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Abstract

Circadian rhythms influence daily molecular oscillations in gene/protein

expression and aspects of biology and physiology, including behaviour,

body temperature and sleep–wake cycles. These circadian rhythms have

been associated with a number of metabolic, immune and microbial

changes that correlate with health and susceptibility to disease, including

infection. While light is the main inducer of circadian rhythms, other fac-

tors, including the microbiota, can have important effects on peripheral

rhythms. The microbiota have been of significant interest to many investi-

gators over the past decade, with the development of molecular tech-

niques to identify large numbers of species and their function. These

studies have shown microbial associations with disease susceptibility, and

some of these have demonstrated that alterations in microbiota cause dis-

ease. Microbial circadian oscillations impact host metabolism and immu-

nity directly and indirectly. Interestingly, microbial oscillations also

regulate host circadian rhythms, and the host circadian rhythms in turn

modulate microbial composition. Thus, it is of considerable interest and

importance to understand the crosstalk between circadian rhythms and

microbiota and especially the microbial influences on the host. In this

review, we aim to discuss the role of circadian microbial oscillations and

how they influence host immunity. In addition, we discuss how host cir-

cadian rhythms can also modulate microbial rhythms. We also discuss

potential connections between microbes and circadian rhythms and how

these may be used therapeutically to maximize clinical success.

Keywords: circadian rhythms; immune system; Microbiota; pattern recog-

nition receptors.

INTRODUCTION

The microbiota and the immune system have co-evolved

to maintain homeostasis and help protect our bodies

from pathogens.1,2 Approximately 1000 microbial species

reside in the human intestines, encoding a metagenome

of trillions of genes, which are over 100 times greater

than the human genome, with millions of unique genes.3-

6 The microbiota influence many important aspects of

host physiology, including modulating development, mat-

uration and functions of the innate and adaptive immune

systems. This has been highlighted in studies with gnoto-

biotic (mice with a defined microbial community) or

germ-free (GF; no microbiota) animals, which have a

more na€ıve immune system, particularly in mucosa-asso-

ciated lymphoid tissues.7 The microbial composition can

Abbreviations: BMAL1, Brain and muscle ARNT-like 1; CLOCK, Circadian locomotor output cycles protein kaput; CRY, Cryp-
tochrome; DCs, Dendritic cells; GF, Germ-free; GM-CSF, Granulocyte–macrophage colony-stimulating factor; HIF, Hypoxia-in-
ducible factor; IECs, Intestinal epithelial cells; LPS, Lipopolysaccharides; MYD88, Myeloid differentiation primary response gene
88; NFIL3, Nuclear factor, Interleukin-3 regulated; Nod2, Nucleotide oligomerization domain-containing protein 2; PAMPs,
Pathogen-associated molecular patterns; PER, Period circadian protein homologue; PPARa, Peroxisome proliferator-activated
receptor alpha; PRRs, Pattern recognition receptors; ROR, Retinoic acid receptors; RORE, ROR response element; SCFA, Short-
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be modulated by a number of factors, including age, diet

and host health (Figure 1). Disruption of the balance

between the immune system and the microbiota pro-

motes dysbiosis and increases susceptibility to various

health issues including cancers, infections, autoimmune

diseases and metabolic disorders.8-11 Furthermore, micro-

biota can also modulate responses to immunotherapy, for

example anti-PD1 treatment in cancer.12,13

Circadian rhythms, referring to daily oscillations in

gene activation and repression, as well as biological and

physiological processes, can be induced by light, hor-

mones, metabolic cues and the microbiota. The circadian

rhythm influences immunity, microbial dynamics and

host metabolism. Circadian rhythms are controlled by

highly regulated transcription/translation feedback loops

(Figure 2) and are reviewed in more detail elsewhere.14

Light is the main inducer of circadian rhythms via activa-

tion of the suprachiasmatic nucleus (SCN).15,16 The SCN

comprises ~20,000 specialized neurons within the

hypothalamus, which control and co-ordinate circadian

rhythms in exercise, hormones, body temperature and

eating. However, additional peripheral rhythms are

needed for fine-tuning the circadian clock, enhancing

responses to environmental cues, for example food intake,

body temperature and the microbiota. These peripheral

rhythms differ from central circadian rhythms in that

individual circadian clock components differentially mod-

ulate both types of rhythms. Furthermore, peripheral

rhythms are subject to different influences which reset

individual rhythms and control their outputs. Genes con-

trolling these peripheral rhythms in different tissues also

control individual cellular physiology.17,18 Thus, periph-

eral rhythms temporally control many aspects of metabo-

lism, including glucose homeostasis, lipogenesis and

xenobiotic detoxification.19-23 These evolutionarily con-

served, cell-autonomous, biological clocks enable organ-

isms to both anticipate, and adapt to, important

environmental changes, aiding in their survival. In

circadian studies, zeitgeber (ZT) measurements identify

the time from the start of the rhythm to the end of the

daily oscillation. In most cases, ZT times coincide with

the number of hours after light exposure. For example,

ZT12 refers to 12 hours after light exposure.

In the intestine, circadian rhythms regulate digestion,

including gastric acid production, gut motility and nutrient

absorption. Circadian rhythms also affect intestinal stem

cell regeneration and mucosal immunity.24-28 Moreover,

the microbiota composition and functions depend on the

time of day (Figure 3), giving rise to changes in suscepti-

bility to disease. In this review, we discuss the changes in

microbial composition and functions associated with circa-

dian rhythms. We also discuss the mechanistic interactions

between the microbiota and the immune system, and how

they cross-modulate daily oscillations. We highlight various

associations that require further investigation, which will

greatly enhance our knowledge and understanding of the

cross-regulation between microbiota, the immune system

and circadian rhythms.

MICROBIAL RHYTHMS ARE INFLUENCED BY
NUTRIENTS AND THEIR AVAILABILITY

Similar to immune cells (discussed in the other review

articles within this commissioned review series), the

microbiota exhibit circadian rhythms, which modulate

many important functions in the host (Figure 3). The

microbial circadian dynamic is strongly associated with

food intake and thus nutrient availability. In response to

dietary glycans, Firmicutes thrive; however, once these

glycans have been metabolized, Firmicutes decline in

abundance, allowing Bacteroidetes and Verrucomicrobia

to expand in response to accessible host glycans.29-31

These microbial rhythms promote metabolic homeostasis

and can be modulated by food availability, which influ-

ences susceptibility to metabolic diseases, as discussed

next.

Environment

AgeCircadian rhythm

Exercise

Microbiota composition

Disease/infection

GenderDiet

Genetics

Therapy
Immune responses

Figure 1. Factors influencing microbial composition. There are many factors which can alter microbial composition. Some factors can also mod-

ulate microbial composition and circadian rhythms, as discussed in this review.
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Time of food consumption drives microbial
rhythmicity

In most laboratory animal facilities, mice are housed in

12-hour light/dark cycles with food ad libitum. In these

conditions, mice consume most of their food in the dark

cycle, when they are most active.32 The composition of

the caecal microbiota in mice, maintained under these

conditions, changes dynamically in a cyclical manner, as

shown by the microbial 16S rRNA sequence.33 Zarrinpar

and colleagues found that the relative abundance of

RORE

Bmal1

Nfil3

ROR

Dbp

Dec1&2

Cry1&2

Per1-3

Rev-erbb
Rev-erba

Clock-
nPas2

Bmal1
Nfil3

DNA

DNA

Figure 2. Circadian rhythm gene regulations. Initiation of the circadian rhythm requires activation of the circadian locomotor output cycles pro-

tein kaput (Clock), brain and muscle ARNT-like 1 (Bmal1) and neuronal PAS domain-containing protein 2 (nPas2) genes. These proteins regu-

late the expression of multiple genes – period circadian protein homologue 1, 2 and 3 (Per1-3), cryptochrome 1 and 2 (Cry1 and Cry2), Rev-erba
(Nr1d1), Rev-erbb (Nr1d2) and differentially expressed in chondrocytes protein 1 and 2 (Dec1 and Dec2). These proteins then repress the tran-

scription of the Clock, Bmal1 and Npas2 genes, as well as their own transcription. Furthermore, D-site of albumin promoter (Dbp) enhances

transcription of clock genes, while nuclear factor, interleukin 3 regulated (Nfil3, also known as E4 bp4), suppresses clock gene transcription. Reti-

noic acid receptors (ROR) can promote Bmal1 and Nfil3 transcription from the ROR response elements (RORE). Red lines = gene activation;

black lines = gene repression.

Fine-tuning of central clock e.g. food
intake/fasting, body temperature

Microbial-derived
molecules

Microbiota

Chemotaxis
Motility

Adherence to
epithelium
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Metabolism

Fine-tuning of
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glucose and energy
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Figure 3. Importance of microbial oscillations on microbial functions. Microbial oscillations provide an important feedback system to both cen-

tral and peripheral clocks through the oscillations in microbial metabolites, which help to fine-tune the oscillations and ensure the host can

respond more quickly to environmental changes. The oscillations in microbiota are also important for modulating their own functions including

chemotaxis, motility, adherence, DNA repair and metabolism. The oscillations in microbiota and their metabolites are also vital for the fine-tun-

ing of immune responses. Oscillations in microbial ligands recognized by pattern recognition receptors (PRRs) are likely to result in differences

in the strength of stimulation. Changes in microbial oscillations also strongly influence vaccine and therapeutic efficacy through modulating the

immune functions at different times of day including antibody responses, cytokine responses, metabolic responses and homing of immune cells.

Synchronization of therapy to the microbial rhythms is likely to provide the greatest efficacy, limiting susceptibility to infections and disease

development.

ª 2020 The Authors. Immunology published by John Wiley & Sons Ltd, Immunology 3



species belonging to the phylum Firmicutes peaked dur-

ing the feeding period and was reduced during fasting,

while species belonging to the phyla Bacteroidetes and

Verrucomicrobia showed opposite trends (peaking during

fasting and reducing when feeding).33 Similar changes

have been reported by others.30,31 Variations in microbial

abundance are also associated with alterations in micro-

bial functions. In the light phase, microbial pathways

associated with chemotaxis and motility, which are

important for microbiota to adhere to the intestinal wall,

are increased.30,34 In contrast, in the dark phase, pathways

related to growth, DNA repair and energy metabolism are

increased, which benefit the host by the production of

growth factors including vitamins. These studies in mice

indicate that microbially produced molecules can modu-

late immunity, as discussed later. Food restriction studies

in mice, limiting food availability to either the light or

dark cycle, have demonstrated that these microbial oscil-

lations are similarly induced by food intake, regardless of

whether in the light or dark cycle.30 Therefore, food avail-

ability and time of consumption drive microbial rhyth-

micity.

High-fat diet

Diet can modulate gut microbiota composition in

humans.35-37 One of the most studied diets is a high-fat

diet, which alters the gut microbiota composition, pro-

moting obesity and metabolic dysfunction in mice and

humans.38-42 In mice, a high-fat diet induces blunted

microbial diurnal rhythmicity, compared with standard

chow-fed mice.33,42 Interestingly, time-restricted feeding

of mice on high-fat diet restored cyclical microbial rhyth-

micity and was able to protect from diet-induced obesity

and metabolic disease.32,33 Importantly, in humans with

metabolic disease or obesity, restricting food intake to 8-

12 hours per day resulted in weight loss and improved

metabolic parameters.43-46 It is unknown whether, as

observed in the mice, the gut microbiota in these individ-

uals was similarly altered; however, a recent study showed

that the microbiota in individuals with obesity and type 2

diabetes had altered rhythmicity.47 Subsequent metage-

nomic analysis identified key altered microbial pathways,

which associated with the clinical metabolic features of

type 2 diabetes (e.g. fasting blood glucose, insulin resis-

tance, HbA1c). Thus, the altered microbial functions

could be used to predict the risk of disease development.

Together, these studies highlight the importance of

microbial circadian rhythms, and how they modulate dis-

ease in humans.

HOST FACTORS ALTER MICROBIAL RHYTHMICITY

Microbial rhythmicity is strongly influenced by nutrient

availability. However, when nutrients were administered

only intravenously to mice (no oral intake), microbial

rhythmicity was still observed,42 suggesting that host

metabolic factors/rhythms, in turn, can also impact

microbial rhythmicity. Many host functions are modu-

lated by the circadian rhythm, including the secretion of

hormones such as glucocorticoids and neurotransmitters,

as well as immune regulation.48,49 Importantly, immune

cells express cell-autonomous circadian rhythms.50-53 Cir-

cadian rhythms alter immune cell differentiation, such as

Th17 cell differentiation, which is regulated by Rev-erba-
driven repression of the Rorct promoter via Nfil3.54 Hom-

ing receptors for immune cells, including CCR7, sphin-

gosine-1-phosphate receptor 1, IL7-R and CXCR4, are

also modulated by circadian rhythms driven by the host

glucocorticoids.55-58 Thus, the circadian rhythm influ-

ences both innate and adaptive immune cell migration at

different times of day. Together, these circadian rhythm-

modulated immune influences protect the host from dis-

ease development. As mentioned earlier, microbiota oscil-

late and thus may impact immune functions. For

example, Th17 cells can be induced by segmented fila-

mentous bacteria (SFB),59 which are members of the daily

oscillating Firmicutes phylum.30,31,33 Furthermore, micro-

biota can modulate intestinal epithelial cell (IEC)-intrinsic

Nfil3 circadian rhythms via type 3 innate lymphoid cells

(ILC3).23 These observations suggest that microbial oscil-

lations not only influence immune development, but also

alter the amplitude of the type of immune responses.

Thus, further understanding of circadian influences on

host:microbial interactions is important.

Host circadian factors modulate microbial
rhythmicity

Mice deficient in key circadian rhythm genes, including

Bmal1 or Per1/2, have disrupted microbial rhythmicity

and composition.30,31 In addition, Clock gene mutant

mice, which encode a dominant negative allele (D19) that
alters the period, precision and persistence of circadian

rhythms, also exhibit changes in microbial richness and

diversity in the stool microbiota.60 These studies have

demonstrated that the host circadian machinery influ-

ences microbial oscillations and composition; however,

reciprocally, microbiota modulate host circadian rhythms.

A comparison between GF (no microbiota present) and

specific pathogen-free (SPF; microbiota present but free

of specific pathogens) mice confirmed that microbiota

induce significant diurnal host circadian rhythms in liver

hepatocytes.42 Interestingly, time-restricted feeding can

restore cellular circadian rhythms in Cry1/2-deficient and

liver-specific Bmal1 and Rev-erba/b-deficient mice, pre-

venting the development of metabolic syndrome and obe-

sity.61 While microbial rhythms were not investigated in

this study, it is likely that they were also altered. Thus,

the crosstalk between microbiota and the host clock is
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important and together influences a number of systemic

effects in the host, including fine-tuning peripheral circa-

dian rhythms.

Androgens modulate microbial composition and
rhythmicity

Some diseases have sex biases,62 suggesting androgens

modulate disease development. In both mice and

humans, androgens modulate the gut microbiota compo-

sition.31,63-65 Interestingly, mouse studies showed that the

gut microbiota modulate androgen metabolism,66 suggest-

ing two-way crosstalk. Androgens also modulate micro-

bial oscillations. Liang and colleagues31 found more

significant diurnal oscillations in female mice compared

with the male mice. Furthermore, there were sex-depen-

dent differences in microbiota composition in Bmal1-de-

ficient mice.31 Sex differences also influence the circadian

period and behaviour, including entrainment to light and

food.67 Importantly, sex modulates circadian influences

on many host physiological functions including blood

pressure, body temperature and adrenal functions.68-70

Thus, it is imperative that any general conclusions,

related to circadian influences, should be drawn from

studies of both sexes in animals and humans, especially if

a sex bias exists for the disease.

CIRCADIAN MODULATION OF HOST PATTERN
RECOGNITION RECEPTORS

Pattern recognition receptors (PRRs) are expressed on a

wide variety of cells. These recognize conserved molecular

structures that are shared by both pathogens and com-

mensal microbes alike, and are known as pathogen-asso-

ciated molecular patterns (PAMPs).71 Through PRR

signalling, the immune system is able to respond to

microbial cues to regulate immunity. However, as dis-

cussed below, PRRs are also influenced by circadian

rhythms (Figure 4), which can have important therapeu-

tic effects, for example in the induction of vaccine-in-

duced immunity, as discussed later.

Circadian modulation of Toll-like receptor expression

Toll-like receptors (TLRs) are the most commonly stud-

ied family of PRRs, found both at the cell surface and

within intracellular endosomes. Each TLR recognizes dif-

ferent PAMPs, including bacterial/viral DNA (unmethy-

lated cytosine-phosphate-guanine (CpG) dinucleotides72),

lipopolysaccharides (LPS73) and viral RNA.74 While

innate immune receptors prevent pathogen infection, they

also have profound beneficial and detrimental impacts on

the adaptive immune system, in both health and disease.

This dichotomy is context-dependent and has been

observed in cancer, autoimmune and metabolic diseases,

as reviewed elsewhere.11,75-78 While the effects of TLR sig-

nalling can be variable, depending on the disease and

model studied, it is clear that TLRs are important

immune targets for therapy.

TLR expression and activation occur in response to

microbial cues and can be modulated by circadian

rhythms, resulting in important functional differences in

responses to microbes, at different times of day. TLR

expression oscillates in macrophages, dendritic cells, B

cells, T cells and non-hematopoetic cells such as

IECs.23,28,50,79,80 In macrophages, Silver and colleagues

showed that different TLRs oscillate and peak at varying

times; for example, the expression of Tlr2 and Tlr6

peaked at ZT19, while Tlr4 peaked earlier at ZT15.50 As

TLR2 can dimerize with TLR6,81 it is not surprising that

these are co-regulated to peak at the same time, whereas

TLR4 is a homodimer and independently regulated and

peaks at a different time. TLR4, however, binds to

CD14,82 a co-receptor. It is currently unclear whether

coreceptors of PRRs, like CD14, are also regulated in a

circadian manner. Furthermore, to our knowledge, there

have been no studies correlating the rhythms of the

microbiota with the abundance of microbial products

that could activate PRRs. However, disruption to the gut

microbiota by antibiotic treatment can dysregulate micro-

bial rhythms, altering host circadian rhythms and TLR

expression.23,28,34

Mukherji and colleagues found that the depletion of

gut microbiota in mice resulted in reduced microbial

recognition by TLRs, which dysregulated the IEC circa-

dian clock.28 This increased ileal corticosterone produc-

tion, altered glucose homeostasis and induced the

development of prediabetes. Subsequently, Wang and col-

leagues found that microbial regulation of the IEC circa-

dian clock was not directly mediated through the IEC.23

Previous studies had identified a subepithelial intestinal

signalling relay, whereby bacterially mediated TLR activa-

tion of DCs induced the secretion of IL-23, which in turn

activated ILC3 cells to secrete IL-22 and modulate IEC

gene expression.83,84 Wang and colleagues further con-

firmed that this DC-ILC3-IEC circuit was required for

modulating IEC circadian rhythms (Rev-erba and Nfil3)

and that the microbiota influenced the amplitude of the

circadian rhythms in IECs through STAT3.23 Together,

these data suggested that symbiosis between the micro-

biota and IEC requires intact circadian oscillations and a

complex interplay between many cell types, which we are

only beginning to decipher.

Circadian modulation of other PRRs

In addition to TLRs, other PRRs, including the nucleotide

oligomerization domain-containing protein 2 (Nod2)28,85

and the nod-like receptor pyrin domain-containing 3

(Nlrp3) protein, a component of the inflammasome, also
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oscillate. Both Nod2 and Nlrp3 can be activated by bacte-

rial products, regulating the secretion of IL-1b and IL-

18.86-88 Interestingly, in mice and humans, circadian

oscillation of Nlrp3 is dependent on Rev-erba.89,90 In

mice, Rev-erba repressed Nlrp3 transcription by specifi-

cally binding to the promoter region.90 Inflammasome

components modulate responses to infections, as well as

alter susceptibility to autoimmunity, neurological and

metabolic diseases and cancer.91-95 Thus, further investi-

gating the mechanisms of circadian modulation of PRRs

may prove beneficial for therapy in a broad range of dis-

eases.

MICROBE-DERIVED METABOLITES AND
CIRCADIAN RHYTHMS

As microbiota composition and functions oscillate in a

circadian manner, metabolites from gut microbiota34 in

both mice and humans also exhibit circadian varia-

tions.96-100 Thaiss and co-authors showed that antibiotic

depletion of the microbiota led to the loss of microbial

diurnal rhythmicity in mice.34 In addition, they also

found that the microbiota-induced oscillations in serum

ornithine and polyamines could be induced by time-re-

stricted feeding, in a host that had deficient circadian

rhythm (Per1 and Per2 knockout mouse). Together, these

data provided pivotal evidence that microbiota modulate

the host circadian metabolome. While this study did not

investigate the impact of microbiota and their metabolites

on host immunity, there are many potential implications

for the immune system, especially mucosal immunity.

The gut microbe-derived short-chain fatty acids

(SCFAs), butyrate, acetate and propionate, modulate

immune responses, including the induction of Tregs.101-

103 Interestingly butyrate, which is absent in germ-free

mice, modulates Per2 and Bmal1 rhythms, suggesting that

the microbiota indirectly regulate circadian rhythms via

their metabolites.42 These SCFAs typically bind to the G

protein-coupled receptors (Gpr) 41/43,104,105 although

other receptors also bind to SCFAs.106 Many types of host

cells utilize SCFAs, and these promote deletion of autore-

active T cells and anti-inflammatory responses in models

of colitis, arthritis, type 1 diabetes and asthma.104,107,108

SCFA utilization can also restrict tumour growth and sur-

vival.109-111 Importantly, the effect of SCFAs on some

cells, such as monocytes, may not always elicit the same

responses from mice and humans.112 For example, activa-

tion of human monocytes with acetate induced attenu-

ated proinflammatory responses; however, activation of

mouse monocytes (on the 129/SvEv background) with

acetate promoted elevated proinflammatory GM-CSF, IL-

1a and IL-1b cytokine secretion.112 Given that mouse and

human monocytes respond differently to acetate, it is

possible that additional regulators of SCFA utilization,

Microbial
ligands/

metabolites

Immunity to
bacteria, viruses

parasites and fungi

CytokinesPRRs

Nfil3

Rora

Rev-erba

STAT3

Lipid
uptake

PPARα

Bmal1:Clock

Per:Cry

Figure 4. Microbial modulation of circadian rhythms. PRR oscillation (referring to published work in TLRs and Nlrp3) is driven by competition

between the Rev-erba repressor and the Rora activator, both of which directly bind and compete for the ROR response element, a DNA binding

sequence, present in Bmal1. This competition promotes the oscillation of antimicrobial responses, for example cytokines, which are mediated by

downstream NFjB and AP-1 binding to target genes. Bmal1 binds to an Ebox element (a DNA sequence) in Rev-erba activating its transcription,

while a DR2 element (another DNA sequence) in Rev-erba mediates its autorepression and activation by PPARa. DNA elements (RORE, Ebox,

Dbox – not shown) are present in TLR genes, Nod2, circadian genes and many other genes, including many which influence immune processes.

Circadian regulation of Nfil3 by the Rev-erba repressor and the Rora activator can also modulate intestinal lipid absorption and transport23.

Another mechanism of circadian regulation of TLRs has also been identified in peritoneal macrophages, whereby Tlr9 expression is controlled by

direct binding of Bmal1 to the Ebox sequence present in the Tlr9 gene80. Red lines indicate activation; black lines indicate inhibition. Blue boxes

indicate the known effects of microbiota in modulating circadian rhythms.
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and the rhythms that modulate them may vary between

species. SCFAs such as butyrate can also regulate the

integrity of the intestinal barrier by stabilizing hypoxia-in-

ducible factor (HIF).113,114 Interestingly, HIFa regulates

several core clock genes, allowing the cells to respond to

changes in oxygen.115 This has implications, for example,

for induction of tumour hypoxia in cancer therapy. Given

that microbial metabolites oscillate, there may be similar

oscillations in their respective SCFA receptors, or in pro-

teins regulating the downstream responses.

Bile metabolism is also regulated in a time-of-day-de-

pendent manner due to the need to co-ordinate meta-

bolic responses to food intake, enabling the esterification

and absorption of dietary fats and lipids.116,117 In mice,

the serum bile acids peak at the beginning and end of

their active (dark) phase. The majority of bile acids are

reabsorbed by the liver; however, some can enter the

colon and be further metabolized, producing secondary

metabolites that peak in the serum at the beginning of

the dark phase.118,119 Many species belonging to the phyla

Firmicutes and Bacteroidetes encode enzymes required to

metabolize bile acids, for example bile salt hydrolases.

These enzymes regulate hepatic and ileal clock genes and

lipid and cholesterol metabolism.116,117,120 Interestingly,

the intestinal epithelium receptor, CD300lf, has been

identified to be the receptor for mouse norovirus.121 This

CD300lf receptor undergoes structural changes upon

binding to the bile acid, glycochenodeoxycholic acid,

which consequently enhanced the ability of norovirus to

bind to the receptor.122 Recent studies have shown that

microbiota can modulate the ability of mouse norovirus,

a highly contagious viral pathogen, to infect the host.123

Furthermore, crosstalk between mouse norovirus and the

microbiota can alter susceptibility to autoimmunity,124-

126, parasitic infection127 and allergies.128 As bile acids can

be modulated in a circadian manner, it is also possible

that invasion of norovirus may be enhanced at different

times of the day.

In addition, microbiota synthesize a range of other

molecules including xenobiotics, vitamins, polyamines

and hydrogen sulphide. Little is known about how circa-

dian rhythms modulate their production and impact on

the immune system. Investment in this area would aid

our understanding of their important role in health and

disease.

IMPACT OF CIRCADIAN MICROBIAL
OSCILLATIONS ON IMMUNITY TO INFECTIOUS
ORGANISMS

Circadian rhythms, and their regulation, have an impor-

tant influence on susceptibility to invading pathogens.

Bellet and colleagues showed that the immune responses

to Salmonella Typhimurium (a common foodborne

pathogen) in infected mice were dependent on the time

of day.129 The mice infected in the active phase (ZT16)

had reduced pathogen colonization and reduced inflam-

mation, compared with mice infected in the rest phase

(ZT4).129 Host circadian rhythms are required for this

response, as Clock mutant mice exhibited arrhythmic col-

onization and their macrophages had reduced inflamma-

tory responses (IL-6 and IL-1b) to LPS (recognized by

TLR4, which is known to oscillate23,28,50,79,80). Similarly,

in wild-type mice, S. pneumoniae-induced infection at

ZT12 resulted in earlier neutrophilia in the bronchoalveo-

lar lavage fluid, with reduced local (lung) and systemic

(blood) bacterial counts at 48 hours post-infection, com-

pared with infection at ZT0.130 In addition, intraperi-

toneal infection with Listeria monocytogenes confirmed

that a later rest phase infection at ZT8 was important for

enhanced recruitment of Ly6Chi monocytes and stronger

antimicrobial immunity, compared with infection at the

start of the rest phase ZT0.53 Similar time-of-day-depen-

dent sensitivities to viral infections have also been

reported.131-133 Interestingly, parasitic infection of mice

by oral gavage of Trichuris muris eggs at ZT0 led to

enhanced anti-parasitic IgE titres, Th2 responses and

worm expulsion, compared with the mice infected at

ZT12, the end of the rest phase.134 Thus, the optimal

immune responsive time to pathogens is not the same for

all micro-organisms. The different time-dependent oscilla-

tions in pattern recognition receptors, or microbial

metabolites, influence immune responsiveness. Therefore,

priming the immune system at the time of greatest

immune responsiveness would be vital for preventing and

limiting the spread of specific infectious organisms. To

date, it remains unknown as to whether the immune

responses to these infectious organisms can be modulated

by the commensal microbiota and whether the commen-

sal microbial circadian rhythms are altered in pathogenic

infections, which in turn subsequently change the host

response. It is clear that further studies are required, espe-

cially when multiple factors are analysed in the same

study.

APPLICATIONS OF KNOWLEDGE OF MICROBIAL
CIRCADIAN RHYTHMS TO THERAPY

The microbiome is an important metabolic ‘organ’, aid-

ing in many unique host functions, which include the

efficacious response to a number of therapies. It is well

established that the microbiome influences susceptibility

to obesity. Microbiota from obese individuals can transfer

metabolic dysfunction to another host, while the micro-

biota from lean individuals, following transfer, protect the

recipient from metabolic dysbiosis.38,135,136 Metformin, a

widely used drug for the treatment of type 2 diabetes,

improves insulin sensitivity. Metformin alters both the

composition and the function of microbiota, enhancing

the therapeutic effects.137 However, components of the
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gut microbiota can also be harmful, depending on the

context. In colorectal cancer, the intestinal microbiota

can influence disease progression138-140 or aid the thera-

peutic responses to both chemotherapeutics141,142 and

immune checkpoint inhibitors, for example CTLA-4, PD-

1, PD-L1.13,143,144 Therefore, understanding the mecha-

nisms by which specific microbiota exert their effects (e.g.

circadian modulation) could improve therapeutic success.

In an animal model of colorectal cancer, induced by

azoxymethane and dextran sulphate sodium, Mager and

colleagues identified 3 species of tumour-associated bacte-

ria (Bifidobacterium pseudolongum, Lactobacillus johnsonii

and Olsenella sp.) which enhanced immune checkpoint

blockade therapy.145 This enhancement of therapy was

orchestrated predominantly by the microbial production

of inosine, which binds to the adenosine A2A receptor,

promoting Th1 differentiation in the presence of IFN-c
and consequently anti-tumour effects. Of note, Lactobacil-

lus johnsonii belongs to the phylum Firmicutes, the abun-

dance of which is known to oscillate daily.30,31,33

Lactobacillus johnsonii is also associated with modulating

immunity and preventing autoimmune diabetes.146-148 In

a recent study assessing metabolism of 271 orally admin-

istered drugs by 76 different human gut bacteria, the

authors reported that the microbiota can metabolize

many more drugs than previously known.149 In addition,

the drug-metabolizing function of the microbiota has

both local intestinal effects and important systemic

effects, especially on the liver. Hepatic drug metabolism is

also influenced by circadian rhythm.150-152 Thus, circa-

dian microbial oscillations (whether through direct or

indirect mechanisms) are likely to modulate the ability to

metabolize drugs and therefore may have important ther-

apeutic impacts. It should also be noted that peripheral

circadian rhythms are often tissue-specific, and therefore,

microbial rhythms could be out of synchrony with the

rhythms in different tissues.17,18 This may potentially arise

due to the presence of dysbiotic microbiota or stronger

peripheral circadian inducers. Thus, it is critically impor-

tant to identify novel pathways regulating the peripheral

rhythms, which are influenced by the microbiota, and

synchronize these rhythms, for maximal clinical benefits.

The types of gut microbiota that adhere to the intesti-

nal wall may also oscillate and can play an important role

in intestinal immunity. Akkermansia muciniphilia, a

mucin-degrading commensal bacteria belonging to the

Verrucomicrobia phylum,153 is protective against ulcera-

tive colitis,154-156 type 1 diabetes157-159 and obesity.160

Furthermore, Akkermansia muciniphilia improves thera-

peutic efficacy in cancer patients who are treated with

immune checkpoint blockers.13 Given the oscillation in

abundance of Verrucomicrobia,30,31,33 appropriately tim-

ing therapeutic administration of these bacteria may

enhance efficacy. As discussed earlier, it is important to

note that bacteria can be beneficial or harmful, depending

on the context. Akkermansia muciniphilia, while beneficial

in the aforementioned studies, can also promote T-cell-

mediated inflammation in multiple sclerosis161 and thus

microbial therapies need to be tailored appropriately.

Microbial circadian rhythms modulate long-term

immunity following immunization and vaccination.

Microbiota composition can modulate vaccine efficacy to

bacteria and viruses in both animal models162-164 and

humans.165-168 Evidence for this has been obtained from

vaccine studies conducted in GF, as well as antibiotic-

treated mice, resulting in impaired antibody

responses.162,163 Similarly, in humans, administration of

broad-spectrum antibiotics also reduced the immuno-

genicity of the rotavirus vaccine.167 Rhythmic microbial

and PRR rhythms are also likely to influence vaccine effi-

cacy, although this remains to be studied. Host circadian

genes can also alter the vaccine efficacy. Per2, one of the

major circadian gene family members,169 controls TLR9-

mediated innate and adaptive immune responses to infec-

tion and sepsis.80 Moreover, Per2 also controls vaccine

immune responses to TLR9 ligand-adjuvanted immuniza-

tion using CpG (a bacterial DNA, which is a TLR9 ligand

and a common vaccine adjuvant72).80 These studies have

provided evidence for a vital link between circadian

rhythms and TLR signalling, which promotes enhanced

vaccine efficacy. Furthermore, in Cry1/Cry2 double

knockout mice, there are more circulating mature B cells

that secrete higher titres of antibodies to T-cell-indepen-

dent antigenic stimulation (4-hydroxy-3-nitrophenyl-

acetyl (NP)-conjugated Ficoll).170 This again highlights

host rhythms influencing immunity. Oscillations in anti-

body responses have also been seen in other studies,

including vaccination studies.56,171-174 A randomized trial

investigating the efficacy of the trivalent inactivated influ-

enza virus demonstrated that vaccine administration in

the morning induced higher antibody titres than in the

afternoon173; however, the oscillating antibodies post-vac-

cination are likely to be viral strain-specific171 and influ-

enced by sex.172 As TLR9 is highly expressed on B cells175

and requires downstream MyD88 signalling to mediate

functional changes,176,177 it is likely that oscillating TLR9

levels may influence B-cell antibody responses; however,

this has yet to be fully investigated. This also applies to

autoantibody production, which can be regulated by TLR

expression.178-180 Murine studies, in which peptide

immunization was performed at different times of day,

showed that this influenced both T-cell immunity and

susceptibility to disease.56,181,182 Furthermore, immune-

intrinsic circadian rhythms were vital for this effect.56,182

Thus, both Bcell and Tcell responses to antigen can be

modulated by circadian rhythms. Further understanding

of how the microbial rhythms may influence antigen-

specific immunity may prove even more beneficial.

While the role of microbiota-mediated modulation of

host immunity using antibiotic treatment or GF mice has
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been extensively studied, the impact of pro- or pre-biotics

or bacteriophages (bacteria-targeting viruses) on either

host or microbial circadian rhythms is not currently

known. Studying bacteriophages and their role in modu-

lating microbial circadian rhythms may therefore also

prove to be an important research field, particularly as

bacteriophages can adhere to the mucus layer and prevent

infection from pathogenic bacteria.183,184

CHALLENGES IN STUDYING MICROBIAL
RHYTHMICITY

Reporting microbial rhythmicity

A common challenge facing researchers studying the

microbial rhythmicity lies in the interpretation and pre-

sentation of the data. Relative microbial abundance is

often reported in microbial circadian oscillation studies,

referring to the proportion of specific bacteria within the

total bacteria sequenced. However, this can potentially

under- or over-estimate changes in the microbiota com-

position and thus the inferred absolute microbial abun-

dance is sometimes used. The inferred absolute microbial

abundance is determined by multiplying the 16S rRNA

copy number by the relative abundance within a given

sample. Studies using different methods could lead to dis-

crepancies between different reports of the abundance of

bacteria which oscillate at different times of day. For clar-

ity, we suggest that the reporting of these microbial

rhythms should be presented both ways. An alternative

method would be to conduct both microbial sequencing

and a culture-based approach (on selective media) to

identify numbers of specific bacteria; however, this

approach is not infallible as most gut bacteria cannot be

cultured. Further developments are needed in this area

before true microbial counts for all bacteria can be deter-

mined.

Limited studies in both sexes

As previously mentioned, sex influences the microbial

composition and rhythmicity. While some studies do

investigate sex biases, many more do not. Thus, studies

should be conducted in both males and females to iden-

tify the role of androgens/oestrogens in modulating circa-

dian rhythms.

Evaluating all variables

There are many factors, already discussed, that can influ-

ence microbial composition and circadian rhythms,

including light, diet, therapies (e.g. antibiotics), genetics,

hormones, sleep patterns, behaviour and disease develop-

ment. In many studies, it is difficult to investigate all

variables; however, in mice, many of these can be con-

trolled but not all are studied. This is the same in human

studies, where food intake is restricted44-46 but exercise,

genetics, light exposure, among other factors, are not

considered. While these studies highlight the importance

of circadian rhythms in health and disease, future studies

need to consider additional factors and their contribu-

tion, if any, to the results obtained. Larger study cohorts

and controlled facilities, where all participants reside and

are maintained in the same light cycles and on the same

diet, are likely to be required.

SUMMARY

In this review, we have discussed time-of-day-dependent

differences in the microbiota and how they may impact

host metabolism and immunity. While it is known the

microbiota are associated with the development and pro-

gression of many diseases, little is known of the influence

that circadian oscillations have on the microbiota, which

may also modulate disease susceptibility. We hope to

have provided insight into some potential future direc-

tions in relation to microbial oscillations and how they

can directly, or indirectly, regulate host immune

responses in different disease settings. Given the signifi-

cant influence that circadian rhythms have on host

immunity, it is important that more studies consider the

timing of experiments and administration of therapies. By

better understanding circadian influences, we may maxi-

mize clinical success by targeting the cells/microbiota of

interest, at the time they are most vulnerable. This could

potentially enable reduced drug concentrations to be

used, which would also limit toxic effects. Understanding

these rhythms in both males and females is vital, given

the importance of androgens in immunity and in shaping

the host microbial communities. While the vast majority

of work outlined in this review has focused on microbiota

in the gut, it will also be important to study the circadian

effects on microbiota in different locations that include

the skin, lungs, as well as other mucosal surfaces. It is

likely that most commensal microbiota, in these different

locations, modulate immunity in a time-of-day-depen-

dent manner. This is a continually expanding new field

and we look forward to gaining further insight, which

may improve efficacy of current, as well as new therapies,

for disease prevention and treatment.
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