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Abstract

The UK Climate Change Act, requires the Environment Agency to report the risks it 

faces from climate change and actions taken to address these. Derived information 

from projections is critical to understanding likely impacts in water management.

In 2019 the UK published an ensemble of high-resolution model simulations. The 

UKCP Local (2.2 km) projections can resolve smaller scale physical processes that 

determine rainfall and other variables at sub-daily timescales with the potential to 

provide new insights in extreme events, storm runoff and drainage management. 

However, simulations also need to inform adaptation.

The challenge ahead is to identify and provide derived products without the need for 

further analysis by decision makers. These include a wider evaluation of uncertainty, 

narratives about rainfall change across the projections and bias corrected datasets. 

Future flood maps, peak rainfall estimates, uplift factors and future design storm 

profiles also need detailed guidance to support their use. Central government 

support is justified in the provision of up-to-date impacts information to inform flood 

risk management given the large risks and exposure of all sectors.

The further development of projections would benefit from greater focus and earlier 

scoping with industry representatives, operational tool developers and end users.

Key words: adaptation, high intensity rainfall, flood risk.

1. Introduction

In the UK, many people are likely to experience climate change through its impacts 

on water, whether through flooding, water shortages or water quality issues [1]. 

Climate change has been considered in flood risk assessments and water resource 

planning in the UK for several decades [2][3][4][5]. Most risk assessments have used 

coarse resolution projections downscaled from climate models not able to resolve 

many of the important physical and dynamical processes responsible for local to 

regional scale flooding. This lack of capability has been a strong driver in pursuing 

higher-resolution climate change information. High-resolution models are generally 

more skilful in simulating extremes such as heavy precipitation, strong winds, and 

severe storms and by explicitly simulating convection provide an opportunity to 
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illuminate physical behaviour that previously was represented by parameterizations 

with large uncertainties [6]. Convection-permitting models (CPMs) provide 

information with the potential to better understand future flash floods in urban areas, 

steep and small catchments, in managing transport hazards, infrastructure and 

energy systems [7]. 

The latest UK climate projections (UKCP18) included a new product, which, for the 

first time internationally, used a climate model at a spatial resolution on a par with 

operational weather forecast models, for national climate scenarios [8][9]. The local 

projections (“UKCP Local (2.2 km)”), a 12-member ensemble driven by the Met 

Office Hadley Centre global model for a high emissions scenario (RCP 8.5), are 

expected to be the primary source of information for users interested in daily rainfall 

extremes in summer or changes on hourly timescales. This will allow examination of 

the risk of extreme weather events in local areas for the coming decades [8].

These new local projections will enable greater investigation of the climate change 

impact of surface water (pluvial) flooding. The risks from this form of flooding are 

increasing [10], with intense rainfall events (≥30 mm per hour) expected to become 

more likely in the future [11]. The potential threats from pluvial flooding entered the 

public consciousness relatively recently, in particular after major floods in 2007 [12]. 

These floods prompted the first UK maps of surface water flood risk published in 

2013 [13]. There are not yet maps of future flood risk in the UK to complement those 

for the present day.

New climate information requires translation into impact assessments before 

information can be shared in a useable format to industry and public organisations. 

Even where scientists have provided improved information there is no guarantee that 

it will lead to better decision-making [14]. Therefore, products that inform on future 

change need to capture all relevant aspects of change and be curated by 

organisations with capability to support maintenance and service user uptake. 

Boundary organisations such as the Environment Agency also need to grow capacity 

and skills to use the information in their own and others future planning. This is not a 

new issue and there has been considerable research on the need for translation and 

research on how science can support decisions [15]. 

In this paper we consider the drive for high-resolution climate information, what it 

provides, some of the scientific challenges, the potential applications and practical 

steps needed to provide the right information to ‘enable’ adaptation and, specifically, 

‘implementation’ [16].

2. Why do we want higher resolution climate information? 

An important scientific endeavour has been to provide more credible, accurate and 

local (downscaled effectively) projections about plausible future climates [17][18]. 

The primary motivation for developing high-resolution projections in the UK has been 

to try and better capture the processes that lead to intense rainfall and extreme 

events, particularly to better understand flood risk and the direction of change in 

summer rainfall extremes [19][20][21]. This finer scale information not only resolves 
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local-scale convection, but also improves climate model simulation along sharp 

environmental boundaries (e.g. coasts) and over complex terrain [22]; all relevant in 

a UK context. 

However, increasing resolution in isolation does not necessarily equate to a better 

representation of future change [23]. Confidence in climate projections generally 

declines with higher temporal and spatial scales due to the introduction of further 

sources of uncertainty. Uncertainty associated with large-scale dynamics has a 

significant impact on the local-scale, such as the impact of stratosphere-troposphere 

coupling [24], so that it has been hard to provide meaningful information at daily 

time-steps, for example. Understanding the influence of method shortcomings on 

downscaled outputs becomes increasingly difficult to predict and quantify; perhaps 

only detectable using systematic comparisons of different models for different 

climates and environmental characteristics [25]. 

Another driver for local-scale projections is that they are also attractive to users of 

climate change information. With strong similarity to observed datasets, there is a 

feeling that local-scale information is more relevant. For example, Local Authorities 

wanted more information in the UK Climate Projections on the risk of higher intensity 

and frequency of storms in order to understand local flood risk [26]. Uncertainty in 

river flow estimations used in water resources planning arises from the lack of 

consideration of changes in daily rainfall and its year to year variability when using 

traditional approaches that incorporate climate change in river flow factors based on 

long term average changes [27]. Reconciling issues such as these have in part 

driven the demand for higher resolution climate change information. But, uncertainty 

also arises from the water resource models structures and parameterisations, plus 

assumed stationarity of catchment rainfall-runoff processes, land use and 

management.

The desire for high-resolution change information, particularly in the water sector, 

also arises from the typical operational scale of hydrological research, shaped by the 

need to resolve the heterogeneities of the land surface. Discipline-specific interests 

remain focused on understanding the causes of hydrological variability and extremes 

at all space- and time-scales in a process-based way [28]. However, whilst weather 

patterns vary over very short distances, the climatic drivers behind them are not 

readily captured at small scales. Hence, compounding uncertainties at multiple 

scales on the local-scale can result in a large envelope of possible futures, which is 

hard to work with. Indeed, the challenge to act on information associated with great 

uncertainty suggests that robust adaptation may be best served by enabling 

‘adaptation options appraisal to take centre stage, rather than climate change 

scenarios’ [29]. Other proposed approaches include ‘tales of future weather’ 

developing narratives based on weather modelling in hypothetical future climates 

[30] and storylines to understand plausible pathways for extreme events [31].

Irrespective of approach, it is important that scientists can explain the confidence 

they attribute to different model projections in ways that are meaningful to users. 

This should include open discussion between scientists and decision-makers on the 

relevance of the spatial and temporal resolution of climate change projections in 
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decision-making, thereby reducing uncertainty about applicability. Broad directions of 

change may sometimes be sufficient but we may often need to plan for a range of 

futures, ignoring this could lead to undesirable outcomes and a lack of preparation.

3. Climate science issues around projections and uncertainty

High-resolution climate change information presents some unique challenges for 

application, whilst some challenges are common to climate change information more 

generally. When using regional climate projections for impact, adaptation and 

vulnerability studies three points need to be considered ([32]; p. 13): (1) what 

emission scenarios are considered, are these appropriate for the context of the 

study? (2) are simulations representing the uncertainty in models’ ability to simulate 

the natural and forced climate variability, and (3) if relying on a downscaled dataset, 

are method capabilities known, such as representation of the change signal as 

simulated by the driving GCM and its abilities to add value to the GCM output? The 

authors also note issues that speak to the limitations of climate models, namely (1) is 

there a bias in the simulated climate relative to the observed climate? If the level of 

bias is unacceptable to the application then it may be preferable to use a technique 

of scaling observations, or else employ a bias correction technique, and (2) the 

importance of understanding the limitations of the model; models used to study bio-

physical impacts (such as rainfall-runoff models) are optimised based on physical 

relationships, do these hold under climate change conditions or is there a risk for 

introducing method-related biases?

The UKCP Local (2.2 km) projections do not sample uncertainty in convection-

permitting model physics, nor information from the wider global modelling community 

[9], hence under-sampling uncertainties in simulating processes at the local-scale, 

and in the plausible global response to climate change. Further, all ensemble 

members follow a single emission scenario, RCP8.5, i.e. the climate response 

following a very high emission scenario, near the 90th percentile of considered 

baseline scenarios (i.e. assuming no climate mitigation policy) [33]. This places the 

onus on users to consider the results from UKCP Local (2.2 km) in the wider context 

of other UKCP18 outputs (e.g. [9], p6). 

In current risk assessments, RCP8.5 is a common choice of emission scenario as, 

from a climate impacts perspective, the change signal will be strongest for a far-

future time horizon under a high-emission scenario. For many purposes, exploring 

what this change looks like is a meaningful approach to understand future risks. For 

example, when providing guidance on water supply for the state of Victoria, analysis 

focused only on RCP8.5 as regional stakeholders wished to represent the worst 

case scenario, noting also the close agreement in observed and RCP8.5 emission 

rates [34]. In England, the latest sea level allowances for flood [35] and the new 

National Framework for water resources [36] have also used this pathway. However, 

studies wishing to demonstrate the avoided damages of mitigation may want to 

illustrate the impacts associated with lower cumulative emissions and policy targets, 

for example to limit warming to 1.5°C or 2°C [37]. Pattern-scaling is a practise where 

the climate response to high mitigation scenarios (e.g. RCP 2.6) can be derived from 

Page 5 of 21

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

5

no, or low mitigation scenarios such as RCP8.5. This technique assumes the change 

signal to be a near linear function of the global mean surface temperature [38][39]; 

noting that pattern-scaling can inadvertently act to reduce the inter-model spread or 

suppress the internal variability [39]. Such additional datasets would ideally be 

provided centrally for the benefit of users.

How one could consider projections from the additional UKCP18 products together 

with UKCP Local (2.2 km) is not obvious, as neither the global nor probabilistic 

projections sample local-scale modelling uncertainty, and there are no links between 

the different products (scaling factors for example) provided in the UKCP18 user 

guidance. Whilst model verification can provide guidance on model biases relative to 

the observed climate, understanding uncertainty in projecting change at local scales 

would necessitate the comprehensive sampling of parameter and structural 

uncertainty, currently unavailable at the CPM scale for the UK. Some variables 

remain parameterized even in CPM models for example the exchange/transfer of 

heat and moisture fluxes between the land surface model the atmospheric surface 

layer and the planetary boundary layer, urban canopy physics and land use. Prein et 

al. [22] call for coordinated modelling programs to advance parameterizations of 

unresolved physics and to assess the full potential of CPMs. 

Better chances exist to address the limitations in representing uncertainty in natural 

and forced variability, as simulated by different GCMs. Both probabilistic and global 

projections provide improvements in this regard, considering change information 

from a subset of GCMs from the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5) [40][41], and via a statistical emulator for the probabilistic 

projections [42]. A practical challenge is how a user would go about comparing the 

outputs from the different products, so far this is only available for mean changes [9]. 

If there is a discrepancy between products, how would a user assess what amount of 

discrepancy is problematic, or what is reasonable given the scale differences? 

Further, many impact studies are not concerned with the climate variables per se, 

but in a secondary product drawing on multiple variables as input, such as the 

computation of runoff requiring estimates of potential evapotranspiration as well as 

precipitation (the former potentially requiring many variables depending on the 

estimation method). Attempting to draw conclusions on how discrepancies in one, or 

several, variables could influence the final output is unlikely to be straightforward, 

particularly if relationships are non-linear. Finally, most impact models require 

climate projections to be bias-corrected prior to computation [43][44]; a necessity 

because impact models are assessed in a real-world context where absolute values 

matter [45][46]. Observations of the real world are also in a sense probabilistic and 

yield different benchmark conditions depending on the source of the data whether 

point, gridded or from variable time periods for example.

Because the CPM provides a more detailed simulation compared to coarser-

resolution RCMs, different large biases may arise due to a model inadequacy. 

Therefore, absolute values, and indeed spatial coherence, of the local projections 

are likely to be modified in the process of bias-correction. Hence, when comparing 

the local projections with global projections, comparison should be done on 
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uncorrected data. Comparison is needed with the driving GCMs to understand how 

the downscaling has modified the change signal (if different, is this due to added 

value or method bias in downscaling?), and with the range provided by the CMIP5 

GCM sample (to inform on GCM sampling uncertainty). An example for such a 

comparison is provided in the projection guidance material for England and Scotland 

on seasonal resolution for mean temperature and rainfall (e.g. [9], Fig. 5.1-5.3). The 

guidance material encourages use of the CPM projections in combination with other 

UKCP18 products that provide a wider sampling of uncertainty. 

A final issue to consider with respect to the local projections concerns the length of 

the simulations, currently provided as 20-year time-slices (1981-2000; 2021-2040 

and 2061-2080). The positioning of these time-slices is meaningful, representing a 

near-future and a far-future horizon. However, in using a relatively short time-slice, 

the analysis of extreme events becomes somewhat restricted to relatively common 

events, though this ‘restriction’ is strongly linked to the driving global climate model’s 

ability to capture observed decadal and multi-decadal natural variability in the first 

place. If poor, longer downscaled runs may not provide a better sample of extreme 

events. Irrespective of the GCMs’ ability to capture uncertainty in natural variability, 

researchers and practitioners interested in very rare events need to carefully 

consider the relevance of results from extreme value analysis for very rare events 

given the limited opportunity to sample such events in such short time-series. The 

short length of the simulation timeslices also implies the change signal is impacted 

more by internal model variability rather than the forced GHG change.  This is 

especially important for the 2021-2040 slice since that will become verifiable soon.  If 

the driving GCM is out of phase with observations for key interannual to multi-

decadal oscillations like El Niño-Sothern Oscillation (ENSO) or the North Atlantic 

Oscillation (NAO), the change signal may well be driven primarily by that model 

discrepancy.

The scientific robustness of UKCP Local (2.2 km) is ultimately dependent on the 

application. Any guidance on future climate change impacts needs to reflect all the 

significant sources of uncertainty in employed methodological practices so that 

findings can be meaningfully used in decision-making. Crucially, guidance needs to 

capture the ‘relevant dominant uncertainty’ (RDU) described by Smith and Petersen 

[47] (p. 2) as the “ … most likely known unknown limiting our ability to make a more 

informative … scientific probability distribution  on some outcome of interest; perhaps 

preventing even the provision of a robust statement of subjective probabilities 

altogether.” From a flood risk perspective this involves not only capturing the 

thermodynamic response of the atmosphere to increased warming and changes to 

the storm structure, but also changes that influence the strength and positioning of 

the jet stream, and blocking features that influence the frequency, speed and 

pathway of storms [48]. Ideally, users interested in UKCP18 for flood risk planning 

would want to know to what extent the broader suite of projections inform on all of 

these aspects of climate and how they might combine outputs from different products 

to create a coherent narrative about future change.
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With all projections greater exposure of the limitations and caveats and issues in 

specific applications might streamline how and where to best use the available 

information.

4. Using the new high-resolution information with confidence

Notwithstanding the issues outlined above, UKCP Local (2.2 km) has potential 

applications in water management and beyond. In the following sections we discuss 

factors that affect the usability of these projections in impacts research and the 

development of decision-making tools. 

4.1 What can high-resolution climate information help with?

High-resolution climate change information could inform decision-making through 

improvements to the modelling and estimation of extremes [7][49][50] and the 

added-value from improved process understanding [51][22]. These offer the 

opportunity for the provision of physically and geographically consistent high-

resolution projections to support impacts modelling at relevant spatio-temporal 

scales beyond existing downscaling approaches, albeit with the inevitably increased 

uncertainty due to the addition of another layer of complex modelling (whilst all 

downscaling increases uncertainty, limitations and biases of simpler methods are 

perhaps easier to understand and quantify relative to that of dynamical models). 

Climate change impact assessments may be improved in any risk area that:

 Requires understanding and modelling at local scales; 

 Already uses high-resolution impacts modelling in decision-making;

 Is sensitive to small-scale variability to climatic inputs;

 Is dominated by the short-term evolution of a process or event;

 Has a local climate strongly influenced by marked environmental features, 

such as orography, coastal proximity (marine or large lakes), or urban 

expansion.

Currently, the greatest potential rests upon those decisions that already make use of 

high-resolution modelling; much of this has previously used statistically-downscaled 

climate change information (e.g. using the UKCP09 weather generator [52]) rather 

than output from CPMs and is detailed in Table 1. Existing tools and approaches can 

also be incrementally improved, e.g. storm and design hydrographs and climate 

uplifts used in engineering design for drainage and waste water management (e.g. 

[53][54]). The Met Office lists several examples of how outputs from CPMs could be 

used [8]. 

Improved spatial and temporal resolution opens up new possibilities to decision-

makers in exploring and applying new approaches and should help them to 

understand more comprehensively how change propagates through the entire 

system [28]. A refined understanding of where vulnerability exists, where particular 

management options may work or not, and identifying if the risk is shifting, provides 

important information for decision-makers. By using local-scale assessment in 

conjunction with larger-scale assessments, a more complete picture of risk could be 

developed. But the feeling that projections need to be “relevant” to a small 
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geographical area of interest may not be justified if the spatial variability of results is 

low or hard to explain.

The greatest benefits are likely to be realised through greater temporal resolution; 

particularly where short-term events determine local risk, often driven by changes in 

rainfall intensity. Extreme events and water quality processes are frequently 

modelled on sub-daily timescales. Timescale, sequencing and seasonal to inter-

annual variability are important to water availability. Event-based, local assessments 

using high-resolution input data could provide new information on hazards, 

potentially revealing new risk spaces and facilitating improved understanding of local 

resilience if greater insights into system function can be made.  This could allow us 

to design and assess management solutions tailored to the particular location if we 

are better able to stress test interventions. Higher resolution modelling also has the 

potential to allow changes in temporal patterns to be identified, understood and 

prepared for. 

But realising these benefits for managing risk and improving incident response rests 

on how the information can be made usable. Although research possibilities are 

large; the decision-making applicability of UKCP Local (2.2 km) is currently small. 

Understanding the situations in which, and demonstrating where, these benefits may 

arise is a necessary prerequisite to developing decision-making tools based on these 

new high-resolution projections. It would be useful to take this forward as a 

partnership between the users and providers of this information. Some actions that 

might help are ready to use data sets and change factors. Current planning guidance 

advises the use of 70th and 95th percentiles of future peak river flow (driven by 

RCP8.5) by developers and promoters of flood schemes. Similar guidance for 

applications that make use short duration rainfall e.g. drainage design (as proposed 

by Dale, this issue) would benefit from the availability of datasets, change factors 

and perhaps design storm profiles.

Table 1. Examples of use or potential use of high-resolution climate change 

information to support adaptation decision-making. * using CPM outputs 

rather than statistical downscaling

Sector Use Examples

Urban and Building Diurnal cycle for weather files – 
UKCP18 demonstration project

[55]*

Analysing the urban heat island 
effect

[56][57]*

Overheating [58]

Hydrology: flooding 
and water resources

Calculating river flows and 
groundwater levels

[59]*; [60]

Sewer design, drainage Dale (this issue)*; 
[53]*[54]*[61]*

Peak rainfall guidance Dale (this issue)*; [53]*

Extremes (flood and drought) [59]*
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Changes in frequency of flash 
floods

Archer et al. (2017; 2019); 
Ming et al. (2020); 
[62][63][64][53] 

Inform flood management and 
incident response

Explore hydrological response, 
reservoir models, changes in 
abstraction volume

Waves, tides and storm surges [65] 

Infrastructure Road, rail and exposure of 
critical infrastructure to flooding

[66][67] 

Implications of changing 
sediment, flow and channel 
changes for infrastructure and 
flood defences (erosion and 
deposition)

Water quality, 
sediment and 
chemicals

Soil erosion, sediment and 
nutrient losses from land to 
water

[68][69] 

Algal blooms and management 
(sequencing)

[70]

Species distribution and 
bioclimate-envelope modelling

[71][72]

4.2 Utilising high-resolution projections within current impacts information

Without a planned approach to the delivery of climate impacts information in the UK, 

our understanding of changes in rainfall and river flows have been developed in 

response to a number of drivers [73] and by a range of agencies with a diversity of 

priorities [14]. 

Lessons learned from significant environmental incidents such as wide-scale 

flooding [12] can lead to significant improvements in both policy and response. For 

example, the establishment of the joint Environment Agency and Met Office Flood 

Forecasting Centre in 2009, which has in turn influenced the latest generation of 

climate projections [42]. However, event-driven decision-making may, in many 

cases, risk being too short-termist to develop the partnerships and funding required 

to provide a comprehensive programme of climate impacts information. This may be 

due to the limited scope of disaster recovery, or because of the framing of risk as a 

static element [74], thereby missing the full range of future risks and plausible 

scenarios and potentially leading to maladaptation.   

Another important driver of impacts information is the guidance for considering flood 

risk in development proposals and infrastructure design [75], which has relied on an 

iterative process between the science community, decision-makers and practitioners 

to create increasingly sophisticated and tailored uplifts for various sources of flood 

risk (Wasko et al., this issue). These allowances have to balance the complexity of 

use with the proportional risk posed by any proposed development or intervention. 
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Within this guidance, allowances for peak rainfall intensity have been derived from 

work carried out before the UKCP09 probabilistic projections on understanding 

extreme rainfall [76][77], but could reasonably be augmented with information from 

high-resolution CPMs to give a better representation of intense rainfall (e.g. [53]). In 

addition, allowances for future fluvial flood risk have the potential to be enhanced 

using high-resolution modelling, particularly for smaller, “flashier” catchments, where 

current models better represent larger catchments (Kay et al., in press). 

4.3 Making information more useable

Climate hazard information is plentiful but the quantification and distribution of risk 

and information about adaptation options and solutions is more limited. We do not 

attempt to explain why adaptation practice and preparatory action lags behind 

theory, but instead consider where information has been provided that attempts to 

get closer to decision support. We also use examples to illustrate some issues that 

need to be overcome to help move climate change information from research into 

practice. These include accessibility, ease of use (e.g. clarity, size of datasets, 

sophistication of download functionality), which is often ‘grossly’ overestimated [78], 

relevance and importance of data or information. 

To some extent the conditions that need to be met to use UKCP Local (2.2 km) will 

depend on the sensitivity of decisions. Where this is already known, it is helpful to 

provide material that demonstrates how the change signal differs relative to previous 

projections, or relative to other regionally-available products. For example, before 

UKCP18 users mainly derived local-scale information from the UKCP09 Weather 

Generator [52]. Existing tools may not need to be updated if they are insensitive to 

any changes in the newly available projections. This is often overlooked in the drive 

to use the latest science. Readily available comparisons and guidance on how to 

undertake sensitivity analyses would be useful here. It remains to be seem if the 

UKCP18 CPM outputs prove more supportive of local decision making than 

statistically downscaled tools such as weather generators or whether we will 

continue to need a range of products to meet the desire for local information.

Climate change projections are often the first stage in top-down studies of impacts. 

But even where bottom-up or decision-scaling approaches are adopted, usability 

issues are often shared.  High-level narratives accompanying projections [79] can 

directly inform decision-making, where broad change is all that is required to 

stimulate action. Although, in the UK the often adopted headline of ‘warmer wetter 

winters and hotter drier summers’ could usefully be more nuanced. Alternatively, 

plausible extreme scenarios, similar to the H++ scenarios produced in UKCP09, can 

be used in sensitivity tests for particularly vulnerable or important assets. Other 

projection-related products will mainly be used by researchers and expert translators 

to develop a range of impact products over a period of years in the form of climate 

services or published studies and datasets [80] (e.g. [54]). This provide-and-wait 

service then leaves markets and sector representatives to develop their own 

products collectively, independently or perhaps not at all. The gaps in impacts 

information in many areas suggests that this is an imperfect model and that users 
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need more support and guidance than is currently provided to make use of the range 

of UKCP products.

Other provide-and-wait services such as climate change report cards include 

authoritative syntheses of climate change observations and potential impacts in a 

specific area [81]. These are used for communicating the need for action and can be 

motivating narratives for organisations like the Environment Agency, but are 

insufficient for planning and implementation purposes. 

Where there has been a collective effort to combine funding and expertise to develop 

targeted products, a more focussed provide-and-wait service can present significant 

opportunities for uptake. For example, the development of ‘Future Flows’, a data set 

(time series and maps) for river flows and groundwater levels across the UK up to 

2050 [82] allowed a large community to access future hydrological information 

without the need for climate change expertise or additional analysis. This 

hydrological projections datasets have led to multiple impact studies in water 

resources (e.g. [83]), water quality (e.g. [70]) and ecosystems (e.g. [84][85]). Future 

Flows has also been used to inform national-scale assessments of groundwater 

recharge [86], to underpin UK water company assessments and regulation and to 

provide assessments of water availability across the UK for the National Climate 

Change Risk Assessment [87]. Users of Future Flows are clear that along with 

updated climate projections and new approaches to modelling flow changes there is 

a need for ready access to data, post-processed information and an easy to use 

interface. A demonstration product has been created for Europe based on dialogue 

between water decision makers about their needs and climate impact modellers [88] 

(Edge). Requested information included around 40 indicators of stream flow, 

groundwater, soil moisture, potential evaporation and temperature. 

Some of the experiences to date in developing climate impacts information and tools 

should enable us as a society to increase the pace of action on climate change, at 

least where action can be helped with the right injection of scientific information. In 

particular, working across academia, industry and regulation to improve the 

information flow can really help. The responsibility for developing products for wide 

use would ideally be led by bodies with national agency but translation of the science 

is rarely coordinated by government. Impacts research is left to each sector to sort 

out, often leaning on the academic sector to act as a funding venue (via competitive 

research grants), making it hard to gain oversight, or to organise and implement a 

systematic approach. Additionally, the success factors of academic research (that 

underpin promotion) are not necessarily aligned with the operational constraints 

needed for the work to be accessible to users. Cutting-edge science is risky, often 

limited in testing (spatially or temporally) and is not readily scaled up for national 

application, as is required by many decision-makers. The most recent UK Climate 

Change Risk Assessment [10] again highlights the need for more action to address 

the high risk from flooding and coastal change and impacts of high temperatures. 

Given the impacts across the country to all sectors these should surely merit central 

government support for provision of up-to-date clear and accessible impacts data as 

a priority.
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Decision-makers also invariably need to consider climate change information 

alongside other current and future pressures that may also be changing. Additional 

translation work is needed to streamline decision-making processes to include 

climate change as standard, rather than it being an extra, often separate, analysis.  

A recent example of decision tool development for storm drainage design has 

involved the rapid uptake and interpretation of UKCP Local. An industry-led 

collaboration with researchers and expert users [53][54] was further developed by a 

well-timed and successful research council bid to update an existing tool with new 

information from UKCP Local. The model developers were involved in active 

discussions with a range of end users as well as expert tool developers to shape the 

project outputs to be useful for decision-making in the water industry.

It is currently unclear what best compels people to take adaptive action as it has 

proved hard to measure how much adaptation has taken place or is still needed. 

However, there is general agreement amongst information users and researchers 

that more focus on translating climate change information into usable products would 

support wider uptake. In particular, a central location for impact and adaptation 

information could lead to more rapid adaptation. An example of this from Finland – 

Climateguide.fi – provides guidance on climate mitigation, adaptation and solutions 

in a very accessible way, with data maps and graphs in a format that is directly of 

use in planning and examples of solutions in practice. But in some cases, sector-

specific provision of information may enable better accommodation of cultural norms 

and the way different industries operate. 

There are invariably a series of steps from understanding a change in climate and 

applying it to an impact relevant to a decision. Currently, the information informing 

these steps is often disjointed, separately funded and can involve different actors. 

We suggest that the decision-makers involved at the start of the process also need 

to reflect the diversity of users involved at its end. Since the opportunity to influence 

decision-making is often time bound and requires relevant, accessible information 

that has importance to the recipients, this flow of information can be quite complex 

and easily broken. For example, the release of the UK Climate Projections is not 

timed to interface with required updates to National Flood Risk Assessments. There 

is no formal mechanism for funding impacts research in the UK so that after the 

release of new climate change projections there can be a long gap before impacts 

modelling results emerge. This means that formal planning systems may not be able 

to make use of new science quickly [75]. Changing planning guidance too often 

creates issues for developers and the whole process may barely be complete before 

new climate information comes along. All of these factors contribute to the challenge 

of adopting the dynamical planning processes often advocated by climate change 

adaptation researchers [89].

5. Conclusions

High-resolution convection-permitting climate model simulations from UKCP Local 

(2.2 km) present new opportunities for research to investigate climate change 

hazards, risks and impacts, particularly around the changing magnitude, duration, 

frequency and spatial distribution of short-duration convective storms. Knowledge 
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arising from such experiments provides an additional line of evidence when 

assessing plausible future climate change. 

The added-value of UKCP Local (2.2 km) is likely to be where understanding at local 

scales is required, e.g. in urban areas and for processes dominated by short-

duration events, e.g. storm drainage or where high-resolution impacts modelling is 

already used in decision-making. However, use of UKCP Local (2.2 km) for decision-

making in the water sector is conditional on how knowledge gained can be assessed 

as value added. Hence, applications in decision-making require a series of 

translating tasks to support their wider use, including:

 A clear understanding of the range of uncertainty in UKCP Local (2.2 km) 

compared to other UKCP18 products. This includes whether differences in the 

broad findings support a different interpretation between the products and 

how to assess differences relative to concepts of ‘added-value’ or ‘model 

bias’. 

 Storylines about changing rainfall patterns informed by this comparison, 

particularly on the changing magnitude, duration, frequency and spatial 

coverage of high intensity storms. These storylines could usefully include a 

low emission trajectory to indicate the impact of climate mitigation policy. If 

application focused, these storylines could be framed around a best, a worst 

and a model consensus (the ensemble mean mode) case (following [90]).

 The provision of readily accessible bias-corrected datasets with a similar level 

of usability to the Weather Generator provided with earlier UK climate 

projections.

 The development of products that can be directly used in planning and 

decision-making, for example, maps of future surface water flood risk would 

be a necessary screening/risk management tool. An understanding of 

changing rainfall intensity on flow regimes could inform runoff and pollution 

patterns. Design hyetographs/hydrographs would complement research on 

peak rainfall intensity for sewer design and surface water management.

A concerted effort is also needed to shift research funding from identifying hazards 

and risks to be more directly targeted towards the development of solutions. This 

could proceed by developing cross-industry-research consortia to help shape and 

translate research and develop tools, with decision-makers involved from the start. 

Creative approaches to ways of working together may be needed to make full use of 

knowledge exchange funding streams. Academic research could potentially play a 

greater role in translational science if career evaluation and promotion metrics better 

recognised the value of this activity in shaping practical decision making.

We conclude with a plea that the development of future projections and the further 

evolution of high-resolution climate change information be designed with the full 

involvement of impact scientists from a range of sectors.  All outputs intended to 

inform decisions also need early scoping with industry representatives, operational 

tool developers and end users who are likely to be a different group. We also 

suggest that the development of translated products (as well as projections) include 

ongoing user acceptability testing.
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