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Abstract

The role of white matter in reading has been established by diffusion tensor imaging (DTI),

but DTI cannot identify specific microstructural features driving these relationships. Neurite

orientation dispersion and density imaging (NODDI), inhomogeneous magnetization trans-

fer (ihMT) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDE-

SPOT) can be used to link more specific aspects of white matter microstructure and reading

due to their sensitivity to axonal packing and fiber coherence (NODDI) and myelin (ihMT

and mcDESPOT). We applied principal component analysis (PCA) to combine DTI, NODDI,

ihMT and mcDESPOT measures (10 in total), identify major features of white matter struc-

ture, and link these features to both reading and age. Analysis was performed for nine read-

ing-related tracts in 46 neurotypical 6–16 year olds. We identified three principal

components (PCs) which explained 79.5% of variance in our dataset. PC1 probed tissue

complexity, PC2 described myelin and axonal packing, while PC3 was related to axonal

diameter. Mixed effects regression models did not identify any significant relationships

between principal components and reading skill. Bayes factor analysis revealed that the

absence of relationships was not due to low power. Increasing PC1 in the left arcuate fascic-

ulus with age suggest increases in tissue complexity, while increases of PC2 in the bilateral

arcuate, inferior longitudinal, inferior fronto-occipital fasciculi, and splenium suggest

increases in myelin and axonal packing with age. Multimodal white matter imaging and PCA

provide microstructurally informative, powerful principal components which can be used by

future studies of development and cognition. Our findings suggest major features of white

matter undergo development during childhood and adolescence, but changes are not linked

to reading during this period in our typically-developing sample.

Introduction

Reading is a sophisticated skill with many constituent systems including vision, language,

memory, and attention. White matter fibers play an important role in connecting these
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systems and facilitating coordinated processing across the reading network. Diffusion tensor

imaging (DTI) is frequently used to investigate links between white matter and reading thanks

to its sensitivity to white matter microstructural features. DTI studies have linked reading to

white matter in a broad network of tracts including the arcuate, superior and inferior longitu-

dinal, inferior fronto-occipital, and uncinate fasciculi, and the posterior corpus callosum [1–

5], such that markers of increased white matter maturity correlate with better reading scores.

Additionally, longitudinal DTI studies show that maturation of reading-related tracts is related

to improvements in reading ability [6–10]. White matter abnormalities have been observed in

children with reading difficulties, most often in left temporo-parietal white matter [11–14] as

language and reading networks are typically left lateralized [11, 15, 16]. Finally, changes in

DTI measures are observed in reading-related white matter following reading interventions

[17–19].

DTI studies have identified a network of white matter related to reading but cannot com-

ment on the particular features of white matter microstructure driving these relationships.

Fractional anisotropy (FA) and mean diffusivity (MD) describe water diffusion and are simul-

taneously sensitive to many microstructural factors [20–23]. Newer techniques with increased

specificity may be used to build upon DTI literature. Neurite orientation dispersion and den-

sity imaging (NODDI) produces the neurite density index (NDI) and orientation dispersion

index (ODI) which are sensitive to axonal packing and tract coherence, respectively [24]. Inho-

mogeneous magnetization transfer (ihMT) and multicomponent driven equilibrium single-

pulse observation of T1 and T2 (mcDESPOT) produce the quantitative ihMT (qihMT) and

myelin volume fraction (VFm) measures respectively, both sensitive to myelin [25, 26]. Addi-

tionally, measures of axon volume and myelin volume such as NDI and VFm can be combined

to produce the g-ratio, which describes the ratio of axon thickness to total fiber diameter [27].

These methods have been validated in vitro [28–33], and they hold great potential to clarify

our understanding of white matter development and links to reading.

Investigating multiple imaging measures in a univariate fashion, the typical practice in

developmental studies to date, necessarily increases the number of comparisons and may

introduce redundancy via shared sensitivities between metrics, reducing the discriminating

power of the analysis. One solution to reduce comparisons and exploit shared sensitivities is to

collapse white matter measures into orthogonal components via principal component analysis

(PCA). A framework using PCA for dimensionality reduction in white matter has been

recently described [34], and resultant components were linked to age, suggesting developmen-

tal sensitivity. The goal of this study was to combine white matter imaging techniques (DTI,

NODDI, ihMT, and mcDESPOT) to better understand relationships between brain structure

and reading in a sample of healthy 6–16 year old children. We aimed to investigate links

between resultant principal components and both age and reading to describe development of

key microstructural features and how these features underlie reading. We hypothesized that

observed principal components would represent diffusion restriction and tissue complexity,

similar to previous studies [34]. Furthermore, we expected that these components would be

linked to age and reading proficiency in reading-related tracts, such that indications of more

myelin, axonal packing, and fiber coherence would increase with age and would relate to better

reading performance.

Methods

2.1 Participants

46 healthy participants aged 6–16 years (mean age: 11.0 ± 2.6 years, 24 males / 22 females)

were recruited as part of an ongoing study on pediatric brain development. Inclusion criteria
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were: 1) uncomplicated birth between 37–42 weeks’ gestation, 2) no history of developmental

disorder, psychiatric disease, or reading difficulty, 3) no history of neurosurgery, and 4) no

contraindications to MRI. 22 children (mean age: 13.3 ± 2.6 years, 11 males / 11 females)

returned 2 years after their initial visit for a second scan and cognitive assessment. All subjects

provided informed assent and parents/guardians provided written informed consent. Gender

was determined by parent report. This study was approved by the local research ethics board,

Conjoint Health Research Ethics Board (CHREB, ID: REB13-1346). All subjects provided

informed assent and parents/guardians provided written informed consent.

2.2 Imaging

Subjects were scanned using a 32-channel head coil on a GE 3T Discovery MR750w (GE, Mil-

waukee, WI) system at the Alberta Children’s Hospital. Two diffusion-weighted datasets were

sequentially acquired at b = 900 s/mm2 and 2000 s/mm2 using a spin-echo echo planar imag-

ing sequence with TR/TE = 12s/88ms, 2.2 mm x 2.2 mm x 2.2 mm resolution, with 5 b = 0 s/

mm2 volumes and 30 gradient directions per volume, scan time was 7:12 min:sec per diffusion

dataset. IhMT images used a 3D spoiled gradient (SPGR) sequence: TR/TE = 10.46ms/2.18ms,

2.2mm x 2.2 mm x 2.2 mm resolution, flip angle 8˚. The sequence included a 5ms Fermi pulse

with peak B1 of 45 mG and 5kHz offset prior to each excitation. The MT condition cycled

between positive offset (+5kHz), dual offset (±5kHz), negative offset (-5kHz), and dual offset.

A 32˚ flip angle reference image with no MT pulse was acquired for quantification. Scan time

for ihMT was 5:12 min:sec. For mcDESPOT, multi-flip angle 3D SPGR images (α = 3˚, 4˚, 5˚,

6˚, 7˚, 9˚, 13˚, and 18˚) were collected with TR/TE = 9.1ms/3.9ms, 1.7mm x 0.86mm x 1.7mm

resolution. Then, inversion recovery SPGR (IR-SPGR) images were collected to correct for B1

inhomogeneity using 5˚ α, TR/TE = 9.1ms/3.9ms, 2.29mm x 0.86mm x 3.4mm resolution.

Finally, two multi-flip angle balanced steady-state free precession (bSSFP) images were col-

lected at phase 0˚ and 180˚, with α = 10˚, 13˚, 16˚, 20˚, 23˚, 30˚, 43˚, and 60˚, TR/TE = 6.6ms/

3.2ms, 1.7mm x 0.86mm x 1.7mm resolution. Collection of bSSFP images at two phases

enables correction for B0 inhomogeneity. Total scan time for all mcDESPOT scan sequences

was 16:35 min:sec. T1-weighted anatomical images were also acquired, with TI = 600ms, TR/

TE = 8.2ms/3.2ms, 0.8 mm x 0.8 mm x 0.8 mm resolution, scan time 5:38 min:sec.

2.3 Image processing

All images were visually inspected for quality assessment and processed separately using

appropriate tools before being combined for principal component analysis. Preprocessing for

T1 images was carried out in FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) for intensity

normalization and brain extraction. Preprocessing for DTI datasets was performed within

ExploreDTI [35]. Preprocessing steps included signal drift correction [36], brain extraction,

eddy current and motion corrections [37, 38], and registration to skull-stripped T1 images to

correct geometric distortions induced by echo-planar imaging. The REKINDLE model was

used to calculate FA, MD, radial diffusivity (RD), and axial diffusivity (AD) maps for each sub-

ject using the b = 900 s/mm2 shell only [39]. Whole brain tractography was performed on

b = 900 s/mm2 data using constrained spherical deconvolution [40] with L_max = 6, 2mm iso-

tropic seed voxels, 1mm step size, FA threshold of 0.2, 30 maximum angle of deviation and an

acceptable streamline range of 50 to 500mm. Following whole brain tractography, semiauto-

mated methods [41] were performed to segment the arcuate, inferior longitudinal (ILF), infe-

rior fronto-occipital (IFOF), and uncinate fasciculi bilaterally, along with the splenium, as

shown in Fig 1. A 11-year old female with high data quality was selected as the exemplar partic-

ipant for this process; all regions were drawn on this template brain and then registered to
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other participants’ data for tracking in native space [42]. Processed multi-shell DTI datasets

were also exported to the NODDI Toolbox (http://www.nitrc.org/projects/noddi_toolbox) for

calculation of isotropic (fiso) and intracellular (ficvf, or NDI) volume fractions and ODI.

Pseudo-quantitative ihMT maps (qihMT) and magnetization transfer ratio (MTR) maps

were calculated from ihMT data using an in-house GE protocol as described in previous work

[43]. Following MTR and qihMT image production, brain extraction was performed on MTR

images using FSL’s BET2 tool [44], and resulting brain-extracted MTR image was used as a

mask to produce a brain-extracted qihMT image.

mcDESPOT SPGR, IR-SPGR, and bSSFP images were aligned to the SPGR image with the

largest α then processed by fitting T1, T2, and volume fractions to three water compartments

(myelin-bound, intra/extracellular, and free), along with exchange rates between myelin-

bound and intra/extracellular water [45]. The myelin-bound water volume fraction from this

fitting was used to produce VFm maps for each participant. G-ratio maps were computed

using VFm, NDI, and fiso maps to calculate the fiber volume fraction (FVF) and g-ratio using

the following two equations.

FVF ¼ VFm þ ð1 � VFmÞð1 � fisoÞNDI

g � ratio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � VFmÞ=FVF

p

Following production of all measure maps, qihMT, MTR, VFm, NDI, and ODI maps were

registered to b = 900 s/mm2 FA maps using Advanced Normalization Tools (ANTs) [46].

Default parameters from antsRegistrationSyN.sh were used, with the–t s flag chosen to select

rigid, affine, and deformable symmetric normalization transforms. Then, the mean FA, MD,

AD, RD, NDI, ODI, MTR, qihMT, VFm, and g-ratio values were extracted for all 9 tracts of

interest (Fig 1) per participant. Additionally, along-tract analysis was performed in Explor-

eDTI [47, 48], to sample all ten measures at twenty equidistant points along each tract. Fig 2

Fig 1. Major, reading-related white matter tracts chosen as regions of interest. Whole brain tractography was performed via

constrained spherical deconvolution, then tracts were segmented using deterministic semi-automated methods in ExploreDTI. Regions of

interest were investigated bilaterally, but only the left hemisphere is shown here.

https://doi.org/10.1371/journal.pone.0233244.g001
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visually depicts all processing steps performed following preprocessing of images in their

native space.

2.4 Reading assessments

Reading was evaluated using the Wechsler Individual Achievement Test–Third Edition: Cana-

dian [49]. Participants completed the Reading Comprehension, Word Reading, Pseudoword

Decoding, and Oral Reading Fluency subtests. From these subtests, the Total Reading Com-

posite Score was computed as a measure of general reading proficiency. This score combines

phonological awareness, reading comprehension, and fluency.

2.5 Principal component analysis

To implement principal component analysis in white matter, we followed the methods

described in Chamberland et al [34]. All analysis was conducted in R version 3.6.1 [50]. First,

along tract data for each subject’s first time point (10 measures x 9 tracts of interest x 20 points

along each tract) was combined into a single table for principal component analysis (described

in Chamberland et al [34]). A Kaiser-Meyer-Olkin (KMO) test was conducted via the KMO()
function to assess correlations between input measures and indicate the suitability of our

Fig 2. Processing pipeline to prepare imaging data for principal component analysis. Preprocessed diffusion-weighted

images (A) were registered to T1-weighted anatomical images (B). Measure maps from NODDI, ihMT, and mcDESPOT

sequences were registered to diffusion-weighted images in anatomical space (C) to produce all measure maps in anatomical

space (D). Next, whole brain tractography was computed from b = 900s/mm2 data using constrained spherical deconvolution

(E), and tracts of interest were segmented in a semiautomated fashion in ExploreDTI (F). Measure means were extracted for

each tract of interest (G) and along each tract of interest at 20 equidistant segments (H).

https://doi.org/10.1371/journal.pone.0233244.g002
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measure set for PCA; values>0.5 indicate suitability [51]. PCA was performed via the prcomp
() function (using the scale = 1 option to normalize each feature independently). Following

PCA, input variable contributions to principal components along with correlations between

variables within along-tract data were inspected to identify redundancy between variables. In

the case of highly collinear measures (moderately to highly correlated (|r| > 0.6) and contrib-

uted to PCA outputs similarly), the variable with highest correlations to all other input mea-

sures was removed to improve stability of PCA computations [52] and PCA was recomputed.

Principal components with eigenvalue > 1 were retained, while other components were dis-

carded [53]. Varimax rotation was applied on retained principal components via the varimax
() function to maximize differences in principal components loadings and improve interpreta-

tion of component sensitivities. Measures were considered meaningful contributors to a resul-

tant principal component if they accounted for above average variance (>11.1%) in the

component.

2.6 Statistical analysis

All statistical analysis was performed in R version 3.6.1 [50]. Following varimax rotation, lon-

gitudinal principal component weightings were calculated by multiplication of time point 2

along tract data with the rotation matrix output by varimax(). Next, along tract weightings for

principal components were averaged in each tract to produce mean principal component

weightings for each subject in all 9 investigated tracts. Linear mixed effects models were com-

puted via lmer() [54] to investigate relationships between principal components with Total

Reading and age in each tract. Age models included age, gender, an age�gender interaction,

and a random intercept per subject, to account for repeated measures within subjects. If the

age�gender interaction was not significant, it was removed and the model was rerun. Total

Reading models for each tract included all retained principal components along with age, and

gender if a gender effect was observed for any principal component. Restricted maximum like-

lihood was used for all models. Benjamini-Hochberg false discovery rate (FDR) correction was

used to correct for 27 comparisons (9 tracts x three principal components). Multiple compari-

sons corrections were conducted separately for age and Total Reading findings. Example for-

mulas are provided below. Time point 1 data for each measure included in our final PCA was

correlated with Total Reading via partial correlation in each region, controlling for age, and

FDR correction was applied for 9 correlations across each measure.

PC1 � Ageþ Gender þ Age�Gender þ ð1jSubjectÞ

Total Reading � PC1þ PC2þ PC3 þ Ageþ Gender þ ð1jSubjectÞ

Bayes factor analysis was performed via generalTestBF in the BayesFactor package for R

[55] to supplement regression analysis by assessing the observed statistical power of models

connecting retained principal components and Total Reading. Bayes factors output by general-
TestBF were inverted to reflect the ratio of likelihood of the null hypothesis divided by the like-

lihood of a given model. A Bayes factor greater than 3, indicating our data was 3 times more

likely to be described by the null hypothesis than a given model, was considered evidence for

the null hypothesis. A Bayes factor less than 1/3, indicating that a model including our chosen

predictors was 3 times more likely to explain our data than the null hypothesis, was considered

evidence for the alternative hypothesis. Bayes factors between 1/3 and 3 were considered indi-

cators of low power, such that neither evidence for the null or alternative hypotheses could be

inferred [56].
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Results

3.1 Principal component analysis

Fig 3 visualizes each included imaging metric in the splenium. Here we can see that measures

with shared sensitivities vary similarly across the tract. For example, FA, RD, qihMT, and VFm

are all similar to myelin and reach extreme values in the center of the splenium (highly positive

for FA, qihMT, and VFm, highly negative for RD).

MTR was removed from our principal component analysis due to high collinearity with

qihMT (r2 = 0.64). Three principal components were identified in our final model, which col-

lectively explained 79.5% of variance (KMO test value = 0.53). Measures contributing greater

than 11.1% variance (expected if all variables contributed uniformly) to a component following

varimax rotation are visualized in Fig 4. Interpretation of principal components was carried

out by evaluating the common microstructural sensitivities of each measure, and by compari-

son to previous PCA analyses in white matter [34, 57]. Principal component (PC) 1 explained

37.5% of variance and was primarily composed of measures sensitive to tissue complexity: FA,

AD, ODI, along with MD. PC2 explained 23.0% of variance and was composed of measures

sensitive to myelin and axon packing: FA, MD, RD, and NDI. PC3 explained 19.0% of variance

and was driven by measures sensitive to myelin and axonal diameter, VFm and g-ratio.

As shown in Fig 4 panel A, FA and MD contributed strongly to PC1 and PC2 even after var-

imax rotation, likely because FA and MD are broadly sensitive to white matter structure. To

better interpret components, we removed FA and MD and recomputed PCA (results shown in

Fig 4, panel B). The reduced model (denoted as PCB) had three principal components that

explained 77.3% of variance (KMO = 0.43). PC1B explained 36.6% of variance and was com-

posed of RD, NDI, and qihMT. PC2B explained 22.7% of variance and was composed of VFm

and g-ratio. Finally, PC3B explained 18.0% of variance and was driven by AD and ODI. Mixed

effects regression models and Bayes factor analyses were conducted with the full PCA model

including FA and MD to provide comparable data to previous studies, to preserve power to

detect age and reading effects, and because the KMO test value of 0.43 for PCB indicated that

input variables may not share enough information for robust factor analysis.

Fig 3. Multimodal imaging of white matter microstructure in the splenium. Measures from DTI, NODDI, MT, and mcDESPOT imaging can be

contrasted to provide a multifaceted understanding of white matter structure.

https://doi.org/10.1371/journal.pone.0233244.g003
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3.2 Regression models

Mixed effects models results linking principal components to Total Reading scores are sum-

marized in Table 1. No significant relationships were observed between principal components

and Total Reading. To further investigate the absence of significant relationships between

Fig 4. Principal components visualized in the left arcuate fasciculus. Correlations for measures which contribute greater variance than expected by

chance (>11.1%) are included for each component. Panel A displays PCA results from all 9 measures. Components in Panel A explained 79.5% of

variance in our data (variance explained by each individual component is noted in brackets). Principal components were related to diffusion along a

primary axis (PC1), myelin and axonal packing (PC2), and axon diameter (PC3). Panel B shows results from a secondary PCA with FA and MD

removed, as they loaded onto multiple components. Principal components in Panel B explain 77.3% of variance.

https://doi.org/10.1371/journal.pone.0233244.g004
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principal components and Total Reading, we followed up by running mixed effects models

between principal components and subtest scores for Reading Comprehension, Word Read-

ing, Pseudoword Decoding, and Oral Reading Fluency. No significant relationships were

observed between principal components and reading subtest scores. Correlations between the

initial measure set and Total Reading are summarized in S1 Table. No significant correlations

were observed between individual measures and Total Reading scores.

Table 2 summarizes models linking principal components to age and gender. A significant

relationship between PC1 and age was observed in the left arcuate (t = -2.93, p = 0.004).

Increases in PC1 with age suggest increased diffusion restrictions and tissue complexity

Table 1. Parameters for mixed effects models linking principal components to Total Reading (formula: Total Reading ~ PC1 + PC2 + PC3 + Age + (1|Subject)).

Region R2 (adj) df Predictor Estimate ± SE t p

Left arcuate 0.026 64 PC1 -1.17 ± 6.61 -0.18 0.860

PC2 5.26 ± 3.86 1.37 0.178

PC3 1.52 ± 2.89 0.53 0.601

Age -0.00 ± 0.00 -0.74 0.462

Right arcuate 0.022 64 PC1 -6.55 ± 5.42 -1.21 0.232

PC2 -0.13 ± 3.47 -0.04 0.970

PC3 -4.06E-2 ± 2.47 -0.02 0.987

Age -8.06E-4 ± 1.72E-3 -0.47 0.641

Left ILF 0.026 64 PC1 -5.19 ± 6.44 -0.81 0.424

PC2 -0.88 ± 4.06 -0.22 0.829

PC3 -3.34 ± 2.60 -1.28 0.207

Age 6.64E-5 ± 1.62E-3 0.04 0.968

Right ILF 0.034 64 PC1 6.06 ± 5.79 1.05 0.300

PC2 3.12 ± 3.87 0.81 0.423

PC3 0.89 ± 2.30 0.39 0.701

Age -7.32E-4 ± 1.64E-3 -0.45 0.656

Gender 1.37 ± 3.74 0.37 0.716

Left IFOF 0.052 64 PC1 0.75 ± 5.74 0.13 0.897

PC2 8.87 ± 5.01 1.77 0.081

PC3 -1.43 ± 2.61 -0.55 0.585

Age -0.00 ±0.00 -0.79 0.435

Right IFOF 0.046 64 PC1 -1.81 ±5.94 -0.30 0.762

PC2 6.47 ± 3.99 1.62 0.110

PC3 2.08 ± 2.65 0.78 0.436

Age -0.00 ± 0.00 -0.93 0.356

Left uncinate 0.087 64 PC1 -5.83 ± 5.43 -1.08 0.287

PC2 5.72 ± 4.34 1.32 0.192

PC3 -3.85 ± 1.94 -1.99 0.053

Age -3.78E-4 ± 1.59E-3 -0.24 0.813

Right uncinate 0.008 64 PC1 1.16 ± 6.18 0.19 0.852

PC2 2.54 ± 3.38 0.75 0.455

PC3 -0.49 ± 2.45 -0.20 0.844

Age -1.83E-4 ± 1.59E-3 -0.12 0.909

Splenium 0.035 64 PC1 7.28 ± 4.55 1.60 0.115

PC2 2.07 ± 2.50 0.83 0.410

PC3 1.45 ± 2.77 0.52 0.603

Age -0.00 ± 0.00 -0.28 0.778

https://doi.org/10.1371/journal.pone.0233244.t001
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Table 2. Parameters for mixed effects regression models linking principal components to age and gender (formula: PC ~ Age + Gender+ Age�Gender + (1|Subject)).

PC1: Tissue Complexity

Region R2 (adj) df Predictor Estimate ± SE t p

Left arcuate 0.141 66 Age 8.71E-5 ± 2.92E-5 2.98 0.004�

Gender 7.97E-2 ± 6.6E-2 1.21 0.234

Right arcuate 0.091 66 Age 7.80E-5 ± 3.55E-5 2.20 0.032

Gender 9.20E-2 ± 7.90E-2 1.16 0.251

Left ILF 0.005 66 Age 1.83E-5 ± 3.21E-5 0.57 0.571

Gender -1.29E-2 ± 7.81E-2 -0.17 0.870

Right ILF 0.031 65 Age 6.40E-6 ± 3.35E-5 0.19 0.849

Gender -5.56E-2 ± 8.40E-2 -0.66 0.513

Left IFOF 7.81E-5 66 Age 2.41E-6 ± 3.35E-5 0.07 0.943

Gender 6.89E-4 ± 7.89E-2 0.01 0.993

Right IFOF 0.025 66 Age 4.14E-5 ± 3.27E-5 1.26 0.211

Gender -2.78E-2 ± 7.85E-2 -0.36 0.725

Left uncinate 0.056 65 Age 5.82E-5 ± 3.42E-5 1.71 0.093

Gender 1.77E-2 ± 7.57E-2 -0.23 0.816

Right uncinate 0.050 66 Age 5.48E-5 ± 3.10E-5 1.77 0.082

Gender 3.40E-2 ± 6.99E-2 0.49 0.629

Splenium 0.003 66 Age 4.78E-7 ± 4.59E-5 0.01 0.992

Gender 4.53E-2 ± 0.13 0.36 0.724

PC2: Axon Packing and Myelin

Region R2 (adj) df Predictor Estimate ± SE t p

Left arcuate 0.181 66 Age 1.85E-4 ± 5.00E-5 3.70 0.0004�

Gender -1.45E-2 ± 0.11 -0.13 0.894

Right arcuate 0.178 66 Age 1.95E-4 ± 5.34E-5 3.66 0.0005�

Gender -1.78E-2 ± 0.11 -0.15 0.878

Left ILF 0.108 66 Age 1.37E-4 ± 4.99E-5 2.75 0.0077�

Gender -3.08E-2 ± 0.11 -0.28 0.783

Right ILF 0.129 66 Age 1.53E-4 ± 5.01E-5 3.05 0.0033�

Gender -5.75E-2 ± 0.11 -0.50 0.617

Left IFOF 0.137 66 Age 1.23E-4 ± 3.82E-5 3.21 0.0021�

Gender -4.35E-2 ± 8.90E-2 -0.49 0.627

Right IFOF 0.195 66 Age 1.83E-4 ± 4.81E-5 3.80 0.0032�

Gender -9.65E-2 ± 0.11 -0.90 0.372

Left uncinate 0.074 66 Age -5.06E-5 ± 6.88E-5 1.38 0.173

Gender -0.81 ± 0.42 1.57 0.124

Right uncinate 0.025 66 Age 2.30E-5 ± 5.41E-5 0.42 0.673

Gender 0.13 ± 0.12 1.11 0.274

Splenium 0.077 66 Age 2.05E-4 ± 8.87E-5 2.31 0.024�

66 Gender 7.22E-2 ± 0.21 0.35 0.731

PC3: Axon Diameter

Region R2 (adj) df Predictor Estimate ± SE t p

Left arcuate 0.030 66 Age -7.78E-6 ± 6.93E-5 -0.11 0.911

Gender 0.20 ± 0.15 1.28 0.207

Right arcuate 0.025 66 Age -5.46E-5 ± 7.58E-5 -0.72 0.474

Gender 0.16 ± 0.16 1.00 0.324

Left ILF 0.055 66 Age 1.10E-4 ± 6.17E-5 1.79 0.080

Gender 9.28E-2 ± 0.13 0.74 0.465

(Continued)
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(reflecting a combination of increasing FA, MD, and AD and/or decreasing ODI). A similar

relationship was observed in the right arcuate fasciculus but this finding did not survive multi-

ple comparisons corrections. Positive relationships between PC2 and age were observed in the

bilateral arcuate (L: t = 3.70, p< 0.001; R: t = 3.66, p< 0.001), inferior longitudinal fasciculus

(L: t = 2.75, p = 0.007; R: t = 3.05, p = 0.003), inferior fronto-occipital fasciculus (L: t = 3.21,

p = 0.002; R: t = 3.80, p = 0.003), and splenium (t = 2.31, p = 0.024). Increases in PC2 suggest

increased axon packing and myelin with age (reflecting a combination of increases in FA and

NDI, and/or decreases in MD and RD). The gender main effect (t = -2.01, p = 0.049) and the

age�gender interaction were significant for PC3 in the right inferior longitudinal fasciculus,

but neither survived multiple comparisons corrections. Scatterplots in Fig 5 illustrate relation-

ships between PC1, PC2 and age.

Table 2. (Continued)

Right ILF 0.098 66 Age -1.39E-4 ± 1.19E-4 -1.16 0.248

Gender -1.48 ± 0.74 -2.01 0.049

Age�Gender 3.92E-4 ± 1.68E-4 2.34 0.023

Left IFOF 0.029 66 Age 5.87E-5 ± 6.58E-5 0.89 0.377

Gender 0.14 ± 0.14 0.98 0.334

Right IFOF 0.020 66 Age 2.39E-5 ± 6.76E-5 0.35 0.725

Gender 0.14 ± 0.14 1.00 0.326

Left uncinate 0.096 66 Age 1.56E-4 ± 7.70E-5 2.02 0.047

Gender 0.26 ± 0.16 1.68 0.097

Right uncinate 0.064 66 Age 6.92E-5 ± 6.77E-5 1.02 0.310

Gender 0.25 ± 0.14 1.85 0.069

Splenium 0.040 66 Age -9.25E-5 ± 6.68E-5 -1.39 0.172

66 Gender 0.11 ± 0.14 0.81 0.423

Significant effects that survive multiple comparisons are bolded and marked by an asterisk.

https://doi.org/10.1371/journal.pone.0233244.t002

Fig 5. Scatterplots visualizing relationships between principal component 3 (PC3) and Total Reading in the left uncinate fasciculus (A), PC1 and age

in the left uncinate (B) and PC2 and age in the left uncinate (C). Principal components are shown in an example tract for each relationship. Increases in

PC1 indicate increased diffusion along a primary axis, while increases in PC2 indicate increased myelin and axon packing, thus relationships depicted in

panels A and B could potentially reflect axonal maturation. No significant links between principal components and Total Reading were observed. The

relationship between PC3 and Total Reading in the left uncinate was closest to our significance threshold.

https://doi.org/10.1371/journal.pone.0233244.g005
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3.3 Bayes factor analysis

Bayes factors analysis was conducted to evaluate Total Reading mixed effects regression mod-

els. Results from this analysis are summarized in Table 3. Bayes factors including all principal

components and age as covariates of Total Reading were greater than 3 in all regions, indicat-

ing evidence for the null hypothesis.

Discussion

We applied principal component analysis in a multimodal dataset including highly specific

measures of myelin, axon packing, and fiber coherence to investigate white matter develop-

ment and links to reading. PCA identified three principal components that explained a large

proportion of variance (79.5%) in our dataset, and represented tissue complexity (axon coher-

ence), diffusion restriction (axonal packing and myelination), and axon diameter. The inter-

pretation of principal components was based upon common sensitivities shared by the

measures in each component and previous literature. The sensitivity of each individual metric

included in PCA has been histologically validated [20, 28–33], suggesting that the interpreta-

tions presented here are biologically meaningful. PC1 explained the largest amount of variance

(37.5%). With significant contributions from FA, MD, AD, and ODI, PC1 probed diffusion

anisotropy and was driven by axon integrity and coherence. PC2 explained 23.0% of variance

and reflects myelin and axonal packing, as shown by heavy loadings of FA, MD, RD, and NDI.

Finally, PC3 explained 19.0% of variance and was driven by VFm and g-ratio. PC3 likely corre-

sponds to axon diameter, as principal components are expected to be orthogonal and PC2 con-

tains several myelin-sensitive measures. Studies employing PCA with white matter imaging

measures have identified similar principal components related to diffusion anisotropy and

overall diffusivity [34, 57]. Our PCA expands upon previous findings by including non-diffu-

sion measures from magnetization transfer and relaxometry. This allowed our multimodal

PCA to identify a novel third component related to axon diameter.

Shared information between white matter imaging metrics resulted in measures loading

onto multiple principal components, in particular FA and MD. This was addressed in multiple

ways. First, in the case of highly correlated variables, redundant variables (MTR) were

Table 3. Bayes factors assessing the likelihood of the null hypothesis condition (no relationship between Total

Reading scores and model components) versus the likelihood of the model condition (relationships between

included components and Total Reading).

READING MODELS

Region Components Bayes Factor

Left arcuate PC1 + PC2 + PC3 + Age 9.43

Right arcuate PC1 + PC2 + PC3 + Age 8.93

Left ILF PC1 + PC2 + PC3 + Age 47.62

Right ILF PC1 + PC2 + PC3 + Age 20.83

Left IFOF PC1 + PC2 + PC3 + Age 11.76

Right IFOF PC1 + PC2 + PC3 + Age 9.35

Left uncinate PC1 + PC2 + PC3 + Age 19.23

Right uncinate PC1 + PC2 + PC3 + Age 19.23

Splenium PC1 + PC2 + PC3 + Age 10.42

A Bayes factor of 3—indicating our sample data is 3 times more likely to be explained by the null condition than the

model condition—or greater provides evidence for the null condition.

https://doi.org/10.1371/journal.pone.0233244.t003
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removed from PCA analysis. Next, varimax rotation minimized loading of a variable onto

multiple principal components, and helped emphasize the differences between resultant prin-

cipal components. Finally, re-running PCA without FA and MD resulted in a similar set of

principal components accounting for 77.3% of variance and reinforcing our interpretation of

the full model results. PC1B accounted for 36.6% of variance and was analogous to PC2 from

the full model, with loadings from RD and NDI, along with qihMT which did not appear in

the full model. PC2B accounted for 22.7% of variance was driven by VFm and g-ratio, similar

to PC3. Finally, PC3B accounted for 18.0% of variance and had loadings from AD and ODI,

similar to PC1. Principal component analysis with varimax rotation is shown to be an effective

way to collapse white matter imaging metrics into powerful, interpretable measures. FA and

MD were retained here to maintain power, though future studies may want to consider

removal of broadly sensitive metrics such as FA and MD to improve specificity of resultant

principal components.

Principal components were not significantly related to Total Reading scores in any investi-

gated region. Bayes factors suggested the null hypothesis was substantially more likely than the

alternative hypothesis in all regions. No significant relationships were identified in follow-up

mixed effects models including principal components, age and scores from subtests included

in the Total Reading composite score. Further, no significant correlations between initial mea-

sures and Total Reading scores were significant following multiple comparisons corrections.

These findings suggest that gross relationships between white matter structural features and

Total Reading ability are absent in typically developing children and adolescents, who tended

to be skilled readers in our sample. Expanding this analysis to a larger age range or a popula-

tion with reading difficulties may provide a larger effect to assess, and further insight into the

role of white matter in reading.

Despite a lack of broad relationships between key white matter features and reading, some

findings here hint that more specific relationships may be present in our sample. P-

values< 0.1 suggest a larger sample may find significant relationships between PC2 or PC3

and Total Reading in the left IFOF and left uncinate, respectively. Left hemisphere ventral

white matter supports reading processing in skilled readers, and left inferior frontal regions

have been consistently highlighted as related to reading skill in previous studies [3, 6, 8–10].

Additionally, qihMT was correlated with Total Reading ability in the bilateral arcuate fascicu-

lus and ILF, the right IFOF and right uncinate fasciculus, and was trend level in the left IFOF

(see S1 Table), though these findings did not survive multiple comparison corrections. Inter-

estingly, qihMT was not significantly related to Total Reading in either the left IFOF or unci-

nate fasciculus, where trend level relationships with principal components were found. Trend

level relationships between PC2, PC3, or qihMT and Total Reading provide some evidence for

a link between axon diameter and myelin and reading. However, these relationships must be

investigated and confirmed by future studies.

Links between principal components and age were identified throughout the brain. Rela-

tionships between PC2 and age were most prominent, found in all tracts except the uncinate

fasciculus, and are visualized as scatterplots in Fig 5. Age-related trends tended to be similar

between left and right hemispheres, suggesting that at the macro-scale, brain development is

similar between hemispheres. This is in contrast to investigations of individual microstructural

features, where increases in VFm were shown to be largely left-lateralized during adolescence

[58]. PC2 findings may be driven by NDI, as NDI has been previously shown to be age-sensi-

tive and increases bilaterally throughout adolescence [58–60]. One relationship between PC1

and age remained in the left arcuate following multiple comparisons. While axon coherence

tends to be stable across adolescence [61–63], we show that changes may still be ongoing in

some regions. Gender was related to PC3 in the right inferior longitudinal fasciculus such that
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males had higher values than females. Higher PC3 values reflect higher VFm and lower g-ratio

values, thus the development of the right inferior longitudinal fasciculus may be further along

in males. Studies of sex effects on white matter development have produced mixed results, sug-

gesting either absence of or minor developmental effects during childhood and adolescence

(for review see [64]), but large longitudinal studies remain necessary to effectively assess sex

and gender effects across development.

This study has several limitations. First, inclusion of broadly sensitive measures such as FA

and MD decreased clarity in interpretation of our principal components. We included these

metrics to provide a baseline for future work applying principal component analysis in white

matter, and to better connect to previous work. Future investigators should seek to refine their

set of included metrics and exclude generally sensitive measures which may mask loadings of

other, more specific metrics. Second, not all participants provided longitudinal data, and

younger participants contributed fewer longitudinal data points than older participants.

Future studies with more longitudinal data may be better able to elucidate relationships

between components of white matter structure and age or reading across development. Finally,

although the metrics applied here have been histologically validated, none are truly specific to

any microstructural feature. Principal component analysis helps to address these sensitivities

by focusing on information that is shared between measures, but our interpretation is still

complicated by the multiple factors which affect each imaging metric.

Conclusions

Here, we combined multimodal imaging techniques to assess microstructure in reading-

related white matter tracts. Principal component analysis revealed three key features of white

matter microstructure that explained 79.5% of variance in our dataset. Principal components

were related to tissue complexity, axon packing and myelin, and axon diameter. No significant

relationships were observed between principal components and Total Reading scores, suggest-

ing gross relationships between white matter structural features and reading are not present in

typical children and adolescents. Some trend level results suggest minor roles for axon diame-

ter and myelin in reading ability, but these findings must be confirmed by further research.

Principal components were sensitive to age effects, consistent with previous studies. PCA is an

effective tool to preserve power and exploit shared variance between imaging metrics. Resul-

tant principal components are age-sensitive have expanded our understanding of links

between white matter and reading. This study provides an important initial description of

PCA in a multimodal set of white matter imaging metrics, and will serve as an important base-

line for future studies investigating white matter in development or cognitive disorders.

Supporting information

S1 Table. Correlations between measures included in the final PCA model and Total Read-

ing in all investigated regions. No correlations remained significant after correction for mul-

tiple comparisons.
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