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Relationships between distribution patterns and body size have been documented in many endothermic taxa. 
However, the evidence for these trends in ectotherms generally is equivocal, and there have been no studies of 
effects in crocodylians specifically. Here, we examine the relationship between latitudinal distribution and body mass 
in 20 extant species of crocodylians, as well as the relationships between seven important reproductive variables. 
Using phylogenetically independent contrasts to inform generalized linear models, we provide the first evidence of 
a latitudinal effect on adult female body mass in crocodylians. In addition, we explore the relationships between 
reproductive variables including egg mass, hatchling mass and clutch size. We report no correlation between egg 
mass and clutch size, upholding previously reported within-species trends. We also find no evidence of a correlation 
between measures of latitudinal range and incubation temperature, contrasting with the trends found in turtles.
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reproduction.

INTRODUCTION

The broad impact of climate on the body size of 
numerous vertebrate and invertebrate groups has been 
demonstrated across latitudinal (Ray, 1960; Wooller 
et al., 1985; Graves, 1991; Kaspari & Vargo, 1995; 
Saunders & Tarling, 2018) and altitudinal (Bernadou 
et al., 2016; Davis and Burtt, 2019; Yu et al., 2019) 
gradients, insofar as these correlate with temperature 
gradients. While evidence for latitudinal size gradients 
is common in endotherms (Ashton, 2002a; Blackburn 
& Hawkins, 2004), the effect of latitude on ectotherm 
body sizes is more controversial (Ashton & Feldman, 
2003; Pincheira-Donoso et al., 2008). For example, 
amphibians (Ashton, 2002b; Adams & Church, 2008), 
lizards (Ashton & Feldman, 2003; Cruz et al., 2005; 
Pincheira-Donoso et al., 2008) and turtles (Ashton & 

Feldman, 2003; Lindeman, 2008; Angielczyk et al., 
2015) have all been the subjects of studies with a 
diversity of findings. Strikingly, however, no previous 
studies have attempted to test whether this correlated 
variation applies to another major group of living 
reptiles, the crocodylians.

Crocodylians are a vital component of their 
ecosystems, often acting as keystone species in 
tropical regions (Ashton, 2010). They represent the 
last surviving pseudosuchian archosaurs, a clade that 
once inhabited every continent and that has persisted 
for at least 230 Myr (Irmis et al., 2013; Turner et al., 
2017). Having survived the devastating Cretaceous–
Palaeogene (K-Pg) mass extinction (Bronzati et al., 2015; 
Puértolas-Pascual et al., 2016), as well as a number 
of other, smaller or more protracted major extinction 
events (Hutchison, 1982; Markwick, 1993; Toljagíc & 
Butler, 2013; Mannion et al., 2015), crocodylians have 
demonstrated remarkable resilience to cataclysmic 
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climate change and habitat loss (Toljagíc & Butler, 
2013). Despite this, half of all extant crocodylian species 
are currently threatened with extinction and, at the 
current rate, vertebrate species loss will soon equal or 
even exceed that of the K-Pg event (Barnosky et al., 
2011; Pievani, 2014; Lécuyer, 2018). To understand 
possible future trends in crocodylian diversity more 
fully, it is important that their current diversity, ecology 
and distribution are fully characterized (Fig. 1). Despite 
previous work in this area (Martin, 2007; Pierce et al., 
2008; Nicolaï & Matzke, 2019), the nature of the 
relationship between geographical distribution and the 
reproductive biology of living crocodylians is unclear.

The resilience of crocodylians to historical mass 
extinctions is also much debated. Previous work has 
implicated many different factors in their survival, 
including diet (Sheehan & Hansen, 1986), aquaticism 
(Robertson et al., 2013), famine resistance (Robertson 
et al., 2013), induction of torpor at low air or water 
temperatures (Almandarz, 1975; Brisbin et al., 1982; 
Sun et al., 2019), and their propensity to burrow to 
take refuge from harsh environmental conditions 
(Thorbjarnarson, 1989; Mobaraki et al., 2015). Another 
hypothesis concerns their unique reproductive biology 
(Charruau et al., 2017). Crocodylians have no sex 
chromosomes and hatchling sex is thought to be fully 
controlled by incubation temperature. Temperature-
dependent sex determination (TSD) systems have a 
threshold that yields an approximately 1:1 ratio of 
males and females at equilibrium (Escobedo-Galván 

et al., 2016). Higher temperatures produce a greater 
proportion of males, whereas lower temperatures 
produce more females (Deeming & Ferguson, 1989; 
González et al., 2019). Counterintuitively, the highest 
tolerable incubation temperatures produce mostly 
females, although these frequently fail to thrive (Marco 
et al., 2017). TSD was proposed as a possible buffer 
to extinction by Woodward & Murray (1993). Harsh 
environmental conditions are usually associated with a 
fall in ambient temperatures, and in species that utilize 
TSD these can result in a female-biased primary sex 
ratio (Tomillo et al., 2014; Carter et al., 2018). While lower 
temperatures may be consistent with the initial ‘nuclear 
winter’ effect of the end-Cretaceous bolide impact 
(Vellekoop et al. 2014, 2016), the longer-term warming 
resulting from increasing atmospheric greenhouse gas 
concentrations (Harrington, 2001; Turner, 2018) would 
be expected to skew sex ratios in favour of males. The 
latter scenario has been hypothesized as the most likely 
outcome of current trends in global warming (Miller 
et al., 2004). Although TSD has been well documented 
within crocodylian species (Ferguson & Joanen, 1982; 
Deeming, 2004; Piña et al., 2007), no comparisons of 
the effects of threshold temperature on development 
have been attempted across species, and little is known 
concerning the interrelationships between crocodylian 
reproductive characters.

The reproductive characters of crocodylians were 
first surveyed by Thorbjarnarson (1996). This work 
identified allometric relationships between egg mass, 

Figure 1. A representation of the relationship between the mean adult female body masses of 23 species of crocodylian and 
their latitudinal midpoint. Silhouette th scaled to body mass. (a) Asia-Pacific, (b) The Americas, (c) Africa. Abbreviations 
(Asia-Pacific): Alligator sinensis, Gavialis gangeticus, Crocodylus palustris, Crocodylus mindorensis, Crocodylus siamensis, 
Tomistoma schlegelii, Crocodylus porosus, Crocodylus novaeguineae, Crocodylus johnstoni. (Americas): Alligator 
mississippiensis, Crocodylus rhombifer, Crocodylus moreletii, Crocodylus acutus, Crocodylus intermedius, Caiman 
crocodilus, Paleosuchus trigonatus, Melanosuchus niger, Paleosuchus palpebrosus, Caiman latirostris, Caiman yacare 
(Africa): Crocodylus cataphractus, Osteolaemus tetraspis, Crocodylus niloticus. Mesticops leptorhynchus, Crocodylus suchus 
and Osteolaemus osborni were excluded due to lack of reliable female mass data.
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clutch size, clutch mass and female length: patterns 
that had previously been observed in other vertebrate 
groups (Rohwer, 1988; Sinervo & Licht, 1991; 
Shine, 1992). However, the correlations and causal 
interactions between these reproductive variables 
were not the focus of this study.

Here, we used generalized linear models (GLMs) 
to test the relationships between the latitudinal 
distribution of extant crocodilian taxa and a variety of 
their important reproductive variables. We also tested 
whether there are significant relationships between 
those reproductive variables. In the context of these 
findings, we highlight some key questions concerning 
the reproductive biology, behaviour and social systems 
of wild crocodylians that could be addressed by future 
empirical and modelling work.

METHODS

Data collection

We compiled data from the literature for seven 
morphological, environmental and reproductive 
variables across 24 extant crocodilian species 
(Supporting Information Appendix S1). We used the 
species list in Grigg & Kirschner (2015) (Fig. 1) and 
included one recently described species (Mecistops 
leptorhynchus) (Shirley 2018). Recent taxonomic 
uncertaintly makes the attribution of some reproductive 
data unclear, and two species (Crocodylus suchus and 
Osteolaemus osborni) were therefore excluded (Shirley 
et al., 2018; Hallmann and Griebeller, 2018; Isberg 
et al., 2019). The data compiled were:

 1. Maximum latitudinal range (°)
 2. Midpoint of latitudinal range (°)
 3. Mean mass of breeding-age female (kg)
 4. Mean fresh egg weight (g)
 5. Mean hatchling mass (g)
 6. Threshold incubation temperature, or the 

temperature at which a clutch will produce ~50% 
males and 50% females (°C). The lower (female to 
male) threshold was selected in this case because 
females are often inviable at the higher (male to 
female) threshold.

 7. Mean clutch size (number of eggs laid)
 8. Mean duration of incubation (days)

We reviewed the literature in Google Scholar by 
searching for each species individually, coupled with 
appropriate terms (e.g. ‘Crocodylus porosus clutch 
size’, ‘Caiman yacare body mass’). Variations on these 
were used as necessary (e.g. ‘Caiman yacare’/‘Caiman 
jacare’ + ‘body mass’/‘female mass’/‘weight’/‘kg’). These 
were searched until pages returned only irrelevant 
results. Data were collated into a single spreadsheet 

(Supporting Information Appendix S1). Continuous 
variables (female mass, egg mass, hatchling mass, 
clutch size and duration of incubation) were 
averaged to smooth over outlier results that were 
unrepresentative. The literature contains data from 
individual captive-bred and wild-caught specimens, 
as well as values that are themselves averages from 
various heterogeneous samples. This constrains the 
precision of our data, but we believe that there is a 
homogeneous distribution of error. In addition, data 
on female mass were often derived from adults of 
different ages, and these were then averaged across 
multiple individuals and studies (Appendix S1). Data 
on latitudinal range were taken from the IUCN Red 
List of threatened species (IUCN, 2019).

For one species, Tomistoma schlegelii, there was 
insufficient information in the literature, and we 
therefore used data from our own observations. 
Hatchling mass data (see Supporting Information 
Appendix S1) were averaged from a captive-born clutch 
laid at ‘Crocodiles of the World’, Oxfordshire, UK. This 
clutch consisted of 17 eggs, of which 14 successfully 
hatched (although one infant failed to thrive and died 
shortly after hatching). Eggs were laid on 16 April 
2016 by an imported farm-raised female measuring 
2.3 m (snout–vent length). Eggs were separated and 
artificially incubated at 32.6 °C (three eggs), 32.0 °C 
(five eggs), 31.5 °C (five eggs) and 29.8 °C (four eggs), 
and hatched after 92, 94, 95 and 103 days, respectively. 
Hatchlings were weighed using a Marsden Super-SS 
B-100 waterproof electronic scale, accurate to 0.10 g.

StatiStical analySiS

For indicative purposes, non-phylogenetically 
controlled bivariate correlations between our seven 
variables are visualized in Figure 2. These were 
further tested using phylogenetic generalized least 
squares (PGLS). These results, and the literature on 
archosaur reproduction generally and crocodylians 
specifically were used to frame five hypotheses:

 1. Adult female mass is positively correlated with 
latitudinal midpoint, maximum latitudinal range, 
egg mass, hatchling mass and/ or clutch size, as 
in some species of crocodylians (Verdade, 2001; 
Campos et al., 2008; Murray et al., 2013) and birds 
(Wendeln, 1997).

 2. Egg mass is positively correlated with female 
mass, hatchling mass and/or clutch size, as in some 
species of crocodylians (Verdade, 2001; Murray 
et al., 2013), birds (Wiebe & Bortolotti, 1995) and 
turtles (Wallace et al., 2006).

 3. Hatchling mass is positively correlated with adult 
female mass, latitudinal midpoint, maximum 
latitudinal range and/or egg mass, as in some 
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species of crocodylians (Verdade, 2001; Murray 
et al., 2013), birds (Ricklefs, 1984; Smith et al., 
1993) and turtles (Roosenburg & Kelley, 1996; 
Wallace et al., 2006).

 4. Clutch size is positively correlated with adult 
female mass, egg mass, latitudinal midpoint, 
maximum latitudinal range and/or duration of 
incubation, as in some species of crocodylians 
(Verdade, 2001; Campos et al., 2008; Murray 
et al., 2013), birds (Erikstad et al., 1993; 
Monaghan et al., 1995) and turtles (Roosenburg 
& Kelley, 1996).

 5. Threshold incubation temperature is positively 
correlated with latitudinal midpoint, maximum 
latitudinal range and/or hatchling mass, as in 
turtles (Ewert et al., 2005).

The phylogeny of  O’ (Brien et al. 2019) was used to 
produce phylogenetically independent contrast (pic) 
values for each variable. These pic values (rather 
than our raw data) were used in the subsequent 
GLM analyses. This tree was constructed using 
multiple specimens representing each species 
and the tree was first pruned to remove duplicate 

Figure 2. Spearman’s correlation matrix indicating positive correlations between morphological reproductive traits (female 
mass, egg mass, hatchling mass), and negative correlations between latitudinal midpoint, threshold incubation temperature 
and incubation duration. Abbreviations: clutch.size, mean clutch size; egg.mass, log mean fresh egg weight; f.mass, log mean 
adult female body mass; hatch.mass, log mean hatchling mass; inc.dur, mean duration of incubation; inc.temp, threshold 
incubation temperature; lat.max, maximum latitudinal range; t.lat, latitudinal midpoint.

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/129/4/875/5713003 by guest on 04 N

ovem
ber 2020



CROCODYLIAN REPRODUCTIVE TRAITS 879

© 2020 The Linnean Society of London, Biological Journal of the Linnean Society, 2020, 129, 875–887

specimens (‘Alligator_mississippiensis2’, ‘Alligator_
mississippiensis3’, etc.). The first entry was kept by 
default in each case. Rooting and branch lengths were 
kept consistent with those published by O’ (Brien et al. 
2019).

Before calculating the pic values, conspicuously 
non-normal continuous variables (female mass, egg 
mass and hatchling mass only) were log-transformed. 
Four species were excluded from our dataset because 
they were absent from the phylogeny of O’ Brien et al.  
(2019) (Crocodylus intermedius, Crocodylus moreletii, 
Caiman yacare and Mesticops leptorhynchos), leaving 
20 species in the final analyses. We used the Akaike 
information criterion (AIC) to identify the minimum 
adequate model by backward stepwise deletion of 
poorly fitting variables. All models used the ‘Gaussian’ 
error family and ‘identity’ link function, and were 
implemented in the statistical software environment 
R, using the GGally, ape and phytools packages 
(version 3.5.3) (R Core Team, 2013).

We constructed  f ive  GLMs based  on  the 
phylogenetically independent contrasts of all variables 
(Table 1). Models 3 and 5 were produced from a 
modified phylogeny of 17 species, excluding Crocodylus 
novaeguineae, Osteolaemus tetraspis and Tomistoma 
schlegelii. This was because threshold incubation 
temperature data were not available for these species, 
and also because threshold incubation temperature 
was shown through our Spearman’s rank test (Fig. 2) 
to correlate with hatchling mass (model 3), incubation 
duration and latitudinal values (model 5).

RESULTS

A Spearman’s correlation matrix of our results is shown 
in Figure 2. The strongest positive correlations were 
between morphological reproductive characteristics 
[female mass vs. egg mass (rs = 0.85, P < 0.0001), female 
mass vs. hatchling mass (rs = 0.79, P < 0.0001), and 
egg mass vs. hatchling mass (rs = 0.94, P < 0.0001)]. 
Other correlated traits were: (1) latitudinal midpoint 
vs. duration of incubation (rs = −0.60, P = 0.0007); (2) 
female mass vs. clutch size (rs = 0.67, P =  0.0017); 
(3) egg mass vs. clutch size (rs = 0.56, P = 0.0121); (4) 
hatchling mass vs. clutch size (rs = 0.64, P = 0.0032); (5) 
maximum latitudinal range vs. clutch size (rs = 0.045, 
P = 0.463); and (6) latitudinal midpoint vs. duration 
of incubation (rs = −0.60, P = 0.0055). PGLS analyses 
supported the following significant relationships: (1) 
female mass vs. egg mass (P = 0.0008); (2) female 
mass vs. hatchling mass (P = 0.0003); (3) egg mass vs. 
hatchling mass (P < 0.0001); (4) latitudinal midpoint 
vs. duration of incubation (P = 0.0073); (5) female 
mass vs. clutch size (P = 0.0072); (6) hatchling mass vs. 
clutch size (P = 0.0154); and (7) latitudinal midpoint vs. 

duration of incubation. Some relationships were not 
supported by PGLS analysis: (1) egg mass vs. clutch 
size (P = 0.0706); and (2) maximum latitudinal range 
vs. clutch size (P = 0.1213).

Female maSS

Model 1 was constructed to account for the potential 
effects of latitudinal midpoint, maximum latitudinal 
range, egg mass, hatchling mass, clutch size and duration 
of incubation on female mass (Supporting Information 
Appendix S2 – initial and final models). The final model 
(Table 2) was the result of backward stepwise deletion 
based on AIC value as a measure of model efficiency. This 
model explained 85% of the deviance associated with 
adult female mass (D2). Mean clutch size (P = 0.0017) was 
the most significant correlator to log mean female mass, 
followed by mean latitudinal range (P = 0.0026), log mean 
hatchling mass (0.0027) and maximum latitudinal range 
(P = 0.0133). Log mean egg mass and mean incubation 
duration both correlated poorly with log mean female 
mass and were dropped from the model.

egg maSS

Model 2 was constructed to account for the potential effects 
of latitudinal midpoint, maximum latitudinal range, 
female mass and clutch size on egg mass (Supporting 
Information Appendix S2). The final model (Table 3) 
explained 68% of the deviance associated with egg mass 
(D2). Log mean female mass (P < 0.0001) was the only 

Table 1. Initial structure of generalized linear models 
analysing relationships between phylogenetically 
independent contrasts in the reproductive characters of 
extant Crocodylia

Model  
number

Dependent  
variable

Independent  
variables

1 f.mass Lat., egg.mass, hatch.mass,  
clutch.size, inc.dur

2 Egg mass Lat, f.mass, clutch.size
3 Hatch.mass Lat., f.mass, egg.mass, clutch.

size,  
inc.temp, inc.dur

4 Clutch.size Lat., f.mass, egg.mass, inc. 
temp.

5 Inc.temp. Lat., egg.mass, hatch.mass, 
clutch.size, inc.dur

All models were conducted using the ‘Gaussian’ error family and ‘iden-
tity’ link function. Abbreviations: clutch.size, mean clutch size; egg.
mass, log mean fresh egg weight; f.mass, log mean adult female body 
mass; hatch.mass, log mean hatchling mass; inc.dur, mean duration of 
incubation; inc.temp, threshold incubation temperature; lat.max, max-
imum latitudinal range; t.lat, latitudinal midpoint 
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significant correlator to log mean egg mass. Latitudinal 
midpoint and mean clutch size correlated poorly with log 
mean egg mass and were dropped from the model.

HatcHling maSS

Model 3 was constructed to account for the potential 
effects of latitudinal midpoint, maximum latitudinal 
range, female mass, egg mass, clutch size, threshold 
incubation temperature and incubation duration on 
hatchling mass (Appendix S2). The final model (Table 4) 
explained 90% of the deviance associated with hatchling 
mass (D2). Log mean egg mass (P < 0.0001) was the only 
significant correlator to hatchling mass. Log mean female 
mass, latitudinal midpoint, mean clutch size and mean 
incubation duration correlated poorly with hatchling 
mass and were dropped from the model.

clutcH Size

Model 4 was constructed to account for the potential 
effects of latitudinal midpoint, maximum latitudinal 

range, female mass, egg mass and hatchling mass 
(Supporting Information Appendix S2). The final 
model (Table 5) explained 87% of the deviance 
associated with clutch size (D2). The most significant 
correlators to mean clutch size were log mean 
female mass (P < 0.0001) and maximum latitudinal 
range (P < 0.0001), followed by latitudinal midpoint 
(P = 0.0007) and mean duration of incubation 
(P = 0.1071). Egg mass and hatchling mass were found 
to correlate poorly with clutch size, and were dropped 
from the model.

tHreSHolD incubation temperature

Model 5 was constructed to account for the potential 
effects of latitudinal midpoint, maximum latitudinal 
range, female mass, egg mass, hatchling mass, clutch 
size and incubation duration on threshold incubation 
temperature (Supporting Information Appendix S2). 
The final model (Table 6) explained 42% of the deviance 
associated with threshold incubation temperature 
(D2). The only significant correlator to threshold 

Table 2. A generalized linear model (Model 1) describing the effect of latitudinal midpoint, maximum latitudinal range, 
hatchling mass and clutch size on the adult female mass of 20 species of crocodylian

Term Coefficient SE F P

t.lat 0.0421 0.0115 13.311 0.0026**
lat.max −0.0365 0.0129 8.0132 0.0133*
log.hatch 1.1638 0.3206 13.175 0.0027**
clutch.size 0.0348 0.0090 15.047 0.0017**

D2 = 0.8510. SE, standard error; F, F-value; P, P-value.

Table 3. A generalized linear model (Model 2) describing the effect of maximum latitudinal range and adult female mass 
on the fresh egg weight of 20 species of crocodylian

Term Coefficient SE F P

max.lat −0.0074 0.0049 1.9114 0.1858
log.f.mass 0.5117 0.0809 33.295 <0.0001***

D2 = 0.6776. SE, standard error; F, F-value; P, P-value.

Table 4. A generalized linear model (Model 3) describing the effect of female body mass and fresh egg weight on the 
hatchling mass of 17 species of crocodylian

Term Coefficient SE F P

lat.max 0.0052 0.0032 2.6903 0.1269
log.egg.mass 0.8348 0.0841 98.483 <0.0001***
inc.temp −0.0751 0.0505 2.2103 0.1629

D2 = 0.8997. SE, standard error; F, F-value; P, P-value.
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incubation temperature was mean incubation 
duration (P = 0.0065). Log mean female mass, log 
mean egg mass, log mean hatchling mass, mean clutch 
size, latitudinal midpoint and maximum latitudinal 
range all correlated poorly with threshold incubation 
temperature and were dropped from the model.

DISCUSSION

general overview

A robust, positive correlation between latitude and 
body size has been well documented in endotherms 
(Gillman et al., 2009; Torres-Romero et al., 2016), but 
is much less compelling among ectotherms (Ashton 
& Feldman, 2003; Cruz et al., 2005; Lindeman, 2008), 
and has never been tested for in crocodylians. Here, 
we demonstrate that, despite low overall correlation 
coefficients, both latitudinal midpoint and maximum 
latitudinal range correlate significantly with adult 
female mass once the effects of phylogeny and other 
potentially confounding reproductive variables are 
controlled for (P = 0.0026 and 0.0133 respectively, 
see Model 1). Furthermore, we describe significant 
relationships between some important morphological 
reproductive variables across crocodylians as a whole, 
a phenomenon that has previously been described 
only within species (Verdade, 2001; Campos et al., 
2008; Murray et al., 2013). We demonstrate that 
these relationships are discrete with, for example, a 
significant effect of female mass on egg mass, and of egg 
mass on hatchling mass, but no direct effect of female 

mass on hatchling mass. Female mass is a significant 
predictor of clutch size in crocodylians, as well as both 
the latitudinal midpoint and maximum latitudinal 
range. We did not detect any significant relationship 
between threshold incubation temperature and either 
latitudinal midpoint or maximum latitudinal range 
(see Model 5). Some of the most biologically significant 
relationships described by our models are presented 
in Figure 3.

implicationS oF reSultS

The strongest associations in our study are between 
morphological reproductive variables (Models 1, 
2 and 3). These include adult female mass, fresh 
egg weight, hatchling mass and clutch size (Fig. 3). 
Intraspecific relationships of this kind have previously 
been documented in the American alligator (Alligator 
mississippiensis) (Murray et al., 2013) and in the 
broad-snouted, spectacled and Yacare caimans 
(Caiman latirostris, Caiman crocodilus and Caiman 
yacare) (Verdade, 2001; Larriera et al., 2004; Campos 
et al., 2008). Here, we verify the same trends across 
extant crocodylians as a whole. We report a significant 
positive effect of female mass upon clutch size (Model 
4), a result that contrasts with the findings of previous 
species-level studies (Verdade, 2001). We find no 
evidence for any correlation between egg mass and 
clutch size, which is a biological trade-off that has been 
described in many other taxa (Lack, 1967; Sinervo & 
Licht, 1991; Rowe, 1994).

We found no significant relationship between 
threshold incubation temperature and hatchling mass 
(Models 3 and 5), suggesting that the temperature 
required to produce an even sex ratio is not significantly 
different in crocodylian species that produce large 
hatchlings compared with those that produce small 
hatchlings. This result is consistent with previous 
studies that examined trends within species (Joanen 
& McNease, 1989; Campos, 1993). The effects of 
contemporary climatic warming on the reproductive 
biology of crocodylians have yet to be examined (Zhang 
et al., 2009; Simoncini et al., 2014), but based on deep-
time associations between crocodylian distributions 

Table 5. A generalized linear model (Model 4) describing the effect of adult female mass, latitudinal midpoint, maximum 
latitudinal range and incubation duration on the clutch sizes of 20 species of crocodylian

Term Coefficient SE F P

log.f.mass 11.9056 2.0480 33.796 <0.0001***
t.lat −0.8362 0.1955 18.291 0.0007***
lat.max 1.0462 0.1804 33.623 <0.0001***
inc.dur 0.2435 0.1414 2.9650 0.1071*

D2 = 0.8662. SE, standard error; F, F-value; P, P-value.

Table 6. A generalized linear model (Model 5) describing 
the effects of maximum latitudinal range, fresh egg 
weight, hatchling mass and duration of incubation on 
the threshold incubation temperature of 17 species of 
crocodylian

Term Coefficient SE F P

inc.dur −0.0260 0.0081 10.201 0.0065**

D2 = 0.4215. SE, standard error; F, F-value; P, P-value.
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and climate change (Markwick, 1998; Quintero & 
Wiens, 2013; Mannion et al., 2015), it is plausible that 
all crocodylians are vulnerable to rapid warming, 
and that this should be considered a threat to local 
populations (Dudgeon, 2014).

Our results suggest that the only significant 
correlator to threshold incubation temperature in 
crocodylians is incubation duration (Model 5). This 
factor may help to explain the diversity of threshold 
incubation temperatures as, within species, eggs 
incubated at higher temperatures tend to hatch sooner 
than those incubated at lower temperatures (see 
section on Tomistoma schlegelii, Methods).

We identified no significant relationships between 
the threshold incubation temperature and either 
the mean or the maximum latitudinal range of 
crocodylians (Model 5). This suggests that the nest 
temperature of crocodylians is affected by factors 
other than latitudinal distribution. This stands in 
contrast to the relationship observed in turtles, in 
which latitude has a significant effect on reproductive 
traits and nest temperature (Iverson et al., 1993; 
Ewert et al., 2005). The clutch size of turtles correlates 
with latitude (Iverson et al., 1993) and their sex 
ratio is affected by annual temperature fluctuations 
(Janzen, 1994). This supports observed differences 
in the nest functions and parental roles of turtles 
and crocodylians, and suggests that the presence of 
adult crocodylians at the nest plays a much greater 

role in the temperature regulation of their nests than 
in turtles. Our results suggest that other factors 
(possibly the position, construction, location, shape or 
size of the nest) could contribute to the maintenance 
of an acceptable nest temperature (see also Grigg, 
1987; Brazaitis & Wantanabe, 2011). In turtles, nest 
temperature is determined by ambient temperature 
and climate to a much higher degree (Hays et al., 
2010; Refsnider et al., 2013; Santidrián et al., 
2015). Future research on the behaviour of nesting 
crocodylians may be necessary to shed further light 
on nest temperature regulation.

limitationS anD Future work

We note that some sources in the literature measured 
female mass at first laying, while others measured older 
females. Because crocodylians grow consistently after 
sexual maturity (Seymour et al., 2013), this could produce 
variable results. While our data were means from all of the 
published studies we were able to identify, we recognize 
the limitations of literature-based data collection, and 
acknowledge that the standardized collection of primary 
data would be preferable. This use of species mean 
values for mass, latitudinal distribution and clutch size 
also masks both population-level and biogeographical 
variation (Simoncini et al., 2009). Gathering these 
additional data would offer greater power, and enable 
both within- and cross-species comparisons.

Figure 3. Map of the interactions between some important reproductive variables in Crocodylia. Positive relationships 
shown are between latitudinal midpoint and log mean female mass (P = 0.0026); maximum latitudinal range and log mean 
female mass (P = 0.0133); log mean egg mass and log mean female mass (P < 0.0001); log mean egg mass and log mean 
hatchling mass (P < 0.0001); log mean female mass and mean clutch size (P < 0.0001); maximum latitudinal range and 
mean clutch size (P < 0.0001); latitudinal midpoint and mean clutch size (P = 0.0007); and mean incubation duration and 
threshold incubation temperature (P = 0.0065).
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An extension of the present study could include 
additional parameters such as nest dimensions, nest 
humidity, geographical range and post-copulatory 
reproductive behaviours (nest defence, guarding 
of hatchlings, etc.) to test the influence of these on 
crocodylian distribution and behaviour.

Mortality rates among unguarded eggs and 
hatchlings have been suggested as factors that may 
promote selection for parental care (Klug & Bonsall, 
2010; Klug et al., 2012). Because there seems to be 
a wide within-species range of parenting behaviours 
in crocodylians (Hunt & Watanabe, 1982; Platt 
et al., 2008), the group is a good model system for 
investigating the effects of different types of care. For 
example, do female crocodylians living in high-stress 
environments (at the edge of their range or in human-
dominated landscapes) exhibit the same rates and 
types of parenting behaviour as those living in highly 
protected habitats? This represents an interesting 
subject for future research, especially as the habitats 
of crocodylians are increasingly subject to human 
encroachment and climatic stress (Langley, 2005; 
Amarasinghe et al., 2015; Corvera et al., 2017).

concluSionS

We present the first evidence for a latitudinal effect 
on the body size of extant crocodylian species and 
make the novel observation that major reproductive 
characteristics of extant crocodylians follow a 
consistent pattern of effect across the entire order.

We report no significant relationship between either 
latitudinal midpoint or maximum latitudinal range 
and threshold incubation temperature across sampled 
crocodylians. This contrasts markedly with the patterns 
seen in turtles and raises additional questions about 
the parental roles of crocodylians. Further work will be 
needed to clarify the possible responses of crocodilian 
reproduction and its impact on their resiliance in 
relation to anthropogenic warming. This may have 
implications for future studies on the effects of climate, 
latitude and life history on ectothermic amniotes, and 
for conservationists and government departments 
responsible for legislating on wildlife protection and 
climate change mitigation strategies.
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