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a b s t r a c t 

Recent studies have shown how MEG can reveal spatial patterns of functional connectivity using frequency- 
specific oscillatory coupling measures and that these may be modified in disease. However, there is a need to 
understand both how repeatable these patterns are across participants and how these measures relate to the 
moment-to-moment variability (or ‘irregularity) of neural activity seen in healthy brain function. In this study, 
we used Multi-scale Rank-Vector Entropy (MRVE) to calculate the dynamic timecourses of signal variability over 
a range of temporal scales. The correlation of MRVE timecourses was then used to detect functional connections in 
resting state MEG recordings that were robust over 183 participants and varied with temporal scale. We compared 
these MRVE connectivity patterns to those derived using the more conventional method of oscillatory amplitude 
envelope correlation (AEC) using methods designed to quantify the consistency of these patterns across partici- 
pants. Using AEC, the most consistent connectivity patterns, across the cohort, were seen in the alpha and beta 
frequency bands. At fine temporal scales (corresponding to ‘scale frequencies, 𝑓 𝑆 = 30-150Hz), MRVE correlation 
detected mostly occipital and parietal connections. These showed high similarity with the networks identified 
by AEC in the alpha and beta frequency bands. The most consistent connectivity profiles between participants 
were given by MRVE correlation at 𝑓 𝑆 = 75Hz and AEC in the beta band. The physiological relevance of MRVE 
was also investigated by examining the relationship between connectivity strength and local variability. It was 
found that local activity at frequencies 𝑓 𝑆 ≳ 10Hz becomes more regular when a region exhibits high levels of 
resting state connectivity, as measured by fine scale MRVE correlation ( 𝑓 𝑆 ∼ 30-150Hz) and by alpha and beta 
band AEC. Analysis of the EOG recordings also revealed that eye movement affected both connectivity measures. 
Higher levels of eye movement were associated with stronger frontal connectivity, as measured by MRVE cor- 
relation. More eye movement was also associated with reduced occipital and parietal connectivity strength for 
both connectivity measures, although this was not significant after correction for multiple comparisons. 
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. Introduction 

In recent years, MEG has revealed much about the electrophysio-
ogical underpinnings of connectivity in the brain. The direct view of
euronal activity provided by MEG and its excellent temporal resolu-
ion have allowed the investigation of frequency-specific communica-
ion ( Brookes et al., 2011; Hillebrand et al., 2012; Hipp et al., 2013 ) and
ynamic changes in connectivity on the millisecond timescale ( Baker
t al., 2014; O’Neill et al., 2017 ). 

Alterations in MEG connectivity have also been detected in patient
roups ( Boon et al., 2017; Brookes et al., 2016; Engels et al., 2017;
hanbari et al., 2015; Hamandi et al., 2016; Van Dellen et al., 2014 ).
owever, to be clinically useful, connectivity research must progress

rom group-level analysis to the characterisation of individual subjects.
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o make meaningful comparisons between connectivity profiles of in-
ividuals, robust connectivity measures are needed that give consistent
esults for subjects with the same pathology. 

Several recent studies have found that many commonly used tech-
iques for measuring functional connectivity in MEG lack repeatability
etween healthy subjects, and even show inconsistency over repeated
cans of the same subject ( Colclough et al., 2016; Liuzzi et al., 2017;
ens et al., 2014 ). Colclough et al. (2016) found that the method that

ave the most consistent connectivity was oscillatory amplitude enve-
ope correlation (AEC), using symmetric orthogonalisation to remove
purious zero-lag correlation between timecourses due to signal leakage
 Colclough et al., 2015 ). The repeatability of connectivity given by any
lternative methods could therefore be compared to AEC to assess the
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xtent to which it can add to our understanding of cortical communica-
ion in health and disease. 

Many of the most popular techniques for measuring connectivity are
ased on measuring the synchronisation of oscillatory activity within
arrow frequency bands. Another, less studied, aspect of electrical neu-
al activity is the constantly fluctuating activity present in the brain
ven when it is supposedly ‘at rest’. This variable activity is observed
hen there is a breakdown of synchrony between neurons, allowing
n increase in the information that can be processed within a network
 Brookes et al., 2015 ). The MEG signals generated by such activity con-
ist of a superposition of many low power signals from smaller neuron
opulations. This variable activity appears more irregular, or ‘random’,
nd so is often dismissed as neural ‘noise’, but it is thought to be vital
or healthy brain function ( Deco et al., 2011; Garrett et al., 2013; Taka-
ashi, 2013 ). It has been shown that the variability of neural activity
ncreases as the brain matures ( Lippé et al., 2009; Mcintosh et al., 2008;
cIntosh et al., 2014 ), and it has been found to be altered in patient

roups where activity that is either too regular or too variable is associ-
ted with mental disorder ( Brookes et al., 2015; Fernández et al., 2013;
hanbari et al., 2015; Mateos et al., 2018; Mizuno et al., 2010; Monge
t al., 2015; Protzner et al., 2010; Takahashi, 2013 ). 

While the physiological role of variability in the brain is not certain,
t is possible that it is related to levels of synchronisation between corti-
al regions, i.e. connectivity. The synchronisation of oscillatory activity,
hich is highly regular and therefore has low variability, is currently

he most promising mechanism for connectivity between brain regions
 Brookes et al., 2011; Donner and Siegel, 2011; Fries, 2005; Hillebrand
t al., 2012; Schnitzler and Gross, 2005; Tewarie et al., 2019 ). In con-
rast, it is thought that local information processing performed within
egregated brain regions is associated with signals that contain higher
evels of information and therefore have higher variability ( Friston et al.,
996; Tononi et al., 1994 ). Therefore, measures of variability and oscil-
atory activity may be sensitive to complementary aspects of functional
onnectivity. It was found in a recent MEG study that variability and os-
illatory amplitude have a complex relationship, and that the variance
n the variability of neuronal signals could only partially be explained by
scillatory amplitude across frequencies ( Brookes et al., 2015 ). Variabil-
ty could therefore provide information about functional connectivity
eyond that which is available from measures based on the oscillatory
omponents of brain activity. 

There is evidence for a relationship between neural variability and
unctional connectivity in the literature. One fMRI study found a corre-
ation between the variability of BOLD signals and functional connec-
ivity ( Wang et al., 2018 ) between spatially separated cortical regions.
ge-related connectivity changes have also been shown to covary with

he variability of EEG and MEG signals ( McIntosh et al., 2014; Vakorin
t al., 2011 ) and in an EEG study applying graph theory to functional
etworks, variability was found to correlate with network node central-
ty ( Mi š i ć et al., 2011 ). 

The variability of neural activity can be quantified using entropy
easures, where more disordered and irregular signals have larger en-

ropy, and more regular signals have lower entropy. There are many
ossible ways of estimating signal entropy ( Garrett et al., 2013 ). How-
ver, one measure that has been shown to be useful in measuring
he spatio-temporal variability of MEG signals is Rank-Vector-Entropy
RVE) ( Brookes et al., 2015; Robinson et al., 2013 ). RVE is a deriva-
ive of Shannon entropy ( Shannon, 1948 ) that has a built-in ability to
rovide a dynamic timecourse of signal entropy, retaining the temporal
esolution of the original signal. It is also computationally efficient, is
alculated from broadband activity timecourses, and is independent of
ignal amplitude ( Robinson et al., 2013 ). The relationship between vari-
bility and neural synchronisation, and the desirable qualities of RVE,
uggest that RVE could be an alternative measure to use in functional
onnectivity analysis that is not limited to the consideration of oscilla-
ory activity. 
n  
RVE, and many other entropy measures, measure signal variability
t a single temporal scale. However, it has been shown that neural activ-
ty contains recurring patterns that occur across a range of such scales
 Costa et al., 2005 ). It is not certain what these correspond to physiolog-
cally, however it is thought that activity at coarser scales is associated
ith long range, distributed information processing, while more local
rocessing is captured at finer scales ( Vakorin et al., 2011 ). 

To utilise the in-built temporal resolution that is specific to RVE, a
ulti-scale extension of RVE (MRVE) is proposed ( Costa et al., 2005 ).
RVE timecourses at any temporal scale can be calculated from MEG

irtual sensor timecourses at any number of required voxels, allowing
or a direct comparison with dynamic oscillatory measures. In this paper,
RVE was used used to reconstruct functional connectivity patterns,

ssess how repeatable these patterns are across a cohort of healthy vol-
nteers and investigate how these patterns vary with temporal scale.
e then compared connectivity profiles measured by MRVE correlation
ith those derived using amplitude envelope correlation (AEC). We also

ompared the robustness of MRVE correlation, and whether it provides
xtra information over standard methods, by comparing connectivity
atterns derived at multiple entropy time scales with those derived from
EC in multiple frequency bands. The physiological relevance of vari-
bility was then investigated by examining the relationships between
RVE, oscillatory amplitude and regional connectivity strength. Finally,

he effects of eye movement on the measured connectivity were inves-
igated through analysis of EOG recordings. 

. Methods 

.1. Data acquisition 

Five-minute eyes open resting state MEG recordings were acquired
rom 183 participants (123 female) as part of the ‘100 Brains’ and UK
EG Partnership normative scanning projects. Inclusion criteria en-

ured all participants were aged 18–65 (mean 24.5 ± 5.4 years), had
ompleted or were undertaking a degree, had normal or corrected-to-
ormal vision, and had no history of neurological or neuropsychiatric
isorders. All procedures were given ethical approval by the Cardiff Uni-
ersity School of Psychology Ethics Committee, and all participants gave
ritten informed consent before taking part. 

Data were acquired using a whole head 275-channel CTF radial gra-
iometer system at a 1200 Hz sample rate. An additional 29 refer-
nce channels were recorded for noise cancellation purposes and the
rimary sensors were analysed as synthetic third-order gradiometers
 Vrba and Robinson, 2001 ). Subjects were seated upright in the mag-
etically shielded room with their head supported with a chin rest to
inimize movement. Participants were asked to rest and fixate their

yes on a central red fixation point, presented on either a CRT moni-
or or LCD projector. The fixation point was presented on a background
f zero luminance to minimise the effect of the screen refresh rates on
ortical oscillatory activity. Head localisation was performed at the be-
inning and end of each scan, using three fiducial markers. Horizontal
nd vertical electro-oculograms (EOG) were recorded to monitor eye
links and eye movements. 

Participants also underwent a magnetic resonance imaging (MRI)
ession to acquire a T1-weighted 1mm anatomical scan, using an inver-
ion recovery spoiled gradient echo acquisition (3T, General Electric). 

.2. Pre-processing 

All data were downsampled to 600Hz and a 1-150Hz bandpass fil-
er applied. Datasets were cut into 2 second epochs, which were each
isually inspected and removed if they contained any major artefacts,
uch as ocular or muscular movement artefacts. Out of a maximum
f 150 epochs across the five-minute recording, an average number of
47 . 0 ± 0 . 5 trials were retained across all participants. There was no sig-
ificant difference in the number of trials retained between male and fe-
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ale participants as determined by an unpaired t -test ( 𝑇 (88) = 1 . 84 , 𝑝 =
 07 ). The effective number of degrees of freedom was calculated using
he Satterthwaite approximation to account for a difference in sample
ariance between the male and female subgroups. 

Co-registration was performed manually between the MEG and MRI
oordinate spaces; the fiducial locations were kept fixed relative to each
articipants nasion, left and right ears and so could then be identified
nd marked on their MRI scan. 

To perform analysis in source space, MEG virtual sensor timecourses
ere obtained using a scalar LCMV beamformer ( Van Veen et al., 1997 )
sing FieldTrip ( Oostenveld et al., 2011 ). Lead fields were calculated us-
ng a localspheres head model for voxels on a 6mm 

3 grid ( Huang et al.,
999 ). Covariance matrices were obtained using the broadband pre-
rocessed data filtered between 1-150Hz, as well as for activity within
en narrower frequency bands (1–4, 3–8, 8–13, 13–30, 40–60, 60–80,
0–100, 100–120, 120–140 and 140-160Hz). For all frequency bands,
eamformer weights were normalised using the vector norm ( Hillebrand
t al., 2012 ). The coordinate space for each participant was transformed
o the MNI template ( Fonov et al., 2009 ). The estimated timecourses
ere then calculated at each voxel for each frequency band, which were

hen subsequently used to calculate variability and oscillatory amplitude
imecourses. 

.3. Variability 

.3.1. RVE 

The RVE method was first described by ( Robinson et al., 2013 ). At
ach time point, a window of 𝑊 points is taken from the signal, each
eparated by a lag, 𝜉, to avoid oversampling, where 𝑓 𝑠 represents the
ample rate, and 𝑓 𝑐 is the low-pass frequency applied to the data. 

= 

𝑓 𝑠 

2 𝑓 𝑐 
(1)

These 𝑊 points are ordered in size, and then converted to the posi-
ion they originally held in the window. This is the ‘rank-vector’ asso-
iated with this time point. The Shannon entropy is calculated at each
ime point using a state probability distribution derived from the fre-
uency of occurrence of the rank-vectors that occurred previously in
he signal ( Shannon, 1948 ). Temporal resolution is introduced using a
leaky integrator’, which gives RVE a ‘memory’ of states that is limited
n time ( Robinson et al., 2013 ). 

.3.2. MRVE 

The calculation of MRVE at each scale is identical to the calculation
f RVE, except that each instance of the sliding window is formed from
 ‘coarse-grained’ version of the raw signal. For a given scale factor, 𝑆,
t each time point in the signal, 𝑡, 𝑊 consecutive, non-overlapping win-
ows of 𝑆 points are taken starting at 𝑡, where each value is separated
y lag 𝜉. Then, the values in the sliding window are found by taking the
verage of the data points within these windows. This is given by Eq. 2 ,
here 𝑥 represents the signal timecourse sampled with lag 𝜉, and 𝒚 𝒕 is

he window found at time point 𝑡 . 

 𝑡,𝑗 = 

1 
𝑆 

𝑗𝑆 ∑

𝑖 = 𝑡 +( 𝑗−1) 𝑆+1 
𝑥 𝑖 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑊 (2)

As the rank-vector calculated is dependent on the scale factor used,
 separate entropy timecourse is generated for each value of 𝑆 used. 

The time scale examined by MRVE is determined by the effective
ample frequency of the values in 𝒚 𝒕 . This ‘scale frequency’, 𝑓 𝑆 , is deter-
ined by the scale factor, where a higher value of 𝑆 corresponds to a

oarser sampling rate and therefore a lower value of 𝑓 𝑆 ( Courtiol et al.,
016 ). Eq. 3 relates the scale factor to 𝑓 𝑆 to aid in the interpretation of
RVE and its relationship with oscillatory measures. 

 = 

𝑓 𝑐 
(3)
𝑆 

𝑆 
s  
.4. Functional connectivity 

90 nodes were selected by taking one voxel timecourse to represent
ach region of the AAL atlas ( Tzourio-Mazoyer et al., 2002 ). The selec-
ion was performed for each participant and for each frequency band,
y identifying the virtual sensor time course, within each AAL region,
hat had the highest temporal standard deviation. This voxel was chosen
s an estimate of the timecourse exhibiting the maximum SNR within
he region. To avoid the detection of spurious connections due to sig-
al leakage, the zero-lag correlation between all 90 AAL timecourses
as removed by symmetric orthogonalisation ( Colclough et al., 2015 ).
his resulted in 90 orthogonal timecourses for each participant and fre-
uency range, which were then used to calculate MRVE and oscillatory
mplitude timecourses. 

MRVE was calculated from the broadband, 1-150Hz virtual sensor
imecourses, using a window length of 𝑊 = 5 and a decay time con-
tant of 𝜏 = 0 . 07 𝑠 . Timecourses were calculated for 25 scale factors be-
ween 𝑆 = 1 − 150 , with corresponding scale frequencies ranging from
 𝑆 = 1 − 150 Hz. Oscillatory amplitude envelopes were found by apply-
ng the Hilbert transform to the timecourses obtained for each of the
forementioned narrow frequency bands. Functional connectivity was
hen measured as described by Koelewijn et al. (2019) . The MRVE and
ilbert envelope timecourses were de-spiked to remove artefactual tem-
oral transients using a median filter, and downsampled to 1 Hz. The
rst 50 samples were then trimmed to remove the MRVE ‘warm-up’ pe-
iod while the histogram populates, and a window of samples at the end
as removed, the length of which was defined by the length in time of

he longest sliding window used in the MRVE calculation, corresponding
o the largest scale factor. 

Functional connectivity matrices were calculated separately for
RVE at each scale, and for oscillatory amplitude within each narrow

requency band by correlating each of the 90 timecourses from each
articipant with all others. The correlation values were then normalised
y converting them to Z-scores using the Fisher transform. These were
ariance-normalised to correct for the effects of the varying timecourse
engths between participants, due to the removal of data epochs con-
aining artefacts ( Koelewijn et al., 2019 ). Without such normalisation,
atasets which have had more epochs removed are more likely to show
igher correlations between the calculated amplitude and entropy en-
elopes, by chance, due to their shorter length. Significant connections
ere determined by first ranking connections in order of strength for

ach participant, where the strongest connection was given the value
 and the weakest given value 0. For each connection, the mean rank
alue was then found across participants. ‘Valid connections’ were taken
s those with a mean rank above a threshold of 0.8, indicating that these
onnections are consistently among the strongest across participants.
his threshold is arbitrary, however it has been shown previously to be
 suitable threshold for detecting robust resting state network connec-
ions using AEC ( Koelewijn et al., 2019 ). 

.5. Software 

Data analysis was performed in MATLAB, using Fieldtrip functions
nd custom built MATLAB scripts ( Oostenveld et al., 2011 ). Connections
ere visualised on a template brain using the SourceMesh MATLAB tool-
ox, and voxel-wise correlation colourmaps were created in mri3dX. 

. Results 

.1. Consistency of functional connectivity across participants 

First, MRVE correlation was used to measure functional connectivity
nd we assessed which of these connections were consistently among the
trongest across subjects. Fig. 1 shows the location and number of the
alid connections found for scale frequencies, 𝑓 𝑆 = 1 -150Hz. At higher
cale frequencies, i.e. at finer temporal scales, most connections are
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Fig. 1. Valid connections (mean rank > 0 . 8 ) found using AEC correlation for 
four frequency bands (above) and MRVE correlation for a range of time scales 
(below). Each point represents an AAL region and each line represents a con- 
nection. The midpoint of the frequency band (for AEC) or scale frequency (for 
MRVE correlation) is indicated in the top left corner of each plot, in Hz. The key 
at the top indicates the colour of the connections that originate in each brain 
region. No valid connections were found using AEC in the 3–8, 40–60, 60–80, 
80–100 or 140-160Hz frequency bands. 
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ound in occipital and parietal regions. As shown in Fig. 2 , the maxi-
um number of connections was found at 𝑓 𝑆 = 75Hz. However, there

s a second peak in the number of valid connections found at 𝑓 𝑆 = 10Hz,
here more frontal connections are seen. Cumulatively across all scales,
alid connections were detected between 254 different pairs of nodes. 

The valid connections found using AEC are also shown in Fig. 1 .
alid connections were found within four frequency bands. The most
alid connections were seen in the beta band, giving the same number
s for 𝑓 𝑆 = 75Hz using MRVE correlation. Across all frequency bands,
alid connections were detected between 248 different node pairs. 

We then investigated whether MRVE correlation could provide addi-
ional information about functional connectivity beyond that provided
y AEC analysis. Firstly, it was seen whether each method could detect
nique connections that were not deemed valid by the alternate method.
o determine this for each connection, its mean rank, averaged across
ll subjects, was calculated for all scale frequencies for MRVE and for
ll frequency bands using AEC. For each connection, we then found the
ighest mean rank for any of the MRVE scales and the highest mean rank
or any of the AEC frequency bands. Those with a highest mean rank
bove the threshold of 0.8 for either method were taken as detectable
y the corresponding connectivity measure. Fig. 2 shows the highest
ean rank values for each connection plotted against each other. Those

onnections that are ‘unique’ to each method are shown plotted between
he AAL nodes. 200 connections are visible for both MRVE correlation
nd AEC across all scales and frequency ranges, leaving 54 connections
21%) that can only be seen using MRVE correlation, and 49 (19%) that
an only be seen using AEC. 

.1.1. Robustness of connectivity measures to sample size 

The robustness of each connectivity measure to the participant sam-
le size was determined using bootstrapping. Sub-samples of a range of
izes were taken from the participant cohort by simple random sampling
ith replacement. The number of valid connections was found for each

ub-group taken, over 1000 tests per sub-group size, 𝑁 . It can be seen
n Fig. 3 A that the average number of connections found was less stable
hen using fewer participants in the analysis for both MRVE correlation
nd AEC. The average number approximates to the number of connec-
ions detected using the whole cohort (as shown in Fig. 2 A) when using
 ≳ 60 . However, for both MRVE correlation and AEC, the variance in

he number of valid connections detected was found to be larger when
ewer participants were included. For 𝑁 ≲ 60 , a smaller sample was also
ssociated with more connections detected on average. 

.1.2. Consistency of connectivity patterns across participants 

The consistency of the connectivity profiles between individuals was
hen investigated. The average connectivity profile for each frequency
and and scale frequency was taken by vectorising the mean 𝑧 score
onnectivity matrix. This profile was then correlated with the equivalent
ector of 𝑧 scores obtained for each participant individually. For very ro-
ust networks that are highly reproducible across subjects, this method
ill give consistently high pattern-correlation with the average connec-

ivity profile. However, the distribution of correlation coefficients will
e, on average, lower for a network that shows high variability across
articipants. Each pattern-correlation coefficient is represented in the
olour plot shown in Fig. 3 B. For each scale factor and frequency band,
hese have been sorted in descending order of participants. Consistent
igh correlation with the average connectivity patterns, representing
igh cross-subject repeatability, can be seen for MRVE correlation at
cale frequencies 50 and 75Hz, and for alpha and beta band AEC. 

To further quantify the consistency of each connectivity measure
cross subjects, the mean correlation with the average connectivity
rofile was found for each scale frequency and frequency band (i.e.
he average was taken from each column on the colour plot). These
verage pattern-correlation values are shown in Fig. 3 C, with error-
ands generated by bootstrapping, using 1000 sub-samples of group
ize 𝑁 = 90 . The highest mean pattern-correlation was found for MRVE
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Fig. 2. A) The number of valid connections found for each scale frequency using MRVE correlation and each frequency band using AEC. B) The highest mean rank 
of each connection across all frequency bands vs. all scale frequencies, where the colour indicates whether the connection is detected by both MRVE correlation and 
AEC, detected by neither, or detected by only one of the methods. Circle plots show the connections that are only detected as valid by either MRVE correlation or 
AEC. C) Valid connections plotted on a template brain for MRVE scale frequencies 𝑓 𝑆 = 75 Hz and 10Hz and AEC frequency bands 1-4Hz, 8-13Hz and 13-30Hz. 
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orrelation, 𝑓 𝑆 = 75Hz ( 𝑟 = 0 . 5089 ± 0 . 0004 ), followed by beta band AEC
 𝑟 = 0 . 4980 ± 0 . 0003 ), suggesting that these two connectivity profiles
ere the most reproducible across subjects. 

The pattern-correlation values (as shown in Fig. 3 B) were then com-
ared for MRVE correlation at 𝑓 𝑆 = 75Hz and beta band AEC. The sorted
attern-correlation values for these frequencies are shown in Fig. 3 D. It
ppears that MRVE correlation at 𝑓 𝑆 = 75Hz gives individual profiles
hat are slightly more similar to the average connectivity profile than
eta band AEC. The pattern-correlation values were then compared in a
ermutation test, where the group assignment was randomised between
5Hz MRVE and beta band AEC over 10,000 permutations. However, it
as found that there was no significant difference between the pattern-

orrelation values (p = 0.344) for each connectivity measure. 

.1.3. Within-participant consistency between scales and frequency bands 

It was then investigated whether the pattern-correlation coefficients
alculated for each participant were related between scale frequencies
nd frequency bands. For example, it would be interesting to deter-
ine whether those participants who exhibited high similarity to the
ean connectivity profile for one frequency also exhibited high pattern-

orrelations for other frequencies. For each pair of scale frequencies and
requency bands, the correlation between the pattern-correlation z-scores
as found across participants (with the participant order held constant,

n contrast with Fig. 3 B). The resulting Pearson correlation coefficients
re shown in Fig. 3 E. 

No negative correlations were found between any frequency pair-
ngs, within or between connectivity measures. This indicates that there
re no frequencies for which a high pattern-correlation indicates that a
articipant is more likely to have a lower pattern-correlation for another
cale frequency or frequency band. 

Strong positive correlations were found between the pattern-

orrelation vectors at a range of high MRVE scale frequencies, and also
etween low scale frequencies, with a crossover frequency of approx-
mately 20Hz. This indicates that participants exhibiting high pattern-

orrelation at one high scale frequency are also likely to show high simi-
arity to the mean connectivity profile for other scale frequencies above
0Hz. The same can be seen for scale frequencies below 20Hz. How-
ver, the pattern-correlations exhibited by each participant at high scale
requencies have no relationship with their low scale frequency pattern-

orrelation coefficients. 
For AEC, the strongest relationships between pattern-correlation vec-

ors are found across the frequency bands in the gamma range ( > 40Hz).
ositive relationships are also observed between pattern-correlation vec-
ors corresponding to the lower frequency bands, the strongest of which
s found between alpha and beta band pattern-correlation . As was ob-
erved for MRVE correlation, no relationships were found between the
igh and low frequency ranges. 

Some relationships were also observed between the two connectivity
easures. A strong positive correlation was observed between pattern-

orrelation vectors corresponding to high scale frequency MRVE correla-
ion and alpha and beta band AEC. A weaker relationship was also found
etween the lower MRVE scale frequencies and delta band AEC. In-
erestingly, these relationships correspond to frequency pairings where
igh similarity was observed between the average connectivity profiles,
s seen in Fig. 1 . This suggests that there is high within-subject simi-
arity between connectivity profiles calculated by MRVE correlation at
 𝑆 = 75Hz and AEC profiles in the alpha and beta bands, in participants
xhibiting high pattern-correlations for these frequencies. 

.2. Predicting MRVE connectivity from AEC connectivity 

The amount of variance in the MRVE correlation that could be ex-
lained by AEC was then calculated using a multiple regression model.
he fraction of the variance in the MRVE connectivity that could be ex-
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Fig. 3. Analysis of the robustness and inter-participant consistency of the connectivity measures given by AEC and MRVE correlation. A) Robustness to reducing 
the number of subjects included in the analysis as measured by bootstrapping. Plot shows the mean number of valid connections detected over 1000 sub-samples 
of size 𝑁, randomly sampled with replacement. Error bands show the standard deviation. B) Consistency across subjects found by correlating the vectorised 𝑧 score 
connectivity matrices of individual subjects with the average connectivity pattern across all subjects. Colour plots show the resultant pattern-correlation coefficients 
for each subject, sorted by correlation strength, for each MRVE scale frequency and AEC frequency band. AEC bands are represented by the frequency at the midpoint 
between the limits of the frequency range. C) These pattern-correlation coefficients over subjects were transformed to 𝑧 scores and averaged for each scale frequency 
and frequency band. Error bands show the standard deviation over 1000 sub-samples of 𝑁 = 90 . D) Sorted pattern-correlation coefficients, calculated as in B) for 
MRVE scale frequency 𝑓 𝑆 = 75Hz and beta band AEC. E) Cross-correlation plot illustrating the within-participant consistency in pattern-correlation coefficients 
between scales and frequency bands. For each pair of scale frequencies and frequency bands, the Pearson correlation between the pattern-correlation z-scores was 
found across participants. Grey indicates a non-significant relationship ( 𝛼 = 0 . 05 , FDR corrected for multiple comparisons). 
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Fig. 4. (left) The maximum adjusted R 2 obtained across all possible multiple linear regression models for each scale frequency. (right) Colour plot showing regression 
coefficients, where each column represents the coefficients obtained using MRVE correlation at the given scale frequency as the response variable. AEC bands are 
represented by the frequency at the midpoint between the limits of the frequency range. Black indicates that the corresponding AEC frequency was not included as 
a predictor variable in the optimal regression model (maximising adjusted R 2 ). 
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lained by AEC was calculated by vectorising the connectivity matrices
nd using the model in Eq. 4 , where 𝑖 represents each frequency band,
 𝑓 is the number of frequency bands used in the model and 𝑥 𝑖 represent

he regression coefficients. 

𝑅𝑉 𝐸 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∼ 1 + 

𝑁 𝑓 ∑

𝑖 =1 
𝑥 𝑖 𝐴𝐸𝐶 𝑖 (4)

The adjusted R 

2 value found for each scale factor is shown in Fig. 4 .
he adjusted R 

2 value was used to determine which combination of fre-
uency bands would best explain the MRVE connectivity, as the highest
djusted R 

2 values are obtained when the model only includes predic-
or variables which add explained variance beyond that which would be
xpected by chance. However, it was found that the highest adjusted R 

2 

alues for each scale frequency were achieved when the AEC connec-
ivity vectors from all frequency bands were incorporated in the model,
xcept for 𝑓 𝑆 = 7.9Hz when the alpha band was excluded, and for 𝑓 𝑆 =
50Hz when the 80-100Hz band was excluded. 

.3. Temporal correlation between MRVE and oscillatory amplitude 

nvelopes 

The relationship between entropy and oscillatory amplitude was
hen investigated. At each voxel in the brain, the temporal correlation
etween MRVE timecourses and oscillatory amplitude envelopes was
ound across scale frequencies and frequency bands. Average 𝑧 -scores
re shown on a template brain in Fig. 5 . 

The relationship is shown to be dependent on the MRVE scale fre-
uency and oscillatory frequency band. However, the direction is gener-
lly consistent across the brain for each combination. At high scale fre-
uencies ( 𝑓 𝑆 = 50-150Hz), MRVE shows a strong negative correlation
ith power in the alpha and beta frequency bands, where the strongest

elationship is seen between MRVE at 𝑓 𝑆 = 75Hz and beta band am-
litude in the occipital and parietal regions. At 𝑓 𝑆 = 50-75Hz, a weak
ositive correlation with gamma band amplitude is also observed, which
s strongest in frontal and temporal regions. At mid to lower scale fre-
uencies ( 𝑓 𝑆 = 1-25Hz), MRVE shows a negative correlation with delta
and amplitude but a positive correlation with power in the alpha and
eta bands. However, the areas in which the strongest positive corre-
ation is observed varies with scale frequency and differs between the
wo frequency bands. The strongest positive correlation was observed
etween MRVE at 𝑓 𝑆 = 21.4Hz and beta band amplitude in frontal and
emporal regions. However, positive correlation was also observed in
ccipital and parietal regions between alpha and beta band amplitude
nd MRVE for 𝑓 = 1–8.8Hz. 
𝑆 
.4. The relationship between MRVE magnitude, oscillatory amplitude and 

onnectivity strength 

The overall connectivity ‘strength’ was then estimated for each AAL
egion. This was done for each node by finding the sum of the correla-
ion coefficients indicating the connectivity between that node and all
ther nodes, for each AEC frequency band and each MRVE correlation
cale frequency. This gave one connectivity strength value for each AAL
egion for each participant, for each frequency band and scale frequency
sed. The average entropy value within each AAL region was then found
t each scale frequency for each participant, by taking the average value
f the MRVE timecourses from the node voxel used in the connectivity
nalysis. Fig. 6 shows the correlation between a vector containing all
verage entropy values across participants and the corresponding con-
ectivity strength values. The correlation between connectivity strength
nd average oscillatory amplitude was also found, taken as the mean
alue of the hilbert envelope for each frequency band. 

At high scale frequencies, it was generally found that average vari-
bility negatively correlates with connectivity strength. The strongest
elationship with MRVE correlation was found between average en-
ropy at 𝑓 𝑆 = 75Hz and connectivity strength at 𝑓 𝑆 = 150Hz ( 𝑟 = −0 . 66 ,
 << 0 . 001 ), whereas the strongest relationship with AEC was found
etween average entropy at 𝑓 𝑆 = 50Hz and alpha band connectivity
trength ( 𝑟 = −0 . 51 , 𝑝 << 0 . 001 ). However, a weaker positive correlation
as found between average entropy at fine time scales and connectiv-

ty at coarser scales, where the strongest correlation was found between
verage entropy at 𝑓 𝑆 = 50Hz and connectivity strength at 𝑓 𝑆 = 10Hz
 𝑟 = 0 . 18 , 𝑝 << 0 . 001 ). A positive correlation is also seen between aver-
ge entropy at very low scale frequencies ( 𝑓 𝑆 = 1-3Hz) and AEC in the
lpha and beta bands, as well as with MRVE correlation at the high-
st scale frequencies. This is strongest between average entropy at 𝑓 𝑆 
 3Hz and alpha band AEC ( 𝑟 = 0 . 26 , 𝑝 << 0 . 001 ), and between average
ntropy at 𝑓 𝑆 = 2Hz and MRVE correlation at 𝑓 𝑆 = 150Hz ( 𝑟 = 0 . 18 ,
 << 0 . 001 ). 

In contrast, there was generally a positive relationship between av-
rage oscillatory amplitude and connectivity strength. As shown in the
op left of Fig. 6 , for AEC connectivity the strongest correlations were
ound when relating amplitude and connectivity strength within the
ame frequency band, where the strongest relationship was found for
he beta band ( 𝑟 = 0 . 49 , 𝑝 << 0 . 001 ). Average amplitude also generally
howed a positive correlation with connectivity strength as measured by
RVE correlation at fine time scales, where the strongest relationship
as found between alpha band amplitude and connectivity strength for
 𝑆 = 150Hz ( 𝑟 = 0 . 46 , 𝑝 << 0 . 001 ). 
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Fig. 5. The temporal correlation between MRVE timecourses and oscillatory amplitude envelopes for scale frequencies 𝑓 𝑆 = 1 -150Hz and frequency bands 1-4Hz 
( 𝛿), 3-8Hz ( 𝜃), 8-13Hz ( 𝛼), 13-30Hz ( 𝛽), 40-60Hz ( 𝛾40−60 ), 60-80Hz ( 𝛾60−80 ) and 140-160Hz ( 𝛾140−160 ). The temporal correlation coefficient was found at each voxel 
for each participant and transformed to a z-score by applying the Fisher transformation. The 95 % confidence interval was found for the 𝑧 -scores calculated across 
all participants for each voxel. Average Pearson correlation values were found at each voxel where 𝑧 = 0 lay outside of this confidence interval and displayed on a 
template brain as indicated by the colour bar. See supplementary material for whole brain correlation images for all scales and frequency bands. 
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Fig. 6. The correlation between average oscillatory amplitude/entropy and the overall connectivity strength at each voxel as measured by AEC and MRVE correlation. 
AEC bands are represented by the frequency at the midpoint between the limits of the frequency range. Warm colours indicate positive correlation whereas cooler 
colours show negative correlation and grey indicates a non-significant relationship ( 𝛼 = 0 . 05 , FDR corrected for multiple comparisons). 
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.5. Effects of eye movement on functional connectivity measurements 

The frontal location of connections observed for low MRVE scale
requencies and for delta band AEC suggests that they could, at least
artially, be spurious due to eye movement. We therefore analysed the
OG recorded with each scan to investigate whether this connectivity
ould be explained by eye movement artefacts. For each participant,
heir level of eye movement during the MEG scan was summarised as
he standard deviation of the EOG timecourse measuring their horizon-
al eye movements. However, there was a large difference in amplitude
caling between the EOG for the first and second halves of the partici-
ant cohort, so the standard deviation values were then converted to Z
cores separately for each half of the cohort. For each MRVE scale fre-
uency and AEC frequency band, a linear regression model was used to
etermine whether a significant amount of variance in the connectivity
trength measured across participants could be explained by horizontal
ye movement for each valid connection. Fig. 7 shows the connections
or which a significant relationship between connectivity strength and
ye movement was found. For low MRVE scale frequencies, a significant
ositive relationship was found between eye movement and connectiv-
ty strength for some frontal connections. For some of these connections,
n  
 significant relationship was still found after Bonferroni correction for
ultiple comparisons. This suggests, as hypothesised, that eye move-
ent could be driving the frontal connectivity detected using MRVE cor-

elation at these scale frequencies. However, no such relationship was
ound between eye movement and delta band AEC connectivity strength.

In contrast, for alpha and beta band AEC and for MRVE correla-
ion at high scale frequencies ( 𝑓 𝑆 > 30 Hz) a negative relationship was
ound between connectivity strength and eye movement for a number
f occipital and parietal connections. This suggests that higher levels
f eye movement are associated with reduced resting state connectivity
n these regions. However, at these frequencies, no connections were
ound to exhibit a significant relationship after correction for multiple
omparisons. 

. Discussion 

The correlation of neural variability as measured by MRVE was used
ere to detect robust functional connections from MEG recordings, sug-
esting that this is a viable method for the analysis of resting state con-
ectivity. The existence of robust connections that can only be detected
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Fig. 7. A) Connections where the EOG standard deviation could explain a significant amount of variance in the connectivity strength across participants ( 𝑝 < . 05 ). Red 
indicates a positive relationship and blue indicates a negative relationship. Asterisks mark connections that show a significant relationship after Bonferroni correction. 
The AEC frequency band or MRVE scale frequency is given in the top left corner of each plot. B) The number of connections showing a significant relationship. 
The number of connections exhibiting a positive relationship is given above the 𝑥 -axis. The number showing a negative relationship are given below the 𝑥 -axis. The 
plot above shows the number before correction for multiple comparisons. The plot below shows the number after Bonferroni correction. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2  
y MRVE correlation also suggests that this method can provide com-
lementary information to that provided by AEC. 

By introducing the multi-scale element to the RVE method, it was
ossible to observe network connections that were present at different
emporal scales. The number of valid connections detected and the brain
reas they originated from varied with each scale frequency, although
t was found that two general patterns of connectivity emerged. 

At finer temporal scales ( 𝑓 𝑆 = 30 -150Hz), the networks revealed are
ominated by occipital and parietal connections, with some fronto-
arietal and temporo-parietal connections. Connectivity in these regions
uring the resting state has been well established in the literature, in
oth fMRI ( Lee et al., 2013 ) and MEG studies, where connections in
hese areas have been found in the alpha and beta frequency bands us-
ng oscillation-based connectivity measures ( Brookes et al., 2011; Hille-
rand et al., 2012 ). 

The relationship between MRVE at fine time scales and oscillatory
mplitude in the alpha and beta frequency bands was a recurring feature
hroughout the analysis here. It was shown that the connectivity profiles
evealed by fine-scale MRVE correlation and AEC in the alpha and beta
ands showed high levels of similarity; the AEC within the alpha and
eta frequency ranges made large contributions to the explained vari-
nce in the MRVE correlation at 𝑓 𝑆 = 75 Hz, the scale at which most
onnections were detected. It was also found that fine-scale variability
imecourses exhibited a strong negative correlation with the alpha and
eta band amplitude envelopes, and that connectivity strength nega-
ively correlates with average MRVE at this frequency while positively
orrelating with alpha and beta band amplitude. These findings imply
hat high levels of alpha and beta band AEC are associated with more
egular activity at scale frequencies 𝑓 𝑆 = 30-150Hz. 

It could be that the decrease in variability represents a reduction
n information processing performed locally within areas showing high
evels of inter-regional connectivity. Entropy is maximised when there is
he least integration between brain regions, while increased connectivity
ntroduces statistical dependencies from activity in other brain areas
nd so decreases the ‘randomness’ exhibited by a region ( Tononi et al.,
994 ). 

These results are also potentially consistent with a computational
odel that recently showed that correlated amplitude envelope fluc-

uations in the alpha and beta bands are driven by time-delayed cou-
ling between oscillators in the gamma band ( Cabral et al., 2014 ). It
as found that transient synchronisation between these oscillators led

o correlated amplitude fluctuations at a reduced collective frequency.
uture work could investigate whether the correlation between entropy
imecourses at high scale frequencies is driven by the degree of synchro-
isation between oscillators at the same natural frequencies. 

At coarser temporal scales, a second network pattern emerged con-
isting of mostly frontal and temporal connections that most closely re-
embled the AEC network found within the delta band. This similarity
as again supported by the regression analysis, where the delta band
EC explained the largest fraction of variance in the MRVE correlation

or scale frequencies 𝑓 𝑆 = 1–13.6Hz. The overall fraction of the variance
hat can be explained at these coarser time scales is relatively small, sug-
esting that MRVE correlation provides more novel information at these
cales beyond that which can be observed using AEC. 

However, the EOG regression analysis revealed that the MRVE corre-
ation observed at these low scale frequencies may have been driven by
rtefactual signal components generated by eye movements. A fixation
oint was used to limit eye movements, but it was found that partici-
ants still exhibited horizontal eye movement during the recordings, in
greement with previous resting state research ( Fransson et al., 2014 ).
uture work could repeat the analysis outlined here using data that has
een cleaned of eye movement artefacts, for example using ICA, to de-
ermine whether these frontal connections are still observed. However,
t was also found that eye movement may affect the posterior connectiv-
ty detected by alpha and beta band AEC and MRVE correlation at high
cale frequencies. Although no connections exhibited a significant neg-
tive relationship after the correction for multiple comparisons, there
s evidence for a relationship between eye movement and resting state
ctivity from several fMRI studies. It has been found that disrupted eye
ovement due to Parkinson’s disease is associated with widespread rest-

ng state functional connectivity alterations ( Gorges et al., 2016; 2013 ).
t has also been found that areas within the default mode network show
uctuations in activity that correlate with spontaneous eye movement
 Fransson et al., 2014 ). This could have implications for the study of
unctional connectivity in patient groups known to exhibit altered eye
ovements relative to controls, such as schizophrenia ( Calkins et al.,
008 ). It is unclear how the removal of ocular signal components dur-
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ng data cleaning would affect the measurement of associated functional
onnectivity, and therefore the detection of alterations in patients. 

Investigating the entropic characteristics of the EOG was beyond the
cope of this study. However, MRVE correlation strength at coarse time
cales was found to exhibit weak positive correlations with average en-
ropy at fine scales and with delta band amplitude. A weak negative
orrelation can also be seen with variability at the coarsest time scales.
his suggests that ocular activity may be more regular at coarse time
cales but show higher variability at finer scales. While no relationship
as found between delta band AEC and eye movement during the EOG

egression analysis, this also hints at an association between eye move-
ent levels and delta band amplitude. 

It is interesting to note that MRVE correlation, for a given scale fre-
uency, does not provide the same information about functional connec-
ivity as AEC for an overlapping frequency band. For example, while the
requency band that shows the most connections using AEC ranges from
3-30Hz, scale frequencies in this range are associated with a trough
n the number of connections when using MRVE correlation. In fact,
ig. 4 shows that for each frequency band, AEC explains a low per-
entage of the variance in the MRVE correlation at scale frequencies
n the same range. This suggests that in regions showing high connec-
ivity strength, the amplitude and variability of activity of a particular
requency are not related. 

MRVE was shown to have a complex relationship with oscillatory
mplitude. In general, a positive correlation was found between oscil-
atory amplitude and entropy timecourses calculated within the same
requency range, whereas a negative correlation is seen when the MRVE
cale frequency is approximately higher than the lowpass frequency of
he oscillatory frequency band. At the finest time scales, this is seen
s a biphasic relationship where MRVE shows negative correlation with
ow frequency amplitude but positive correlation with gamma band am-
litude. This has been found previously in a study using RVE at a sin-
le time scale, when applied to task data ( 𝑓 𝑆 = 150 Hz) ( Brookes et al.,
015 ). Here, the relationship was replicated in resting state data and was
ound to be consistent in direction across the brain. However, by consid-
ring multiple time scales using MRVE, it was found that the correlation
etween entropy and amplitude envelopes varies with the entropy scale
requency. 

While the direction of each relationship was found to be generally
onsistent across the brain, the strength of the relationships were often
ound to vary spatially. For a number of combinations, the correlation
as found to be strongest either in occipital and parietal regions, where
ost functional connections were detected, or in frontal and temporal

egions. For example, the negative correlation between beta band am-
litude and MRVE at fine scales is strongest in more posterior regions.
n contrast, the positive correlation observed for 𝑓 𝑆 values within the
eta frequency range is strongest in anterior regions. This could imply
hat regional connectivity strength moderates the relationship between
he variability and oscillatory amplitude of neural activity within that
egion. Future work could look at whether the same phenomenon is ob-
erved during a task, during which different regions would show higher
onnectivity strength. 

Connectivity strength was generally found to positively corre-
ate with oscillatory amplitude, in agreement with previous research
 Tewarie et al., 2019 ), but was found to negatively correlate with vari-
bility. This is consistent with the prevailing theory that oscillatory ac-
ivity (which is highly regular) facilitates synchronisation between corti-
al regions ( Cabral et al., 2014; Fries, 2005; Schnitzler and Gross, 2005 ).
he relationship between connectivity and oscillatory amplitude is often
onfounded by the fact that an increase in amplitude is associated with
n increase in SNR. However, it is unlikely that this would be causing the
bserved relationship with variability. If the low measured entropy was
riven by increases in underlying signal strength, we would expect to de-
ect connections in the gamma band using AEC that match those found
y MRVE correlation for scale frequencies in the same range, whereas in
T  
eality very few connections are seen using AEC at these high frequen-
ies. 

.1. Limitations 

One limitation of this study is that the performance of MRVE cor-
elation was only compared to AEC. AEC was chosen for comparison
s it has been shown to give the most consistent results across partic-
pants ( Colclough et al., 2016 ). This method was therefore the appro-
riate benchmark to use in a comparison of the number of robust con-
ections detected by each connectivity measure. However, it could also
e interesting to look at how MRVE correlation relates to connectivity
easured by techniques that are centred around phase relationships.

t has been suggested that the reduction of signal variability facilitates
hase relationships to occur between brain regions ( Mcdonough et al.,
014 ) so it could be investigated whether there is similarity between
he connections each method can detect and how this would differ from
he relationship between MRVE correlation and AEC. 

Another constraint on this analysis was the limit on the resolution
f scale frequencies that could be used to generate MRVE timecourses.
y increasing the sample rate of the data acquisition, it would be pos-
ible to obtain MRVE timecourses at finer temporal scales, and at more
requencies within the frequency range investigated here. For example,
ith a lowpass frequency of 300Hz, MRVE timecourses could be cal-

ulated for all frequencies considered here, as well as for 𝑓 𝑆 = 300Hz,
00Hz, 60Hz etc. While most of the functional connectivity information
iven by AEC was found at frequencies below 30Hz, valid connections
ere detected using MRVE correlation across the whole bandwidth of

he MEG signals. Both the frontal and posterior patterns of connectiv-
ty detected by MRVE correlation were observed across a wider range
f frequencies than their AEC analogues. It is unclear why this is the
ase. However, this suggests that by increasing the sample rate of the
EG recordings, it may be possible to observe robust connectivity using
RVE correlation at scale frequencies beyond the range available here.

n future work, the sample rate and scale factors could also be selected
o target specific frequencies of interest. 

Leakage correction has shown to be important for measuring reli-
ble AEC ( Colclough et al., 2016 ) and was performed here using sym-
etric multivariate orthogonalisation. This method has been shown

o minimise spurious correlation between virtual sensor timecourses
 Colclough et al., 2015 ). However, the performance of any leakage cor-
ection method is dependent on the choice of the timecourses to repre-
ents each AAL region. In this study, the voxel corresponding to the time-
ourse with the maximum temporal standard deviation was chosen as an
stimate of the voxel exhibiting the largest SNR. This method could lead
o voxels selected from adjacent AAL parcels being in close proximity
o each other, and therefore the corresponding current time-courses at
hese locations could show real correlation (beyond spurious correlation
ue to source leakage). Any signal orthogonalisation method, including
he one used here, would result in signal cancellation in the case of being
resented with signals with such zero-lag correlation ( Colclough et al.,
015 ). However, it is worth noting that even if signal components with
ero-lag correlation are suppressed, it is still possible to observe corre-
ation between the amplitude envelopes and the MRVE of signals with
 relative phase difference. 

While the issue of voxels selected in close proximity would affect
EC and MRVE correlation measurements equally, another limitation
f this leakage correction method is that a bias towards signals with
igh SNR may led to missing important information about entropy. For
EC, maximising SNR may be desirable as oscillatory amplitude has
een shown to correlate with functional connectivity ( Tewarie et al.,
019 ). Whereas the MRVE of a signal is independent of its amplitude.
electing only signals with high amplitude may increase the chances
f selecting those with low entropy, as larger groups of synchronised
eurons are capable of generating MEG signals with higher amplitude.
his could have lead to increased similarity between MRVE correlation
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etworks and those found using AEC. It may be interesting to employ an
lternative voxel selection method, that selects voxels on a basis other
han SNR, to investigate how this alters the measured MRVE correlation.
or example, timecourses could be taken from voxels at the centre of
ach AAL region. 

It is well established that neuronal variability varies with age ( Lippé
t al., 2009; Mcintosh et al., 2008; McIntosh et al., 2014; Vakorin et al.,
011 ). Functional network activity has also been found to vary over the
ifespan, increasing during development ( Brookes et al., 2018; Schäfer
t al., 2014 ), and then being disrupted in healthy aging ( Andrews-hanna
t al., 2007; Schlee et al., 2012; Vakorin et al., 2011 ). It may be ben-
ficial to investigate the effects of age on MRVE correlation connec-
ivity profiles, to determine whether they remain consistent between
ge groups. However, the age distribution of the cohort used here was
kewed towards younger participants, where almost 70% of participants
126/183) were in the 18–25 age range. This limited our ability to assess
he effects of age on the results presented here. In addition, resting state
unctional connectivity has previously been shown to differ between the
exes ( Weis et al., 2019 ). However, the participant cohort used here was
ostly female (123/183). It is possible that connectivity profiles given

y both measures may be less robust when applied to a cohort with more
ven distributions of age and sex. Although, one MEG study found that
esting state power envelope correlation connectomes did not signifi-
antly alter with age ( Coquelet et al., 2017 ). Future work could recruit
 cohort with more balanced distributions of age and sex to investigate
heir effects on the reliability of these connectivity measures. 

While it is interesting that MRVE correlation has shown promise as a
easure of functional connectivity, the true test of its usefulness will be

ts performance in patient groups. Neural variability measures such as
ulti-scale Entropy (MSE) ( Bosl et al., 2011; Costa et al., 2005; Ghan-

ari et al., 2015; Mizuno et al., 2010 ), and AEC connectivity ( Andreou
t al., 2015; Dima et al., 2020; Koelewijn et al., 2015; 2019 ) have both
een shown to be able to distinguish patient groups from controls. Fu-
ure work will investigate whether MRVE correlation can provide under-
tanding about connectivity changes associated with disease, in compar-
son to conventional measures based on the oscillatory components of
rain function. 
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