v4-path that also arrives on a red edge is (v1, v4, v5, v4).

Initial headway. Similarly to the previous point, vehicles may also need to leave a location in a
particular direction (e.g., if they previously approached from a particular direction and turning
is not possible). In this case, the shortest path should be specified as having to leave this vertex
on a particular edge colour.

Illegal routes and turns. On occasion, large vehicles will not be permitted to drive on particular
roads or make particular turns at an intersection. In these cases we can simply change the
corresponding edge weights and transfer penalties to infinity. Note that this might also result in
routes containing repeated vertices.

3.1. Kirby-Potts Expansions

Although the algorithms reviewed in Section 2 are all known to solve their respective shortest
path problems in edge-weighted graphs, note that they cannot be directly applied to graphs that
feature transfer penalties at the vertices. Instead, graphs will usually be expanded in such a way that
transfer penalties are expressed via additional “transfer edges”. Once this has been done, shortest path
methods can then be applied as before. The most prominent method of expansion is due to Kirby and
Potts [19] who use a cluster of dummy vertices for each vertex in the original graph. Specifically, using
an edge-coloured graph G = (V, E), a new larger graph G′ = (V′, E′) is formed by creating two sets of
dummy vertices for each vertex v ∈ V: one for each incoming colour in v and one for each outgoing
colour in v. Transfer edges are then added between the dummy vertices in each set using edge weights
equivalent to the corresponding transfer penalties.

Algorithms 2020, 13, 269 8 of 21

(a)
X

Y

0 1 1 3

1

1

3

In

Out

(b) (c)

Figure 3. (a) The graph G′ = (V′, E′) formed from Figure 2 using the Kirby–Potts expansion method;
(b) an example cluster of dummy vertices produced using the Kirby–Potts method; and (c) the
corresponding cluster using the (problematic) restricted expansion method.

Examples of the Kirby–Potts expansion method are shown in Figures 3a,b. As illustrated, each
cluster is composed of a set of “in-vertices” and “out-vertices”. Transfer penalties are specified using
edges that start at the in-vertices and end at the out-vertices (forming a directed bipartite graph). This
results in a new graph G′ = (V′, E′) comprising n′ vertices and m′ edges, where

n′ =
n

∑
i=1
|C−(vi)|+ |C+(vi)| (1)

m′ = m +
n

∑
i=1
|C−(vi)| · |C+(vi)|. (2)

Note that a shortest path between two vertices in G′ now also specifies the starting colour and
arrival colour in the original edge-coloured graph’s path. For example, the shortest path between the
vertices marked by X and Y in Figure 3a corresponds to the shortest v1-v5-path in Figure 2 in which
“arrival” at v1 is assumed on a black edge and arrival at v5 is on a red edge.

3.2. Further Expansion Methods

Although the Kirby–Potts expansion is the most useful for our purposes, we should also note the
presence of two other expansion methods used in the literature. The first of these is a more restricted
version of Kirby–Potts that has previously been used in studies on bus networks [20–24]. In this
expansion method each vertex v of the original graph is represented by a cluster of |C−(v) ∪ C+(v)|
dummy vertices. Each vertex in this cluster then corresponds to a different colour, and edges are
added between these vertices using weights equivalent to the corresponding transfer penalties. Note,
however, that although this restricted method results in smaller graphs than those of Kirby–Potts, it
can produce illogical results when the edge weights within a cluster do not obey the triangle inequality.
Consider the Kirby–Potts expansion in Figure 3b for example, where a penalty of three is incurred at the
vertex when transferring from blue to black. In the corresponding graph produced using the restricted
expansion method (Figure 3c) a smaller transfer penalty of two will be identified by transferring from
blue to red to black, which is clearly inappropriate when modelling things such as transfers on public
transport. (This issue is not noted in any of the above works, although it is avoided due to their use of
a constant value for all transfers, thereby satisfying the triangle inequality at each vertex.)

A further method of graph expansion is due to Winter [25], who suggests using the line graph of
G (referred to as the “pseudo-dual” in the paper) for identifying shortest paths. However, this leads to
much larger graphs comprising m vertices and ∑v∈V |E−(v)| · |E+(v)| edges. A copy of the original
graph G is also required with this method to facilitate the drawing of routes.

Algorithms 2020, 13, 269 9 of 21

3.3. A Note on the Number of Colours in a Graph

As we might expect, the time requirements of a shortest path algorithm defined for use with
edge-coloured graphs will depend on the number of vertices n, edges m, and colours k. However,
we find that it is expedient to avoid using k in any asymptotic analysis because it can lead to an
overestimation of complexity due to a relationship with the graph colouring problem, which we now
describe.

Let G = (V, E) be an edge-coloured graph using k colours as previously defined. Now let
G∗ = (V, E∗) be a copy of G with all edge directions removed. Finally let G∗(i) denote the subgraph
formed from G∗ using edges of colour i only. Note that if two such subgraphs G∗(i) and G∗(j) have
no common vertices, then no transfers are possible between colours i and j. In this case we have the
opportunity to relabel all i-coloured edges with colour j (or vice versa), and potentially reduce the
number of colours k being used in the graph.

(a)
(b)

(c)

(d)

Figure 4. (a) A graph G∗ using k = 3 colours; (b) the underlying conflicts graph (and 3-colouring)
prescribed by G∗; (c) a 2-colouring of this conflicts graph; and (d) the original graph G∗ using k = 2
colours.

In more detail, consider a conflicts graph created using a single i-coloured vertex for each
component of each subgraph G∗(i) (for i ∈ {1, . . . , k}), with edges corresponding to any vertex pair
representing differently-coloured overlapping components in G∗. From a graph colouring perspective,
note that the colours of the vertices in this conflicts graph define a proper k-colouring, in that pairs
of adjacent vertices will always have different colours; however, it may be possible to colour this
conflicts graph using fewer colours. If this is so, then an equivalent graph to G with fewer colours
can also be created. An example of this process is shown in Figure 4. This illustrates that, while the
number of different edge colours k could have any value up to and including m, the minimum number
of colours needed to express this graph might well be smaller. However, identifying this minimum
can be difficult since it is equivalent to solving the NP-hard chromatic number (graph colouring)
problem [26].

Given these observations on k, a better alternative for analysing complexity is to consider the
number of colours entering and exiting each vertex (given by |C−(v)| and |C+(v)|) and, in particular,
their maximum values c−max = max{|C−(v)| : v ∈ V} and c+max = max{|C+(v)| : v ∈ V}. These will
be used in the next section.

4. Methods Avoiding Expansion

In this section we now propose two variants of Dijkstra’s algorithm. These are designed to find
shortest paths in our edge-coloured graphs (that is, graphs featuring transfer penalties at their vertices),
but without the need for first performing a graph expansion.

4.1. Extended Dijkstra Version 1

Our first adaptation, EXTENDED-DIJKSTRA-V1, is given in Algorithm 3. The rationale for this
method can be explained by considering a cluster of dummy vertices in a Kirby–Potts expanded graph.
As previously noted, vertices in each cluster of the expanded graph can be partitioned into two sets:
in-vertices and out-vertices (see Figures 3a,b). Moreover, observe that a shortest path from an in-vertex
must always next pass through an out-vertex from the same cluster before moving to a different cluster.

Algorithms 2020, 13, 269 10 of 21

As proven in Theorem 1 below, it is therefore sufficient to simply add the length of the corresponding
transfer (edge) to the path here, rather than consider the out-vertices as separate entities within the
graph.

The idea in our approach is to therefore use a pair (u, i) for each vertex u ∈ V and incoming
colour i ∈ C−(u), giving ∑u∈V |C−(u)| pairs in total. The source is also defined by such a pair (s, l),
which is interpreted as meaning that the paths should start at s ∈ V, assuming initial entry to s on an
edge of colour l. Similarly to the DIJKSTRA procedure of Algorithm 1, during execution this algorithm
stores labels, predecessors and the distinguished status of each pair using the data structures L, P and
D respectively. At termination, all pairs reachable from the source are marked as distinguished, and
the label L(u, i) holds the length of the shortest path from the source to vertex u, assuming entry at u
on an edge of colour i.

An example solution from this method is shown in Figure 5. The main differences between
this approach and DIJKSTRA are (a) the use of vertex-colour pairs, and (b) at Lines 11 and 13
of EXTENDED-DIJKSTRA-V1, where transfer penalties t(u, i, j) are added when comparing and
recalculating label values. Note also that for k = 1 this algorithm becomes equivalent to DIJKSTRA.

EXTENDED-DIJKSTRA-V1 (s ∈ V, l ∈ C−(s))
(1) for all v ∈ V
(2) for all i ∈ C−(v)
(3) Set L(v, i) = ∞; D(v, i) = false; and P(v, i) = NULL
(4) Set L(s, l) = 0 and Q = {(s, l, L(s, l))}
(5) while Q 6= ∅
(6) Let (u, i, x) be the element in Q with minimum value for x
(7) Remove (u, i, x) from Q and set D(u, i) = true
(8) for all (u, v, j) ∈ E+(u) such that D(v, j) = false
(9) if L(u, i) + t(u, i, j) + w(u, v, j) < L(v, j) then
(10) if L(v, j) 6= ∞ then remove (v, j, L(v, j)) from Q
(11) Set L(v, j) = L(u, i) + t(u, i, j) + w(u, v, j); P(v, j) = (u, i); and insert (v, j, L(v, j)) into Q

Algorithm 3: The extended Dijkstra algorithm, version 1.

v1

v7

v4

v2

v8

v5

v3

v9

v6

L(v3,u) = 11

L(v3,v) = 6

L(v6,u) = 9

L(v9,u) = 8

L(v9,w) = 6L(v7,u) = 4

L(v4,u) = 2

L(v4,w) = 5

L(v1,u) = 0

L(v1,v) = 7

L(v2,u) = 9, L(v2,v) = 4

L(v5,w) = 4

L(v8,u) = 6

v1,u
v4,u

v2,v

v7,u

v1,v

v3,v

v8,u v9,u

v6,uv5,w

v2,u

v9,w v3,u

v4,w

Figure 5. Solution returned by EXTENDED-DIJKSTRA-V1 using the graph from Figure 2 and source
(v1, 1). All transfer penalties are assumed to be 1. The shortest path tree rooted at (v1, 1) is defined by
the contents of P and is illustrated on the right.

The correctness of EXTENDED-DIJKSTRA-V1 is due to the following theorem.

Theorem 1. If all edge weights and transfer penalties in a graph are nonnegative then, for all distinguished
pairs (u, i), the label L(u, i) is the length of the shortest path from the source (s, l) to (u, i).

Proof. Proof is by induction on the number of distinguished pairs. When there is just one distinguished
pair, the theorem clearly holds since the length of the shortest path from (s, l) to itself is L(s, l) = 0.

For the step case, let (v, j) be the next pair to be marked as distinguished by the algorithm (i.e.,
L(v, j) is minimal among all undistinguished pairs) and let (u, i) be its predecessor. Hence the shortest
(s, l)-(v, j)-path has length L(u, i) + t(u, i, j) + w(u, v, j). Now consider any other path P from (s, l) to
(v, j). We need to show that the length of P cannot be less than L(u, i) + t(u, i, j) + w(u, v, j). Let (x, a)
and (y, b) be pairs on P such that (x, a) is distinguished and (y, b) is not, meaning that P contains the

Algorithms 2020, 13, 269 11 of 21

edge (x, y, b). This implies that the length of P is greater than or equal to L(x, a) + t(x, a, b) + w(x, y, b)
(due to the induction hypothesis). Similarly, this figure must be greater than or equal to L(u, i) +
t(u, i, j) + w(u, v, j) because, as assumed, L(v, j) is minimal among all undistinguished pairs.

We now consider the computational complexity of EXTENDED-DIJKSTRA-V1. As before, we
assume the use of a binary heap for Q and direct access data structures for L, D and P. The initialisation
of L, D, and P in Lines 1 to 5 has a worst-case complexity of O(nc−max). For the main part of the
algorithm, note that each label in L is considered and marked as distinguished exactly once and, in
the worst case, we will have nc−max such labels. Once a label (u, i) is marked as distinguished, all
incident edges (u, v, j) are then considered in turn and are subject to a series of constant-time and
log-time operations, as shown in Lines 12 to 15. This leads to an overall worst case complexity of
O (nc−max) +O ((mc−max) lg (nc−max)). Assuming graph connectivity, this simplifies to a growth rate for
EXTENDED-DIJKSTRA-V1 of

f1 = O
((

mc−max
)

lg
(
nc−max

))
. (3)

As previously noted, the complexity of DIJKSTRA using a binary heap is O(m lg n). Using a
Kirby–Potts expansion, in the worst case this leads to a graph G′ with n′ = n(c−max + c+max) vertices
and m′ = m + nc−maxc+max edges, giving an overall complexity of O(m′ lg n′), or

f2 = O
((

m + nc−maxc+max
)

lg
(
n
(
c−max + c+max

)))
. (4)

Figure 6 compares f1 and f2 for a range of different parameter values. Note that f1 grows more
quickly in all cases, demonstrating that EXTENDED-DIJKSTRA-V1 is less efficient with regards to
increases in the number of edges m. The main reason for this is that, with EXTENDED-DIJKSTRA-V1,
each outgoing edge of a vertex v is considered for each incoming colour of v. This results in the
term (mc−max) seen in Equation (3). In contrast, although a Kirby–Potts expansion results in a graph
G′ with an increased number of edges and vertices, each edge in G′ is considered only once using
DIJKSTRA, which results in a slower growth rate. Note, however, that each chart in Figure 6 features
an intersect, suggesting that EXTENDED-DIJKSTRA-V1 is more efficient with very sparse graphs. (If
Fibonacci heaps are used for Q instead of binary heaps, the growth rates for f1 and f2 are O((mc−max) +

(nc−max) lg(nc−max)) and O(m′ + n′ lg n′) respectively. These feature the same noted properties as f1

and f2 except that growth is more gradual, and intersects occur at slightly higher values of m.) For
indicative purposes, the grey rectangles in the figure show the range of values for which planar
digraphs exist (i.e., the right boundary of these rectangles occur at m = 2(3n − 6), which is the
maximum possible number of directed edges in a planar digraph). Planar graphs are considered
further in Section 5.

Algorithms 2020, 13, 269 12 of 21

 0

 45000

 0 1000

m

f1
f2

 0

 600000

 0 5000

m

f1
f2

 0

 3×106

 0 10000

m

f1
f2

 0

 700000

 0 10000

m

f1
f2

 0

 8×106

 0 50000

m

f1
f2

 0

 3.5×107

 0 100000

m

f1
f2

 0

 9×106

 0 100000

m

f1
f2

 0

 1×108

 0 500000

m

f1
f2

 0

 4.5×108

 0 1×106

m

f1
f2

Figure 6. Comparison of growth rates f1 and f2 with regards to the number of edges m. Rows show
n-values of 100, 1000 and 10,000 respectively; columns consider values c−max = c+max of 3, 10, and 20
respectively.

4.2. Extended Dijkstra Version 2

Our second adaptation operates by replicating the behaviour of Dijkstra’s algorithm on
Kirby–Potts graphs. This results in a method with the more favourable growth rate of f2 but that also
avoids the need for graph expansion. To do this, approximately twice as much working memory as
EXTENDED-DIJKSTRA-V1 is required because, in addition to storing values for each vertex/in-colour
pair, we also need to store values for each vertex/out-colour pair. The structures L, D and P are
therefore replaced with the structures Lin and Lout, Din and Dout, and Pin and Pout.

The complete procedure for EXTENDED-DIJKSTRA-V2 is given in Algorithm 4. Note that each
item in the priority queue Q is now a tuple comprising four values. The fourth value indicates whether
the item refers to an “in-label” or and “out-label”, which correspond to in-vertices and out-vertices in
a Kirby–Potts graph. The item (u, i, x, IN) ∈ Q means that we are considering the vertex u, incoming
edges of colour i, and that Lin(u, i) = x. Similarly, (u, i, x, OUT) ∈ Q means we are considering vertex
u, outgoing edges of colour i, and that Lout(u, i) = x.

Algorithms 2020, 13, 269 13 of 21

EXTENDED-DIJKSTRA-V2 (s ∈ V, l ∈ C−(s))
(1) for all v ∈ V
(2) for all i ∈ C−(v)
(3) Set Lin(v, i) = ∞; Din(v, i) = false; and Pin(v, i) = NULL
(4) for all i ∈ C+(v)
(5) Set Lout(v, i) = ∞; Dout(v, i) = false; and Pout(v, i) = NULL
(6) Set Lin(s, l) = 0 and Q = {(s, l, Lin(s, l), IN)}
(7) while Q 6= ∅
(8) Let (u, i, x, y) be the element in Q with minimum value for x
(9) Remove (u, i, x, y) from Q
(10) if (y = IN) then
(11) Set Din(u, i) = true
(12) for all j ∈ C+(u) such that Dout(u, j) = false
(13) if Lin(u, i) + t(u, i, j) < Lout(u, j) then
(14) if Lout(u, j) 6= ∞ then remove (u, j, Lout(u, j), OUT) from Q
(15) Set Lout(u, j) = Lin(u, i) + t(u, i, j); Pout(u, j) = (u, i); and insert (u, j, Lout(u, j), OUT) into Q
(16) else
(17) Set Dout(u, i) = true
(18) for all (u, v, j) ∈ E+(u) such that j = i and Din(v, i) = false
(19) if Lout(u, i) + w(u, v, i) < Lin(v, i) then
(20) if Lin(v, i) 6= ∞ then remove (v, i, Lin(v, i), IN) from Q
(21) Set Lin(v, i) = Lout(u, i) + w(u, v, i); Pin(v, i) = (u, i); and insert (v, i, Lin(v, i), IN)} into Q

Algorithm 4: The extended Dijkstra algorithm, version 2.

As shown in Algorithm 4, items are selected and removed from the priority queue Q on Lines
8 and 9. If the selected item (u, i, x, y) refers to an in-label (y = IN), then only labels referring to
the outgoing colours of vertex u need to be considered for update; hence, we only need to look at
the transfer penalties t(u, i, j) for j ∈ C+(u) in which Dout(u, j) is not distinguished (Lines 12 to 15).
Similarly, if (u, i, x, y) refers to an out-label (y = OUT), then we only need to consider updating the
in-labels of any vertex v connected to u by an edge of colour i (Lines 18 to 21). This behaviour is
identical to the way in which DIJKSTRA would operate with a Kirby–Potts expanded version of the
graph.

5. Computational Comparison

In this section we consider the CPU times required to calculate shortest path trees on various types
of edge-coloured graphs. In particular, we wish to assess the relative performances of our extended
Dijkstra methods in comparison to using Dijkstra’s original algorithm on Kirby–Potts expanded graphs.
Note that we do not include the time taken to perform Kirby–Potts expansions in these results. This
is because the decision on how a graph is represented and stored will often be made by the user
beforehand and might therefore be considered a separate process. However, this will not always be
the case as we discuss in Section 5.4.

In our experiments, we will seek shortest paths in which transfer penalties are not incurred at
terminal vertices. This is useful in applications such as public transport, where a passenger will arrive
at the source vertex by means outside of the network (e.g., by foot), and will then leave the network on
arrival at their destination. To make this modification on an edge-coloured graph we can simply set
all transfer penalties at the source vertex s to zero before running the shortest path algorithm using
an arbitrary in-colour l ∈ C−(s) (in cases where the source vertex s does not feature an in-colour
(C−(s) = ∅), then a dummy in-colour can be temporarily added to the graph.). The length of the
shortest s-v-path in G is then indicated by the minimum value among the labels of v. For a Kirby–Potts
expanded graph G′, a similar process is used: first, the weights of all transfer edges in the cluster
defined by s are temporarily set to zero; next DIJKSTRA is executed from an arbitrary in-vertex within
this cluster; finally, the minimum label value among all in-vertices in v’s cluster is identified.

Three types of problem instances are considered in our tests: random graphs, planar graphs, and
real-world public transport networks. The latter are considered in more detail in Section 5.3. Our
random graphs were generated by randomly placing n vertices into the unit square. All potential
edges (u, v, i) were then considered in turn and added to the graph with a fixed probability of d/k,

Algorithms 2020, 13, 269 14 of 21

where d is a density parameter representing the average number of edges travelling from each vertex u
to each vertex v. During this process, care was also taken to ensure that the graph contained a random
(n− 1)-cycle, making the graph strongly connected.

The second graph type, planar graphs, were considered to give a general indication of algorithm
performance on transport networks. Recall that planar graphs are those that can be drawn on a plane
so that no edges cross. In that sense, like road networks, they are quite sparse, with vertex degrees
being fairly low. Note that when things like roads physically intersect on land, there will often be an
opportunity to transfer from one to the other; hence, the underlying graph will be planar. However, this
is not always the case, such as when one road crosses another via a bridge, so the analogy is not exact.
Planar graphs were formed by again randomly placing n vertices into the unit square. A Delaunay
triangulation was then generated from these vertices, with the edges of this triangulation being used
to form a pool of potential edges for the graph (that is, for each edge {u, v} in the triangulation, all
directed and coloured edges (u, v, i) and (v, u, i) (for i ∈ {1, . . . , k}) were added to the pool). Edges
were then selected randomly from this pool and added to the graph until the desired graph density
was reached. Again, we also ensured that the resultant graph was strongly connected: in this case by
including all edges from a bidirectional minimum spanning tree.

For both random and planar graphs, edge weights were calculated using the Euclidean distances
between vertices plus x per cent where, for each edge, x was selected randomly in the range (−10, 10).
This prevents edges between the same pair of vertices from having the same weight. Transfer penalties
were set to the average edge weight across the graph plus or minus x per cent.

Our algorithm implementations were written in C++ and executed on 3.2 GHtz Windows 7
machines with 8 GB RAM. In all implementations, C++ sets (red-black trees) were used for the priority
queues and C++ unordered maps (hash tables) were used for storing transfer penalties t(u, i, j). Graphs
were represented using an array of adjacency lists, one list for each vertex. For a vertex v, lists were
then stored using C++ sets. Each item in a list then contained the label of a neighbouring vertex,
together with the colour and weight of the corresponding edge. For EXTENDED-DIJKSTRA-V2, which
requires access to neighbours only joined by a specific edge colour, adjacency lists were maintained for
each vertex/colour pair. All source code and results are available online at [27].

5.1. Random Graphs

Figure 7 shows the average CPU times of our implementations using random graphs with
n ∈ {100, 1000, 10000} and k ∈ {3, 10, 20}. In all cases, five graphs were generated for each density
d ∈ {0, 0.02, 0.04, . . . , 1.0} and algorithms were run using each of the n vertices as a source in turn. Each
point in the figure is therefore a mean of 5n different values. As an additional means of comparison, we
also ran a second (slightly slower) implementation of Dijkstra’s algorithm on Kirby–Potts expanded
graphs, available in the Python package NetworkX (v. 2.4).

As might be expected, Figure 7 shows that run times grow for increases in n, m, and k. In
general we see that using Dijkstra’s algorithm with Kirby–Potts graphs gives the shortest run times,
with EXTENDED-DIJKSTRA-V2 a close second. The differences in these two algorithms seems due
to our choice of data structures. As noted, in Kirby–Potts graphs all information is encoded via
adjacency lists hence, during execution, Dijkstra’s algorithm is able to access this information directly
when iterating through each list. When using EXTENDED-DIJKSTRA-V2, on the other hand, the
overheads involved in using hash tables for storing the transfer penalties makes accessing each value
of t(u, i, j) slightly more expensive. (Indeed, in preliminary tests we found that our implementation of
EXTENDED-DIJKSTRA-V2 could be improved for small instances by using a different data structure.
This was achieved by maintaining an n× k× k array in which an element (u, i, j) referred to t(u, i, j).
However, in many problem instances this array wasted a lot of space because transfers between various
pairs of colours did not exist at vertices. For some of the larger real-world problem instances used in
Section 5.3, for example, the memory requirements of this array exceeded 40 GB.)

Algorithms 2020, 13, 269 15 of 21

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 0.5 1

se
c.

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.001

 0.002

 0 0.5 1

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.001

 0.002

 0.003

 0.004

 0 0.5 1

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.5 1

se
c.

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.1

 0.2

 0 0.5 1

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.1

 0.2

 0.3

 0.4

 0 0.5 1

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 1

 2

 3

 4

 5

 0 0.5 1

se
c.

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 5

 10

 15

 20

 0 0.5 1

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 10

 20

 30

 40

 0 0.5 1

density

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

Figure 7. CPU times required to produce a shortest path tree from a single source using random graphs
of differing densities. Rows show n values of 100, 1000 and 10,000 respectively; columns consider
k-values of 3, 10 and 20 respectively. The number of edges in a graph is determined by multiplying the
density by n(n− 1).

Figure 7 also shows that the gap in the time requirements of EXTENDED-DIJKSTRA-V1 compared
to Kirby–Potts and EXTENDED-DIJKSTRA-V2 widens for increases in n, k, and m. Indeed, the most
extreme difference occurs with graphs with n = 10, 000, d = 1.0, and k = 20, where a difference
of over twenty seconds per shortest-path tree is observed. That said, the effects of the asymptotic
growth rate intersections (as seen in Figure 6) are also apparent with small sparse graphs, where
EXTENDED-DIJKSTRA-V1 has slightly shorter running times.

5.2. Planar Graphs

Figure 8 shows the average CPU times required by our implementations with planar graphs.
Here, for each n and k, graphs were generated for twenty-five different values for m, using an upper
limit of m = 2k(3n− 6) (this is the maximum number of edges in a planar, loop-free, multi-digraph
using k edge colours). As with Figure 6, the right boundaries of the grey rectangles in these charts
indicate m = 2(3n− 6) (the maximum number of edges in a planar digraph). All other experimental
details are the same as the previous subsection.

Algorithms 2020, 13, 269 16 of 21

 0

 0.0001

 0.0002

 0.0003

 0.0004

 1000

se
c.

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.001

 0.002

 5000

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 10000

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.001

 0.002

 0.003

 0.004

 10000

se
c.

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.01

 0.02

 50000

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 100000

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.01

 0.02

 0.03

 0.04

 100000

se
c.

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.1

 0.2

 500000

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1×106

m

Extended−Dijkstra−v1
Extended−Dijkstra−v2

Kirby−Potts
NetworkX

Figure 8. CPU times required to produce a shortest path tree from a single source using planar graphs
of differing densities. Rows show n values of 100, 1000 and 10,000 respectively; columns consider
k-values of 3, 10 and 20 respectively. Note that results for NetworkX are not displayed in some charts
because their CPU times exceed the chosen vertical scales.

Figure 8 reveals similar patterns to those seen for random graphs, with time requirements growing
for increases in n, m, and k with all algorithms. In this case, however, the relative sparsity of planar
graphs allows us to view areas in which EXTENDED-DIJKSTRA-V1 has the shortest run times. However,
as previously seen in Figure 6, increases in the number of edges eventually leads to an intersect, with
Kirby–Potts then showing the most favourable run times overall.

5.3. Public Transport Graphs

We now consider the relative performance of our implementations on real-world public transport
networks. In these graphs, vertices represent access points (stations, bus stops, etc.) and edges
represent connection times between adjacent pairs. The first of these is the London Underground
network and includes 302 stations and thirteen different transport lines [28]. The remainder are due to
Kujala et al. [29] who have gathered public transport information from 27 different cities. For each city
in their set, information about all forms of public transport is given, including trains, buses, trams and
ferries. In our case, a different colour was used for each route of each mode, and transfer times were
determined in the same way as our random and planar graphs.

A summary of these 28 problem instances is given in Table 2. As shown, they range in size from
n = 302 to 24, 063, with values of k between 13 and 868. Note that a small amount of cleaning was
required with Kujala et al.’s instances to eliminate loops and edges with undefined endpoints. In
addition, many of the instances do not form strongly connected components, meaning that paths
are not available between all pairs of access points. (That said, we found that more than 95% of
access points are contained within one large strongly connected component in all cases.) As a result,
we also created a secondary version of Kujala et al.’s instances in which walks of up to 1 km are

Algorithms 2020, 13, 269 17 of 21

permitted between access points using an average walking speed of 1.4 metres per second. As shown
this increases the number of edges in the graphs, though some networks still remain disconnected.
Illustrations of two networks are given in Figure 9.

Table 2. Summary of the 28 real-world problem instances. In columns indicating the number of edges
m, daggers (†) indicate strongly connected graphs. For instances with 1 km walks, an extra edge colour
is required, meaning that k and χ̄ should be incremented by one. The meaning of the asterisks (*) is
described in the text.

Original instances (no walking) With 1 km walks
City n k c−max c+max χ̄ m m
London Underground 302 13 6 6 *9 †812 †812
Kuopio 549 33 13 13 *18 1626 10,436
Antofagasta 650 17 14 14 *16 2547 †26,291
Luxembourg 1367 222 59 59 *77 6163 †18,153
Rennes 1407 50 7 7 *8 2159 †29,219
Grenoble 1547 52 4 4 *5 1943 †37,529
Turku 1850 103 35 35 *35 7080 54,230
Venice 1874 873 90 90 *90 16,561 42,983
Belfast 1917 102 31 27 *31 6041 †64,635
Palermo 2176 94 17 17 *17 †5298 †91,962
Nantes 2353 97 9 8 *9 4080 58,130
Canberra 2764 123 35 35 38 7121 †57,687
Toulouse 3329 104 9 9 *9 5067 †78,557
Bordeaux 3435 81 8 8 *9 5829 †91,087
Dublin 4571 143 23 23 25 12,165 132,729
Berlin 4601 575 59 59 60 22,922 59,108
Winnipeg 5079 90 33 33 *40 10,642 †211,124
Prague 5147 356 21 21 *24 14,807 90,035
Detroit 5683 40 8 8 *8 6460 †195,584
Athens 6768 240 18 18 *18 14,741 †259,923
Helsinki 6986 498 64 64 *64 27,718 223,382
Lisbon 7073 868 32 29 *33 23,354 †243,792
Adelaide 7548 517 82 82 *82 32,018 †197,062
Rome 7869 337 17 17 *18 19,164 287,964
Brisbane 9645 401 60 60 *60 20,849 249,537
Paris 11,950 878 10 10 11 20,810 †511,248
Melbourne 19,493 405 18 18 *18 28,738 498,084
Sydney 24,063 736 42 42 50 55,616 714,902

0.6 0.4 0.2 0.0 0.2

51.40

51.45

51.50

51.55

51.60

51.65

51.70

97.30 97.25 97.20 97.15 97.10 97.05 97.00 96.95

49.75

49.80

49.85

49.90

49.95

Figure 9. Public transport networks for the London Underground (left), and the city of Winnipeg
(right). Vertices are positioned according to GPS coordinates.

Finally, Table 2 also contains information on the minimum number of colours χ̄ needed to represent
these graphs, as explained in Section 3.3. In all cases χ̄ is less than k; quite drastically so with some of
the larger instances such as Paris, Melbourne and Sydney. These figures were gained by converting

Algorithms 2020, 13, 269 18 of 21

the transport networks into conflicts graphs and then running a backtracking version of the DSatur
heuristic for graph colouring for a maximum of one hour per instance [26,30]. Asterisks in Table 2
indicate the proven minimum number of colours for these graphs (the chromatic number). All other
figures are upper bounds on this number.

The charts in Figure 10 summarise the results with these instances. In the majority of cases, the
use of Dijkstra’s algorithm with Kirby–Potts graphs gives the shortest average run times. Run times of
our extended algorithms are therefore stated as a proportion of these times. (A proportion increase
of one indicates a 100% increase in run time). As shown, when walks between access points are not
included in the graphs, their relative sparsity allows EXTENDED-DIJKSTRA-V1 to execute run more
quickly than V2 in nearly all cases. However, once walks of up to 1 km are included, the increased
density sees V2 running more quickly.

0

0.5

1

1.5

2

0

0.02

0.04

0.06

0.08

0.1

P
ro

p
o
rt

io
n
 I

n
c
re

a
s
e

C
P

U
 T

im
e

City

Kirby-Potts

Extended-Dijkstra-V1

Extended-Dijkstra-V2

0

0.5

1

1.5

2

0

0.02

0.04

0.06

0.08

0.1

P
ro

p
o

rt
io

n
 I

n
c
re

a
s
e

C
P

U
 T

im
e

City

Kirby-Potts

Extended-Dijkstra-V1

Extended-Dijkstra-V2

Figure 10. Comparison of run times for the real-world problem instances allowing no walks (top), and
walks of up to 1 km (bottom).

5.4. Expansion Times

As previously noted, our experiments to this point have not included the time taken to perform
Kirby–Potts expansions. However, there are some cases where this issue is quite important. For
example, Ahmed et al. [20] and Heyken Soares et al. [23] have proposed methods for optimising
public transport systems that use heuristics to produce a whole series of graphs, each that must then
be expanded before evaluation. In these cases, it therefore seems more appropriate to consider the
overheads consumed by these expansions.

In our case, an expansion takes a graph G and produces a corresponding adjacency list for the
expanded graph G′. This involves stepping through each edge and transfer penalty in G and then
adding an appropriate edge to G′. This leads to an overall complexity of O(m + nc−maxc+max). Note that
this has a slightly lower growth rate compared to executing DIJKSTRA on G′, shown in Equation (4).

Table 3 shows the conversion times for random and planar graphs of differing parameters. We
see that these times increase for graphs featuring more edges, vertices, and colours. For graphs with
n = 1000, conversion times are very small, coming in at less than 0.2 seconds in all cases; however, for
larger graphs much longer times are sometimes required. Note that the largest Kirby–Potts graphs
seen here (produced from random graphs with n = 10, 000, d = 0.95 and k = 20) required over 5 GB of
RAM, and so significant amounts of memory management were also needed as part of this expansion
process.

Algorithms 2020, 13, 269 19 of 21

Table 3. Number of seconds to perform Kirby-Potts expansions for random and planar graphs of
differing parameters. Figures show the mean and standard deviation across twenty problem instances.

Random Graphs Planar Graphs
Conversion Time Conversion Time

Parameters Mean Std. dev. Parameters Mean Std. dev.
n = 1000: n = 1000:
d = 0.05, k = 3 0.006 < 0.001 m = 1998, k = 3 < 0.001 0.001
d = 0.50, k = 3 0.058 0.002 m = 9661, k = 3 0.003 0.001
d = 0.95, k = 3 0.113 0.001 m = 17, 325, k = 3 0.003 < 0.001
d = 0.05, k = 10 0.017 < 0.001 m = 1998, k = 10 0.001 < 0.001
d = 0.50, k = 10 0.063 0.001 m = 29, 781, k = 10 0.016 0.002
d = 0.95, k = 10 0.113 0.001 m = 57, 564, k = 10 0.017 0.001
d = 0.05, k = 20 0.055 0.001 m = 1998, k = 20 0.001 0.001
d = 0.50, k = 20 0.108 0.002 m = 58, 523, k = 20 0.059 0.002
d = 0.95, k = 20 0.162 0.016 m = 115, 049, k = 20 0.068 0.004
n = 10, 000: n = 10, 000:
d = 0.05, k = 3 0.602 0.006 m = 19, 998, k = 3 0.008 < 0.001
d = 0.50, k = 3 6.640 0.161 m = 96, 781, k = 3 0.028 0.001
d = 0.95, k = 3 38.369 6.452 m = 173, 565, k = 3 0.034 0.001
d = 0.05, k = 10 0.714 0.004 m = 19, 998, k = 10 0.009 0.001
d = 0.50, k = 10 6.550 0.229 m = 298, 341, k = 10 0.203 0.006
d = 0.95, k = 10 44.437 8.754 m = 576, 684, k = 10 0.232 0.008
d = 0.05, k = 20 1.193 0.014 m = 19, 998, k = 20 0.010 0.001
d = 0.50, k = 20 6.768 0.092 m = 586, 283, k = 20 0.689 0.002
d = 0.95, k = 20 53.360 7.904 m = 1, 152, 569, k = 20 0.770 0.016

6. Conclusions

This paper has proposed two new shortest path algorithms that are able to handle vertex
transfer penalties without first having to perform a graph expansion. Our first method,
EXTENDED-DIJKSTRA-V1, exhibits an inferior growth rate compared to using Dijkstra’s algorithm on
Kirby–Potts graphs; however, it has the potential to exhibit shorter run times with very sparse problem
instances such as planar graphs. In contrast, our second variant EXTENDED-DIJKSTRA-V2 has the
same growth rate as Dijkstra’s algorithm with Kirby–Potts graphs, though in our implementations its
run times do seem to be marginally higher.

During our research, we also experimented with a modified version of EXTENDED-DIJKSTRA-V1
in which, when a label (u, i) was marked as distinguished, all incoming edges at u with colour i were
removed. The intention behind this modification was to prevent these edges from being considered
more than once during the run and therefore help to improve run times. However, this method was
significantly slower for two reasons: first, because a copy of the graph had to be made before each
application of the algorithm; second, because of the additional costs involved in seeking and removing
edges from the adjacency lists.

Note that in this paper we have considered graphs in which transfer penalties t(u, i, j) ∈ T are
static. In applications such as public transport, however, transfer penalties may also depend on the
time of arrival at a vertex and the subsequent scheduled time of departure (consider trains that leave
stations according to a timetabled service, for example). Previous work due to Cooke and Halsey [31]
and Dreyfus [32] has shown that Dijkstra’s algorithm is suitable in these time-dependent scenarios
providing that the “first-in first-out” (FIFO) property is met. This simply states that, on every edge
(u, v, i) ∈ E, an earlier departure from u will lead to an earlier arrival at v, while a later departure from
u will lead to a later arrival at v. The FIFO property is met when calculating departure times based on
scheduled services; however, shortest path problems on non-FIFO graphs are known to be NP-hard
in general [33].

In future work it would also be interesting to determine whether other shortest-path algorithms
can be modified for graphs featuring vertex transfer penalties. For instance, a similar extension to the

Algorithms 2020, 13, 269 20 of 21

A* algorithm may prove to be useful for the single-source single-target shortest path problem. This
would involve devising an admissible heuristic rule for selecting items from the priority queue.

Funding: This research received no external funding.

Acknowledgments: The author acknowledges the computational resources supplied by the School of
Mathematics, Cardiff University.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Mills, B. Theoretical Introduction to Programming; Springer: London, UK, 2005.
2. Six Degrees of Separation. Available online: https://en.wikipedia.org/wiki/Six_degrees_of_separation,

2020. (accessed on 19 July 2020).
3. Lewis, R. Who is the Centre of the Movie Universe? Using Python and NetworkX to Analyse the Social

Network of Movie Stars. arXiv 2020, 2002.11103. https://arxiv.org/pdf/2002.11103.pdf.
4. Sedgewick, R. Algorithms in Java, Part 5: Graph Algorithms, 3rd ed.; AddisonWesley Professional: Boston,

MA, USA, 2003.
5. Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge,

MA, USA, 2009.
6. Dijkstra, E. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1959, 1, 269–271.
7. Frana, P. An Interview with Edsger W. Dijkstra. Commun. ACM 2010, 53, 41–47.
8. Bauer, R.; Delling, D.; Sanders, P.; Schieferdecker, D.; Schultes, D.; Wagner, D. Combining Hierarchical and

Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In Experimental Algorithms; McGeoch, C.,
Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Vol. 5038, pp. 303–318.

9. Moore, F. The Shortest Path Through a Maze; Technical Report; Bell Telephone System, USA, 1959. vol. 3523.
10. Ahuja, R.; Mehlhorn, K.; Orlin, J.; Tarjan, R. Faster Algorithms for the Shortest Path Problem. J. ACM 1990,

37, 213–223.
11. Gabow, H.; Tarjan, R. Faster Scaling Algorithms for Network Problems. SIAM J. Comput. 1989,

18, 1013–1036.
12. Johnson, D. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM 1977, 24, 1–13.
13. Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107.
14. Hart, P.; Nilsson, N.; Raphael, B. Correction to ‘A Formal Basis for the Heuristic Determination of Minimum

Cost Paths’. ACM SIGART Bull. 1972, 37, 28–29.
15. Fu, L.; Sun, D.; Rilett, L. Heuristic Shortest Path Algorithms for Transportation Applications: State of the

Art. Comput. Oper. Res. 2006, 33, 3324–3343.
16. Yen, J. Finding the k Shortest Loopless Paths in a Network. Manag. Sci. 1971, 17, 712–716.
17. Bhandari, R. Survivable Networks: Algorithms for Diverse Routing; Kluwer Academic Publishers: Norwell,

MA, USA, 1999.
18. Demir, E.; Burgholzer, W.; Hrusovsky, M.; Arikan, E.; Jammernegg, W.; Van Woensel, T. A Green Intermodal

Service Network Design Problem with Travel Time Uncertainty. Transp. Res. Part B 2016, 93, 789–807.
19. Kirby, R.; Potts, R. The Minimum Route Problem for Networks with Turn Penalties and Prohibitions.

Transp. Res. 1969, 3, 397–408.
20. Ahmed, L.; Mumford, C.; Kheiri, A. Soving Urban Transit Route Design Problems using Selection

Hyper-heuristics. Eur. J. Oper. Res. 2019, 274, 545–559.
21. Cooper, I.; John, M.; Lewis, R.; Mumford, C.; Olden, A. Optimising Large Scale Public Transport Network

Design Problems using Mixed-mode Parallel Multi-objective Evolutionary Algorithms. In Proceedings of
the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, July 6-11 2014; pp. 2841–2848.

22. John, M. Metaheuristics for Designing Efficient Routes and Schedules for Urban Transportation Networks.
PhD thesis, School of Computer Science and Informatics, Cardiff University, 2016.

23. Heyken Soares, P.; Mumford, C.; Amponsah, K.; Mao, Y. An Adaptive Scaled Network for Public Transport
Route Optimisation. Public Transp. 2019, 11, 379–412.

https://en.wikipedia.org/wiki/Six_degrees_of_separation
https://arxiv.org/pdf/2002.11103.pdf

Algorithms 2020, 13, 269 21 of 21

24. John, M.; Mumford, C.; Lewis, R. An Improved Multi-objective Algorithm for the Urban Transit Routing
Problem. In Evolutionary Computation in Combinatorial Optimisation; Springer-Verlag: Berlin, Germany, 2014;
Vol. 8600, pp. 49–60.

25. Winter, S. Modeling Costs of Turns in Route Planning. GeoInformatica 2002, 6, 345–361.
26. Lewis, R. A Guide to Graph Colouring: Algorithms and Applications; Springer International Publishing:

Switzerland, 2016. doi:10.1007/978-3-319-25730-3.
27. Source Code and Results Tables. Available online: http://www.rhydlewis.eu/resources/spalgs.zip

(accessed on 1 October 2020).
28. Greco, N. London Underground Dataset. Available online: https://github.com/nicola/tubemaps

(accessed on 15 July 2020).
29. Kujala, R.; Weckstrom, C.; Darst, R.; Mladenovic, M.; Saramaki, J. A Collection of Public Transport Network

Data Sets for 25 Cities. Scientific Data 2018. Available online: http://transportnetworks.cs.aalto.fi/
(accessed on 21 October 2020) doi:https://doi.org/10.1038/sdata.2018.89.

30. Brélaz, D. New Methods to Color the Vertices of a Graph. Commun. ACM 1979, 22, 251–256.
31. Cooke, K.; Halsey, E. The Shortest Route Through a Network with Time-Dependent Internodal Transit

Times. J. Math. Anal. Appl. 1966, 14, 493–498.
32. Dreyfus, S. An Appraisal of Some Shortest Path Algorithms. Oper. Res. 1969, 13, 395–412.
33. Orda, A.; Rom, R. Shortest-Path and Minimum-Delay Algorithms in Networks with Time-Dependent

Edge-Length. J. ACM 1990, 37, 607–625.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/978-3-319-25730-3
http://www.rhydlewis.eu/resources/spalgs.zip
https://github.com/nicola/tubemaps
http://transportnetworks.cs.aalto.fi/
https://doi.org/https://doi.org/10.1038/sdata.2018.89
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Shortest Path Problems and Algorithms for Solving Them
	Single Source
	All Pairs
	Single-Source Single-Target
	Review Summary

	Shortest Paths with Vertex Transfer Penalties
	Kirby-Potts Expansions
	Further Expansion Methods
	A Note on the Number of Colours in a Graph

	Methods Avoiding Expansion
	Extended Dijkstra Version 1
	Extended Dijkstra Version 2

	Computational Comparison
	Random Graphs
	Planar Graphs
	Public Transport Graphs
	Expansion Times

	Conclusions
	References

