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Abstract 

 

Background: With the development of next-generation sequencing technologies, it is possible to 

identify rare genetic variants that influence the risk of complex disorders. To date, whole exome 

sequencing (WES) strategies have shown that specific clusters of damaging rare variants in the 

TREM2, SORL1 and ABCA7 genes are associated with an increased risk of developing Alzheimer’s 

Disease (AD), reaching odds ratios comparable with the APOE-ε4 allele, the main common AD 

genetic risk factor. Here, we set out to identify additional AD-associated genes by an exome-wide 

investigation of the burden of rare damaging variants in the genomes of AD cases and cognitively 

healthy controls. 

Method: We integrated the data from 25,982 samples from the European ADES consortium and 

the American ADSP consortium. We developed new techniques to homogenize and analyze these 

data. Carriers of pathogenic variants in genes associated with Mendelian inheritance of dementia 

were excluded. After quality control, we used 12,652 AD cases and 8,693 controls for analysis. 

Genes were analyzed using a burden analysis, including both non-synonymous and loss-of-

function rare variants, the impact of which was prioritized using REVEL. 



Result: We confirmed that carrying rare protein-damaging genetic variants in TREM2, SORL1 or 

ABCA7 is associated with increased AD-risk. Moreover, we found that carrying rare damaging 

variants in the microglial ATP8B4 gene was significantly associated with AD, and we found 

suggestive evidence that rare variants in ADAM10, ABCA1, ORC6, B3GNT4 and SRC genes 

associated with increased AD risk. High-impact variants in these genes were mostly extremely 

rare and enriched in AD patients with earlier ages at onset. Additionally, we identified two 

suggestive protective associations in CBX3 and PRSS3. We are currently replicating these 

associations in independent datasets. 

Conclusion: With our newly developed homogenization methods, we identified novel genetic 

determinants of AD which provide further evidence for a pivotal role of APP processing, lipid 

metabolism, and microglia and neuroinflammatory processes in AD pathophysiology. 

 

 

Introduction 

Alzheimer's disease is the leading cause of dementia and its impact will continue to grow due to 

the increase in life expectancy (1) Beyond rare autosomal dominant forms of early onset AD (less 

than 1% of all AD cases), the common complex form of AD has an estimated heritability of ~70% 

(2)  This heritability can be explained by the aggregated effect of many genes associated with AD 

risk. Deciphering this genetic component to the gene or even to the variant level offers a unique 

window of opportunity to (i) better define the aetiology underlying the disease; and (ii) to 

develop polygenic risk scores that may predict who will develop AD before clinical symptoms 

occur. Comprehensive knowledge of disease etiology is thus essential for the future development 

of treatment strategies, which will likely be most effective when administered to those with 

relevant genetic risk, before irreparable damage to brain cells has occurred. 

With such ambitious objectives, important efforts have been made to characterize the 

comprehensive genetic landscape of AD. With the advent of genome wide association studies 

(GWAS) based on DNA chips, numerous common genetic risk factors/loci have been associated 

with the risk of AD over the 10 last years (3, 4). However, our knowledge of the genetic 

component underlying AD is far from complete. While further efforts are underway to capture 

additional genetic information using GWASs, this approach is not really designed to efficiently 

capture the effect of rare (and even more singleton) variants on disease risk. However, rare 

variants are expected to explain at least part of the missing heritability of most complex diseases, 

including AD. 



With the development of the next-generation sequencing technologies, it is possible to identify 

rare variants in genetic sequences. To date, whole exome sequencing (WES) strategies have 

shown that rare missense or loss-of-function variants in the TREM2, SORL1 and ABCA7 genes are 

associated with an increased risk of developing AD with a moderate to high effect (5-9). For the 

SORL1 gene, loss of function variants were associated with an increased risk of AD with an odds 

ratio in ranges that were not observed since the identification of the main AD genetic risk factor, 

the common APOE-ε4 allele (9-12). 

The detection of additional AD associated genes by investigating the differential burden of rare 

damaging variants between AD cases and controls requires very large sample sizes. Variants are 

often very rare such that many cases and controls are necessary to collect enough evidence for 

a statistically significant association. In addition, beyond issues of statistical power, WES analyses 

need to take into account common technical biases leading to strong batch effects that can have 

important impacts on the generated results with a risk to generate false positives or negatives. 

Furthermore, all genes have unique features, both functionally and genetically, and this is 

reflected by the diverse characteristics of variants that drive their association with AD. Using 

WES, unique variants may be observed in very few or only single carriers which requires alternate 

interpretation strategies compared to the classical GWAS analyses in which all measured variants 

are common. For these reasons, genome-wide comparisons of rare variants in AD cases and 

controls have likely not yet led to the identification of novel AD-associated genes beyond SORL1, 

ABCA7 and TREM2,(12) 

Here, to identify an association between the burden of rare coding variants at the gene level, we 

developed novel analysis methods to study the largest WES dataset available worldwide 

encompassing 21,345 samples (12,652 AD cases and 8,693 controls). This unique effort led to the 

identification of 11 genes associated with AD-risk, of which rare variants in eight genes were not 

previously significantly associated with AD genetic risk. Per gene, we report the effect sizes of the 

variant burden after a final refinement analysis that takes into account that a uniform exome-

wide analysis does not comply with gene-specific idiosyncrasies.  



 

Methods 

Sample 

We analyzed the exome sequences of 25,982 individuals: sequence data from 15,088 individuals 

was collected as part of the Alzheimer Disease European Sequencing consortium (ADES) and 

sequence data from 11,365 individuals was obtained from the Alzheimer’s Disease Sequencing 

Project (ADSP) (12), see Table S1 for samples contributed per study. The total sample comprised 

14,658 AD cases and 10755 controls (569 were N/A). For sample description, see supplemental 

data. DNA samples were sequenced using a paired-end Illumina platform, whole exome 

sequences (WES) was generated using different exome capture kits (Table S2), a subset of the 

sample was sequenced using whole genome sequencing (WGS) (Figure S1, Table S2).  

 

Data processing, Quality control (QC) and genotype calling 

Raw sequencing data from all studies were collected on a single site and processed relative to 

the GRCh37 reference genome, using a uniform pipeline as described in detail in the 

supplementary methods. On the merged sample, we performed a sample QC (Figure 1a) after 

which 21,345 samples were available for analysis: 12,652 cases (4,060 EOAD, onset ≤ 65 years) 

and 8,693 controls. The variant QC was applied as described in Figure 1b; variant selection and 

annotation was performed as described in Figure 1c: The burden analysis was performed at the 

gene level based on protein-coding Ensembl transcripts with a ‘Gencode basic’ tag. Missense 

variants were annotated using REVEL (Rare Exome Variant Ensemble Learner) (13, 14) and LOF 

variants were annotated using LOFTEE (15). We selected variants that were estimated to have at 

least one carrier, and had a minor allele frequency (MAF) of <1%. We removed variants with 

>20% genotyping missingness or that did not pass a filter for differential missingness between 

the EOAD, LOAD and control groups (genotypes with a read depth <6 are considered missing, see 

supplement).  

 



Gene burden test: Variant impact categories and thresholds 

Variants were divided in four deleteriousness categories: a LOF category, and 3 missense 

categories: REVEL ≥ 75, REVEL 50-75 and REVEL 25-50 (Figure 1c). Based on these, we constructed 

four deleteriousness thresholds in which we incrementally added variants with lower levels of 

variant predicted deleteriousness: first only LOF variants, then LOF variants + variants with a 

REVEL score ≥75, then LOF + REVEL≥50, and last LOF + REVEL≥25. This allows us to concentrate 

on the test which provides maximum evidence for a differential burden-signal. Multiple testing 

correction was performed across all performed tests (up to 4 per gene).  

 

Gene burden test: age-at-onset association 

Based on previous findings in SORL1, TREM2 and ABCA7 (16), we expect an enrichment of high 

impact rare risk variants in early onset cases relative to late onset cases. Therefore, we applied a 

test based on ordinal logistic regression, in which the genetic risk for AD is considered to increase 

in the sample categories: i.e. burdenEOAD > burdenLOAD > burdencontrol. This test is optimally suited 

for picking up differential variant loads between the sample categories, and can also detect 

regular case-control signals for which genetic risk is equally distributed across EOAD and LOAD 

cases (burdenEOAD ~ burdenLOAD > burdencontrol) as well as EOAD-specific signals (burdenEOAD > 

burdenLOAD ~ burdencontrol). We considered an additive model, while correcting for population 

covariates (see supplement). Genes were only tested if the cumulative minor allele count (cMAC) 

of predicted damaging variants was ≥10. Genes were considered suggestively associated with AD 

if the False Discovery Rate (FDR) (Benjamini-Hochberg procedure (17) as <20% (FDR<0.2). Genes 

were considered significantly associated with AD in our discovery sample when the corrected p 

was <0.05 after family-wise correction using the Holm-Bonferoni procedure (18).  

 

Gene burden test: Testing for an age-at-onset or a 

deleteriousness-category effect 

To test whether the burden of damaging variants increased (or decreased for protective variants) 

towards younger patients, an ordinal regression was performed using only cases (no controls). 

Cases were grouped in 4 age-at-onset bins: ≤65, (65-70], (70-80] and >80. A significant effect (FDR 

< 0.05) signaled that there was a difference in enrichment between young and older cases. To 

determine if there was a significant trend in effect sizes between the different deleteriousness 

categories (REVEL 25-50, 50-75, 75-100 and LOF), an ordinal logistic regression test was 



performed with constrained beta’s |𝑏𝑅𝐸𝑉𝐸𝐿 25−50| ≤ |𝑏𝑅𝐸𝑉𝐸𝐿 50−75| ≤ |𝑏𝑅𝐸𝑉𝐸𝐿 75−100| ≤ |𝑏𝐿𝑂𝐹|, 

and compared to a H0-model with a single beta (see supplement).  

Carrier frequency and odds ratios 

A carrier of a set of variants was defined as a sample for which the summed dosage of those 

variants was ≥0.5. Carrier frequencies (CFs) were determined as #carriers / #samples. Effect sizes 

(odds ratios, ORs) of the ordinal logistic regression can be interpreted as weighted averages of 

the OR of being an AD case versus control, and the OR of being an early-onset AD case or not. 

Ordinal odds ratios were calculated for each test, as well as separately for the 4 variant categories 

REVEL 25-50, 50-75, 75-100 and LOF. Next to ordinal ORs, we estimated ‘standard’ ORs. This was 

done across all samples (case/control), as well as per age category (EOAD versus controls and 

LOAD versus controls), as well as for smaller age-at-onset categories: ≤65 (EOAD), (65-70], (70-

80] and >80 using multinomial logistic regression, while correcting for 6 PCA covariates.  

 

Sensitivity analysis 

A sensitivity analysis was performed to determine if effects were potentially due to age 

differences between cases and controls. We constructed an age-matched sample, by dividing 

samples in strata based on age/age-at-onset, with each stratum covering 2.5 years. Case/control 

ratios in all strata were kept between 0.1 and 10 by down sampling respectively controls or cases. 

Subsequently, samples were weighted using the propensity weighting within strata method 

proposed by Posner and Ash (19). Finally, a case-control logistic regression was performed both 

on the unweighted and weighted case-control labels, and estimated odds ratios and confidence 

intervals were compared.  

 

Variant-specific analysis 

We performed a variant-specific analysis of the genes considered as significantly or suggestively 

associated with AD, to detect gene-specific idiosyncrasies not covered by our uniform exome-

wide analysis. We checked for outlier variants among those that were included in the burden 

test, determining which ones had a significantly lower or opposite effect size (fisher exact test) 

compared to other included variants of the same category (missense or LOF). Furthermore, we 

determined which missense or potential LOF variants did associate with AD (logistic regression 

test, at least 15 carriers), irrespective of REVEL/LOFTEE or MAF thresholds. We performed 



corrections for multiple testing per gene using FDR, reporting only variants with a threshold of 

FDR < 0.2 (Table S3). We manually removed and added these variants to the burden tests, in 

order to calculate, next to standard odds ratios, also refined odds ratios. 

Results 

 

Sample description: 

After sample QC (Figure 1a), 21,345 participants were included in the main analysis (12,652 

cases; 8,693 controls) (Table 1). AD cases were separated in EOAD cases with age at onset ≤ 65 

(n=4,060) and LOAD cases (N=8,592). All demographic data are available in Table S1. As expected, 

cases were more likely to carry at least one APOE ε4 allele: the fraction of homozygous APOE ε4 

carriers was 6.6% of the cases vs. 0.9% of the controls; fraction of heterozygous APOE ε4 carriers 

was 40.6% of the cases vs 18.4% of the controls (Table 1).  

 

Burden tests using different deleteriousness thresholds 

We detected a total of 13,522,252 variants in these individuals, and 7,674,898 variants passed 

quality control (Figure 1b). These variants were annotated according to four predicted 

deleteriousness categories based on LOFTEE score for LOF variants and the REVEL prediction 

score for missense variants. Finally, we selected 407,032 coding missense and loss of function 

(LOF) variants with MAF <1% based on criteria as described in the methods (Figure 1c). We used 

four deleteriousness thresholds by incrementally including variants with on lower levels of 

variant predicted deleteriousness: respectively LOF (n=56,565), LOF + REVEL≥75 (n=109,576), LOF 

+ REVEL≥50 (n=208,720), and LOF + REVEL≥25 (n=407,032). 

 

Among the 19,822 autosomal protein-coding genes considered in our annotation, we tested 

13,299 genes with at least 10 minor alleles (cumulative minor allele count or cMAC ≥ 10) 

appertaining to the LOF+REVEL≥25 variant threshold. For the remaining genes, the burden of 

variants per gene was considered too low (cMAC<10) to infer any dependable signal. 

For the LOF+REVEL≥50, the LOF+REVEL≥75 and the LOF-only thresholds, respectively 9,255, 5,781 

and 3,233 genes reached the minimum of having at least cMAC ≥10 to allow testing (Figure 2). In 

sum, 31,568 tests were performed across 13,299 genes. Of note, since we tested each gene for 



having a differential variant burden in cases and controls for different deleteriousness thresholds, 

a single gene could theoretically be identified multiple times in the burden test.  

 

Identification of genes for which rare variant-burden associates 

with AD risk 

We performed 31,568 tests in our analysis, and the genetic inflation of our analysis model was 

𝝀=1.038 (Figure 3). Of all tests, 19 tests passed the FDR<0.2 threshold for having a suggestive 

differential variant burden in AD cases and controls (Table 2, Figure 3). These tests covered 11 

genes (in order of significance): SORL1, TREM2, ABCA7, ATP8B4, ADAM10, ABCA1, ORC6, CBX3, 

PRSS3, B3GNT4 and SRC. Of these, 6 tests (covering 4 genes) were significant when using a more 

conservative family-wise error rate correction for multiple testing (Holm-Bonferoni corrected 

p<0.05): SORL1, TREM2, ABCA7, and ATP8B4. 

The predicted deleteriousness and the number of identified rare variants varied per gene. We 

aimed to accommodate for this variability by using different deleteriousness predictions 

thresholds. Tests using the LOF+REVEL≥25 threshold provided the most evidence for an 

association between variant-burden and AD risk (i.e. lowest p value) for the TREM2, ABCA7, 

ATP8B4, ORC6, CBX3, PRSS3, B3GNT4 genes. Tests using the LOF+REVEL≥50 threshold provided 

the most evidence for SORL1, ABCA1 and SRC, and testing using the LOF+REVEL≥75 threshold 

provided the most evidence for an association for the ADAM10 gene (Table 2, Figure 3). The 

SORL1, ABCA7, ATP8B4, ADAM10, and ABCA1 genes were identified using multiple thresholds 

(light grey gene names in Figure 3). Most genes were associated with an increased burden in 

cases, but at the FDR<0.2 significance level we identified CBX3 and PRSS3 which exhibited a lower 

burden of LOF+REVEL≥25 variants in cases than in controls, indicating potential protective 

association (Table 2). 

 

Dependence of effect sizes on variant deleteriousness category 

Next, we investigated the effect on AD risk for variants from the four predicted variant 

deleteriousness categories. In our dataset all genes (except CBX3) included LOF variants. For 7 

genes, we identified at least 3 carriers with LOF variants (SORL1, TREM2, ABCA7, ATP8B4, 

ADAM10, ABCA1, ORC6). For 6 of these 7 genes, we observed that the LOF variant category had 

a higher ordinal OR point-estimate than the (missense) variant categories (p=0.06, binomial test) 

(Figure 4). Finally, when tested whether variant impact was ordered according to predicted 



deleteriousness: LOF ≥ REVEL 75-100 ≥ REVEL 50-75 ≥ REVEL 25-50 using a trend test (see 

methods), this test was significant (FDR<0.05) for SORL1, ADAM10, and ABCA1.  

Relation between variant-burden and age at onset 

Subsequently, we investigated the relationship between age and variant-burden by testing if 

variant-burden in AD patients decreased with the age at onset categories ≤65 (EOAD), 65-70, 70-

80 and >80 (Figure 5). The median age at onset in the complete dataset was 73. For most of the 

identified genes, the burden of damaging variants was highest in younger cases, and decreased 

with increasing age at onset. The median age at onset of case carriers, was lowest in ORC6 (60y), 

followed by ADAM10 (62y), SRC (64y), B3GNT4 (66y), SORL1 (67y), ABCA1 (70y), TREM2 (70y), 

ABCA7 (70y) and was the highest in ATP8B4 (72y). Notably, while the median age at onset of 

missense variants in SORL1 was 68, it was lower for LOF variant carriers (60). In the ATP8B4, CBX3, 

and PRSS3 genes we observed no relationship between the variant burden and age at onset. Note 

that the variants in the latter two genes were associated with a protective effect, and therefore 

most carriers are controls.  

 

Carrier or variant frequency 

In line with the above, the fraction of variant carriers generally decreased with increasing age 

(Figure 5). However, a considerable fraction of older AD patients carries variants in the SORL1, 

TREM2, ABCA7, ATP8B4 and ABCA1 genes, suggesting that variants in these genes also contribute 

to an increased risk of late-onset AD. Of note, there were only a few carriers of damaging variants 

in the ADAM10, ORC6, B3GNT4 and SRC genes (respectively 13, 16, 29 and 27 carriers), such that 

impairment of these genes is likely to contribute to AD in only a few patients.  

A relatively large fraction of variants from the most significant variant threshold per gene were 

singletons, i.e. variants that were carried by only a single individual in our dataset (Figure 6a). 

There were 126 carriers of a singleton variant in SORL1 (43%), 9 in ADAM10 (69%), 105 in ABCA1 

(48%), 14 in ORC6 (88%), 17 in B3GNT4 (59%) and 10 in SRC (37%). However, the AD-association 

of the TREM2, ABCA7 and ATP8B4 genes was carried by more common variants: singletons were 

identified in only 8 carriers (3%), 167 carriers (13%) and 45 carriers (6%). Finally, in the protective 

genes we also found relatively low numbers of singletons: 0 in CBX3 (0%) as the association signal 

was driven by a single recurrent variant and 14 in PRSS3 (13%), indicating that their protective 

signal was effectuated by more common (but still rare) variants. We further tested if the effect 



size trended to be higher for the rarer variants: a significant trend (FDR<0.05) was observed for 

SORL1 (p≤0.00004) and ABCA1 (p≤0.00004), and a suggestive trend in TREM2 (p=0.04) (Figure 6). 

 

Age-matched analysis 

To investigate whether the observed variant burden-effects were AD-specific, or whether they 

could also be explained by other age-related diseases, we performed a sensitivity analysis with 

strict age-matching. There was a strong agreement between the effect sizes when comparing 

age-matched case-control analysis and the case-control analysis unselected for age (Figure S3). 

The age-matched analysis supported for each gene a role in AD, but based on the confidence 

intervals for the effect of the SRC gene, we cannot exclude the possibility that observed effects 

might also be attributable to a non-AD age-related disease. We observed a slight reduction in the 

effect size in the age-matched analysis, as observed for SORL1 and TREM2. This was according to 

expectations, as mortality due to AD causes an additional age-related effect between young cases 

and old controls, which is removed by the age-matching.  

 

APOE-ε4 sensitivity analysis 

We did not correct our analysis for the common APOE genotype because this is not a confounder 

for the identification of a differential burden of rare variants between cases and controls. To 

investigate the validity of this assumption, we performed a sensitivity analysis in which we 

compared analysis corrected and uncorrected for carriership of the APOE-ε4 allele, which did not 

change our results (Figure S2).  

 

Gene specific analysis 

For our genome wide burden analysis variant selection criteria and thresholds were uniformly 

applied to all variants in each gene. Therefore, it was necessary to refine burden effects by 

correcting for variants with divergent effects compared to the variants in the burden (see 

Methods and Table S3). Gene-specific analyses are described for each gene in the Supplementary 

Material. This led to a refinement of the associations of SORL1, TREM2, ABCA7, and ABCA1 (Table 

1, Figure 7).  

 



Carriers of multiple variants 

We finally measured the presence of multiple damaging variants in carriers. Of the cases, 

1,963/12,652 cases (15.5%) carried at least one damaging variant in at least one gene. Of these, 

101 cases carried damaging variants in two genes, and 1 case carried damaging variants in three 

genes. This was slightly lower than expected under a model in which damaging variants were 

randomly distributed across the cases (114.3 double and 3.4 triple carriers expected, ratio=0.86, 

p=0.082). In particular, we observed that there were significantly less carriers of damaging 

ATP8B4 variants that also carried a damaging variant in another gene (41 observed, 62.2 

expected, ratio=0.66, p=0.0028). Of the individuals who carried damaging variants in multiple 

genes, 48.0% were classified as EOAD, compared to 36.9% of the cases that carried only a single 

damaging variant (p=0.027, fisher-exact test).  

 

Discussion 

In our WES study we identified four genes in which carrying a rare deleterious variant associated 

with AD at exome-wide significance. Of these, we identified rare predicted damaging variants in 

the ATP8B4 gene as a novel AD risk factor, the other three genes were previously established AD 

risk factors, i.e. SORL1, TREM2 and ABCA7(7, 9, 20, 21). Additionally, we identified seven genes 

with suggestive evidence for an association with AD risk. Of these, the ADAM10 and ABCA1 genes 

were previously identified to be associated with AD-related mechanisms (22, 23), while for rare 

variants in the ORC6, CBX3, PRSS3, B3GNT4, and SRC genes we provide a first report for a 

suggestive association with AD risk. Almost all genes showed an increased variant burden in the 

younger cases, with the exception of the variants in CBX3 and PRSS3, which were associated with 

a protective effect. For several genes we observed trends that the rarest variants associated with 

the highest effect sizes. Also, a large fraction of the signal in SORL1, ADAM10, ABCA1, ORC6, 

B3GNT4 and SRC came from singleton variants, while in TREM2, ABCA7, ATP8B4 CBX3, and PRSS3 

the majority of the signal was carried by more common (but still rare) variants. Common 

missense variants (MAF > 1%), which occur in TREM2, SORL1 and ABCA7, had relatively small (or 

protective) effects compared to the effect size observed in the burden test. Investigation of gene-

functions indicated that most identified genes were associated with aspects of the Alzheimer 

Disease pathophysiology. 

 

Impaired SORL1 function (Sortilin Related Receptor 1) has been associated with increased Aβ 

production due to a disruption of APP processing (24, 25) and a decrease in the degradation of 



intracellular nascent Aβ peptides by lysosomes (26). In the present dataset, we identified a total 

of 168 damaging variants in the SORL1 gene, carried by 291 individuals. The association with AD 

is mainly driven by variants which are individually extremely rare and mostly singletons. The 

burden of predicted damaging SORL1 variants was highest in EOAD cases and decreased with 

increasing AAO (9, 16, 27). We observed a relationship between the predicted variant 

deleteriousness level and the effect on AD risk: LOF variants associated with a 36-fold increased 

risk of EOAD and 7-fold increased risk of LOAD, while missense variants associated with a 2.7 and 

1.9-fold increase risk of EOAD and LOAD, respectively.  

 

TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) is involved in microglia-dependent 

pathophysiological processes in AD through Aβ phagocytosis and clearance and/or compaction 

in amyloid plaques (28, 29). In our dataset, we identified 17 damaging TREM2 variants carried by 

291 individuals. Although damaging TREM2 variants are rare, most variants were observed in 

several individuals, which is different from what is observed in, for example, SORL1. We found a 

clear relation with predicted variant deleteriousness and the association with AD: TREM2 LOF 

variants after refinement associated with a 10.8-fold increased risk of AD, while missense variants 

associated with a 3.5-fold increased AD risk.  

 

One of the functions of ABCA7 (ATP Binding Cassette Subfamily A Member 7) is to clear the blood 

brain barrier from Aβ (30). Impaired ABCA7 protein function was also associated with a faster 

APP endocytosis, an increased in vitro Aβ production, and an accelerated amyloid pathology 

accumulation in young transgenic mice (31-33). In our dataset, we found an AD-association of 

damaging variants in the ABCA7 gene based on 272 variants carried by 1,267 individuals. As many 

as ~7.5% of all AD cases with an AAO<70 years and 5% of all controls carried such an ABCA7 

variant. The association with AD is driven by damaging variants with different features: some are 

individually extremely rare or singletons, while others occur in several individuals. Both LOF and 

missense variants in the ABCA7 gene were associated with a ~1.4-1.8-fold increased AD risk, but 

the burden of damaging variants concentrated in younger AD patients. 

 

We identified a new signal in the ATP8B4 gene (ATPase Phospholipid Transporting 8B4) which 

encodes a member of the cation transport ATPase which is involved in phospholipid transport at 

the cell membrane.  ATP8B4 is expressed in macrophages/microglia in the brain and rare variants 

in this gene have been associated with the risk of developing systemic sclerosis, an autoimmune 

disease (34). Approximately 4% of the AD cases and 2.5% of the controls carried a rare, predicted 

deleterious variant in ATP8B4. The burden reaches exome wide significance based on 74 variants 



carried by 767 individuals. The association with AD was mainly driven by 3 missense variants 

(G395S, C874R, and H987R), while the burden of highly rare variants (allele count < 5) did not 

associate with AD. In contrast to SORL1, TREM2 and ABCA7, the variant burden was not 

associated with AAO. A common variant in the ATP8B4 locus (rs6493386) was previously 

associated with both AD risk and LDL (35, 36). A signal in the proximity of the ATP8B4 locus was 

reported in a large GWAS meta-analysis, which was tagged to the neighboring SSP2L gene (4). It 

cannot be excluded that the SSP2L association with AD might be driven by ATP8B4 rather than 

by SSP2L. Our observations highlight potential implication of ATP8B4 in inflammation and may 

provide additional support for the importance of microglia/inflammation in the AD 

pathophysiology. 

 

α-secretase ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) plays 

a major role in APP metabolism (37). In our analysis, we identified only 11 damaging ADAM10 

variants in 12 carriers. With the rare occurrence of such variants only a very strong association 

with AD will enable the detection of an exome-wide significant signal, even in the current large 

sample. Indeed, we found  that damaging LOF variants and missense variants were suggestively 

associated with a 15-fold and 6-fold increased AD-risk, respectively. In addition, similar to the 

association signals identified in SORL1 and ABCA7 genes, these LOF and high-impact missense 

variants showed suggestive association with an increased risk of EOAD. Notably, LOF variants in 

ADAM10 were previously reported to be associated with an autosomal dominant inheritance of 

abnormal pigmentation of the skin (38), such that skin pigmentation might represent a clinical 

proxy for carrying a rare LOF variant in the ADAM10 gene. We could not retrospectively 

investigate skin pigmentation in our cohort. Common variants in ADAM10 were recently 

associated with AD risk in a GWAS meta-analysis (REF), which aligns with the independent AD-

associations with common variants and rare variant-burden also observed for SORL1, ABCA7, 

and, most likely, ATP8B4 . Previous reports identified the Q170H and the R181G variants in 

ADAM10 in LOAD families (39). While we did detect these variants in our sample, the single 

variant analysis indicated that these were not significantly associated with AD.  

The role of the ABCA1 transporter (ATP Binding Cassette Subfamily A Member 1) gene, has been 

assessed extensively (40). ABCA1 protein lipidates APOE in the CNS (41), and poor ABCA1-

dependent lipidation of APOE-containing lipoprotein particles may increase Aβ deposition and 

fibrillogenesis (42). Indeed, mice overexpressing ABCA1 in an AD-like mouse model had 

significantly less Aβ deposition (41). A rare deleterious missense variant (A937V) was previously 

proposed to be implicated in a LOAD family (43) and another rare deleterious missense variant 

(N1800H) was previously associated with AD risk (44). Based on 142 variants carried by 216 



individuals, we found that the burden of rare variants in the ABCA1 gene was suggestively 

associated with increased risk of AD. This variant burden did not include the A937V and N1800H 

variants, which were previously associated with AD (43, 44), respectively due to differential 

missingness and a low REVEL score. We were able to manually include the N1800H variant in a 

post hoc analysis, which improved the association of ABCA1 from p=2.4e-5 to p=4.5e-7, crossing 

the conservative Bonferroni threshold. Damaging variants in ABCA1 associated with AD with a 

pattern similar as SORL1: early onset cases carried the highest fraction of predicted deleterious 

variants and a higher level of variant deleteriousness associated with a higher AD risk. While LOF 

variants in ABCA1 were suggestively associated with a relatively modest >4-fold increased early 

onset AD risk (i.e. compared to damaging variants in SORL1 or TREM2), the large number of 

damaging ABCA1-variants in our sample enabled the detection of the suggestive association.  

 

The protein encoded by ORC6 (Origin Recognition Complex Subunit 6) is part of a highly 

conserved six subunit protein complex essential for the initiation of the DNA replication in 

eukaryotic cells (45). It is expressed at a low level in neurons (46). We identified 15 rare damaging 

mutations in 16 individuals (14 of whom were cases), which were suggestively associated with a 

strong >9-fold increased risk for having early onset of AD, in a pattern resembling the AD-

association of damaging SORL1 variants. When this association replicates, further functional 

investigation is necessary to explain the involvement of the ORC6 protein in AD pathophysiology. 

 

The protein encoded by the B3GNT4 gene is a member of the beta-1,3-N-

acetylglucosaminyltransferase protein family. B3GNT4 was associated with serum urate and 

triglyceride concentration in GWAS (47, 48) which were both associated with increased risk for 

dementia and AD. While the protein is highly expressed in the brain (49), its function in the brain 

is not well explored. We identified 22 rare damaging mutations in 29 individuals, and the burden 

of damaging variants was highest in the early onset cases as evidenced by a suggestive >12-fold 

increased risk for early onset AD. The few variants identified included only one LOF variant, such 

that the number of variants was too low to infer a relation with variant-damagingness.  

 

The protein encoded by SRC (Proto-Oncogene, Non-Receptor Tyrosine Kinase) is a non-receptor 

protein tyrosine kinase that belongs to the same family as Pyk2, an AD genetic risk factor, and 

Fyn. Moreover, SRC is known to bind Pyk2, which is critical for Pyk2 activity (50) SRC is activated 

by many different classes of cellular receptors including immune response receptors, integrins 

and other adhesion receptors (51) The suggestive AD-risk increasing signal in SRC-variants was 

based on 15 damaging variants carried by 27 individuals, and the strongest association was found 



in early onset cases (OR=6.6). SRC has been described to potentially modulate APP 

trafficking/metabolism (52), but also Tau phosphorylation (53). 

 

We identified a single variant in the CBX3 gene (Chromobox 3) that suggestively associated with 

a decreased AD risk, with an odds ratio of 0.2. The variant was carried by 30 individuals, mostly 

controls and several EOAD cases. The protein encoded by CBX3 binds DNA and is a component 

of heterochromatin (54). it is ubiquitously present and, in the brain, mainly expressed in neurons 

(46). Little is known about CBX3 functions in the brain and this protein has been described to 

maintain lineage specificity during neural differentiation (55), as well as promoting glioma cell 

proliferation (56). The CBX3 variant was previously identified to have a suggestive signal in an AD 

WES sequencing analysis (which included overlapping samples with this study)(12). 

 

Last, we identified a suggestive association between variants in the PRSS3 (Serine Protease 3) 

gene and two-fold decreased risk for AD (OR=0.5). We identified 21 variants in this gene carried 

by 111 individuals, of which 14 were singletons. This indicates that the majority of this protective 

signal was effectuated by more common (but still rare) variants. PRSS3 encodes a serine protease 

of the trypsin family which is mainly expressed in pancreas and in the neurons of the brain (46). 

The Kunitz inhibitor domain in APP has been reported to be a highly specific substrate of the 

PRSS3 protease (57), but the protective effect of these variants needs to be replicated and further 

explored in future studies. 

 

This comparison of between exomes from AD cases and controls represents one of the largest 

performed thus far, which allows the detection of differential burden of damaging variants in 

genes that were not yet associated with AD. Across all genes, a large part of the signal depended 

on singletons, indicating that high level of accuracy is warranted. We applied several approaches 

to maximize the statistical power and the accuracy of the discovery study. (i). We collected and 

merged raw WES data on one server which allowed us to uniformly apply a quality control 

pipeline. (ii) We designed custom algorithms that detected and removed the prevalent batch 

effects across all data simultaneously, which were highly prevalent due to the use of different 

WES kits and sequencing laboratories. (iii). We confirmed that the variants were not somatic by 

checking allele balance, indicating that the protective signal in PRSS3 and CBX3 was not a 

consequence of age-related clonal hematopoiesis (ARCH) in our controls (58), who were on 

average older than our cases. (iv). We were able to accommodate differential variant effects by 

performing burden analyses across four different levels of predicted variant deleteriousness. (v). 



We took into consideration that cases with a higher age at onset may have a lower burden of 

damaging variants.  

Further, we performed several complementary analyses to explore additional potential biases. 

(vi). In an age-matched analysis we investigated whether burden associations with AD could also 

be due to a confounding factor such as age. This analysis supported a role in AD for all the eleven 

genes. (vii) A sensitivity analysis in which we compared our results when corrected and 

uncorrected for APOE-ε4 indicated that the observed associations between variant burden and 

AD risk are independent of APOE genotype. We could not explore possible synergistic or additive 

effects between carrying a damaging genetic variant in one of the identified genes and APOE 

genotype, because part of our sample was selected according to APOE genotype, which 

complicates such an analysis. Moreover, stratification by APOE genotype would reduce statistical 

power. 

 

In conclusion, our study provides further evidence for a pivotal role of APP processing, lipid 

metabolism, and microglia and neuroinflammatory processes in AD pathophysiology (59-61). Of 

the genes identified here, five belong to the Aβ network, either through Aβ production (APP 

processing) or through increased aggregation / decreased clearance. More specifically, the 

suggestive association of rare variants in ADAM10 with increased AD risk is in line with the 

important role of APP processing on top of the contribution of APP, PSEN1, PSEN2, SORL1 and 

ABCA7. Furthermore, next to the known AD-associations of variants in APOE, PLCG2, ABI3, ABCA7 

and TREM2, we find a suggestive association of rare variants in ABCA1 with AD risk, providing a 

novel genetic determinant with a role in Aβ aggregation and clearance. Moreover, with the 

identification of  ATP8B4 as a novel AD genetic risk factor, further strengthening the evidence for 

the involvement of microglia and neuroinflammation in AD. We acknowledge that the novel 

genetic associations we identified will require further investigation and replication in 

independent samples before they can be accepted as genuine AD genetic determinants. Notably, 

with this sample we were able to assess 13,299 genes of the total 19,822 autosomal protein-

coding genes and not all types of genetic variation. A larger sample size and the use of whole 

genome sequencing will allow the investigation of even more genes, which will require continued 

efforts in combining and jointly analyzing samples. 
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Table 1 

gene 

deleteriousness 

threshold p-value FDR 

#variants / 

#carriers 

carrier frequency odds ratio (95% CI) age at onset 

EOAD / LOAD / control case / control EOAD / control LOAD / control median (IQR) 

SORL1 LOF+REVEL≥50 1.80E-18 <<0.01% 168 / 291 2.66% / 1.45% / 0.67% 2.6 (2.1-3.3) 3.6 (2.7-4.9) 2.1 (1.5-2.8) 67 (60-74) 

LOF 9.00E-16  38 / 49 0.81% / 0.16% / 0.02% 16.4 (9.0-29.8) 36.1 (10.8-inf) 7.2 (2.0-50.9) 60 (56-68) 

REVEL 50-100 4.80E-10  130 / 245 1.92% / 1.29% / 0.64% 2.2 (1.7-2.8) 2.7 (2.0-3.8) 1.9 (1.4-2.6) 68 (60-75) 

REVEL 50-100 [refined] 6.20E-12  129 / 261 2.02% / 1.44% / 0.63% 2.5 (1.9-3.2) 3.0 (2.1-4.1) 2.2 (1.6-3.0) 68 (60-75) 

TREM2 LOF+REVEL≥25 2.80E-16 <<0.01% 17 / 291 2.12% / 1.83% / 0.55% 3.6 (2.8-4.6) 4.2 (2.9-6.0) 3.4 (2.4-4.7) 70 (63-76) 

LOF 7.60E-03  9 / 39 0.25% / 0.26% / 0.08% 3.3 (1.7-6.5) 3.4 (1.3-9.0) 3.3 (1.4-7.7) 72 (63-76) 

LOF [refined] 4.70E-03  8 / 21 0.20% / 0.14% / 0.01% 10.8 (4.4-26.9) 14.2 (3.3-460.5) 9.4 (2.6-320.4) 70 (63-75) 

REVEL 25-100 8.90E-15  8 / 253 1.87% / 1.58% / 0.47% 3.7 (2.8-4.8) 4.3 (2.9-6.4) 3.4 (2.4-4.9) 69 (63-76) 

REVEL 25-100 [refined] 9.00E-20  10 / 336 2.56% / 2.04% / 0.66% 3.5 (2.8-4.4) 4.4 (3.1-6.1) 3.2 (2.3-4.3) 69 (63-76) 

ABCA7 LOF+REVEL≥25 8.80E-08 0.06% 272 / 1267 7.41% / 6.15% / 5.04% 1.3 (1.2-1.5) 1.5 (1.3-1.7) 1.3 (1.1-1.4) 70 (62-78) 

LOF 1.50E-03  47 / 107 0.81% / 0.54% / 0.32% 1.8 (1.2-2.6) 2.2 (1.4-3.7) 1.5 (1.0-2.4) 69 (60-74) 

REVEL 25-100 4.20E-06  225 / 1162 6.60% / 5.62% / 4.73% 1.3 (1.2-1.5) 1.4 (1.2-1.7) 1.2 (1.1-1.4) 70 (62-79) 

REVEL 25-100 [refined] 4.10E-08  223 / 983 5.91% / 4.91% / 3.69% 1.4 (1.3-1.6) 1.6 (1.4-1.9) 1.3 (1.2-1.6) 70 (62-78) 

ATP8B4 LOF+REVEL≥25 4.60E-07 0.24% 74 / 767 4.43% / 4.12% / 2.68% 1.5 (1.3-1.8) 1.6 (1.3-1.9) 1.5 (1.3-1.8) 72 (62-79) 

LOF 2.10E-01  13 / 34 0.25% / 0.16% / 0.12% 1.5 (0.7-3.1) 1.8 (0.7-4.4) 1.4 (0.6-3.1) 73 (59-78) 

REVEL 25-100 1.10E-06  61 / 733 4.19% / 3.96% / 2.57% 1.5 (1.3-1.8) 1.6 (1.3-1.9) 1.5 (1.3-1.8) 72 (63-79) 

ADAM10 LOF+REVEL≥75 2.70E-06 1% 11 / 12 0.25% / 0.01% / 0.01% 7.3 (1.3-46.0) 19.8 (4.3-inf) 1.1 (0.0-32.2) 62 (59-64) 

LOF 2.40E-04  9 / 9 0.17% / 0.01% / 0.01% 5.4 (1.6-17.9) 13.4 (2.9-inf) 1.1 (0.0-28.7) 63 (59-64) 

REVEL 75-100 0.0016  2 / 3 0.07% / 0.00% / 0.00% -- -- -- -- 

ABCA1 LOF+REVEL≥50 2.50E-05 6.5% 142 / 216 1.55% / 1.05% / 0.72% 1.7 (1.3-2.3) 2.3 (1.6-3.2) 1.5 (1.1-2.1) 70 (59-76) 

LOF 5.70E-03  21 / 31 0.22% / 0.15% / 0.10% 3.2 (1.5-6.8) 4.2 (1.5-12.0) 2.7 (1.0-7.3) 70 (59-77) 

LOF [refined] 2.50E-03  20 / 24 0.22% / 0.14% / 0.03% 4.9 (2.1-11.4) 6.9 (1.8-25.9) 4.0 (1.1-14.4) 68 (59-77) 

REVEL 50-100 6.20E-04  121 / 185 1.33% / 0.90% / 0.62% 1.6 (1.2-2.2) 2.0 (1.4-3.0) 1.4 (1.0-2.0) 69 (59-76) 

REVEL 50--100 [refined] 1.20E-06  122 / 230 1.70% / 1.23% / 0.63% 2.1 (1.6-2.7) 2.5 (1.7-3.5) 1.9 (1.3-2.6) 68 (58-76) 

ORC6 LOF+REVEL≥25 5.60E-05 12% 15 / 16 0.27% / 0.03% / 0.02% 4.1 (1.3-24.7) 9.4 (3.1-84.2) 1.3 (0.2-12.9) 60 (59-65) 

LOF 5.10E-02  4 / 4 0.07% / 0.00% / 0.01% -- -- -- -- 

REVEL 25-100 0.00042  11 / 12 0.20% / 0.03% / 0.01% 6.4 (1.9-21.3) 13.3 (3.1-inf) 2.7 (0.4-82.7) 61 (59-67) 

CBX3 LOF+REVEL≥25 6.00E-05 12% 1 / 30 0.12% / 0.02% / 0.26% 0.2 (0.1-0.3) 0.3 (0.1-0.9) 0.1 (0.0-0.3) -- 

PRSS3 LOF+REVEL≥25 7.60E-05 14% 21 / 111 0.27% / 0.43% / 0.72% 0.5 (0.3-0.7) 0.3 (0.2-0.7) 0.6 (0.4-0.9) -- 

B3GNT4 LOF+REVEL≥25 9.50E-05 16% 22 / 29 0.32% / 0.16% / 0.02% 8.1 (2.4-32.1) 12.6 (4.0-97.8) 6.0 (2.1-53.3) 66 (60-74) 

SRC LOF+REVEL≥50 1.10E-04 18% 15 / 27 0.32% / 0.10% / 0.06% 3.3 (1.5-7.4) 6.6 (2.3-18.8) 1.9 (0.6-5.8) 64 (58-73) 



 

Results from the discovery analysis. Per gene, results are shown for the most significant 

deleteriousness threshold, and separately for LOF variants and missense variants (except for 

CBX3, PRSS3, B3GNT4, SRC which have ≤1 LOF variant carrier). A carrier is an individual with at 

least one or more minor alleles. Carrier frequency is the percentage of people that carry one or 

more variants. Tests were performed at the gene level, putatively gathering several transcripts 

of a same gene. 

 

 

 



Figure 1 

  

 

A) Sample QC We removed (1) samples with very low read coverage, (2) samples with excessive 

contamination, (3) samples for which the gender-annotation did not fit with the sex-

chromosomal profile, (4) samples that were non-Caucasian, (5,6) samples with an excess of novel 

SNPs or indels, (7) samples that deviated in heterozygous/homozygous or transition/transversion 

ratios, (8) closely related samples (IBD), and (9) samples that were on PCR-plates that were 



enriched for gender-annotation mismatches, (10) removal of samples that carried variants 

classified as pathogenic or likely pathogenic in Mendelian dementia genes (see supplemental 

data). (11) samples with a mismatch between Braak stage and AD label (AD case with Braak stage 

<= 1 or a control with Braak stage >= 5) or were not annotated as an AD case or control.  

B) Variant QC, Multi-allelic SNPs were split into bi-allelic variants. (1) Variants that were in close 

vicinity, in cis and always occurred together, were merged into single events. (2) We designed a 

custom tool (see supplement to remove G>T and C>A variants, caused by the oxygenation of G 

bases (62). (3) Exclusion of variants in simple tandem repeat (STR) regions and low complexity 

regions (LCR). (4) Exclusion of variants that deviated in allele read balance (<0.25 or >0.75 for 

heterozygous calls and <0.9 for homozygous calls. (5) Exclusion of variants for which 

heterozygous calls had <20% of the coverage of reference calls. (6) Exclusion of variants that 

deviated from Hardy-Weinberg equilibrium in controls (p < 5 * 10e-8). (7) Exclusion of variants 

that failed VQSR (>99.5% tranche for SNPs, >99% tranche for indels). (8) Exclusion of variants that 

still presented batch effects that were not explainable by population structure or phenotype 

effects using a custom tool (see supplement). C) Variant selection. (1) variants in autosomal 

protein-coding genes that were annotated by VEP (version 94.5)(63), (2) selection of variants that 

directly affected the protein (missense or LOF annotation). (3) Missense variants with a REVEL 

score (Rare Exome Variant Ensemble Learner) (13) and LOF variants were annotated using 

LOFTEE (15). Selection of missense variants with a score ≥ 25 (score range 0 - 100). and LOF 

variants with a LOFTEE ‘high-confidence’ flag, and a VEP ‘high impact’ flag. (4) Selection of 

variants that were estimated to have at least one carrier, and had a minor allele frequency (MAF) 

of <1%. (5) Selection of variants with <20% genotyping missingness (genotypes with a read depth 

< 6 are considered missing) that passed a filter for differential missingness between the EOAD, 

LOAD and control groups. Variants were divided in 4 deleteriousness categories.  

 

In colors the deleteriousness categories (translucent) used to construct the deleteriousness 

thresholds (opaque). Four different deleteriousness thresholds were used to perform burden 

tests. Of the missense variants, 572 were also classified as LOF variants and assigned to the LOF 

category.  

  



 

Figure 2  

 

The number of genes tested per variant threshold. Only autosomal genes with a cumulative 

Minor Allele Count (cMAC) ≥10 were tested. 

 

 



Figure 3  

 
Quantile-quantile plot of observed p-values versus expected p-values in the absence of signal 

(log10 scale). In total, results of 31,568 different tests are shown, which were performed for 

13,299 genes. For each gene, the most significant test is shown opaque, tests for which the 

signal was less significant were shown translucent. Multiple testing correction thresholds are 

shown for suggestive and conservative thresholds. Color indicates if burden is enriched in cases 

(‘Damaging’) or controls (‘Protective’). 

 

 



Figure 4  

 
a) Odds ratios (ordinal test) per variant category. Significance is indicated if a trend in odds 

ratios was observed (i.e. a larger effect in the high deleteriousness categories and lower effect 

in lower deleteriousness categories). For missense variants, deleteriousness categories were 

merged when one category for REVEL (not LOF) categories if they had < 5 carriers; this was 

done, both for the visualization and the tests. When there were multiple neighboring 

deleteriousness categories to merge with, we merged with the smallest (in terms of carriers). 

Odds ratios for deleteriousness categories with 0 carriers and odds ratios with 0-inf confidence 

intervals are not shown. Categories with dashed confidence interval lines were not included in 

the most significant variant category. *: FDR < 0.05, **: FDR < 0.01, ***: FDR < 0.001. b) Age at 

onset per deleteriousness category and 95% CI. When the number of carrier cases per 

deleteriousness category was <10 carriers, the age at onset of these carriers was shown as 

individual dots. 

 

 

 



 

 

Figure 5  

 
a) Carrier frequency by age at onset. Carriers have a cumulative dosage >0.5 b) Odds ratio by 

age. Odds ratios are calculated by multinomial logistic regression. Results are shown for 

variants in the most significant deleteriousness threshold (indicated below the gene names). 

The significance symbols indicate if there is a trend towards higher enrichment in younger 

patients (see methods). *: FDR < 0.05, **: FDR < 0.01, ***: FDR < 0.001. 

 

 

 



 

Figure 6  

 

a) Cumulative minor allele count by variant frequency For each gene, the number of variants 

(minor alleles) detected in cases and controls in the predicted damagingness levels threshold 

associated with the most significant association with AD (indicated at the top). Variants were 

binned according to “allele count”, the occurrence of each unique variant in the sample (from 

extremely rare singletons to more common variants with more than 10 carriers). The number 

above each bar is the number of unique variants in the bin. b) Odds ratio by variant frequency. 

For the same variants and bins as in A), the odds ratio of the AD association and its confidence 

interval is shown. Odds ratios are not shown for bins with less than 5 carriers.  

 

 

 



Figure 7 

 
Odds ratios (logistic test) for LOF and missense variants after refinement analysis. Case/control 

(+95%CI), as well as EOAD- and LOAD-specific odds ratios are shown for variant categories with 

≥5 carriers.  
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Supplemental tables 

Table S1: Sample-characteristics per contributing study 

 

 Samples Gender (%female) Case/Control APOE genotype Diagnostic validation 

 

before 

QC (#) 

after 

QC (#) 

Cases Controls  EOAD LOAD Controls Cases Controls Neuro- 

patho- 

logy CSF Clinical study % % % cases # AAO # AAO # ALS % E4 % E4 

France  

ADES-FR 3318 3254 63.1% 58.7% 61.4% 1068 59.0 930 78.2 1256 75.5 28.9% 11.6% 15 624 2615 

Germany  

AgeCoDe-UKBonn 394 371 68.4% - 99.7% 98 59.0 272 84.7 1 - 24.3% 50.0% 0 0 371 

Spain  

Barcelona SPIN 60 59 44.0% 44.4% 84.7% 50 57.3 0 N/A 9 72.8 3.0% 16.7% 37 13 9 

The Netherlands  

100-plus Study 276 254 84.4% 71.6% 25.2% 0 NA 64 101.5 190 102.9 7.0% 8.7% 0 0 274 

ERF Study 1325 400 50.0% 57.3% 1.0% 1 - 3 75.8 396 48.1 50.0% 17.0% 0 0 400 

AC-ERC 81 70 54.3% NA 100.0% 57 57.0 13 69.1 0 NA 44.3% NA 3 40 27 

Rotterdam Study 2699 1891 68.9% 55.4% 19.4% 1 - 366 83.5 1524 82.7 25.8% 14.0% 0 0 1891 

ADC-Amsterdam 518 483 55.1% NA 100.0% 341 57.3 142 68.6 0 NA 30.6% NA 0 483 0 

United Kingdom  

PERADES1 4936 4140 58.3% 57.2% 83.3% 1265 58.1 2185 76.7 690 81.5 31.6% 12.0% 0 0 4140 

CBC 471 363 54.1% 40.1% 30.6% 33 60.1 78 76.8 252 75.8 36.8% 18.7% 363 0 0 

UCL-DRC EOAD 539 409 54.8% NA 100.0% 389 54.9 20 76.6 0 NA 29.7% N/A 7 35 367 

Europe total  

ADES 15088 12057 60.2% 55.7% 62.1% 3336 57.4 4151 79.0 4570 77.5 29.7% 13.5% 788 1195 10094 

United States  

ADSP2 11365 9651 57.6% 58.3% 54.7% 757 62.4 4519 77.2 4375 86.5 23.7% 7.2% 0 0 9651 

  

Total 25,982 21,345 59.2% 57.5% 59.3% 4060 58.8 8,592 77.9 8693 82.1 26.9% 10.1% 425 1195 19745 

 

Characteristics of the samples contributed by each study, grouped by country. A.A.O: 

mean age at onset; A.L.S. mean age at last screening. 1The PERADES sample is UK-

based, but also includes samples from Spain and Italy. 2The ADSP cohort is composed 

of cohorts from the ADGC and CHARGE consortia. 
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Table S2: Capture kits used by the contributing studies. 

Study Capture kits (#samples, after QC) 

France  

ADES-FR Agilent V1: 6,Agilent V3: 10,Agilent V4: 119, 

Agilent V4UTR: 14,Agilent V5UTR: 789, 

Agilent V5: 1362, WGS: 954 

Germany  

AgeCoDe-UKBonn Nimblegen V2: 371 

Spain  

Barcelona SPIN Nimblegen V3: 59 

The Netherlands  

100-plus Study Agilent V6: 40,Nimblegen V3: 214 

ERF Study Agilent V4: 400 

AC-ERC Nimblegen V2: 70 

Rotterdam Study Nimblegen V2: 1891 

ADC-Amsterdam Agilent V6: 180,Nimblegen V3: 303 

United Kingdom  

PERADES1 Nextera v1.2: 4140 

CBC Nimblegen V2: 63, 

Multiplex Illumina TruSeq v2: 100, 

Multiplex Illumina TruSeq: 200 

UCL-DRC EOAD Sureselect: 5, Haloplex: 404 

United States  

ADSP-BCM WGS: 11, Nimblegen VCRome v2.1: 2186 

ADSP-Broad Institute WGS: 16, Illumina Rapid Capture Exome: 4112 

ADSP-WUGSC WGS: 36, Nimblegen VCRome v2.1: 3290 

WGS=whole genome sequencing.  
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Table S3: Single variant analysis. 

 

Gene 

Transcripts 

(canonical=bold) 

 

SNP id 

Burden 

outlier 

FDR 

Case/Control  

Protein change (per transcript) 

(bold: name in text) 

 

Original reason 

for exclusion 

 

REVEL 

 

LOF 

 

MAF 

Refinement 

analysis 

bold=action 

italic=reason for 

rejection 

 

FDR 

OR (95%CI) 

SORL1 

ENST00000260197: A 
ENST00000525532: B 
ENST00000534286: C 

ENST00000532694: D 
ENST00000527934: E 

rs2298813 NA 4% 1.16 (1.05-1.27) A: A528T MAF/REVEL 11  4.9% too common 

rs140384365 NA 20% 2.49 (1.22-5.07) A: V1459I, B: V403I, C: V369I, 
D: V305I, E: V74I 

REVEL 9  0.08% added 

rs143536682 6.3% 79% 0.53 (0.19-1.47) A: S2175R, B: S1119R, C: S1085R, 
D: S1021R, E: S790R 

 81  0.04% removed 

TREM2 
ENST00000373113: A 
ENST00000373122: B 

ENST00000338469: C 

rs75932628 84% <<1% 3.74 (2.84-4.92) A,B,C: R47H  34  0.54% kept 

rs143332484 NA <<1% 1.58 (1.32-1.88) A,B,C: R62H MAF/REVEL 4  1.3% too common 

rs142232675 NA 1% 2.63 (1.56-4.45) A,B,C: D87N REVEL 20  0.15% added 

rs2234255 NA 1% 6.39 (2.68-15.2) A,B,C: H157Y REVEL 0  0.05% added 

rs538447052 11% 20% 1.91 (0.71-5.08) B: splice acceptor variant  NA HC 0.04% removed 

rs2234256 NA 2% 2.27 (1.34-3.86) A: L211P REVEL 0  0.15% added 

rs2234258 NA 20% 2.28 (0.90-5.78) C: W191X (stop gained) REVEL NA LC 0.05% low OR 

ABCA7 
ENST00000263094: A 
ENST00000433129: B 
ENST00000435683: C 

rs546173555 5.0% 89% 1.09 (0.37-3.20) A,B: R19W  54  0.04% removed 

rs201665195 100% <1% 3.67 (2.10-6.42) A,B: L101R  28  0.18% kept 

rs72973581 NA 2% 0.89 (0.81-0.97) A,B: G215S, C: G77S MAF/REVEL 16  5.6% too common 

rs3764647 NA 2% 0.85 (0.76-0.95) A,B: H395R, C:H257R MAF/REVEL 18  3.5% too common 

rs547447016 NA NA 2.01 (1.35-3.01) A,B: EEQ708-710X, C: EEQ570-572X diff. miss NA HC 0.27% QC 

rs117187003 1.8% 47% 0.84 (0.61-1.15) A,B: V1599M, C: V1461M  58  0.41% removed 

rs4147918 NA 1% 0.84 (0.76-0.94) A,B: Q1686R, C:Q1548R MAF/REVEL 15  3.6% too common 

rs200538373 NA NA 1.67 (1.23-2.28) A,B,C: c.5570+5G>C  diff.miss/REVEL NA Lit. 1   0.43% QC 

ATP8B4 
ENST00000284509: A 
ENST00000559829: B 

rs74811880 99% 5% 3.14 (1.55-6.34) A,B: H987R  26  0.08% kept 

rs74012834 55% 7% 1.41 (1.05-1.91) A,B: C874R  25  0.45% kept 

rs138799625 99% <<1% 1.83 (1.48-2.26) A,B: G395S  86  0.92% kept 

ABCA1 
ENST00000374736: A 

rs2066715 NA 17% 0.93 (0.85-1.01) A: V825I MAF/REVEL 0  6.1% too common 

rs2066714 NA 2% 0.91 (0.86-0.97) A: I883M MAF/REVEL 0  13.3% too common 

rs140365800 4.8% 74% 0.81 (0.29-2.22) A: D1018G  84  0.04% removed 

rs143180998 NA 13% 0.49 (0.25-0.96) A: A1182T REVEL 17  0.09% protective 

9:107565564:
C>A 

0.3% NA 0.94 (0.19-4.52) A: splice donor variant  NA HC 0.02% removed 

rs150125857 NA 13% 2.75 (1.27-5.95) A: R1680Q REVEL 0  0.07% added 

rs146292819 NA 2% 4.16 (2.02-8.56) A: N1800H REVEL 0  0.08% added 

CBX3 
ENST00000409747: A 

rs142550836 100% <<1% 0.16 (0.08-0.34) A: N74S  36  0.07% kept 

PRSS3 

ENST00000361005: A 
ENST00000379405: B 
ENST00000342836: C 

ENST00000429677: D 

rs143209949 12% 34% 0.75 (0.41-1.38) A:R125C, B:R68C, C: R82C, D:R61C  53  0.11% kept 

 

See detailed gene discussion for explanation. Variants are shown that are i) included in 

the burden but considered outliers (outlier FDR < 20%, fisher exact test), ii) are a 
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missense or LOF variant and associated with AD (case/control FDR < 20%, logistic 

regression), iii) are mentioned in the text for other reasons.  Refinement was only 

performed with variants from the first two categories. LOF: LC/HC: LOFTEE low/high 

confidence classification, Lit: based on literature this variant is known to be a LOF variant 

in ABCA7, but this was not recognized by LOFTEE. Refinement analysis: variants that 

were common (MAF > 1%), or had the opposite effect were not considered for the refined 

burden test.  
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Supplemental figures 

Figure S1: Age, gender, APOE genotype distribution 

 

 

Age, gender and APOE genotype distribution of all samples, stratified by case/control 

status.  
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Figure S2: Sensitivity Analysis: AD vs Age association 

 

Sensitivity analysis of the gene burden tests (for the most significant deleteriousness 

thresholds, Table 1). Comparison of the case/control odds ratio of an age-matched and 

a normal analysis. Age-matching was performed as described in the methods.  
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Figure S3: Read length per study 

 

 

Read length.  
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Figure S4: Genotype Quality 

 

Fraction of genotype calls with a genotype quality < 40. Each sample is evaluated in 

context of its capture kit. Samples that are considered outliers due to missingness or 

contamination are indicates with a red ‘*’ symbol.   
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Figure S5: Genetic sex 

 

Sex chromosome copy number versus gender annotation. Samples that failed the sex 

check were plotted last. Samples that were classified as XXY, XXY and XXX are indicated 

by respectively right, down and upwards pointing triangle symbols.  
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Figure S6: PCA: Sample population compared to 1,000G population samples 

 

First two PCA components of the study samples, together with 1000 genome samples for reference. Samples in red are 

considered population outliers. 
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Figure S7: first two population PCA components per study 

 

First two PCA components per study. Samples indicated as a ‘x’ are outliers.  
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Figure S8: Third and fourth population PCA components per study 

 

Third and fourth PCA component for each study. Samples indicated as a ‘x’ are outliers. 
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Figure S9: Number of novel SNPs (union of capture kits) 

 

Nr. of novel SNPs in the region representing the union of all capture kits + 100bp padding. 

Sample QC outliers (step 5-8) are shown as red stars. Variants are classified as novel if 

they are not present in DBSNP v150. Per geographical region, the comprehensiveness 

of the annotation of local rare variants in DBSNP might vary. 
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Figure S10: Number of novel indels per study (union of capture kits) 

 

Nr. of novel indels in the region representing the union of all capture kits + 100bp padding. 

Sample QC outliers (step 5-8) are shown as red stars. Variants are classified as novel if 

they are not present in DBSNP v150. Per geographical region, the comprehensiveness 

of the annotation of local rare variants in DBSNP might vary. 
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Figure S11: Number of novel SNPs (intersection of capture kits) 

 

Nr. of novel SNPs in the intersection of all capture kits. Sample QC outliers (step 5-8) are 

shown as red stars. Variants are classified as novel if they are not present in DBSNP 

v150. Per geographical region, the comprehensiveness of the annotation of local rare 

variants in DBSNP might vary. 



 20 

Figure S12: Number of novel indels (intersection of capture kits) 

 

Nr. of novel indels in the intersection of all capture kits. Sample QC outliers (step 5-8) are 

shown as red stars. Variants are classified as novel if they are not present in DBSNP 

v150. Per geographical region, the comprehensiveness of the annotation of local rare 

variants in DBSNP might vary. 
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Figure S13: Ts/Tv ratio known variants (intersection capture kits) 

 

Ts/Tv of known variants in the region covered by all capture kits. Sample QC outliers 

(step 5-8) are shown as red stars. Variants are classified as known if they are present in 

DBSNP v150. 
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Figure S14: Ts/Tv ratio novel variants (intersection of capture kits) 

 

Ts/Tv of novel variants in the region covered by all capture kits. Sample QC outliers (step 

5-8) are shown as red stars. The distribution is wide due to a low number of novel SNPs 

per sample (Figure S11). Ts/Tv values are for plotting purposes maximized at 8. Variants 

are classified as novel if they are not present in DBSNP v150. 
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Figure S15: Het/Hom ratio known variants (intersection capture kits) 

 

Het/Hom of known variants  in the region covered by all capture kits. Sample QC outliers 

(step 5-8) are shown as red stars. Variants are classified as known if they are present in 

DBSNP v150. Low het/hom ratios can be an indication of inbreeding, while high het/hom 

ratios can be an indication of contamination. The problem of contamination is mostly 

limited to more common variants, and not the rare variants that are the focus of this study
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Figure S16: First two PCA components per study, after sample QC. 

 

All analysis are corrected for the first 6 PCA components.  
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Figure S17: Third and fourth PCA components per study, after sample QC. 

 

All analysis are corrected for the first 6 PCA components.  
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Figure S18: Fifth and sixth PCA components per study, after sample QC. 

All analyses are corrected for the first 6 PCA components. 
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Supplemental methods 

We analyzed a total sample of 25,982 individuals sequenced with Illumina technology. Of 

these, 15,088 individuals were collected as part of the Alzheimer Disease European 

Sequencing consortium (ADES), comprising 11 studies from Germany, France, The 

Netherlands, Spain, and the United Kingdom. All studies were approved by the ethics 

committees of respective institutes, and all participants provided informed consent for 

study participation. These samples were combined with 11,365 samples from the 

Alzheimer’s Disease Sequencing Project (ADSP), which were described previously2 

(Table S1).  

 

Across all studies, AD cases were defined according to NIAA criteria3 for possible or 

probable AD or according to NINCDS-ADRDA criteria4 depending on the date of 

diagnosis. When possible, supportive evidence for an AD pathophysiological process was 

sought (including CSF biomarkers) or the diagnosis was confirmed by neuropathological 

examination (Table S1). Cases were annotated with the age at onset or age at diagnosis 

(2014 samples), otherwise, samples were classified as late onset AD (366 samples). 

Controls were not diagnosed with AD. All contributing datasets were sequenced using a 

paired-end Illumina platform, but different exome capture kits were used, and a subset of 

the sample was sequenced using whole genome sequencing (Figure S1, Table S2).  

Sample descriptions 

ADES-FR 

The ADES-FR project combines WES and WGS data from AD cases and controls from 

France5. Part of the patients are from the CNRMAJ-Rouen center (n=921) and patient 

ascertainment is described in detail in Nicolas et al.6 including an update of the inclusions 

by the French National network CNR-MAJ (national reference center for young Alzheimer 

patients). Briefly, unrelated cases with early-onset AD (age at onset ≤65 years) from 

France were recruited among patients who fulfilled the NIAA criteria3. The clinical 
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examination included personal medical and family history assessment, neurologic 

examination, neuropsychological assessment, and neuroimaging. In addition, 

cerebrospinal fluid (CSF) biomarkers indicative of AD were available for 67% of the cases. 

Cases with CSF biomarkers not consistent with  AD diagnostics were excluded. A positive 

family history (i.e., at least a secondary case among first- or second-degree relatives, 

whatever the age of onset) was present in 45% of cases. Patients were either screened 

by Sanger sequencing and QMPSF for pathogenic variants in APP, PSEN1 or PSEN2 

prior to WES or by the interpretation of WES data or both. Carriers of pathogenic variants 

were not included for WES or were secondarily excluded following WES analysis so that 

none of the CNRMAJ-Rouen patients included in this work prior to shared analyses is a 

carrier of a pathogenic variant in APP, PSEN1, PSEN2 as well as in a list of Mendelian 

dementia causative genes7. In addition, some controls were recruited directly from the 

CNRMAJ (n=30). A large part of the samples was from the European Alzheimer’s Disease 

Initiative (EADI) dataset8. This study combined clinical prevalent and incident cases of 

AD (n=1,121) (i) from Lille cross-sectional studies and (ii) from the Three-City (3C) study, 

a population-based, prospective study with 12-years of follow-up9. Diagnoses were 

established according to the DSM-III-R and NINCDS-ADRDA criteria4. Controls were 

selected among the 3C individuals not diagnosed with dementia after a 12-year follow-up 

(n=670). In addition, other controls were obtained from the FREX consortium. These 

controls (n=576) were specifically designed from 6 French cities with the aim of studying 

and establishing the French population genetic structure of rare variants. Overall, the 

ADES-FR samples includes 2,042 AD cases (1,088 EOAD and 954 LOAD) and 1,276 

controls. All patients and controls provided informed written consent for genetic analyses 

in a clinical and/or in a research setting, according to each study. In addition, the ethics 

committee of the Rouen University Hospital approved the use of retrospective data in the 

context of the ADES-FR project and with other ADES European and American partners 

(CERNI notifications 2017-015 and 2019-055). 
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AgeCoDe-UKBonn  

The AgeCoDe-UKBonn sample was derived from the following two sources, the German 

study on Aging, Cognition, and Dementia in primary care patients (AgeCoDe, n=294) and 

the interdisciplinary Memory Clinic at the University Hospital of Bonn (UKBonn, n=100). 

The German study on Aging, Cognition, and Dementia: The AgeCoDe study is a 

multicenter prospective general practice-based cohort study since 2001, including 

community dwelling elderly aged 75 years or older that were recruited at six study sites 

(Bonn, Düsseldorf, Hamburg, Leipzig, Mannheim, and Munich). The AgeCoDe study was 

approved by the local ethics committees of the Universities of Bonn, Hamburg, 

Düsseldorf, Heidelberg/Mannheim, Leipzig, and Munich. Before participation written 

informed consents were collected from all subjects. The AgeCoDe study aims to identify 

risk factors and predictors of cognitive decline and dementia10,11. Participants were 

recruited from general practitioner (GP) registries. Inclusion criteria were an age of 75 

and older, absence of dementia, one or more visits to the GP in the past year, no hearing 

or vision impairments and German as a native language. Exclusion criteria were only 

home-based GP consultations, severe illness with a fatal outcome within 3 months and a 

language barrier. The baseline assessment including 3,327 subjects was completed 

between 2002 and 2003. After the baseline assessment 70 subjects were excluded due 

to presence of dementia after standard assessment and 40 subjects were excluded with 

an age below 75 years. Participants were interviewed for follow up every 18 months. All 

assessments are performed at the participant’s home by a trained study psychologist or 

physician. At all visits, assessment includes the Structured Interview for Diagnosis of 

Dementia of Alzheimer type, Multi-infarct Dementia, and Dementia of other etiology 

according to DSM-IV and ICD-10 (SIDAM)12. The SIDAM comprises: (1) a 55-item 

neuropsychological test battery, including all 30 items of the MMSE and assessment of 

several cognitive domains (orientation, verbal and visual memory, intellectual abilities, 

verbal abilities/ calculation, visual–spatial constructional abilities, aphasia/ apraxia); (2) a 

14-item scale for the assessment of the activities of daily living (SIDAM-ADL-Scale); and 

(3) the Hachinski Rosen-Scale. Dementia was diagnosed according to DSM-IV criteria. 

AgeCoDe provided DNA from 294 persons who progressed to late onset AD dementia at 

any follow up. 
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UKBonn: The interdisciplinary Memory Clinic of the Department of Psychiatry and 

Department of Neurology at the University Hospital in Bonn provided early-onset AD 

patients (n=100). Diagnoses were assigned according the NINCDS/ADRDA criteria4 and 

on the basis of clinical history, physical examination, neuropsychological testing (using 

the CERAD neuropsychological battery, including the MMSE), laboratory assessments, 

and brain imaging. 

Barcelona- SPIN 

Neuropathological samples were obtained from the Neurological Tissue Bank of the 

Biobanc-HospitalClinic-IDIBAPS, and disease evaluation was performed according to 

international consensus criteria. Clinical samples were recruited from the multimodal Sant 

Pau Initiative on Neurodegeneration (SPIN) cohort (https://santpaumemoryunit.com/our-

research/spin-cohort/) 13, and were evaluated at the Memory Unit at Hospital de Sant Pau 

(Barcelona). The repository includes clinical data of more than 6,000 participants, >2900 

plasma samples, genetic material (DNA and RNA) of >3,200 and >400 subjects, 

respectively, and >2,000 CSF samples. All controls had normal cognitive scores in the 

formal neuropsychological evaluation and normal core CSF AD biomarkers, based on 

previously published cut-offs14. AD patients fulfilled clinical criteria of “probable AD 

dementia with evidence of the AD pathophysiological process”3 and therefore had 

abnormal core AD biomarkers (low Aβ1–42 and high t-Tau or p-Tau) in the CSF. The 

original protocol and the subsequent amendments were approved by our local Ethics 

Committee at the Sant Pau Research Institute as well as the Committee of the 

Neurological Tissue Bank. The SPIN cohort is based on blinded enrollment and only 

clinically relevant biomarker results are disclosed. 

100-plus Study 

The 100-plus Study, is a prospective cohort study of cognitively healthy centenarians that 

associated with the Alzheimer Center at the Amsterdam University Medical Center. 

Detailed participant recruitment and procedures were described previously15. Trained 

researchers visited the centenarians at their home residence annually, where they were 

https://santpaumemoryunit.com/our-research/spin-cohort/
https://santpaumemoryunit.com/our-research/spin-cohort/
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subjected to questionnaires regarding demographics, lifestyle, medical history, physical 

well-being and objective measurements of cognitive and physical functions. Cognitive 

function is tested by an extensive neuropsychological testing battery. Approximately 30% 

of the centenarians agreed to post mortem brain donation. For the current study, DNA 

samples 276 centenarians were included who completed at least one neuropsychological 

test at baseline, and exome sequencing from 254 centenarians passed QC (removal was 

mostly due to kinship). The 190 centenarians who scored >22 on the MMSE were 

regarded as controls, while 64 centenarians who scored <=22 were regarded as cases16. 

The Medical Ethics Committee of the Amsterdam UMC approved this study and informed 

consent was obtained from all participants. The study has been conducted in accordance 

with the declaration of Helsinki. All brain donors signed informed consent for brain 

donation. 

ERF 

The Erasmus Rucphen Family (ERF) study is a family-based cohort study that is 

embedded in the Genetic Research in Isolated Populations (GRIP) program in the South 

West of the Netherlands. The aim of this program was to identify genetic risk factors in 

the development of complex disorders. For the ERF study, 22 families that had at least 

five children baptized in the community church between 1850-1900 were identified with 

the help of genealogical records. All living descendants of these couples and their 

spouses were invited to take part in the study. Data collection started in June 2002 and 

was finished in February 2005. 

 

Rotterdam Study 

The Rotterdam Study is an ongoing prospective population-based cohort study, focused 

on chronic disabling conditions of the elderly 1, of which a random subset was exome 

sequenced. Participants were screened for dementia at baseline and at follow-up 

examinations using the Mini-Mental State Examination (MMSE) and the Geriatric Mental 

Schedule (GMS) organic level 2,3. Screen-positives (MMSE <26 or GMS organic level 

>0) underwent extensive examination 4. Finally, individuals were diagnosed in 
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accordance with standard criteria for dementia (Diagnostic and Statistical Manual of 

Mental Disorders, Third Edition, Revised (DSM-III-R)) and Alzheimer’s disease, NINCDS-

ADRDA 5. Follow-up for incident dementia was complete until January 1st, 2014. The 

Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus 

MC and by the Ministry of Health, Welfare and Sport of the Netherlands, implementing 

the Wet Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam Study). All 

participants provided written informed consent to participate in the study and to obtain 

information from their treating physicians. 

AC-EMC  

The Alzheimer Center Erasmus MC cohort (AC-EMC) includes patient referred to the 

Department of Neurology of the Erasmus Medical Center (Rotterdam, the Netherlands). 

DNA samples from 81 patients with probable AD were included in the current study. The 

average age at onset was 59 years (range 41-72). The majority of patients (64%) had a 

positive family history, defined as at least one first degree relative with dementia. All 

patients underwent clinical examination, neuropsychological assessment, neuroimaging, 

and if indicated, a lumbar puncture. The diagnosis was established according to the 

National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s 

Disease and Related Disorders Association (NINCDS-ADRDA) criteria for AD3.The study 

was approved by the Medical Ethical Committee of the Erasmus Medical Center, and 

written informed consent was obtained from all participants or their legal representatives. 

ADC-Amsterdam 

The ADC-Amsterdam cohort includes patients who visit the memory clinic of the 

Alzheimer Center at the Amsterdam University Medical Center, The Netherlands, and 

was described previously17. DNA samples from 518 patients with probable AD cases were 

included in the current study. Individuals in this cohort were extensively characterized to 

reduce the chance of misdiagnosis. Patients underwent an extensive standardized 

dementia assessment, including medical history, informant-based history, a physical 

examination, routine blood and CSF laboratory tests, neuropsychological testing, 
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electroencephalogram (EEG) and MRI of the brain. The diagnosis of probable AD was 

based on the clinical criteria formulated by the National Institute of Neurological and 

Communicative Disorders and Stroke—Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA) and based on National Institute of Aging–Alzheimer 

association (NIA-AA). Clinical diagnosis is made in consensus-based, multidisciplinary 

meetings. All patients gave informed consent for biobanking and for the use of their 

clinical data for research purposes. Selection for whole exome sequencing was based on 

an early age-of-onset (age at diagnosis <70 years) and available CSF biomarkers. 

PERADES 

The PERADES sample (Defining Genetic, Polygenic and Environmental Risk for 

Alzheimer’s Disease) comprises individuals with Alzheimer’s disease (AD) and healthy 

controls recruited across UK, Italy and Spain. The majority of the individuals are from the 

UK (n=4095 with samples recruited in Cardiff: n=2405), while the rest (n=841) were 

recruited in Spain and Italy. More specifically the recruitment centres were: MRC Centre 

for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; Institute of 

Psychiatry, London, UK; University of Cambridge, Cambridge, UK; University of 

Southampton, Southampton, UK; University of Nottingham, Nottingham, UK; Catholic 

University of Rome, Rome, Italy; Santa Lucia Foundation, Rome, Italy; Instituto di 

Neurologia Policlinico Universitario, Rome, Italy; University of Milan, Milan, Italy; 

Laboratory of Gene Therapy, San Giovanni Rotondo, Italy; University of Perugia, Perugia, 

Italy; University of Cantabria and IDIVAL, Santander, Spain and the Regional 

Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy. The collection of the 

samples within the MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff 

University was through national recruitment through multiple channels, including 

specialist NHS services and clinics, research registers and Join Dementia Research 

(JDR) platform. The participants were assessed at home or in research clinics along with 

an informant, usually a spouse, family member or close friend, who provided information 

about and on behalf of the individual with dementia. Established measures were used to 

ascertain the disease severity: Bristol activities of daily living (BADL), Clinical Dementia 

Rating scale (CDR), Neuropsychiatric Inventory (NPI) and Global Deterioration Scale 
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(GlDS). Individuals with dementia completed the Addenbrooke’s Cognitive Examination 

(ACE-r), Geriatric Depression Scale (GeDS) and National Adult Reading Test (NART) 

too. Control participants were recruited from GP surgeries and by means of self-referral 

(including existing studies and Joint Dementia Research platform).  For all other 

recruitment, all AD cases met criteria for either probable (NINCDS-ADRDA, DSM-IV) or 

definite (CERAD) AD. All elderly controls were screened for dementia using the Mini 

Mental State Examination (MMSE) or ADAS-cog, were determined to be free from 

dementia at neuropathological examination or had a Braak score of 2.5 or lower. Control 

samples were chosen to match case samples for age, gender, ethnicity and country of 

origin. Informed consent was obtained for all study participants, and the relevant 

independent ethical committees approved study protocols.  The whole exome sequencing 

(WES) was performed in-house at the MRC Centre for Neuropsychiatric Genetics and 

Genomics, Cardiff University. With the Nextera technology (Nextera Rapid Capture 

Exome v1.2), DNA was simultaneously fragmented and tagged with sequencing adapters 

in a single step. The enriched libraries were sequenced using the Illumina HiSeq 4000 

(Illumina, USA) as paired-end 75 base reads according to manufacturer’s protocols. 

 

CBC: Control Brain Consortium 

The Control Brain Consortium consists of 478 was previously described18. Whole-exome 

sequencing in 478 samples derived from several brain banks in the United Kingdom and 

the United States of America. Samples were included when subjects were, at death, over 

60 years of age, had no signs of neurological disease and were subjected to a 

neuropathological examination, which revealed no evidence of neurodegeneration. 

The data was made publicly available at www.alzforum.org/exomes/hex. 

 

 

UCL-DRC EOAD 

University College London Dementia Research Centre (UCL-DRC) early-onset 

Alzheimer’s disease cohort included patients seen at the Cognitive Disorders Clinics at 

http://www.alzforum.org/exomes/hex
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The National Hospital for Neurology and Neurosurgery (Queen Square), or affiliated 

hospitals. Individuals were assessed clinically and diagnosed as having probable 

Alzheimer’s disease based on contemporary clinical criteria in use at the time, including 

imaging and neuropsychological testing where appropriate. All individuals consented for 

genetic testing and had causative mutations for Alzheimer’s disease (PSEN1, PSEN2, 

APP) and prion disease (PRNP) excluded prior to entry into this study. 

ADSP 

Cases and controls were selected from over 30,000 non-Hispanic Caucasian subjects 

from multiple cohorts described in detail elsewhere19.   All controls were greater than 60 

years and were cognitively normal based on direct assessment.  All cases met NINCDS-

ADRDA criteria for possible, probably, or definite Alzheimer’s disease. All cases had a 

documented age-at-onset, and for those with pathologically conformed AD, an age-at 

death.   APOE genotypes were available for all.  Cases were selected to have a minimal 

AD risk based on sex, age and APOE genotype.  Controls were selected as those with 

the least probability of converting to AD by age 85.  Controls were older (86.1 years, SD 

= 5.2) that cases (76.0 years, SD = 9.2).  The selection criteria and the rationale for study 

design are described elsewhere20. We selected 5,096 cases and 4c,965 controls for 

exome sequencing by this protocol.  In addition, we selected 682 additional cases from 

multiplex families with a strong AD family history.  Because some of these subjects were 

Caribbean Hispanics, we also sequenced 171 cognitively normal Caribbean Hispanic 

controls.   

 

Alignment and variant calling 

Raw sequencing data from all studies were collected on a single site (Cartesius 

Supercomputer provided by SURF, in the Netherlands), and processed with a uniform 

pipeline. Reads were extracted from FastQ, BAM, CRAM or SRA files. For each lane/read 

group separately, paired reads were converted to SAM format using FastQToSam or 

picard RevertSam (Picard Tools version 2.10.521), processed with Picard 

MarkIlluminaAdapters and subsequently transformed to interleaved fastq format with 
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Picard SamToFastq (while setting marked adapter regions to base quality 2). Next, reads 

were aligned to the human reference genome (build 37 with decoys) using the BWA MEM 

algorithm (BWA version 0.7.15-r1140)22. Alignments were processed with Samblaster 

(version 0.1.24) to add mate tags23. Read group alignments were then merged and 

duplicate reads were marked using Picard MarkDuplicates.  We found that the presence 

of novel Indels and novel SNPs in certain samples correlated with the presence of larger 

amounts of soft-clipped reads, indicative of the presence of chimeric DNA fragments. 

Each sample for which the percentage of soft-clipped base alignments exceeded 0.5% 

was therefore processed with a custom tool (see below) which identified and removed 

parts of reads that were likely of chimeric origin. This tool was executed after the Picard 

MarkDuplicates step. Then, reads were sorted to chromosome order by samtools sort 

(version 1.8)24. We estimated contamination percentages using VerifyBamID225, 

retrieved 4 September 2018), while correcting for the 2 PCA components (default), and 

excluding common SNPs (allele frequency ≥0.01) present in the 1000-genomes dataset 

(phase3, version 5b)26. Base quality scores were recalibrated using GATK BQSR (version 

3.8-1)27. on the sample capture kit region + 100bp padding. Known indels were obtained 

from the Mills and 1000G gold standard indels in the GATK resource kit27. Known SNPs 

were obtained from dbSNP (version 150) and gnomAD (version 2.0.2)28. Subsequently, 

variants were called on the sample capture kit region + 100bp padding using the 

HaplotypeCaller27, while using the ‘-contamination’ correction option, with the estimated 

contamination percentages. Ploidy was set to 1 for chromosome Y, and 2 for the other 

chromosomes, minPruning was set to 2, and the new quality model (--newqual) was used. 

Results were exported as gVCF format. Finally, gVCFs were combined per study in 

batches with a maximum size of 500 samples using GATK CombineGVCF. Then, variants 

were called using GATK GenotypeGVCF29, using the new quality model and setting max-

alternate-alleles to 20. Variants were then annotated with GATK variant score recalibrator 

(VQSR) using allele specific annotations, while for all other options the best practices 

were followed. 
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Chimeric read declipping 

Chimeric fragments consist of multiple genomic sequences, joined together into one 

sequence. Sequencing of such fragments can result in reads that do not entirely align to 

the genome, and/or align at multiple locations. This results in so-called ‘soft-clipped’ 

alignments, where parts of the read sequence are not aligned. These soft-clipped regions 

cause issues for the variant caller, as it uses not just the aligned part of the reads, but 

also the unaligned soft-clipped regions during local reassembly and variant calling. The 

reason for this is that these clipped sequences can be an indication of an insertion variant. 

In case these clipped regions are caused by chimera’s, this is however not a correct 

strategy, and can cause false variant calls. To prevent their effect on variant calling, we 

i) estimate the extent of the chimera problem by quantifying the number of soft-clipped 

alignments, and ii) remove these soft-clipped sections for affected samples if they are 

(likely) caused by chimeras. To do this, the soft-clipped sections are turned into hard-

clipped alignments, in which the underlying sequence is removed (the read is shortened), 

such that the variant caller cannot revive the clipped sequence during variant calling. In 

the following description, we assume paired end sequencing (in which both ends of the 

fragment are sequenced, resulting in two reads). We remove the following soft-clipped 

sequences: 

i) One well-known type of artificial chimera occurs when the sequenced fragment is 

shorter than the read length. Fragments have adapters at the end, used as starting point 

for sequencing. In these cases, the 3’ end of read 1 will cover the adapter of read 2, and 

vice versa. Due to this, read 1 and 2 will have overlapping alignments with possibly soft-

clipped 3’ends. Such read pairs can be detected based on their overlapping alignments. 

To remove the adapter sequence, we align the known adapter sequence to determine the 

clipping point, and hard-clip the identified sequences from there.  

ii) A genomic chimera can have a join-point at different sites in the sequence fragment.  

— If the chimeric join point occurs between read 1 and 2, or close to the end of read 1 or 

2, then read 1 and 2 will (usually) be aligned at a distance from each other. If this 
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distance is >100kb, or one of the reads is unmapped, we remove the soft-clipped 

regions at the 3’end of both reads.  

— If there are multiple, mostly non-overlapping, alignments for a read at different 

genomic locations, it is usually an indication that the chimeric join point occurs 

somewhere in the middle of that read.  The overlapping parts of these alignments are 

pruned (in all alignments for that read). Then, soft-clipped sequences in the 

alignments that face each other are hard-clipped. 

— in the above situation, it frequently occurs also that the fragment is short. The chimeric 

join point might then be present in both reads. If both reads have multiple alignments, 

we handle each read as described above.  

— if the fragment is short, but not very short, read 1 might have multiple alignments, 

while read 2 has a soft-clipped 3’end (or vice versa).  For example, for genomic region 

A and B, a chimeric fragment might read AABBB.  Read 1 (AABB) might then have 

multiple alignments, one for the AA and one for the BB section.  Read 2 (BBBA) 

however might have only an alignment for B, but not for A, as the sequence from A is 

too short to obtain an accurate alignment. The chimeric sequence A in read 2 will 

therefore be soft-clipped. We detect these situations based on overlapping alignments 

for fragment B, and hard-clip the soft-clipped 3’end of read 2. 

— if the chimeric sequence consists of a very short piece at the 5’ end of either read 1 

or 2, this part might not be aligned as it is too short. It is in these situations unclear if 

the sequence has a chimeric origin, as such unaligned pieces can also be caused by 

indels. We find that in samples affected by chimeras, it is beneficial to remove these 

soft-clipped 5’ends. While this reduces the coverage of indels, in most cases many 

fragments still cover the complete indel. Also, differences in coverage between 

samples occurs commonly in exomes, where the covered regions are highly variable 

between capture kits, and handling this is part of the downstream pipeline (see 

posterior probabilities).  

— After removal of the soft-clipped regions caused by chimera’s, we unalign the 

alignments that are <= 1bp in length, we transform supplementary alignments to 

primary alignments if the primary alignment is unaligned, drop unaligned 



 39 

supplementary alignments, update alignment tags, and validate the read records and 

cigar strings.  

Sample QC 

Before sample QC, we performed a pre-variant QC step, to remove bad quality variants 

(see Variant QC steps for details) that might impact sample quality statistics. In addition, 

we required that at least 25% of the samples had to have at least read depth 6. Next, 

sample QC was performed according to the steps described in Figure 1a, which are 

detailed below.  

1. Missingness 

We removed samples that had a contamination over 0.75, or a GQ<20 for 60% of the 

variants in its own exome kit, or a depth < 6 for 65% of the variants in its own exome kit. 

Additionally, we removed samples for which chromosomes were missing (GQ < 20 for 

99% of the variants on a chromosome in the samples exome kit).  

2. Contamination 

Samples with a contamination percentage > 7.5% were removed. 

3. Sex-check 

We performed a sex-check, by comparing annotated sex with genetic sex (Figure S5). 

Genetic sex was determined based on the coverage of the sex chromosomes. Coverage 

was determined using off-target reads. Only coverage in regions outside capture kits 

(+500 bp padding), outside peaks in coverage called with MACS (version 1.4)30 and 

outside segmental duplications (Segmental Dups track downloaded from UCSC which 

includes the PAR regions31. Coverage was determined in 20kb windows, and normalized 

for GC content using linear regression. Regions of 20kb with more than 100 N bases were 

discarded. X and Y chromosome coverage was normalized by dividing by the autosome 

coverage. Thresholds were set empirically, based on the distribution of male and female 

samples (see supplemental figure).  
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4. Population outliers 

Next, we performed a PCA analysis to identify population outliers. Variants that were in 

the intersection region of all capture kits, and had a minor allele frequency ≥0.005 and a 

depth ≥6 for 90% of the variants, were used for this purpose. Variants were pruned with 

bcftools +prune tool (version 1.8)24 with max LD set to 0.2 in 500kb windows. Only 

variants that were also in the 1000 genomes dataset (phase 3, v5b) were kept. PCA was 

performed on dosages (based on genotype calls for 1000G, and based on genotype 

probabilities for the study samples). Variant dosages were first normalized, as 

described32, based on statistics obtained on the 1000G samples. Then, PCA was 

performed on the 1000G samples, and all ADES samples were mapped to this PCA space 

(Figure S6). Finally, we removed outliers for each of the first 4 PCA components (Figure 

S7, Figure S8), where outliers were defined as samples that fell outside the range 

median(pca_component) ± 8 * mad(pca_component), where mad is the median absolute 

deviation and the pca_component vector only contains the ADES samples.  

5,6: Excess novel SNPs or indels 

We calculated and compared the number of novel SNPs and the number of novel indels 

per study, both in the union of the capture kits (Figure S9 and Figure S10) and the 

intersection of the capture kits (Figure S11, Figure S12). Novel variants were defined 

as variants that were not present in DBSNP v150. These statistics were calculated 

based on posterior dosages (described below). Thresholds were set at the median 

value + 6 * mad for novel SNPs and +12*mad for novel Indels.  

7. Het/hom and TsTV 

Furthermore, we performed a per-sample QC on the following statistics (calculated on the 

intersection of the capture kits): Ts/Tv ratio of known variants (Figure S13), and Ts/Tv 

ratio of novel variants (Figure S14), Het/Hom rate of known SNPs (Figure S15). The 

acceptable range for Het/Hom was set to ±6 * mad. For Ts/tv measures, only a lower limit 

of -6 * mad was used.  
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8. IBD analysis 

We performed an IBD analysis on the remaining samples using Seekin33. We kept 

variants with a minor allele frequency ≥0.005, and for which at least 90% of the samples 

had depth >=6. Variants were pruned with bcftools +prune tool (version 1.8), with max LD 

set to 0.2 in 500kb windows. Only variants that were also in the 1000G dataset were kept. 

We performed a PCA as described before. Using Seekin (version 1.0), we corrected for 

these PCA components using the options ‘modelAF’ and ‘getAF’, using 4 PCA 

components. Next, kinship was determined using all variants with the heterogeneous 

estimator of Seekin33. Duplicate samples with inconsistent annotation were removed 

(inconsistent status, APOE genotype, or gender, or more than 2 years difference in age 

at onset for cases). Otherwise, we kept the sample with the most complete annotation: 

we preferred samples with age (at onset), and APOE genotype over samples without. 

Also, we preferred whole genome sequenced samples over exomes, and samples with 

lower missingness over samples with higher missingness. For related samples up to 3rd 

degree (marked by the threshold of >9.4% shared identity by descent, which is the middle 

value between the expected value for 3rd-degree (12.5%) and 4th-degree (6.25%)), we 

preferred (in order) cases over controls, samples with more clinical data (age (at onset), 

apoe status), WGS samples, and samples with higher coverage.  

9. Bad PCR plates 

We removed all samples on 3 PCR plates that were enriched with gender mismatches.  

10. Removal of Mendelian AD-related variant-carriers 

Next, we performed a manual curation of causative variants in a short list of Mendelian 

dementia genes. We extracted rare variants in the following two gene lists and interpreted 

them following the American College of Medical Genetics and Genomics and the 

Association for medical Pathology34, (i) autosomal dominant AD genes: APP, PSEN1, 

PSEN2 (autosomal dominant AD), GRN, MAPT, FUS, TARDBP, VCP, (fronto-temporal 

lobar degeneration spectrum), NOTCH3 (CADASIL), PRNP (Prion diseases); (ii) 

autosomal recessive genes: NPC1, NPC2 (Niemann-Pick type C disease), TYROBP, 
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TREM2 (homozygous LOF: Nasu-Hakola disease, 1 carrier)). Carriers of variants that 

reached enough evidence to be rated at least as likely pathogenic (class 4) were excluded 

from the analysis, whatever their disease status. Of note, for autosomal recessive genes, 

heterozygous carriers were not excluded, only carriers of bi-allelic pathogenic variants 

were excluded. 

11. AD label 

We excluded samples for which clinical information was indicative of non-AD dementia 

(e.g. vascular dementia). In addition, part of the case-control sample included minimal 

neuropathological information. Among them, we further excluded samples with discordant 

Braak stages, i.e. cases with stage <2 (n=265) and controls with stage >4 (n=43). Finally, 

21,345 samples were available for analysis, constituting 12,652 cases (of which 4060 had 

early onset AD, onset ≤ 65 years) and 8693 controls. 

Variant QC 

Throughout an extensive QC, we attempted to find root causes for the presence of false 

variants. We identified two significant issues that were not handled by the default variant 

calling pipeline. After removal of samples excluded by the sample QC, variant statistics 

were recalculated. Then, we performed variant QC as described in (Figure 1B). 

1a. Multi allelic variants 

First, multi-allelic variants were split into bi-allelic variants, and indels were normalized, 

using the bcftools norm tool. The tool was modified to also split the phased PGT fields, 

such that downstream variant merging was possible. Additionally, the splitting of the 

genotype likelihoods and read counts was modified (PL and AD fields), which is detailed 

in the next section. We removed bi-allelic variants that had as alternate allele ‘*’ (which 

reflects overlap with a deletion variant), as well as multi-allelic variants for which the 

reference allele was lower in frequency than the frequency for at least two alternate 

alleles. 



 43 

1b. Variant merging  

Variants that were in close vicinity, in cis and always occurred together, were merged into 

single events, to account for for example nearby frameshifts that cancel each other out. 

Only indels with ≤10bp distance and snps with ≤2bp distance were considered for 

merging. We used the read-phasing output of GATK (PID/PGT) fields to determine which 

variants occurred in-phase. 

2. Oxo-G  

In some samples novel variants were enriched for G>T and C>A variants, caused by the 

oxygenation of G bases during sample processing35. Using a custom tool (see below), 

that uses per-sample statistics from Picard CollectSequencingArtifactMetrics, we 

identified and filtered variants and variant calls that could be attributed to this issue. We 

removed variants with an average OXO sensitivity > 1.5, or a remaining total dosage after 

OXO correction ≤0.1.  

3. STR/LCR regions 

STR and LCR regions were obtained respectively from the simple tandem repeats track 

by TRF from UCSC, and the LCRs as identified by the mdust program36. Variants in these 

regions were excluded. 

4. Allele Balance 

The balance between reference and alternate reads (allele balance) was determined both 

for heterozygous and homozygous calls. Allele balance was calculated based on 

posterior genotype probabilities (see below).  Variants that had an average allele balance 

< 0.25 or > 0.75 for heterozygous calls, or < 0.9 for homozygous calls were removed.  

5. Depth Fraction 

The relative depth of heterozygous calls to other calls was determine, based on posterior 

genotype probabilities (see below). Variants for which the heterozygous depth was < 20% 

of the depth of other calls were removed. 
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6. Hardy Weinberg 

Hardy-Weinberg scores (all samples and control samples: hw_all and hw_control) were 

calculated based on posterior genotype probabilities (see below).  We removed variants 

for which the p-value for control samples was < 5 * 10-8. 

7. VQSR  

Variants that were tagged by the variant quality score recalibration method from GATK 

were removed, for SNPs we removed variants from the VQSR > 99.5% tranche, while for 

indels we removed variants from the VQSR > 99.0% tranche. 

Pre-variant QC versus final variant QC 

For the pre-variant QC, which is performed prior to performing the sample QC, we 

performed all the above steps. Additionally, we removed variants with a missingness rate 

> 25%. Genotype calls which had a depth < 6 were considered missing. For the final 

variant QC, the missingness step was not performed, as it is included as part of the variant 

selection. Compared to the pre-variant QC, the final variant QC had variant batch 

detection as an additional step.  

8. Variant Batch Detection 

Finally, we developed a custom tool to remove variants that still presented batch effects 

that were not explainable by population structure or phenotype effects (see below). On 

variants identified to have a batch effect, we attempted variant batch correction, by setting 

batches that caused problems for a certain variant to missing. Afterwards, variants that 

still had a VBD score > 25, or a VBD score > 15 and MAF < 0.005 were removed from 

the analysis.  

Genotype posterior probabilities 

Due to the use of different capture kits and whole genome sequencing (WGS) data, the 

analysed dataset has highly variable coverage patterns across the samples. Many 

variants have as a consequence less than 100% coverage across the samples. In burden 
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testing, a missingness percentage of up to 20% is allowed. This requires an accurate 

handling of missing genotype calls in variants that contribute to the burden score.  In 

cases of low and absent read coverage, direct calling of the genotype is not possible. 

Therefore instead, a probabilistic approach is used, in which each genotype is assigned 

a certain probability. 

Genotype likelihoods  

The GATK variant caller outputs the likelihood of each sample genotype in the PL field of 

the VCF. These likelihoods are based on the available sequencing reads for a sample. In 

case of missing data, each genotype is considered equally likely (i.e. p=⅓ in case of 

diploid chromosomes for ref/ref, ref/alt and alt/alt genotypes). These likelihoods cannot 

be used directly in a burden analysis, as by assuming equal likelihoods for each genotype 

the allele frequency of samples with missing coverage would effectively by 50%, and likely 

substantially differ from that of samples with coverage.  

Posterior probability  

This is solved by the use of posterior probabilities. Here the allele frequency in the study 

sample is used as a prior in assigning genotype probabilities. Using Bayes theorem, 

posterior genotype probabilities take the following form (assuming a diploid setting): 

𝑃(𝑔) =
𝐿(𝑔) 𝜓(𝑔) 

∑ 𝐿(𝑖)∗𝜓(𝑖)𝐺
𝑖

, where P(g) is the posterior probability for genotype g, with g encoded 

as 0,1 or 2 for respectively the reference, heterozygous and homozygous alternate 

genotype. L(g) is the genotype likelihood as given by the variant caller. The genotype 

frequency 𝜓(𝑔) =
2

(2−𝑔)!𝑔!
𝜔𝑔(1 − 𝜔)2−𝑔is derived from the allele frequency 𝜔, assuming 

Hardy-Weinberg equilibrium. Notably, the allele frequency 𝜔 needs to be derived from 

the study sample, such that 𝜔  matches the allele frequency in samples with coverage, 

thereby preventing biases. A difficulty is that accurate estimation of this allele frequency 

requires posterior genotype probabilities. Here we follow the approach previously 

described by Li et al37 using an EM-algorithm in which iteratively posterior probabilities 

and the allele frequency are estimated, until convergence (maximum difference in allele 
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frequency between iterations is 1e-7) is reached. Finally, posterior dosages in the diploid 

case were calculated as d = P(1) + 2 P(2).  

Multi-allelic variants  

As described in the previous section, variants with multiple alleles are split into bi-allelic 

variants prior to analysis. For this, the bcftools norm tool is used. However, splitting of the 

genotype likelihood was adapted from the default approach in bcftools. The standard 

REF/ALT interpretation of the resulting biallelic likelihoods was considered problematic 

for the analysis, as often the alleles would be neither REF nor ALT. Genotype probabilities 

would then not sum to 1. We adapted therefore to a NON_ALT/ALT interpretation of bi-

allelic variants. Specifically, this meant that genotype likelihoods were converted to 

probabilities, and then summed to obtain the NON_ALT/NON_ALT, NON_ALT/ALT and 

ALT/ALT genotype probabilities (separately for each ALT in the multi-allelic variant to 

create multiple bi-allelic variants). Notably, in the absence of coverage, the variant caller 

considers each multi-allelic genotype equally likely. In this situation, the 

NON_ALT/NON_ALT genotype becomes the most likely genotype, as it sums more 

genotypes. As this causes biases, we correct for this, using an additional prior equal to 1 

/ (#summed multi-allelic genotypes) for each bi-allelic genotype.  Next to the genotype 

likelihood, the read count field (AD field) was also modified to follow the above described 

NON_ALT/ALT interpretation. To that end, read counts that contributed to the  

NON_ALT/NON_ALT and NON_ALT/ALT genotypes were summed during variant 

splitting.  

Posterior sample QC-measures  

Standard sample QC measures, when calculated on variant calls, are affected by 

samples with low or missing coverage.  To prevent that, these measures were instead 

based on genotype posterior probabilities: 

— Nr. of indels/SNPs:  Determined by summing (across all samples) posterior dosages.  

— Ts/Tv ratio: Determined by summing posterior dosages of transition variants and 

dividing them by the summer posterior dosages of transversion variants 
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— Het/Hom ratio: Determined by summing (across all samples) the posterior genotype 

probability of the heterozygous genotype, and dividing it by the summed posterior 

genotype probability of the homozygous genotype.  

Posterior variant QC-measures 

— Heterozygous allele balance:  Defined as 
∑ 𝑃𝑖(1) 𝑟𝑟𝑒𝑓

𝑁
𝑖

∑ 𝑃𝑖(1) (𝑟𝑟𝑒𝑓+𝑟𝑎𝑙𝑡)𝑁
𝑖

 , where Pi(1) is the 

posterior genotype probability for the heterozygous genotype for sample i, N is the 

number of samples, and rref and ralt are the number of reads carrying the reference or 

alternate genotype.  

— Homozygous allele balance: Defined as 
∑ 𝑃𝑖(2) 𝑟𝑎𝑙𝑡

𝑁
𝑖

∑ 𝑃𝑖(2) (𝑟𝑟𝑒𝑓+𝑟𝑎𝑙𝑡)𝑁
𝑖

, where Pi(2) is the posterior 

genotype probability of the homozygous genotype for sample i.  

— Heterozygous depth ratio:  Defined as 

∑ 𝑃𝑖(1) (𝑟𝑟𝑒𝑓+𝑟𝑎𝑙𝑡)𝑁
𝑖

∑ 𝑃𝑖(1)𝑁
𝑖

(𝑟𝑟𝑒𝑓+𝑟𝑎𝑙𝑡)/𝑁
. 

— Hardy-Weinberg equilibrium: Posterior genotype probabilities assume Hardy-

Weinberg equilibrium (HWE), thereby biasing variants with high rates of missingness 

towards HWE. Hardy-Weinberg equilibrium is therefore tested on non-probabilistic 

genotype calls, after filtering out samples with a read coverage < 6. 

Oxo-G variant call filtering 

During sample preparation, oxidation of G-nucleotides can lead to the generation of 8-

oxoguanine lesions in DNA. These lesions lead to false positive G-T variants, and, 

dependent on the protocol step in which the oxidation occurs, also false positive C-A 

variants35. While this is primarily an issue for somatic variant calling, it also impacts 

germline rare-variant calls, in particular in exomes where coverage is variable. In modern 

protocols, these effects have mostly been mitigated, however, in older samples these 

false positive mutations can be a significant source of errors.  Next to oxoG errors, similar 

problems are known to occur in DNA obtained from formalin-fixed samples. In these 

samples, deamination can occur, converting cytosine to uracil (C>U), thereby creating 

false positive C->T (and G->A) mutations. While the approach below handles these types 
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of errors as well, this problem was not encountered in a significant manner in the dataset. 

A modern variant caller such as GATK determines nucleotide-specific base error rates 

based on a comparison of the sequenced reads to the genome (in the case of GATK 

through base quality score recalibration (BQSR)). In GATK, this error rate is modelled on 

the observed nucleotide in the read (e.g. in case of a G->T mutation a T for reads aligned 

to the positive strand and an A for reads aligned on the negative strand). Although G-

oxidation will lead to a somewhat higher base error rates in T and A nucleotides, the 

variant caller does not recognize that these errors occur mainly when the genomic 

reference contains respectively a G  (or C in case of C->A mutations). This leads to 

underestimated error rates and, in the end, false positive variant calls. Briefly, our 

approach to detect and filter these oxo-G affected variant calls is therefore based on 

comparing i) the dosage as determined when considering a error model that does not 

consider oxoG errors   ii) the dosage as determined with a model that does consider 

(sample-specific) oxoG errors. The ratio of these two dosages is considered a ‘sensitivity’ 

score, which is used to filter genotype calls and/or variants.  Dosages are computed using 

a genotype likelihood calculation detailed below, and are ‘posterior dosages’ (see 

previous section): continuous numbers between 0 and 2, which take into account the 

confidence in the genotypes and the frequency of the variant in the study sample. In the 

variant QC pipeline, genotype calls with a sensitivity > 1.5 are set to missing, after which 

variant QC statistics are recalculated. Variants are flagged for exclusion if they have an 

average sensitivity > 1.5 or a summed dosage with the oxo-G error model < 0.1.  The 

average sensitivity of a variant is here defined as the ratio of the summed normal dosages 

and the summed oxo-G-corrected dosages. In more detail, the method consists of the 

following steps: 

 

Statistics  

To determine the parameters for the base error model, we estimate for each sample the 

rate at which oxidation and other base errors occur, dependent also on different sequence 

contexts (neighboring bases affect the G-oxidation rates). These per-sample statistics are 

collected using Picard CollectSequencingArtifactMetrics. Next to base errors, we also 
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obtain summary error metrics per sample, based on measures available as part of the 

CollectSequencingArtifactMetrics. These consider two forms of the oxoG errors: pre-

adapter  (in this case G->T errors occur in forward reads, and C->A errors in backward 

reads) and bait-bias (in this case G->T errors occur in the exome template strand (often 

the positive strand), and C-A errors in the reverse strand).   

Full error model  

The error model describes mutation-specific error rates (in contrast to the usual read-

nucleotide specific error rates). It takes into account sequence context (a single 

nucleotide before and after the variant). Strand-specific and forward/backward read 

specific error rates are averaged: although this information would be useful, it is not 

available per sample in the variant file (VCF), and a direct link between the original reads 

in the bam file and the read count in the VCF file is not straightforward to make due to the 

reassembly step performed by the variant caller.  

Contrasting error model   

A contrasting error model is created which exclusively models non-oxoG related errors. 

To this end, we select samples that are not affected by oxoG-related issues, based on 

the previously described summary metrics. As these summary metrics are sequence-

context specific, we obtain a worst-case summary metric per sample, by taking the 

highest error value across all sequence contexts per sample. Samples with an error rate 

> 0.0001 for either pre-adapter or bait-bias errors are excluded. Using the remaining 

samples, regression models are trained which predicts (sequence context-specific) G->T 

and C->A mutation rates. These regression models are used to fill in G->T and C->A 

mutation rates for the samples that were excluded due to oxoG effects.  Features for 

these regression models are the (sequence-context-specific) mutation rates for all 

mutations except G->T and C->A. To handle the extensive collinearity in these features, 

we reduce the feature space to 10 dimensions by using PCA, and make use of ridge 

regression.  
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Genotype likelihood calculation  

For each sample, genotype likelihoods are calculated both using the contrasting and full 

error model. Read counts (rref and ralt for respectively reads carrying the reference and 

the alternate allele) are obtained from the VCF file. Based on the error model, sequence 

context, and reference and alternate allele, ref->alt (era) and alt->ref (ear) error rates are 

obtained. For a sample s (identifier omitted for brevity), and assuming a diploid setting, 

the likelihood of each genotype is calculated then as: 

ref/ref:  (1 − 𝑒𝑟𝑎)𝑟𝑟𝑒𝑓 + 𝑒𝑟𝑎
𝑟𝑎𝑙𝑡 

ref/alt:   (
(1−𝑒𝑟𝑎) + 𝑒𝑎𝑟

2
)

𝑟𝑟𝑒𝑓
+ (

(1−𝑒𝑎𝑟) + 𝑒𝑟𝑎

2
)

𝑟𝑎𝑙𝑡
 

alt/alt:  (1 −  𝑒𝑎𝑟)𝑟𝑎𝑙𝑡 + 𝑒𝑎𝑟
𝑟𝑟𝑒𝑓 

 

Likelihoods are normalized to sum to 1, and then converted to posterior probabilities 

( 𝑝𝑟𝑒𝑓/𝑟𝑒𝑓, 𝑝𝑟𝑒𝑓/𝑎𝑙𝑡 and 𝑝𝑎𝑙𝑡/𝑎𝑙𝑡) as outlined in the previous section.  The dosage per sample 

is then calculated as 𝑑𝑠 = 𝑝𝑟𝑒𝑓/𝑎𝑙𝑡,𝑠 + 2 𝑝𝑎𝑙𝑡/𝑎𝑙𝑡,𝑠 (where s refers to a specific sample) while 

sensitivity per sample is  determined as: 𝑠𝑠 = 𝑑𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑛𝑔,𝑠/𝑑𝑓𝑢𝑙𝑙,𝑠. Here, full and 

contrasting refer to the used error model to calculate the dosage. In practical use, we 

found that estimated oxoG-related errors are underestimated. This can be attributed to 

two factors: i) information loss as no information on read strand, and presence of 

mutations on forward and backward reads could be used. This could have diluted the 

estimated oxoG related-errors by a factor 2, ii) a selection bias, as false positive variants 

caused by this issue are likely sites that present more extreme oxoG-related errors, either 

by chance or due to (possibly unmodelled) sequence characteristics. To alleviate this 

issue, an error multiplication factor f was introduced, such that errors considered in the 

full model are rescaled according to 𝑓 (𝑒𝑓𝑢𝑙𝑙 − 𝑒𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑛𝑔) + 𝑒𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑛𝑔.  In practice, 

using 𝑓 = 5led to an adequate filtering of oxoG related variants.  

Genotype and variant filtering  

Next to a genotype sensitivity measure, we also calculate a variant sensitivity measure: 

𝑠𝑣𝑎𝑟𝑖𝑎𝑛𝑡 =
∑ 𝑑𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑖𝑛𝑔,𝑠𝑎𝑚𝑝𝑙𝑒

 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ 𝑑𝑓𝑢𝑙𝑙,𝑠𝑎𝑚𝑝𝑙𝑒
 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

. Variants were exluded from the analysis if 𝑠𝑣𝑎𝑟𝑖𝑎𝑛𝑡 > 1.5, 
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or if ∑ 𝑑𝑓𝑢𝑙𝑙,𝑠𝑎𝑚𝑝𝑙𝑒
 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 < 0.1.  For variants with 𝑠𝑣𝑎𝑟𝑖𝑎𝑛𝑡 > 1.1 we performed genotype 

filtering, setting to missing all genotypes where the genotype sensitivity 𝑠𝑠 > 1.5. 

Afterwards, variant QC measures (missingness, Hardy-Weinberg, allele balance, etc) are 

recalculated.  

Variant batch detection and correction 

For genetic studies, statistical power is a primary concern. This necessitates large-scale 

collaborations between sites, as well as the collection of samples that have been 

sequenced across a large time period. In such settings, it is often impossible to control 

which capture kits are used, if exome or WGS sequencing is performed, and many other 

relevant sequencing parameters such as read or fragment lengths. In the ADES 

consortium, this has resulted in the use of 17 different (versions of) capture kits, the use 

of both exome and WGS sequencing, read lengths that vary from 50 to 150 bp (Figure 

S3), and many other differences. Moreover, the different contributing studies also have 

very different case/control balances, ranging from exclusively cases to almost exclusively 

controls. When performing variant association, this presents a problem, as this step is 

highly sensitive to batch effects. Even after sample and variant QC, we found that certain 

variants still present batch effects that lead to spurious associations. 

Examples of batch effects 

It is not always immediately clear what the cause of such remaining batch effects is. Some 

examples which were encountered: 

— Certain capture kit methods use restriction enzymes to cut sequence fragments before 

sequencing. We observe that mutations in these restriction sites can at some loci lead 

to an artificial loss of heterozygosity in the sequencing reads, resulting in a lower than 

expected allele frequency.  Additionally, it is not possible to filter out PCR duplicates 

for these kits, leading to possible false positive mutations.  

— For capture kits that fragment DNA at relatively ‘fixed’ positions in the genome we also 

observe an increase in batch effects. Explanations for this might include position-

related biases in reads or mutations that affect the read coverage of one haplotype. 
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This is observed for capture kits that use restriction enzymes for fragmentation, but to 

a lesser extent also for those that use transposases, which can have tagmentation 

biases38. Finally, such batch effects are also present in probe-based kits for variants 

that in terms of read length are distant from a capture probe. 

— Increased batch effects are also observed in WGS samples when compared to exome 

samples. A possible explanation might be that WGS samples have sequence reads 

originating from the whole genome, in contrast to exome capture kits.  In some cases, 

this could result in sequences being misaligned at certain locations that are not 

present when using (certain) exome capture kits.  

While not every batch effect can be easily be predicted based on causal mechanisms, 

the presence of many different batches in the dataset still enables the detection of these 

variants.  

Algorithm overview 

To this end, a method was developed to detect variants that are affected by such batch 

effects. The main challenge is to distinguish between non-technical effects that present 

as batch effects (such as a variant that is enriched in a certain country, and/or only in AD 

cases) and real batch effects that are caused by technical issues. This is solved by using 

a two-step approach. In the first step, the algorithm attempts to explain the presence of a 

variant in specific carriers only through population structure, presence of haploblocks, 

and/or phenotype effects. Secondly, it is determined if the explanation for the presence 

of a variant in specific carriers significantly improves if also technical covariates 

(membership of study batches, various sequencing parameters, etc.) are allowed.  

Variants for which this is the case are considered to be affected by technical issues, and 

are either corrected (detailed below) or not considered in the analysis. Below, we first 

detail the covariates that are used, the algorithm that is used to select the covariates, the 

regression model, how the presence of not-at-random missing genotypes (i.e. 

missingness depends on having a specific genotype) is detected, and finally how the 

algorithm is used in practice.  
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Technical covariates  

Statistics were generated with samtools24, Picard21, verifybamid225, and custom scripts. 

Covariates (which are vectors that contain for each sample a value) were defined for the 

following properties: 

— Batch, study, capture kit: Covariates describing (for each sample) membership (no: 

0, yes: 1) for each batch, study or (version of a) capture kit. 

— Read length, insert size:  Covariates describing read length and average fragment 

insert size. In addition, covariates were added describing the distance to the nearest 

capture probe (which differs across the samples due to the use of different kits), both 

in absolute terms, as well as relative to fragment size or read length (Figure S3). For 

WGS samples, 0 was used as the distance.  

— Contamination: Contamination percentage as determined by Verifybamid2 (see 

sample QC). 

— Missingness: Sample missingness (defined as genotype quality GQ < 40, for variants 

that are in the intersection of all capture kits, Figure S4) 

— Size selection: The standard deviation of fragment insert-sizes divided by the 

average of fragment insert sizes. Indicative of the extent of size selection that was 

performed on the fragments.  

— Read error rate: Error rate of the reads (mismatches / bases mapped).  
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— GC ratio: Depth of sequences with 35% GC / Depth of sequences with 50% GC 

— Mismapping ratio: Fraction of fragments for which the two reads map to different 

chromosomes 

— Duplicate ratio: Fraction of duplicated reads. 

— Not mapped ratio: Fraction of reads that are not mapped. 

— Read quality variability: Standard deviation of average Illumina quality scores across 

read cycles (a cycle corresponds to a single base position in each read). 

— Fraction of N nucleotides: Percentage of bases being the N (unknown) nucleotide. 

— Insertion/deletion error fraction: Nr. of insertions or deletions divided by the nr. of 

bases mapped. 

— Ts/tv rate, Het/Hom rate, Novel SNPs/Indels rate:  Sample statistics as defined in 

the sample QC.  

— Gender:  Genetic sex (Figure S5). 

— Supplementary reads / fraction of soft-clipped bases:  Fraction of reads with 

supplementary alignments, and fraction of mapped bases that are soft-clipped. 

— Pre-adapter/Bait oxo-G error pattern: Phred-scaled error indicating the presence of 

an oxoG error pattern. ‘Pre-adapter’ indicates oxoG errors that occurred before 

adapter ligation, such that read 1 carries G->T mutations and read 2 carries C->A 

mutations, while ‘Bait’ indicates an oxoG pattern which is exome bait-specific.  

— Presence of illumina adapters or poly-A tails: Fraction of reads with respectively 

Illumina adapters or poly-A tails.  

Non-technical covariates 

— PCA covariates: The top 10 PCA covariates, calculated after sample QC, using an 

approach described previously32. 

— Age: sample age (controls) or age-at-onset (cases). Missing values are imputed to 

the mean age.  

— AD status: case or control status 

— Haploblock markers: to obtain haploblock markers, we select nearby high-quality 

variants (passing variant QC, with minor allele frequency > 0.025% and a missingness 

< 10% (missingness defined as read depth < 6)). These variants were phased using 
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Eagle v2.439, with default settings. The resulting haploid genotype calls were used as 

covariates (algorithm detailed below). The region from which these ‘nearby’ variants 

are obtained was by default the 50kb up- and downstream from the variant that was 

tested for batch effects, with the exception of variants that were within 100bp (as there 

might be complex false positive events that present as multiple variants close 

together, which could present a false in-linkage signal). The region can be extended 

from 50kb up to a maximum of 250kb if there are too few variants (<25), or it can be 

reduced in size if too many are found (>1000).  

— Complex haploblock markers: In addition, a search is performed for combination of 

these nearby variants to better mark the haploblock(s) in which the tested variant 

occurs (detailed below). Allowed Boolean operations are AND and NOT (e.g. a 

covariate can be defined which is true if variant 1 AND NOT variant 2 are present in a 

sample).  

Forward-backward covariate search 

The above covariates are used in a regression model (detailed below) to explain the 

tested variant. Covariates are selected using a greedy forward selection/backward 

elimination approach. First, all covariates are normalized to a range 0-1. A covariate set 

E is defined, which contains covariates that are excluded from the regression, that is, their 

regression parameter is clamped to 0. Furthermore, a covariate set I is defined, which 

contains covariates that are part of the regression: the parameters of these covariates 

are optimized using a maximum-likelihood approach. Initially, all covariates are in set E, 

and the regression model is fitted using only an intercept.  

For all covariates in set E, the maximum likelihood gradient is determined. The covariate 

with the maximum gradient value is selected, and added to set I, after which the 

regression fit is reoptimized. If the AIC (Akaike Information Criterion40) score of the fit is 

improved, this step is accepted, and a new gradient search is performed to select the next 

covariate. If the AIC however decreases, the variant is removed from set I. The above 

steps are then repeated for the covariate with the next highest likelihood gradient. The 

forward search is stopped if none of the top 10 covariates improve the AIC metric. If more 

than 10 covariates are in set I, a backward elimination step is performed, in which each 
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covariate in set I is in turn dropped from the regression to determine if this improves the 

AIC score. This step is subsequently repeated every time when 5 new covariates have 

been added to set I.  

Prioritizing non-technical covariates 

To prioritize non-technical explanations for the presence of a variant, the above feature 

search is first performed using only non-technical covariates, until no model 

improvements can be found. The resulting AIC score is noted as the non-technical score. 

Next, technical covariates are added to the covariate set E, and the feature search is 

continued until no model improvements can be found anymore. The resulting score at 

that point is noted as the technical score. The final variant batch detection score is then 

calculated as the delta between these two scores, that is: vbd score = technical score - 

non-technical score.  

Diploid logistic regression model 

For haploid genotypes (chromosome Y), the above algorithm can be performed using a 

logistic regression model, in which 𝛾𝑗 = 𝑙𝑟(𝛼 + 𝛽𝑥𝑗) Here, j is the sample, lr is the logistic 

function, 𝛼 is the intercept, 𝑥𝑗 is the covariate vector for sample j, and 𝛽 is the vector with 

covariate regression parameters. Normally, in a standard logistic regression,  𝛾𝑗 ∈ {0,1}. 

However, due to low coverage data, 𝛾 is adapted to represent for each sample the 

probability of the alternate genotype being present (note: not the posterior probability, but 

the probability given by the variant caller).  Standard implementations of logistic 

regression usually perform a simplification of the maximum likelihood which assumes 

dichotomous labels. Therefore, a slightly more generic version of logistic regression was 

implemented which does not make this assumption. Let 𝑝𝑗(𝑎, 𝛽) = 𝑙𝑟(𝑎 + 𝛽𝑥𝑗). The log-

likelihood then takes the following form: 𝐿𝐿(𝑎, 𝛽)  =  ∑ 𝑙𝑜𝑔(𝛾𝑗  𝑝𝑗(𝑎, 𝛽) 
𝑗 + (𝟏 − 𝜸𝒋)(𝟏 −

𝒑𝒋(𝒂, 𝜷))) −  𝝀 ∑ 𝜷𝒊
𝟐 

𝒊 . This function is maximized in terms of 𝑎 and 𝛽. A small 

regularization term 𝜆 = 0.005 is added to prevent problems with singularities. 

In case of diploid genotypes, this model does not suffice, as each sample can have either 

a reference, heterozygous or homozygous alternate genotype. The approach is to model 
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this as what can be seen as two coupled logistic regression models. Conceptually, in a 

simplified sense:  𝑑𝑗 = 𝑙𝑟(𝛼 + 𝛽𝑔𝑗,1 + 𝜃𝑥𝑗) + 𝑙𝑟(𝛼 + 𝛽𝑔𝑗,2 + 𝜃𝑥𝑗),  where 𝒅𝒋is a dosage for 

sample j, in the range [0,2], Here, gj,i is the matrix containing covariates that represent 

(complex combinations of) phased variants of sample j for haplotype i, and xj is the vector 

with covariate values for sample j that are haplotype-independent, with vector 𝜃 

containing the associated parameter values. Note that the two models share all 

parameters, but can differ (for phased variants) in their covariates.  

More in detail, this is not modelled through dosages, but through genotype probabilities 

rj, hj and oj, containing respectively the (non-posterior) genotype probabilities of the 

reference, heterozygous and homozygous alternate genotypes for sample j.  

Let 𝑝𝑗,𝑖(𝛼, 𝛽, 𝜃) = 𝑙𝑟(𝛼 + 𝛽𝑔𝑗,𝑖 + 𝜃𝑥𝑗), which will be noted more shortly as 𝑝𝑗,𝑖, then the 

maximum likelihood formulation takes the following form:  

𝐿𝐿(𝑎, 𝛽, 𝜃)  =  ∑ 𝑙𝑜𝑔(𝑟𝑗 (1 − 𝑝𝑗,1)(1 − 𝑝𝑗,2) + 𝒉𝒋(𝑝𝑗,1(1 − 𝑝𝑗,2)  +  (1 − 𝑝𝑗,1) 𝑝𝑗,2)  + 
𝑗

 𝒐𝒋𝑝𝑗,1𝑝𝑗,2) −  𝝀(∑ 𝜷𝒌
𝟐 

𝒌 + ∑ 𝜽𝒍
𝟐 

𝒍 )  

To optimize this likelihood (as well as for the logistic regression model above), gradients 

were derived, and the optimization was implemented using the SLSQP optimizer 

available through Scipy41. 

Tree search for complex haploblock-markers 

Earlier, a forward selection-backward elimination algorithm was described to optimize the 

set of covariates. The main reason to use such an algorithm is clarified here. To tag a 

haploblock uniquely, the status of multiple SNPs is usually required to define an accurate 

marker (e.g. the marker is true if variant 1 is present, but not variant 2). Such markers are 

needed to define the haploblock(s) in which a tested variant occurs. Adding all possible 

combination of nearby variants would computationally be prohibitively expensive. Regular 

variant imputation algorithms have a similar problem, and solve this by using Hidden 

Markov Models on top of phased population haplotypes. It is however not immediately 

apparent how such an approach can be combined with a regular covariate regression 

framework as described above. Instead, to still enable the multi-variant haploblock 

markers, the forward-backward search is used to explore a tree of increasingly complex 

multi-variant haploblock markers.  
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The algorithm starts as described, with a set E of all covariates that are inactive, i.e. not 

part of the regression, and an empty set I which will contain all covariates that become 

‘active’, i.e. that are selected to be part of the regression model. Next to the covariates 

that do not represent a genetic variant, set E contains at the start only single-variant 

haplotype markers and no complex multi-variant haplotype markers. That is, the 

haplotype marker set 𝑄 ⊆ 𝐸is equal to M, where M is the set of single-variant markers 

that are near the  tested variant (see section on ‘non-technical covariates’ for how this set 

of markers is selected).  Once a marker 𝑞 ∈ 𝑄   is moved to set I,  we extend set Q (and 

thereby set E). For a positive association of q with the tested variant, we perform: 𝑄 =

𝑄 ∪ {𝑞 ∧ 𝑚, 𝑞 ∧ ¬𝑚|𝑚 ∈ 𝑀}, while for a negative association of q we perform:𝑄 = 𝑄 ∪

{¬𝑞 ∧ 𝑚, ¬𝑞 ∧ ¬𝑚|𝑚 ∈ 𝑀}. Upon removal of marker q from set I, the reverse operation is 

performed.  Note that usually in this case, one of the complex markers directly dependent 

on q has already been added to set I.  

Detection of missing-not-at-random genotypes 

While missing genotype calls are usually only observed due to lack of read coverage, this 

is not always the case. In certain situations, missingness was found to correlate with 

genotype status in certain batches (e.g. non-reference calls were more likely to be 

missing). This is not detected through the above algorithm, as for a missing genotype call 

all possible genotypes have the same probability, and therefore the sample has, as 

designed,  no effect on the likelihood of the regression model. To detect these situations, 

the regression model optimized with the non-technical covariates (first step of algorithm) 

was used to impute the dosage of all samples.  Then, a Fisher exact test was performed 

for each batch and contributing study,  to detect possible allele frequency  differences 

between samples for which the genotype call is missing, and for samples for which the 

genotype is not missing. More in detail, an imputed posterior dosage is determined using 

the maximum likelihood fit of the ‘non-technical’ regression model: 𝑑𝑗   =  𝑝𝑗,1(1 − 𝑝𝑗,2)  +

 (1 − 𝑝𝑗,1) 𝑝𝑗,2  + 𝟐𝑝𝑗,1𝑝𝑗,2. Next, an allele-based Fisher exact test (number of alleles is 2 

times number of samples) is performed for each batch and study separately, contrasting 

samples with a missing genotype call with samples with a non-missing genotype call. P-

values < 1e-6 are considered indicative of a problematic  batch effect.  
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Two-phase approach 

In some cases, variants that were used as haploblock markers  themselves carried large 

batch effects. Due to this, nearby variants with a similar batch effect pattern were not 

detected as having such a batch effect. To prevent this from occurring, a two-phase 

approach was adopted. In the first phase, VBD was run without any haploblock markers. 

This meant that the non-technical regression model only used the PCA and phenotype 

covariates. This results in a conservative scoring, as less of the variant is explained by 

non-technical covariates. Variants that scored a VBD score > 25 in this phase were 

excluded as haploblock marker in the second phase. In the second phase, the algorithm 

was then performed as described above, but without the haploblock markers that were 

excluded by the first phase.  

Variant batch correction 

For many variants, problematic technical effects were limited to certain batches. In such 

cases, exclusion of the whole variant seemed unwarranted. To correct these variants, we 

performed a batch correction step. Variants with a VBD score > 25, or a VBD score > 15 

and a MAF < 0.05%, or a batch with a missing genotype batch p-value < 1e-6 were 

considered for correction. The correction process was performed iteratively, and 

continued until the VBD score < 10, and the minimum missing genotype batch p-value > 

1e-4, or if the variant could not be corrected further. In each iteration, correction was 

performed in two steps. First, the correction process walked through the technical 

covariates in order of their addition to the regression model. If such a technical covariate 

described a batch, study or capture kit and led to an AIC score jump of at least 5, the 

genotypes for the variant under consideration were set to missing for all samples of such 

a batch, study or capture kit. This process was stopped once a covariate was encountered 

that did not fall under these criteria. Second, the correction process walked through all 

batches with a missing genotype batch p-value <1e-4, which were set to missing as well. 

If no batches had a p-value <1e-4, but there were contributing studies with a missing 

genotype p-value <1e-4, then studies were considered instead. Variant were annotated 

both with VBD results before and after correction.  
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Variant filtering 

Finally, variants were considered for analysis if after correction they had a VBD score < 

25, or a VBD score < 15 if they had a MAF < 0.05%.  

 

Variant selection and annotation 

For the association tests, we performed variant selection (Figure 1c).  

1. Protein coding transcripts.  

We selected variants in autosomal protein-coding genes that were annotated by VEP 

(version 94.542)to affect the Ensembl basic set of protein coding transcripts (Gencode 

v19/v29 (liftover to build 37)43) of these genes. Transcripts of both Gencode versions were 

merged based on their identifier, with preference given to the v29-based annotation. 

Transcripts that passed our filter (protein coding + basic tag) in v19 but not in v29 were 

not considered.  

2. Variant type. 

We only kept variants that directly affected the protein (missense, stop_gained, 

splice_acceptor, splice_donor or frameshift annotation). For LOF annotations, we only 

kept those variants with a ‘HIGH’ VEP impact classification, while for missense 

annotations we required a ‘MODERATE’ VEP impact classification.  

3. Variant prioritization.  

We prioritized missense variants using REVEL (Rare Exome Variant Ensemble 

Learner)44 (annotation obtained from DBNSFP4.0a45 and only kept variants with a score 

≥ 25 (score range 0 - 100). LOF variants were prioritized using LOFTEE28 (version 1.0.2), 

and only LOF variants that had a LOFTEE ‘high-confidence’ flag were kept.  
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4. Variant frequency.  

Of these, we only kept variants that were estimated to have at least one carrier, and had 

a minor allele frequency (MAF) of <1%.  

5. Variant missingness.  

Finally, we removed (5) variants with >20% genotyping missingness (genotypes with a 

read depth < 6 are considered missing), or that did not pass a filter for differential 

missingness between the EOAD, LOAD and control groups (Fisher-Exact test comparing 

EOAD cases versus controls and LOAD cases versus controls, p<1e-20).  

6. Variant categorization.  

Variants were divided in 4 deleteriousness categories: a LOF category, and 3 missense 

categories: REVEL ≥ 75, REVEL 50-75 and REVEL 25-50 (Figure 1c).  

Analyses and statistical tests 

Gene burden test 

Based on previous findings in SORL1, TREM2 and ABCA75 an enrichment can be expected of 

high impact rare risk variants in early onset cases compared to late onset cases. A regular 

case/control test (in which only a subset of the cases is EOAD) would be inefficient in picking up 

such signals. The alternative, performing an additional test that specifically tests for burden in 

EOAD cases, would however also be inefficient as (1) the additional signal from the LOAD cases 

would be excluded from the analysis and (2) adding such a test would lead to additional correction 

for multiple testing. Therefore, we combined both case-control and EOAD tests into one, through 

the use of ordinal logistic regression, where the genetic risk for AD is considered to increase 

EOAD > LOAD > control. This test is optimally suited for picking up differential variant loads 

between the sample categories (EOAD > LOAD > Control), but it can also pick up regular case-

control signals for which genetic risk is equally distributed across EOAD and LOAD cases (EOAD 

~ LOAD > Control) as well as EOAD-specific signals (EOAD > LOAD ~ Control). The burden 

test was implemented with the ordinal regression implementation available in the MASS 

package (version 7.3-51.5) for R (version 3.4.3). Six PCA population covariates 
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(calculated on the samples remaining after sample QC, using an approach described 

previously32 were used, Figure S16, Figure S17, Figure S18), and p-values were 

calculated using a likelihood ratio test (‘lrtest’ function from the lmtest package, version 

0.9-35). An additive model was considered, by summing the dosages of the minor alleles 

of selected variants. To prevent biases due to missing or low coverage, we sampled the 

dosage of each variant call (i.e. 0,1 or 2) according to the posterior probabilities (see 

above) of the reference, heterozygous or homozygous genotypes. The burden test was 

performed multiple times with independently sampled dosages, to account for sampling 

uncertainty. P-values and beta values were averaged across these runs, while standard 

deviations were first converted to variances and then averaged. Repeated runs were 

performed until either the standard deviation of the mean of log10 transformed p-values 

became < 0.01, 100 runs were reached, or a mean p-value > 0.01 was obtained with at 

least 25 runs, or a mean p-value > 0.1 with at least 5 runs.  

Variant impact thresholds  

We tested the evidence for a differential burden for four sets of variants with incrementing 

levels of predicted deleteriousness: the LOF+REVEL≥25 threshold includes the variants 

from all deleteriousness categories, while the LOF+REVEL≥50 threshold and 

LOF+REVEL≥75 threshold condition on the variants with higher levels of predicted 

deleteriousness. Finally, the LOF threshold includes only variants that are predicted to 

lead to a complete loss-of-function. The rationale behind this is that for each gene, by 

concentrating maximum evidence for a differential burden-signal in one test, we maximize 

the power to identify a differential burden in this gene. Genes were only tested if the 

cumulative minor allele count (cMAC) of predicted damaging variants was ≥10. Multiple 

testing correction was performed across all performed tests (up to 4 per gene) using the 

False Discovery Rate procedure46. Genes were considered for replication if the false 

discovery rate was ≤20%. Additionally, we used family-wise correction using the Holm-

Bonferoni procedure47 to select genes that were significant in our discovery sample 

(corrected p < 0.05).  
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Carrier frequency and cumulative Minor Allele Frequency 

A carrier of a set of variants was defined as a sample for which the summed dosage of 

those variants was ≥0.5. Carrier frequencies (CFs) were determined as #carriers / 

#samples. Confidence intervals for the CFs were assumed to be described through a 

Beta distribution (where a=#carriers, and b=#samples - #carriers). To accommodate 

situations for certain age-at-onset bins, in which the number of carriers was (close to) 0, 

a prior was added to a and b based on the carrier count in samples not included in the 

age-at-onset bin, scaled such that a=0.1. The cumulative Minor Allele Frequency (cMAF) 

for a set of variants and samples was defined as the sum of the minor allele frequencies 

(MAFs) of the included variants in those samples. When the summed frequency of these 

variants is <1%, the cMAF can be considered to have a similar uncertainty distribution as 

the MAF, which can be described using a Beta distribution, where a=#cumulative Minor 

Allele Count (cMAC) and b=2 * #samples - cMAC. Similar as for the CF, a prior was added 

based on the observed allele counts in non-included samples, scaled such that a=0.1.  

Odds ratios 

Effect sizes (odds ratios, ORs) of the ordinal logistic regression can be interpreted as 

weighted averages of the OR of being an AD case versus control, and the OR of being 

an early-onset AD case or not. Ordinal odds ratios were calculated for each test, as well 

as separately for the 4 variant categories REVEL 25-50, 50-75, 75-100 and LOF. Next to 

ordinal ORs, we estimated ‘standard’ ORs. This was done across all samples 

(case/control), as well as per age category (EOAD versus controls and LOAD versus 

controls), as well as for smaller age-at-onset categories: ≤65 (EOAD), (65-70], (70-80] 

and >80. Standard ORs were estimated using multinomial logistic regression, using the 

R nnet package (version 7.3-12), with correction for 6 PCA covariates. For low cMAC 

values, logistic regression has difficulties in obtaining accurate odds ratios and confidence 

intervals, as the normal distribution approximation for the log(OR) parameter starts to 

break down. For these situations (where cMAC≤10, or <3 for either cases or controls), the 

OR and its confidence intervals were estimated directly based on the cMAF of cases and 

controls: OR = (cMAFcase / cMAFcontrol) / ((1 - cMAFcase) / (1 - cMAFcontrol). While the 

uncertainty of this OR is difficult to evaluate directly, it is governed by the uncertainty in 
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cMAFcase and cMAFcontrol. Confidence intervals were therefore estimated through the 

earlier described beta distribution approximation for the cMAF, by repeated sampling of 

possible cMAFcase and cMAFcontrol values.  

Testing for an age-at-onset or a deleteriousness-category effect 

We tested if enrichments of damaging variants increased (or decreased for protective 

variants) towards younger patients. To this end, an ordinal regression using only cases 

(no controls) was performed, in which cases were grouped in 4 age-at-onset bins: ≤65 , 

(65-70], (70-80] and <80+. A significant effect (FDR < 0.05) signaled that there was a 

difference in enrichment between young and older cases. To determine if there was a 

significant difference in effect sizes between the different deleteriousness categories 

(REVEL 25-50, 50-75, 75-100 and LOF), an ordinal logistic regression test was performed 

in which the H0 model included a single beta parameter for all deleteriousness categories, 

while the H1 model included 4 separate betas for the 4 deleteriousness categories (or <4 

when missense deleteriousness categories with cMAC <5 were merged, see caption of 

Figure 4 for details). We tested if there was a trend effect, in which effect sizes increased 

with increasing predicted damagingness (REVEL 25-50 < REVEL 50-75 < REVEL 75-

100 < LOF). To this end, we modified the ordinal logistic regression implementation, by 

adding a constraint on the beta parameters: |𝑏𝑅𝐸𝑉𝐸𝐿 25−50| ≤ |𝑏𝑅𝐸𝑉𝐸𝐿 50−75| ≤

|𝑏𝑅𝐸𝑉𝐸𝐿 75−100| ≤ |𝑏𝐿𝑂𝐹| (or equivalent for genes where variant categories were merged). 

Subsequently, optimization was performed by first estimating b in an unconstrained 

model, followed by adding the model constraints. Likelihood-ratios in this setting follow a 

chi-bar-squared distribution. Significance (FDR < 0.05) was therefore determined through 

sample label permutation, based on the bootstrapping approach outlined in Garre et al 48. 

The number of permutations was limited to 10.000.  

Sensitivity analysis 

A sensitivity analysis was performed to determine if effects were potentially due to age 

differences between cases and controls (Figure S2). An age-matched sample was 

constructed by dividing samples in strata based on age/age-at-onset, with each stratum 

covering 2.5 years. Case/control ratios in all strata were kept between 0.1 and 10 by 
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down-sampling respectively controls or cases. Subsequently, samples were weighted 

using the propensity weighting within strata method proposed by Posner and Ash49. 

Finally, a case-control logistic regression was performed both on the unweighted and 

weighted case-control labels, and estimated odds ratios and confidence intervals were 

compared.  

Variant-specific analysis 

We performed a variant-specific analysis of the genes considered as significantly or 

suggestively associated with AD, to detect gene-specific idiosyncrasies not covered by 

our uniform exome-wide analysis. We checked for outlier variants among those that were 

included in the burden test, determining which ones had a significantly lower or opposite 

effect size (fisher exact test) compared to other included variants of the same category 

(missense or LOF). Furthermore, we determined which missense or potential LOF 

variants did associate with AD (logistic regression test, at least 15 carriers), irrespective 

of REVEL/LOFTEE or MAF thresholds. We performed corrections for multiple testing per 

gene using FDR, reporting only variants with a threshold of FDR < 0.2 (Table S3). We 

manually removed and added these variants to the burden tests, in order to calculate, 

next to standard odds ratios, also refined odds ratios. 

Detailed gene discussion 

Results of the variant-specific analysis can be found in Table S3. For each gene, we 

discuss 1) variants that were included in the burden test, but found to be outliers, 2) 

missense and potential LOF variants that associated with AD, 3) other variants of interest. 

SORL1 

We detected two variants that associated with AD: i) A528T (OR 1.16, 95% CI: 1.05-1.27, 

MAF 4.9%, FDR: 4%), a common variant, which therefore was not added to the (refined) 

burden test, ii) a suggestive association for the rare V1459I variant (OR 2.5, 95% CI: 1.22-

5.07, FDR: 20%), which due to its REVEL score was not included in the burden test, but 

was added to the refined analysis. One missense SORL1 variant (S2175R) was detected 
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as outlier (FDR 6.3%) to the burden test, as it had OR of 0.53 (95% CI 0.19-1.47), lower 

than other missense variants.  This variant was removed from the burden test in the 

refined analysis. The addition of V1459I and removal of S2175R in the refined burden 

analysis changed the SORL1 missense OR from 2.2 to 2.5 (Table 1). 

TREM2 

We detected 5 missense variants that associated with AD: i) R47H50 (OR 3.7, 95%CI 2.8-

4.9, FDR: 3.8e-10%), which was included in the burden test, ii) R62H51 (OR 1.6, 95%CI 

1.3-1.9, MAF 1.3%, FDR: 0.0006%), which is common, and was therefore not included in 

the (refined) burden test, iii) a new significant association for D87N (OR 2.6, 95%CI, 1.6-

4.6, MAF:0.15%, FDR: 1%), iv) we confirmed the recently significantly associated 

H157Y50 (OR 6.4, 95%CI: 2.7-15.2, MAF:0.05%, FDR:1%), and v) found a new significant 

association in L211P (OR 2.3, 95%CI: 1.3-3.9, MAF:0.05%, FDR:2%). The last three 

variants all had a low REVEL score, and were therefore not included in the burden test, 

but were added to the refined analysis. Notably, missense variant L211P affects only the 

canonical transcript, while the other mentioned missense variants affect all 3 protein-

coding transcripts of TREM2. For LOF variants, we detected an outlier splice acceptor 

variant rs538447052 (OR: 1.9, 95%CI: 0.7-5.1, MAF: 0.04%), which only affected the non-

canonical ENST00000373122 transcript. This variant had a significantly lower odds ratio 

(outlier FDR: 11%)  compared to the other LOF variants that affect all transcripts. It was 

therefore removed in the refined analysis. Furthermore, we also note a suggestive 

association for a stop gained variant which only affected the soluble TREM2 transcript 

ENST00000338469 (OR: 2.3, 95%CI: 0.9-5.8, FDR: 20%). This variant was carried by 20 

individuals (17 cases, 3 controls), and was not included in our burden test as it had a low-

confidence classification from LOFTEE due to its location in the last exon. Given the 

different biological effect and the relatively lower OR compared to the other LOF variants 

that affect all transcripts, this variant was not added to the refined analysis.  After 

refinement (inclusion of D87N, H157Y, L211P, and removal of the splice acceptor LOF 

variant for the non-canonical transcript), the LOF odds ratio of TREM2 was determined 

to be 10.8 (95% CI: 4.4-26.9), while the missense OR 3.5 (95% CI:3.1-6.1).  
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ABCA7 

We associated 4 missense variants in ABCA7: i) L101R (OR: 3.7, 95%CI 2.1-6.4, FDR: 

0.5%), which was included in the burden test, ii) a new significant association for a 

common protective variant G215S (OR: 0.89, 95%CI: 0.81-0.97, FDR: 2%), for which 

previously a suggestive protective association was found52, iii and iv) a protective 

association in common variants H395R and Q1686R, which are (known to be) in tight 

linkage 53. For H395R, a damaging association was previously found in African 

Americans54, where the variant is much more common (25% vs. 3.5% in our study). These 

4 variants did not lead to any changes in the refined burden analysis. Additionally, there 

were 2 missense variants detected as outlier in the burden test: i) R19W (outlier FDR: 

5%), with an OR of 1.09 (95% CI: 0.4-3.2). We note that the OR in our study might be 

underestimated, as this variant was mainly present in young controls (median age 57). ii) 

V1599M (outlier FDR:1.8%), with an OR of 0.84 (95%CI: 0.61-1.15, MAF:0.4%). In the 

refinement analysis, these two variants were removed.  The resulting missense OR in the 

burden test was 1.4 (95%CI: 1.3-1.6).  Of note, our discovery analysis excluded two 

relatively often occurring LOF variants, flagged in our QC pipeline for differential 

missingness. However, for these variants, it was possible to reliably calculate a single-

variant association (by excluding samples with low depth). The first variant is the splice-

altering variant c.5570+5G>C, which maps outside the closest canonical splice site and 

hence did not fulfill our inclusion criteria for the exome wide burden tests. A loss of 

function effect was demonstrated in vitro for this variant1. In our study, we observed an 

OR of 1.67 (95%CI 1.2-2.3, p=0.002, MAF=0.43%). The second variant is the LOF 

frameshift variant 708-710:EEQ/X (earlier observed by de Roeck et al55) for which we 

report an OR of 2.0 (95%CI 1.36-3.01, p=0.003, MAF=0.27%).  These odds ratios are in 

line with those obtained for the LOF burden test (OR 1.8, 95%CI: 1.2-2.6). Finally, we did 

not have the possibility to call an intronic variable number tandem repeat (VNTR) which 

was recently associated with an increased risk of developing AD, suggesting that the level 

of association of ABCA7 in AD is still likely underestimated in our study56. However, it is 

important to keep in mind that the real impact of some LOF mutations in ABCA7 may be 

restricted by a transcript rescue mechanism55. 
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ABCA1 

We associated 5 missense variants in ABCA1 with AD: i,ii) two common missense 

variants V825I and I883M, with a (suggestive) protective association with AD: OR 0.93  

and OR 0.91 respectively. iii)  A rare suggestive protective association of variant A1182T 

(OR 0.49, 95%CI: 0.25-0.95, FDR: 13%). iv) A rare suggestive association with increased 

AD risk of variant R1680Q (OR 2.75, 95% CI: 1.27-5.95, FDR: 13%). v) A significant 

association with 4.2-fold increased AD risk of variant N1800H (OR 4.2; 95%CI: 2.0-8.6, 

FDR:2%, MAF: 0.08%).  This variant was not included in our burden test due to a low 

REVEL core. Furthermore, we detected 2 variants as outlier in the burden test: vi) a 

missense variant (outlier FDR: 4.8%) in D1018G (OR 0.81, 95%CI: 0.29-2.22, 

MAF:0.04%) and vii) a splice donor variant (outlier FDR: 0.3%, 9:107565564:C>A), which 

had an OR of 0.94 (95%CI: 0.19-4.52, MAF: 0.02%). In our refinement analysis, we 

removed the latter variants (vi and vii) and added variants (iv) R1680Q and (v) N1800H. 

The burden of all LOF associated with a 5-fold increased risk for AD (OR 4.9, 95%CI 2.1-

11.4) and the burden of all missense mutations associated with a 2-fold increased risk of 

AD (OR 2.1, 95%CI: 1.6-2.7).  

ADAM10 

We note that one splice-acceptor LOF variant, carried by a single control, only affects 

transcripts ENST00000402627 and ENST00000561288. These transcripts, being 71 and 

38 amino acids long, miss the majority of the canonical transcript (748 amino acids). This 

individual was last checked at age 89.  
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genetics consortia are the Alzheimer’s Disease Genetics Consortium (ADGC) funded by 

NIA (U01 AG032984), and the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, Lung, and 
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Blood Institute (NHLBI), other National Institute of Health (NIH) institutes and other foreign 

governmental and non-governmental organizations. The Discovery Phase analysis of 

sequence data is supported through UF1AG047133 (to Drs. Schellenberg, Farrer, 

Pericak-Vance, Mayeux, and Haines); U01AG049505 to Dr. Seshadri; U01AG049506 to 

Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and U01AG049508 to Dr. Goate and the 

Discovery Extension Phase analysis is supported through U01AG052411 to Dr. Goate, 

U01AG052410 to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri and Fornage, 

U54 AG052427 to Drs. Schellenberg and Wang, and R01 AG054060 to Dr Naj. The 

ADGC cohorts include: Adult Changes in Thought (ACT) (UO1 AG006781, UO1 

HG004610, UO1 HG006375, U01 HG008657), the Alzheimer’s Disease Centers (ADC) ( 

P30 AG019610, P30 AG013846, P50 AG008702, P50 AG025688, P50 AG047266, P30 

AG010133, P50 AG005146, P50 AG005134, P50 AG016574, P50 AG005138, P30 

AG008051, P30 AG013854, P30 AG008017, P30 AG010161, P50 AG047366, P30 

AG010129, P50 AG016573, P50 AG016570, P50 AG005131, P50 AG023501, P30 

AG035982, P30 AG028383, P30 AG010124, P50 AG005133, P50 AG005142, P30 

AG012300, P50 AG005136, P50 AG033514, P50 AG005681, and P50 AG047270), the 

Chicago Health and Aging Project (CHAP) (R01 AG11101, RC4 AG039085, K23 

AG030944), Indianapolis Ibadan (R01 AG009956, P30 AG010133), the Memory and 

Aging Project (MAP) ( R01 AG17917), Mayo Clinic (MAYO) (R01 AG032990, U01 

AG046139, R01 NS080820, RF1 AG051504, P50 AG016574), Mayo Parkinson’s 

Disease controls (NS039764, NS071674, 5RC2HG005605), University of Miami (R01 

AG027944, R01 AG028786, R01 AG019085, IIRG09133827, A2011048), the Multi-

Institutional Research in Alzheimer’s Genetic Epidemiology Study (MIRAGE) (R01 

AG09029, R01 AG025259), the National Cell Repository for Alzheimer’s Disease 

(NCRAD) (U24 AG21886), the National Institute on Aging Late Onset Alzheimer's 

Disease Family Study (NIA- LOAD) (R01 AG041797), the Religious Orders Study (ROS) 

(P30 AG10161, R01 AG15819), the Texas Alzheimer’s Research and Care Consortium 

(TARCC) (funded by the Darrell K Royal Texas Alzheimer's Initiative), Vanderbilt 

University/Case Western Reserve University (VAN/CWRU) (R01 AG019757, R01 

AG021547, R01 AG027944, R01 AG028786, P01 NS026630, and Alzheimer’s 

Association), the Washington Heights-Inwood Columbia Aging Project (WHICAP) (RF1 
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P50AG005136, R01AG041797, NINDS: R01NS069719), the Columbia University 

HispanicEstudio Familiar de Influencia Genetica de Alzheimer (EFIGA) (RF1 AG015473), 

the University of Toronto (UT) (funded by Wellcome Trust, Medical Research Council, 

Canadian Institutes of Health Research), and Genetic Differences (GD) (R01 AG007584). 

The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute 

(NHLBI) infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the 

neurology working group is supported by the National Institute on Aging (NIA) R01 grant 

AG033193. R01 AG048927 for the Gwangju Alzheimer and Related Dementias Study,  

RF1 AG054080 to Dr. Beechem, U24 AG056270 to Dr. Mayeux, RF1 AG057519  to Dr. 

Farrer and Pericak-Vance, U01 AG062602 to Dr. Farrer, R01 AG067501 to Dr. Mayeux, 

and P30 AG13846 to Dr. Farrer 

The CHARGE cohorts participating in the ADSP include the following: Austrian Stroke 

Prevention Study (ASPS), ASPS-Family study, and the Prospective Dementia Registry-

Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, 

the Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the 

Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the 

Austrian Science Fond (FWF) grant number P20545-P05 and P13180 and the Medical 

University of Graz. The ASPS-Fam is funded by the Austrian Science Fund (FWF) project 

I904),the EU Joint Programme - Neurodegenerative Disease Research (JPND) in frame 

of the BRIDGET project (Austria, Ministry of Science) and the Medical University of Graz 

and the Steiermärkische Krankenanstalten Gesellschaft. PRODEM-Austria is supported 

by the Austrian Research Promotion agency (FFG) (Project No. 827462) and by the 
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2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 

from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI 

examinations funded by R01-HL70825 from the NHLBI. CHS research was supported by 
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EUROSPAN (European Special Populations Research Network) was supported by 
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analysis of the ERF data was supported by a joint grant from the Netherlands 
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The four LSACs are: the Human Genome Sequencing Center at the Baylor College of 

Medicine (U54 HG003273), the Broad Institute Genome Center (U54HG003067), The 

American Genome Center at the Uniformed Services University of the Health Sciences 

(U01AG057659), and the Washington University Genome Institute (U54HG003079). 

  

Biological samples and associated phenotypic data used in primary data analyses were 

stored at Study Investigators institutions, and at the National Cell Repository for 

Alzheimer’s Disease (NCRAD, U24AG021886) at Indiana University funded by NIA. 

Associated Phenotypic Data used in primary and secondary data analyses were provided 

by Study Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the 

National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the National 

Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, 

U24AG041689) at the University of Pennsylvania, funded by NIA This research was 

supported in part by the Intramural Research Program of the National Institutes of health, 

National Library of Medicine. Contributors to the Genetic Analysis Data included Study 

Investigators on projects that were individually funded by NIA, and other NIH institutes, 

and by private U.S. organizations, or foreign governmental or nongovernmental 

organizations. 
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