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Abstract 

Gastric cancer (GC) has an extremely low 5-year survival rate of only 30% 

and is the third-leading cause of cancer-related deaths worldwide. This is 

predominantly due to the highly metastatic nature of GC and the lack of 

available treatment strategies, highlighting the urgent and unmet need to 

identify novel therapeutic targets. The Wnt receptor Frizzled-7 (FZD7) 

regulates cell proliferation, epithelial-mesenchymal-transition (EMT), and 

invasiveness in many cancers. GC patients have mutations in genes that 

participate in or regulate Wnt signalling at the level of the Wnt receptor 

binding. Moreover, FZD7 is reported to be overexpressed in human gastric 

tumours suggesting that aberrant FZD7-mediated Wnt signalling drives GC 

growth and highlights FZD7 as a potential therapeutic target. However, the 

precise involvement of FZD7 in GC remains unclear and the specific Wnt 

receptor transmitting oncogenic Wnt signalling is unknown. Additionally, loss 

of function mutations to the negative regulator of the Wnt pathway, RNF43, 

has been implicated in the poor prognosis of GC. However, its functional 

significance in GC remains unknown.  

We have implicated FZD7 as the predominant Wnt receptor involved in the 

growth, EMT, migration and invasion of GC cells irrespective of APC mutation. 

Here we used inhibitors of Wnt/FZD (OMP-18R5/LGK-974) and shFZD7 to test 

the therapeutic potential of targeting Wnt signalling in GC. Pharmacological 

targeting of FZD inhibited the growth of GC in vitro and in vivo. Furthermore, 

we have confirmed the functional significance of RNF43 in GC. Conditional 

deletion of RNF43/ZNRF3 led to gastric tumours supporting the hypothesis of 

stratifying GC patients based on RNF43 mutations.  OMP-18R5 and LGK-974 are 

currently in phase Ib clinical trials for multiple cancers. Our data expands the 

scope of patients that may benefit from these therapeutic approaches as we 

have demonstrated that these drugs are effective in treating GC patients 

regardless of APC mutation status. 
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1. Introduction    

1.1 Gastric Cancer 

Gastric cancer (GC) is the fifth most common cancer in the world 

(1,313,000 cases) and the third leading cause of cancer death globally (819,000 

deaths) (Bray et al., 2018). The incidence shows wide geographical variation, 

with approximately 50% of all cases emerging from Eastern Asia, where China 

has the highest incidence rate, and where novel cases of GC and mortalities 

account for ~ 45% of all cases globally (Ferlay et al., 2015). The majority of 

cases are usually not diagnosed until an advanced stage due to being 

asymptomatic until this point and the lack of screening programs in the majority 

of countries. Therefore, in European countries the outcome is often poor, with 

very low survival rates ranging from ~ 10% to 30%, including patients who have 

undergone surgery (Katai et al., 2018). Interestingly, the five-year survival rate 

is relatively good in Japan, where it reaches 90% (Stock and Otto, 2005), likely 

due to early diagnosis by endoscopic examinations and consecutive early 

tumour resection. Overall, GC remains a main contributor to the global burden 

of disability-adjusted life-years from cancer (Van Cutsem et al., 2016).   

1.1.1 Risk Factors 

GC results from a combination of environmental factors and accumulation 

of specific genetic alterations. The most common risk factors for GC include a 

diet high in salty and smoked foods and low in fruits and vegetables, smoking, 

obesity, chronic gastritis and infections (Buckland et al., 2015; Massarrat and 

Stolte, 2014). GC has been found to be inversely related to socioeconomic 

status: high socioeconomic position is associated with a reduced risk of GC 

(Nagel et al., 2007).  

Family clustering of GC has been reported for centuries with the most world-

famous example being the family of Napoleon Bonaparte; five first degree 

relatives were affected by GC, affecting three consecutive generations (Setia 

et al., 2015) (Sokoloff, 1938). In 1998, truncating mutations of CDH1 were 
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described in the germline of three New Zealand Maori families predisposed to 

diffuse GC (Guilford et al., 1998b). In general, the risk of developing GC is 1.5-

3 fold increased in individuals with a family history of GC (La Vecchia et al., 

1992).  

In developed countries one of the most common infections predisposing people 

to GC is H.pylori. In the general population, H.pylori infection reaches ~60%, 

but in GC patients it is markedly more common, present in ~84% (González et 

al., 2012). H.pylori is a class I carcinogen (Ferlay et al., 2015) and is one of the 

major causative agent in the cascade leading to GC.  H.pylori is a gram-negative 

flagellated bacterium which has evolved to survive the hostile environment of 

the stomach by colonizing the gastric mucosa. Following successful 

colonization, H.pylori migrates to the stomach epithelium where it triggers a 

variety of adaptive cellular mechanism, including ER stress, autophagy, 

oxidative stress and inflammation, all participating in the development and 

progression of precancerous gastric lesions. The responses in host gastric 

epithelial cells are located in the gastric pits and attributed to the action of 

the bacterial virulence factors (Díaz et al., 2018). These include, but are not 

limited to,  urease, vacuolating cytotoxin A, cag pathogenicity island, 

cytotoxin-associated gene A, peptidoglycan outer membrane proteins and γ-

glutamyl transpeptidase (Polk and Peek, 2010; Valenzuela et al., 2013). A 

recent study identified that treatment of H.pylori infection decreased the risk 

of GC only if eradication was 100% successful (Kumar et al., 2020). Therefore, 

finding novel targets for the treatment of GC is still key as the mechanisms of 

GC prevention are still unclear.  

1.1.2 Gastric Cancer Treatment Options 

As mentioned above, GC is largely asymptomatic with the majority of 

patients presenting to their general practitioner in the late stages of the disease 

with generic symptoms such as abdominal pain, unexplained weight loss, a 

sense of fullness after eating a small meal and acid reflux. Before any systemic 

treatment is initiated, the status of the human epidermal growth factor 
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receptor 2 (HER2) is determined. Approximately 20% will present with HER2-

positive GC (Discussed in detail later). The treatment options for the majority 

of patients with HER2-negative GC is dependent on the stage. Although rarely 

the case, if a patient presents with an early stage GC (Stage 0 and IA) they are 

best treated by minimally invasive endoscopic surgery. Stage IB, II and III GC is 

treated with total or partial gastrectomy and lymphadenectomy. 

Unfortunately, this is life-changing surgery with often serious and sometimes 

fatal side effects, such as blood clots, malnutrition and anastomotic leakage 

(Ikeguchi et al., 2012). Chemotherapy may be given before or after surgery to 

either reduce the tumour prior to surgery or to remove remaining cancer cells 

if they are identified in removed lymph nodes. Patients not able to undergo 

surgery, are treated with chemotherapy, radiation, or chemoradiation. For 

advanced stage cases (Stage IV), chemotherapy is the current standard of care 

for first-line treatment for patients due to the tumour often being too invasive 

for surgery (Wagner et al., 2006). However, this fails in >95% of non-operable 

gastric tumours due to the various mechanisms of chemoresistance (J.J.G. 

Marin, 2016). Therefore, patients with locally advanced stage GC and/or 

metastatic disease often only receive palliative treatments to improve their 

quality of life.   

As mentioned, approximately 20% of GC are characterized by overexpression 

and/or amplification of the HER2 gene. However, the prognostic value of HER2 

in GC is controversial (Kim et al., 2014). Despite this, there is one approved 

drug targeted against HER2, Trastuzumab. This is the only molecular target 

with an approved drug for first-line treatment of GC. Trastuzumab is a 

recombinant humanized IgG1 monoclonal antibody directed against HER2. It is 

approved by both the FDA and the EMA for the treatment of HER2-postive 

metastatic adenocarcinoma of the stomach in combination with cisplatin and 

capecitabine or 5-fluoroouracil. Patients must not have received prior 

treatment for their metastatic disease and have tumours expressing high levels 

of HER2 as defined by a positive immunohistochemistry (IHC)  score of 3 
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(Spackman et al., 2013). HER2 protein is a tyrosine kinase receptor, which upon 

activation triggers a broad spectrum of downstream cascades to promote 

numerous effects, including cell proliferation, apoptosis, adhesion, migration, 

and differentiation. Trastuzumab blocks the activation of HER2 by binding to 

its extracellular domain leading to the inhibition of cancer cell proliferation 

(Gunturu et al., 2013).  

Immuno-oncology is a rapidly growing research area and has great success in 

the treatment of many cancers, especially with PD1/PD-L1 inhibitors. However, 

there are currently no approved first-line immunotherapies for GC. There are 

some promising clinical trials currently place which could potentially lead 

advancements in the treatment strategy of GC patients, particularly those with 

locally advanced or metastatic disease, and lead to a much improved quality of 

life. Excitingly, some recent clinical data has shown significant reduction in 

tumour burden in patients with untreated metastatic HER2-positive GC when 

treated with a combination of Trastuzumab and PD1 inhibitor (Pembrolizumab). 

A response rate of 52% was observed even without chemotherapy (Janjigian et 

al., 2019).  

Clearly there is an urgent and unmet need to develop better, more effective 

and more targeted treatments for GC. This will require further work at a basic 

research level to identify novel therapeutic targets and drugs to ultimately lead 

to a longer and improved quality of life for GC patients.  
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1.2 Normal Gastric Architecture & Dynamics  

Before deciphering the complicated and complex process of GC 

formation it is important to first have an understanding of the normal gastric 

morphology. An ongoing challenge that the tissue of the gastrointestinal tract 

(GIT) face, especially the stomach and small intestine, is allowing the efficient 

digestion, exchange, and absorption of nutrients, and water, whilst 

simultaneously preventing passage of harmful molecules and organisms. To 

overcome this challenge, all tissues of the GIT are lined by a specialized single 

layer of cells, the gastrointestinal epithelium. This functions as a protective 

barrier, as well as secreting a cocktail of factors (hormones, proteases, gastric 

acids, and mucus) to aide in food breakdown and nutrient uptake. This 

epithelium is continually renewed to preserve tissue homeostasis, due to the 

unrelenting exposure to chemical, biological and mechanical stresses. This 

constant replenishment of epithelial cells also serves as a protective mechanism 

to rid the epithelium of cells that may have undergone somatic mutations or 

cellular transformation.  

The gross anatomy of the mammalian stomach also addresses this challenge. 

The stomach is divided into three anatomically distinct regions; the corpus the 

antrum, and the non-glandular fundus (Figure 1.1A)). The corpus is the main 

body of the stomach, primarily responsible for its digestive action. This is 

achieved through the release of a cocktail of hormones, enzymes and acids 

(O'Connor and O'Moráin, 2014; Willet and Mills, 2016). In contrast, the antrum 

secretes large amounts of mucous, as well as gastric hormones. This reflects its 

protective function, shielding the gastric epithelium from the hydrochloric acid 

secreted in the corpus region (Barker et al., 2010a; Karam, 1993). It is worth 

noting that the gross anatomy of the stomach differs between species. Of note, 

the stomach of mice includes a large non-glandular forestomach (Kararli, 1995) 

not present in humans.  
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Unsurprisingly, due to their close proximity and shared role in digestion, the 

stomach shares a number of features with the intestine. They have a common 

endodermal origin and an epithelial lining that is continually renewed by 

distinct populations of adult stem cells (Hoffmann, 2008). Much like the 

intestinal crypts, the gastric epithelium is comprised of invaginations, termed 

gastric units. Structurally, these units are made up of a pit, which is continuous 

with the surface epithelium and a flask-shaped gland which is organized into 

the isthmus, neck, and base regions. There are four major differentiated cell 

types that populate the gastric units; parietal cells, chief cells, gastric mucous 

cells and a variety of endocrine cells.  

The distribution of these cell types and the turnover rate varies between the 

corpus and the antrum, mirroring their difference in function. The corpus 

gastric units are composed of several long glands that feed into short pits. Their 

epithelium is heterogeneous, containing vast quantities of parietal cells, a 

small number of base and neck mucus cells, endocrine cells (or G cells) and 

unique to the corpus, chief cells (Figure 1.1C). In contrast, the antrum is 

comprised of several short glands that feed into a single extended pit. They 

have a much simpler cellular composition characterized by abundant gastric 

mucus-secreting cells, endocrine cells and very low numbers of parietal cells 

(Figure 1.1B).  
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Figure 1.1. Structural organization of the stomach.  

(A) Anatomic schematic of the mammalian stomach 
(B) Gastric unit of a human antral epithelium depicting the various cell types, 

stem cell populations ( highlighted in green bubbles) and signalling gradients 

(Adapted from (Flanagan et al., 2018). 

(C) Gastric unit of a human corpal epithelium depicting the various cell types, 

stem cell populations and signalling gradients (Adapted from (Flanagan et 

al., 2018).  
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1.2.1 Chief cells 

The chief (or zymogenic) cells are only present in the glandular corpus 

region of the stomach and secrete digestive-enzymes. These cells occupy the 

majority of the base of a gastric gland, with the upper ones organized as simple 

cuboidal-columnar cells, and the lower ones outpouching into an acinar 

configuration at the very base (Karam, 1993). The primary function of chief 

cells is the secretion of enzymes involved in the digestion of protein. The main 

enzyme, secreted in its inactive, form is pepsinogen. Upon exposure to stomach 

acid, inactive pepsinogen undergoes a conformational change, exposing its 

catalytically active site and allowing the generation of active pepsin by 

proteolysis (Raufman, 1992).  

Normal chief cells have a unique lineage, and do not derive directly from gastric 

epithelial progenitor cell lineages or involve cell division. Instead they arise by 

transdifferentiation. Pre-neck cells differentiate into mucous neck cells as they 

migrate toward the base of the glands and then re-differentiate at the bottoms 

of glands into chief cells, with a distinct pattern of gene expression; MIST1 in 

mature chief cells and TFF2 and MUC6 in the more proliferative progenitor 

mucous neck cells (Hanby et al., 1999; Ramsey et al., 2007). While this dramatic 

and malleable phenotypic transition exhibited by chief cell lineages during 

normal homeostasis is remarkable, it can leave them vulnerable. In a 

pathological setting it can lead into a mucus cell metaplasia of the gastric 

glands, known as Spasmolytic Polypeptide Expressing Metaplasia (SPEM) 

(Lennerz et al., 2010).  

1.2.2 Parietal cells 

Parietal cells occur throughout the gastric unit of the corpus, with the 

majority located in the neck of the gland (Bredemeyer et al., 2009; Karam, 

1993). They have multiple roles in gastric secretion, protection, and 

coordination of physiological repair.  Their primary purpose is the production 

of hydrochloric acid (HCI) which aides in the digestion of food, absorption of 

minerals, control of harmful bacteria, and the maintenance of a strong acidic 

environment (pH<2) (Quigley and Turnberg, 1987). In addition to their unique 
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ability to produce HCI, parietal cells play a role in gastric homeostasis through 

the secretion of multiple growth factor molecules such as Heparin-binding EGF-

like growth factor (HB-EGF) (Murayama et al.), transforming growth factor 

alpha (TGF-α) (Beauchamp et al., 1989) and sonic hedgehog (SHH) (Zavros et 

al., 2008).  

The production of HCI by partial cells requires the gastric H+/K+ ATPase enzyme, 

a P2-type ATPase. This is expressed only by the parietal cells, and is therefore 

a robust molecular marker of parietal cells (Spicer et al., 2000), and regulates 

the exchange of cytoplasmic H+ for extracellular K+. When parietal cells are 

stimulated by gastrin, their proton pumps secrete H+ in the gastric lumen, which 

combines with luminal CI- to form HCI, creating the acidic environment of the 

stomach (Engevik et al., 2019). To ensure the required digestion of food while 

preventing damage to the gastric and duodenal mucosa, parietal cell-

medicated acid secretion is highly regulated. This is achieved through a fine 

balance of activators and inhibitors including gastrin, histamine, the vagus 

nerve, somatostatin and glucagon-like peptide (Powley et al., 2011).  

Parietal cells role in general mucosal homeostasis is highlighted by the 

observation that loss of parietal cells (termed oxyntic atrophy) is linked to the 

development of metaplasia in the corpus mucosa (El-Zimaity et al., 2002), 

which is a common precursor to gastric cancer (GC). The most common cause 

of parietal cell loss is chronic infection of the stomach with Helicobacter pylori. 

Although the mechanism of this still remains unclear, it is thought to require 

the action of T cells (Roth et al., 1999). More recent studies suggest that 

cytokines may lead to parietal cell death (Howlett et al., 2012) (Buzzelli et al., 

2015). Loss of parietal cells is also linked to SPEM, which as described above, 

develops from the transdifferentiation of chief cells into mucous cell 

metaplasia (Huh et al., 2012) (Nam et al., 2010). However, the exact signals 

that coordinate these lineage changes remain unclear, with a recent 

publication indicating that parietal cell loss alone is not sufficient to induce 

SPEM (Burclaff et al., 2017). 
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1.2.3 Mucous-secreting cells  

The entire GIT is covered by mucus, which has different properties in 

the stomach, small intestine, and colon. Within the stomach there is a two-

layered system with an inner and an outer mucus layer, a system which is also 

observed in the colon (Atuma et al., 2001). The inner mucus layer of the 

stomach is very firmly attached to the epithelial cells. The outer layer is less 

so, although is still more attached than that of the colon (Ermund et al., 2013). 

This is to ensure robust protection of the gastric epithelium from the harsh HCI 

present in the gastric lumen. Additionally, this firmly attached mucus layer is 

important for the maintenance of a pH gradient across the mucus layer 

(Phillipson et al., 2002). A pH gradient exists across the gastric mucus barrier, 

with a near-neutral pH at the mucus surface (Schreiber and Scheid, 1997). The 

buffering of the H+ secreted from the parietal cells occurs in the mucus via 

HCO3
-, which is released from gastric surface mucus cells via an apical CI-/HCO3

- 

exchanger (Allen and Flemström, 2005).   

There are two types of gastric mucus cells: surface mucus cells and mucus neck 

cells. Surface mucus cells secrete Mucin 5AC (MUC5AC) and Trefoil Factor-1 

(Tff1), whilst mucus neck cells secrete Mucin 6 (MUC6) and Trefoil Factor-2 

(Tff2) (Pelaseyed et al., 2014). Tff1 and Tff2 are small mucin-associated 

secreted peptides of gastric mucus cells and have a role in gastric mucosal 

protection (Newton et al., 2000).  

As well as protecting the gastric epithelium from the acidic environment of the 

stomach, the gastric mucus regulates the colonization of H.pylori (Skoog et al., 

2012). This function is especially important as approximately half of the world’s 

population are infected with H.pylori, with 1-3% of infected individuals going 

on to develop GC (Suerbaum and Michetti, 2002). The mucus layer prevents the 

majority of the colonizing H.pylori from attaching directly to gastric epithelial 

cells (Hessey et al., 1990), with them instead living in the mucus layer of the 

superficial gastric mucosa where they bind to highly glycosylated mucins 

(Lindén et al., 2002). Tff2 secreted by the mucus neck cells has been observed 
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to have a protective function against the progression of premalignant lesions in 

H.pylori infected mice (Fox et al., 2007) and epigenetic silencing of tff2 by 

H.pylori infection leads to gastric tumour development (Peterson et al., 2010). 

H.pylori is also able to alter gastric mucins with MUC6 becoming aberrantly 

expressed in the surface mucus cells (expressed mucous neck cells in a non-

pathological setting) in H.pylori patients (Byrd et al., 1997).  

1.2.4 Enteroendocrine cells 

 There are over thirty different hormones that have been identified as 

being produced in the GIT, and it is the enteroendocrine cells (EECs) that 

produce them. Hormones are released by the EECs in response to meal-related 

stimuli, and exert actions ranging from the local control of gut motility to the 

regulation of insulin and food intake (Gribble and Reimann, 2016). EEC 

populations in the stomach include enterochromaffin cells (EC cells), 

enterochromaffin-like cells (ECL cells), D-cells, G-cells, A-cells, and P/D1 (in 

humans) or X/A (in rats) cells. Table 1.1 highlights their individual secretions 

and functions (Håkanson et al., 1986; Ku et al., 2003; Lamberts et al., 1991; 

Sjölund et al., 1983; Stengel and Taché, 2009). Within the GIT, the EECs are 

usually located in the epithelial layer and make direct contact with the luminal 

constituents. However, in the stomach, especially the corpus glands, a large 

population of EECs are closed-type cells that do not make contact with the 

gastric lumen (Gribble and Reimann, 2016). 
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EEC Cell Location 
Secreted 

hormone 
Function 

EC cells Antrum Serotonin 
Motility and mucosal growth 

& maintenance 

ECL cells 

Corpus 

proximal to 

parietal cells 

Histamine 
Aides in production of 

gastric acid 

D-cell 
Corpus & 

Antrum 
Somatostatin 

Inhibits gastric acid 

secretion 

G-cells Antrum Gastrin 

Controls gastric acid 

secretion by inhibiting ECL 

cells 

A-cells Corpus Ghrelin Regulates appetite 

P/D1 

cells 

Gastric chief 

cells 
Leptin Regulates appetite 

Table 1.1 Summary of gastric Enteroendocrine cells.  
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1.2.5 Gastric epithelial renewal  

Due to the dynamic function and harsh environment of the stomach, the 

surface epithelium needs to be continually renewed. This is fueled by a small 

population of stem cells housed within the isthmus region of the gastric glands, 

both corpus and antrum. There are also populations of reserve stem cells, 

activated upon injury, that are located in the base of the glands. The 

population of reserve stem cells differ between the corpus and the antrum. A 

summary of gastric stem cells can be found in Figure 1.1. However, the 

mechanisms and factors that regulate gastric homeostasis have only been 

partially characterized. 

The first studies looking into the dynamics of gastric epithelial renewal used 

radioactive labels to identify cellular migration, position, turnover rate, and 

kinetics (Karam, 1993). In the corpus, mucus-secreting cells migrate from the 

neck of the gland to the surface epithelium, where they live for 2-3 days. 

Parietal cells are located within the corpal gland neck, live for approximately 

2 months and migrate bi-directionally towards the surface and the base of the 

gland. Chief cells positioned at the lower third of the corpus gland migrate to 

the base of the gland, where they reside for approximately 6 months (Karam, 

1993). As the antral glands lack these long-lived chief and parietal cells, their 

turnover rate is much more rapid at 1-60 days.  

Moving on from the early studies, the generation of transgenic mice to mark 

the progeny of specific cell types via lineage tracing (the gold-standard to 

assess stem cell function in vivo) has permitted the identification of several 

gastric stem cell markers, marking both active and reserve populations, with 

common genes often marking stem cell pools in both the corpus and antrum.  

(Flanagan et al., 2018). Corpal homeostasis is maintained by stem cells in the 

highly proliferative isthmus region, marked by Mist1, Runx1, Sox2 and Troy. 

Lineage tracing has also been observed from Troy+ cells located in the base 

(Hayakawa et al., 2015a). Within the antrum four stem cell markers gave been 

identified: Lgr5, Sox2, Lrig1 and CCKBR (Arnold et al., 2011; Barker et al., 
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2010a; Hayakawa et al., 2015b; Powell et al., 2012), which all contribute to 

the homeostasis of the antral tissue.    

Of the stem cell markers mentioned above, Lgr5 is the best characterized. It 

resides at the base of both gastric glands and all gastric epithelial cell lineages 

can be derived from it as part of normal homeostasis or in response to injury 

(Barker et al., 2010b; Stange et al., 2013). It was initially identified as a Wnt 

target gene in the intestinal epithelium (Barker et al., 2007).  It encodes a 7-

transmembrance protein that participates in the Wnt receptor complex where 

it binds R-Spondin proteins (de Lau et al., 2011). Like the intestine, Lgr5+ cells 

populate the base of the gland, however the average number of four Lgr5+ cells 

per gastric gland is lower than that seen in the intestinal crypt (14). Also similar 

to the intestine is the requirement of gastric cultures for Wnt effectors (R-

Spondin & Wnt3a) for effective culture growth. This is strongly suggestive of a 

Wnt active stem cell niche in vivo (Barker et al., 2010a). However, the exact 

source of Wnt ligands in the gastric epithelium remains to be established. Lgr5+ 

cells have a probable role in homeostatic maintenance of the gastric 

epithelium, due to them being mitotically active. Another difference between 

Lgr5+ cells of the intestine and stomach is that intestinal Lgr5+ cells at the 

crypt base act as active stem cells, whereas within the stomach they behave as 

reserve stem cells (Hata et al., 2018). Lgr5+ can act as an active stem cell at 

the base of the antrum (despite being more quiescent than those of the 

intestine) and generate transit-amplifying cells, yielding differentiated cells 

that constitute the bulk of the glandular epithelium (Barker et al., 2010b).  

However, within the corpus their role is solely as a reserve stem cell. This was 

observed through investigation with a non-variegated mouse model, Lgr5-2A-

CreERT2, which detected Lgr5 expression in a subpopulation of chief cells at 

the base of the corpal gland. Lineage tracing showed that although this 

population of cells do not give rise to fully traced glands during homeostasis, 

they were activated in response to damage, after which they could give rise to 

whole corpus glands (Leushacke, 2017).   
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The gastric epithelium also has other populations of reserve stem cells that are 

activated in response to injury, and are able to generate all gastric lineages. In 

particular, the stem cell marker Troy (Tumour necrosis factor superfamily, 

member 19) is expressed at the corpal gland base by a small population of fully 

differentiated chief cells. Lineage tracing with Troy-eGFP-IRES-CreERT2 mice 

demonstrated that single marked chief cells are able to generate fully labeled 

gastric units over periods of approximately 3 months after recombination. This 

phenomenon accelerates upon tissue damage. Additionally, despite Troy+ chief 

cells rarely being proliferative, cultured Troy+ chief cells can generate long-

lived gastric organoids that can be differentiated towards the mucus-producing 

cell lineages of the neck and pit in vitro (Stange et al., 2013). Furthermore, 

selective killing of the highly proliferative isthmus cells results in the activation 

of Troy+ chief cells (Li and Clevers, 2010). This demonstrates that Troy marks 

a specific subset of chief cells with the capability to replenish entire gastric 

units thus serving as quiescent reserve stem cells. Moreover, a rare population 

of Troy+ cells in the isthmus of corpus has been identified (Hayakawa et al., 

2015a). This suggests there may be two populations of Troy+ cells in the corpus: 

one residing in the isthmus which is able to lineage trace during normal 

homeostasis, and the other in the base of the gland which functions as a reserve 

cell during healing.  

Together these findings present a model that gastric epithelial renewal involves 

several unique populations of stem cells co-operating together to maintain 

homeostasis and yield and efficient and effective response to damage and 

injury. Wnt signalling plays an important role in the regulation of these stem 

cell populations which will be discussed in detail next.  
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1.3 Gastric Cancer Initiation   

The acquisition of oncogenic mutations and ultimately the development 

of GC is influenced by a variety of environmental and pre-disposed genetic 

factors that can alter the changes of tumour formation.  

GC initiation is a multi-step process upon which various genetic and epigenetic 

alterations accumulate (Oue et al., 2015). However, its precise carcinogenesis 

is less well characterized than colorectal cancer with many questions and 

missing links remaining. H.pylori colonization and/or other environmental 

factors drive superficial gastritis, which progresses to chronic inflammation 

which develops into intestinal metaplasia (or SPEM), evolves into dysplasia and 

finally adenocarcinoma which can progress into invasive cancer (Figure 1.2) 

(Correa, 1988).  

A key histological characteristic of GC is the loss of parietal cells (also termed 

oxyntic atrophy) with this event being a prerequisite for the triggering of 

metaplasia and linked to the initiation of both dysplasia and neoplasia 

(Goldenring and Nam, 2010). Loss of parietal cells results in the 

transdifferentiation of the chief cell lineage into a mucus cell metaplasia 

identified as Spasmolytic Polypeptide Expressing Metaplasia (SPEM) (Nam et al., 

2010) which is a neoplastic precursor in gastric carcinogenesis and an 

alternative type of metaplasia to intestinal metaplasia. SPEM cells express high 

levels of Tff2 and MUC6 (Weis and Goldenring, 2009) in contrast to intestinal 

metaplasia which is characterized by the expression of Tff3 and MUC2 (Nam et 

al., 2009).  

The precise mutations and alternations that trigger each step of GC 

development are still being investigated and identified due a complex etiology 

by interactions between bacteria, host and environmental factors. Despite this, 

the development of GC converges on several signaling pathways that become 

disrupted through activation of oncogenes, K-ras and c-met, and inhibition of 

tumour suppressors Apc and p53 (Hara et al., 1998; Horii et al., 1992; Yokozaki 

et al., 1992). Despite a number of genes having been identified as potential 
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driver genes in GC, the association between somatic mutations and clinical 

features has not been thoroughly elucidated to date. Research groups have 

been attempting to screen gastric tumours to identify driver mutations and 

determine if there is any genotype-phenotype correlation, however, results 

have been conflicting. This suggests that GC is not enriched with known driver 

mutations, highlighting why many targeted drugs useful in the treatment of 

other tumours are not effective in GC (Nemtsova et al., 2020). Additionally, 

TP53 and CDH1 (both common validated mutations in GC) mutation status does 

not alter GC treatment (Katona and Rustgi, 2017). Therefore, there needs to 

be a focus on epigenetics and other molecular characteristics to stratify 

patients and develop better treatments for patients with GC.  

Germline mutations in some driver genes determine predisposition to the 

development of hereditary GC. Mutations in CDH1(E-cadherin) are responsible 

for the development of early hereditary diffuse-type GC (Luo et al., 2018), as 

are mutations in STK11 (Peutz-jeghers syndrome), TP53 (Li-Fraumeni 

syndrome), BMPR1A or SMAD4 (gastrointestinal polyposis) and PTEN (Cowden 

syndrome) (Colvin et al., 2015).  
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2   

Figure 1.2 Pathogenesis of gastric cancer (Adapted from (Tan and Yeoh, 2015). A summary of current knowledge of the 

cause and pathogenesis of gastric cancer, including host and environmental factors as well as acquired molecular events. 

Many gaps in knowledge remain. 
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1.3.1 GC Classification  

The majority (>90%) of GCs are adenocarcinomas. Non-Hodgkin’s 

lymphomas and gastrointestinal stromal tumours make up the remaining 10% 

(Kelley and Duggan, 2003). GC adenocarcinomas are highly heterogeneous in 

regard to architecture, growth, cell differentiation and molecular 

pathogenesis. Therefore, there is an array of diversity of histopathological 

classification schemes. The most commonly used is the Lauren classification 

(Lauren, 1965). This classification broadly divides GC into two main 

pathological groups, intestinal-type and diffuse-type, in addition to mixed and 

indeterminate types. Diffuse-type carcinomas are poorly differentiated and are 

composed of solitary or poorly cohesive tumour cells in the absence of gland 

formation. By contrast, intestinal carcinomas are mostly well to moderately 

differentiated and form glandular structures that are reminiscent of colorectal 

adenocarcinomas (Van Cutsem et al., 2016).  

The cancer genome atlas (TCGA) classification, made possible thanks to the 

advancements in next generation sequencing, was a milestone for the 

molecular characterization of GC. They performed full genomic profiling of 295 

primary gastric adenocarcinomas (Cancer Genome Atlas Research, 2014), which 

through complex statistical analyses lead to the identification of four tumour 

subtypes: tumours positive for Epstein-Barr Virus (9%), microsatellite unstable 

tumours (22%), genomically stable tumours (20%) and chromosomally unstable 

tumours (50%). Table 1.2 highlights key features of each subtype. Identification 

of these subtypes has provided the start of a roadmap for patient stratification 

and trials of targeted therapies. TCGA network found a correlation with 

histological characteristics showed enrichment of the diffuse subtype in the 

genomically stable group (73%). The frequency of chromosomally unstable 

tumours was increased in gastro-esophageal-junction adenocarcinomas, and 

most tumours positive for Epstein-Barr virus were located in the fundus or 

corpus regions of the stomach. They also identified that tumors positive for 

Epstein-Barr virus were mostly found in males (81%) but predominance of 

microsatellite unstable tumors marginally favored females (56%) (TCGA, 2014).  
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Clinical translation of these molecular findings is vital to provide novel 

strategies for early GC detection and promote precision therapies for GC 

patients. For example, Epstein-Bar Virus-positive and microsatellite subtypes 

of GC have shown to have increased expression of PD-L1 and therefore may be 

good candidates for treatment with immune checkpoint therapy with PD-1/PD-

L1 inhibitors (Derks et al., 2016) However, despite these clear views of the 

genetic diversity across human GCs, the mechanistic connection between their 

genotypes and phenotypes has largely remained unclear. Several research 

groups have performed studies to start making this connection clearer. 

Traditionally genetic mouse models have been used to phenotypically interpret 

genetic mutations, however most knockout mouse models for GC imply 

clinically irrelevant mutations. This renders it difficult to translate the 

phenotype to clinic. To address this, organoid technology has been utilized to 

culture gastric tumours and their corresponding normal tissues. After complex 

optimization of culture conditions, three independent studies by Nanki et al., 

Yan et al., and Seidlitz et al., generated biobanks of patient-derived GC and 

normal gastric organoids which succeeded to captures all the GC molecular 

subtypes. Within their own studies they identified various patterns within 

subtypes however overall, the results between studies gave conflicting data, 

and no robust genetic distinction amongst GC subtypes has been elicited as of 

yet.  

While genomic analysis has identified 46% of gastric tumour exhibit 

deregulation of the Wnt/β-catenin pathway (Ooi et al., 2009), with several Wnt 

ligands upregulated, including WNT1, WNT2b, WNT5a, WNT6, and WNT10a (J 

Mao, 2014). Research is still ongoing to link deregulated Wnt to the specific 

histological and molecular GC subtypes. There are no results published as yet 

and this is a significant gap in the field. 
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MLH1 silencing RTK-RAS 
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CDKN2A silencing Mitotic pathways  Cell adhesion 
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Table 1.2. Key features of gastric cancer molecular subtypes. 
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1.4 Gastric Cancer Metastasis 

Cancer metastasis is the process of cancer cells spreading from the 

primary site to other organs, which contributes to the major cause of death in 

cancer patients. Approximately 50% of patients with advanced GC die from 

recurrence and metastasis, even after curative surgery and chemotherapy 

(Zhou et al., 2017), with the medium survival of only 4 months (Zhao et al., 

2019). However, the underlying mechanisms driving metastasis are even more 

complicated than those resulting in carcinogenesis (Gómez-Cuadrado et al., 

2017). Metastatic tumours largely rely on the same driver mutations found in 

primary tumours (Zehir et al., 2017), suggesting the hallmark functions for 

tumour maintenance and progression remain critical in metastases.  

1.4.1 Stages of Metastasis  

For successful metastasis, in all cancer types, to take place, a 

compatibility between circulating tumour cells and a premetastatic niche is 

required. This is referred to as the seed and soil hypothesis (Paget, 1989). 

Improved sequencing technology built upon this and helped elucidate the model 

of the metastatic cascade, which can be broadly divided into four main 

processes: invasion, intravasation, extravasion and colonization (Shimizu et al., 

2018). The metastatic cascade of GC consists of lympathic metastasis, 

hematogenous metastasis and peritoneal dissemination (PD).  These processes 

require a number of important intra and extracellular changes which have the 

potential to be targeted for therapeutic gain.  

GC metastasis follows a non-random distribution among distant organs. This 

phenomenon is termed “organotropism” or “organ-specific metastasis”. 

Common sites of spread for GC other than peritoneum in order of incidence are 

liver, lung and bone (Riihimäki et al., 2016). Ever-increasing evidence suggests 

that organotropism is regulated by a multitude of factors, including tumour-

intrinsic factors, organ-specific niches, circulation patterns, and the 

interaction between tumour cells and the host microenvironment (Gao et al., 

2019). 
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Typically, lymphatic and hematogenous metastasis are the major dissemination 

processes in solid cancers, with many metastasis models based on them. 

However, PD is the most frequent metastatic type in GC patients, occurring in 

more than 60% of patients with metastatic GC (Hu et al., 2018). Unlike 

lymphatic and hematogenous metastases, PD is driven by direct invasion from 

the gastric wall to the peritoneal cavity. This multistep process involves the 

cancer cells detaching from the primary tumours, adapting to the 

microenvironment of the peritoneal cavity and developing disseminated 

nodules (Figure 1.3). E-cadherin is a major contributor to a cells ability to 

undergo PD. It is a calcium-dependent cell-cell adhesion molecular that has a 

key role in establishing epithelial architecture and maintaining cellular 

polarity. Therefore, dysregulation of E-cadherin contributes to tumour invasion 

by promoting cell motility (Guilford et al., 1998a; Liu and Chu, 2014) and 

resulting in PD. Furthermore, E-cadherin and the E-cadherin-catenin complex 

may promote invasion and migration by modulating various signalling pathways, 

including Wnt signalling (Kuphal and Behrens, 2006), as well as EMT (Kourtidis 

et al., 2017).  
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Figure 1.3 Peritoneal dissemination of gastric cancer. (1) Penetration of tumour 
tissue through serous layer. (2) Detachment from the primary site (down-regulation of 
E-cadherin). (3) Transmigration to the distant peritoneum, EMT involvement. (4) GC 
cell attachment to the peritoneum. (5) Invasion into subperitoneal tissue. (6) 
Proliferation with infiltration of stromal cells and vascular neogenesis, colonization of 

secondary site.   
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1.4.2 EMT  

The EMT process is thought to play a central role in the departure of GC 

cells from primary tumour in all metastatic cascades (Lambert et al., 2017). 

EMT is a phenotypic conversion mechanism that refers to the loss of epithelial 

features and acquisition of mesenchymal properties, which is vital for preparing 

cancer cells to invade the surrounding parenchyma and intravasate into the 

bloodstream, lymph nodes or invade into the peritoneal cavity.  EMT has been 

implicated in the initiation of metastasis and tumour progression in many 

cancer types, including GC (Huang et al., 2014). During EMT, epithelial cells 

exhibit enhanced motility and invasiveness (Peng et al., 2014), low expression 

of E-cadherin, high expression of vimentin and N-cadherin, a spindle-like shape 

and reduced adhesion. The key ligands involved in EMT are TGFβ, Wnt and 

Notch. The major transcription factors that induce EMT via downregulation of 

E-cadherin (Kourtidis et al., 2017) are Twist, Snail, Slug and ZEB1 (Prieto-García 

et al., 2017). In the context of PD it has been found that it is the discoidin 

domain-containing receptor 2 that promotes PD in GC via induction of EMT 

(Kurashige et al., 2016) 

1.4.3 Tumour Microenvironment 

The microenvironment of the free abdominal space is hypoxic, contains 

immune cells, and is deficient in glucose (Gilkes et al., 2014) making it 

challenging, but not impossible, for the cancer cells seeded in the peritoneal 

cavity to survive, proliferate and migrate in this environment. Cell adhesion to 

appropriate extracellular matrix components with integrin and cadherin is 

essential for the cells survival. Loss of this adhesion leads to anoikis. Therefore, 

anoikis resistance is required for cells surviving in the peritoneal cavity through 

anchorage-independent growth (Simpson et al., 2008). Cancer cells develop this 

resistance via several mechanisms such as changes in integrin repertoire 

expression, induction of EM, oncogene activation and adaption of their 

metabolism (Buchheit et al., 2014; Douma et al., 2004; Paoli et al., 2013).  

Cancer cells that are successful in adapting to the harsh environment of the 

peritoneal cavity attach directly to the peritoneal surface. Due to the 
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mesothelium, a membrane composed of simple squamous epithelium that forms 

the lining of the peritoneum, the cancer cells are prevented from penetrating 

into the sub-mesothelial space (Hu et al., 2018). The connective tissue under 

the subendothelial layer contributes to the formation of a microenvironment 

niche for the seeding of cancer nodules during PD (Psaila and Lyden, 2009; van 

der Wal and Jeekel, 2007). It has also been recently reported that mesothelial 

cells are able to create a novel tissue niche that facilitates GC invasion, 

resulting in PD (Tanaka et al., 2017). Interestingly, this study also demonstrated 

that targeting the Wnt3a pathway, through Dkk1 effectively suppressed 

peritoneal mesothelial cells infiltration. This is due to GC cancer cells releasing 

Wnt3a, which in association with extracellular vesicles act as a 

chemoattractant for invading peritoneal mesothelial cells (Tanaka et al., 2017). 

This highlights the importance of the tumour microenvironment and Wnt/β-

catenin signaling in GC progression and the need to investigate this further. 
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1.5  Wnt Signaling Pathways 

Wnt signalling is essential for embryonic development and adult tissue 

homeostasis. The Wnt pathways have been extensively studied and are divided 

into the canonical Wnt/β-catenin pathway, non-canonical planar cell polarity 

(PCP) pathway, and the non-canonical Wnt/calcium pathway. The PCP pathway 

is responsible for regulating cytoskeletal changes (Butler and Wallingford, 2017) 

while the Wnt/calcium pathway controls calcium levels within the cell 

(Thrasivoulou et al., 2013). These pathways are indispensable for planar cell 

polarity and extension movements during gastrulation and epithelial cell 

migration, however they have distinctive roles compared to the canonical 

pathway. This pathway is fundamental in development and maintenance of GIT 

homeostasis through its regulation of numerous biological processes including: 

regulation of the stem cell pool, proliferation, differentiation, EMT, and 

apoptosis. The canonical Wnt pathway is implicated in many GCs and other 

cancers and diseases due to its role in regulating stem cell function and EMT. 

For this reason, this thesis will focus on the canonical Wnt pathway.  

1.5.1 Canonical Wnt/β-catenin Pathway 

The Wnt/β-catenin pathway is an ancient and conserved signalling 

cascade that involves the transcriptional co-activator, β-catenin (Logan and 

Nusse, 2004). In the absence of a Wnt signal, unstimulated cells regulate β-

catenin levels via a multi-protein complex, termed the destruction complex. 

The destruction complex is made up of the scaffold protein Axin, APC, glycogen 

synthase kinase-3β (GSK-3β) and casein kinase 1 alpha (CK1-α). This complex 

phosphorylates β-catenin, marking it for subsequent ubiquitination and 

degradation by the proteasome, preventing its localization to the nucleus. The 

absence of nuclear β-catenin initiates a complex of TCF/LEF and Groucho to 

recruit histone deacetylases (HDACs), repressing Wnt target genes. In the 

presence of a Wnt ligand, a heterodimeric receptor complex is formed, 

consisting of Frizzled and its co-receptor, an LRP5/6 protein. The LRP5/6 

receptors are phosphorylated by CK1-α and GSK-3β (Janda et al., 2012) which 

leads to the recruitment of disheveled (DVL) and axin proteins to the plasma 
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membrane, where they become polymerized and activated (Li VS, 2012). DVL 

inactivates the destruction complex, resulting in the stabilization and 

accumulation of β-catenin and its translocation to the nucleus. In the nucleus, 

β-catenin forms an active complex with TCF/LEF, inhibiting Groucho 

repression, and recruits histone-modifying co-activators to initiate Wnt target 

gene transcription (Figure 1.4) (Flanagan et al., 2018).   
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Figure 1.4. Overview of canonical Wnt/β-catenin signalling (Adapted from 

(MacDonald et al., 2009). Wnt signalling in target cells. (A) In the absence of Wnt, 

a destruction complex consisting of Axin, Apc and GSK-3 β resides in the cytoplasm, 

where it binds to and phosphorylates β-catenin, which is then degraded by the 

proteasome. T-cell factor (TCF) is in an inactive state, preventing transcription of 

Wnt target genes, as a consequence of binding to the repressor GROUCHO. (B) 

Binding of Wnt to its receptors, Frizzled and Lrp5/6, induces the association of Axin 

with phosphorylated Lrp5/6. The destruction complex is inactivated by disheveled 

(DVL), and β-catenin is stabilized, translocates to the nucleus and subsequently 

binds TCF to up-regulate Wnt target genes. 

 

A B 
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1.5.2 Wnt ligand synthesis, secretion and signalling 

Wnt ligands are secreted glycoproteins, conserved in all metazoan 

animals. There are 19 Wnt ligands in the mammalian genome, which allow for 

complex and specific interactions with an equally broad array of receptors able 

to transduce the Wnt signal (Clevers and Nusse, 2012b). Wnt proteins are 

cysteine rich, approximately 350-400 amino acids long, and contain an N-

terminal signal peptide required for proper secretion. Wnt ligand secretion is a 

tightly regulated and complex process, with all Wnt proteins undergoing two 

types of lipid modifications on the conserved residues: cysteine 77 and serine 

209 (Harterink and Korswagen, 2012). The first is the addition of palmitate to 

cysteine 77. This renders the Wnt protein hydrophobic and tethers it to the cell 

membrane of cognate receptors (Willert et al., 2002). The second modification 

is the attachment of a palmitoleoyl to serine 209. This is required for the 

release of Wnt from the endoplasmic reticulum (ER). Furthermore, Porcupine 

(PORCN), an ER protein only active in Wnt-producing cells, is likely responsible 

for the serine 209 modification, as PORCN deletion causes Wnt retention in the 

ER (Takada et al., 2006) and a defect in Wg secretion in the Drosophila embryo 

(Kadowaki et al., 1996).  

Additionally, the seven-transmembrane protein Wntless (Wls) provides an 

essential, though less understood, function in Wnt secretion (Bänziger et al., 

2006; Bartscherer et al., 2006; Goodman et al., 2006). It is thought to 

principally act as a cargo receptor that ferries Wnt along the exocytic path 

(Herr et al., 2012). Wls localizes to the golgi network, endosomes and the 

plasma membrane, and binds Wnt proteins (Clevers and Nusse, 2012b). 

Therefore, Wls is critical for Wnt secretion and trafficking, as in Wls mutant 

cells, Wnt accumulates and is retained in the Golgi (Port et al., 2008).  

Wnt signals were historically considered to be morphogens, molecules that 

exert their action across a long-distance in tissue, thus forming a gradient that 

determines cell fate in a concentration-dependent manner. However, there is 

limited evidence that this is actually the case and Wnts may signal over a 
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shorter distance. For example, originally, the Wg protein produced by a thin 

line of cells was thought to have long-range characteristics. However, it has 

been demonstrated that a non-diffusible, membrane-tethered form of Wg can 

largely compensate for the function of wild-type Wg (Alexandre et al., 2014). 

Therefore, Wnt signalling is now considered to occur mostly over short 

distances, such as between neighboring cells in a stem cell niche or 

neuromuscular junction (Korkut et al., 2009; Sato et al., 2011b). It is still not 

fully understood how Wnt ligands exert signalling activity with both secreted- 

and membrane-associated mechanism observed. Membrane-associated 

mechanisms include the transport of Wnt in exosomes (Gross et al., 2012) and 

cytonemes (dynamic actin-based membrane structures) (Stanganello and 

Scholpp, 2016). Cytoneme formation is regulated by non-canonical Wnt/PCP 

signalling, whereas in neighboring cells, cytoneme-associated Wnt8a activates 

the canonical β-catenin signalling pathway (Mattes et al., 2018).  

1.5.3 Frizzled receptors 

 Genetic screens in Drosophila looking for mutations that disrupt cell 

polarity led to the discovery of the Frizzled (FZD) genes. Since then, they have 

been found throughout the animal kingdom, including the most primitive 

metazoan, but they are not present in plants or simple single cell eukaryotes 

(Schenkelaars et al., 2015).  FZD genes encode the principal receptors for Wnt 

family of signalling molecules (Bhanot et al., 1996; Yang-Snyder et al., 1996). 

The number of FZD genes varies between the class of organism: vertebrates 

have 10 known FZDs, Drosophila have 4 and C.elegans have 3.  

Sequence analysis shows that vertebrate FZD genes can be divided into discrete 

classes based on structural homology. FZD1, FZD2 and FZD7 share 

approximately 97% identity, FZD5 and FZD8 share 70% identity, FZD4, FZD9 and 

FZD10 share 65% identity and FZD3 and FZD6 share 50% amino acid identity 

(Figure 1.5, Table 1.3) (Fredriksson et al., 2003; Sagara et al., 1998). The FZD 

genes encode proteins that share a common architecture: An N-terminal signal 

peptide, a conserved extracellular cysteine-rich domain (CRD), followed by a 
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7-pass transmembrane domain and an intracellular C-terminal PDZ domain. The 

structure of the extracellular domains is well reported however only the 

structure of the transmembrane domain of FZD4 was been recently described 

(Yang et al., 2018c). This revealed a unique compact organization and vacant 

ligand pocket which may provide a number of avenues for selective chemical 

probes and drug design against FZD4 and other FZDs (Zhang et al., 2018). 

The conserved CRD on the FZD protein provides the binding site for Wnt ligands 

(Dann et al., 2001; Hsieh et al., 1999). The determined structure of the Wnt-

Frizzled CRD complex displayed an unusual ligand-receptor interaction, 

characterized by a relatively small protein-protein interface and a relatively 

large interface between the CRD and a palmitoleic acid lipid group covalently 

attached to the Wnt (Janda et al., 2012).  

On the cytoplasmic side of the plasma membrane, the C-terminal and the 

intracellular loops of the FZD receptors facilitate interactions with G-proteins 

and other regulatory signalling components. The short C-termini of the FZDs 

has a conserved motif which binds the PDZ domain of the scaffolding protein 

Dvl (Punchihewa et al., 2009; Tauriello et al., 2012). This interaction 

contributes to the disassembly of the Axin-based β-catenin destruction complex 

(Cliffe et al., 2003). In Planar Cell Polarity (PCP) non-canonical Wnt signalling, 

Dvl accumulates with FZD in endosomes. These are actively transported in the 

posterior direction and released back to the plasma membrane at the apical 

posterior tip of the epithelia (Shimada et al., 2006). This is required for the 

amplification of the initial FZD-activating signal and establishment of the 

uniform planar polarization of the tissue. 
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Full length 
protein 

Percent 
Identity 

(to 
fzd7) 

Percent 
Similarity 

(homology) 
(to fzd7) 

Percent 
Gaps 

FZD1_HUMAN 79 86 5 

FZD2_HUMAN 79 85 3 

FZD3_HUMAN 46 62 6 

FZD4_HUMAN 44 58 13 

FZD5_HUMAN 49 63 12 

FZD6_HUMAN 44 59 7 

FZD8_HUMAN 46 59 19 

FZD9_HUMAN 46 61 9 

FZD10_HUMAN 47 62 7 

Table 1.3. Homology of Frizzled receptors to FZD7 

 

Figure 1.5. Frizzled receptor identity. Dendrogram showing amino acid sequence 

identity among Frizzled proteins. FZD1, FZD2 and FZD7 constitute a distinct branch 

within the FZD family.  
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FZDs can function in all three distinct Wnt signaling pathways: the PCP 

pathway, the canonical Wnt/β-catenin pathway and the Wnt Ca2+ pathway. The 

Wnt-Fzd interaction can take many forms: a single Wnt can bind multiple FZD 

proteins and vice versa to activate canonical and/or non-canonical Wnt 

signalling. The structure of the Wnt-CRD complex allowing many binding 

combinations (Janda et al., 2012). This allows Wnt signalling to regulate a vast 

array of cellular functions through functional selectivity in different 

downstream pathways. In canonical signaling, FZD responds to Wnt proteins in 

the presence of co-receptor LRP5/6 to activate and propagate the Wnt/β-

catenin pathway. Alternatively, FZD receptors can respond to Wnt proteins in 

the presence of the Wnt co-receptor Ror2 to activate the non-canonical 

pathway (Mikels and Nusse, 2006). The decision for a cell to activate canonical 

or non-canonical Wnt signalling largely depends on the receptor/co-

receptor/ligand combination and availability (Figure 1.6).   

The majority of the FZD receptor genes display developmental phenotypes 

when deleted from specific tissues. The close sequence homology between FZD 

members can make it difficult to interpret phenotypes, as in many cases, 

partial redundancy is observed. Partially redundant FZD pairs include FZD1 and 

FZD2, FZD3 and FZD6, FZD4 and FZD8, and FZD5 and FZD8 (Yu et al., 2012a). 

For example, defects in CNS axon guidance and hair follicle orientations, linked 

to PCP disruption, are observed in mice carrying single mutations in either FZD3 

or FZD6, with additional phenotypes observed in double homozygous Fzd3-/-; 

Fzd6-/- mutant mice (Dong et al., 2018; Stuebner et al., 2010; Wang et al., 

2006), suggesting that Fzd3 and FZD6 play a redundant role in controlling 

polarity, but through non-identical mechanisms. Likewise, it has been shown 

that FZD2 and FZD7, that share ~95% structural homology, function in a 

redundant fashion during convergent extension and closure of the ventricular 

septum and palate (Yu et al., 2012a). However, it is not only structurally similar 

FZDs that can compensate for one another. It was demonstrated that in human 

mesenchymal stem cells (hMSC) that many FZD receptors were capable of 
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activating canonical Wnt signalling to maintain the proliferative and 

undifferentiated status of hMSCs in culture. However, only FZD7 and FZD5 were 

able to compensate for one another to sustain active signalling, thus 

demonstrating that two non-sequence related FZDs can act in a redundant 

fashion (Kolben et al., 2012)  
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Figure 1.6. Schematic arrangement of Wnt membrane receptors (Adapted from 

(Phesse et al., 2016). Frizzled proteins are considered the main Wnt receptors. The 

outcome of the Wnt-FZD interaction is determined by co-receptors. Wnt-FZD-

Lrp5/6 activates the canonical β-catenin signalling pathway, which itself can be 

modulated by other cell surface proteins. For example, RNF43/ZNRF3 ubiquitylates 

FZD receptors and targets them for internalization and proteasomal degradation, 

thus resulting in turn-over of the receptor complex and inhibited β-catenin 

signalling. In the presence of Lgr4/5 and RSPO it is RNF43/ZNFR3 which is 

internalized and degraded and FZD-LRP5/6 remains on the cell surface to enhance 

β-catenin signalling. FZD receptors can associate with Ror2 to transmit non-

canonical Wnt signals from ligands including Wnt5 or Wnt11, either via PCP or Ca2+. 

Some receptors such as Ryk are thought to function independently of Frizzled 
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1.5.4 LRP5/6 

 LRP5/6 forms one half of the canonical Wnt/β-catenin receptor complex 

along with FZD. Shortly after the discovery of canonical Wnt1 gene, LRP5/6 was 

identified to be key for Wnt1-dependnet tumour development in Wnt1 

transgenic mouse models (Badders et al., 2009; Goel et al., 2012; Lindvall et 

al., 2006) and LRP6 if often overexpressed in human breast tumours (Liu et al., 

2010). The ectodomain of LRP5/6 is composed of four β-propeller/epidermal 

growth factor repeats (E1-4) and three LDL repeats (LDLR). E1-4 but not LDLR 

is the binding domain of canonical Wnt ligands, as well as the canonical pathway 

inhibitor Dkk1 (Angers and Moon, 2009; Bhanot et al., 1996; Chen et al., 2011; 

Mao et al., 2001). Currently, the LDLR-binding proteins remain unexplored. The 

current view is that the close proximity of LRP5/6 and FZD coupled by canonical 

Wnt ligand binding to E1-4 OF lrp5/6 and the CRD of FZD is required for 

canonical pathway activation (Angers and Moon, 2009; MacDonald et al., 2009). 

In contrast, Dkk1 promotes the internalization of LRP5/6 via binding with its 

receptor, Kremen, making LRP5/6 unavailable for Wnt binding, thus, inhibiting 

the canonical pathway (Mao et al., 2002).  

Intracellularly, LRP5/6 participates in key molecular interactions with the 

scaffolding protein Axin and the kinases CK1-α and GSK-3β via the evolutionarily 

conserved cytoplasmic PPPSPxS binding motif (P = Proline, S = 

Serine/Threonine, x = variable residue). Mutational analysis of LRP6 revealed 

that when cytoplasmic PPPSPxS binding motif is altered, LRP6 acts as a 

dominant negative mutant and conversely, LRP6 mutants that lack the 

extracellular domain behave as constitutively activated Wnt receptors (Tamai 

et al., 2004; Zeng et al., 2005).  

The current model indicates that in response to Wnt, Dvl binding and 

recruitment of Axin to the FZD-LRP5/6 complex triggers the phosphorylation of 

LRP5/6 on the PPPSPxS motif via a dual-kinase mechanism, first by GSK-3β then 

by CK1-α (Davidson et al., 2005). This duel-phosphorylation promotes the 

engagement of LRP5/6 with Axin. It is surprising that GSK-3β mediates LRP5/6 
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phosphorylation and activation, due to its known inhibitory role in Wnt 

signalling via promoting β-catenin phosphorylation and degradation (Liu et al., 

2002). However, it has been shown that the membrane-associated form of GSK-

3β, in contrast to cytosolic GSK-3β, stimulates Wnt signalling as well as Xenopus 

axis duplication (Zeng et al., 2005). Therefore, GSK-3β can act as a switch 

dictating both the on and off states of the Wnt signalling pathway.   

1.5.5 Ror and Ryk  

 Two other classes of receptor that forms a part of the Wnt-pathway 

components are Ror and Ryk. These are both tyrosine kinase evolutionarily 

conserved transmembrane receptors capable of participating in canonical and 

non-canonical Wnt signalling. However, the exact mechanisms by which they 

transduce Wnt signals are still be refined and understood.  

Receptor-tyrosine kinase-like orphan receptor 1/2 (Ror1 & Ror2) are able to 

bind directly to Wnt ligands and therefore function as Wnt receptors (Mikels et 

al., 2009).This is thanks to their distinguishing feature in the extracellular 

domain of the presence of a CRD domain that shares close homology with the 

Wnt-binding domain of the FZD receptors (Mikels and Nusse, 2006; Oishi et al., 

2003; Saldanha et al., 1998). The primary ligand for Ror2 is Wnt5a (Green et 

al., 2008). Wnt5a induces the formation of a complex between Ror2 and FZD, 

resulting in the phosphorylation of Ror2 and the recruitment of Dvl, Axin and 

GSK-3β, the same machinery that mediates Wnt3A-induced phosphorylation of 

Lrp5/6 (Grumolato et al., 2010; Yamamoto et al., 2007). This results in Wnt3a 

and Wnt5a competing for binding to the FZD receptor; the identity of the Wnt 

ligand will determine which co-receptor will be activated. In contract to 

functioning as a co-receptor with FZD, the Wnt5a/Ror2 complex can function 

to inhibit the Wnt/β-catenin pathway (Mikels et al., 2009), thus Ror has both 

kinase-independent and kinase-dependent functions (van Amerongen et al., 

2012)  

Ror2 has also been implemented in understanding how Wnt proteins travel 

between cells. Cytonemes, finger-like structures, grow out of the cell 
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membrane and carry Wnt proteins to their destination. Ror2 is activated by 

Wnt8a which triggers the assembly of the cytonemes and induces Lrp6-FZD 

clustering into the LRP6 signalosome to activate β-catenin signalling. The 

amount of Ror2 activation is directly proportion to the amount of cytonemes 

produced by the cell and therefore the levels of Wnt signals and β-catenin 

signaling. This mechanism has been observed in zebrafish embryos, the mouse 

intestine, and most excitingly, human stomach tumours (Mattes et al., 2018) 

Ryk receptors have a critical role in axon guidance and neurite outgrowth in 

response to multiple Wnt ligands and therefore have mostly been studied in 

neurobiological contexts (Keeble et al., 2006). Ryk receptors are considered 

catalytically inactive and have been shown to bind to FZD suggesting a role as 

a co-receptor in Wnt signalling, however this function is cell-context dependent 

(Berndt et al., 2011; Kim et al., 2019). Therefore, it is likely that many 

independent mechanisms exist downstream from ligand-receptor binding for 

both FZD and non-FZD Wnt receptors.  

1.5.6 The β-catenin destruction complex 

 In the absence of Wnt/FZD interaction, the scaffolding proteins Apc and 

Axin sequester β-catenin, which allows CK1-α to phosphorylate the N terminus 

of β-catenin at Ser 45, a residue often mutated in cancers. Subsequently, GSK-

3β is recruited to phosphorylate Serine 33, 37 and threonine 41 residues 

(Lybrand et al., 2019). Phosphorylated β-catenin is then recognized by the F-

box-containing protein β-TrCP, which mediates ubiquitylation and proteasomal 

degradation (Shi et al., 2015). Together, these proteins make up the β-catenin 

destruction complex (as depicted in Figure 1.4). When Wnt ligands are present, 

they bind and activate heteromeric receptor complexes of FZD and LRP5/6 

which initiate a signal via disheveled that inhibits the destruction complex.  

Although this model of Wnt signalling is generally accepted, key aspects of how 

the destruction complex is regulated remain controversial. There are dozens of 

models that hypothesize how β-catenin is regulated, including destruction 

complex inactivation by kinase inhibition, complex dissociation, separation of 
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the destruction complex from the ubiquitylation machinery and aggregation of 

the complex at the site of activated receptors (Lybrand et al., 2019). This 

uncertainty derives from the fact that most components of the destruction 

complex are multifunctional, serving other roles in addition to Wnt signaling. 

This results in only a small fraction of the total cytoplasmic pool of each protein 

actually participating in Wnt signalling (Papadopoulou et al., 2004). This has 

resulted in most investigations of the destruction complex using protein 

overexpression assays in highly artificial in vitro systems, thus, rendering their 

physiological significance uncertain.  

A study by Li et al., examined all the destruction complex components and 

interactions at endogenous levels  Firstly, Li et al., proposed that the 

composition of the Axin complex does not change in colorectal cancer cell lines, 

in which the Wnt pathway is locked to the “on” state, demonstrated by the 

presence of GSK-3β and β-catenin (Li VS, 2012). However, other studies have 

demonstrated that Axin1 complex can be degraded or sequestered to the 

plasma membrane by LRP5/6 following Wnt activation (Huang et al., 2009; Zeng 

et al., 2005). Secondly, Li et al., demonstrated that the activities of GSK-3β 

and CK1-α are not inhibited upon Wnt signalling, and are free to phosphorylate 

β-catenin. Whereas other studies have suggested that GSK-3β activity is 

inhibited directly by LRP5/6 PPPSPxS motif or via its sequestration into multi-

vesicular bodies (Taelman et al., 2010; Wu et al., 2009). This difference is 

settled by proposing that the phosphorylated form of β-catenin accumulates 

within an intact destruction complex following Wnt stimulation (Li VS, 2012).   

The role for APC in the inhibition of the destruction complex following Wnt 

ligand presentation have recently been proposed. The results from Parker and 

Neufeld  expand on the current model of Wnt signalling such that in response 

to Wnt, the destruction complex (Logan and Nusse, 2004) maintains 

composition and binding to β-catenin (Clevers, 2006), moves toward the plasma 

membrane (MacDonald et al., 2009) and requires full-length APC for this re-

localization (Parker and Neufeld, 2020). They demonstrated that APC deletion 
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or truncation in non-transformed human colon epithelial cells completely 

abolished Wnt-induced destruction complex localization (Parker and Neufeld, 

2020). This highlights APCs duel function as a scaffold protein and as a key 

player to enable full trafficking of the destruction complex towards a Wnt cue. 

It has also been recently shown that the central region of APC has a role in 

preventing clathirin-mediated endocytosis in the Wnt-off state (Saito-Diaz et 

al., 2018). Therefore, APC may also act as a molecular “gatekeeper” to block 

receptor activation via the clathrin pathway (Figure 1.7). 
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Figure 1.7 APC may act as a negative regulator of Wnt receptor activation via the 
clathrin endocytic pathway. (Adapted from (Saito-Diaz et al., 2018). In the absence 
of Wnt ligand, APC maintains low cytoplastimc β-catenin as part of the destruction 
complex. A novel role for APC is its role in inhibition of Wnt receptor activation in the 
unstimulated state. (A) In the absence of a Wnt ligand (Basal state), APC localizes to 
clathrin-coated pits to block spontaneous Wnt receptor activation. (B) Upon loss of 
APC (APC-depleted state), ligand-independent LRP6 oligomerization is no longer 

inhibited, the Wnt signalosome forms, and the pathway is activated. 

A 

B 



Chapter 1: Literature Review 

44 
 

1.5.7 Nuclear Events 

Nuclear β-catenin is a hallmark of active Wnt signalling (Nusse and 

Clevers, 2017) but how β-catenin is transported into and out of the nucleus is 

not well understood. Early studies suggested that β-catenin enters the nucleus 

by interacting with nuclear pore proteins and is independent of the nuclear-

localization signal (NLS) (Henderson and Fagotto, 2002). It has been reported 

that β-catenin can be actively exported from the nucleus as cargo of Axin (Cong 

et al., 2004) or that APC can shuttle between the cytoplasm and nucleus (Rosin-

Arbesfeld et al., 2000). A Drosophila genetic screen identified two nuclear 

binding partners, Bcl9 and Pygopus which are closely involved in the nuclear 

import and retention of β-catenin (Townsley et al., 2004). They may also aide 

in the transcriptional ability of β-catenin (Hoffmann, 2005).  

The TCF/LEF family of transcription factors is the main partner for β-catenin in 

gene regulation (Hoppler and Kavanagh, 2007). TCF represses gene expression 

by interacting with the repressor Groucho, which promotes histone 

deacetylation and chromatin compaction. Wnt-induced β-catenin stabilization 

and nuclear accumulation leads to a complex of TCF with β-catenin, which 

displaces Groucho (Daniels and Weis, 2005) and recruit other co-activators for 

gene activation (Figure 1.8). The vertebrate genome harbors four TCF/LEF 

genes: Tcf-1, Lef-1, Tcf-3 and Tcf-4.  

Wnt signalling regulates gene transcription in a highly context-dependent 

manner. Transcribed target genes contribute to a variety of cellular functions 

from stem cell function to proliferation. Additionally, Wnt signalling can 

promote the expression of several Wnt pathway components, highlighting 

feedback control as a key feature of Wnt signalling regulation. These “Wnt 

pathway” genes are often common across all cell types, whereas many other 

Wnt target genes are cell-type specific and are less often found to be induced 

across different kinds of cells. Therefore, expression of Wnt pathway genes, 

such as Axin2 (Jho et al., 2002) and Lgr5 (van de Wetering et al., 2002) are 

good hallmarks of active Wnt signalling.  
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Figure 1.8 Wnt signalling in the nucleus (Adapted from (Clevers and Nusse, 2012a). 
(A) In the absence of Wnt signals, TCF occupies and represses its target genes, helped 
by transcriptional co-repressors such as Groucho. (B) Upon Wnt signalling, β-catenin 
displaces Groucho from TCF and recruits’ transcriptional co-activators and histone 
modifiers such as Brg1, CBP, Cdc47, Bcl9 and Plygopus (Pygo) to drive target gene 

expression. 

A B 
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1.5.8 Wnt Antagonists & Agonists 

 Wnt signalling is regulated at every stage of the pathway from the 

extracellular receptors and ligands to the intracellular components by a wide 

range of effectors. These effectors function as agonists or antagonists and are 

important in the control of the fine-tuning of Wnt signalling and in inhibiting or 

activating Wnt-regulated developmental processes. Critically, their role in Wnt 

pathway regulation continues through adulthood and is implicated in 

pathological events, including cancer (Cruciat and Niehrs, 2013).   

 Secreted frizzled-related proteins (sFRPs) are a family of five (sFRP1-5) 

secreted glycoproteins that have been identified as extracellular modulators of 

the Wnt signalling pathway (Jones and Jomary, 2002). They are the largest 

family of secreted Wnt inhibitors. All sFRP family members contain an N-

terminal domain that is 30-50% homologous to the CRD of the FZD receptors, 

this is both necessary and sufficient for Wnt binding and inhibition (Lin et al., 

1997; Rehn et al., 1998). In contrast to FZD family proteins, sFRPs lack a 

transmembrane region and the cytoplasmic domain required for signal 

transduction into the cells. Instead they have a C-terminal Netrin-related motif 

domain that is required for their ability to induce optimal Wnt inhibition (Bhat 

et al., 2007). sFRPs modulate the Wnt signalling pathway by directly binding 

with Wnt ligands to block the interaction between Wnt and FZD receptors. 

Additionally, sFRPs can bind with FZD receptors to form non-functional 

complexes that prevent Wnt signalling activation (Bafico et al., 1999).  

A recent study found that abnormal nuclear localization of sFRPs bound to β-

catenin was able to modulate TCF4 recruitment. This exerted either promoting 

or suppressive effects on the Wnt/β-catenin-elicited cancer stem cell (CSC) 

phenotype (Liang et al., 2019). This suggests an alternative mechanism in which 

sFRPs act as biphasic modulators of Wnt-signalling-elicited CSC properties 

beyond extracellular control. However, the exact mechanism in which sFRPs 

translocate into the nucleus remains unclear. 
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The Dickkopf (Dkk) genes represent a small family of evolutionarily conserved 

glycoproteins that potently antagonize Wnt/β-catenin signalling. There are four 

Dkk genes (Dkk1-4) in the vertebrate genome. Dkk proteins selectively 

antagonize canonical Wnt signalling by binding to LRP5/6, thus, preventing FZD 

and Wnt from forming a ternary complex (Semënov et al., 2001). In addition to 

LRP5/6 Dkk1 can form a ternary complex with the cell surface receptor Kremen 

which promotes LRP6 internalization and degradation (Mao et al., 2002). A 

novel role for Dkk1 in the absence of Kremen proteins has been identified in 

stabilizing Lrp6 while inhibiting Wnt/Lrp6 signalling. Importantly, it was also 

demonstrated that Dkk1 blocks Wnt3A-induced LRP6 down-regulation (Li et al., 

2010).  

1.5.9 R-Spondin & E3 ligases (Rnf43 & Znrf3) 

 R-Spondin (R-Spo) proteins are potent agonists of canonical Wnt 

signalling, but only in the presence of Wnt ligands (Kazanskaya et al., 2004; 

Kim et al., 2008a). R-Spos are cysteine-rich secreted glycoproteins and through 

their role in activating Wnt signalling control a variety of cellular and tissue 

functions (Yoon and Lee, 2012). In mammals, there are four R-Spos which 

display high structural similarity and 60% sequence homology (Nam et al., 

2006). All four contain four distinct domains: a putative signal peptide domain, 

a cysteine-rich furin-like (FU) domain, a thrombospondin type I repeat domain 

and a basic amino acid-rich domain (Kazanskaya et al., 2004). It is the FU 

domains that are essential to amplify the Wnt ligand-dependent activation of 

canonical Wnt signalling (Kim et al., 2008a; Li et al., 2009). Crystal structure 

analysis showed that one of the FU domains binds to Lgr receptors (Peng et al., 

2013a; Wang et al., 2013b). The other FU domains to the cell-surface 

transmembrane E3 ubiquitin ligase Znrf3/Rnf43 (Chen et al., 2013; Zebisch et 

al., 2013), which antagonize Wnt signaling by ubiquitinating FZD receptors 

followed by endocytosis of the Wnt receptor complex (Hao et al., 2012; Koo et 

al., 2012). Here, the R-Spo-Lgr complex binds to ZNRF3/RNF43 to block the 

ubiquitination of FZD receptors which leads to the augmentation of the Wnt 
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signalling cascade (Figure 1.6). It has also recently been reported that R-Spo2 

and R-Spo3 can also amplify canonical Wnt signalling independently of Lrg 

receptors, via membrane-bound heparin sulfate proteoglycans (HSPG) 

(Lebensohn and Rohatgi, 2018).  

The negative regulators of Wnt signalling, ZNRF3 and RNF43 were identified 

from gene expression profiling to identify genes that positively correlated with 

known negative regulators of Wnt signalling, such as Axin2 or Dkk-1 (Hao et al., 

2012). As mentioned, ZNRF3 and RNF43 regulate Wnt signalling via their ability 

to promote the degradation of the FZD-Lrp6 complex, however, it has been 

shown that R-Spo induces membrane clearance of ZNRF3 though ZNRF3-Lgr4 

dimerization. This leads to the accumulation of Wnt receptors on the cell 

surface (Hao et al., 2012; Peng et al., 2013b). These findings support a model 

in which in the absence of R-Spo, the E3 ligases ubiquitylates FZD and promotes 

the degradation of FZD-LRP6 complex, thus keeping Wnt signalling to low 

levels. However, in the presence of R-Spo, lgr4 and ZNRF3 interact, via the FU 

domain on R-Spo. This leads to the clearance of the E3 ligases, thus, allowing 

the FZD-LRP6 complex to accumulate at the membrane to enhance canonical 

Wnt signalling.  

1.5.10 Wnt signalling in the homeostasis of the Gastric Epithelium 

 The role of Wnt signalling in maintaining gastric homeostasis is less well 

defined than its close counterpart, the intestinal epithelium. However, the 

requirement of Wnt signalling in gastric homeostasis is widely accepted. Gastric 

organoid cultures require Wnt3a in the culture medium in addition to the Wnt 

agonist R-Spondin (Barker et al., 2010b; Flanagan et al., 2016) thus 

demonstrating that Wnt is required for the activity of gastric epithelial cells. It 

has been demonstrated that Wnt signalling is more active in the antrum than 

the corpus (Flanagan et al., 2017a). . Furthermore, over-expression of Wnt can 

lead to intestinal differentiation of the stomach (Khurana and Mills, 2010). 

Further supporting evidence for the role of Wnt in gastric homeostasis was 

provided by the genetic profiling of laser-capture micro-dissected granule-free 
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isthmal cells from both the antral and corpal epithelium (Giannakis et al., 

2006). The expression profile of isolated isthmal cells revealed significant up-

regulation of Wnt target genes in comparison to isolated parietal, chief, and 

mucous cells. This is consistent with the upregulation of Wnt target genes 

observed in other stem cell populations such as hematopoietic and embryonic 

stem cells (Assou et al., 2007; Fernandez et al., 2014; Vijayaragavan et al., 

2009; Willert et al., 2002). Furthermore, deregulated Wnt signalling in the adult 

stomach, achieved by activating Wnt mutations in the gastric epithelium, 

results in a marked change in stomach homeostasis (Radulescu et al., 2013).  

The discovery of Lgr5+ gastric stem cells gives weight to the role of Wnt 

signalling in gastric homeostasis. Lgr5+ gastric stem cells are responsive to Wnt 

ligands and (along with their immediate progeny) share a significant overlap of 

Wnt target genes with intestinal Lgr5+ stem cells, indicative of robust Wnt 

activity at the base of antral gastric glands (Barker et al., 2010b). It has been 

demonstrated that FZD7 is the predominant Wnt receptor in regulating 

homeostasis in the intestinal epithelium, in which deletion of FZD7 in either 

the whole epithelium or specifically in the Lgr5+ intestinal stem cells, triggers 

rapid repopulation (Flanagan et al., 2015a). More recent studies following on 

from this have demonstrated that FZD7 is also expressed in the antrum of the 

gastric epithelium, and is required for the growth of gastric organoid cultures. 

Deletion of FZD7 in the gastric epithelium in vivo was shown to be deleterious 

and triggered rapid repopulation of the epithelium (Flanagan et al., 2017a). 

This data identifies that FZD7 is crucial for transmitting Wnt signalling to 

regulate homeostasis in the gastric epithelium. However, unlike the intestinal 

stem cells, the function of Lgr5+ gastric stem cells do not require FZD7 in vivo. 

Deletion of FZD7 does not inhibit the capacity of Lgr5+ cells to lineage trace 

full gastric units in the antral epithelium (Flanagan et al., 2019b). This 

highlights key differences in the way Wnt regulates homeostasis and Lgr5+ stem 

cells in the stomach compared to the intestinal epithelium. Together, this 
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demonstrates that Fzd7 is required for at least one population of stem cells in 

the gastric antrum, but this population has yet to be identified.  

The Wnt pathway is more active in the antrum than in the corpus, however, 

further data has demonstrated that the Wnt target gene, Troy marks mature 

chief cells in the corpal stomach, consistent with a role for Wnt signalling in 

gastric epithelium.  Isolated Troy+ cells up-regulate a significant proportion of 

Wnt-β-catenin target genes expressed by Lgr5+ gastric stem cells and 

contribute to the homeostasis of the corpal epithelium both under basal and 

injury conditions (Stange et al., 2013). The plasticity displayed by Troy cells 

may be regulated by Wnt signalling due to their expression of many Wnt target 

genes. However, the precise source of Wnt ligands that active this pathway 

remains to be identified. 

Detailed analysis of Wnt signalling in the epithelium of the antrum using in situ 

hybridization showed that several Wnt ligands were expressed (Wnt2b, 3a, 4, 

5a, 9a, 9b and 11), as well as all 10 FZD receptors (Sigal et al., 2017). The 

expression patterns of some FZD receptors was focused in specific areas of the 

gastric units, for example FZD10 was expressed predominantly in the pit region, 

FZD6 predominantly in the base, FZD5 expression was markedly decreased in 

the gland base, whilst FZD6 and FZD7 expression was mainly confined to the 

bottom two thirds of the gastric unit (Stange et al., 2013). These specific 

expression patterns suggest a distinct role for Wnt signalling in each area of the 

gastric unit, which has yet to be fully elucidated. Further studies are required 

to understand the various niche factors required by the various stem cell 

populations of the gastric epithelium. This would provide a greater and more 

complete understanding of the role of gastric stem cells in homeostasis, 

regeneration and disease. 

1.6 Aberrant Wnt Signalling & Gastric Cancer 

As mentioned one of the best characterized signalling pathways 

implicated in GC is the Wnt pathway. This pathway is involved in the 
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tumorigenesis of many cancers, but especially so in cancers of the 

gastrointestinal tract (Pai et al., 2016). In brief, the hallmarks of this pathway 

include increased β-catenin (encoded by CTNNB1) signalling, which is often 

facilitated by inactivating mutations in APC. In the TCGA study, APC was 

mutated in 17% of GC tumours and 8% with mutations to CTNNB1(TCGA, 2014). 

Another regulator of Wnt signalling is the E3 ubiquitin ligase RNF43, which was 

found to be mutated in 18% of GC tumors in the TCGA study, as well as in other 

data sets (Wang et al., 2014b). This further supports the likely importance of 

the Wnt signaling pathway in GC, which can become dysregulated at any level 

of the pathway (Table 1.5).  

1.6.1 H.pylori-mediated Wnt signalling 

 As previously mentioned, a major risk factor for GC is chronic infection 

with H.pylori. A virulence factor produced by H.pylori following colonization of 

the stomach lumen, is cytotoxin-associated gene product (CagA). This has been 

shown to activate Wnt signalling and promote gastric tumorigenesis and 

progression by its translocation to the cytoplasm of epithelial cells (Silva-García 

et al., 2019). Once inside the host cell, CagA interacts and phosphorylates the 

oncoprotein c-Met receptors that activates NF-κB and the expression of 

numerous pro-inflammatory cytokines and chemokines, enzymes and 

angiogenic factors (Tohidpour, 2016). This functional ternary complex, CagA-c-

Met-CD44 also induces nuclear β-catenin accumulation by activating the 

PI3K/Akt signalling pathway (Suzuki et al., 2009; Wroblewski et al., 2015). 

Additionally, CagA can directly interact with the gastric tumour suppressor 

transcription factor Runx3 (runt related transcription factor 3), labelling it for 

ubiquitination and proteasome degradation (Tsang et al., 2010). Runx3 

normally interacts with Tcf4 which represses β-catenin-dependent gene 

expression. The interaction of CagA with Runx3 exposes the TCF4 binding site 

for β-catenin, which activates the upregulation of β-catenin target genes and 

can induce GC carcinogenesis (Ito et al., 2011). Another tumour suppressor that 

is negatively affected by H.pylori is Tff1 . In a normal setting Tff1 increases the 

phosphorylating activity of GSK3β on β-catenin, which results in a reduction in 
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β-catenin nuclear translocation and Tcf4 transcriptional activity (Soutto et al., 

2015). In H.pylori infected epithelial cells, H.pylori promotes hypermethylation 

of the Tff1 gene which leads to an increase in β-catenin-dependent gene 

expression (Tomita et al., 2011). Additionally, promoter methylation and mRNA 

downregulation of Wnt/β-catenin antagonists (sFRP, DKK1 and WIF1) have also 

been demonstrated during gastric carcinogenesis and affected by H.pylori 

infection (Yang et al., 2018a). As a result of this genetic modification, β-catenin 

nuclear translocation was increased in gastric epithelial cells, highlighting that 

epigenetic modification is an important factor for GC.  

In addition to epigenetic modifications, H.pylori infection promotes cancer 

stem cell characteristics in GC cells by activating Wnt/β-catenin signalling in a 

process dependent on CagA (Yong et al., 2016). It was also demonstrated that 

Nanog and Oct4, two transcription factors associated with EMT, had increased 

expression in GC samples from patients infected with CagA-positive H.pylori 

(Chiou et al., 2010). It has also been demonstrated that H.pylori is able to 

directly inject CagA into Lgr5+ gastric stem cells. This significantly increases 

the number of Lgr5+ gastric cells, which in turn leads to an increase in Wnt 

signalling activity (Sigal et al., 2015). A population of Wnt responsive Axin2+ 

gastric stem cells has also been shown to increase following H.pylori infection. 

This is linked to an increase in R-spondin2 signalling from sub-epithelial 

myofibroblasts (Sigal et al., 2017). This increase in expression of R-Spo and Lgr5 

is positively correlated with poor patient survival and outcomes (Wilhelm et 

al., 2017; Xi, 2019). Gastric epithelial cells infected with H.pylori also induce 

the expression and activation of other Wnt receptor components such as FZD 

(Geng et al., 2016) and LRP (Gnad et al., 2010), propagating Wnt signalling and 

cell transformation. Specifically it was found that H.pylori colonization leads 

to the activation of the Wnt/β-catenin pathway through upregulation of FZD7. 

Knockdown of FZD7 in H.pylori infected GC cells reduced cell proliferation and 

colony forming. Furthermore, it was found that miR-27b harboured a putative 

binding site for FZD7 and that miR-27b was able to suppress H.pylori infection 
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and the Wnt pathway through inhibition of FZD7 (Geng et al., 2016) This 

suggests that designing therapeutics to target Wnt signalling at the level of the 

receptor complex in H.pylori infected GC cells could be beneficial.  

Despite the reported ability of H.pylori to induce and activate the Wnt pathway 

in GC, there is also distinct data demonstrating the involvement of multiple 

Wnt pathway components independent of H.pylori in the initiation and 

progression of both intestinal-type and diffuse-type GC.  

1.6.2 Intracellular Component Mutations  

 The traditional view is that mutations to various intracellular 

components of the Wnt/β-catenin signalling pathway lead to constitutive 

activation and the development of many cancers, including GC. In fact more 

than 70% of patients diagnosed with GC had deregulated Wnt/β-catenin 

signaling (Ooi et al., 2009).  The most common mutations occur as stabilized 

forms of β-catenin (CTNNB1) or truncating mutations to APC (Morin et al., 

1997).    

First, work investigating Wnt signalling involvement in the pathogenesis of GC 

identified β-catenin as a suitable target for therapeutic intervention. Nuclear 

β-catenin, a surrogate marker of active Wnt signalling, is detected in 

approximately one-third of GC tumours. In normal gastric epithelium, β-catenin 

is confined to the cell membrane. However, during aberrant activation of the 

pathway, β-catenin is located predominantly in the nucleus. In gastric tumours 

displaying nuclear β-catenin, one-third of them have mutations in exon-3 of the 

β-catenin gene (CTNNB1) (Clements et al., 2002; Woo et al., 2001). The CTNNB1 

mutations are frequently missense mutations (Machin et al., 2002). Early 

studies reported that mutations in β-catenin are confined to intestinal-type 

gastric tumours, suggesting that the tumorigenic mechanisms are different from 

diffuse-type gastric tumours (Ebert et al., 2002; Park et al., 1999). However, 

studies since have shown no significant difference in the number of tumours 

with β-catenin mutation between diffuse and intestinal-type  GC (Clements et 

al., 2002). The difference between these findings could be due to the 
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examination of a larger sample size of gastric tumours in research by Clements 

and colleagues. The functional significance of exon-3 of the β-catenin gene is 

that it encodes serine-threonine phosphorylation sites for GSK3-β which 

regulates degradation of β-catenin by the ubiquitin-proteasome pathway.  

Mutations in exon-3 of β-catenin and alteration of these phosphorylation sites 

confer resistance to phosphorylation and lead to the accumulation of nuclear 

β-catenin and subsequent changes in expression of genes that regulate 

proliferation, such as Cyclin D1, D2 and E (Akama et al., 1995; Arici et al., 2009) 

and Wnt target genes (Gao et al., 2017a). More recent work has shown that 

reduced β-catenin protein expression by targeted silencing of β-catenin in GC 

cells leads to inhibition of β-catenin nuclear localization and Wnt 

transcriptional activity (Jiang et al., 2010). Additionally, it has been observed 

that the inactive form of GSK3-β is up-regulated and down-regulated in gastric 

tumors and the surrounding non-neoplastic tissue, respectively (Zheng et al., 

2010). Furthermore, high levels of β-catenin and cytoplasmic GSK3-β correlate 

with an invasive phenotype in gastric tumours (Miyazawa et al., 2000; Zheng et 

al., 2010).  

It has been shown in vivo that constitutive Wnt activation, through conditional 

truncation of APC, deletion of GSK3-β, or overexpression of β-catenin in the 

gastric epithelium is sufficient to initiate gastric adenoma formation in both 

the antrum and corpus (Radulescu et al., 2013). Although loss of function of 

Apc or GSK3-β is unable to drive the adenomas to malignancy, hinting that Wnt 

plays a role in the initiation of tumorigenesis. Initial studies examining 

mutations within gastric tumours revealed somatic mutations in a region of 

chromosome 5q (Sano et al., 1991), a region that is frequently mutated in 

colorectal carcinoma (Vogelstein et al., 1988), and that was subsequently found 

to harbor the coding region of APC, the gene responsible for familial 

adenomatous polyposis (FAP) (Kinzler et al., 1991; Korinek et al., 1997; Morin 

et al., 1997; Su et al., 1992).  Loss of heterogeneity at 5q has been shown in 

approximately 40% of GCs regardless of histologic subtype (Rhyu et al., 1994). 
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Furthermore, spontaneous inactivation of Apc in the APCmin mouse model was 

found to promote the formation of gastric adenomas within the antral stomach 

(Gravaghi et al., 2008; Tomita et al., 2007).  

Somatic mutations of APC were further characterized in gastric tumours, 

demonstrating that only very well differentiated adenocarcinomas, and not less 

differentiated intestinal gastric tumors, contained APC mutations (Nakatsuru et 

al., 1992). The location of somatic APC mutations varied between tumours, 

giving rise to the idea that different subsets of tumours have different 

mechanisms to their carcinogenesis. However, it was later discovered that both 

major types of GC harbor APC mutations (Kim et al., 2010). A possible 

explanation for this discrepancy is that early work did not screen the entire 

APC gene, thereby possibly missing mutations in other locations of the APC gene 

that are observed in other types of GC (Nakatsuru et al., 1992). Studies using 

GC cell lines have shown mutations at codon 1450 of APC, which leads to 

truncation of the protein causing constitutive activation of Wnt/β-catenin 

signalling. This is characterized by nuclear localization of β-catenin and 

upregulation of TCF/LEF regulated transcription (Sasaki et al., 2001).  

There are over 1,000 known mutations in the APC gene (Béroud and Soussi, 

1996; Laurent-Puig et al., 1998), which makes it extremely challenging to 

translate knowledge of the specific genomic mutation into clinically relevant 

information. Adding to this complexity, it has been shown that even patients 

with identical mutations can develop varying clinical manifestations (Giardiello 

et al., 1994), suggesting that there may be additional contributing genomic and 

environmental factors. Even though somatic mutation of the APC gene is most 

commonly associated to the colon, it has frequently been observed in many 

other tissues (Rubinstein et al., 2020) with The Catalogue of Somatic Mutations 

in Cancer (COSMIC) includes a total of 65,672 samples from diverse tissue types, 

of which 5,928 are noted to contain APC variants. Currently (At time of query), 

the catalogue  contained 2,657 gastric carcinoma samples that had undergone 

APC testing, reporting 139 tumours with mutations (5.23%) (Forbes et al., 
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2017). The recent TCGA study contained 293 gastric samples with 17% reporting 

genetic alteration to the APC gene (TCGA, 2014). The role of APC mutation in 

the pathogenesis of gastric adenocarcinoma is less well-studied than in the 

colon, however, there is evidence from recent molecular profiling studies to 

support bi-allelic loss of APC as a potential driver (Lim et al., 2016). 

Due to the stomach and the colons proximity and shared role in digestion, one 

might expect similar APC mutational profiles, however, this is not the case. 

Within the TCGA dataset there are 43 APC mutations, 69% of all recorded 

mutations, that are unique to the stomach and not observed in colorectal 

adenocarcinoma genomic datasets. The remaining 31% of APC mutations are 

shared with the colon. Of note, the colon datasets record 309 different APC 

mutations, whereas there are only 63 recorded APC mutations for stomach. Of 

the 63 mutations recorded for the stomach, over 50% of them are truncating 

mutations (TCGA, 2014). Gastric and colonic APC variants also differ in genomic 

location across the gene. The frameshift and stop gain variants of the colon 

samples occurred almost exclusively in the 5’-portion of the gene, compared to 

a more uniform distribution in the gastric samples. In the colon samples, only 

1.4% occur after codon 1650 compared to 26% of the frameshift and stop gain 

variants in the gastric samples (Rubinstein et al., 2020). 

However, even in cancers with no detectable mutations to β-catenin or APC, 

the mRNA level of β-catenin is greatly enhanced (Ebert et al., 2002). This 

suggests that other more upstream components of Wnt signalling are being 

deregulated in GC, and understanding the mechanism by which they signal 

could lead to advances in therapy for GC. 

1.6.3 Dysregulation of Wnt signalling at the Plasma Membrane 

 Until recently, it was believed that mutations in APC, Axin and/or β-

catenin which cause constitutive activation of Wnt signalling cannot be 

modulated further by upstream components of the Wnt pathway. However, it 

has been demonstrated that the sFRP family of Wnt antagonist are frequently 

silenced via promoter hypermethylation in a variety of cancer, including GC 
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(Caldwell et al., 2004; Cheng et al., 2007; Suzuki et al., 2004). The silencing of 

sFRP via methylation is detected in preneoplastic gastric tissue and thus could 

be used as a biomarker for GC (Cheng et al., 2007). Transfection of Sfrp-1, -2 

or -5 successfully  suppressed TCF/LEF activity, which is sufficient to block 

proliferation and induce apoptosis in GC cell lines even in those harboring Apc 

and/or β-catenin mutations (Nojima et al., 2007). Building on this, one group 

has successfully reduced the size of gastric tumour xenografts by transfecting 

mice with sFRP2, thus demonstrating the potential for sFRP2 to act as a 

functional tumour suppressor (Cheng et al., 2007).  

Similar to other Wnt antagonists, frequent promoter methylation of Dkk-1 and 

subsequent down-regulation has been observed in GC cell lines and primary 

gastric tumours (Kagey and He, 2017). GC cells transfected with functional Dkk1 

lead to significant reductions in tumorigenicity (Yu et al., 2009). Similarly, GC 

cells enriched for CD44 expression, a gastric stem cell marker, were isolated 

and virally transfected with Dkk-1 to abrogate Wnt signalling. Successfully 

infected cells displayed large amounts of phosphorylated β-catenin in addition 

to the inhibition of TCF/LEF target gene expression. This correlated with 

decreased survival and invasiveness of GC cells (Wang et al., 2012b). The 

functionality of Dkk-1 was also assessed in vivo, where Wang et al. 

demonstrated that the size of CD44+ gastric tumour xenografts significantly 

diminished following administration of Dkk-1. This showed that there is a 

potential therapeutic benefit to treating GC stem cells with Dkk-1 and that 

modulation of upstream Wnt components can attenuate gastric tumorigenesis 

irrespective of downstream mutations (Wang et al., 2012b).  

Taking advantage of gastric stem cell markers allows the manipulation of 

signalling pathways exclusively in stem cell populations, thereby investigating 

the role stem cells play in disease etiology. The expression of gastric stem cell 

marker Lgr5 is observed at the base of gastric glands in both non-neoplastic and 

metaplastic gastric tissue (Barker et al., 2010b; Simon et al., 2012). Barker et 

al. used a well-characterized Lgr5-EGFP-IRES-CreERT2 mouse model to 
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conditionally truncate Apc from antral Lgr5+ stem cells. Following Apc 

truncation in these stem cells, elevated expression of nuclear β-catenin was 

observed at the base of the glands. This subsequently fueled the growth of 

highly proliferative gastric adenomas (Barker et al., 2010b). However, the 

development of the Lgr5+ gastric adenomas did not proceed,  due to activating 

Wnt mutations in Lgr5+ intestinal stem cells leading to a high tumour burden in 

the intestine and the animals having to be sacrificed (Barker et al., 2010b). 

Interestingly, analysis of GC patients revealed that the spatial distribution of 

Lgr5+ cells within the tumour mass correlates with patient survival (Simon et 

al., 2012). Patients with Lgr5+ cancer cells at the luminal surface lived longer 

(compared with Lgr5-negative cases at the luminal surface), while those with 

Lgr5+ tumour cells in the tumour center and at the invasive front lived shorter 

when compared with Lgr5-negative cases at these sites (Simon et al., 2012).  

Within the molecular classifications of gastric tumors, a significant proportion 

of chromosomal invasive tumors display mutations to Wnt pathway 

components; Apc, β-catenin and Rnf43 (TCGA, 2014). These findings were 

further supported from an Asian GC patient dataset reporting even higher 

incidence of somatic mutations to Wnt pathway components (Cristescu et al., 

2015). Of particular note, is the reported truncating mutation to the E3 

ubiquitin ligase, RNF43, found in 54% of microsatellite instable gastric tumours 

(Maruvka et al., 2017; Wang et al., 2014a).  

As previously mentioned, RNF43 together with ZNRF3 function to negatively 

regulate Wnt signalling via ubiquitinylation of Frizzled receptors, leading to 

their degradation (Hao et al., 2012; Koo et al., 2012). Loss of function (LOF) 

mutations to Rnf43/Znrf3 are associated with driving proliferation in GC, 

presumably by allowing FZD receptors to stabilize, become overexpressed on 

the cell surface, thus rending cells hypersensitive to Wnt ligands and leading to 

sustained Wnt signaling (Figure 1.9). However, this has not been functionally 

demonstrated in GC yet.  RNF43 mutations occur in high-grade dysplasia and 

GC or in carcinomas adjacent to adenomas, this indicates that RNF43 mutation 
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is one of the key events in the malignant transition of these tumours (Min et 

al., 2016; Spit et al., 2019). Diagnostically, RNF43 mutations leading to Wnt-

dependent tumours occur in early-stage gastric lesions (Min et al., 2016), which 

could be used to stratify patients who may benefit from compounds that block 

the secretion of Wnt ligands, which have substantial efficacy in other ‘Wnt-

addicted’ RNF43 mutant cancers (Jiang et al., 2013; Steinhart et al., 

2016).Similarly, RNF43 mutations have been shown to be frequently present in 

colorectal cancers. In patients carrying the germline mutations E318fs, RNF43 

was demonstrated to be inactivated by loss of heterozygosity or additional 

somatic mutations in polyps, giving rise to serrated polyps and tubular 

adenomas (Yan et al., 2017b).  

RNF43 was also shown to be differentially expressed in GIT tumours compared 

with healthy tissue. A study conducted in gastric and colorectal cancers showed 

down regulation of RNF43 in tumors that was associated with distant metastasis 

and TNM staging leading to poorer survival (Gao et al., 2017b). More recently, 

RNF43 hotspot mutations were reported in colorectal polyps and colorectal 

tumours, recurrence was found to be higher in patients with colorectal cancer 

harboring mutated RNF43 (Eto et al., 2018). These findings were confirmed for 

GC where RNF43 expression was positively correlated with better survival, and 

poorly differentiated adenocarcinomas were shown to lack RNF43 expression 

(Niu et al., 2015). This suggests that RNF43 plays an important role in tissue 

homeostasis in the GIT and that its alteration can lead to malignant 

transformation. Therefore, there has been great interest to elucidate the 

functional role of RNF43.  

In the context of the stomach, RNF43 overexpression has been shown to impair 

stem-like properties, and reduce proliferation and sphere formation capacity 

(Gao et al., 2017b) however until very recently there has been no formal 

investigation into the impact of RNF43 loss of function in the stomach. The 

recent study  reported that the loss of endogenous RNF43 function enhanced 

proliferation and initiated tumour growth of GC cells (Neumeyer et al., 2019). 
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This was investigated both in vitro and in vivo by depleting the expression of 

endogenous RNF43 in gastric cells. GC stably transfected with shRNA targeting 

RNF43 showed increased proliferative and invasive capacity in vitro. In an in 

vivo xenograft model, tumours derived from shRNF43 cells were larger than 

tumors from control cells, confirming that loss of RNF43 enhances tumour 

growth.  The authors generated mouse models to further investigate RNF43 but 

failed to induce a discernible phenotype using the Cre-Lox system (Discussed in 

further detail in chapter 4). They instead introduced a two-point mutation in 

the RING domain of RNF43. Organoids derived from the stomach of mice with 

mutations to RNF43 grew larger than organoids  that originated from stomachs 

of WT mice, supporting the tumour suppressor function of RNF43 in the stomach 

(Neumeyer et al., 2019). However, this study did not utilize a robust genetic 

knockout mouse model or assess the changes due to mutant RNF43 in a long-

term setting, making it less representative of tumors seen in a clinical setting. 

This study has confirmed that the gastric tissue homeostasis is altered in mice 

harboring point mutations disrupting the RING domain of RNF43. Importantly, 

it has still not been functionally demonstrated that the phenotypes associated 

with conditional deletion of RNF43 is due to deregulation of FZD and if 

phenotypes can be rescued with co-deletion of RNF43 and a FZD gene. This 

would allow further characterization of GC due to loss of RNF43 and help 

identify which other members of the Wnt signalosome may be working together 

to lead to GC.  
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Figure 1.9 Model for mode of action for RNF43 LOF mutants. (Left) RNF43performs 
a bi-functional tumour suppressor role by 1. Targeting Wnt receptors for endocytosis 
and lysosomal degradation, and 2. By transiently interacting with the destruction 
complex to reconstitute its activity in the cytosol and re-establish Wnt pathway 
inhibition. (Right) LOF mutations prevent RNF43 function at the plasma membrane, 
leading to Wnt receptor overexpression and consequently hypersensitivity of cancer 

cells to Wnt.   



Chapter 1: Literature Review 

62 
 

A member of the signalosome that may also be involved is LRP6, the co-receptor 

for Wnt activation. LRP6 has been frequently overexpressed in colorectal, 

breast and liver adenocarcinoma in association with increased Wnt/β-catenin 

signalling (de Voer et al., 2016; Liu et al., 2010; Tung et al., 2012). LRP5/6 is 

amplified in approximately 14% of GC (TCGA, 2014) and may play a part in 

oncogenic Wnt signalling and may be upregulated along with Frizzled receptors 

in GC, although investigations into LRP5/6 functional role in GC are scarce.. 

What has been elucidated is that infection of gastric epithelial cells with 

H.pylori induces rapid phosphorylation of LRP6 and downstream activation of 

Wnt/β-catenin signalling (Gnad et al., 2010). Furthermore, curcumin and 

pantoprazole (proton pump inhibitors) have demonstrated inhibitory effects on 

the growth of GC (Shen et al., 2013; Zheng et al., 2017).  

In the classical model, the role of APC is limited to β-catenin proteolysis 

however, a recent study has reported that APC inactivation can induce ligand-

independent LRP6 signalosome formation via clathrin-mediated endocytosis 

(Saito-Diaz et al., 2018). Endocytosis is required for sustained Wnt/β-catenin 

signal activation and endocytosis of the LRP5/6-FZD receptor complex occurs 

quickly after Wnt binding (Gagliardi et al., 2014).  This suggests that, without 

Wnt ligands, APC inhibits receptor activation via the clathrin pathway, thus, 

providing a new model for the mechanism by which the Wnt pathway is 

aberrantly activated upon APC loss with the assistance of LRP6. Consistent with 

this proposed new model, secreted inhibitors such as sFRP-1, which binds and 

sequesters Wnt ligands are not capable of inhibiting Wnt signalling in APC 

mutant cells. This is in contrast to DKK-1, which binds directly to LRP6 to inhibit 

signaling via disruption of the LRP6-FZD complex or promote the internalization 

of inactive LRP6 (Yamamoto et al., 2008). It has also been  demonstrated that 

loss of APC could induce the formation of the Wnt signalosome (Saito-Diaz et 

al., 2018), suggesting that multiple signalosome components mediate the 

aberrantly increased signalling resulting from APC loss. These components, 
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including FZD receptors, need to be investigated further to understand the 

unique role they each play to induce Wnt signalling in GC.  

Therefore, LRP5/6 could represent a promising actionable target for cancer 

therapy. For instance, LRP6 monoclonal antibodies targeting Wnt3 binding site 

potently reduced the proliferation and growth of APC-Mutant intestinal 

tumoroids (Saito-Diaz et al., 2018). Unfortunately, LRP6 extracellular domain 

is divided into two functional entities which bind either WNT1 or WNT3 

glycoproteins. Therefore, the use of an antibody targeting the WNt3 binding 

site of LRP6 can sensitize cells to Wnt1 ligands most likely due to antibody-

mediated LRP6 dimerization. Hence, it is necessary to develop specific domain 

antibodies to selectively inhibit LRP6 activation by certain classes of Wnts while 

leaving the binding of other Wnt ligands unchanged, limiting potential side 

effects. Excitingly a group has very recently identified a single-domain antibody 

fragments (VHH) that specifically bind the Wnt3-binding site (Fenderico et al., 

2019). They have been able to show that by inhibiting cellular responses to 

Wnt3a but not those to Wnt1, their anti-LRP5/6 VHHs efficiently block Rnf43 

mutant intestinal organoid growth and survival (Fenderico et al., 2019). 

Targeting specific regions of LRP6 may represent a potential strategy to reduce 

β-catenin-dependent signaling in tumors, without altering other Wnt functions. 

Frizzled receptors, particularly FZD7, also play a key role in the aberrant Wnt 

signalling associated with GC, this will be discussed in detail in the next section.   

Taken together current research suggests that Wnt signalling can be further 

modulated at the level of the ligand/receptor irrespective of downstream 

mutations that constitutively activate the pathway. Furthermore, a role for 

Wnt/FZD in gastric cancer as a therapeutic target is made more attractive by 

the observation of aberrant expression of Wnts and FZD receptors in gastric 

tumours (Flanagan et al., 2017b, Mao et al., 2014). Additionally, it has been 

recently demonstrated in gp130F/F mice, which develop Stat3-dependent 

gastric tumors, that they display high Wnt signalling despite there being no 
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mutations to the intracellular components of the Wnt pathway (Flanagan et al., 

2019a). 

1.6.4 The role of Frizzled Receptors in GC 

 There is an ever-growing body of evidence demonstrating that mutations 

at the level of Wnt receptors play a significant role in GIT tumorigenesis. Each 

of the Frizzled receptors is intimately linked to one or more cancer type, 

commonly through up-regulation of a specific FZD receptor (Table 1.4). With 

respect to the role of FZD receptors and GIT cancers, including GC, FZD7 has 

been shown to be commonly over-expressed. Targeted inhibition of FZD7 within 

colon cancers has greatly attenuated various cancer hallmarks (Gurney et al., 

2012; Ueno et al., 2009; Vincan et al., 2007a; Vincan et al., 2005). FZD7 is 

located on human chromosome 2q33 and contains 3869 nucleotides that are 

translated into a 574 amino acid seven-transmembrane protein that contains a 

N-terminal extracellular CRD and a C-terminal cytoplasmic PDZ domain. FZD7 

is expressed in a wide variety of tissues such as adult skeletal muscle, heart, 

brain, placenta, kidney and lung (Sagara et al., 1998; Ueno et al., 2013). 

However, of the 10 FZD family members, FZD7 is the only evolutionary 

conserved family member that regulates developing gastrointestinal systems 

(Minobe et al., 2000), where FZD7 has a critical role in controlling tissue 

separation during gastrulation (Winklbauer et al., 2001). 

GC displays aberrant Wnt/β-catenin pathway activation and although many of 

the genetic mutations contributing to hyperactive Wnt signalling originate from 

intracellular components, it is highly likely that additional modulation of the 

Wnt pathway can come from upstream signalling components. This hypothesis 

is strengthened by being demonstrated in CRC (Caldwell et al., 2004; Suzuki et 

al., 2004) and the fact that FZD7 has recently been implemented in regulating 

tumourigenesis and growth in the stomach (Flanagan et al., 2019a). FZD7 is 

abundantly expressed in human gastric tumours (Flanagan et al., 2017a; 

Kirikoshi et al., 2001b), which is also associated with poor patient outcome (Li 

et al., 2018). In spite of compelling evidence implicating FZD receptors in GC, 
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there has been no formal investigation, until now, of the therapeutic benefit 

of targeting FZD receptors in GC in vivo.  

These type of investigations are especially important as FZD7 is capable of 

transducing both canonical and non-canonical Wnt signalling, which means that 

FZD7 can regulate cancer hallmarks associated with both signalling arms such 

as proliferation, evasion of apoptosis, angiogenesis and invasion (Asad et al., 

2014; Vincan et al., 2007a). FZD7 has been shown to regulate many cancers, 

for example, in hepatocellular carcinoma (HCC) ~70% display elevated nuclear 

β-catenin (Wong et al., 2001) showing a role for canonical Wnt signalling. 

Despite intracellular components of the Wnt pathway, such as Axin1 and β-

catenin, are mutated in some cases of HCC, they are not sufficient to account 

for the high frequency of Wnt pathway activation observed. Illustrating 

activation of the pathway at the level of the ligand/receptor. FZD7 is frequently 

overexpressed in HCC and has been shown to interact with Wnt3a to transmit 

canonical Wnt signalling in HCC (Kim et al., 2008b).  

Wnt signalling is known to regulate the development and homeostasis of the 

breast and is deregulated in breast cancer (Zeng and Nusse, 2010). FZD7 is 

overexpressed in aggressive triple negative breast cancer (Yang et al., 2011) 

and knockdown of FZD7 via shRNA was able to inhibit migration, colony 

formation and xenograft growth of human breast cancer cells which was 

associated with reduced canonical Wnt signalling (Yang et al., 2011). 

Additionally, FZD7 expression is regulated by breast cancer stem cells  with 

SIRT1, an NAD+ -dependent deacetylate positively regulating FZD7 mRNA and 

protein levels, promoting cell migration and proliferation (Simmons et al., 

2014). Inhibition of SIRT1 significantly reduced FZD7 levels and reversed the 

aggressive tumourigenic effect of FZD7 overexpression in breast cancer cell 

lines (Simmons et al., 2014).  

Knockdown of FZD7 using siRNA has also been shown to inhibit proliferation of 

human ovarian adenocarcinoma cell lines (Asad et al., 2014). Interestingly, 

inhibition of FZD7 in ovarian cancer resulted in an increase in the level of 
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canonical signalling, whilst non-canonical signalling components were down-

regulated (Asad et al., 2014). This demonstrates that FZD7 is likely regulating 

ovarian cancer cell growth via the Wnt/PCP pathway and illustrates FZD7s 

ability to transmit signals via both canonical and non-canonical pathways.  

Nuclear β-catenin is observed in ~70% of cervical tumours, however, mutations 

to APC and β-catenin are rare in this cancer (Shinohara et al., 2001) suggesting 

Wnt signalling is activated at the level of the receptor. Inhibition of FZD7, via 

shRNA, reduced invasion and EMT in cervical cancer cell lines in vitro and the 

phenotypes observed were associated with changes in the regulation of EMT 

markers including E-Cadherin, Vimentin and Snail (Deng et al., 2015). 

FZD7 has also been shown to regulate intestinal cancer even in those which 

harbor mutations to APC. Inhibition of FZD7 using a dominant negative 

extracellular domain is able to block the growth of human colon cancer cells in 

vitro and in xenograft experiments with stably transfected SK-CO-1 cells 

(Vincan et al., 2005). FZD7 also plays a predominant role in transmitting Wnt 

signalling in intestinal LGR5+ stem cells during homeostasis and regeneration 

(Flanagan et al., 2015b). Conditional deletion of Fzd7 in intestinal organoids 

resulted in crypt atrophy and death, whist conditional deletion of Fzd7 in 

specifically the Lgr5+ stem cells triggered rapid epithelial repopulation in 

transgenic mice (Flanagan et al., 2015b). This demonstrates that FZD7 is critical 

for intestinal stem cell function. FZD7 is also involved in the regulation of 

metastasis by regulating EMT in intestinal cancers (Vincan and Barker, 2008). 

Expression of dominant negative FZD7 in human SK-CO-1 cells blocked growth 

in xenograft experiments and induced morphological changes suggesting FZD7 

promotes MET (Vincan et al., 2005). 

Until now the role of FZD7 in GC has not been functionally investigated and the 

role of FZD in vivo was not known. These data suggest that therapeutic 

targeting of FZD7 could be advantageous in the treatment of GC as it could 

block all tumorigenic hallmarks associated with aberrant canonical and non-

canonical Wnt signalling. 
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Frizzled Wnt Signalling Over-expressed in cancer Reference 

FZD1 
Wnt/β-catenin 

 

Pancreas and 
neuroblastoma 

 

(Flahaut et al., 
2009; Yang et al., 

2018b) 

FZD2 
Wnt/β-catenin 
& Wnt/Ca2+ 

 

Wilms tumour, 
endometrial and lung 

 

(Bian et al., 2016; 
Gujral et al., 2014) 

FZD3 

Wnt/β-catenin 
& Wnt/Ca2+ 

(PKA) 
 

Colon, hepatocellular 
carcinoma and breast 

 

(Bengochea et al., 
2008; Mo et al., 

2019; Wong et al., 
2013) 

FZD4 
Wnt/β-catenin 

 

Cervical, acute myeloid 
leukemia(Thiele et al., 

2015) and prostate 
 

(Gupta et al., 2010; 
Ma et al., 2017; 

Tickenbrock et al., 
2008) 

FZD5 
Wnt/β-catenin 

 
Kidney and prostate 

 

(Peterson et al., 
2017; Thiele et al., 

2015) 

FZD6 
Wnt/Ca2+ 

 

Squamous cell 
carcinomas and breast 

 

(Corda and Sala, 
2017; Corda et al., 

2017) 

FZD7 

Wnt/β-catenin 
& Wnt/Ca2+ 

(JNK) 
 

Esophageal, gastric, 
hepatocellular, colon and 

Wilms’ tumor 
 

(Cao et al., 2017; 
Dekel et al., 2006; 
Merle et al., 2004; 
Ueno et al., 2009; 
Van Cutsem et al., 

2016) 

FZD8 
Wnt/β-catenin 

 

Renal cell carcinoma, 
prostate and lung 

 

(Murillo-Garzón et 
al., 2018; Wang et 
al., 2012a; Yang et 

al., 2017) 

FZD9 
Wnt/Ca2+ (ERK) 

 

Osteosarcoma and 
astrocytoma 

 

(Wang et al., 
2017c; Zhang et 

al., 2006) 

FZD10 

Wnt/β-catenin 
& Wnt/Ca2+ 

(JNK) 
 

Colon and synovial 
sarcoma 

(Nagayama et al., 
2005; Nagayama et 

al., 2009) 

Table 1.4 Frizzled receptor up-regulation in cancer. 
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1.6.5 Oncogenic Wnt signalling & GC metastasis 

 Approximately 50% of patients with advanced GC die from recurrence 

and metastasis, even after curative surgery and chemotherapy (Zhou et al., 

2017). Therefore, it is important to understand the underlying mechanisms of 

GC metastasis and how these could be exploited for therapeutic gain. Wnt 

signalling has been implemented in multiple aspects of the process of 

metastasis in many cancers, including GC (Zhan et al., 2017). The process of 

EMT is a key step in the metastasis cascade, allowing tumour cells to adopt a 

more mesenchymal phenotype. The mechanism underlying the initiation of EMT 

in GC is unknown, however it has been investigated in other cancer settings. 

For example, it has been shown that the cytoplasmic concentration of SNAI2 

(EMT transcription factor) is regulated by GSK-3β phosphorylation and 

subsequent ubiquitination by β-TrCP in breast cancer. Activation of Wnt/β-

catenin signalling stabilizes SNAI2 by inhibiting GSK-3β kinase activity and 

initiates EMT (Wu et al., 2012). This highlights Wnt/β-catenin pathway as a key 

pathway involved in EMT and there, plays a critical role in metastasis. In the 

context of GC, an important player is Wnt-5a, which stimulates cell migration 

and invasion of GC cells through regulation of focal adhesion complexes by 

activating  the small GTP-binding protein Rac (Kurayoshi et al., 2006). Wnt5a 

also contributes to GC progression by inducing expression of laminin  γ2, which 

increases metastatic potential (Yamamoto et al., 2009).  

It has previously been reported that loss of CDH1 (E-cadherin), through loss of 

heterozygosity or promoter methylation, activates Wnt signalling by unleashing 

membrane-bound β-catenin, which in turn, activates Wnt/catenin signaling 

(Gottardi et al., 2001; Orsulic et al., 1999). With recent genomic data 

suggesting that while CDH1 can act as an independent cancer driver in GC in 

some cases, it more commonly acts in concert with other driver mutations, such 

as TP53 to gain a cancer phenotype. Additionally, diffuse-type GC requires 

CDH1 mutations in addition to other molecular aberrations including RHOA and 

RNF43 mutations in order to gain diffuse-type GC characteristics (Nanki et al., 
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2018). Therefore, understanding the other molecular components that are 

involved will be vital for identifying novel drug targets. 

It has recently been demonstrated that LGR5 is a positive regulator of GC 

metastasis attributed to its indispensable role in regulating cytoskeletal 

reorganization and Wnt responses in GC cells (Wang et al., 2018). LGR5 

overexpression is a signature mark of the stem cells derived from the stomach 

(Nakata et al., 2014) and therefore plays a role in the maintenance of stemness 

and, so its overexpression is likely linked to metastasis. LGR5 expression has 

been correlated with GC progression (Wu et al., 2013). This new data linking 

LGR5 to GC metastasis through activation of Wnt/β-catenin signaling helps 

explain the underlying molecular mechanism of LGR5 overexpression during GC 

development and metastasis. The study demonstrated that LGR5 upregulated 

the expression of β-catenin and affected the subcellular localization of β-

catenin in GC cells (Wang et al., 2018). Therefore, this data indicates that 

LGR5-mediated Wnt signaling results in the accumulation and translocation of 

β-catenin to the nuclei, driving a positive feedback activation of the Wnt 

pathway and enhancing and maintaining GC progression. The exact molecular 

details of this regulation require further clarification and may involve other 

members of the Wnt pathway signalosome, such as FZD receptors. 

FZD7 has been demonstrated to regulate gastric epithelium and be 

overexpressed in GC (Flanagan et al., 2017a; Kirikoshi et al., 2001b). Therefore, 

it is likely to be implicated in GC progression. FZD7 has been studied in more 

detail in the setting of the colon and it has been reported that down-regulation 

of FZD7 expression leads to a decrease in the metastatic capabilities of colon 

cells (Ueno et al., 2009). FZD7 is has also been reported to be required for 

metastatic growth of melanoma cells (Tiwary and Xu, 2016). A recently study 

in GC showed that over-expression of FZD7 was associated with GC metastasis, 

advanced clinical stages and poor patient prognosis (Li et al., 2018). Therefore, 

FZD7 is a likely candidate for facilitating GC progression. FZD receptors are 

known critical factors for EMT processes. For example, Wnt5a/FZD2-medicated 
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non-canonical signaling drives EMT in the lung, liver, breast and colon (Gujral 

et al., 2014). FZD4 ablation induces active β1-integrin and E-cadherin 

expression highlighting its role in regulating EMT and cell adhesion in prostate 

cancer (Gupta et al., 2010). Down regulation of FZD7 expression significantly 

inhibited cell invasion and migration, accompanied with a decrease in vimentin 

and snail, and an increase in E-cadherin in cervical and ovarian cancers (Asad 

et al., 2014; Deng et al., 2015). Additionally, Wnt3a-FZD7 signaling is up-

regulated in hepatocellular carcinoma (Kim et al., 2008b) and over-expression 

of FZD7 promoted cell mobility, metastasis and EMT in esophageal cancer (Cao 

et al., 2017). Fzd7 has also been shown to regulate MET in CRC cells (Vincan et 

al., 2007a).Therefore, given its role in GC initiation and growth, investigating 

the role of FZD7 in the context of GC metastasis is of great interest.  
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Wnt 
Component 

Role in GC Reference 

Cytoplasmic   

APC 
Mutated/deep deletion in GC patient datasets. 

Promoter hypermethylation in high grade gastric 
adenomas. 

(Wang et 
al., 2012c) 

β-catenin 

Endogenous nuclear expression seen in 13/15 GC 
cell lines with a subsequent increase in TCF/LEF 

transcriptional activity. 
Abnormal nuclear expression seen in high grade 

gastric adenomas. 

(Nojima et 
al., 2007; 
Wang et 

al., 2012c) 

AXIN2 
miR-544a targeted protein downregulation in GC 

cells. 
30% of MSI high GCs have a frameshift mutation. 

(Flanagan 
et al., 
2017b; 

Yanaka et 
al., 2015) 

Gsk3β 
Genetic deletion causes rapid gastric tumor 

formation in mice. 

(Radulescu 
et al., 
2013) 

Wnt target 
genes 

  

MYC 
Gene amplification in GC patient samples. 
GC cells and mouse adenoma show gene 

upregulation in an Fzd7-dependent manner. 

(Flanagan 
et al., 
2017b) 

LGR5 
Overexpression regulates GC cell proliferation, 

migration, and invasion. 
(Wang et 
al., 2018) 

Wnt ligands   

WNT1 
Upregulated in human GC tissue. Overexpression 

accelerates gastric cancer stem cells. 
(Mao et al., 

2014) 

WNT2b Upregulated in GC tissue. 
(Katoh et 
al., 2001) 

WNT3a Upregulated in gp130F/F gastric tumors. 
(Flanagan 

et al., 
2019a) 

WNT5a 
High protein expression in GC patient samples, 
positively associated with the depth of tumor 
invasion and degree of lymph node metastasis. 

(Saitoh et 
al., 2002) 

WNT6 
Upregulated in GC patient samples and GC cell 

lines. Expression positively correlated with tumor 
stage and node status. 

(Yuan et 
al., 2013) 

WNT10a Upregulated in GC cells and primary GC tissue. 
(Kirikoshi 

et al., 
2001b) 

Table 1.5 Wnt pathway mutations in GC. 
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Wnt 
antagonists 

  

DKK1 Hypermethylated in GC patient samples. 
(Wang et 

al., 2013a) 

DKK2 
Hypermethylated in GC patient samples + gene 

transcripts lower in GC patient samples. 
(Wang et 

al., 2017a) 

sFRP2 
Concurrently hypermethylated with DKK2 + gene 

transcripts lower in GC patient samples. 
(Wang et 

al., 2017a) 

Wnt 
receptors 

  

RYK co-
receptor 

High expression correlated with poor 
differentiation, high TNM stage and liver 

metastasis in GC patients. 

(Fu et al., 
2020) 

RNF43 
Truncating mutation in MSI GC tumors. Protein 

expression is significantly lower in GC cells than 
normal gastric epithelial cells. 

(Niu et al., 
2015; Wang 

et al., 
2014b) 

FZD2 
Upregulated in GC cells (TMK1, MKN7, MKN28, 

MKN45, MKN74, and KATO-III) and in 4/10 primary 
GC tissue. 

(Kirikoshi 
et al., 
2001a) 

FZD5 Upregulated in GC cells (MKN45). 
(Kirikoshi 

et al., 
2001a) 

FZD7 

Overexpression is seen in late-stage clinical GC, 
correlating with a decrease in survival time. 

Knockdown significantly reduces GC cell 
proliferation, migration, EMT, and expression of 

stem cell markers. 

(Li et al., 
2018) 

FZD8 Upregulated in 4/10 primary GC tissue. 
(Kirikoshi 

et al., 
2001a) 

FZD9 Upregulated in 2/10 primary GC tissue. 
(Kirikoshi 

et al., 
2001a) 
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1.7 Aims of thesis 

The overarching aim of this thesis is to examine the function of the Wnt 

receptor, Frizzled-7 (FZD7), in the context of gastric cancer. These studies will 

provide valuable insight into the role of Wnt/FZD7 signalling in the growth and 

metastasis of gastric cancer and allow assessment of the therapeutic benefit of 

targeting Wnt signalling at the level of the receptor for treatment of advanced 

gastric cancer. The main research aims of this thesis are as follows:  

1.7.1 Aim 1.  

 It has recently been demonstrated that FZD7 is the predominant Wnt 

receptor responsible for regulating stem cell function and maintaining gastric 

homeostasis. In addition, FZD7 is abundantly expressed in human gastric 

tumours. Therefore, in chapter 2 the functional role of FZD7 in the growth of 

gastric cancer cells will be examined both in vitro and in vivo.  

1.7.2 Aim 2.  

 The majority of gastric cancer patients present with advanced 

metastatic disease with limited treatment options. In chapter 3 the role of FZD7 

in the metastasis of gastric cancer will be investigated, both genetically and 

pharmacologically, to assess its potential as a target for the treatment of 

advanced disease in such patients.  

1.7.3 Aim 3.  

 Although many aspects of Wnt signalling are well characterized, our 

knowledge of the whole pathway remains incomplete. FZD7 forms co-receptor 

complexes with a variety of extracellular receptors making the activation of 

Wnt signalling complex. Inactivating mutations to the extracellular E3 ligases 

RNF43/ZNFR3 are associated with driving proliferation in gastric tumours. 

However, the functional role of RNF43/ZNFR3 in gastric cancer has not been 

elucidated. Chapter 4 aims to investigate the functional significance of 

RNF43/ZNFR3 mutations in gastric cancer development by characterization of 

tumours from novel mouse models in which RNF43/ZNFR3 are conditionally 

deleted in the gastric epithelium.
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2. Materials & Materials    

2.1 Cell Culture 

2.1.1 Cell lines 

 The human gastric cancer cell lines MKN45 and MKN28 were purchased 

from ATCC and were sent to Eurofins Medigenomics, who performed 

independent, off-site analysis using PCR-single-locus-technology to confirm 

their authenticity. All cell lines were maintained in RPMI supplemented with 

10% foetal bovine serum (Invitrogen) and 1% Penicillin Streptomycin (Invitrogen) 

and incubated at 37°C and 5% CO2. Cells were grown in 5 mL for T25 or 10 mL 

for T75 tissue culture flasks (Nunc, Leics, UK) with growth media changed every 

2-3 days and cells passaged regularly when confluent. 

2.1.2 Passaging cells 

 When cells become 80-90% confluent they were split at a ratio of 1:5. 

Media was aspirated, and cells were washed with phosphate-buffered saline 

(PBS) (Invitrogen) to remove any remaining media. 1 mL of 0.25% trypsin/EDTA 

(Invitrogen) was added to the flask and left to incubate at 37°C for 5-10 minutes 

until the cells became detached. Cell detachment was confirmed by 

microscopic observation, before adding 4 mL of media to inactivate trypsin 

activity. Cells were then split at an appropriate ratio, with remaining cells 

carefully discarded, re-plated for cell-based assays, or harvested for analysis. 

2.1.3 Long term storage 

 Cells were detached from culture flasks as previously described in 

section 2.1.2. Following trypsin inactivation cells were centrifuged at 1200 rpm 

for 5 minutes at room temperature. The supernatant was removed and 

resuspended in complete growth medium containing 10% dimethyl sulfoxide 

(DMSO; Sigma, UK) and aliquoted into 1 mL cryo-tubes (Nunc). Cells were then 

slowly frozen at -80°C in a cryo-freezing vessel containing isopropanol (Fischer 

Scientific) for 24 hours before being transferred to liquid nitrogen storage.  
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2.1.4 Raising cells from storage 

 Cells stored in liquid nitrogen were transferred into dry ice before being 

thawed in a water bath at 37°C until 90% thawed. Cells were then transferred 

to a 15 mL falcon tube (Nunc) containing 3 mL of complete growth medium and 

centrifuged at 1200 rpm for 5 minutes. The supernatant was then removed, 

with the pelleted cells resuspended in normal growth medium before being 

plated into a T25 culture flask. 

2.1.5 Cell seeding 

 Following cell detachment, non-passaged cells were collected in a 15 mL 

falcon tube and pelleted at 1200 rpm for 5 minutes and then resuspended in 1 

mL of growth media. Cells were counted using a haemocytometer, 10 μL of 

single cell suspension was added to the haemocytometer chamber and counted 

by eye. Cells were then diluted accordingly with growth media and seeded into 

appropriate culture plates depending on the assay being performed. 
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2.2 Transfection of cell lines 

2.2.1 Plasmids 

 In order to knockdown FZD7 in respective cell lines, gastric cancer cells 

were transfected with a retroviral construct designed to specifically knockdown 

endogenous FZD7 expression. Short-hairpin RNA (shRNA) construct designed to 

knockdown FZD7 has previously been described (Vincan et al., 2007b). Briefly, 

RNAi targeting sites in human FZD7 coding sequence (accession number 

NM_003507) were selected using siRNA TEMPLATE DESIGN TOOL (Ambion, 

Austin, TX, USA) and verified by Blast search. shRNA coding oligos were 

designed and cloned into BgIII and HindIII sites of the pRETROSUPER vector (gift 

from Reuven Agami, Amsterdam, The Netherlands). Plasmids were tested for 

efficiency of FZD7 mRNA depletion and, of possible targeting sites that met the 

Ambion criteria. ShFZD7 targeting sequences are shown in Table 2.1. In order 

to overexpress FZD7 in respective cell lines, gastric cancer cells were 

transfected with a plasmid that contained full-length FZD7 (a gift from Masaru 

lab). FZD7 cDNA (Figure 2.1) was first cloned into the cloning vector, pUC118 

using PstI sites (Sagara et al., 1998) after which it was sub-cloned into the 

pCDNA3.1 expression plasmid. Scramble shRNA were used as controls. 

2.2.2 Transient transfection  

 Plasmids were transiently transfected into gastric cancer cells seeded to 

be 70-90% confluent in 24-well plates using appropriate amounts of 

lipofectamine 3000, p3000 and Opti-MEM (Table 2.2). After 24 hours of 

incubation cells were harvested for assays or analysis. FZD7 remained knocked 

down for 10-12 days. shRNA was used instead of siRNA due to availability in the 

lab and budgets. The shRNA had been used for previous projects leading onto 

this one. 
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Sense 

Oligo 

5’-GATCCCCGTACCTGATGACCATGATCTTCAAGAGAGATCATGGT 

CATCAGGTACTTTTTGGAAA-3’ 

Antisense 

Oligo 

5’-AGCTTTTCCAAAAAGTACCTGATGACCATGATCTCTCTTGAAGA 

TCATGGTCATCAGGTACGGG-3’ 

Transfection Reagent Volume per well 

DNA 500 ng 

Lipofectamine 3000 1.5 µL 

p3000 reagent 1 µL 

Opti-MEM 50  µL 

Figure 2.1 Schematic representation of FZD7 cDNA. The coding region is 

depicted as an open box, the noncoding region as a solid bar. FZD7 has 3 PstI 

sites.   

Table 2.2 Transfection volumes 

Table 2.1 shFZD7 targeting sequence, italics indicate the 9-bp hairpin 
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2.3 Cell Based Assays 

2.3.1 CellTiter-Glo Assay 

 For growth assays, cells were plated in a 96-well plate format at 10,000 

cells/well and treated with appropriate inhibitors for 24 hours. Cells were lysed 

with CellTiter-Glo® Luminescent Cell Viability Assay Reagent (Promega) and 

luminescence was read using a Clariostar plate reader (BMG Labtech). 

Percentage cell growth was calculated relative to DMSO treated control cells.  

2.3.2 Soft Agar Colony Forming Assay 

 Human gastric cancer cells were transfected as described in section 2.2 

or treated with 80 µg/mL OMP-18r5, 1 µM LGK-974 or vehicle.  Following 

transfection (or wild-type cells for drug-treated cohorts) cells were washed in 

PBS, detached from the culture dish surface with 0.25% trypsin/EDTA and 

resuspended in RPMI as single cells. Single cells were counted with a 

haemocytometer and mixed in 0.5% agar/RPMI culture medium, pre-warmed to 

37°C, for a final concentration of 500 cells/well and plated into 24-well tissue 

culture plates. Once the agar/cell suspensions solidified, cultures were overlaid 

with RPMI culture medium (containing drugs for drug-treated cohorts) and 

incubated at 37°C in 5% CO2 for 14 days. Drugs and media were refreshed every 

7 days. Colonies (≥50 cells) were counted by eye and images taken on a 

dissecting microscope.  

2.3.3 Migration Assays 

 Transwells with 8.0 μm pores were placed in 24-well culture dishes and 

single cells that had been incubated for 24 hours with 80 μg/mL OMP-18R5 or 

transfected with shFZD7 were resuspended in serum free RPMI media and 

seeded on the top of a Transwell insert (Figure 2.2). 5%-FBS-RPMI media was 

placed in the base of the well to act as a chemoattractant. Cells were again 

treated with 80 μg/mL OMP-18R5 (Drug experiments only; not shRNA 

experiments) and left to migrate for 24 hours.  Experiments were performed in 

duplicates. After 24 hours, the Transwells were washed in PBS, fixed in 70% 

EtOH and stained with 0.2% crystal violet. The filter of the Transwell was then 
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carefully removed and mounted onto a microscope slide. Experiments were 

performed in duplicate and three random fields of view per replicate were 

counted (with ImageJ) and the average taken.  

2.3.4 Invasion Assays 

For invasion assays, the same protocol was followed with the addition of a 100 

μL layer of Matrigel on top of the Transwell filter to mimic the extracellular 

matrix. The Matrigel was left at 37°C until set, the Matrigel was then 

rehydrated with serum-free media and GC cells seeded on top (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Migration Invasion  

Figure 2.2 Experiment set up for migration and invasion Transwell assays.  
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2.3.5 EMT stimulation 

 Human gastric cancer cell lines were induced from an epithelial to a 

mesenchymal state using StemXVivo media supplement (R&D systems), which 

contains a mixture of recombinant proteins and neutralizing antibodies (Table 

2.3). Cells were seeded into chamber slides (Nuch, Lab-Tek) at a concentration 

of 0.01x106 cells/mL in 200 μL of growth media. Attached cells were then 

treated with 2 μL of 100x StemXVivo to make a final 1x concentration. Cells 

were left to culture for 2 days before media was replaced with fresh EMT 

inducing supplement. After a further 3 days of culture cells were harvested for 

endpoint assays.  

2.3.6 Fluorescence immunocytochemistry 

 Following treatment, cells were gently washed in PBS and fixed in 4% 

paraformaldehyde for 10 minutes. The fixative was removed, and the cells were 

washed with PBS. The cells were permeabilized with 200 μL of 0.2% Triton x100 

PBS and left for 5 minutes at room temperature before being washed 3x with 

PBS. Cells were then blocked with 1% BSA in PBS for 30 minutes at room 

temperature. The blocking buffer was removed and primary antibody (Vimentin 

1:300, EpCAM 1:100) was added and the cells were incubated overnight at 4°C 

in the dark. The following day the primary antibody was removed, and cells 

were washed 3x for 5 minutes in PBS. The secondary antibody (Alexa Fluor 488 

or 594, 1:400) and DAPI (1:200) was added and cells were left to incubate for 1 

hour in the dark. Cells were washed in PBS and mounted using Mowiol mounting 

solution. Cells were imaged using a fluorescent microscope. 
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StemXVivo media supplement contents 

Recombinant human Wnt-5a protein 

 

Recombinant Human TGF-beta1 protein 

 

Anti-Human E-cadherin antibody 

 

Anti-Human sFRP-1 antibody 

 

Anti-Human Dkk-1 antibody 

Table 2.3 Components of StemXVivo media supplement.  
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2.4 In vivo experiments 

2.4.1 Gastric cancer xenografts 

 A total of 4x106 human gastric cancer cell lines MKN45 or MKN28 in 100 

μL of PBS were injected subcutaneously into the hind flanks of female 6-8-

week-old nude mice (nu(ncr)-foxn1 nu/nu). 7 mice were used for each cohort 

which were treated with 20 mg/kg OMP-18R5 or vehicle control (2.5% DMSO + 

IgG) twice weekly via intraperitoneal injection. Xenografts were measured with 

calipers twice a week to monitor tumour growth. All animal work was 

conducted according to the UK Home Office regulations under valid personal 

and project licenses and in accordance with the Animal [Scientific Procedures] 

Act 1986. Experimental procedures were carried out in designated procedure 

rooms.   

2.4.2 In vivo peritoneal dissemination model 

  5x106 MKN45 or 10x106 MKN28 human GC cells suspended in PBS were 

injected into the peritoneal cavity of female athymic nude mice (nu(ncr)-foxn1 

nu/nu), aged 6-8 weeks. Mice were treated daily with 1.5 mg/kg LGK-974, 3 

mg/kg LGK-974 or vehicle control (DMSO + IgG) via oral gavage. After 4 weeks 

the mice were sacrificed and the tumour burden harvested and quantified by 

weight.  All animal work was conducted according to the UK Home Office 

regulations under valid personal and project licenses and in accordance with 

the Animal [Scientific Procedures] Act 1986. Experimental procedures were 

carried out in designated procedure rooms.   

2.4.3 Experimental Animals 

Mice were interbred to generate compound mice with appropriate 

alleles. The RNF43-FLOX-ZNRF3-FLOX (background strain: C57BL/6J) mice were 

generated at the MRC Harwell Institute (Koo et al., 2012). The Claudin18CreERT2 

mice (Unpublished data) were a gift from Nick Barkers’ lab. To generate the 

Cldn18 knock-in, an IRES-CreERT2 cassette was inserted at the 3’UTR by 

homologous recombination in embryonic stem cells. To generate the construct 

Cldn18 genomic arms were cloned from BAC clones into pJet vectors. These 
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(5659 bp 5’ arm & 5592 bp 3’ arm) were sequentially inserted into a pBlueScript 

backbone with the IRES-Cre-ERT2 being targeted to the 3’UTR along with a TK 

Neomycin cassette (Figure 2.3). Plasmid electroporation, clone selection, 

microinjection, and screening of chimeras were performed by GenOway (Lyon, 

France). Mice were crossed to Zp3-Cre mice to delete the Neomycin cassette. 

2.4.4 Colony maintenance & breeding 

 All animals were maintained on an outbred background and housed in a 

standard facility in accordance with institutional animal care guidelines and UK 

Home Office regulations. All animals were given access to RM3(E) standard diet 

(Special Diets Service UK) and fresh water ad libitum. Mice of 6 weeks of age 

or older and of known genotype were bred in trios of one male and two females. 

At approximately 4 weeks of age, pups were weaned and housed according to 

sex. Ear biopsies were taken for identification and genotyping purposes using a 

2mm ear punch (Harvard apparatus). 

2.4.5 Genetic Mouse Model  

 The novel transgenic mouse model used for this project was 

Claudin18CreERT2; Rnf43flox; Znrf3flox; dTOMLSL. This was created by crossing 

Claudin18CreERT2 mice with RNF43-FLOX-ZNRF3-FLOX mice. Claudin18CreERT2 

driven Cre recombinase transgene was utilized to conditionally delete floxed 

RNF43 and ZNRF3 alleles (Koo et al., 2012) exclusively in the corpus epithelium 

of the stomach. Expression of the Cre recombinase was induced by 

administration of tamoxifen and mice were left for 140 days before being 

sacrificed.  

2.4.6 Tamoxifen Administration 

 Induction of Cre recombinase activity in mice bearing Claudin18CreERT2 

transgenes was controlled by tamoxifen binding to a mutated ERT2 receptor 

fused to the Cre recombinase protein. Stocks of 10 mg/mL tamoxifen (Sigma) 

were produced by dissolving tamoxifen in corn oil by shaking vigorously at 37°C 

in a foil-wrapped falcon tube for 4 hours. Tamoxifen was prepared fresh before 

use and kept in the fridge between injections but warmed to 37°C prior to 
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injection. To confirm recombination Clausdin18CreERT2 mice received 100 

mg/kg of tamoxifen via intraperitoneal injection 3x in 1 day.  For long-term 

induction Claudin18CreERT2; Rnf43flox; Znrf3flox; dTOMlsl received 100 mg/kg 

tamoxifen 4x, 1x daily.  
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Figure 2.3 Claudin18 knock-in plasmid map. An IRES-CreERT2 cassette was inserted 

at the 3’UTR which was subsequently inserted into a pBlueScript backbone along 

with a TK neomycin cassette. 
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2.4.7 DNA extraction  

 Mouse ear biopsies were collected at weaning and temporarily stored at 

-20°C to prevent degradation. Each tissue sample was digested in 250 µL lysis 

buffer (VWR) containing 0.4 mg/mL proteinase K (Sigma), overnight at 42°C 

with agitation. The protein was precipitated by the addition of 100 µL of protein 

precipitation solution (VWR). The solution was mixed by inversion and protein 

and insoluble debris was pelleted by centrifugation at 13,000 rpm for 10 

minutes. The supernatant was added to a fresh Eppendorf tube containing 250 

µl of isopropanol (Thermo Fisher Scientific) to precipitate the DNA. The solution 

was mixed by inversion and centrifuged at 13,000 rpm for 15 minutes. The 

supernatant was discarded, and the pellet was left to air dry for an hour before 

resuspending in 250 µL of Milli-Q water. For short-term storage gDNA was left 

at room temperature or stored at 4C for longer-term storage. 

2.4.8 Polymerase chain reaction (PCR) genotyping 

 PCR was performed on genomic DNA (gDNA) extracted (Section 2.4.7) 

from ear biopsies. PCR was performed in a 96-well semi-skirted straight side 

plates (Alpha labs). PCR reaction mixtures were made up according to table 2.4 

containing an appropriate DNA polymerase and buffer (Promega GoTaq). A 

control well was made using the same PCR mix but with dH2O instead of the 

DNA. The 96-well plates were them sealed with aluminum foil seals (Star labs), 

and air bubbles were removed by tapping the plates on a hard surface. The 

reactions were run in a GS4 thermocycler (G strom). The reaction mixture and 

cycling time is outlined in Table 2.4 and 2.5 and primer sequences and 

annealing temperatures are shown in table 2.6. 

2.4.9 Visualization of PCR products 

 PCR products were visualized by gel electrophoresis using 2% agarose 

gels. The gels were made by dissolving agarose (Eurogentec) 2% [w/v] in 1x Tris 

Borate EDTA (TBE) buffer (National Diagnostic) and heated in a microwave until 

boiling. The solution was then cooled under a running tap with agitation and 14 

µl of Safe View fluorescent nucleic acid stain (NBS biological) was added per 



Chapter 2: Materials & Methods 
 

88 
 

400 mL. The gel solution was then poured into clean molds (Bio-Rad) and combs 

were added to create wells and left to set. Once set, the combs were carefully 

removed and the gels placed into an electrophoresis tank and covered with 1X 

TBE solution with Safe View (10 µl Safe View/100 mL 1X TBE). 5 µl of loading 

dye (50% Glycerol (Sigma), 50%dH2O, 0.1% bromophenol blue (Sigma)) was 

added to the PCR product samples and gently mixed by pipetting. 20 µl of the 

PCR samples were added to individual wells of the agarose gel and run alongside 

a molecular weight marker. The gel was run at 120 V for approximately 30 

minutes or until the loading dye had run more than half way across the gel. The 

gel was then visualized for PCR products using a GelDoc UV Transilluminator 

(Bio-Rad) and images taken using the GelDoc software (Bio-Rad). PCR product 

sizes are outlined in table 2.6. 
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Component Volume (µL) 

5X colourless buffer 5 

25 mM MgCI2 1.25 

10 mM dNTPs 0.5 

Forward Primer (10 µM) 1 

Reverse Primer  (10 µM) 1 

Go Taq polymerase 0.25 

DNA 3 

dH2O 13 

Stage Temperature Time  

Initial 
denaturation 

94 5 minutes 

Denaturation 94 60 seconds 

X 35 cycles Annealing See table 2.6 60 seconds 

Extension 72 60 seconds 

Final Extension 72 10 minutes  

Hold 10 10 minutes 

Table 2.4 Genotyping PCR reaction mixture 

Table 2.5 Genotyping PCR cycling conditions 



Chapter 2: Materials & Methods 
 

90 
 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 
Annealing 

Temp.(°C) 
Product size (bp) 

RNF43_Loxp GAAGCAGACAATGAAGCGAAT TAGTGCCCCACAGAGGACA 63 WT= 284, Mut= 405 

ZNFR3_Loxp CACACCCTGACCCTACGAA TTACCACACCCATACCCAACT 60 WT= 324, Mut= 405 

FZD7_Loxp GCACCATCATGAAGCACG CACAGTTAGCATCGTCCTGC 58 WT= 550, Mut= 630 

Claudin18_KI GCATGAAGTGCAAGAACGTG GTAGACTCCCGTTGCTTTGG 58 450 

Claudin18_WT GTCAGTCCTACTAAACACACATGAA 
Used in combination with 

C18_KI primers above 
58 300 

dTOM_WT AAGGGAGCTCAGTGGAGTA CCGAAAATCTGTGGGAAGTC 58 280 

dTOM_Mut CTGTTCCTGTACGGCATGG GGCATTAAAGCATATCC 58 230 

Table 2.6 Genotyping PCR primer sequences and product sizes 
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2.5 RNA Analysis 

2.5.1 Epithelial cell extraction  

 To avoid interference from stromal and smooth muscle compartments in 

subsequent RNA analysis, the stomach epithelium was extracted. Stomachs 

were removed and flushed with PBS before being cut open along the greater 

curvature. The stomachs were then placed in digestion buffer (25 mM EDTA: 

For 100 mL, 98.9 mL PBS and 5 mL 0.5M EDTA) for 60-90 minutes in a falcon 

tube. After which, the digestion buffer was removed and 10 mL of cold PBS was 

added and the tube was vigorously shaken. The now detached muscle layer was 

removed and the tube was centrifuged at 1,500 rpm for 5 minutes. The 

supernatant was carefully removed and the pellet was resuspended in 1 mL of 

ice cold PBS. The resuspended samples were transferred to 2 Eppendorf tubes 

with 0.5 mL in each and centrifuged at 5000 rpm for 10 minutes at 4°C. The 

supernatant was collected and frozen in liquid nitrogen and stored at -80°C 

until use.  

2.5.2 Tissue homogenization 

 Gastric tissue or epithelial cell extracts were removed from storage and 

placed on dry ice to prevent defrosting. The tissues were placed in 1 mL Trizol 

(Invitrogen) in homogenizing lysing matrix D tubes (MP Biomedicals). Tissues 

were homogenized using a precellys 24 homogenizer (Bertin Technologies) at 

6,000 rpm for 2 cycles of 30 seconds. 

2.5.3 RNA extraction 

 Human gastric cancer cells were resuspended and homogenized in Trizol 

(Invitrogen), 1 mL per 10 cm2 of culture dish area. Tissue samples were 

homogenized in 1 mL of Trizol using a homogenizer.  Samples were incubated 

for 5 minutes at room temperature and 200 μL of chloroform per 1 mL of Trizol 

solution was added and mixed vigorously. Samples were centrifuged at 12,000 

x g for 15 minutes at 4°C in order to separate the upper aqueous phase (nucleic 

acid containing fraction) from the lower organic phase (protein containing 

fraction). The aqueous phase was transferred to a clean micro-centrifuge tube 
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and an equal volume of isopropanol was added, the solution was vortexed for 

10 seconds and then left to incubate for 10 minutes at room temperature. 

Samples were centrifuged at 12,000 x g for 8 minutes at 4°C to precipitate the 

RNA. 1 mL of 75% EtOH per 1 mL of Trizol was added to wash the pelleted RNA 

and the samples were centrifuged at 7,500 xg for 5 minutes at 4°C. The EtOH 

was carefully removed and the RNA pellet was left to air dry for 5 minutes. The 

RNA was then resuspended in 25 μL of DEPC treated water. RNA samples were 

quantified using a DNA/RNA nanodrop spectrophotometer. 

2.5.4 cDNA synthesis 

 1 μg of each RNA sample was reverse transcribed using modified MMLV 

reverse transcriptase and anchored oligo(dT) primers following the 

manufacturer’s instructions (PCR Biosystems) in a final volume of 20 μL. 

2.5.5 qRT-PCR 

 For quantitative reverse transcriptase polymerase chain reaction (qRT-

PCR), master mixes were prepared using SyGreen Blue mix (PCR Biosystems) 

following the manufacturer’s instructions, in final volumes of 10 μL in triplicate 

wells of a 96 well plate. RPL19 primers were used to normalize the data; for 

threshold cycle (CT) values, the 2-ΔΔCT method (Bustin, 2002) was used to 

calculate the fold change. Statistical analysis was performed on the ΔCT values. 

See table 2.7 for human primer sequences and table 2.8 for mouse primer 

sequences. 
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Target Forward sequence Reverse sequence 

FZD1 CAAGGTTTACGGGCTCATGT TGAACAGCCGGACAGGAAAA 

FZD2 GGCCACTGAAAACCGAACTT CCAGAGGCGGAGGAGAACAA 

FZD3 TGGGTTGGAAGCAAAAAGAC CCTGCTTTGCTTCTTTGGTC 

FZD4 GCCAATGTGCACAGAGAAGA AGGTGGTGGAGATGAAGCAG 

FZD5 CTGTGGTCTGTGCTGTGCTT GGCCATGCCAAAGAAATAGA 

FZD6 TCTGTGCCTCTGCGTATTTG TCTCCCAGGTGATCCTGTTC 

FZD7 GACCATCATGCCCAACCTTC GGCCACTGAAAACCGAACTT 

FZD8 CGGTTGTAGTCCATGCACAG TTACATGCCCAACCAGTTCA 

FZD9 TTTTCGGTAGCACAGGCTCT AGTTTCCTCCTGACCGGTTT 

FZD10 AGATTCCCATGTGCAAGGAC AGTTGGGGTCGTTCTTGTTG 

CCND1 TCGTGGCCTCTAAGATGAAGGA TCGGGCCGGATAGAGTTGT 

AXIN2 TCAAGACGGTGCTTACCTGT TGCTGCTTCTTGATGCCATC 

CD44 GTCTGCATCGCGGTCAATAG GGTCTCTGATGGTTCCTTGTT 

MYC CAGCTGCTTAGACGCTGGATT GTAGAAATACGGCTGCACCGA 

LGR5 ACCCGCCAGTCTCCTACATC GCATCTAGGCGCAGGGATTG 

RPL19 AGCGAGCTCTTTCCTTTCG GAGCCTCTTCTGAAGCCTGA 

SNAI2 GGGGAGAAGCCTTTTTCTTG TCCTCATGTTTGTGCAGGAG 

SNAI1 CCTCCCTGTCAGATGAGGAC CCAGGCTGAGGTATTCCTTG 

TWIST1 GGAGTCCGCAGTCTTACGAG TCTGGAGGACCTGGTAGAGG 

CDH2 ACAGTGGCCACCTACAAAGG CCGAGATGGGGTTGATAATG 

VIMENTIN GAGAACTTTGCCGTTGAAGC GCTTCCTGTAGGTGGCAATC 

CDH1 TGCCCAGAAAATGAAAAAGG GTGTATGTGGCAATGCGTTC 

Table 2.7. qRT-PCR human primer sequences 
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Target Forward sequence Reverse sequence 

FZD1 CAAGGTTTACGGGCTCATGT TGAACAGCCGGACAGGAAAA 

FZD2 CCGACGGCTCTATGTTCTTC TAGCAGCCGGACAGAAAGAT 

FZD3 TGGGTTGGAAGCAAAAAGAC CCTGCTTTGCTTCTTTGGTC 

FZD4 GCCAATGTGCACAGAGAAGA AGGTGGTGGAGATGAAGCAG 

FZD5 CTGTGGTCTGTGCTGTGCTT GGCCATGCCAAAGAAATAGA 

FZD6 TCTGTGCCTCTGCGTATTTG TCTCCCAGGTGATCCTGTTC 

FZD7 GCTTCCTAGGTGAGCGTGAC AACCCGACAGGAAGATGATG 

FZD8 TTACATGCCCAACCAGTTCA CGGTTGTAGTCCATGCACAG 

FZD9 AGTTTCCTCCTGACCGGTTT TTTTCGGTAGCACAGGCTCT 

FZD10 AGATTCCCATGTGCAAGGAC AGTTGGGGTCGTTCTTGTTG 

CCND1 TCGTGGCCTCTAAGATGAAGGA TCGGGCCGGATAGAGTTGT 

AXIN2 TCAAGACGGTGCTTACCTGT TGCTGCTTCTTGATGCCATC 

CD44 GTCTGCATCGCGGTCAATAG GGTCTCTGATGGTTCCTTGTT 

MYC TAGTGCTGCATGAGGAGACA GGTTTGCCTCCTCTCCACAG 

LGR5 ACCCGCCAGTCTCCTACATC GCATCTAGGCGCAGGGATTG 

RPL19 AGCGAGCTCTTTCCTTTCG GAGCCTCTTCTGAAGCCTGA 

Table 2.8. qRT-PCR mouse primer sequences 
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2.6 Histological Analysis 

2.6.1 Tissue preparation  

 Freshly isolated stomachs were flushed with PBS and then cut along the 

greatest curvature. The stomachs were opened out and placed serosa side down 

onto a wax plate and pinned in place (Figure 2.4). The stomachs were fixed 

overnight at 4°C in 10% neutral buffered formalin (sigma). The formalin was 

removed and replaced with 70% EtOH at room temperature. Samples were 

stored in 70% EtOH in distilled dH2O at 4°C until processing. After fixation, all 

tissues were placed in a cassette (Fisher) and processed using an automatic 

processor (Leica TP1050). The tissues were incubated in an increasing gradient 

of alcohols for dehydration (70% EtOH for 1 hr, 95% EtOH for 1 hr, 2 x 100% EtOH 

for 1 hr 30 mins and 100% EtOH for 2 hrs), then in xylene (2 x 2 hrs). The tissues 

were then placed in liquid paraffin for 1 hr and then twice more for 2 hrs. The 

samples were removed and embedded in paraffin wax by hand and allowed to 

harden. Paraffin embedded tissue was sectioned at 5 um using a microtome 

(Leica RM2135) and placed onto Poly-L-Lysine (PLL) coated slides and baked at 

58°C for 24 hours. 

 

 

 

 

 

 

 

 

 

 

Fundus 
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Antrum 

Figure 2.4 Stomach dissection. Preparation of stomach tissue for histology.  
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2.6.2 Freezing tissue 

 Sections of stomach were placed into individual lockable microtubes and 

placed on dry ice until frozen. The samples were then stored at -80°C until 

required.  

2.6.3 Immunohistochemistry 

 Sections were de-waxed by serial immersions in xylene (2x 5 minute 

washes) and rehydrated by serial immersions in 100% EtOH (2x 2 minutes), 95% 

EtOH (2 minutes), and 70% EtOH (2x 2 minutes), before being transferred to 

dH2O. Antigen retrieval was performed (See table 2.9 for specific treatment for 

each antigen) and slides were allowed to cool to room temperature. 

Endogenous peroxidase activity was blocked by treating slides with a hydrogen 

peroxide solution (3% hydrogen peroxide (v/v) in MilliQ water) for 10 minutes 

at room temperature, then washed 2x for 5 minutes in dH2O. Non-specific 

binding of antibodies was then blocked by incubating sections for 30 minutes at 

room temperature in 10% normal goat serum in TBS/T. After incubation the 

slides were washed 2x for 5 minutes in TBS/T and once in dH2O. Primary 

antibodies (Table 2.9), made up in blocking diluent, were added to sections and 

incubated overnight at 4°C. Sections were washed in TBS/T (3x 5 minutes) then 

incubated with secondary antibody (polymer horse-radish peroxidase 

conjugated mouse/rabbit/goat) for 30 minutes at room temperature. Following 

incubation slides were washed 3x for 5 minutes in TBS/T.  Bound peroxidase 

was detected and developed by the addition of 3,3'-Diaminobenzidine substrate 

(DAB) at room temperature for 5-10 minutes or until slides turned brown. Slides 

were then washed for 2x 5 minutes in dH2O.  Slides were then counterstained 

with Mayers haemotoxylin (R.A. Lamb) for 30 seconds and run under cold water 

until the water became clear. Slides were then dehydrated through soaking 

increasing concentrations of EtOH (30 seconds in 70% EtOH, 30 seconds in 95% 

EtOH and 2x 30 second washes in 100% EtOH) followed by 2x 2-minute washes 

in xylene before being mounted immediately using DPX mounting solution 

(Sigma).  
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2.6.4 IHC quantification 

 Three random fields of view were selected, per slide. 1000 cells were 

counted (using cell counter function on Zeiss software) per field of view. The 

percentage of positive cells to total cells was calculated.    

 

Target 
Antigen retrieval 

method 
Primary antibody 

used 

Nuclear β-catenin 
Boiled in 50 mM TRIS pH 

9.5 for 1 hour 

Mouse anti- β-
catenin (1:300) (BD 
Biosciences, 610154) 

PCNA 
Boiled in 5 mM EDTA 
Ph8.0 buffer for 15 

minutes 

Rabbit anti-PCNA 
(1:300)(BD 

Biosciences, 610665) 

H+/K+ ATPase 

Boiled in 50 mM TRIS pH 
9.5 buffer in pressure 
cooker at 900Watts for 

10 minutes 

Rabbit anti- H+/K+ 
ATPase (1:400) 

(Santa Cruz, 84304) 

Cleaved Caspase-3 
Boiled in citrate buffer 
in pressure cooker at 

900Watts for 15 minutes 

Rabbit anti- Cleaved 
Caspase-3 (1:1000) 

(Cell signalling, 
9661L) 

* Incubated for 48 
hours 

Red Fluorescent 
Protein 

Boiled in DAKO pH 9 
antigen retrieval buffer 

in pressure cooker at 900 
Watts for 30 minutes 

Rabbit anti-RFP 
(1:500) (Rockland,  

600-401-379S) 

Table 2.9 IHC conditions.  
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2.7 Gastric Organoid Culture 

2.7.1 Human tissues  

 Human gastric cancer and normal gastric tissues were obtained from 

patients who underwent surgery at the University Hospital of Wales, Cardiff 

with informed consent after the approval of the ethical committee (Wales 

Cancer Bank). Only samples from patients who had not received chemotherapy 

were selected.  

2.7.2 GC tissue preparation 

 Small pieces (~1cm2 x 4 mm thick) of tumour and adjacent non-

neoplastic gastric mucosal tissue were taken from the fresh gastrectomy 

specimen. Samples were placed in ice-cold PBS for transport to the laboratory 

prior to culture.  Normal and tumour tissue were processed using an adapted 

version of a previously published protocol (Bartfeld and Clevers, 2015), which 

is explained in detail in sections 5.3.1. In brief, samples were washed vigorously 

washed with PBS, minced into small fragments, and washed with PBS, before 

being placed in an enzymatic digestion solution.  

2.7.3 Normal gastric tissue preparation 

 Gastric tissue was twice washed in PBS containing 1x 

penicillin/Streptomycin (P/S), followed by the careful removal of the muscle 

and mucus layer using a scalpel. Inefficient removal of mucus from samples 

resulted in less viable organoids. Tissue samples were then minced into small 

fragments and placed into freshly prepared chelating buffer (10 mM EDTA, 0.5 

mM DL-dithiothreitol, 1% P/S and 1 µg/µL Primocin) on ice for 45 minutes 

without agitation. Any agitation damaged the gastric glands. The digested 

tissue fragments were transferred to a sterile 10 cm dish and as much liquid as 

possible was removed. To release the glands, a glass microscopy slide was 

placed on top of the tissue and gentle even pressure was applied until the 

appear around the tissue appeared cloudy, representing the successful release 

of glands into solution (Figure 2.5). Gastric glands were collected, counted, 

resuspended in Matrigel and seeded approximately 100 glands per 50 µL 



Chapter 2: Materials & Methods 
 

99 
 

Matrigel per well of a 24-well plate. The plate was then gently inverted and the 

Matrigel allowed to solidify; the inversion ensured that the glands settled at 

the top of the Matrigel drop and had close access to the overlaid growth media 

(Table 2.10)  

2.7.4 Human organoid culture 

 Human gastric cancer and normal gastric organoids were cultured 

according to the steps outlined in section 2.7.2 and 2.7.3. In brief, released 

gastric glands were resuspended in matrigel and plated in 24-well plates with 

growth media containing various growth factors outlined in table 2.10. Media 

was changed once every 7 days.  
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Figure 2.5 Normal Human gastric organoid culture expansion. Schematic of the 

gland isolation process and representative image of isolated glands from the gastric 

tissue sample. 
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Reagent Name Stock solution Final Concentration Volume for 1 mL 

Advanced DMEM/F12 NA NA 450 uL 

GlutaMAX 100x 1x N/A 

HEPES 1 M 10 mM N/A 

P/S 100x 1x N/A 

N2 supplement 100X 1X 10 ul 

B27 supplement 50X 1X 20 ul 

Mouse recombinant EGF 500 ug/ml 50 ng/ml 0.1 uL 

Mouse recombinant 

Noggin 
100 UG/ML 100 NG/ML 1 UL 

R-Spondin1 conditioned 

media 
10x 

1x (10% of final 

volume) 
1 UL 

Recombinant FGF10 100 UG/ML 100NG/ML 1UL 

Wnt3a conditioned media 2X 
1X (50% of final 

volume) 
500 ul 

Gastrin 100 UM 10 NM 1 UL 

N-Acetylcyteine 500 mM 1 mM 2 ul 

Y-27623* 100mm 10um 1 

A83-01 500 um 500nm 1ul 

* Only add Y-27623 during initial culture or after passaging (then remove after 3 days). 

Table 2.10 Gastric organoid culture media 
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2.7.5 Production of R-Spo1-condtioned media 

 1.5-2 x 10 6  HEK293-R-Spo B8 clone cells were plated in a T175 flask in 

35 mL of pre-warmed growth media (Advanced DMEM supplemented with 10% 

FBS, GlutaMAX and 150 μg/ml Zeocin). Cells were expanded by passaging when 

cells reached 75% confluency by the addition of 3 mL TrypLE for 2 minutes at 

37˚C. 5 mL of growth media was added to inhibit the dissociation reaction. 

Cells were pooled and reseeded at 1.5 x106 per T175 flask in 35 mL of growth 

medium. When cells had been expanded to 20-30 flasks and cells were at 75% 

confluency, the growth media was changed to harvest media (Advanced 

DMEM/F-12 supplemented with 1% penicillin/streptomycin, 1% GlutaMAX and 

HEPES 10 Mm). Cells were incubated in harvest media for 1 week. After this, 

media was removed into 50 mL tubes and centrifuged for 5 minutes at 500 x g 

at 8˚C to remove any cells. The media was filter using 500 mL filter cups and 

divided into 5 mL aliquots.R-Spo-1 medium was stored at -20˚C for up to 6 

months.  

2.7.6 Production of Wnt3a-condtioned media 

 1.5-2 x 10 6  HVB-Wnt3a cells (gifted from Clevers lab) were plated in a 

T175 flask in 35 mL of pre-warmed growth media (Advanced DMEM 

supplemented with 10% FBS, 1% penicillin/streptomycin, GlutaMAX and 300 

μg/ml Zeocin). Cells were expanded by passaging when cells reached 75% 

confluency by the addition of 3 mL TrypLE for 2 minutes at 37˚C. 5 mL of growth 

media was added to inhibit the dissociation reaction. Cells were pooled and 

reseeded at 1.5 x106 per T175 flask in 35 mL of growth medium. When cells had 

been expanded to 20-30 flasks and cells were at 75% confluency, the growth 

media was changed to harvest media (Advanced DMEM supplemented with 10% 

FBS, 1% penicillin/streptomycin and GlutaMAX). Cells were incubated in harvest 

media for 1 week. After this, media was removed into 50 mL tubes and 

centrifuged for 5 minutes at 500 x g at 8˚C to remove any cells. The media was 

filter using 500 mL filter cups and divided into 15 mL aliquots. R-Spo-1 medium 

was stored at -20˚C for up to 6 months.  
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2.7.7 Validation of Wnt & R-Spo1-condintioned media 

The TOPFLASH assay, a luciferase reporter assay, was used to monitor 

the concentration of both Wnt3a and R-Spo1 in cell culture media. Two 

luciferase expressing plasmids, firefly-expressing TOPFlash (Contains 8 TCF 

binding sites) and renilla-expressing plasmid (pRL, to normalize) were 

transfected into HEK293 cells in 24-well plates, 1.25 x 105 cells per well with 

0.5 mL of medium and 400 ng TOPFlash and 25 ng pRL. These cells were then 

exposed to medium containing either Wnt-3a or R-Spo1 alone or in combination. 

After 48 hours of induction, firefly and renilla luciferase activity is read (Dual-

Glo® Luciferase Assay System (Promega) & Clariostar plate reader (BMG 

Labtech)). Firefly counts were normalized with renilla counts. FOPFlash 

(Mutant TCF sites) was used as a control and data was further normalized to 

this basal control and titrated by comparing to a known source of each growth 

factor (de Lau et al., 2011). For Wnt3a-conditioned medium, adequate activity 

was a TOP/FOP value >25. For R-Spo1-condtioned medium, TOP/FOP assay 

results were valid if the results were 5-10 fold higher in the presence of R-Spo1 

+ Wnt3a as compared with Wnt3a only. 

2.7.8 Human organoid passaging 

 Organoids were passaged every 2 weeks. Old media was removed and 1 

mL of cold Advanced-DMEM/F12 (ThermoFisher Scientific) was added per well 

to wash the matrigel. A p1000 pipette was used to break up the gel which was 

transferred to a 15 mL falcon tube containing plain DMEM media. The organoid-

matirgel-media mixture was centrifuged for 5 minutes at 300 g at 4˚C to pellet 

the gastric glands. The supernatant was carefully aspirated off. A p200 pipette 

was used to break up the pellet, it was then centrifuged for 5 minutes at 300 x 

g at 4˚C. The supernatant was removed, and the pellet was resuspended in an 

appropriate volume of Matrigel. 50 μL drops were added to each well of a 24-

well plate. The plate was then gently inverted and the Matrigel allowed to 

solidify in a 37˚C incubator for 30 minutes. 500 μL of gastric growth media, 

with the addition of ROCKi, was added to each well.  
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2.7.9 Human organoid cryopreservation 

 For long-term storage established organoids were frozen in freezing 

media: 10% DMSO in Advanced-DMEM/F12 + Glutamax + HEPES + Pen/Strep + 

N2B27. Old media was removed from the organoids and they were washed with 

standard DMEM. Organoids were gently broken up by pipetting no more than 4 

times up and down. Collected organoids were centrifuged at 300 g for 5 minutes 

at 4˚C after which the supernatant was removed. The pellet was resuspended 

in freezing media and 1 mL was aliquoted to a cryo-vial. Vials were stored in a 

-80˚C freezer overnight and then transferred to liquid nitrogen for long-term 

storage. 

2.7.10 Raising human organoids from storage 

 Organoids retrieved from the liquid nitrogen were thawed at 37˚C in a 

water bath. Thawed organoids were added to a falcon tube containing 10 mL 

of Advanced-DMEM/F12. Organoids were centrifuged for 5 minutes at 300 x g 

at 4˚C. The pelleted organoids were resuspended in 100 μL of Matrigel and a 

50 μL drop placed in the center of the well of a pre-warmed 24-well plate. Once 

solidified, the Matrigel dot was overlaid with 500 μL of pre-warmed gastric 

growth media with the additional supplement of ROCKi.  

2.8 CRISPR cloning strategy  

2.8.1 In silica design strategy 

 The specificity of the Cas9 nuclease is determined by the 20-nt guide 

sequence within the sgRNA. We utilized a plasmid containing an S.pyogenes 

Cas9, this system requires the target system to immediately precede a 5’-NGG 

PAM sequence.  The 20-nt guide sequence base pairs with the opposite strand 

to mediate Cas9 cleavage at ~3 bp upstream of the PAM (Ran et al., 2013). 

While the sgRNA sequence must be upstream of a PAM site and be specific to 

the target gene, off-target activity must also be taken into consideration.  

To increase the chance of effective cleavage to achieve full knockout of the 

FZD7 gene, two sgRNAs were designed. sgRNA targeting FZD5 were also 
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designed to be used as a control in future experiments. sgRNA was designed for 

both mouse and human species so that we have a full complement of constructs 

for use in human cultures and animal models. sgRNA target sequences were 

chosen that targeted either exon 1 or exon 2 of the gene and were present 

across all splice variants to ensure efficient knockout. Once a PAM site had been 

identified in either of these exons, the target sequence was checked for off-

target activity by using the Basic Local Alignment Search Tool (BLAST; 

https://blast.ncbi.nlm.nih.gov/Blast.cgi). To allow for cloning into the px458 

(obtained from addgene and sgRNA oligos from sigma) Cas9 vector (Figure 2.6) 

4-nt overhangs compatible with BbsI restriction sites were added to the sgRNA 

target sequence (Figure 2.6). The px458 vector contains a U6 promoter 

upstream of the sgRNA insertion site, therefore a G-bp was added (if not already 

present) to the 5’-end of the sgRNA target sequence. The sgRNA target 

sequences for the FZD5/7 knockout constructs can be seen in table 2.11 and 

the sgRNA target sequences for the various APC truncated constructs can be 

seen in table 2.12. 

  

 

  

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 2.6 sgRNA oligos with BbsI overhangs. “N” and “n” represent 

complementary base pairs. Red font represents the overhangs. PAM sequence is not 

included in the sgRNA sequence. The U6 promoter requires a G-bp at the 

transcription start site (underlined font). This should be added to the start of your 

sgRNA at the 5’ site if one is not already present.  
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Human FZD7_01 Forward 5’-CACCGGTGCGGGCGAGATCTGCGT-3’ 

Human FZD7_01 Reverse 5’-AAACACGCAGATCTCGCCCGCACC-3’  

Human FZD7_02 Forward 5’-CACCGATGATCGTCGGCATCACCAC-3’ 

Human FZD7_02 Reverse 5’-AAACGTGGTGATGCCGACGATCAC-3’ 

Human FZD5_01 Forward 5’-CACCGCGCTCGTCGGCACTGAAGGA-3 

Human FZD5_01 Reverse 5’-AAACCCAGCATTGTGGTGGCCTGC-3’ 

Human FZD5_02 Forward 5’-CACCGCAGGCCACCACAATGCTGG-3’ 

Human FZD5_02 Reverse 5’-AAACCCAGCATTGTGGTGGCCTGC-3’ 

Mouse FZD7_01 Forward 5’-CACCGCGAGAAAGGCATCTCGGTAC-3 

Mouse FZD7_01 Reverse 5’-AAACGTACCGAGATGCCTTTCTCGC-3’ 

Mouse FZD7_02 Forward 5’-CACCGATGATCGTGGGCATCACTAC-3’ 

Mouse FZD7_02 Reverse  5’-AAACGTAGTGATGCCCACGATCATC-3’ 

Mouse FZD5_01 Forward 5’-CACCGTCTCCACAAGCGGCCAGAAT-3’ 

Mouse FZD5_01 Reverse 5’-AAACATTCTGGCCGCTTGTGGAGAC-3’ 

Mouse FZD5_02 Forward 5’-CACCGGTAGCGGCTTGTGGTAGTC-3’ 

Mouse FZD5_02 Reverse 5’-AAACGACTACCACAAGCCGCTACC-3’ 

Table 2.11 Human and mouse sgRNA targeted to FZD7 
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Human APC_01 Forward 5’- CACCGTCCATCCTTTCCCTGAAATC -3’ 

Human APC_01 Reverse 
5’- AAACGATTTCAGGGAAAGGATGGAC -3’ 

 

Human APC_02 Forward 
5’- CACCGTACTTTATTACATTTTGCCA -3’ 

 

Human APC_02 Reverse 
5’- AAACTGGCAAAATGTAATAAAGTAC -3’ 

 

Human APC_03 Forward 
5’- CACCGTAATGAAGAGAAACGTCATG -3’ 

 

Human APC_03 Reverse 
5’- AAACCATGACGTTTCTCTTCATTAC -3’ 

 

Human APC_04 Forward 
5’- CACCGTCAGCCATTCATACCTCTC -3’ 

 

Human APC_04 Reverse 
5’- AAACGAGAGGTATGAATGGCTGAC -3’ 

 

Human APC_05 Forward 
5’- CACCGGATCTGTATCAAGCCGTTC -3’ 

 

Human APC_05 Reverse 
5’- AAACGAACGGCTTGATACAGATCC -3’ 

 

Mouse APC_01 Forward 5’- CACCGCCGACTCAGAAAATTTTGAC -3’ 

Mouse APC_01 Reverse 5’- AAACGTCAAAATTTTCTGAGTCGGC -3’ 

Mouse APC_02 Forward 5’- CACCGTCCATTCTGTCACTAAAGTC -3’ 

Mouse APC_02 Reverse 5’- AAACGACTTTAGTGACAGAATGGAC -3’ 

Mouse APC_03 Forward 5’- CACCGTAATGAAGAGAAACATCATG -3’ 

Mouse APC_03 Reverse 5’- AAACCATGATGTTTCTCTTCATTAC -3’ 

Mouse APC_04 Forward 5’- CACCGTCTGCCATCCCTTCACGTT -3’ 

Mouse APC_04 Reverse 5’- AAACAACGTGAAGGGATGGCAGAC -3’ 

Mouse APC_05 Forward 5’- CACCGAAAATGTCCCTTCGCTCCTA -3’ 

Mouse APC_05 Reverse 5’- AAACTAGGAGCGAAGGGACATTTTC -3’ 

Table 2.12 Human and mouse sgRNA targeted to APC 
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2.8.2 Restriction enzyme digestion 

 To linearize the px458 backbone and allow insertion of sgRNA, a single 

restriction digestion was carried out according to table 2.13. The reaction was 

incubated at 37˚C for one hour.   

2.8.3 DNA gel extraction  

 DNA fragments were electrophoresed on an agarose gel and were 

excised, weighed, and solubilized using binding buffer (ThermoFisher Scientific) 

at a ratio of 1:1 and the solution was incubated at 60˚C for 10 minutes. The 

solubilized gel solution was transferred to a GeneJET purification column 

(ThermoFisher Scientific) and centrifuged for 1 minute. The flow through was 

discarded and 100 μL of binding buffer was added to the column and centrifuged 

for 1 minute. The flow through was discarded and 700 μL of wash buffer was 

added to column and centrifuged for 1 minute. The flow through was discarded 

and the empty column was centrifuged for an additional 1 minute to remove 

residual wash buffer. The column was transferred to a clean 1.5 mL 

microcentrifuge tube and 50 μL of elution buffer was added to the center of 

the purification column membrane and centrifuged for 1 minute. The purified 

DNA was stored at -20˚C.   

2.8.4 Preparation of sgRNA oligo inserts  

 To phosphorylate and anneal the top and bottom strands of oligos for 

each sgRNA design, the top and bottom strands of oligos were first resuspended 

to a final concentration of 100 μM. The mixture for phosphorylating and 

annealing the sgRNA oligos can be found in table 2.14. The reaction mixture 

was run in a thermocycler for 30 minutes at 37˚C; 5 minutes at 95˚C; ramped 

down to 25˚C at 5˚C/minute. The phosphorylated and annealed oligos were 

diluted 1:200 with dH2O.  

2.8.5 Cloning the sgRNA oligos into px458 backbone  

 A ligation reaction for each sgRNA was set up as described in table 2.15. 

The addition of Quick ligase was last to the reaction mix. A no-insert, px458-
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only negative control for ligation was also set up. The ligation reactions were 

left at room temperature for 10 minutes 
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Px458 1 µg 

FastDigest BbsI (Fermentas) 1 µL 

FastAP (Fermentas) 1 µL 

10x FastDigest Buffer 2 µL 

ddH2O X µL 

Total volume 20 µL 

sgRNA oligo top (100 µM) 1 µL 

sgRNA oligo bottom (100 µM) 1 µL 

10X T4 ligation buffer (NEB) 1 µL 

T4 PNK (NEB) 0.5 µL 

ddH2O 6.5 µL 

Total volume 10 µL 

BbsI digested plasmid 50 ng 

Oligo duplex (1:200) 1 µL 

2x Quickligation Buffer (NEB) 5 µL 

Quick ligase (NEB) 1 µL 

ddH2O X µL 

Total volume 11 µL 

Table 2.13 BbsI single restriction digestion 

Table 2.14 Preparation of sgRNA oligo inserts 

Table 2.15 Ligation reaction 
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2.8.6 Transformation of competent cells 

 A vial of One-Shot® TOP10 chemically competent E.coli (Invitrogen) was 

thawed on ice. The ligated plasmid and insert (3 μL) was added directly into 

the vial of competent cells and mixed by tapping gently. The vials were 

incubated on ice for 30 minutes. Next, the vial was incubated for exactly 30 

seconds in a 42˚C water bath and then placed on ice for 2 minutes. 250 μL of 

pre-warmed SOC medium was added to each vial under sterile conditions. The 

vials were then shaken at 37˚C for one hour at 225 rpm in a shaking incubator. 

100 μL from each transformation vial was spread onto a separate LB agar 

selective (Ampicillin) plate. The remaining transformation mix was stored at 

4˚C. The LB agar plates were inverted and incubated overnight at 37˚C. 

2.8.7 Colony selection and overnight bacterial culture 

 Once the LB-ampicillin agar plates had been incubated overnight, 

colonies were picked and inoculated with 5 mL of LB-ampicillin broth and left 

overnight with constant shaking at 37˚C 

2.8.8 Plasmid purification 

 Following the overnight culture, 2 mL of the culture was centrifuge at 

12,000 x g. The pellet, containing the plasmid, was purified using a GeneJET 

plasmid Miniprep kit (ThermoFisher Scientific) according to the manufacturer’s 

instructions.  

2.8.9 Sequence verification 

 To confirm successful insertion of sgRNA into the backbone, the plasmid 

DNA was sequenced from the UG promoter (upstream of the sgRNA insert) using 

the U6-Forward primer (5’-GACTATCATATGCTTACCGT-3’). Sequencing was 

performed by eurofins.  
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2.9 Statistical Analysis 

 Data are expressed as mean ± SEM, where mean represents number of 

mice (n≥3 per genotype) or number of independent experiments (n≥3). 

Normality of data was checked by plotting a histogram. An unpaired student’s 

t-test was used to determine statistical differences between normally 

distributed datasets where p values of ≤ 0.05 were considered significant. To 

detect statistical differences between non-parametric data sets the Mann 

Whitney U two-tailed test was performed where p values of ≤ 0.05 were 

considered significant. All statistical analysis was performed using Graphpad 

prism.  
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3.1 Introduction  

  Aberrant Wnt pathway activation has been linked to many different 

forms of cancer. Mutations to the tumour suppressor gene, APC, a key negative 

regulator of Wnt/ β-catenin signalling or mutations to other Wnt signalling 

components such as β-catenin are observed in between 40-60% of gastric 

tumours (Wang et al., 2014b) 

Whilst canonical Wnt signalling is generally considered to drive the proliferation 

and neoplastic transformation of cells, non-canonical Wnt pathways have been 

shown to play pivotal roles in tumour progression such as angiogenesis and 

metastasis (Anastas and Moon, 2013). As such, Wnt5a, considered a classical 

non-canonical Wnt ligand, is overexpressed in numerous cancers, including GC 

(Nam et al., 2017). Targeted inhibition of Wnt5a significantly reduces tumour 

growth and invasion (Hanaki et al., 2012). Thus, deregulation of canonical 

and/or non-canonical Wnt signalling components leads to aberrant induction of 

Wnt signalling and gene transcription, which can rapidly transform cells to 

promote gastric tumorigenesis.  

Not only are intracellular components of Wnt signalling implicated in GC but 

more recently it has been shown extracellular secreted Wnt antagonists (sFRP 

and Dkk) are frequently epigenetically silenced through promoter hyper-

methylation (Cheng et al., 2007; Nojima et al., 2007; Wang et al., 2012b). 

Critically, exogenous re-introduction of Wnt pathway inhibitors, such as 

sFRP1/2/5 and Dkk1, or reversing promoter methylation can significantly limit 

and reduce in vitro tumourgenicity and tumour xenograft burden of Wnt-

pathway activated GC models by means of attenuating Wnt/β-catenin signalling 

(Cheng et al., 2007; Nojima et al., 2007; Wang et al., 2013a). These studies 

demonstrate that activated Wnt signalling is sufficient to drive gastric 

tumorigenesis and provides proof-of-principal that modulation of 

extracellular/upstream signaling components can impact on Wnt pathway 

output, irrespective of intracellular/downstream mutations that would 

otherwise drive positive Wnt signalling. Moreover, the fact that sFRPs and Dkks 
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act by inhibiting Wnt/FZD signalling implies an intrinsic role for Wnt/FZD. 

Indeed, FZD receptors, specifically FZD7, are commonly upregulated in GC 

leading to abnormal Wnt pathway activation (Zhao et al., 2014). FZD7 is 

particularly unique as it is one of the few FZD receptors that transmit both 

canonical and non-canonical Wnt signals (Figure 3.1), which have both been 

shown to play critical roles during tumorigenesis and tumour progression (Asad 

et al., 2014; Ueno et al., 2009; Vincan et al., 2007b).  

FZD7 has attracted particular focus due to its upregulation in several different 

cancers, with inhibition of FZD7 successfully blocking growth in colorectal 

cancer, breast cancer and hepatocellular carcinoma (Phesse et al., 2016). 

Furthermore, FZD7 has recently been shown to be the predominant FZD 

receptor transmitting Wnt signalling to regulate stem cell function in the gastric 

(Flanagan et al., 2017a) and intestinal epithelium (Flanagan et al., 2015b). Lgr5 

was first identified as a Wnt target gene and a marker of highly proliferative 

stem cells located at the base of intestinal crypts (Barker et al., 2007). It has 

since been confirmed as a stem cell marker in the antral (Barker et al., 2010b) 

and corpal (Leushacke, 2017) stomach and is able to generate all cell lineages 

of the gastric epithelium. In addition, these cells demonstrate a high 

dependency and sensitively to Wnt/β-catenin signalling for this maintenance. 

However, non-Lgr5 expressing stem cell populations have also been implicated 

in the homeostasis of the gastric epithelium (Arnold et al., 2011; Powell et al., 

2012; Stange et al., 2013). In vivo lineage tracing from cells located within the 

isthmus that express either Sox2 or Lrig1 are also self-renewing and 

multipotent. These data suggest the co-existence of multiple stem cell 

populations within the epithelium that work in concert to maintain the integrity 

of the gastric epithelium.  It has been demonstrated that FZD7 is the 

predominant Wnt receptor in regulating homeostasis in the intestinal 

epithelium, in which deletion of FZD7 in either the whole epithelium or 

specifically in the Lgr5+ intestinal stem cells, triggers rapid repopulation 

(Flanagan et al., 2015b). Similarly, the deletion of FZD7 throughout the antrum 
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of the gastric epithelium also triggered repopulation, indicating that FZD7 

regulates a population of stem cells in the antrum (Flanagan et al., 2017a). 

Therefore, it was assumed that FZD7 would regulate Lgr5+ cells in the gastric 

epithelium much like in the intestine. However it has recently been shown for 

the first time that deletion of FZD7 did not inhibit the capacity of Lgr5+ cells 

to lineage trace full gastric glands (Flanagan et al., 2019b). This demonstrates 

that the function of Lgr5+ cells in the gastric epithelium do not require FZD7 in 

vivo, illustrating a substantial difference for FZD7 in regulating Lgr5+ stem cells 

in the stomach compared to the intestine.   

Despite compelling evidence implicating FZD7 in GC, its functional role in GC 

has not been elucidated and its therapeutic potential remains unknown. This 

project seeks to reveal the therapeutic benefit of inhibiting FZD7 in GC both in 

vitro and in vivo. As FZD7 belongs to a family of closely related genes it is not 

possible at present to pharmacologically target FZD7 in isolation, without also 

inhibiting other closely related FZD proteins. However, our industrial 

collaborators Oncomed Pharmaceuticals developed an antibody to block a 

subset of FZD receptors (FZD-1, 2, 5, 7 & 8) (Gurney et al., 2012), which will 

be used to support genetic experiments and determine the therapeutic benefit 

of targeting FZD7 in GC.  
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Figure 3.1 FZD7 receptor complexes and signalling output. (A) FZD7 can associate with G protein α 

(GPα) to transmit signals from Wnt8 via the PCP pathway; (B) FZD7 can associate with Syndican4 (Sdc4) 

and R-Spo to transmit Wnt5a signals via internalization of the whole receptor complex and ligand which 

then activates PCP signalling; (C) FZD7 can associate with Ror2 to transmit non-canonical Wnt signals 

from ligands including Wnt5 or Wnt11, either via PCP or Ca2+; (D) FZD7 can associate with Lrp5/6 to 

transmit canonical Wnt signalling from ligands including Wnt3. However, RNF43/ZNFR3 ubiquitylates 

FZD7 and targets it for internalization and proteasomal degradation, thus resulting in turn-over of the 

receptor complex and low canonical Wnt signalling; (E) In the presence of Lrg4/5, and R-Spo, it is 

RNF43/ZNFR3 which is internalized and degraded and this FZD7/Lrp5/6 remains on the cell surface to 

transmit Wnt signalling and canonical signalling output is high. 
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3.2 Results 

3.2.1 Gastric cancer cells require cell intrinsic Wnt signalling for growth 

 FZD receptors are known to be overexpressed in many cancers, including 

GC. Like many malignancies, GC is genetically heterogeneous, which 

complicates identifying non-redundant signalling pathways suitable for 

targeted therapy. To investigate the expression of FZD receptors which 

transmit oncogenic Wnt signals, we performed qRT-PCR for all 10 mammalian 

FZD genes on two human GC cell lines: MKN28 (intestinal-type) and MKN45 

(diffuse-type). Several FZD receptors were abundantly expressed, including 

FZD7 (Figure 3.2). FZD2 was also highly expressed in both cell lines but not as 

highly as FZD7. FZD6 displayed high expression relative to the house-keeping 

gene. This suggests FZD receptors might be attractive therapeutic targets for 

GC.  

The pan-FZD monoclonal antibody OMP-18R5 (Vanticumab) binds to 5 of the 10 

FZD receptors: FZD1, FZD2, FZD5, FZD7, and FZD8 (Gurney et al., 2012). This 

directly blocks the ability of Wnt to interact with FZD, thus, preventing signal 

activation and pathway transduction. OMP-18R5 has shown efficacy in several 

solid cancer types, however, its therapeutic potential in GC has not been 

explored. To assess the ability of OMP-18R5 to inhibit the growth of GC cells we 

first performed colony forming assays in soft agar for 2 weeks. MKN28 and 

MKN45 GC cells treated with OMP-18R5 formed significantly fewer anchorage-

independent colonies compared to vehicle control treated cells (Figure 3.3).  It 

should be noted that MKN28 and MKN45 cells grown as a conventional 2D 

monolayer do not show growth inhibition following OMP-18R5 treatment (Figure 

3.4). This suggests that OMP-18R5 does not inhibit the general viability of GC 

cells, but rather the more specific cancer stem cell characteristics of anchorage 

independent colony forming.  
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Figure 3.2 FZD7 abundantly expressed in GC cell lines. Relative expression of 

FZD receptors in (A) MKN28 and (B) MKN45 GC cells quantified by qRT-PCR. 

Expression shown relative to housekeeper (RPL19). Data represented as mean ± 

SEM, n=3. 

A 
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Figure 3.3 FZD inhibition reduces GC initiation. Quantification of cell colonies 

(>50 cells) from (A) MKN28 and (B) MKN45 GC cells grown in soft agar for 2 weeks 

treated with 80 μg/mL OMP-18R5 or vehicle control. Treatments were replaced 

every 4 days for the duration of 2 weeks. OMP-18R5 showed a reduction in number 

of colonies compared to control. The absolute number of colonies was normalized 

to the vehicle control. (**= p ≤ 0.01, mean ± SEM, n=3, t-test). 

A 

B 
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Figure 3.4 OMP-18R5 does not show efficacy in 2D setting. (A) MKN28 and (B) 

MKN45 GC cells were grown as 2D monolayer cultures in 96-well cell culture plates 

and treated with increasing concentrations of OMP-18R5, vehicle control or DMSO 

(to induce lysing of cells). Cell growth was assessed by Celtiter-Glo assay and cell 

viability percentage was calculated relative to DMSO treated cells. (mean ± SEM, 

n=3). 

A 

B 
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This suggests that cell intrinsic Wnt ligands are required for 3D-growth of GC 

cells. This was confirmed by treatment of GC cells  with LGK-974 which prevents 

Wnt secretion through inhibition of the palmitoylation of the Wnt ligand by 

PORCN (Liu et al., 2013). MKN28 and MKN45 GC cells treated with LGK-974 

formed significantly fewer anchorage-independent colonies compared to 

vehicle control treated cells (Figure 3.5). These data demonstrate cell intrinsic 

secretion of Wnt ligands and FZD receptor availability are required for the 

sustained growth and cancer stem cell properties of GC cells.   

To confirm OMP-18R5 and LGK-974 treatment had reduced Wnt signalling 

associated with the reduced growth observed I had planned to perform TOPflash 

assays. However, due to restricted lab time due to the COVID19 pandemic these 

could not be completed.  
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Figure 3.5 Inhibition of Wnt secretion reduces GC Initiation. Quantification of 

cell colonies (>50 cells) from (A) MKN28 and (B) MKN45 GC cells grown in soft agar 

for 2 weeks treated with 5 μM LGK-974 or vehicle control. Treatments were 

replaced every 4 days for the duration of 2 weeks. LGK-974-treated cells showed a 

reduction in number of colonies compared to control The absolute number of 

colonies was normalized to the vehicle control. (**= p ≤ 0.01, mean ± SEM, n=3, t-

test). 

A 

B 
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3.2.2 Pan-FZD inhibition reduces gastric cancer tumour burden in vivo 

To determine if FZD inhibition could also reduce the growth of GC cells 

in vivo 10x106 MKN45 or MKN28 GC cells were injected subcutaneously into the 

hind flanks of 6 week-old nude mice and allowed to develop into palpable 

gastric tumours. Growth of the tumours were measured twice weekly with 

calipers. To inhibit Wnt signalling, the mice were treated with 5 mg/kg OMP-

18R5, twice a week for the duration of the experiment. This dose has been 

previously used successfully in publications by Oncomed (Gurney et al., 2012) . 

Gastric tumours were significantly smaller in OMP-18R5 treated mice compared 

to vehicle control treated mice in both the MKN45 and MKN28 cohorts (Figure 

3.6). MKN45 tumours grew faster, reaching the tumour size limit by 19 days 

compared to 34 days for the MKN28 gastric tumours (Figure 3.6). The MKN45 

group grew consistently in size whereas the MKN28 group grew slowly for the 

first 27 days before suddenly and significantly increasing in size. As previously 

reported (Gurney et al., 2012), no toxicity was observed in OMP-18R5-treated 

mice, which displayed consistent bodyweight and no signs of morbidity or the 

duration of the treatment (Figure 3.7). These data demonstrate that FZD 

inhibition is sufficient to block the initiation and progression of human GC cells.  

Characterization of the GC xenografts showed a reduction in β-catenin 

staining (surrogate marker of active Wnt signalling) in OMP-18R5 treated mice 

compared to vehicle-treated control in both MKN45 and MKN28 GC cell lines 

(Figure 3.8). qRT-PCR analysis showed a significant decrease in the expression 

of Wnt target genes in the OMP-18R5 treated tumours in both MKN45 and MKN28 

GC cells (Figure 3.9). This demonstrates that treatment with OMP-18R5 is able 

to inhibit Wnt signalling in gastric tumours in vivo. We performed qRT-PCR for 

all 10 mammalian FZD genes which demonstrated that no other FZD receptor 

was compensating for inhibiting FZD1, FZD2, FZD5, FZD7, and FZD8 with the 

OMP-18R5 antibody (Figure 3.10). The significant reduction in expression of 

FZD7 is due to its role as a Wnt target gene rather than a direct inhibition by 

OMP18R5 since this is a monoclonal antibody which targets FZD antigens rather 
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than gene transcription. These data show that OMP-18R5 is able to inhibit Wnt 

signalling in GC xenografts and strongly suggests that FZD receptors are rate 

limiting for growth of gastric tumours in vivo.  

Tumours would have been further characterized by staining for PCNA and 

cleaved-caspase3 if not for restricted lab time due to the COVID19 pandemic. 
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OMP-18R5 

MKN45 MKN28 

Figure 3.6 Pan-FZD inhibition reduces GC growth in vivo. (A) Representative 

images of GC cell xenografts treated with vehicle or OMP-18R5. GC xenograft 

growth overtime in (B) MKN45 and (C) MKN28. Tumour growth in both cell lines was 

reduced in the OMP-18R5 treated cohort, (*= p ≤0.05, mean ± SEM, t-test, n=6, mice 

per cohort). 
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Figure 3.7 OMP-18R5 did not lead to increased morbidity. Body weight (grams) 

over time of mice treated with 5 mg/kg OMP-18R5 or vehicle control in (A) MKN45 

and (B) MKN28. (mean ± SEM, t-test, n=6, mice per cohort). 

B 

A 
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Figure 3.8 Pan-FZD inhibition reduced B-catenin expression in xenografts. 

Hematoxylin and eosin (H&E) staining and β-catenin immunostained (IHC) sections 

from OMP-185R-treated and vehicle control-treated GC xenografts. OMP-185R 

treated xenografts showed a reduction in β-catenin staining compared to control. 

(Scale bars = 100 µM). 
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Figure 3.9 Pan-FZD inhibition reduced Wnt signalling in GC cells in vivo. qRT-

PCR for Wnt target genes on GC xenografts from OMP-18R5 treated or vehicle 

control treated mice. All Wnt target genes had significantly decreased expression 

in the OMP-18R5 treated cohort compared to control. Normalized to RPL19 (***= p 

≤0.001, mean ± SEM, t-test, n=6 mice) 
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Figure 3.10 FZD receptors do not compensate when a subset of receptors are 

inhibited. qRT-PCR for FZD receptor genes on GC xenografts from OMP-18R5 

treated or vehicle control treated mice. No FZD receptor was significantly increased 

in expression due to the inhibition of 5 out 10 mammalian FZD receptors. FZD7 has 

reduced expression due to its role as a Wnt target gene. Normalized to RPL19 (*= p 

≤0.05, ****= p ≤0.0001, mean ± SEM, t-test, n=6 mice) 



Chapter 3: The Role of Frizzled-7 in Gastric Cancer Growth 
 

132 
 

3.2.3 Targeted FZD7 knockdown reduced gastric cancer colony formation 

 Inhibition of GC cell growth following treatment with OMP-18R5 suggests 

that one of the five FZD receptors targeted by OMP-18R5 (FZD1, 2, 5, 7, and 8) 

is responsible for transmitting Wnt signals in GC cells. Gene expression analysis 

narrows this down to FZD2 and/or FZD7, as FZD1, FZD5, and FZD8 are 

undetectable in these cell lines (Figure 3.2). It has previously been shown that 

FZD2 is unable to compensate for the loss of FZD7 in the intestinal epithelium 

(Flanagan et al., 2015b), this may indicate a predominant role for FZD7 in Wnt 

signal transduction in gastric tissue. Indeed, FZD7 is upregulated in GC and is 

associated with poor clinical outcomes (Phesse et al., 2016).  

To determine the specific requirement of FZD7 for the growth of human GC 

cells we performed colony forming assays on GC cells transfected with shFZD7 

(Vincan et al., 2007a). To first confirm the FZD7-targted shRNA (shFZD7) was 

specific to FZD7, it was transfected into GC cell lines, MKN45 and MKN28, and 

the expression of Wnt target genes and FZD receptors analyzed by qRT-PCR. 

MKN45 and MKN28 cells displayed a significant reduction in expression of FZD7, 

with relative mRNA expression fold change of ≤ 0.5. Importantly, the gene 

expression of FZD2 was not reduced following FZD7-knockdown in either cell 

line (Figure 3.11). This confirms that despite similar homology and expression 

in GC tissue, our shFZD7 is specific to FZD7 and FZD2 is not compensating for 

its loss. Expression of Wnt target genes were significantly reduced in both 

MKN45 and MKN28 following FZD7-knockdown compared to control (Figure 

3.11). This demonstrates that targeted knockdown of FZD7 in GC cells leads to 

a reduction in Wnt signalling and therefore has potential to be the predominant 

FZD receptor transmitting oncogenic Wnt signals in GC.  
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Figure 3.11 FZD7-knockdown reduces Wnt target genes in GC cell lines. qRT-

PCR for Wnt target genes in GC cell lines (A) MKN28 and (B) MKN45 following FZD7-

knockdown. Both cell lines showed a significant decrease in expression of Wnt 

target genes, including FZD7, in the shFZD7 cells compared to shSCRAMBLED 

control. FZD2 did not show a reduction in expression following FZD7-knockdown 

(**= p ≤0.01, ***= p≤0.001, ****= p ≤0.0001, mean ± SEM, t-test, n=3) 

A 
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To investigate the role of FZD7 in the growth of GC cells, cells were transfected 

with shFZD7 and grown as anchorage-independent colonies in soft agar. MKN45 

and MKN28 GC cells transfected with shFZD7 had a marked decrease in colony 

growth, compared to those transfected with scrambled shRNA (shSCRAMBLED) 

control (Figure 3.12). Importantly, growth inhibition following FZD7-knockdown 

was rescued by co-transfection with a full-length FZD7 expression construct 

(Figure 3.12). This observation was confirmed by qRT-PCR analysis of FZD7 

expression in the cells (Figure 3.13). MKN28 and MKN45 cells with FZD7 knocked 

down had a decrease in expression of FZD compared to shSCRAMBLED control. 

FZD7 expression returned to similar levels as the control when co-transfected 

with shZFD7 and the FZD7 overexpression construct. This demonstrates the 

specificity of shRNA and that FZD7 regulates growth in human GC cells.  

The reduction in colony forming ability in MKN45 and MKN28 cells transfected 

with shFZD7 was associated with decreased Wnt signalling (Figure 3.13). qRT-

PCR analysis demonstrated that MKN28 and MKN45 transfected with shFZD7 had 

significantly decreased expression of Wnt target genes compared to 

shSCRAMBLED control with levels returning to control levels when co-

transfected with shFZD and the FZD7 overexpression construct. These data 

suggest that FZD7 is the predominant Wnt receptor transmitting oncogenic Wnt 

signalling to regulate growth and cancer stem cell qulaities in GC cells and that 

targeting FZD7 may be an attractive therapeutic target to prevent 

initiation/growth of gastric tumours.  

TOPflash assays would have been used to confirm FZD7-knockdown leads to a 

reduction in Wnt signalling. However, due to restricted lab time due to the 

COVID19 lockdown these could not be completed.   
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Scrambled shFZD7 

FZD7 overexpression Combined 

Figure 3.12 FZD7-knockdown reduces GC cell growth. (A) Quantification of cell 

colonies (≥50 cells) from MKN45 or MKN28 GC cells grown in agar for 2 weeks 

following transfection with shFZD7 alone, FZD7-overexpression construct, 

shSCRAMBLED control or combination of shFZD7 and overexpression construct. Both 

cell liens displayed a reduction in growth in cells transfected with FZD7 alone 

compared to control. This reduction in growth was rescued by co-transfection with 

FZD7-overexpression construct, returning the number of colonies per well to levels 

similar to control cells. (B) Representative images of MKN28 grown as colonies. 

(***=p≤0.001, ****= p ≤0.0001, mean ± SEM, t-test, individual experiments repeated 

3 times). 
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Figure 3.13 FZD7-knockdown reduces Wnt signalling. qRT-PCR analysis of cells 

described in figure 2.12. (A) Analysis of FZD7 expression in both cell lines confirm 

the phenotype observed in colony forming assays. (B) qRT-PCR analysis of Wnt 

target genes shows a decrease in all Wnt target genes in both GC cell lines in the 

shFZD7 group compared to control. Expression levels are returned to control levels 

upon co-expression with FZD7-overexpression construct. (*=p ≤0.05, **= p ≤0.01, 

***= p≤0.001, ****= p ≤0.0001, mean ± SEM, t-test, n=3 
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3.3 Discussion 

 Aberrant regulation of Wnt signalling is a frequent theme in cancer 

biology. Given the wide array of cellular processes that are regulated by Wnt 

signalling during development and continued through to adulthood, it is 

unsurprising that some of the same cell processes that become compromised 

during carcinogenesis are due to deregulated Wnt signalling (Polakis, 2012). Our 

best understanding of the involvement of Wnt signalling in cancer comes from 

investigations into its well-known role in the initiation and progression of 

colorectal cancer (CRC) (Kinzler and Vogelstein, 1996; Sansom et al., 2004). 

Nearly all of CRCs, sporadic and familial, harbour mutations to components of 

the Wnt pathway, leading to pathway activation (Kinzler et al., 1991). 

However, unlike CRC, mutations to Wnt signalling pathway components in GC 

are modest in comparison (Clements et al., 2002; Koushyar et al., 2020). In 

fact, compared to CRC, mutations driving GC are still somewhat unclear. Efforts 

in genome sequencing of patient biopsies have provided insight into high risk 

pre-disposing environmental and genetic factors (Cristescu et al., 2015; Wang 

et al., 2014b), but these genomic studies are yet to be followed up with 

thorough functional investigations. Since it was demonstrated that Wnt activity 

could be regulated in CRC and GC, irrespective of downstream pathway-

activating mutations (Caldwell et al., 2004; Cheng et al., 2007; Suzuki et al., 

2004; Vincan et al., 2007a; Vincan et al., 2005; Zhao et al., 2014) the over-

expression of certain upstream signaling components in GC has received 

increased research attention. This provides a novel avenue to investigate the 

therapeutic potential to treat deregulated Wnt signalling in GC via 

manipulation of the accessible cell surface FZD receptors.  

This chapter has shown that FZD receptors are rate-limiting for the growth of 

GC in vitro and most importantly in vivo. Furthermore, it has elucidated, 

through use of targeted FZD7 knockdown, that FZD7 is likely the predominant 

Wnt receptor transmitting cell-intrinsic Wnt signals in human GC cells. Limiting 

the availability of FZD7 can reduce the activity of Wnt signalling, to levels that 
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cause a reduction in cell proliferation, a property utilized and required by 

developing tumours (Hanahan and Weinberg, 2011). Furthermore, the colony 

forming assays utilized in this chapter investigate the capacity of disaggregated 

single cells for form colonies and is therefore an assay for cancer stem cell 

(CSC) properties. Therefore, our results that show a decrease in colony forming 

ability in cells following FZD7 inhibition suggest that FZD7 is required in this 

process and that FZD7 is likely regulating gastric CSCs and thus potentially 

tumourigenesis. 

This hypothesis is further supported by additional recently published evidence 

generated alongside this project. Fzd7 was conditionally deleted in the gastric 

adenomas of Cre+ ;gp130F/F;Fzd7fl/fl mice (Flanagan et al., 2019a), which allows 

robust recombination in these adenomas (Thiem et al., 2016). Tamoxifen 

induced mice developed significantly smaller and fewer gastric adenomas than 

Cre-negative mice. Furthermore, when Fzd7 was co-deleted with Apc it was 

found sufficient to almost completely block the development of gastric tumours 

(Flanagan et al., 2019a). This supports our in vitro experiments demonstrating 

FZD7 inhibition is sufficient to block GC initiation. Taken together these data 

suggest that targeting FZD7 may lead to a potential therapeutic benefit in GC. 

There are 10 mammalian FZD family members, which are classed into groups 

based on shared sequence and structural homology; FZD1,2 and 7, FZD3 and 6, 

FZD5 and 8, and FZD4,9 and 10 (Yu et al., 2012a). Interestingly, FZD belonging 

to the same class are often expressed on the same cell, meaning cancer cells 

can also display class-specific FZD expression. Specific FZDs were originally 

considered to only participate in distinct arms of the Wnt pathway, however, 

it is now generally accepted that the nature of FZD signaling (Canonical or non-

canonical) is largely determined by the spatial and temporal ligand-receptor 

expression profile (Figure 3.1). 

Within gastrointestinal cancers that show elevated Wnt activity, the FZD 

receptors commonly over-expressed are FZD1, 2 and 7 (King et al., 2012; Ueno 

et al., 2013). Therefore, it is unsurprising that FZD2 and FZD7 were abundantly 
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expressed in our human GC cell lines: not only are they commonly 

overexpressed in GIT cancers but share similar sequence and structural 

homology. It has been previously  shown that FZD7 is commonly upregulated in 

hepatocellular, colon and gastric carcinomas and is associated with poor 

prognosis and survival (Merle et al., 2004; Schmuck et al., 2011; Vincan et al., 

2007a). Additionally, FZD7 has been shown to be the predominant receptor 

regulating stem cell function in the gastric epithelium (Flanagan et al., 2017a). 

Furthermore, inhibition of FZD2 has been shown to reduce tumour growth and 

EMT phenotypes in GIT cancers (Gujral et al., 2014; Tomizawa et al., 2015).  

Interestingly, FZD6 was also shown to be expressed in our GC cell lines. FZD6 

has been shown to act as an inhibitor of the canonical pathways through 

activation of TAK1/NLK kinases, which reduce activation of β-catenin target 

genes via phosphorylation of TCF/LEF transcription factors (Golan et al., 2004). 

Therefore, its abundant expression in our human GC cell lines may be in 

response to the increase in canonical signalling via upregulation of FZD7.   

Although FZD6 has been shown to regulate both canonical and non-canonical 

pathways, it has an emerging central role in the PCP signalling in cancer (Corda 

and Sala, 2017). Despite whether the PCP and non-canonical Wnt pathways are 

key players in oncogenic transformations still being a matter of discussion, 

there is evidence that GC cells hijack non-canonical signalling pathways to 

acquire the ability to metastasize through overexpression of Wnt5a (Kurayoshi 

et al., 2006). Wnt5a can bind to FZD6 forming a complex that drives migration 

and invasion in tumours where the WNT5A-FZD6 complex is overexpressed 

(Hirano et al., 2014; Kamino et al., 2011). However, this is contradicted by a 

recent paper where overexpression of FZD6 was able to suppress both 

proliferation and migration of GC (Yan et al., 2016). This clearly highlights the 

need for more functional experiments to decipher the roles of the other FZD 

receptors and identify which are viable as therapeutic targets in GC.  

One of the most fundamental traits of a cancer cell is its ability to sustain 

proliferation. Under non-pathological conditions, mitogenic signals that control 
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proper cell-cycle entry and subsequent division are tightly regulated to ensure 

proper tissue homeostasis. However, cancer cells are able to deregulate these 

mitogenic and growth signals, which allow them to control their own fate. 

There are numerous ways in which cancer cells can achieve sustained 

proliferation such as producing growth factor ligands themselves, to which they 

can respond via the expression of cognate receptors, resulting in autocrine 

proliferative stimulation (Hanahan and Weinberg, 2011). Results presented in 

this chapter show that inhibiting FZD receptors led to a reduction in GC cell 

growth. Therefore, FZD receptors are essential in transmitting the oncogenic 

Wnt signalling that results in uncontrolled proliferative signalling. GC cells 

hijack this by overexpressing the receptors on their surface (Phesse et al., 

2016). It should be noted that OMP-18R5 did not have efficacy on GC cells grown 

as a monolayer in a 2D environment. This highlights the importance of testing 

drug efficacy in conditions that better mimic tumour biology, such as organoids 

or mouse models and also suggests that Fzd7 regulates cancer stem cell activity 

and that the techniques used are not compromising the cell viability.  

Our in vitro studies presented here and studies by others (Tomizawa et al., 

2015) have shown that targeted inhibition of FZD is sufficient to block growth 

of GC cells. However, it is well documented that in vitro studies do not fully 

recapitulate the complex molecular and cellular interactions present in 

tumours (Hanahan and Weinberg, 2011). Our study demonstrated that 

functionally OMP-18R5 treatment triggered a reduced growth of human GC 

xenografts in mice. This supports previous work that demonstrates targeting 

multiple FZD receptors blocks the growth of several different cancers (Gurney 

et al., 2012). This can now be extended to GC. In other cancers OMP-18R5 has 

been used in combination with several standard-of-care chemotherapeutic 

agents, such as Taxol, Irinotecan and Gemcitabine, which showed strong 

synergy and significantly reduced cell proliferation and tumorigenicity (Gurney 

et al., 2012).Therefore, this antibody-based strategy of targeting FZDs may be 

beneficial to the treatment of a broad range of cancers, including GC. However, 
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the side effects of OMP-18R5 need to be further evaluated due its universality 

and non-specificity, therefore, a more specific drug target (I.E. a single FZD 

receptor) could lead to fewer side-effects. Consequently, it is important 

academically and clinically to elucidate the predominant FZD receptor 

transmitting oncogenic Wnt signalling in GC.  

Of the 10 mammalian FZD receptors, FZD7 is one of the few FZDs that has a key 

role in relaying proliferative cues (via Wnt/β-catenin signalling) to stem and 

progenitor cell populations, thereby contributing to tissue homeostasis 

(Flanagan et al., 2017a; Flanagan et al., 2015b). Targeted inhibition of FZD7 

has been shown to be sufficient to significantly reduce cell differentiation in 

human embryonic stem and limb progenitor cells (Fernandez et al., 2014; Mei 

et al., 2014). As such, FZD7 is commonly overexpressed in a variety of cancers, 

including GC, where it can successfully transduce high levels of Wnt/β-catenin 

signalling to cells and propagate cell proliferation to facilitate tumorigenesis. 

Targeted strategies to lower the availability of FZD7 have yielded robust 

decreases in tumour growth via decreasing cell proliferation (Asad et al., 2014; 

Merle et al., 2004; Simmons et al., 2014; Ueno et al., 2009; Vincan et al., 

2007a). Results presented in this chapter support the findings of others as we 

too observe a significant reduction in GC cell growth following FZD7 knockdown 

along with a decrease in expression of Wnt target genes. Deletion of Fzd7 in 

the normal gastric epithelium triggers repopulation (Flanagan et al., 2017a) 

which is a likely explanation for why FZD7-deficient GC cells and xenografts 

have reduced growth and why the reintroducing FZD7 into FZD7-deficient cells 

rescues the phenotype. Furthermore, our colony forming assays have 

demonstrated that FZD7 was required for gastric stem cell activity with 

additional support showing that deletion of Fzd7 prevents gastric 

tumourigenesis (Flanagan et al., 2019a). There is accumulating evidence of the 

close association between FZD7-regulated stem cells and cancer. For example, 

conditional deletion of FZD7 in adult intestinal epithelium, resulted in stem cell 

loss and organoid death. Furthermore, conditional deletion of FZD7 specifically 
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in the Lgr5+ intestinal stem cells in the crypts lead to impaired epithelial 

regeneration in transgenic mice (Flanagan et al., 2015a). Additionally, FZD7 is 

significantly elevated in human embryonic stem cells and has been used as a 

novel embryonic stem cell-specific surface antigen due to its involvement in 

embryonic stem cell self-renewal and pluripotent stat maintenance (Fernandez 

et al., 2014). It has been validated in breast cancer that FZD7-dependent 

enhancement of Wnt signalling promotes normal mammary stem cell activity 

(Chakrabarti et al., 2014). This implies that stem cells in normal and malignant 

tissues may share common molecular bases. This strengthens our findings that 

FZD7-mediated enhancement of Wnt signalling promotes gastric CSC and 

therefore enhances GC cells growth as FZD7 is known to regulate stem cell 

activity in normal gastric epithelium (Flanagan et al., 2017a) as well as being 

upregulated in human gastric tissue (Van Cutsem et al., 2016). These data 

support our findings of FZD7 regulating gastric CSCs and therefore playing a 

non-redundant role in transmitting oncogenic Wnt signalling in GC cells. 

Therefore, specifically targeting FZD7 for treatment of GC present a good 

therapeutic strategy. A recent study found a small molecular compound 

(SRI37892) that was able to target the transmembrane domain of FZD7 and 

block Wnt signal transmission. Treatment with SRI37892 inhibited LRP6 

phosphorylation and downregulated the level of cytosolic free β-catenin, and 

functionally repressed cell viability and colony formation in breast cancer 

(Zhang et al., 2017). This highlights the importance of understanding the 

interplay between the receptors, co-receptors and ligands at the cell surface, 

in order to develop more effective and specific drugs. This also confirms that 

targeting Wnt signalling at the level of the receptor is a good therapeutic 

strategy and supports our findings in GC.  

dFz7-21, is a selective peptide of the FZD7 receptor subclass (FZD1, 2 and 7), 

it has been shown to inhibit Wnt signalling by binding to the FZD7 CRD subclass 

at a new site proximal to the lipid-binding groove. This alters the dimer 

interface and disrupts the formation of the Wnt-FZD-LRP complex which leads 



Chapter 3: The Role of Frizzled-7 in Gastric Cancer Growth 
 

143 
 

to improper Wnt signalling (Nile et al., 2018). The anti-cancer effects of dFz7-

21 have not been demonstrated; however, the peptide was able to block Lgr5+ 

stem cell function, giving it potential as a drug to block FZD7 in cancer.  

The WNT-FZD-LRP signalosome is considered key to transmit canonical  Wnt 

signalling in a cell (MacDonald and He, 2012). However, in the colon it has 

recently been found that Wnt ligands were redundant in this complex. It has 

been shown that LRP5 knockdown inhibits Wnt signalling in APC mutant CRC 

cell lines (Saito-Diaz et al., 2018), however, treatment with IWP-2 (Porcupine 

inhibitor) had no effect on Wnt signalling in the same cell lines. This suggests 

that Wnt is redundant in the Wnt-FZD-LRP signalosome and further research is 

required to determine which Wnt-driven cancers are sensitive to porcupine 

inhibitors and the molecular mechanisms driving oncogenic Wnt signalling at 

the level of the receptor. In contrast to the colon, our data showed that 

inhibiting Wnt secretion led to a reduction in GC cell growth, demonstrating 

that cell intrinsic secretion of Wnt ligands as well as FZD receptor availability 

are required for the sustained growth of GC cells. This highlights that despite 

their proximal locations and shared role in digestion, their molecular regulation 

is very different. It also strengthens the value of modulating Wnt signalling at 

the level of the receptor. The modulation of LRP5/6 needs to be investigated 

further in the context of GC.  

Together our data suggests that FZD7 is the predominant receptor transmitting 

oncogenic Wnt signalling in GC and that inhibition of FZD7 and modulation of 

the WNT-FZD-LRP signalosome is a potential novel therapeutic strategy for GC. 

Interestingly, we observed the same results in both of our human GC cell lines. 

This is exciting as the key difference between cell lines is their APC mutational 

status; MKN45 are wild-type for APC whereas MKN28 have a truncating mutation 

in APC at codon 1450 (GGA to TGA, Arg to STOP) (Yokozaki, 2000). This 

demonstrates that inhibition of FZD7 is sufficient to block Wnt signalling in GC 

cells with mutant APC, which is consistent with similar studies done in CRC cells 

(Ueno et al., 2008; Vincan et al., 2005). Recently it was shown that APCKO CRC 
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cells induced formation of the WNT-FZD-LRP signalosome, resulting in activated 

Wnt signalling. However, CRC with APC mutations treated with a porcupine 

inhibitor did not inhibit the activation of the signalosome, suggesting that Wnt 

ligands are dispensable in Wnt pathway activation resulting from APC truncation 

in CRC cells (Saito-Diaz et al., 2018). On the other hand, LRP6 deletion in CRC 

cells mutant for APC (SW480 and DLD1) did inhibit canonical Wnt signalling and 

have decreased cytoplasmic levels of β-catenin. These data suggest that Wnt 

receptor signalosome is activated by mutant APC and can induce Wnt signalling 

independent of Wnt ligands.  Recent work from Owen Sansom’s group have 

showed that GTPases, Ra1A and Ra1B, are required for efficient internalization 

of FZD7 to activate Wnt signalling in intestinal stem cells (Johansson et al., 

2019) supporting findings from Saito-Diaz et al., who also showed that rapid 

activation of Wnt signalling by the signalosome in APC mutant cells was due to 

internalization of the complex via clathrin-dependent endocytosis. This 

illustrates a conserved mechanism of internalization of the signalosome in WT 

and APC mutant Cells. It has demonstrated that CRC cells with a mutation in 

the mutation cluster region (MCR) of APC can respond to Tankyrase inhibition, 

suppressing oncogenic signaling in response to AXIN1/2 stabilization (Schatoff 

et al., 2019). Conversely, CRC cells containing an early truncating mutation 

(APCmin) were unresponsive to Tankyrase inhibition. This highlights the 

importance of the extent of APC truncation when considering therapeutic 

intervention as truncated APC can still be translated and transcribed leading to 

a functional or partially functional protein (Flanagan et al., 2019c).  Our results 

demonstrating that GC cells with APC mutations are responsive to inhibitor at 

the level of the receptor had APC mutations that fall outside of the MRC. These 

data suggest a difference in how APC mutant GC and CRC cells respond to Wnt 

inhibitors, depending on the location of the mutation in the APC. Further 

investigations are required to understand the molecular mechanism underlying 

Wnt signaling in GC and how mutant APC modulates the response of GC cells to 

FZD7 inhibition. 
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Interestingly, approximately 37% of APC mutant gastric tumours are mutant for 

RNF43, demonstrating that FZD is deregulated in subset of APC mutant gastric 

tumours and therefore an attractive target (TCGA, 2014). However, RNF43 and 

APC mutations are mutually exclusive in colon tumours suggesting that CRC and 

GC cells preferentially select different Wnt mutations that confer optimal or 

‘just-right’ levels of Wnt signalling required for tumour growth (Albuquerque 

et al., 2002; Lamlum et al., 1999). This confirms that modulating upstream of 

Wnt pathway component mutations is a viable strategy for treating GC cancer.  

3.4 Conclusions 

 Many GCs arise via mutation to downstream effector proteins that 

facilitate the enabling hallmarks of cancer. Therapeutic targeting of these 

effector proteins is often challenging due to their molecular inaccessibility and 

associated pleiotropic effects. In this study, we have provided a route to reduce 

GC cell growth and cancer stem cell activity via targeted inhibition of Wnt 

receptor FZD7, both molecularly and pharmacologically. Collectively, we have 

demonstrated that targeted inhibition of Wnt receptors, specifically FZD7, is 

rate-limiting for the growth of human GC cells with and without APC mutations. 

Critically, this provides proof-of-principle that modulation of Wnt signalosome 

can further regulate Wnt signalling irrespective of downstream mutations that 

constitutively activate the pathway. This provides a broad scope for the 

application of this novel therapeutic strategy for the treatment of GC.  
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4.1 Introduction  

  The findings presented in chapter 2 provide an exciting platform for 

targeting cancer stem cells via manipulation of FZD7 in GC. However, cancer is 

a complex disease comprised of other essential traits that must be considered, 

one such trait being metastasis (Hanahan and Weinberg, 2011).  

Due the asymptomatic nature of GC, the majority of patients present with 

locally advanced and/or metastatic disease. The prognosis for patients with 

metastatic GC is very poor, with a median survival of 4 months (Van Cutsem et 

al., 2016). The current first-line therapy for GC patients with advanced disease 

is a combination of cisplatin/capecitabine with Transuzumab if the tumours are 

positive for HER2 expression However Transuzumab only yields a partial 

response and resistance usually develops (Koushyar et al., 2020). Although 

ramucirumab (targets vascular endothelial growth factor receptor-2) is 

approved for clinical use, there have been no reported benefits in GC 

(ElHalawani and Abdel-Rahman, 2015).  Although the understanding GC etiology 

and pathophysiology have increased in recent years, identifying novel and 

reliable therapeutic targets has remained a challenge. Therefore, 

understanding the molecular aberrations that drive GC progression is key to 

identifying novel druggable targets to bring about treatment options for this 

disease.  

It is well established that Wnt signalling not only drives the initiation of solid 

cancers but also contributes to the metastatic progression of the primary 

tumour. The reactivation of Wnt signalling in the cancer stroma favors cancer 

stem cell survival, whilst within the primary tumour reactivation aids the EMT 

of tumour cells, the migration and invasion of tumour cells and prevents 

dormancy at metastatic secondary sites (Nwabo Kamdje et al., 2017). 

Therefore, targeting Wnt signalling is an attractive therapeutic strategy for 

cancer metastasis.  
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Published investigations into oncogenic Wnt signalling in the context of GC 

metastasis have been limited. However, a recent study has identified, through 

gene set enrichment analysis, that ADAM17 (TNF- α-converting enzyme) 

mediates GC cell migration through regulation of both the NOTCH and Wnt 

signalling pathways. ADAM17 was shown to be abundantly expressed in primary 

GC tissue, metastatic lymph nodes, and in metastatic GC cell lines. 

Furthermore, knockdown of ADAM17 in a metastatic GC cell line suppressed 

canonical Wnt signalling via the downregulation of β-catenin (Li et al., 2019b) 

Evidence of the involvement of Wnt signalling in the induction of EMT in GC 

comes from studies into the microRNA, mir-544a. Overexpression of mir-544a 

induces the translocation of β-catenin from the cytoplasm to the nucleus, 

therefore increasing canonical Wnt signalling in GC cells (Yanaka et al., 2015). 

In addition to the upregulation of canonical Wnt signalling, mir-544a 

overexpression downregulated the protein expression of the Wnt destruction 

complex protein, AXIN2 (Yanaka et al., 2015).  

In regards to the migration and invasion capabilities of GC cells, the stem cell 

marker LGR5 has been found to promote these through the regulation of 

canonical Wnt signalling (Wang et al., 2018). GC cells treated with a porcupine 

inhibitor, to prevent Wnt secretion and therefore the Wnt-FZD-LRP complex, 

displayed a decrease in LGR5-induced proliferation and migration of GC cells. 

Whereas, Wnt3a-treated cells rescued the LRG5-induced phenotype. Additional 

evidence demonstrated that LGR5 overexpression induced the translocation of 

β-catenin to the nucleus, and increased the gene expression of two Wnt target 

genes, AXIN2 and TCF1 (Wang et al., 2018).  

GC cells with overexpressed LGR5 had an increased cell motility via a 

morphological change; cells became elongated with a fibroblast-like 

appearance, with this phenotype reversing when the GC cells were treated with 

a porcupine inhibitor. This suggests that LGR5 regulates cell migration through 

Wnt signalling (Wang et al., 2018). This is consistent with recent work showing 

that cytonemes are induced by autocrine Wnt8a binding to the Ror2 receptor 
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(Mattes et al., 2018). Activation of cytonemes mediates the transport of Wnt8a 

to surrounding cells which then trigger canonical Wnt signalling (Mattes et al., 

2018). This highlights the cross-talk between non-canonical and canonical Wnt 

signalling in migrating cells, and gives support to investigating FZD7 as a 

receptor involved in GC progression due its unique ability to transduce 

signalling in both the canonical and non-canonical pathways and therefore it’s 

potential as a therapeutic target. 

Wnt5a-targeted knockdown in GC cell lines has been shown to reduce cell 

migration both in vitro and in vivo through inhibition of Rac1 and laminin ϒ2, 

both drivers of GC cell invasion. Suppression of Wnt5a using an anti-Wnt5a 

antibody prevented the clathrin-mediated rapid internalization of the Wnt5a-

FZD2 receptor complex (Hanaki et al., 2012). Together, these studies identify 

Wnt signalling, either at the ligand/receptor level, or internalization of the 

receptor complex, as an important mechanism in driving GC metastasis, which 

therefore could contain some attractive therapeutic targets. Further 

investigations into the precise molecular mechanisms underlying Wnt signalling 

in GC progression is still required/ Therefore, this chapter aims to contribute 

to the understanding of Wnt signalling in the context of GC progression.  

Due to the role of Wnt in cancer metastasis and our previous work highlighting 

the important role of FZD7 in GC growth, it is likely that this receptor will also 

be involved in GC progression. Therefore, this chapter aims to elucidate the 

role of FZD7 in gastric cancer metastasis through in vitro studies inhibiting 

FZD7, both molecularly and pharmacologically. FZD7 will be assessed for its 

role in the migratory and invasive capabilities of GC cells as well its role in the 

process of EMT; a key process in a cells ability to acquire a migratory phenotype 

The therapeutic benefit of inhibiting Wnt signalling at the level of the receptor 

in GC metastasis will also be investigated using an in vivo model to better 

recapitulate the tumour microenvironment. GC cells will be injected into the 

abdominal cavity to resemble GC peritoneal dissemination and mice treated 

with LGK-974 to block Wnt secretion. This will assess the requirement of Wnt 
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signalling for GC cells ability to survive in the peritoneal niche and to colonize 

a secondary site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: The Role of Frizzled-7 in Gastric Cancer Metastasis 

151 
 

4.2 Results 

4.2.1 Inhibition of the Wnt signalosome suppressed GC migration & invasion  

 The Wnt pathway has been implemented as a key signalling pathway 

driving cancer metastasis. As reported in chapter 2 (Figure 3.2) several FZD 

receptors are abundantly expressed in our two human GC cell lines, MKN28 and 

MKN45. To investigate the role of FZD receptors in the migration of GC cells the 

widely accepted transwell assays were employed. Transwell assays evaluate the 

ability of single cells to migrate through a porous membrane. GC cells were 

treated with the pan-FZD monoclonal blocking antibody, OMP-18R5 at a 

concentration of 80 μg/mL (as previously used(Gurney et al., 2012)) or vehicle 

control. MKN28 and MKN45 GC cells treated with OMP-18R5 migrated less 

through the pores of the filter membrane, demonstrating a significant reduction 

in the migratory ability of the cells compared to the vehicle-treated cells 

(Figure 4.1). This illustrates that FZD receptors regulate GC motility and 

migration.  

Another key property of metastatic cancer cells is their ability to invade into 

tissue. Therefore, the ability of human GC cells to invade was investigated 

through Transwell invasion assays; this measures the invasion of cells through 

extracellular matrix, a process commonly found in cancer metastasis. This is 

achieved by the addition of a thin layer of Matrigel seeded onto the semi-

permeable membrane. Both human GC cell lines treated with OMP-18R5 had a 

significantly decreased ability to invade through the Matrigel layer compared 

to vehicle-treated control (Figure 4.2) This demonstrates that FZD receptors 

are required for GC cells ability to invade.  

To ensure the migratory and invasive ability observed in our GC cell lines was 

due the effect of OMP-185R blocking a subclass of FZD receptors and not due 

to drug toxicity, a cell viability assay was performed. In both MKN45 and MKN28 

GC cell lines, increasing concentrations of OMP-18R5 did not reduce their 

viability (Figure 4.3). This confirms that the results observed in Figure 4.1 and 

Figure 4.2 are due the inhibitory action of OMP-18R5 on FZD receptors.  
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Figure 4.1 Pan-FZD inhibition reduced migratory ability of GC cells. (A) 

Treatment of MKN28 and MKN45 GC cells with 80 µg/mL OMP-18R5 for 24 hours 

significantly reduced their ability to migrate through the pores of a Transwell insert 

compared to vehicle-treated control. (B) Representative images of GC cells on the 

underside of the filter membrane stained with crystal violet. Experiments were 

performed in duplicate and three random fields of view per replicate were counted 

by eye and the average taken. (**= p ≤0.01, ****= p ≤0.0001, mean ± SEM, t-test, 

n=3) 
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Figure 4.2 Pan-FZD inhibition reduced invasive ability of GC cells. (A) Treatment 

of MKN28 and MKN45 GC cells with 80 µg/mL OMP-18R5 for 24 hours significantly 

reduced their ability to invade through a thin layer of matrigel in a Transwell insert 

compared to vehicle-treated control. (B) Representative images of GC cells on the 

underside of the filter membrane stained with crystal violet. Experiments were 

performed in duplicate and three random fields of view per replicate were counted 

by eye and the average taken. (**= p ≤0.01, ***= p ≤0.001, mean ± SEM, t-test, n=3) 
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Figure 4.3 OMP-18R5 not toxic to GC cells. (A) MKN28 and (B) MKN45 GC cells 

were grown in 96-well cell culture plates and treated with increasing 

concentrations of OMP-18R5, vehicle control or DMSO (to induce lysing of cells). No 

drug toxicity was observed in either cell line. Cell viability was assessed by Celtiter-

Glo assay and cell viability percentage was calculated relative to DMSO treated 

cells. (mean ± SEM, n=3). 
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These data suggested that cell intrinsic Wnt ligands were required for the 

migratory and invasive ability of GC cells. This was confirmed by treatment of 

GC cells  with LGK-974 which prevents Wnt secretion through inhibition of the 

palmitoylation of the Wnt ligand by PORCN (Liu et al., 2013). MKN28 and MKN45 

GC cells treated with LGK-974 had a significantly reduced ability to migrate 

through the filter membrane of the Transwell insert compared to vehicle-

treated control (Figure 4.4).  Human GC cell lines treated with LGK-974 also 

had a significantly inhibited ability to invade through the layer of Matrigel 

above the filter membrane of the Transwell insert (Figure 4.5). To confirm that 

drug toxicity was not responsible for the reduced number of GC cells observed 

on the underside of the Transwell filter membrane, GC cells were treated with 

increasing concentrations of LGK-974 and their cell viability assessed by 

CellTiter-Glo assay. Increasing concentrations of LGK-974 did not significantly 

reduce cell viability compared to vehicle-treated control (Figure 4.6). These 

data demonstrate that cell intrinsic secretion of Wnt ligands and FZD receptor 

availability are required for the migratory and invasive ability of human GC 

cells.  

To confirm inhibition of Wnt signalling had led to a reduced migratory and 

invasive ability of GC cells, TOPflash assays would have been used on GC cells 

treated with LGK-974. However, due to restricted lab time due to the COVID19 

lockdown these could not be completed.    
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Figure 4.4 Wnt inhibition reduced migratory ability of GC cells. (A) Treatment 

of MKN28 and MKN45 GC cells with 1 µM and 5 µM LGK-974 for 24 hours significantly 

reduced their ability to migrate through the filter membrane in a Transwell insert 

compared to vehicle-treated control. (B) Representative images of GC cells on the 

underside of the filter membrane stained with crystal violet. Experiments were 

performed in duplicate and three random fields of view per replicate were counted 

by eye and the average taken. (**= p ≤0.01, ***= p ≤0.001, mean ± SEM, t-test, n=3) 
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Figure 4.5 Wnt inhibition reduced invasive ability of GC cells. (A) Treatment of 

MKN28 and MKN45 GC cells with 1 µM and 5 µM LGK-974 for 24 hours significantly 

reduced their ability to invade through a thin layer of Matrigel in a Transwell insert 

compared to vehicle-treated control. (B) Representative images of GC cells on the 

underside of the filter membrane stained with crystal violet. Experiments were 

performed in duplicate and three random fields of view per replicate were counted 

by eye and the average taken. (*= p≤0.05, **= p ≤0.01, ***= p ≤0.001, mean ± SEM, 

t-test, n=3) 
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Figure 4.6 LGK-974 not toxic to GC cells. MKN28 and MKN45 GC cells were grown 

in 96-well cell culture plates and treated with increasing concentrations of LGK-

974 or vehicle control. No drug toxicity was observed in either cell line. Cell 

viability was assessed by Celtiter-Glo assay and cell viability percentage was 

calculated relative to DMSO treated cells. (mean ± SEM, n=3). 
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4.2.2 FZD inhibition blocks EMT in human GC cells.   

 EMT is a vital process in tumour invasion and metastasis. There is 

increasing evidence demonstrating that activation of Wnt signalling can drive a 

transcriptional program and promote EMT in cancers (Basu et al., 2018). To 

determine the role of FZD receptors in transmitting the signals required to drive 

EMT in GC, fluorescent immunocytochemistry was performed. GC cells were 

treated with OMP-18R5 following the induction of the EMT state and then 

stained for epithelial and mesenchymal markers. Vehicle-treated MKN28 GC 

cells that were induced into EMT via the addition of StemXVivo supplement into 

their growth media were positive for the mesenchymal marker vimentin and 

negative for the epithelial marker, Ep-CAM. It is confirmed that these cells lost 

epithelial markers and gained mesenchymal markers due to EMT induction by 

the observation of positive staining for Ep-CAM and negative staining for 

vimentin in vehicle-treated cells that had not been induced to undergo EMT 

(Figure 4.7). MKN28 GC cells induced to undergo EMT and treated with OMP-

18R5 (to inhibit a subclass of FZD) failed to upregulate Vimentin and retained 

expression of Ep-Cam indicating that blocking Fzd receptors prevented EMT. 

(Figure 4.7). OMP-18R5 treatment of non-induced MKN28 cells did not have any 

unexpected results and showed the same expression of markers as the vehicle-

treated non-induced cells (Figure 4.7). This demonstrates that Wnt signalling, 

via the FZD receptors, is involved in the promotion of the EMT state in GC. To 

confirm it was Wnt/β-catenin signalling pathway, it was planned that the 

cellular levels of β-catenin and canonical Wnt pathway target genes were to be 

investigated by immunofluorescence staining, however, this could not be 

completed due to lab restrictions due to the COVID19 lockdown. The lockdown 

also prevented further analysis to investigate if the same result was observed 

in MET, by removing StemXVivo from the growth media. These experiments 

would have yielded a more complete understanding of the role of Wnt in the 

metastasis of GC. 
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Figure 4.7 FZD inhibition blocks EMT in GC cells. Immunofluorescence assay of 

EMT-induced MKN28 GC cells showed treatment with 80 µg/mL OMP-18R5 blocked 

EMT compared to vehicle-treated EMT-induced control. Cells were stained for 

vimentin (green) and Ep-CAM (red) and counterstained with DAPI (blue). (Scale bars 

= 200 µM). 
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To quantify the expression mRNA levels of epithelial and mesenchymal markers 

following EMT stimulation and OMP-185R treatment, qRT-PCR was performed. 

Vehicle-treated MKN28 GC cells not induced to undergo EMT displayed a 

significantly decreased expression of mesenchymal markers, Slug (SNAI2), Snail 

(SNAI1), Twist1, N-cadherin (CDH2) and vimentin, and a significantly increased 

expression in the epithelial adhesion marker E-cadherin (CDH1) compared to 

EMT-induced vehicle-treated cells (Figure 4.8). This illustrates that the addition 

of StemXVivo to the growth media of MKN28 induces an EMT state resulting in 

the upregulation of mesenchymal markers. OMP-18R5-treated EMT-induced GC 

cells displayed a similar expression of mesenchymal and epithelia markers as 

the vehicle-treated non-EMT induced control cells (Figure 4.8). This illustrates 

that inhibition of FZD receptors, and therefore modulation of the Wnt 

signalosome, is sufficient to block the process of EMT in human GC cells.  
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Figure 4.8. FZD inhibition blocks the EMT expression profile in GC cells. qRT-

PCR analysis of mesenchymal and epithelial markers showed EMT-induced MKN28 

GC cells treated with 80 µg/mL OMP-18R5 blocked the process of EMT compared to 

vehicle-treated EMT-induced control. (*= p ≤0.05, **= p ≤0.01, ***= p ≤0.001, ****= 

p ≤0.0001, mean ± SEM, t-test, n=3) 
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4.2.3 Wnt inhibition is not sufficient to block GC metastasis in vivo.   

 The process of cancer metastasis is extremely complex and is influenced 

by a multitude of intrinsic and extrinsic factors, such as immune cells, cancer-

associated fibroblasts and stromal cells (Liu et al., 2017). Therefore, it is 

important to investigate metastasis in a context that recapitulates the tumour 

microenvironment. To achieve this an in vivo model of peritoneal dissemination 

(the most frequent form of metastasis in GC) was designed. Human GC cell 

lines, MKN28 and MKN45 were injected into the abdomen of nude mice and left 

to form micro-metastases in the peritoneal cavity. Unfortunately, OMP-18R5 

was unable to be used due to the manufacturer being taken over and pause on 

production being issued. Therefore, LGK-974 was used as an alternative to 

inhibit Wnt signalling. Mice were treated with 1.5 mg/kg LGK-974, 3 mg/kg 

LGK-974 or vehicle control via oral gavage. After 4 weeks the mice were 

sacrificed and the tumour metastatic burden was quantified. No significant 

difference was observed in the metastatic tumour burden of mice treated with 

LGK-974 compared to vehicle-treated control (Figure 4.9). No toxicity was 

observed in LGK-974-treated mice, which displayed bodyweight consistent with 

tumour burden and no signs of morbidity or intestinal distress (diarrhea) for the 

duration of the treatment (Figure 4.10).  

These data suggest that although LGK-974 is able to inhibit migration and 

invasion of GC in vitro, it is not able to prevent the formation of peritoneal 

tumours when GC are injected IP. This could be due to several factors which 

are addressed in the discussion at the end of this chapter. 

The characterization of the tumours harvested from this experiment could not 

be completed due to lab restrictions in place due the COVID19 lockdown. 

Unfortunately, the effect of FZD inhibition on GC metastasis could not be 

investigated in vivo due to supply issues of OMP-18R5. 
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Figure 4.9. Wnt inhibition did not reduce tumour burden in vivo. Metastatic 

burden (weight in grams) of GC cells, MKN28 and MKN45, in injected into the 

peritoneal cavity of mice and treated with LGK-974 or vehicle. No significant 

difference was observed in LGK-974-treated mice compared to Vehicle-treated 

cohorts. (mean ± SEM, t-test, n=6 mice per cohort). 
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Figure 4.10. LGK-974 did not lead to increased morbidity. Body weight (grams) 

over time of mice treated with 1.5 mg/kg LGK-974, 3 mg/kg LGK-974 or vehicle 

control for both MKN28 and MKN45 cohorts. (mean ± SEM, t-test, n=6, mice per 

cohort). 
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4.2.4 Targeted FZD7 knockdown suppressed GC migration and invasion 

 Suppression of GC migration and invasion following treatment with OMP-

18R5 suggests that one of the five FZD receptors targeted by OMP-18R5 (FZD1, 

2, 5, 7, and 8) is responsible for transmitting Wnt signals in GC cells during 

these cellular functions. The results presented in chapter 2 demonstrated that 

FZD7 is the predominant FZD receptor transmitting oncogenic Wnt signalling, 

which regulates GC growth; specific knockdown of FZD7 produced very similar 

results in colony forming assays as inhibition of the secretion of all Wnt ligands, 

suggesting a non-redundant role for FZD7 in transmitting Wnt in GC cells These 

findings, together with the evidence that FZD7 upregulation in GC is associated 

with poor clinical outcomes (Phesse et al., 2016), strongly suggest that FZD7 

may also play a key role in GC metastasis. To determine the specific 

requirement of FZD7 for the migration of human GC cells we formed in vitro 

transwell migration assays on MKN28 and MKN45 GC cells transfected with 

shFZD7 or shSCRAMBLED control. For both MKN28 and MKN45 cells, FZD7 knock-

down cells displayed a significant reduction in their ability to migrate through 

the pores of the filter membrane (Figure 4.11). This illustrates that FZD7 is a 

key player in regulating the motility of GC cells.  

Another key property of metastatic cancer cells is their ability to invade into 

tissue. Therefore, the ability of human GC cells to invade was investigated 

through transwell invasion assays. Both human GC cell lines transfected with 

shFZD7 had a significantly decreased ability to invade through the Matrigel layer 

above the filter membrane compared to shSCRAMBLED control (Figure 4.12). 

This demonstrates that FZD7 regulates GC cells ability to invade.  

These data suggest that FZD7 is the predominant Wnt receptor transmitting 

oncogenic Wnt signalling that regulates GC cells ability to migrate and invade. 

Therefore, targeting FZD7 may be an attractive therapeutic target to treat 

metastatic GC.  
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Figure 4.11 FZD7-knockdown suppresses GC migration. (A) Knock-down of FZD7 

in both MKN28 and MKN45 GC cells significantly reduced their ability to migrate in 

vitro compared to control. (B) Representative images of GC cells, stained with 

crystal violet, on the underside of the filter membrane. Experiments were 

performed in duplicate and three random fields of view per replicate were counted 

by eye and the average taken. (**= p ≤0.01, mean ± SEM, t-test, n=3) 
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Control 
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Control 

shFZD7 

MKN28 MKN45 

Figure 4.12 FZD7-knockdown suppresses GC invasion. (A) Knock-down of FZD7 in 

both MKN28 and MKN45 GC cells significantly reduced their ability to invade in vitro 

compared to control. (B) Representative images of GC cells, stained with crystal 

violet, on the underside of the filter membrane after invading through a Matrigel 

layer. Experiments were performed in duplicate and three random fields of view 

per replicate were counted by eye and the average taken. (**= p ≤0.01, mean ± 

SEM, t-test, n=3) 

 

A 
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The following was planned but could not be completed due to COVID19 

lockdown: 

To determine if FZD7 was the predominant receptor regulating the process of 

EMT fluorescent immunocytochemistry was going to be utilized. GC cells 

deficient for FZD7 (via transfection with shFZD7) would have been stained for 

a range of mesenchymal and epithelial markers following induction of EMT. This 

could have complimented the results presented in chapter 3. 

To assess if the FZD7-knockdown phenotype observed in the migration and 

invasion in vitro assays could be rescued by overexpression of FZD7. The assays 

were to be repeated with the additional conditions of: shFZD7 only, FZD7-

overexpression plasmid and co-transfection of shFZD7 and FZD7-overexpression 

plasmid.  
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4.3 Discussion 

 Metastasis is a characteristic of late stage cancer and remains a major 

challenge to therapy. This is due to an incomplete understanding of this highly 

complex pathological process. Metastatic cancer cells are able to acquire four 

key hallmarks of metastasis that are essential for all metastases to develop: 

Motility and invasion, modulation of the microenvironment, plasticity, and 

ability to colonize (Welch and Hurst, 2019). Investigations into these key traits 

of metastatic cancer cells will lead to a better understanding of the process 

and push forward the development of therapeutic interventions.  

This is especially important in GC as metastasis is the primary reason of death 

in GC patients, but the underlying mechanisms remain unclear and treatments 

are still limited. Therefore, it is urgent to investigate the molecular process of 

GC metastasis to lead to the identification of novel therapeutic targets to bring 

about a benefit for patients. As highlighted in chapter 2 the Wnt/β-catenin 

signaling pathway is a potent pathway for GC pathogenesis and growth, with 

FZD7 acting as the predominant receptor transmitting oncogenic signals. Wnt 

signalling has also been implemented in GC metastasis, with the upregulation 

of FZD7 associated with poor prognosis in advanced cases (Li et al., 2018) 

although there are currently limited studies on how Wnt signalling drives 

metastatic GC.  

Recently, cancer stem cell (CSC) hypotheses are attracting increasing attention 

with research suggesting that CSCs contribute to tumour aggressiveness, 

metastasis and relapse (Yu et al., 2012b). CSC possess the ability to self-renew 

and differentiate into multiple lineages (Dalerba et al., 2007) and have been 

identified in several types of solid cancer including GC (Takaishi et al., 2009). 

It has been shown that FZD7 regulates a population of CSC in GC, although 

unlike the intestine, this exact population of CSC has not been identified 

(Flanagan et al., 2019b). Our results from chapter 2 support the hypothesis that 

FZD7 is regulating a population of gastric CSCs as knockdown of FZD7 in GC cell 

lines resulted in a reduced colony forming ability; this illustrates that FZD7 is 
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likely regulating the CSC activity.  Therefore, the role of FZD7 in regulating a 

population of stem cells with the ability for self-renewal, and therefore 

metastatic potential, make it an enticing target for treating metastatic GC.  

The role of FZD7 in metastasis has been highlighted in many other cancers. For 

example, it has been shown to promote tumour metastasis via the Wnt pathway 

in esophageal squamous cell carcinoma (Cao et al., 2017) and down-regulation 

of FZD7 was shown to decrease the metastatic capabilities of CRC cells (Ueno 

et al., 2009). However, the function of FZD7 in GC metastasis has not been 

thoroughly investigated. This chapter has shown that FZD receptors contribute 

to the migratory and invasive abilities of GC cells and elucidated that FZD7 is 

the likely Wnt receptor transmitting aberrant signalling in human GC cells, thus, 

enabling GC metastasis. It is important to highlight that specific knockdown of 

FZD7 gave similar effects to OMP-18R5 and LGK-974 treatment, this suggests a 

non-redundant role for FZD7. Furthermore, within our GC cell lines used only a 

small group of FZD receptors were abundantly expressed (FZD6 and 7) and of 

these, OMP-18R5 only blocks FZD7. We have also shown that FZD receptors play 

a key role in the regulation of the EMT process and could be an attractive 

therapeutic target in preventing GC cells ability to gain an invasive phenotype. 

Accumulating evidence associates Wnt signalling with the regulation of cancer 

cell migration and invasion in many cancers (Nusse and Clevers, 2017). FZD2 

has been shown to contribute to the migration and invasion of endometrial 

cancer cells, with overexpression promoting migration through the canonical 

Wnt pathway (Bian et al., 2016). Additionally, FZD2 blockage by siRNA reduced 

neuroblastoma cells motility and induced a less vascularized phenotype (Zins 

et al., 2016), demonstrating that cell migration can be modulated by regulation 

of the Wnt receptors. More recently, overexpression of FZD8 was shown to 

increase prostate cancer cell migration and invasion in vitro and in vivo by the 

activation of the Wnt/β-catenin signalling pathway (Li et al., 2017). 

Furthermore, shRNA-mediated knockdown of FZD7 has been reported to inhibit 

invasion and migration of cervical cancer cells (Deng et al., 2015) This evidence 
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in combination of our data supports a role for Wnt-regulated migration and 

invasion in GC. The results presented in this thesis strongly suggest that FZD7 

is playing a functional role in the regulation of GC cells migration and invasion.  

Our results demonstrating that inhibiting FZD7 suppressed migration and 

invasion were observed in both MKN45 (APC-WT) and MKN28 (APC-Mut) GC cell 

lines, highlighting that APC mutational status is not a rate-limiting factor for 

targeting Wnt ligands/receptors in metastatic GC. This further builds on the 

results presented in chapter 2 in confirming that modulating the Wnt signalling 

pathway at the level of the receptor in cells with downstream mutations is a 

viable therapeutic strategy for GC metastasis.   

The process of EMT is a key step in metastasis that provides primary tumour 

cells with the properties required to invade their surrounding 

microenvironment and spread to distal sites and form micro-metastases. Wnt 

signalling has been reported to promote EMT through up-regulating 

mesenchymal transcription factors, such as Slug and Twist (DiMeo et al., 2009). 

Similarly, FZD receptors are known as critical factors for EMT processes. Wnt5a-

FZD2-mediated non-canonical signalling has been demonstrated to drive EMT in 

liver, lung, colon and breast cancer cell lines (Gujral et al., 2014). FZD4 

ablation induces active β1-integrin and E-cadherin expression, confirming that 

FZD4 regulates EMT and cell adhesion in prostate cancer cells (Gupta et al., 

2010). Similar to our EMT data presented in this chapter recent investigations 

have shown that down-regulation of FZD7 expression significantly inhibits cell 

invasion and migration, accompanied with decreased vimentin and snail, and 

increased E-cadherin in cervical and ovarian cancers (Asad et al., 2014; Deng 

et al., 2015). Despite the clear importance of the role of FZD receptors in 

mediating EMT, limited research has been undertaken in GC. Our study 

demonstrated that inhibition of FZD receptors, through treatment with OMP-

185R, caused an increase of E-cadherin expression along with decreases of N-

cadherin, snail, slug, twist, and vimentin. Snail expression has been shown to 

cause the stabilization of β-catenin leading to the expansion of the stem cell 
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niche in CRC (Hwang et al., 2014). Together, these observations suggest that 

EMT induces stemness in invasive cancer cells. These findings provide evidence 

that FZD receptors can induce EMT and promote metastases in GC cells, even 

in cells with a mutation to intracellular APC. It is likely, given the gene 

expression analysis performed in chapter 3 (Figure 3.2) that of the 5 FZD 

receptors blocked by OMP-18R5, FZD7 is the predominant receptor transmitting 

Wnt signals to regulate EMT. Therefore, targeting FZD receptors/FZD7 to inhibit 

EMT or inducing mesenchymal-epithelial-transition (MET) might be an 

attractive therapeutic strategy. 

There is also accumulating evidence showing the requirement of MET in the 

colonization and metastasis of carcinomas, for example, loss of the EMT 

transcription factor Prrx1 in breast cancer cells induces MET and leads to the 

establishment of a CSC niche which was required for metastasis (Ocaña et al., 

2012; Stankic et al., 2013). In squamous cell carcinoma, Twist1-mediated EMT 

was necessary for primary tumour cells to invade local tissue, similar to the 

increase observed in Twist1 expression in our data. However, the silencing of 

Twist-1 and the re-acquisition of E-cadherin was necessary for the colonization 

in the distant tissue (Tsai et al., 2012). Therefore, targeting EMT alone might 

be counterproductive, unless the exact timing could be controlled which is 

unlikely, and inhibiting both EMT and MET could however be a more promising 

therapeutic strategy.  

The in vivo data presented in this chapter highlight the importance of the 

tumour microenvironment (TME) and metastatic niches. The in vitro data 

demonstrated that inhibiting Wnt secretion by treatment of GC cell lines with 

LGK-974 was sufficient to suppress migration and invasion in vitro. However, 

this result was not observed when LGK-974 was used for in vivo experiments. 

This could be due to a multitude of inter-playing factors that capture the 

complexity of the metastatic process from vascular system to stromal cells. 

However, LGK-974 has been used to significantly reduce tumour burden in vivo 

in other Wnt-driven cancers, although not GC (Liu et al., 2013). We may not 
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see a result in GC due to a different requirement of Wnt signalling, echoing the 

“just right” model of Wnt (Albuquerque et al., 2002). Additionally, it has been 

shown in APC mutant CRC cells that Wnt signalling could be modulated at 

receptor level, via LRP5 knockdown, but treatment with a porcupine inhibitor 

(Similar to LGK-974) had no effect on Wnt signalling on the same cells (Saito-

Diaz et al., 2018). This suggests that some Wnt-driven cancers can have ligand-

independent activation of Wnt receptors and downstream signalling but still be 

modulated at the level of the receptor. Therefore, in the in vivo GC model, 

Wnt ligands may be redundant in the LRP5-FZD-WNT signalosome and this will 

need to be investigated further. Although we observed an effect of LGK-974 on 

our GC cells in vitro, the results observed in the in vivo model are more likely 

to be more representative of clinical GC due existence of a tumour 

microenvironment. It will be worth optimizing the in vivo model as although no 

significant difference between LGK-974-treated and vehicle-treated cohorts 

was observed, they seem to be a slight trend for smaller tumour burdens in 

LGK-974-treated cohorts. Therefore, adjusting the dosing regime and 

experiment length may be required to ensure full drug efficacy in an in vivo 

setting.   

As LGK-974 has been shown to be effective in other cancers, it is possible there 

is something unique about the peritoneal niche for GC. There is very limited 

research into molecular alternations that facilitate intraperitoneal spread of 

GC, however, increased expression of connexin 43 (gap-junction protein) has 

been observed in GC cells that have metastasized into the peritoneal cavity. 

Overexpression of connexin 43 enhanced their intercellular communication 

with peritoneal mesothelial cells, which in turn accelerated the infiltration of 

GC cells into the peritoneal mesothelium for further colonization (Tang et al., 

2013). This suggests that further investigations on GC cells seeding onto the 

lining mesothelial layer may be beneficial. Interestingly, a recent paper has 

shown that stromal Wnt is required for stem cell activity in the stomach in mice 

(Kim et al., 2020). Single cell transcriptome analysis identified conserved 
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stromal cell populations that expressed Wnt ligands. This highlights the 

importance of investigating the stoma in more details could suggest that Wnt 

may be deregulated in the stroma of gastric tumours in humans. 

Other than the peritoneum, the liver is a common site of GC metastasis. A 

recent study has revealed a positive feedback loop between cancer-associated 

fibroblast and tumour cells in the liver metastasis niche of GC (Li et al., 2019a). 

This highlights the importance of understanding the complex cross-talk among 

the different cells involved in the TME, especially to better understand the role 

of TME in cells metastasis ability.  

A major hurdle in the study of tumour metastasis is the lack of a mouse model 

with a competent immune system that can mimic the entire metastatic 

cascade. The most common model in the field is the experimental metastasis 

model, whereby, cancer cells are injected into the tail vein of mice to travel 

through the circulation and form metastases at distant organs, most commonly 

the lungs. While this model has provided valuable insights, it omits the first 

stages of the metastatic cascade: Detachment from the primary tumour and 

intravasation. For GC, this model is not well suited due to the most common 

form of metastasis being peritoneal dissemination (Mura and Verdelli, 2016) not 

hematogenous metastasis. Other groups have attempted to use orthotopic 

models, however the engraftment success of GC in mice is very low (Nguyen et 

al., 2017) and they are accurate representations are cells or PDXs are injected 

into the outer serosa layer of the stomach (Busuttil et al., 2018). This leaves 

only the thin outer serosa layer for the cells to invade through, whereas, in 

human GC the cells have to invade through all layers of the stomach wall in 

order to metastasize. Therefore, our model of GC peritoneal dissemination was 

the most accurate in vivo model available to us until better models of cancer 

metastasis are developed.  

While the in vivo model involves directly injecting GC cells into the peritoneum, 

thus replicating the later stages of the metastatic cascade, the in vitro 

migration and invasion assays reflect the earlier stages. Therefore, the 
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migration and invasion regulation by FZD7 observed in these in vitro 

experiments may be most important in these earlier stages to allow GC cells to 

leave the primary gastric tumour. Whereas, the in vivo assay was focused at 

the end stage of metastasis when the cancer cells seed at a new site. Therefore, 

the difference in the in vitro and in vivo results may be reflected in the fact 

that Wnt regulation is different at the beginning of metastasis to that at the 

end and thus require different signalling. Our results could suggest that 

Wnt/FZD7 may regulate the very early stages of metastatic GC cells leaving the 

primary tumour. To investigate this, researchers require a new genetically 

engineered mouse model (GEMM) in which the primary tumour develops through 

to the invasive stages with mice developing metastasis to clinically relevant 

secondary sites. At present these GEMMs do not exist.  

4.4 Conclusions 

 GC metastasis remains a huge public health burden and a number of 

fundamental questions concerning the mechanism of GC metastasis are still 

unanswered. The findings presented in this chapter have provided a path to 

reduce GC cell migration, invasion, and activation of EMT via targeted inhibition 

of Wnt receptors, both genetically and pharmacologically. We have 

demonstrated that modulating the Wnt signalosome can further regulate Wnt 

signalling irrespective of downstream mutations and, therefore, reduce GC 

cells ability to metastasis. We have also highlighted the urgent need to 

investigate the TME to understand the complex cross-talk enabling metastasis. 

These findings provide an attractive target, FZD7, as a novel therapeutic target 

for the treatment of advanced and metastatic GC. 
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5.1 Introduction 

Wnt-induced β-catenin-mediated transcription is a well-established 

driving force for stem cell self-renewal during adult tissue homeostasis, with 

aberrant Wnt/β-catenin signalling being a major player behind tumourigenesis. 

In the previous chapters we have shown that modulation of the Wnt signalosome 

can inhibit constitutively activated Wnt signalling regardless of the mutational 

status of downstream components such as APC. This chapter investigates how 

Wnt is deregulated at the level of the receptor/ligand, we have previously 

shown that FZD7 plays an important role in GC but how FZD7 is becoming 

deregulated is still not known. A key player involved in FZD regulation and 

located at the plasma membrane are the E3 ligases RNF43 and ZNRF3. RNF43 

regulates FZD turnover on the plasma membrane and therefore this chapter 

aims to investigate the functional significance of RNF43/ZNRF3 loss of function 

in the context of GC. 

In a non-pathological setting RNF43, and its functional homologue ZNRF3, act 

as a negative regulator of the Wnt pathway and play as role as a tumour 

suppressor (Koo et al., 2012); RNF43 and ZNRF3 share moderate sequence 

conservation of 39% identity between the two proteins (Zebisch et al., 2013). 

In the absence of R-spondin (agonist of the canonical Wnt signalling), activation 

of the Wnt signalling pathway results in activation of target genes, including 

RNF43/ZNRF3 (Hao et al., 2012). Upon their integration on the cell membrane, 

they ubiquitinate the Wnt receptor complex, FZD-LRP5/6, which leads to its 

internalization and lysosomal degradation (Figure 5.1) (Koo et al., 2012); this 

negative feedback loop functionally limits Wnt signalling. This was 

demonstrated by simultaneous knockout of RNF43 and ZNRF3 in the mouse 

intestine which resulted in strong proliferation of the stem cell compartment 

(Koo et al., 2012). Interestingly, loss of function (LOF) mutations to 

RNF43/ZNRF3 only lead to Wnt hypersensitivity in the respective cell, and 

therefore, the presence of Wnt is still essential to induce hyperproliferation. 

This is in contrast to LOF mutations to other Wnt pathway negative regulators 
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downstream of the receptor complex, such as APC, whose downregulation or 

complete knockout can autonomously promote cell proliferation (Hao et al., 

2012; Koo et al., 2012), however this can still be modulated by 

activation/inhibition of upstream components such as Wnt ligands and FZD 

receptor availability(Flanagan et al., 2019c). Additionally, RNF43 can itself be 

targeted for removal from the cell surface through interaction with R-spondin, 

whereby it forms a tertiary complex with Lgr4/5 which induces ubiquitination 

and membrane clearance of RNF43. This results in increased cell surface level 

of FZD and the re-accumulation of Wnt at the cell surface with consequent 

enhancement of Wnt signalling (Serra and Chetty, 2018).  Additionally, it has 

been shown that RNF43 physically interacts with TCF4 in cells and tethers TCF4 

to the nuclear membrane, thus silencing TCF4 transcriptional activity even in 

the presence of constitutively active mutants of β-catenin (Loregger et al., 

2015). This demonstrates multiple mechanisms in which RNF43 can mediate 

Wnt signalling, both upstream and downstream of intracellular Wnt pathway 

components. 
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Figure 5.1 PORCNi mechanism of action in LOF RNF43 cells. (Left) RNF43 

performs a bifunctional tumour suppressor role by 1. Targeting Wnt receptors for 

endocytosis and lysosomal degradation, and 2. By transiently interacting with the 

destruction complex to reconstitute its activity in the cytosol and re-establish Wnt 

pathway inhibition. (Middle) LOF mutations prevent RNF43 function at the plasma 

membrane, leading to Wnt receptor overexpression and consequently 

hypersensitivity of cancer cells to Wnt. (Right) Wnts are post-translationally 

palmitoleated by PORCN in the ER, which is crucial for their interation with Wntless 

that transports them to the plasma membrane. PORCNi (Such as LGK-974) prevent 

the palmitoleation of all Wnts, thus preventing their interation with Wntless and 

subsequently their transport. Therefore, despite overexpression of FZD receptors 

there are no availible Wnts to initiate Wnt signalling and Wnt target genes are not 

transcribed.  
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Mutations in RNF43 have been reported in several solid cancers, such as 

colorectal (Eto et al., 2018; Lai et al., 2019; Yan et al., 2017a), gastric (Wang 

et al., 2014b), pancreatic (Jiang et al., 2013), ovarian (Ryland et al., 2013), 

and endometrial (Giannakis et al., 2014). Inactivation of RNF43 through RNF43 

mutation is one of the primary causes of permanent activation of the Wnt 

signalling pathway through enhanced FZD receptor expression (Serra and 

Chetty, 2018). Identified RNF43 mutations are most commonly truncating 

events: non-sense mutations and frame-shift mutations, consistent with the 

tumour suppressor role of RNF43. There are two recurrent hotspot mutations 

within RNF43: G659fs and R117fs, accounting for ~50% of RNF43 mutations in 

colon cancer (Giannakis et al., 2014). Since RNF43 are often in tumours with 

high mutational burdens, they may not be considered driver mutations, 

however due to their frequency in many cancers, especially GC, colorectal and 

endometrial, RNF43 mutations may confer a fitness advantage (Giannakis et 

al., 2014) 

Whole-genome sequencing has revealed that RNF43 is frequently mutated and 

subsequently downregulated in GC (Wang et al., 2014b). The most common 

mutation hotspots for RNF43 are located close to the microsatellite instability 

(MSI) loci and may explain the high frequently of RNF43 mutations in GC, due 

to GCs commonly being deficient in DNA mismatch repair genes, MLH1 (Shen et 

al., 2018). This is reflected by observation that the MSI subtype of GC has a 10-

fold higher mutation frequency in RNF43 than that of microsatellite stable (MSS) 

subtype (54.6% versus 4.8%). Additionally, 62.5% of RNF43 mutations in GC were 

truncating (Figure 5.2) (Wang et al., 2014b). These data and RNF43’s role as a 

part of the Wnt/β-catenin negative feedback loop suggests that RNF43 

inactivation may result in deregulated Wnt activity in GC, thus contributing to 

GC initiation and progression. 
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Figure 5.2 Distribution of protein alterations encoded in RNF43 in GC. Generated 

from TCGA dataset on cBioportal. Conserved domain mapping is from UniProt. SP, 

signal peptide; MSI, microsatellite instability; MSS, microsatellite stable. Multiple 

arrows indicate high frequency of mutation in gastric tumours. 
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The expression level of RNF43 is significantly correlated with the stage of 

tumour: Low RNF43 expression is associated with low histological 

differentiation, bigger tumour size, deeper invasion, advanced TNM stage, and 

poorer prognosis for the patient (Niu et al., 2015). The poor prognosis may be 

linked to the fact that RNF43 has been shown to inhibit chemotherapy 

resistance in vitro, and this protective mechanism is eliminated by the loss of 

RNF43 (Gao et al., 2017b). Furthermore, the protecting effect of RNF43 by 

inhibiting the self-renewability of GC stem cells, could be partially reversed by 

adding R-spondin and Wnt5a in vitro (Gao et al., 2017b). This further supports 

the concept of Wnt pathway overexpression leading to GC initiation and 

progression.  

Gastric tumours harboring RNF43 mutations become hypersensitive to Wnt due 

to the increased cell surface expression of FZD receptor, making FZD receptors 

an attractive target for treatment of tumours harbouring RNF43/ZNRF3 

mutations. Furthermore RNF43 mutational status could potentially be used as 

a biomarker to identify Wnt-dependent tumours which would respond to 

treatment (Hao et al., 2016). Therefore, inhibition of Wnt secretion, via a 

PORCN inhibitor, is a potential therapeutic strategy for counteracting the 

overexpression of FZD receptors on the cell surface due to LOF mutations to 

RNF43/ZNRF3. However, the functional significance of RNF43/ZNRF3 first needs 

to be fully understood in the context of GC. 

There have been very few functional investigations into RNF43’s role in GC. One 

study has reported, through both gain- and loss-function assays that RNF43 

could suppress cell proliferation and was negatively correlated with Lgr5 (Niu 

et al., 2015). This is supported by a more recent study which demonstrated that 

loss of endogenous RNF43 function enhances proliferation and tumour growth 

in GC (Neumeyer et al., 2019).  Initially endogenous expression of RNF43 was 

depleted in vitro via transfection of GC cells with RNF43 targeted shRNA. Loss 

of endogenous RNF43 increased the proliferative and invasive capacity of GC 

cells. The effect of RNF43 loss in GC cells was also investigated in vivo via 
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xenograft models. Mice injected with RNF43-deficient GC cells developed larger 

tumours than those derived from respective sh-control cells. This confirmed 

that loss of RNF43 enhanced tumour growth. Interestingly, loss of RNF43 

function in vivo lead to gastric hyperproliferation, and gastric organoids derived 

from the stomach of RNF43 mutant mice grew bigger than organoids from 

gastric tissue of WT-mice, suggesting that RNF43 loss leads to a 

hyperproliferative phenotype in the stomach. However, the authors only 

generated a robust mouse model using the Cre-loxP system for the intestine by 

introducing two loxP sites flanking the exon VIII that encode for the RING 

domain (Koo et al., 2012) and crossing with mice specifically expressing Cre in 

the intestinal epithelium. For the in vivo experiments examining RNF43 loss in 

the stomach, mutations were introduced via targeted mutagenesis; the first 

mutation was a 57 bp deletion in exon 8 of RNF43 and the second was two point 

mutations in the RING domain. While these mutations have been demonstrated 

to transactive Wnt signalling in vitro (Loregger et al., 2015) this has not been 

confirmed in vivo and is not confirmed to cause LOF to RNF43. Importantly, it 

has still not been functionally demonstrated that the phenotypes associated 

with conditional deletion of RNF43 is due to deregulation of FZD and whether 

the phenotypes can be rescued with co-deletion of RNF43 and a FZD gene. This 

would allow further characterization of GC due to loss of RNF43 and help 

identify which other members of the Wnt signalosome may be working together 

to lead to GC.  

Therefore, this chapter begins to examine this by investigating the functional 

significance of RNF43/ZNFR3 mutations in gastric cancer development by 

characterization of tumours from a novel mouse model in which RNF43/ZNFR3 

are conditionally deleted in the gastric epithelium.  
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5.2 Results 

5.2.1 RNF43/ZNFR3 knockout generated gastric epithelium phenotype.     

 To investigate the function of RNF43 and ZNFR3 in the gastric 

epithelium, we crossed floxed RNF43/ZNFR3 mice with Claudin18CreERT2 mice 

to enable deletion of RNF43, ZNRF3 or both RNF43 and ZNRF3 specifically in 

the gastric epithelium (Figure 5.3). Claudin18 is a highly specific tight junction 

component of the stomach and is specifically expressed within the gastric 

mucosa (Coati et al., 2019). The RNF43 gene has a loxP site inserted upstream 

of the exons encoding the RING finger domain and the ZNRF3 gene has a loxP 

site inserted between the exons encoding the RING domain as well as a loxP 

site downstream of these exons. This were inserted via homologous 

recombination. There is no effect on RNF43 or ZNRF3 gene function until the 

locus is recombined and the mice can be bred to homozygosity.  

The addition of a dTOM cassette was inserted after a STOP cassette to allow 

observation of recombination. Upon induction recombination was observed 

almost exclusively in the gastric epithelium, in both the corpus and the antrum 

regions (Figure 5.4). A few cells were observed in the Brunner glands; these are 

located in the duodenum and provide a protective function against the acidic 

content from the stomach by the production of mucous (Krause, 2000).  

Mice were bred to generate the following cohorts: Claudin18CreERT2; Rnf43flox; 

Znrf3WT; dTOMLSL , Claudin18CreERT2; Rnf43WT; Znrf3Flox; dTOMLSL mice, and 

Claudin18CreERT2; Rnf43flox; Znrf3Flox; dTOMLSL mice.  
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Figure 5.3 Breeding strategy for Claudin18CreERT2; Rnf43flox; Znrf3flox; dTOMLSL 

mice. In the Cre mouse, the expression of Cre is under the control of a Claudin18 

promoter that is specific to the cells of the gastric epithelium. The floxed target 

gene mouse contains LoxP sites flanking RNF43 and ZNRF3 and a dTOM reporter 

downstream of a STOP cassette. When the two mouse lines are bred and induced 

with tamoxifen the Cre enzyme recognizes the LoxP sites and deletes RNF43 and 

ZNRF3 only in the gastric epithelium. The target gene remains floxed and 

theoretically functional, in all other tissues. Cells where recombination has 

occurred can be tracked by the dTOM reporter.  
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Figure 5.4 Recombination is exclusive to the Cre+ gastric epithelium cells. 

Immunohistological staining for red florescent protein in the gastric epithelium 

following short-term induction with tamoxifen. No staining was observed in gastric 

epithelium of mice who were negative for Cre. Full recombination was observed in 

both the antral and corpal glands in Cre+ mice. Scale bar= 100 μm 

Antrum Corpus 

C18 WT 

C18 HOM 

100 µm 
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Mice were induced with tamoxifen 1x daily for 4 days. 140 days after induction, 

Claudin18CreERT2; Rnf43flox; Znrf3flox; dTOMLSL mice homozygous for RNF43 

and ZNRF3 began to show signs of sickness, such as: cold feet, rough coat, 

hunched posture and weight loss.  Mice from all cohorts were sacrificed and 

dissected at this 140-day time point. The gastric epithelium from RNF43-/-/ 

ZNRF3-/-  mice displayed a phenotype unique from WT mice. The gastric 

epithelium of RNF43-/-/ ZNRF3-/-  mice showed signs of uncontrolled 

proliferation as the surface was significantly raised with ridges and lumps 

indicative of gastric tumours (Figure 5.5). Mice homozygous for a single E3 

ligase (RNF43 or ZNRF3) showed a less severe phenotype with the presence of 

metaplasia, with the biggest change compared to WT mice observed in the 

corpus region (Figure 5.5).  Stomach weight relative to total body weight were 

calculated per mouse. The RNF43-/-/ ZNRF3-/-  cohort had significantly heavier 

stomachs compared to the WT cohort. Both the RNF43-/- and ZNRF3-/-  cohorts 

did not have a significant difference in stomach weight compared to the WT 

control cohort (Figure 5.6).  

Hematoxylin and eosin (H&E) staining of the gastric epithelium of the RNF43-/-

/ ZNRF3-/-  cohort displayed a substantial lack of differentiated cells in the 

corpus region and large growths compared to the WT cohort (Fig 5.7-9) 

Additionally the antrum region also displayed signs of uncontrolled proliferation 

and lack of differentiation within the gastric glands (Figure 5.7-9). H&E staining 

did not reveal any gross differences between the epithelium of the WT mice 

and the single RNF43-/- or ZNRF3-/-  cohorts (Figure 5.7). However, tumourigenic 

lesions were observed in RNF43-/- (Figure 5.8-9) suggestive of early neoplasms.    
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Figure 5.5 Stomach dissections from 140 post-induction mice. 140 days following 

induction with tamoxifen mice were sacrificed and their stomachs harvested and 

dissected. Stomachs from RNF43-/-/ ZNRF3-/- mice had evidence of gastric tumours 

and a thick layer of mucous. Stomachs from the single knockout mice displayed 

evidence of mild metaplasia. 

 

140 DAYS   

WT RNF43-/-/ ZNRF3-/- 

RNF43-/- ZNRF3-/- 
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Figure 5.6 Average stomach weight. Mice were weighed before being sacrificed 

and their final body weight was recorded. Harvested stomachs were weighted and 

the stomach weight as a percentage of their body weight was calculated. RNF43-/-

/ ZNRF3-/- stomachs had significantly larger stomachs compared to WT control. (**= 

p ≤0.01, mean ± SEM, t-test, n=6 mice per cohort). 
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Figure 5.7 Tumours present in the gastric epithelium of RNF43-/-/ ZNRF3-/- mice. 

H&E staining of the gastric epithelium from WT, RNF43-/-, ZNRF3-/- and RNF43-/-/ 

ZNRF3-/- mice. Presence of tumours can be seen in the corpus & antrum region of 

the RNF43-/-/ ZNRF3-/-  mice, Scale bar= 100 μm.  
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Figure 5.8 Tumours present in the gastric epithelium of RNF43-/-/ ZNRF3-/- mice. 

Additional images of H&E staining of the gastric epithelium from RNF43-/-/ ZNRF3-

/- mice. Presence of tumours can be seen in the corpus region of the and RNF43-/-/ 

ZNRF3-/-  mice and absence of tumours in the antrum region. Scale bar= 500 μm.  
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Figure 5.9 Tumours present in the gastric epithelium of RNF43-/-/ ZNRF3-/- mice. 

Additional images of H&E staining of the gastric epithelium from RNF43-/-/ ZNRF3-

/- mice. Presence of tumours can be seen in the corpus region of the and RNF43-/-/ 

ZNRF3-/-  mice and absence of tumours in the antrum region. Scale bar= 200 μm.  

200 µm 
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5.2.2 Characterization of RNF43-/-/ ZNRF3-/- gastric tumours.   

 The observation that the gastric epithelium in which RNF43 and ZNRF3 

had been conditionally deleted displayed signs of increased proliferation and 

loss of differentiation indicated the possibility that gastric epithelial 

homeostasis is acutely disrupted and the initiation of GC has taken place. To 

further test this possibility sections from tamoxifen induced Claudin18CreERT2 

; Rnf43fl/fl, Claudin18CreERT2; Znrf3fl/fl, and Claudin18CreERT2; Rnf43fl/fl; 

Znrf3fl/fl mice were immunohistochemically labelled for makers of proliferation 

(PCNA), differentiation (H⁺/K⁺ ATPase), apoptosis (cleaved-caspase 3) and 

active Wnt signalling (β-catenin). Sections from tamoxifen induced 

Claudin18CreERT2; Rnf43fl/fl; Znrf3fl/fl mice stained for PCNA had increased 

expression throughout the whole gastric gland compared to tamoxifen induced 

Cre-negative control (Figure 5.10 & 5.12). This was quantified and 

demonstrated that Rnf43fl/fl; Znrf3fl/fl mice had 80% PCNA-positive cells 

compared to 20% PCNA-positive in WT mice (Figure 5.11). PCNA expression was 

also increased in induced Rnf43fl/fl mice outside of the proliferation zones 

(Figure 5.12) and a significant increase in PCNA-positive cells compared to WT 

(Figure 5.11); this mislocalisation of proliferating cells is suggestive of a pro-

neoplastic environment in the epithelium. No change in PCNA expression was 

observed in Znrf3fl/fl mice (Figure 5.10 & 5.12).  This was reflected in 

quantification of PCNA-positive stained cells (Figure 5.11). 

 H⁺/K⁺ ATPase is a proton pump that is specific to the parietal cells, and 

therefore the corpal epithelium of the stomach. Additionally, parietal cell loss 

is a precursor to SPEM, a step in the pathogenesis of GC. As expected, sections 

from WT mice stained positively for H⁺/K⁺ ATPase expression in the corpus and 

negatively for H⁺/K⁺ ATPase in antrum (Figure 5.13). Sections from Rnf43fl/fl 

mice displayed a decrease in expression of H⁺/K⁺ ATPase on the luminal half of 

the corpal epithelium (Figure 5.10 & 5.14) confirmed by quantification showing 

an approximately 50% decrease of parietal cells compared to WT (Figure 5.11). 

No significant changes were observed in the expression of H⁺/K⁺ ATPase in the 



Chapter 5: Characterization of RNF43-/-/ ZNRF3-/- Gastric Tumours 
 

195 
 

Znrf3fl/fl mice (Figure 5.10 & 5.11). Sections from Rnf43fl/fl; Znrf3fl/fl mice 

showed an almost complete loss of H⁺/K⁺ ATPase expression in the corpal 

tumours, illustrating loss of parietal cells (Figure 5.10 & 5.14). The percentage 

of positively-stained H+/K+ ATPase reduced from an average of 93% in the WT 

mice to an average of 5% in the Rnf43fl/fl; Znrf3fl/fl mice (Figure 5.11). 

Only sections from Claudin18CreERT2; Rnf43fl/fl; Znrf3fl/fl mice showed the 

presence of rare caspase-3 (‘apoptotic’) positive cells (Figure 5.10 and 5.11).  

Staining for β-catenin was similar between WT mice and Znrf3fl/fl mice, with 

mostly membrane staining (Figure 5.15). A significant increase in β-catenin was 

observed in Rnf43fl/fl and Rnf43fl/fl; Znrf3fl/fl mice which demonstrates active 

Wnt signalling (Figure 5.10 & 5.15). The largest change in β-catenin was in the 

Rnf43fl/fl; Znrf3fl/fl mice with 90% positive cells in (Figure 5.11). 30% of cells 

stained positivity for β-catenin in the Rnf43fl/fl mice (Figure 5.11).  

 

  



Chapter 5: Characterization of RNF43-/-/ ZNRF3-/- Gastric Tumours 
 

196 
 

 

 

 

 

 

β-catenin 

R
N

F4
3

-/
- 

 

ZN
R

F3
-/

-  
Cleaved 

Caspase-3 

H⁺/K⁺ 
ATPase H&E PCNA  

W
T 

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
ss

io
n

 r
el

at
iv

e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

FZD
1

FZD
3

FZD
2 

FZD
4 

FZD
5

FZD
6

FZD
7

FZD
8

FZD
9

FZD
10

0.00

0.05

0.10

0.15

0.20

0.25

MKN45

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e

to
 R

P
L

1
9

100 μm

R
N

F4
3

-/
-  

ZN
R

F3
-/

-  

Figure 5.10 RNF43-/-/ ZNRF3-/- mice display a GC phenotype. RNF43-/-/ ZNRF3-/- 

mice showed the biggest change in expression of various markers compared to WT 

and single knockout cohorts. RNF43-/-/ ZNRF3-/-  tumours stained strongly for β-

catenin and PCNA, showed evidence of rare caspase-3 positive cells and showed a 

decrease in expression of H⁺/K⁺ ATPase compared to WT mice, indicating parietal 

cell loss. Scale bar= 100/200 μm. 
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Figure 5.11 Loss of RNF43 leads to GC phenotype. Quantification of IHC stains 

from Figure 4.10. Cells were counted in three fields of view (1000 cells counted 

per view) and the percentage of positive cells calculated. (**=p≤0.01, ****= p 

≤0.0001, mean ± SEM, t-test, n=3) 
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Figure 5.12 PCNA staining in RNF43/ZNRF3-deficient mice. Staining for PCNA, a 

marker of proliferating cells, in the gastric epithelium of WT, RNF43-/-, ZNRF3-/-, 

and RNF43-/-  ZNRF3-/- mice. Abundant PCNA staining was observed in mice deficient 

in both RNF43 and ZNRF3. RNF43-/- mice displayed mislocalisation of proliferating 

cells outside the gastric proliferative zone. Brackets indicate gastric proliferative 

zone. Scale bar= 200 μm. 
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Corpus Antrum 

Figure 5.13 H⁺/K⁺ ATPase expression only present in the corpus region of gastric 

epithelium. Staining for H⁺/K⁺ ATPase in the gastric epithelium of WT mice. 

Staining only observed in the corpus region confirming the specificity of the anti-

body and validity of the ICH. Scale bar= 100 μm. 
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Figure 5.14 H⁺/K⁺ ATPase staining in RNF43/ZNRF3-deficient mice. Staining for 

H⁺/K⁺ ATPase, a marker of parietal, in the corpal epithelium of WT, RNF43-/-, 

ZNRF3-/-, and RNF43-/-  ZNRF3-/- mice. RNF43-/- mice had loss of parietal cells in 

approximately 50% of the gland.  RNF43-/-  ZNRF3-/- mice displayed total loss of 

parietal cells. Scale bar= 100 μm. 
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Figure 5.15 β-catenin staining in RNF43-deficient mice. Staining for β-catenin in 

the gastric epithelium of WT, RNF43-/-, ZNRF3-/-, and RNF43-/-  ZNRF3-/- mice. Strong 

β-catenin was observed in mice deficient in RNF43. Scale bar= 100/50 μm. 
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To confirm if aberrant Wnt signalling was contributing to the development of 

gastric tumours following conditional deletion of RNF43 and ZNRF3 in 

Claudin18CreERT2 mice, the expression of several Wnt /β-catenin target genes 

were analyzed. Total RNA prepared from extracted corpal epithelial cells from 

tamoxifen induced Claudin18CreERT2; Rnf43flox, Claudin18CreERT2; Znrf3flox, 

Claudin18CreERT2; Rnf43flox; Znrf3flox, and WT mice was analyzed by qRT-PCR. 

No significant changes were observed across all Wnt target genes (Myc, AXIN2, 

CD44, LGR5, and CCND1) in the RNF43fl/fl or ZNRF3fl/fl mice compared to 

tamoxifen induced WT control, suggesting that conditional deletion of just one 

E3 ligase is not sufficient to induce Wnt signalling (Figure 5.16). There was a 

significant increase in expression of all Wnt target genes (Myc, Axin2, CD44, 

LGR5, and CCND1) in the RNF43fl/fl; ZNRF3fl/fl mice compared to WT control 

(Figure 5.16). This suggests that conditional deletion of both RNF43 and ZNRF3 

is sufficient to initiate aberrant Wnt signalling in the corpal epithelium, which 

may drive tumorigenesis.  

As aberrant Wnt signaling often induces feedback mechanisms to inhibit the 

pathway, the expression of the FZD receptor family genes (FZD1-10) was 

analyzed by qRT-PCR to assess if conditional deletion of RNF43 and/or ZNRF3 

changed the transcript level expression of FZD receptors. Interestingly, only 

the expression of Fzd7 was upregulated in RNF43fl/fl, ZNRF3fl/fl, and RNF43fl/fl; 

ZNRF3fl/fl compared to WT control. The most significant increase in FZD7 mRNA 

expression was seen in the RNF43fl/fl; ZNRF3fl/fl cohort (Figure 5.17). This could 

be due to FZD7s role as a Wnt target gene.  

Additional analysis to investigate the expression of markers of proliferation, 

apoptosis and differentiation were about to be performed to support the IHC in 

Figure 5.10 but were prevented due to the COVID19 lockdown. This would have 

further characterized the gastric tumour and aberrant gastric epithelium to 

yield a more complete understanding of the changes caused by RNF43/ZNRF3 

knockout. 
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Figure 5.16 RNF43/ZNRF3 knockout increases Wnt target genes. qRT-PCR 

analysis for the expression of Wnt target genes on RNA extracted from the epithelial 

cells of the corpus. RNA from the RNF43-/-/znrf3-/- cohort had significantly 

increased expression of all Wnt target genes compared WT control cohorts. No 

significant change in expression was observed in the single knockout cohorts. 

Normalized to GAPDH. (**=p≤0.01, ****= p ≤0.0001, mean ± SEM, t-test, n=6 mice) 
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Figure 5.17 FZD7 expression increased in RNF43 mutant mice. qRT-PCR analysis 

for the expression of FZD genes on RNA extracted from the epithelial cells of the 

corpus. RNA from the RNF43-/-/znrf3-/- cohort had significantly increased expression 

FZD7 compared WT control cohorts. A significant increase in FZD7 expression was 

also observed in the single knockout cohorts. Normalized to GAPDH. (**=p≤0.01, 

****= p ≤0.0001, mean ± SEM, t-test, n=6 mice) 
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5.2.3 Co-deletion of RNF43 and FZD7 may rescue RNF43fl/fl phenotype.   

 To investigate if the phenotypes associated with conditional deletion of 

RNF43 are due to deregulation of FZD7 and therefore if the phenotype can be 

rescued with co-deletion of RNF43 and FZD7; Claudin18CreERT2; Rnf43flox; 

Znrf3flox; dTOMLSL mice have been crossed with floxed FZD7 mice (Figure 5.18). 

This could functionally confirm if the tumourigenesis observed when Rnf43 and 

Znrf3 are deleted in the stomach is specifically due to deregulated Fzd7, which 

we have previously shown is important for transmitting oncogenic Wnt signalling 

in the stomach. 

The Claudin18CreERT2; Rnf43flox; Znrf3flox; Fzd7flox; dTOMLSL have been bred 

but induction was not carried out as planned due to the COVID19 pandemic 

lockdown. This set of experiments would have confirmed the relationship 

between RNF43 and FZD7 and provided mechanistic insights into the molecular 

pathogenesis of GC.  
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Figure 5.18. FZD7 deletion may rescue RNF43-mutant GC phenotype. Breeding 

strategy for Claudin18CreERT2; Rnf43flox; Znrf3flox; Fzd7flox; dTOMLSL cohort. The 

additional conditional deletion of FZD7 should rescue the phenotype we have 

demonstrated following conditional deletion of RNF43 and ZNRF3. 
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5.3 Discussion 

 RNF43, and its homologue ZNRF3, are integral E3 ubiquitin ligases 

located in the transmembrane region. They are responsible for ubiquitylating 

cytoplasmic sites on FZD receptors which drives FZD lysosomal degradation and 

negatively regulates its abundance at the cell surface (Hao et al., 2012; Koo et 

al., 2012).  The activity of RNF43 and ZNRF3 at the cell surface is regulated by 

R-Spondin ligands and the co-receptors LGR5/6 (Carmon et al., 2011), with the 

heterotrimeric complex of LGR-RSPO-RNF43/ZNRF3 inhibiting the 

ubiquitylation of FZD and increasing the FZD cell surface abundance and 

cellular sensitivity to Wnts. This is clinically relevant since LOF mutations to 

RNF43 are found in multiple Wnt-addicted cancer types (Madan et al., 2016; 

Wang et al., 2014b) 

A key goal of precision medicine is to identify actionable mutations that will 

allow patient stratification and improved clinical outcome. LOF RNF43 mutation 

may be a potential actionable mutation for many cancers since LOF RNF43 

mutations drive progression by increasing cellular sensitivity to Wnt ligands. 

Therefore, these cancers are uniquely sensitive to inhibitors that block Wnt 

secretion, such as PORCNi. LGK-974 (a PORCNi) has been demonstrated to have 

an anti-tumour response in in vivo breast, pancreas, and head and neck cancers 

(Blagodatski et al., 2014). Importantly, all LGK974-sensitive pancreatic cell 

lines carried a LOF mutation in the RNF43 gene (Liu et al., 2013).  Therefore, 

as PORCNi and other upstream inhibitors, such as OMP-18R5, enter and progress 

through clinical trials it is important to identify the right patients to treat with 

these upstream Wnt inhibitors. A phase I evaluation of LGK-974 is currently 

underway (NCT01351103) recruiting patients with melanoma, breast, and 

pancreatic cancer. Hence a comprehensive understanding of RNF43s role in GC 

is required.  

This treatment stagey has potential to be a viable option in Wnt-addicted GCs. 

Through whole-genome sequencing analysis, RNF43 has been found to be 

frequently mutated in GC: RNF43 was mutated in 4.8% of MSS tumours and 
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54.6% of MSI tumours, 62.5% of which were truncating mutations (Wang et al., 

2014b). However, RNA-SEQ analysis from the TCGA-STAD (stomach 

adenocarcinoma, cancer.gov/tcga) dataset reported that expression of RNF43 

was slightly up-regulated compared to normal tissues. However this dataset 

contained 375 tumour samples and only 32 normal samples, additionally 

“normal” samples were obtained from adjacent mucosa, which may have their 

own unique transcriptome resulting from a crosstalk between tumor and 

adjacent tissue (Russi et al., 2019). 

Conversely, in line with the whole-genome sequencing analysis study by Wang 

et al,  a small study looking at GC tissue with matched tissue reported, through 

qRT-PCR and western blotting, that both RNF43 mRNA and protein was 

downregulated in GC tissue and GC cell lines compared to normal gastric tissue 

(Niu et al., 2015). Furthermore, RNF43 expression was found to be absent in 

48.39% (15/31) of the stage II GC tissues and 96.67% (29/30) of the stage III GC 

tissues (Niu et al., 2015) .This was further confirmed by another study reporting 

that RNF43 expression is decreased in GC tissue samples compared to normal 

gastric tissue and that loss of RNF43 lead to increased stemness of GC stem-like 

cells through the Wnt/β-catenin pathway (Gao et al., 2017b).  The human 

protein atlas (Uhlén et al., 2015) reported an increase in RNF43 protein 

expression in GC samples, however this was only based off 12 samples 

(https://www.proteinatlas.org/ENSG00000108375-RNF43). Additionally, RNF43 

expression was localized to the nucleus and the nuclear membrane and may be 

reflective of the novel alternative mechanism of RNF43-mediated Wnt 

inhibition, through TEF4 tethering (Loregger et al., 2015).  

Evidently, a clear and comprehensive understanding of RNF43 function in GC 

has still not emerged. Therefore, to establish the requirement of RNF43 in GC 

we conditionally deleted it in vivo. Our results support a role for both RNF43 

and ZNRF3 in the initiation of GC as co-deletion of both genes resulted in strong 

aggressive GC phenotype. This is in line with reported findings that loss of 

RNF43 in GC patients was significantly associated with poor prognosis and an 
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aggressive phenotype (Gao et al., 2017b). Additionally, we have reported here 

that co-deletion of RNF43 and ZNRF3 resulted in the loss of parietal cells from 

the corpal epithelium. Loss of parietal cells is considered a key step in the 

pathogenesis of GC and is a pre-curser to SPEM and the transformation of 

metaplastic cells into neoplasia (Nam et al., 2010). We observed a thick layer 

of mucous in the double knockout mice which is consistent with the parietal 

cells being replaced by proliferating cells that secrete mucins which is 

frequently seen in pre-malignant SPEM lesions (Nozaki et al., 2008) 

Furthermore, SPEM arises from a subpopulation of cells that express the Wnt 

regulated stem cell marker, Lgr5 (Barker et al., 2007). Consistent with this, we 

observed a significant increase in Lgr5 mRNA expression in the corpal 

epithelium from the RNF43/ZNRF3 knockout mice. This suggests that loss of 

RNF43/ZNRF3 leads to an increase in Lgr5+ cells that promote SPEM that 

persists into a cancerous lesion. The negative correlation between 

RNF43/ZNRF43 and Lgr5 that we have overserved is further supported by a 

study which also observed a negative correlation between the two (Niu et al., 

2015). They knocked-down RNF43 in GC cells via targeted shRNA and 

demonstrated that the protein level of Lgr5 was significantly increased 

compared to negative control. Additionally, they saw the same increase in Lgr5 

expression in normal gastric cell lines transfected with shRNF43 (Niu et al., 

2015). Taken together, these data suggest that RNF43 might be inversely 

related to the potential of the cancer stem cell marker Lgr5 in GC. However, 

the exact mechanism still needs to be elucidated.   

In line with the above, we saw a significant increase in all Wnt target genes 

following conditional deletion of RNF43/ZNRF3. This illustrates that loss of 

RNF43/ZNRF3 leads to strong activation of the Wnt pathway which could be 

driving GC initiation through the recruitment of Lgr5+ cells back into the cell 

division cycle, thus, promoting GC (Leushacke, 2017). This is further supported 

by our observation of increased PCNA staining and subsequent increased 

proliferation within the corpal epithelium of double-knockout mice.  Loss of 
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RNF43/ZNRF3 is likely leading to increased expression of FZD receptors on the 

cell surface and propagating aberrant Wnt/β-catenin and the transcription of 

Wnt target genes. Therefore, RNF43-mutant GC will likely respond to PORCN 

inhibitors.  

Despite our data and others clearing implicating LOF RNF43/ZNRF3 mutations 

with the development of GC and a worse prognosis for GC patients, two very 

recent studies have been published (after the initiation of this project) that 

argue the most common RNF43 mutation in many cancers, including GC, 

remains fully functional and does not compromise RNF43 activity (Li et al., 

2020; Tu et al., 2019). The most frequent RNF43 mutation in GC is G659Vfs, 

present in 65% of RNF43 mutant tumours according to the data on cBioportal. 

This mutation results in a deletion of a G-C base pair in a 7-G repeat near the 

3’ end of its open reading frame (Figure 5.2). This frameshift has been thought 

to truncate the enzyme at Gly659 leading to an inactive enzyme and increased 

Wnt signalling that drive tumourigenesis (Tate et al., 2018). However, both 

studies argue that the majority of tumours with RNF43- G659Vfs also have low 

expression of MLH1, a key player in DNA mismatch repair, therefore, RNF43- 

G659Vfs is the result of error-prone replication of a 7-G repeat and is simply a 

bystander mutation (Li et al., 2020; Tu et al., 2019). Both studies utilized in 

vitro assays and transient transfections. Li et al., used CRISP-Cas9-medicated 

knockout of G659FS RNF43 expression in KM12 (CRC) cells and generated 

comparable mutations in HEK293T cells and assessed Wnt signalling activity via 

TOPflash assays. They reported that G659fs mutants demonstrated the same 

inhibitory effect on Wnt signalling as RNF43 WT cells (Li et al., 2020). They also 

assessed the ability of RNF43 truncation mutants on promoting turnover of FZD 

receptors through immunoblotting and co-immunoprecipitation assays. 

Collectively, they concluded that C-terminal truncation mutants retaining the 

RING domain were still effective in FZD receptor turnover when overexpressed 

(Li et al., 2020). Tu et al., utilized the same techniques but additionally looked 

at correlation of BRAF and RNF43 mutations (Tu et al., 2019).   Both studies 
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have not elicited an underlying mechanism for how RNF43-G659Vfs mutants 

retain functionally.  

There are several limitations to the transient transfections experiments used in 

the above studies such as the highly simplified promoter used the in vitro assay, 

the nature and type of the cells used, and simply the fact that the assays were 

performed in vitro while mutant tumours grow in a far more complex 

environment in vivo.  For example, in the study by Li et al., they used a MSI 

colorectal cell line, KM12, with APC and AXIN1 mutations which activate Wnt 

signalling downstream of FZD.  

Conversely, another recent study argues in favour that frequent G659fs RNF43 

mutation still leads to loss of function and increased Wnt signalling (Yu et al., 

2020). Importantly unlike the previous studies, Yu et al., used in depth in vivo 

analysis of various C-terminal truncating mutations including G659fs and 

demonstrated them to be loss of function and potentially actionable mutations 

for PORCN inhibitor treatment. This study systematically examined a spectrum 

of 135 patient-derived RNF43 mutations from a variety of cancers and they 

found that all truncation or frameshift mutants are loss of function, as well as 

nearly all missense mutants in the RING domain being loss of function also. They 

also demonstrated that C-terminal truncating mutations in RNF43 lead to 

increased cell surface FZD expression, increased Wnt/β-catenin signalling  and 

are responsive to therapeutic doses of PORCN inhibitors in vivo through patient-

derived xenograft models (Yu et al., 2020). This provides clear and robust 

evidence of RNF43 mutation leading to loss of function of the protein and is 

consistent with our results.  

Furthermore, novel and emerging inhibitors targeting Wnt secretion or Wnt 

receptors, such as the new Lrp5/6 anti-body (Fenderico et al., 2019) use RNF43 

mutational status to stratify patients that will likely respond. Additionally, Anti-

Lrp5/6 blocked Rnf43/Znrf3-mutant intestinal organoid growth (Fenderico et 

al., 2019). Together this strengthens the support that RNF43 mutations in 
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cancer, including GC, do in fact lead to LOF and can be exploited for 

therapeutic gain. 

Our findings did not show any increase in Wnt target gene expression or 

evidence of uncontrolled proliferation in the gastric epithelium of the ZNRF3fl/fl 

mice. This is likely due to the Rnf43/Znrf3 module harboring a strong level of 

functional redundancy and therefore being able to compensate for one another 

when one is mutated or lost. This is validated by a study in which knockout of 

each gene separately had no noticeable effect on mouse intestinal homeostasis 

whereas double knockout resulted in strong proliferation and Wnt/β-catenin 

activation (Koo et al., 2012). Therefore, loss of a single E3 ligase may not be 

sufficient to reach the threshold of active Wnt signalling required for neoplastic 

transformation in the gastric epithelium.  Alternatively, the single mutants may 

need longer to develop the GC phenotype and so longer-term single knock-out 

experiments should be set up to investigate this. This hypothesis is supported 

by our data showing that single RNF43 mutant mice had significantly increased 

expression of β-catenin positive cells compared to WT mice. This result was not 

reflected in the qPCR analysis of Wnt target genes, with no significant changes 

in expression reported between WT and RNF43fl/fl mice. This may be due to the 

Wnt threshold not being met and so despite active Wnt signalling, it is not 

sufficient to lead to the transcription of Wnt target genes. This would also 

explain why despite upregulation of FZD7 in RNF43fl/fl mice there was no change 

in the expression levels of other Wnt target genes and Wnt activity. Loss of 

RNF43 is likely leading to a direct increase in FZD7, of which it regulates, 

however this is still not sufficient to cross of the threshold for gastric-specific 

Wnt signalling. This is a possibility as the RNF43fl/fl mice had approximately 20% 

β-catenin positive cells compared almost 90% in the double knockout mice. This 

is supported by a study by Buchert et al., in which they described tissue-specific 

response levels for the Wnt/β-catenin signalling pathway (Buchert et al., 2010). 

Thus further building on the “just-right” model (Albuquerque et al., 2002) 

where distinct dosages of Wnt activation are required to perturb the self-
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renewal of stem cell populations and lead to neoplastic transformation. 

Furthermore, the RNF43fl/fl mice an increase in proliferating cells outside of the 

gastric proliferative zones. This mislocalisation of proliferating cells is strongly 

suggestive of a pro-neoplastic environment in the epithelium. This paired with 

the active Wnt signalling not meeting the required threshold for transformation 

may explain why gastric tumours were not observed in the RNF43fl/fl mice 

despite an increase in active Wnt signalling and proliferating cells.  

Evidence strongly indicates that RNF43 mutations are loss of function and lead 

to the overexpression of FZD receptors on the surface. As we have 

demonstrated here the conditional deletion of RNF43/ZNRF3 in the gastric 

epithelium leads to the development of gastric tumours, therefore, it is worth 

investigating which FZD receptor is overexpressed and transmitting aberrant 

Wnt signaling in RNF43-mutant tumours. FZD7 has been shown to be the 

predominant FZD receptor transmitting Wnt signalling to regulate stem cell 

function in the gastric epithelium (Flanagan et al., 2017a) and we have shown 

in the previous chapters that FZD7 is likely the predominant FZD receptor 

transmitting oncogenic Wnt signalling in the context of GC (Flanagan et al., 

2019a). This may explain why we observed increased levels of FZD7 expression 

across all our RNF43/ZNRF3 mutant cohorts. Therefore, it is likely that loss of 

RNF43 function in GC is leading to overexpression of FZD7 specifically on the 

cell surface and development of GC. Consequently, we plan to cross our 

Claudin18CreERT2; Rnf43flox; Znrf3flox; dTOMLSL mice with floxed FZD7 mice 

with the hypothesis it rescues the phenotype. This would functionally 

demonstrate that deletions in RNF43/ZNRF3 induce tumourigenesis by 

deregulating FZD receptors and has the potential to open up a new therapeutic 

avenue for stratifying patients with RNF43 mutations who would respond to 

treatment with OMP-18R5 (Anti-FZD Ab).  

5.4 Conclusions 

 Despite conflicting evidence for the role of RNF43 in gastric 

tumourigenesis, we have shown that conditional deletion of RNF43 and ZNRF3 
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in vivo leads to uncontrolled proliferation in the gastric epithelium and the 

development of gastric tumours; these tumours displayed significantly 

increased expression of Wnt target genes and loss of parietal cells. This provide 

evidence that RNF43 has a significant functional role in the development of GC. 

Therefore, a large proportion of GC patients are likely to be responsive to Wnt 

inhibition. Additionally, if shown that FZD7 can rescue the Rnf43fl/fl; Znrf3fl/fl 

phenotype further therapeutic options will open up for GC patients and provide 

further evidence and guidelines for patient stratification based on RNF43 

mutational status for the emerging upstream Wnt inhibitors and potentially 

those specifically targeting Fzd7.  
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6.1 Introduction 

 The previous chapters presented in this thesis, along with other 

confounding evidence, has shown that the exact molecular mechanisms 

underlying aberrant Wnt signalling in GC is complex and remains largely poorly 

understood. We have demonstrated Wnt pathway activation can be modulated 

at the level of the receptor/ligand, even in cells with mutations to the 

cytoplasmic Wnt regulator, APC (Flanagan et al., 2019a). Therefore, 

investigations into the molecular mechanism of Wnt signalling in GC, and how 

mutant APC modulates the response of GC cells to FZD7 inhibition is vital in 

order to clarify the molecular mechanisms regulating GC and develop more 

effective therapies for GC patients.  A hurdle in understanding these molecular 

mechanisms is a lack of tools that accurately recapitulate tumour biology, from 

clinical mutations to the microenvironment.  

A huge advancement in the field of developmental biology and cancer biology 

was the development of a three-dimensional (3D) culture system termed 

“organoids” which have opened up new opportunities in preclinical 

personalized therapy testing. Organoids recapitulate many, but not all, of the 

aspects of the tissue they are derived from such as the differentiation capacity 

to the tissue-specific lineages and stem cell self-renewal (Merker et al., 2016). 

Due to successful culturing of normal tissue, organoids have also been 

developed for several human cancers (Gao et al., 2014; Sato et al., 2011a). 

While being more technically challenging than traditional 2D in vitro culture, 

3D organoids yield numerous advantages by bringing more faithfulness to the in 

vivo environment. One such advantage is a lower stiffness environment that 

closer resembles that of tissues; stiffness directly affects cell adhesion, 

spreading, migration and differentiation (Bayir et al., 2019). Furthermore, 

organoid cultures offer some advantages compared to in vivo xenograft models 

due to the shorter establishment time frame and the ease of manipulation 

(Andersson-Rolf et al., 2017). However, organoids do not contain every type of 
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the tissue they are derived from or cells from the surrounding 

microenvironment, such as immune cells.  

Initially developed based on the growth requirements of small intestinal stem 

cells, organoids have now been developed for several organs, including  the 

liver and the brain (Akbari et al., 2019; Cakir et al., 2019). Gastric and GC 

organoids are slowly emerging, with a handful of groups publishing different 

methods of their culture with various levels of success (Nanki et al., 2018; Yan 

et al., 2018). Gastric organoids present an exciting platform to further advance 

GC research, especially as despite clear views of the genetic diversity across 

human GCs, the mechanistic link between their genotypes and phenotypes 

remains unclear, owing to the lack of functionally controllable platforms. To 

date, numerous genetically engineered mice have been generated to model 

spontaneous gastric tumourigenesis in vivo (Hayakawa et al., 2013; Poh et al., 

2016). While these models have provided valuable insights into GC 

pathogenesis, their genetic backgrounds are mostly irrelevant to human GC 

genetics. Furthermore, tumourigenesis in these genetic mouse models requires 

long latency, which is suggestive of multiple genetic alternations being 

essential for the development of full-blown cancers. Alternatively, GC cell lines 

have served as accessible pre-clinical models for GC drug development. 

However, their biological distinction from clinical cancers can often lead to 

biases in the interpretation of their phenotypes. Patient-derived xenograft 

models offer a way to mitigate these challenges, but several other obstacles, 

such as the low establishment efficiency, low throughout, and genetic 

intractability, remain as roadblocks (Wang et al., 2017b). Therefore, organoids 

provide an exciting compromise for culturing patient-derived GCs. 

A bottleneck in GC organoids can be the availability of GC tissue due to the 

lower incidence in the Western world (Sitarz et al., 2018)  and the high 

percentage of patients that have received chemotherapy which may alter the 

molecular landscape of the GC. Therefore, it is vital to develop tools that will 

allow the introduction of clinically relevant mutations in normal gastric 



Chapter 6: Generation of Tools to Better Investigate the Molecular 
Mechanisms Underlying GC  

 

218 
 

organoids, thus, transforming them into GC organoids allowing the consistent 

investigation in GC molecular mechanisms. This can be achieved by genome 

editing technologies.  

The initial wave of modern day genome editors was zinc-finger nucleases (ZFNs) 

and transcription activator-like effector nucleases (TALENs). However, their 

use has been limited due to the need for difficult and laborious engineering of 

a new version of the editing protein for each new target in the genome and the 

fact that designing the nucleases to a induce double-stranded break (DSB) in a 

specific loci relies on predicting protein-DNA interactions (Gaj et al., 2013; 

González-Romero et al., 2019). By contrast, the recent breakthrough of 

clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 

technology, which is based on nucleic acid interactions, has enabled specific 

genome editing in a versatile and uncomplicated manner (Sternberg and 

Doudna, 2015). 

The Cas9 nuclease is guided by small RNAs through Watson-Crick base pairing 

with target DNA (Figure 6.1) and promotes genome editing by stimulating a DSB 

at a target genomic locus (Garneau et al., 2010). Upon cleavage by Cas9, the 

target locus undergoes two major pathways of DNA repair (Figure 6.2): the 

error-prone non-homologous end joining (NHEJ) or the high-fidelity homology-

directed repair (HDR) pathway, both of which can be used to achieved the 

desired editing outcome (Ran et al., 2013). In the absence of a repair template, 

DSBs are re-ligated through the NHEJ pathway, which leaves insertion/deletion 

(indel) mutations; this pathway is utilized to mediate gene knockouts, as indels 

within coding exons can lead to frameshift mutations and premature STOP 

codons (Perez et al., 2008).  The HDR pathway can be leveraged to generate 

precise defined modifications at the target locus in the presence of an 

exogenously introduced repair template. However, this pathway typically 

occurs at lower and substantially more variable frequencies than the NHEJ 

pathway. Additionally, it is only active in dividing cells, and its efficiency can 

vary greatly depending on the cell type (Saleh-Gohari and Helleday, 2004).  



Chapter 6: Generation of Tools to Better Investigate the Molecular 
Mechanisms Underlying GC  

 

219 
 

 

 

   

Figure 6.1 Schematic of the RNA-guided Cas9 nuclease. The Cas9 nuclease from 

S.pyogenes (yellow) is targeted to genomic DNA by a single-guide RNA (sgRNA) 

consisting of 20 nucleotide guide sequence (Blue) and a scaffold (red). The guide 

sequence pairs with the DNA target (blue bar on top strand), directly upstream of 

a requisite 5’-NGG adjacent motif (PAM; pink). Cas9 mediates a DSB ~3 bp upstream 

of the PAM (red triangle).  Reproduced from (Ran et al., 2013) 
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Figure 6.2 DSB promotes gene editing. DBSs induced by Cas9 can be repaired via 

one of two pathways. In the NHEJ pathway, the ends of a DSB are processed by 

endogenous DNA repair machinery and rejoined, which can result in random indel 

mutations. If these occur within the coding region of a gene, frameshifts and the 

creation of a premature stop codon can result leading to a gene knockout. In the 

HDR pathway, a repair template in the form of a plasmid can be supplied to 

leverage the HDR pathway, which allows high fidelity and precise editing. 

Reproduced from (Ran et al., 2013). 
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This new technology can be harnessed to investigate precise molecular 

mechanisms underlying in GC. The data presented in this thesis has 

demonstrated that inhibition of Fzd7 is able to prevent the growth of gastric 

cancer cells with mutant Apc. Therefore, generation of tools using CRISPR-Cas9 

technology will help to begin to reveal the molecular mechanism regulating 

Wnt signalling in GC. 

In this chapter we demonstrate how we have established a human gastric 

organoid platform, through refinement of the culture protocol, to allow for 

future investigations into the molecular mechanisms of GC and treatment 

responses. Additionally, we have generated CRISPR-Cas9 constructs that can be 

used as tools in combination with the newly established organoid platform to 

investigate the precise requirement of APC in GC.  
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6.2 Results 

6.2.1 Generation of Human gastric cancer organoids.   

Tissue with histologically diagnosed gastric adenocarcinoma was obtained 

from surgical resection specimens at University Hospital Wales. The 

establishment of GC organoid cultures was complicated by a variety of factors. 

Firstly, due to the nature of harvesting the sample, GC samples could often be 

contaminated with normal gastric glands (Figure 6.3). An unexpected effect of 

this was once in culture the normal organoids out competed the tumour 

organoids within the mixed population, which has been reported previously and 

also observed in other cancer organoid cultures such as prostate (Nanki et al., 

2018; Wang et al., 2017d). To increase successful initiation of GC organoid 

cultures and minimize the growth of normal gastric glands, the tissue digestion 

method and time was optimized. Instead of using a standard EDTA chelating 

buffer, a more aggressive digestion solution was used. Washed tissue samples 

were digested at 37°C with constant agitation using Liberase TH (0.28 WÃ¼nsch 

units/mL )(Roche)) which contains highly purified collagenase I, collagenase II, 

and thermolysin (non-clostridial neutral protease). The use of Liberase TH also 

allowed greater experimental reproducibility between GC samples due to 

precise blended ratio of the two collagenase isoforms; this allows higher lot-to-

lot consistency.  

Secondly, the GC samples often had a stromal composition resulting in a stiff, 

fibrous, and sometimes calcified sample. This effected digestion of the samples 

and made releasing tumour cells from the bulk of the tissue difficult. Therefore, 

a range of digestion times was utilized, from 1 hour to overnight, depending on 

tissue stiffness. Tissue debris was removed by passing the mixture through a 

100 µm cell strainer. 

Finally, the cultured GC organoids often had signs of red blood cell (RBC) 

contamination, likely due to the increase in neoangiogenesis commonly 

observed in tumours. The centrifuged pellet of GC organoids prior to 

resuspension in matrigel was colored red and when plated hundreds of small 



Chapter 6: Generation of Tools to Better Investigate the Molecular 
Mechanisms Underlying GC  

 

223 
 

cells could be seen, this made clear imaging difficult. To overcome this, the 

final pellet of GC organoids was bathed in an ammonium chloride solution (1:10 

dilution in PBS) to lyse the red blood cells. We did not observe a difference in 

cultures that received this treatment prior to plating compared to those that 

did not (Figure 6.3B).  
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Figure 6.3 Human GC organoid challenges (A) Human GC samples were frequently 

contaminated with normal gastric glands creating a mixed population of organoids 

in culture. (B) Human GC samples containing RBC contamination in culture. No 

significant was observed between NH4CI-treated organoids and non-treated 

organoids. RBS; Red blood cells. Scale bar = 100 µM  

A 

B 
No pre-treatment Pre-treatment with NH4CI solution 
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Despite these challenges, we were able to successfully culture human GC 

organoids (Figure 6.4). Interestingly, we observed that the growth of the Human 

GC organoids was extremely slow and GC organoids were approximately half 

the size of normal gastric organoids after 15 days (Figure 6.5). Some successful 

Human GC organoids still suffered from normal gastric organoid contamination 

which hampered the slow-growing GC organoids. Therefore, we developed a 

strategy to enrich for mutant GC organoids (Figure 6.6). This strategy harnessed 

recurrently dysregulated signals in human GCs: the TP53, RHO, TGF-B, and RAS-

PI3K pathways (Wang et al., 2014a). Firstly, Nutlin-3, an MDM2 inhibitor would 

be added to the culture media to select for TP53 mutant organoids (Matano et 

al., 2015); Nutlin-3 resistant organoids would most likely contain TP53 

mutations. Secondly, as ROCK inhibition is essential for the recovery of 

individualized organoid cells, we planned to remove the ROCK inhibitor from 

the media to enrich for RHO-deregulated GCs. Following this, organoids would 

be treated with TGF-B in the absence of A83-01 (TGFβ kinase/activin receptor-

like kinase inhibitor) to select for organoids insensitive to TGF-B stimulation. 

Finally, we used a media free from the growth factors EGF and FGF10 to select 

for organoids with ligand-independent receptor tyrosine kinase signal 

activation. These positive selections were chosen to yield a range of Human GC 

organoids subtypes, lesions and histologic types. Unfortunately, we suffered 

with fungal contamination within the tissue culture room around the time of 

these experiments and therefore we were not successful in growing GC 

organoids long-term and implement our selection strategy.  
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Figure 6.4 Human GC organoids. Representative images of Human GC organoids 

from day 1 of culture following 15 days of growth. Scale bars = 100/25 µM 

Day 1  Day 5  Day 7  Day 10  Day 15  
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Figure 6.5 Normal gastric organoids grew faster. Representative images of GC 

and normal gastric organoids 15 days after first culture. Normal gastric organoids 

grew exceptionally faster than GC organoids. Scale bars = 100 µM 

GC organoid 

Normal gastric organoid  
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Nutlin-3 

Selects TP53 mutants 
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Selects RHO-dysregulated 

Added TGF-β & removed A-83-01 

   Selects insensitive to TGF-β stimulation 

Removed EGF & FGF10 

  Selects ligand-independent receptor 
tyrosine kinase signal activation 

1 

2 

3 

4 

Figure 6.6 Establishment of GC organoids. Strategy for the enrichment of GC 

organoids by niche factor-based selections 
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6.2.2 Generation of normal Human gastric organoids.     

 Normal gastric organoids were less challenging to culture than the human 

GC organoids. Matched normal gastric organoids were derived from the same 

region (corpus or antrum) of the stomach as the location of the gastric 

adenocarcinoma but far enough away to prevent cross-contamination. After 24 

hours’ single glands had developed into round cystic-like organoids, as is typical 

for a gastric organoid (Figure 6.7). They continued to grow steadily for 15 days 

after which time they were passaged. Organoids were passaged by breaking up 

the matrigel by pipetting and centrifuging. The resulting supernatent contained 

a pellet of glands at the bottom of the tube topped with a cloudy layer 

containing the matrigel debris and single cells. The cloudy layer was carefully 

removed and the organoid pellet broken up with a small p200 tip before being 

resuspend.   Organoids remained viable after first passage and continued to 

grow normally (Figure 6.8). At time of first passage, some organoids were 

frozen and stored to form a Biobank of human gastric organoids. 
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Day 0  Day 1 Day 5 Day 15 Day 7 

A 

B 

Figure 6.7 Normal Human gastric organoids. Representative images of the growth 

of two organoid samples (A & B) from different patients over 15 days  
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Figure 6.8 Normal Human gastric organoids following passage. Representative 

images of normal Human gastric organoids 7 days after passage. No changes to 

growth patterns or viability were observed following passage.  
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6.2.3 Design of FZD7-knockout and APC-mutant constructs   

 Inhibition of Fzd7 is able to prevent the growth of gastric cancer cells 

with mutant APC (Flanagan et al., 2019a). We hypothesize that this is due to 

the mutant APC still being transcribed and translated into a semi-functional 

protein which still allows regulation of the pathway from the level of the 

receptor. This is consistent with the ‘just right’ model of Wnt signalling in which 

too little Wnt does not transform cells, but too much is cytotoxic (Albuquerque 

et al., 2002) (Meniel et al., 2013). In order to more accurately assess the 

requirement of APC to allow gastric cancer cells to respond to inhibition of 

Fzd7, CRISPR-Cas9 genome editing technology will be employed to created 

precise truncated APC protein products as well as complete knockout as well 

as a construct to knockout FZD7 and FZD5 (as a control).  These will eventually 

be transfected into human GC cell lines and gastric organoids. The use of sgRNA 

and Cas9 protein will induce DSB at specific targets on the APC genome, these 

will be repaired by the NHEJ repair pathway. This will lead to frameshift 

mutations and premature STOP codons at the required sites therefore leading 

to precise truncated protein products or complete gene knockout.  

We designed sgRNA to generated 6 different length APC proteins at known 

functional sites (Figure 6.9) including the serine alanine methionine proline 

(SAMP) repeat at 1615aa (axin binding), the mutation cluster region at 1375 aa, 

the 15 amino acid repeats at 1225aa, the Armadillo repeat at 809aa and 

downstream of the oligomerisation domain at 407aa. This was more complex 

than the FZD7 knockout as we required cleavage between specific functional 

domains. These were often restrictive in size, for example between the 

armadillo domain and the 15 amino acid repeats there are only 867 bp. This 

limited the availability of PAM sites downstream of target sequences without 

off-target activity.  
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Figure 6.9 Schematic representations of human WT APC protein and the 

corresponding truncating mutants generated by the CRISPR-Cas9 technique.  
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It was decided that the sgRNA would be delivered as a sgRNA-expressing 

plasmid. The carefully designed sgRNA were annealed and ligated into the 

px458 plasmid which contained both Cas9 and the remainder of the sgRNA as 

an invariant scaffold immediately following the oligo cloning site. Additionally, 

the px458 plasmid contained 2A-GFP to allow for selection of transfection cells 

downstream. Following ligation, plasmids were transformed into competent 

E.coli and plated onto ampicillin-LB agar plates. Colonies were observed for all 

constructs, numerous colonies were seen on the positive control plate (uncut 

px458) and zero colonies were seen on the negative control plate (Figure 6.10). 

This is highly suggestive of successful insertion of sgRNA into px458. To confirm, 

bacterial cultures were grown from colonies and the plasmid DNA purified and 

sent for sequencing. All results confirmed the successful insertion of sgRNA 

insert into the px458 vector.  

Plasmids were transfected into the GC cell line, MKN45 (WT for APC). 

Transfection was deemed successful due the expression of GFP in MKN45 under 

a fluorescent microscope (Figure 6.10). Next, the isolation of clonal cell lines 

was required to generate a monoclonal population. This was attempted by 

isolating single cells through FACs using GFP as the marker followed by an 

expansion period to establish a new clonal cell line. Unfortunately, our cell 

lines did not survive as single cells and an alternative method needs to be 

develop such as the gentler serial dilution protocol. Nevertheless, we have 

generated a panel of successfully cloned plasmids that are ready for functional 

testing to investigate the mechanism of how Apc mutant cells respond to 

inhibition of Fzd7. 
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Figure 6.10 Positive selection of clones (A) Representative image of 

bacterial colonies includes example of FZD7-knockout plasmid, positive 

control and negative control. (B) Representative image of MKN45 cells 

transfected with FZD7-knockout plasmid containing GFP reported. Imaged 

under fluorescent microscope. 
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6.3 Discussion 

 The APC truncating mutation is the hallmark of the vast majority of 

human CRCs and is also frequently present in GCs. Its loss is thought to 

contribute to the initiation of GC through the constitutive activation of the Wnt 

pathway (Flanagan et al., 2017b). Most APC somatic mutations occur in the 

“mutation cluster region” (MCR) between codons 1,286 and 1,513 (Vogelstein 

and Kinzler, 2004) with region-specific APC mutations being associated with 

distinct β-catenin transcriptional activity and tumour susceptibility (Gaspar and 

Fodde, 2004).  Different functional domains have been described in the central 

region of the APC protein, including the β-catenin-binding 15- and 20-amino 

acid repeats and the Axin-binding Ser-Ala-Met-Pro motif (SAMP) repeats that 

are vital for regulating β-catenin level. We have previously shown that Wnt 

receptor FZD7 plays an essential role in gastric tumourigenesis and that 

inhibition of this upstream receptor can  modulate Wnt signalling irrespective 

of APC mutation status (Flanagan et al., 2019a). Importantly, data from our lab 

has shown that tamoxifen induced TffCre; Apcfl/fl mice, in which exon 14 of 

Apc is deleted and consequently truncated from codon 580 onwards (Phesse et 

al., 2014) develop gastric tumours with 100% penetrance. Additionally, recent 

data from our lab demonstrated that biallelic deletion of Fzd7 was able to block 

gastric tumourigenesis in TffCre; Apcfl/fl mice. Furthermore, the results 

presented in chapter 2 used MKN28 GC cells which contain an APC truncating 

mutation (p.R1450*) at codon 1450, inside the MCR. We demonstrated that 

MKN28 GC cells responded to inhibition of FZD receptors in vitro and in vivo 

despite the mutation to APC. Together these data suggest that there was 

sufficient translation of the Apc protein to allow upstream factors to modulate 

Wnt pathway activity as the ‘just right’ model predicts (Albuquerque et al., 

2002). However, the molecular mechanism of how GC cells with APC mutations 

can respond to inhibition of FZD receptors and which regions of APC are 

functionally and clinically significant remain unknown. For example, would 

complete deletion of Apc result in cells activating Wnt signaling that are 
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unresponsive to modulation of Fzd7 or upstream signaling events? Here, we 

have designed sgRNA to target specific loci between the known functional 

domains of APC, successfully cloned then into a Cas9 expressing vector and 

validated them through sequencing. We have also generated and validated a 

construct that will lead to complete knockout of FZD7. The constructs are ready 

be used for functional assays to help develop the understanding of the 

molecular mechanism of Wnt signalling in GC, and how mutant APC modulates 

the response of GC cells to FZD7 inhibition. This will deepen and strengthen the 

results from previous chapters of this thesis by providing insights into the 

potential mechanism that allows disruption of the FZD receptor to have an 

effect on GC cells with APC mutations.  

These generated tools can be used in combination with our newly established 

human gastric organoid biobank platform. The truncated APC constructs can be 

transfected into normal human gastric organoids and the truncated APC 

mutations will transform the organoids to tumouroids as recently demonstrated 

in CRC (Novellasdemunt et al., 2017). These organoids can be treated with OMP-

18R5 or co-transfected with the construct to knock-out FZD7 to investigate 

which APC protein lengths respond to genetic knock-out of FZD7 or 

pharmacological inhibition of the receptor. The combination of organoids and 

CRISPR-Cas9 will help determine the mechanism by which APC mutant GC cells 

are able to respond to deletion of FZD7, and thus modulation of the receptor 

upstream of intracellular mutations. These experiments will build on the 

findings in this thesis by investigating modulation of the FZD receptors across a 

broad-range of clinical types of GC and shed light on the mechanism of action 

underlying the results observed in the previous chapters. This will ultimately 

help striate which GC patients will be most likely to respond to therapy with 

anti-FZD drugs based on the APC mutation they harbor.  

GC has extremely high molecular and cellular heterogeneity which is exhibited 

both within tumours and between patients (Carrasco-Garcia et al., 2018). This 

heterogeneity can make the choice of therapy difficult and so addressing this 
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molecular heterogeneity is critical for achieving an optimal therapeutic 

approach against GC. GC heterogeneity is manifested in marked differences in 

disease aggressiveness and treatment outcome, however, in current clinical 

practice the choice of therapeutic strategy against GC does not consider this 

molecular heterogeneity and is mostly based on tumour stage (Carrasco-Garcia 

et al., 2018). This highlights the need for novel and relevant biomarkers for 

patient stratification to direct targeted therapies to the right patients, with an 

overall goal of personalized medicine.  

The use of organoids opens up new opportunities in preclinical personalized 

therapy testing. Our newly established platform will allow the generation of a 

large organoid collection over time that will function as a living human biobank. 

However, a weakness of this current study is the lack of validation of the normal 

gastric organoids. These must be confirmed as normal and not a fast-growing 

tumour organoid by analysis of biomarkers. The usefulness of organoid biobanks 

has already been demonstrated, for example, a CRC biobank has been shown 

to be amenable to drug screens to individualize patient treatment and screen 

for novel therapeutics (van de Wetering et al., 2015). Additionally, the 

establishment of GI organoids from metastatic lesions has been shown to be 

feasible and treatment of these organoids recapitulates the clinical response of 

the corresponding patients (Vlachogiannis et al., 2018). Our expanding 

collection of human GC organoids can be classified according to their molecular 

profile, assessed for their chemotherapeutic response, and given targeted 

treatments according to their specific druggable mutations. However, it is 

important to note that organoids consist only of the epithelial layer with no 

surrounding mesenchyme, blood vessels or immune cells, therefore drugs that 

target the microenvironment cannot be evaluated.  

Recently, two groups independently established human gastric organoid 

biobanks of 37 GC samples (Nanki et al., 2018) and 46 GC samples (Yan et al., 

2018). Both groups performed detailed whole-exome and transcriptome 

analysis to characterize the tumours and performed drug screening that could 
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potentially guide patient drug selection. Interestingly however, the groups did 

not observe the same genetic alterations between different GC subtypes and 

produced conflicting results, for example Nanki et al., did not report a 

correlation between KRAS mutations and the MSI GC subtype, whereas Yan et 

al., reported a strong correlation between this aberration and the MSI subtype.  

Additionally, genetic alterations observed between did not agree with the 

datasets generated by the TCGA (Wang et al., 2014b). For example, Nanki et 

al., reported a low mutation date of PIK3CA whereas the TCGA reports it as 

high. Overall, both new studies showed a lack of consistency with the TCGA 

report and did not demonstrate a robust genetic distinction amongst subtypes. 

This may be due to the small size of their datasets not allowing accurate 

patterns to emerge and highlights the heterogeneity of GC and the need to 

increase the numbers of organoids collected from different patients to fully 

elucidate the landscape of the molecular and genetic alterations of human GC. 

Nevertheless, these investigations validate the viability of establishing human 

gastric biobanks and their use to identify novel druggable targets as well as 

highlighting the importance of organoids for the next advancements of GC 

research. 

COVID19 lockdown prevented us from attempting to use CRISPR-Cas9 to 

manipulate Fzd7. We had planned to transfect organoids with the previously 

described construct to knockout Fzd7. We hypothesized that we would observe 

organoid death following transfection due to the requirement of Fzd7 in the 

gastric epithelium. As the human organoids were slow to establish, we planned 

to utilized mouse organoids which are less technically difficult to culture. A 

previous study investigated the role of Fzd7 in the gastric epithelium and found 

it to be a requirement for the culture of gastric organoids (Flanagan et al., 

2017a). However, the Cre used (Tff1Cre) only recombined in the antral glands 

(Flanagan et al., 2017a) and the role of FZD7 in the corpus remains unknown. 

Therefore, we planned to culture organoids from the corpus region to 
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investigate the requirement of FZD7 through knockout using our CRISPR-Cas9 

constructs.  

6.4 Conclusions 

 We have begun to establish a human gastric organoid biobank which will 

help to identify the mechanistic connection between GC genotype and 

phenotype. These GC organoids might serve as living biomarker to predict 

therapy response and resistance in GCs containing specific mutations, thereby 

helping to guide personalized therapy approaches. Additionally, the protocol 

for establishing normal human gastric organoids has been refined. The 

treatment of patient-derived organoids alongside patients from whom cultures 

were derived will ultimately test their usefulness to predict individual therapy 

response and patient outcome. These organoids can begin to be used in 

combination with our newly generated CRISPR-Cas9 constructs to unravel the 

mechanism of how APC mutant GC cells respond to inhibition at the level of the 

receptor.  
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7.1 General Discussion & Future Directions 

 GC remains a major contributor to cancer-related mortality worldwide 

and is still the fourth most common cancer. The 5-year survival rate is less than 

5% in advanced unresectable or metastatic disease (Ferlay et al., 2015), a stage 

which is observed in approximately 80% of patients at diagnosis (Correa, 2013). 

This poor survival rate is reflected in the limited treatment options for GC 

patients; these options are largely stratified as palliative or curative. The 

preferred treatment option is partial or complete resection of the stomach, 

however, as most patients present with advanced-stage disease a majority of 

patients lose the opportunity to undergo surgical resection (Song et al., 2017). 

In this instance, the goal of comprehensive treatment is to prolong survival and 

improve quality of life. This includes neoadjuvant and adjuvant chemotherapy, 

radiotherapy, or a combination of the two (Wagner et al., 2006) although >95% 

of non-operable GCs develop chemoresistance (J.J.G. Marin, 2016).  After this 

the only remaining treatment option is Trastuzumab, a monoclonal antibody 

targeted against HER2. This is the only approved molecular-targeted therapy 

for GC, however only around 20% of GC are classed as HER2-positive (Kim et 

al., 2014). Clearly there is an urgent and unmet need to develop a wider range 

of effective targeted treatments for GC. This thesis aimed to enhance the 

understanding of the molecular pathways linked to GC in order to identify novel 

therapeutic targets for GC.  

The lack of GC treatment option stems from an incomplete understanding of 

the molecular pathways underlying this highly heterogeneous disease. The Wnt 

signalling pathway is central to gastric homeostasis and therefore its aberrant 

activation is linked to GC development, how the precise molecular mechanisms 

of aberrant Wnt signalling in GC have remained unknown in the field. The 

studies in this thesis have been the first investigations to examine the role of 

the Wnt receptor FZD7 in the context of GC. We have demonstrated that 

inhibition of FZD7 leads to a reduction in GC initiation, even in APC mutant 

cells. In addition, we have shown for the first time the functional significance 
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of the Wnt pathway negative regulator, RNF43/ZNRF3, in GC through its 

conditional deletion in vivo. Collectively all result chapters presented in this 

thesis highlight for the first time how modulation of Wnt signalling at the level 

of the receptor may be a potential and novel therapeutic strategy for the 

treatment of GC irrespective of downstream mutations.  

Aberrant activation of Wnt/ β-catenin signalling is a necessary initiating event 

in the formation of many cancers of epithelial origin, including GC (Clevers and 

Nusse, 2012a). Many GC patients harbor activating mutations to key 

intracellular components of the Wnt/β-catenin pathway, such as APC (Wang et 

al., 2014a) however ever-growing evidence is suggestive that additional 

modulation of Wnt/β-catenin signalling can help attenuate cancer progression 

(Caldwell et al., 2004; Suzuki et al., 2004) however this had not been confirmed 

in GC until the generation of this thesis. As such, it has been shown that FZD7 

is upregulated in many cancers, including GC, with constitutive Wnt activity, 

which robustly increases already elevated levels of Wnt/β-catenin signalling 

and subsequent target gene expression (Zhao et al., 2014). This is presumably 

due to the fact that FZD7 is a downstream target of Wnt/β-catenin signalling 

(Vincan et al., 2010), which may serve as a feed-forward mechanism to fuel 

Wnt/β-catenin signalling, thus facilitating cancer progression. Importantly, 

implementing targeted strategies to reduce the availability of FZD7 has been 

shown to reduce cell viability, cell migration, and cell invasion within various 

cancer types both in vitro and in vivo (Ueno et al., 2009; Vincan et al., 2007a; 

Wei et al., 2011; Yang et al., 2011) in line with the results we have presented 

in the context of GC. However, targeting a component of a crucial adult tissue 

homeostasis signalling pathway has many associated caveats, such as the 

possible disruption to tissue proliferation and homeostasis of surrounding non-

tumorigenic tissue. Thankfully, recent studies support our hypothesis that 

targeting of FZD7 within the gastric epithelium is a novel, viable and attractive 

target for the treatment of GC without severe unwanted side effects. Published 

work from our lab in conjunction with this project has demonstrated that 
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conditional deletion of FZD7 from gastric adenomas of Tff1CreERT2/+ 

;gp130F/F;Fzd7fl/fl mice significantly reduced tumour burden with associated 

decreases in cell growth, proliferation and angiogenesis (Flanagan et al., 

2019a). Additionally, conditional deletion of FZD7 from the gastric epithelium 

is well tolerated, as demonstrated by the fact that FZD7-deficient cells are 

repopulated and the integrity of the epithelium is restored soon after (Flanagan 

et al., 2017a). Furthermore, Fzd7-deficient mice were reported to be viable, 

healthy and fertile. Additional support comes from a study where Fzd7 was 

deleted from the intestinal epithelium, triggering rapid epithelial repopulation  

(Flanagan et al., 2015b) which is suggestive of a survival mechanism to 

eradicate any cells that have undergone critical genetic ablation. Furthermore, 

given the pivotal role of Lgr5 gastric stem cells play in gastric homeostasis 

(Barker et al., 2010b) and the recent study demonstrating that the function of 

Lgr5+ cells in the gastric epithelium do not require FZD7 to maintain this 

homeostasis (Flanagan et al., 2019b) is highly suggestive that therapeutic FZD7 

inhibition within the context of GC treatment is unlikely to affect this 

population of cells.  

However, as with the majority of cancer therapies, mono-therapies show 

limited promise in long-term cancer treatment due to the heterogeneity of the 

disease and the development of drug-resistant cells (Arkenau, 2009). As such, 

it is now almost standard in clinical trials to treat all malignancies in 

combination with other agents as this often shows synergistic effects (Le et al., 

2015). As highlighted in chapter 2 and 3 of this thesis, the use of OMP-18R5 as 

a single agent was successful in inhibiting GC cell growth both in vitro and in 

vivo, and at inhibiting the ability of GC cells to migrate. However, in a clinical 

setting it would be advisable to be implemented in combination with other 

routine chemotherapy or radiotherapies. Importantly, due to the systemic 

pharmacological action of OMP-18R5, careful pre-testing and validation should 

be performed to gauge the appropriate human therapeutic dose and identify 

any potential unwanted toxicity to Wnt-sensitive tissues. A first-in-human 
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phase I dose-escalating clinical trial (NCT01345201) using OMP-18R5 in solid 

cancers found that the best tolerated dose was up to 2.5 mg/kg once every 3 

weeks. The most commonly reported side effect was reduction in bone density, 

however, this was successfully elevated by co-treatment with zoledronic acid 

(Smith et al., 2013); a common approach when using Wnt inhibitors in a clinical 

trial setting. 

We have elucidated that FZD7 is the predominant Wnt receptor transmitting 

cell-intrinsic Wnt signals in human GC cells and therefore may be an attractive 

target for GC treatment. Our in vitro studies demonstrated reduced GC cell 

growth and progression following FZD inhibition or FZD7 knockdown which is in 

line with several in vitro studies that have shown targeted inhibition of FZD 

receptors is sufficient to block growth of GC cells (Li et al., 2018; Tomizawa et 

al., 2015). A weakness of the study presented in this thesis was that transient 

transfections were used to investigate the effect of FZD7 knockdown. This may 

have led to different levels of FZD7 knockdown between experimental repeats 

and various experiments. A more robust approach would be to generate stable 

FZD7-knockdown GC cell lines. This would ensure consistency and 

reproducibility between experiments and minimize human error.  

However, it is well documented that in vitro studies do not fully recapitulate 

the complex cellular and molecular interactions that are present in tumours 

(Hanahan and Weinberg, 2011). Our results in chapter 2 of this thesis 

demonstrated that pharmacological inhibition of FZD receptors, via OMP-18R5 

treatment, resulted in significantly smaller gastric tumour xenografts when 

MKN28 and MKN45 GC cells were injected in vivo; illustrating that inhibition of 

FZD receptors slows the growth of GC cells. This is supported by a parallel 

experiment from our laboratory in which it was shown that gastric adenomas 

required Fzd7 for optimal growth using genetic and pharmacological strategies 

in two independent mouse models (Flanagan et al., 2019a). Furthermore, these 

data are confirmed by earlier work that demonstrated that the targeting of 

multiple FZD receptors blocked the growth of several different cancers (Gurney 
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et al., 2012), which we can now extend to include GC. Future work to validate 

the effectiveness of targeting FZD7 in GC could be through the treatment of 

Human GC organoids/PDX models to accurately represent the variety of the 

molecular and genetic landscape of GCs seen in the clinic; this would also 

address a weakness of this current study, whereby, the newly classified 

molecular GC subtypes are not represented by our cell lines.  

As mentioned above, metastasis is the key contributor to the high mortality 

rate observed in GC patients as well as being a major challenge in the 

development of novel treatments.  We have demonstrated that FZD7 plays a 

predominant role in the invasion and migration capabilities of GC cells in vitro, 

suggesting it is also important for metastasis of GC cells in vivo. This is 

consistent with  evidence that over-expression of FZD7 is associated with GC 

metastasis, advanced clinical stages and poor patient prognosis (Li et al., 2018). 

These findings are further supported by a similar investigation in the context 

of CRC. They reported that FZD7 is involved in the progression of CRC through 

the enhancement of survival, invasion and metastatic capabilities of CRC cells 

through transfection of CRC cells with FZD7 siRNA (Ueno et al., 2009). 

Interestingly, they reported that FZD7 was transmitting signals via both the 

canonical and non-canonical signalling pathways. Accumulating evidence 

suggests that non-canonical Wnt signalling is important in regulating cellular 

polarity and movement (Veeman et al., 2003) and so it is likely to play a role 

with the context of cancer metastasis. Wnt5a, a ligand that activates the non-

canonical branch of the Wnt pathway, can play a role as a tumour suppressor 

or by promoting cancer invasion and migration, although the molecular 

mechanisms explaining these roles have not been fully elucidated (Astudillo, 

2020). Overexpression of Wnt5a has been implemented in promoting GC 

progression (Kurayoshi et al., 2006) with one study reporting that Wnt5a-

targeted knockdown in GC cell lines reduced cell migration through inhibition 

of Rac1, a driver of GC invasion. Additionally, suppression of Wnt5a with the 

use of an anti-Wnt5a antibody blocked clathrin-mediated internalization of the 
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FZD2 and Ror2 receptors (Hanaki et al., 2012). However, the function of this 

ligand has not been investigated in the context of GC in vivo, although 

accumulating evidence does point to a role for Wnt5a in GC metastasis. 

Therefore, as FZD7 is able to transmit signals through both the canonical and 

non-canonical pathways (Phesse et al., 2016)  future experiments investigating 

if FZD7 is playing a role in the non-canonical pathway in the context of GC 

metastasis is vital to further support the findings of this thesis. Future 

experiments should inhibit FZD7, via FZD7-targeted shRNA and OMP-18R5 

treatment, and look at the expression of c-Jun, the phosphorylation of JNK and 

c-Jun, and activation of RhoA. It has been reported that Wnt5a failed to induce 

tumour initiation. An inducible Wnt5a transgenic mouse model was generated 

by crossing TetO-Wnt5a mice with hnRNP-rtTA mice which drive ubiquitous 

expression of the doxycycline inducible rtTA2S-M2 Tet-trans-activator 

(Katsantoni et al., 2007). Induced Wnt5a expression was well-tolerated in adult 

mice for multiple durations, including 1 day, 1 week and 3-5 months (Bakker et 

al., 2012). This is suggestive that Wnt5a alone is not sufficient for GC 

establishment and may be working in concert with other pathways. 

Nevertheless, this thesis has clearly demonstrated that FZD7 is transmitting 

oncogenic signals via the canonical Wnt/β-catenin pathway, which are 

promoting the invasion and migration capabilities of GC cells. We demonstrated 

that inhibition of FZD7 reduced the expression of Wnt target genes associated 

with the canonical β-catenin pathway including MYC, AXIN2, CCND1 and LGR5. 

Furthermore, inhibition of FZD7 down-regulated EMT and reduced GC cells 

colony forming ability, indicative of reduced CSC activity, which is associated 

with attenuated canonical Wnt/β-catenin signalling. Additionally, gastric 

organoids required Wnt3a in the culture medium in addition to the Wnt agonist 

R-spondin, demonstrating that canonical Wnt ligands are required for GC 

growth.   

EMT enables cancer cells to obtain migratory capacity, infiltrate surrounding 

tissue and metastasize to distant sites. Wnt signalling has been reported to 
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promote EMT through the up-regulation of transcription factors slug, snail, 

vimentin, and twist1 (DiMeo et al., 2009). Similarly, FZD receptors are thought 

to be critical factors for the EMT processes. Recent investigations have shown 

that down-regulation of FZD7 expression significantly inhibited cell invasion and 

migration, accompanied with a decreased expression of vimentin and snail, and 

increased expression of E-cadherin, in cervical and ovarian cancers (Asad et al., 

2014; Deng et al., 2015). Wnt3/FZD7 signalling is up-regulated in hepatocellular 

carcinoma and leads to an attenuation of E-cadherin expression (Kim et al., 

2008b) and over-expression of FZD7 was been reported to promote cell 

mobility, metastasis and EMT in esophageal cancer (Cao et al., 2017). The 

results presented in this thesis have demonstrated that inhibition of FZD 

receptors caused an increase in E-cadherin expression along with decreases of 

N-cadherin, vimentin, snail, slug, and twist1. However, a potential weakness 

of this study is that only a selection of EMT markers were evaluated. The 

expression profile of cells undergoing EMT is not validated and can vary 

between tissue-types, therefore, a larger and more expansive panel of 

epithelial and mesenchymal markers should be utilized to fully evaluate the 

EMT status in GC. Nevertheless, this work provides novel evidence that one of 

the 5 FZD receptors inhibited by OMP-18R5 (FZD1, 2, 5, 7, and 8) could promote 

EMT, enhancing the metastatic potential of GC cells. Of the 5 inhibited 

receptors, FZD7 is likely the key receptor promoting EMT due to the gene 

expression analysis performed in chapter 2 showing that FZD7 is abundantly 

expressed in the GC cell lines used for our experiments. Furthermore, the 

expression of FZD1, 2, 5 and 8 was not observed to be highly expressed in our 

cell lines. Further experiments to confirm that FZD7 is the predominant 

receptor in promoting EMT are required. The EMT experiments outlined in 

chapter 3 should be repeated with the use of FZD7-targeted shRNA in place of 

the OMP-18R5 treatment; this would have taken place if not for lab restrictions 

due to COVID19 lockdown. This would have confirmed FZD7 is the predominant 

receptor regulating EMT in GC. 
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The role of FZD7 in GC metastasis has not be investigated in vivo. Therefore, 

this remains a key area to be investigated in this field to build on the novel 

findings from this thesis. This project has the scope to examine this through the 

use of the CRISPR-Cas9-sgFZD7 construct generated in chapter 6. This can be 

cloned into a DOX-inducible Cas9 vector which will be stably transfected into 

GC cell lines which can be used in our in vivo abdominal metastasis model to 

elucidate the functional role of FZD7 in GC metastasis. The injected GC cells 

can be left to develop into palpable tumours, after which stage, the mice will 

be injected with doxycycline to induce Cas9 expression and the subsequent 

knock-out of FZD7. The weakness remains of not being able to explore the 

function of FZD7 in GC in a setting more representative of the clinic, for 

example with immune cells. To complement this, in vitro 3D co-culture 

experiments of GC cells with CAFS or tumour-associated macrophages, could 

be established to investigate the relationship of GC cells with the TME.  

We have demonstrated that inhibition of FZD receptors or Wnt secretion leads 

to a reduction in migration, invasion, EMT and stemness, illustrating that Wnt 

modulates these aspects of the metastatic cascade in GC. However, our in vivo 

data indicated that Wnt is not required in our model of GC, which was 

representative of the later stages of the metastatic cascade when cells are 

surviving in the metastatic niche and establishing secondary sites. Therefore, 

the requirement for Wnt in the process of MET and regaining an epithelial 

phenotype should be investigated further in GC to further strengthen the 

insights gained from this project.  

As we have demonstrated, modulation of the FZD-Wnt complex, either by 

inhibition of FZD receptors or inhibition of Wnt secretion, leads to a reduction 

in GC initiation and metastatic potential. Another key player involved in close 

concert with the FZD-Wnt complex is RNF43. Loss-of-function mutations to 

RNF43 have been thought to drive the development of many cancers due to the 

upregulation of FZD receptors on the cell surface (Giannakis et al., 2014; Jiang 

et al., 2013). Currently there are conflicting reports of the significance of 
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RNF43 loss in cancer, including within the setting of GC. Recent publications 

argue that the most frequently observed RNF43 mutation, G659fs, retains 

functionality in the inhibition of Wnt signalling and is unlikely to contribute to 

tumorigenesis (Li et al., 2020; Tu et al., 2019). Whereas, an opposing 

publication reports through in vivo studies that C-terminal truncation RNF43 

mutants, including G659fs, are in fact loss of function and likely to contribute 

to tumourigenesis caused by active Wnt signalling (Yu et al., 2020). We have 

demonstrated the functional significance of RNF43 in GC by robust conditional 

deletion in vivo. Genetic knockout of RNF43, and its homologue ZNRF3, resulted 

in the development of gastric adenomas with increased levels of Wnt target 

gene expression. This supports the idea that LOF mutations to RNF43 are 

significant in GC development and is additionally supported by a study in which 

knockdown of RNF43 enhanced the tumourigenic potential of gastric cell lines 

(Neumeyer et al., 2019). Clinically this is an important finding as it supports 

the idea what these Wnt-addicted RNF43 mutant tumours will be responsive to 

Wnt inhibitors, such as LGK-974 (Liu et al., 2013; Madan et al., 2016; Yu et al., 

2020). Our data contributes to the increasing evidence in support of the 

significance of RNF43 LOF mutants in cancer which will facilitate the selection 

of patients who may benefit from upstream Wnt pathway inhibitors. 

Additionally, the findings presented in this thesis show for the first-time the 

functional significance of RNF43 in the context of the gastric epithelium.  

Furthermore, we observed metaplasia and lesions indicative of early tumour 

development within the single RNF43 knockout mice. This is suggestive that loss 

of a single E3 ligase will eventually lead to the development of less gastric 

tumours. An important next step for this project will be to age the single 

knockout mice for longer and observe if gastric tumours develop, as a weakness 

of this study was the short time-point, which is not necessarily reflective of the 

long latency of GC seen in the clinic.  As this thesis has demonstrated, FZD7 

plays a predominant role in GC initiation and progression, therefore, another 

important next step for this project will be to assess if the phenotype observed 
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in the double knockout can be rescued by co-deletion of FZD7. Furthermore, 

our double mutant mice could be treated with OMP-18R5 and their tumour 

burden quantified, as this is more clinically relevant. This study was the first 

investigation into the functional significance of RNF43 in the gastric epithelium 

using a robust genetic in vivo model, however, the data generated is in the 

early stages and further characterization of the resulting tumours and aberrant 

gastric epithelium needs to be undertaken to support and strengthen the 

findings. Additionally, this study looked at full genetic knock-out of RNF43, 

whereas in human GC, truncation of RNF43 is more commonly observed.  

It is important to note that non-mutational drivers, such as microRNAs (miRNA), 

are able to drive Wnt activity. For example, miR-103/107 has been 

demonstrated to prolong Wnt/β-catenin signalling and CRC stemness by 

targeting Axin2 (Chen et al., 2019). miRNAs are also capable of targeting Wnt 

at the level of the Wnt receptors. For example, miR-100 has been demonstrated 

to inhibit Wnt/β-catenin signalling by targeting FZD8 leading to the suppression 

of the migration and invasion of breast cancer cells (Jiang et al., 2016). Mir-

188-5p has been reported to activate the Wnt/β-catenin pathway in GC and its 

expression is positively correlated with GC metastasis (Li et al., 2019c). 

Therefore, miRNAs should be an avenue in future GC research.  

Collectively, our data has shown that targeted inhibition of Wnt receptors, 

specifically FZD7, is rate-limiting for the growth of GC cells with and without 

APC mutations. Therefore, we hypothesis that a possible mechanism to allow 

APC mutant cells to respond to FZD7 inhibition is due to the continued 

transcription and translation of the mutant APC gene itself (Figure 7.1) as 

opposed to complete deletion as previously assumed in GC. This would allow 

the restoration of the destruction complex. This hypothesis is supported by the 

“just right” model of Wnt signalling in which it has been demonstrated that 

different APC mutations result in different levels of Wnt pathway activation 

(Albuquerque et al., 2002). Despite our evidence that demonstrates Wnt 

signalling can be further regulated at the level of the receptor in APC mutant 
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cells, other studies have indicated that this phenomenon is context dependent 

and may not be observed in all cancers with APC mutations (Flanagan et al., 

2019; Huels et al., 2018). 

There is no evidence in if disruption of the FZD receptors has the same effect 

in GC cell lines with β-catenin mutations, although this is less clinically relevant 

as mutations to β-catenin is rare in GC. Of interest, a study in CTNNB1 mutant 

CRC cells did not observe the same response as seen with APC mutant cells, 

suggesting a specific role for mutant APC (Saito-Diaz et al., 2018). However, 

this may be cancer-specific and not translate to GC. 

Therefore, a key next step for this project will be to examine the molecular 

mechanism by which APC mutant GC cells are responding to inhibition of FZD7. 

The CRISPR-Cas9 constructs generated in chapter 6 can be employed to examine 

which exact regions of the APC protein are required to permit GC cells to 

respond to FZD7 inhibition. These constructs will generate different mutant 

APC proteins of specific lengths and be used in combination with the human 

gastric organoid culture platform to ensure it is clinically relevant. The normal 

human gastric organoids will be transfected with the Cas9-APC-mutant 

constructs and treated with FZD inhibitors. The viability of the organoids 

assessed and characterized to expand the fields understanding of Wnt signalling 

in mutant GC cells.    
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Figure 7.1 Proposed Wnt signalling in mutant APC GC cells. In APC mutant cells, 

it is often misconceived that APC is completely deleted and therefore the 

degradation complex is non-functional and Wnt signalling cannot be regulated 

upstream of the degradation complex at the level of the receptor (Illustration 

faded out, left panel). However, mutant APC is transcribed and translated resulting 

in a compromised, yet function, β-catenin degradation complex. This explains how 

upstream inhibitors, FZD inhibitor, can still modulate Wnt signal activity (right hand 

panel) 
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7.2 Conclusions 

 In this thesis we have demonstrated a novel and predominant role for 

the Wnt receptor FZD7 in the initiation, invasion and metastatic capabilities of 

GC cells. For the first time, we have functionally shown that the loss of 

RNF43/ZNRF3 promotes the development of GC through overexpression of FZD 

receptors on the cell surface. Importantly, we have confirmed that modulation 

of the Wnt pathway at the level of the receptor/ligand is sufficient to block GC 

initiation, migration, and invasion irrespective of the downstream APC 

mutational status. These findings provide novel insights into the molecular 

understanding of GC. These can be translated into an attractive and novel 

therapeutic strategy for the treatment of GC and facilitate a new framework 

for patient stratification based on RNF43 mutational status.  
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