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“‘It isn’t light. It’s Dust.’

Something in the way he said it made Lyra imagine Dust

with a capital letter, as if this wasn’t ordinary Dust.”

Philip Pullman, His Dark Materials,

Book One, The Northern Lights.
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Abstract

The analysis of far infrared and sub-millimetre observations of filamentary structures
within star forming regions has relied upon single temperature modified black body
fitting techniques. While these procedures are simple to execute, they require a
number of unphysical assumptions regarding the properties of the dust in the target
molecular cloud, such as assuming that the dust temperature is uniform along the line
of sight, and that the dust opacity index does not vary across the cloud. Furthermore,
the observations are commonly degraded to the coarsest common resolution, leading
to data loss.

The Bayesian fitting procedure, PPMAP, is able to overcome these limitations
by utilising multi-band dust continuum observations at their native resolutions to
produce high accuracy models of H2 column density distributed into multiple discrete
dust temperature and dust opacity index bands along the line of sight. In this thesis
I present the results of a number of tests of PPMAP with synthetic data, and use the
algorithm to analyse local star forming regions.

By constructing model filaments, I produce synthetic far infrared and sub-
millimetre observations which I use to test the capabilities of the PPMAP algorithm.
I show that PPMAP is able to more accurately estimate the total mass of a filament
than a conventional modified black body fitting technique. I also determine that
PPMAP is capable of lifting the dust temperature and dust opacity index degeneracy
commonly seen in modified black body results. This allows PPMAP to probe line
of sight variations in the dust properties. I also determine that PPMAP is able to
estimate the contribution to the final model of each of the input observations equally
well or better than conventional modified black body fitting techniques.

I apply PPMAP to Herschel and SCUBA-2 dust continuum observations of the
main filament in the Taurus L1495/B213 star forming complex. I produce a length
averaged profile of the B211/B213 filament and fit this profile with a Plummer-like
function. I find it has a fwhm ≈0.087 pc and a Plummer-like exponent, p ≈ 1.88.
The fwhm is nearly half the characteristic width reported in Arzoumanian et al.
(2011) and other studies when adjusted for differences in fitting technique, while p is
consistent with previous studies. By instead fitting multiple Plummer-like functions
at different positions along the length of the filament, I determine that the filament
is better approximated by a p = 4 Plummer-like exponent, though I still recover
a narrow filament width. The shallower function attributed to the length averaged
profile is likely to be a consequence of smoothing over areas of resolved sub-structure
along the filament. Therefore, I conclude length averaged fitting should be avoided.
The ability of PPMAP to distinguish dust emitting at different temperatures, and
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thereby to discriminate between the warm outer layers of the filament and the cold
inner layers near the spine, leads to a significant reduction in the column density
through the filament, and hence in the line-density, µ. If we assume a gas temperature
of 10 K, and thus a critical line density, µc ≈ 16 M� pc−1, then the B211/B213 is, on
average, trans-critical, with µ: = 17.8 M� pc−1. The locations of pre-stellar cores agree
well with segments of the filament that are locally super-critical.

I also apply PPMAP to Herschel and SCUBA-2 dust continuum observations
of the Ophiuchus L1688 and L1689 sub-regions. I identify a network of filamentary
structures in both regions. As with the B211/B213 filament in Taurus, I determine
that the widths of the dense filaments in L1688 and L1689 are also significantly
narrower than the canonical characteristic filament width. I find that the filaments
in L1688 and L1689 have a median line density of (43± 13) M� pc−1, and hence are
super-critical assuming a gas temperature of 10 K. However, both regions are strongly
heated by feedback from the Upper Scorpius OB association, which may raise the gas
temperature enough that the filaments are globally trans-critical. By examining the
distribution of mass, I determine that while L1688 contains twice as much material
with AV ≥ 7 as L1689, the proportion of that material which is associated with
starless cores and dense, compact clumps is similar in the two sub-regions.

In addition, I present an analysis of the dust properties as revealed by PPMAP.
The variations in dust opacity index in both the Taurus and Ophiuchus regions exhibit
broadly similar properties. The more diffuse medium surrounding the networks of
filaments and cores is generally composed of dust with opacity indices ≥ 1.5. In
contrast, the dense structures harbour reservoirs dust with opacity indices ∼ 1.0.
This may be indicative of grain growth in the densest regions of star forming clouds.
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Chapter 1

An Introduction to Molecular

Clouds and Dust

For millennia, people have wondered at the make-up of what we can see in the night

sky. The classical treatise Meteorologica (Aristotle c. 350 BCE) derides the early

philosopher, Democritus (450-370 BCE), for believing that the light from the Milky

Way comes from distant stars. Instead, Aristotle puts forward the theory that it is due

to a large collection of burning gasses given off by the most luminous stars. We now

know that not only was Democritus closer to the truth, but that all the stars visible to

the naked eye, and our own solar system, are part of the same collection. The bright

band stretching across the sky (as they would have seen it, see Figure 1.1) is simply

the disc of our parent galaxy seen edge on, and from within. However, Aristotle

was not completely wrong either. In addition to stars, there is a large amount of gas

distributed throughout the space between the stars. Furthermore, dark dust-obscured

lanes can be seen cutting through the plane of the galaxy, obscuring the light from

the stars behind. These components, along with a halo of dark matter, govern the

dynamic processes of the galaxy at scales from kilometers to kiloparsecs.

Our understanding of stars has grown enormously over the intervening cen-

turies. We now know that stars can be roughly broken into two broad categories.

Low mass stars are on the order of a few tenths to a few times the mass of our Sun.

They are the most populous stars, with lifespans of billions or even trillions of years.

High mass stars are on the order of ten solar masses (M�). While much fewer in

number, they are much more luminous than low mass stars, and often dominate the

luminosity from star forming regions. Massive stars only survive a few million years,

and drive powerful stellar winds and turbulent motions which sweep up the surround-

ing gas into dense clouds while their intense radiation greatly heats the gas and dust
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6 Chapter 1. An Introduction to Molecular Clouds and Dust

Figure 1.1. Astrophotography image of the Milky Way taken over the Pinnacles, Australia, altered
to appear as close as possible to what the human eye would observe from the same spot. While
taken from a different hemisphere, the sight would have been similar to the one visible to the ancient
Greek philosophers, with the hazy, white “gasses” and the dark lanes both clearly visible. Image
credit Dobson (2015).
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in their local region. They then die in violent explosions, enriching the environment

with heavy elements.

Despite our understanding of stellar life and death, many questions remain

regarding the formation of stars. Stellar nurseries have historically proven to be

difficult to observe, as they lie at the hearts of dense, dust rich clouds which obscure

ultra-violet, visible, and near infrared radiation. It is only with recent advances in

far infrared and sub-millimetre astronomy that we have begun to probe these clouds

in which protostars are formed, and thus to build an understanding of the processes

that govern their formation. Thus, while Democritus was correct as to the source of

light in the Milky Way, it is with Aristotle’s gasses between the stars that the field

of star formation is most concerned.

1.1 The Interstellar Medium

The Interstellar Medium (ISM) is the term given to the non-dark matter com-

ponent of the Galaxy which permeates the space between the stars. The ISM makes up

approximately 10-15% of the visible mass of the Milky Way (Tavakoli 2012; Roman-

Duval et al. 2016), and comprises mostly hydrogen (70% by mass), with trace amounts

of helium (28%) and metals (2%, Spitzer 1978). However, studies of molecular line

emission have shown that many of the refractory metals (elements with condensation

temperatures greater than 1300 K) appear to be depleted from the gas phase (e.g.

Morton et al. 1973; Jenkins 1987; van Steenberg and Shull 1988). Dwek (1998) sug-

gests that this indicates that a significant fraction of these elements is instead bound

up in solid dust grains. This dust accounts for approximately 1% of the ISM.

The ISM is a multi-phase medium. While McKee and Ostriker (1977) origi-

nally proposed a three phase gas model for the ISM, it is now generally considered

that it is composed of at least five distinct gas phases. The first of these phases is the

Hot Ionised Medium (HIM), made up of ionised hydrogen atoms with temperatures

exceeding 106 K, and number densities of 10−4 cm−3 to 10−2 cm−3. The gas is likely

heated by supernova shocks and other energetic processes. Estimates of how much

of the ISM is taken up by the HIM vary. McKee and Ostriker originally assumed it

was the largest component, occupying as much as 70% of the volume. However, its

volume filling factor may be as low as 20% (Ferriere 1998).

The Warm Ionised Medium (WIM) is also mostly composed of ionised hy-

drogen, though at lower temperatures. It is typically found in HII regions and in a

diffuse network of galactic scale loops, clouds and filaments. The WIM is heated by

Lyman continuum radiation from OB stars, with the HII componant reaching 6000 K
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and the diffuse loop network reaching as much as 9000 K (Reynolds, Sterling, and

Haffner 2001). The WIM is denser than the HIM, with number densities ranging

from 0.2 cm−3 to 0.5 cm−3

The next component of the gas in the ISM is the Neutral Atomic Medium,

which is composed of mainly neutral atomic hydrogen and is itself split into two

phases: the Warm Neutral Medium (WNM), with an estimated temperature range

of 6000 K to 10 000 K and a number density of 0.2 cm−3 to 0.5 cm−3, and the Cold

Neutral Medium (CNM), with temperatures from 50 K to 100 K and number densities

of 20 cm−3 to 50 cm−3 (Dickey, Terzian, and Salpeter 1978; Kulkarni and Heiles 1987).

While it is two orders of magnitude hotter, the WMN is also two orders of magnitude

less dense than CNM, which suggests the two phases are in approximate pressure

equilibrium. Both the warm and cold neutral medium are likely to be heated by

the same process: low energy cosmic rays. The difference in temperature is due

to different cooling mechanisms, with more efficient cooling only possible at higher

densities (Field, Goldsmith, and Habing 1969).

The Molecular Medium (MM), which is mostly H2 gas, is the smallest fraction

of the ISM by volume (< 1%), but makes up 30% of the ISM by mass (Stahler and

Palla 2005). This is because it is significantly colder and more dense than the other

phases, with temperatures <30 K and number densities of 102 cm−3 to 106 cm−3.

The gas in the ISM is continually transitioning between these different phases.

Supernovae, radiation from massive stars, and other energetic processes heat cold

material, dissociating molecules and replenishing the HIM and WIM. Warm material

cools and condenses, becoming optically thick and shielding molecules from disso-

ciation. These molecules then provide even more effective mechanisms for cooling,

leading to condensation of molecular clouds and the formation of stars.

1.1.1 Molecular Clouds

Molecular clouds are dense regions of atomic and molecular gas which condense

out of the warmer phases of the ISM. They are thought to form when supersonic flows

driven by massive stellar winds, expanding HII bubbles, and supernova explosions

sweep up large amounts of the Neutral Medium (see McCray and Kafatos 1987;

Vazquez-Semadeni, Passot, and Pouquet 1995). Where the flows converge, the column

density of the gas increases. When it exceeds ∼1× 1021 cm−2, the interiors of the

clouds become shielded from the UV radiation from the interstellar radiation field

(ISRF, van Dishoeck and Black 1988; van Dishoeck and Blake 1998). The increase

in density enables rapid production of molecules on the surfaces of dust grains, and
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prevents those molecules from being dissociated (Hollenbach and Salpeter 1971).

The molecular gas within the clouds comprises mostly H2, but also contains

trace amounts of other molecular species, such as CO and NH3. These molecules help

to further reduce the temperature of the cloud through various cooling mechanisms,

allowing the gas to cool to temperatures between between 10 K and 20 K (Bergin and

Tafalla 2007). This further aids in the production of molecular hydrogen and other

species. Due to the collisional processes involved, and the high rate of molecular gas

production, molecular cloud formation is thought to be very rapid, occurring on the

timescale of a few Myr (Hartmann, Ballesteros-Paredes, and Bergin 2001).

Molecular clouds vary greatly in size, with masses ranging from 102 M� to

107 M�, and diameters from 1 pc to 100 pc. Molecular clouds with a total mass

exceeding 104 M� are called giant molecular clouds, or GMCs.

It is hard to directly observe the H2 in molecular clouds, as it is a non-polar

molecule with a low moment of inertia, leading to weak rotational transitions with

high excitation energies. Instead, observers use other tracers of the dense gas. One

method is to use molecular line emission from the polar molecular species present in

the cloud. Polar molecules are excited to high rotational states via thermal collisions.

When they de-excite, they release a specific wavelength of light. Basic properties

such as total cloud mass and gas temperature can be inferred from the intensity of

the emitted radiation (assuming a fixed ratio between the number density of the

observed molecule and the number density of H2), while other properties such as

infall, outflow and turbulence can be examined through Doppler-induced effects on

the spectral line features (e.g. Ballesteros-Paredes 2006; Ragan et al. 2014; Hacar

et al. 2018).

An alternative method to estimate the total cloud mass, temperature, and

other physical properties is to use thermal emission from the dust grains, and to

assume a uniform ratio between the mass of molecular hydrogen and the dust mass.

This method is explained in more detail in Section 1.2.1.

As mentioned previously, molecular clouds are not uniform, but are highly

sub-structured complexes. They have been observed to contain networks of filaments

(André et al. 2010), dense clumps, and starless and star-forming cores (Motte, Andre,

and Neri 1998). This substructure is thought to arise from turbulent motions within

the clouds. The turbulence is driven by gravity, accretion, local feedback such as

young stellar winds and expanding HII regions (Leitherer, Robert, and Drissen 1992;

Gritschneder et al. 2009; Drabek-Maunder et al. 2016), and larger scale energetic

processes such as supernova explosions, and galactic flows and sheer forces (Heitsch

et al. 2008; Dib et al. 2009; Klessen and Hennebelle 2010).
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Despite their large sizes, individual molecular clouds do not persist for very

long. Instead they disperse on the order of a few freefall times (Elmegreen 2000;

Ballesteros-Paredes 2006). While initially believed to be gravitationally bound, it is

now thought that molecular clouds can be unbound structures (Clark and Bonnell

2004). The high densities observed, coupled with a high degree of sub-structure and

turbulent motions promote fragmentation on small scales within the clouds (Clark

et al. 2005), which drives filament growth and rapid star formation.

1.1.2 Interstellar Filaments

Interstellar filaments are dense, dusty structures with high aspect ratios, and

are composed primarily of molecular gas. They have been found to dominate the mass

budgets of some molecular clouds and GMCs (e.g. Schisano et al. 2014; Könyves et al.

2015). While they have long been thought to play a role in the star forming process

(Barnard 1910; Schneider and Elmegreen 1979), it was not until the advent of the

Herschel Space Observatory (Pilbratt et al. 2010), and the subsequent revelation that

filaments are an ubiquitous part of star forming environments, that their importance

was established (e.g. Men’shchikov et al. 2010; Hill et al. 2011; Wang et al. 2015).

Further observations have shown that filaments are well correlated with sites of core

formation (e.g. Marsh et al. 2016).

Several methods of filament formation have been proposed. Gravitationally

unstable, spheroidal molecular clouds will collapse preferentially along their shortest

axis, forming a comparatively thin “sheet” of material. Sheets may also be produced

through the collision of two or more molecular clouds or on the surface of expanding

bubbles, which sweep up diffuse material into denser shells. Gravitational instabilities

within these sheets give rise to perturbations with characteristic length scales several

times thicker than the sheets themselves. The aspect ratios of these perturbations in-

creases with time, preferentially driving fragmentation to form filamentary structures

(Miyama, Narita, and Hayashi 1987; Whitworth 2016).

Filaments can also form through the collision of two or more sheets. Where

sheets intersect with one another, material can flow within the sheets into the poten-

tial well generated along the line of intersection, thus forming a filament along this

axis, as shown in Figure ?? (see Shimajiri et al. 2019).

Additionally, numerical simulations have shown that filaments can form through

the collisions of turbulent streams of material within clouds (Ballesteros-Paredes,

Hartmann, and Vazquez-Semadeni 1999; Bonnell, Bate, and Vine 2003; Clarke et al.

2017). When turbulent motions, which can be modelled as plane waves, interact, they
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Figure 1.2. Schematics of the proposed formation method of the Taurus B211/B231 filament as
an intersection between two sheets, as shown in Shimajiri et al. (2019).

will constructively and destructively interfere with one another. The nodes that form

at the sites of destructive interference will be elongated along the line of intersection.

These linear nodes act as stable points within which gas can gather as it moves with

the wave fronts. Turbulence can also drive shear forces which can pull structures

out into elongated shapes (Hennebelle 2013). Shear forces due to galactic rotation

strongly affect objects on galactic scales in this way (Dobbs 2015; Duarte-Cabral and

Dobbs 2017).

Magnetic fields are also thought to play a significant role in filament formation.

Palmeirim et al. (2013) observe low density striations aligned parallel with the mag-

netic field lines in the Taurus L1495/B213 complex, while the dense main B211/B213

filament in the same region is aligned perpendicular to the magnetic field. This trend

was later observed in many other environments (Planck Collaboration et al. 2016a;

Planck Collaboration et al. 2016b), with many fields exhibiting a systematic shift from

low density structures parallel with the magnetic field, to high density structures per-

pendicular to the field lines (e.g. Soler 2019). This may be an indication that the

field lines funnel material onto the filament, helping it to accrete mass. This accre-

tion would also help to prevent filaments from collapsing radially to form very narrow

spindles by injecting turbulent energy into the system (Heitsch, Ballesteros-Paredes,

and Hartmann 2009; Klessen and Hennebelle 2010). On smaller scales, within dense

filaments themselves, observations indicate that the magnetic field direction changes

again, to lie parallel to the primary axis of the structure (e.g. Pattle et al. 2018). Such

internal, longitudinal fields may also aid in supporting the filaments against collapse.

Filaments range from a few parsecs to tens of parsecs long (Beuther et al. 2015;

Arzoumanian et al. 2019), with the longest filaments spanning approximately 100 pc

in projection (Wang et al. 2015; Wang et al. 2016). However, recent studies with
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Gaia have indicated that projected length might be only a fraction of total length

(Großschedl et al. 2018).

Ostriker (1964) showed that an infinitely long isothermal filament in hydro-

static equilibrium has a radial density profile described by

nH2 = n0

{
1 +

(
r

r0

)2
}−2

(1.1)

where n0 is the volume density of hydrogen molecules on the spine of the filament.

r0 is a factor such that for r � r0, the density is approximately uniform, while for

r � r0, the density falls off as r−4. Such isothermal cylinders can be supported

against gravity by internal thermal pressure alone if their line density, µ, is below a

critical value given by

µC =
2c2
s

G
, (1.2)

where cs is the isothermal sound speed of the gas (Ostriker 1964). This sound speed

is given by

cs =

(
kBT

m̄

)1/2

, (1.3)

where kB is the Boltzmann constant and m̄ is the mean mass associated with a gas

molecule. For molecular gas with a solar composition at a temperature of 10 K, this

equates to cs = 0.19 km s−1, and therefore µC ≈ 16 M� pc−1. Filaments with line

masses greater than this value should, in theory, undergo rapid radial collapse into a

thin spindle.

In reality, thermal pressure is not the only supporting mechanism. Clarke

et al. (2017) generalised equation 1.3 to include support from turbulent motions by

replacing cs with ceff =
√
c2
s + σ2

1D, where σ1D is the one dimensional gas velocity

dispersion. Internal magnetic fields aligned parallel to the long axes of filaments

are also thought to contribute to support, by restricting the flow of material inward

across the field lines. The majority of prestellar and protostellar cores are found in

filaments with a line density greater than µC (Polychroni et al. 2013; Könyves et al.

2015; Marsh et al. 2016).

Whitworth and Ward-Thompson (2001) generalised equation 1.1, introducing

a variable Plummer-like exponent, p, which produces
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nH2(r) = n0

{
1 +

(
r

r0

)2
}−p/2

. (1.4)

The filament column density profile is then

NH2(b) = N0

{
1 +

(
b

r0

)2
}−(p−1)/2

, (1.5)

where N0 is the column density through the filament spine, and b is the impact

parameter, or projected radius of the filament. Observations of nearby filaments

with the Herschel Space Observatory have indicated that, when averaged along their

length, filaments are well described by this Plummer-like profile, with an exponent

of p ≈ 2 (Arzoumanian et al. 2011; Palmeirim et al. 2013; Arzoumanian et al. 2019).

p ≈ 2 values have also been seen in simulations (Gómez and Vázquez-Semadeni 2014;

Smith, Glover, and Klessen 2014). There have been several explanations for why

observed and synthetic filaments exhibit Plummer-like exponents of p ≈ 2 rather

than p ≈ 4. Fischera and Martin (2012) show that a p ≈ 2 value can be obtained in

the case where filaments are radially confined by an external pressure. Alternatively,

Federrath (2016) suggests that if filaments form from colliding shocked sheets, then

the density of the filament will go as nH2 = l−2, where l is the thickness of the sheet.

In probing many varied environments, dust observations from the Herschel

Gould Belt Survey (HGBS, André et al. 2010) have shown that filaments seem to

present similar widths. Gaussian profiles fitted to the inner portions (b . r0) of

length-averaged profiles of filaments in many nearby regions show a narrow distri-

bution of fwhm centred on 0.1 pc (Arzoumanian et al. 2011; Palmeirim et al. 2013;

Arzoumanian et al. 2019). This result has also been shown to be true for filaments

found outside local molecular clouds (André et al. 2016). However, recent work has

called this result into question. Panopoulou, Psaradaki, and Tassis (2016) found that

the narrow distribution of widths is a consequence of fitting to a length-averaged

radial profile for each filament. Furthermore, Panopoulou et al. (2017) are unable

to find a characterising length scale when analysing the HGBS filaments in Fourier

space, a result which echoes the findings of Miville-Deschênes et al. (2010) who also

observed no features at 0.1 pc when analysing the power spectrum of the Polaris Flare.

In response, Roy et al. (2019) show that the area filling factor and the contrast be-

tween filaments and background emission in Herschel observations is likely to be too

low for a characteristic length scale corresponding to filament widths to be detectable

in Fourier space, even if one is present. Simulations of filamentary structures have
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struggled to robustly reproduce the 0.1 pc width seen in observations. Hennebelle

(2013) was able to produce filaments with 0.1 pc widths in magneto-hydrodymanic

simulations, and suggested that the well defined width is a product of ion-neutral

friction, which operates on a similar length scale. However, they note that if this is

the case, then poorly shielded filaments and clumps on the edges of molecular clouds

would be much narrower, a relation which is not seen in observations. Heitsch (2013a)

was instead able to produce filaments with a 0.1 pc width via continual accretion pro-

cesses, though if the ram pressure of the infalling material is taken into account, then

this relation is destroyed in all but a few cases (Heitsch 2013b). Both Heitsch (2013b)

and Smith, Glover, and Klessen (2014) note that the width recovered from a filament

is highly dependent on the fitting parameters.

In molecular line observations, the 0.1 pc width is not observed. Instead,

Panopoulou et al. (2014) identify a broad distribution of filament widths peaked at

0.4 pc when observing 13CO in the Taurus region. This peak shifts to 0.2 pc when lim-

iting observations to structures with coherent velocities, indicating that line of sight

confusion may be broadening width estimates in both dust emission and integrated

line emission. This interpretation is consistent with the high degree of sub-structure

now known to be present within filaments. Hacar et al. (2013) show that the Taurus

B211/B213 filament is composed of bundles of velocity coherent fibres. This has since

been shown to be the case across several other regions (Henshaw et al. 2017; Hacar,

Tafalla, and Alves 2017; Hacar et al. 2018). Simulations have also shown that what is

observed as a 2D filament is often made up of a network of smaller 3D sub-filaments,

though the 3D sub-filaments and the velocity coherent fibres do not necessarily trace

the same structures (Clarke et al. 2018).

1.1.3 Fragmentation into Cores

Filaments are thought to be an intermediate step between molecular clouds and

the formation of stars. 75% of pre- and protostellar cores are observed to be located

along filaments (Könyves et al. 2015; Marsh et al. 2016). Therefore, understanding

how filaments fragment into cores is vital for building a clear picture of core formation.

Models of equilibrium filaments have shown that filaments experience global

collapse on longer timescales than equally dense spheres (Pon, Johnstone, and Heitsch

2011), which gives time for turbulent perturbations to grow. In equilibrium, the

fasting growing mode has a wavelength equal to four times the diameter of the filament

(Inutsuka and Miyama 1992). For filaments that are undergoing accretion, and that

are also influenced by turbulent processes, the wavelength of the fastest growing mode
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is instead given by

λfragment = 2τCceff , (1.6)

where τC is the time required to produce a thermally critical filament via accretion

(Clarke, Whitworth, and Hubber 2016; Clarke et al. 2017). This gives rise to two sce-

narios. In gravity-dominated filaments, the largest perturbation breaks the filament

into a series of widely spaced dense clumps. As the clumps grow in mass and become

gravitationally unstable, they themselves fragment at the scale of the Jeans length:

the length below which a spherical body is stable against gravitational collapse. The

Jeans length is given by

λJ ∼
cs√
Gρ

, (1.7)

where ρ is the mean density (Jeans 1928).

In contrast, turbulence-dominated filaments “fray and fragment” into sub-

filaments (Tafalla and Hacar 2015; Clarke et al. 2017). Simulations have shown

that either sub-filaments themselves undergo fragmentation, spawning cores along

their lengths similar to the gravity-dominated filaments, or that intersections between

multiple sub-filaments act as hubs for core formation (Clarke et al. 2017; Clarke et

al. 2018). This turbulent model has been corroborated by recent, high resolution

observations of several star forming regions (Hacar, Tafalla, and Alves 2017; Hacar

et al. 2018).

The dense cores formed by either of these processes are the direct progenitors

of stars. Cores have diameters from 0.01 pc to a few tenths of a parsec (Andre,

Ward-Thompson, and Barsony 2000; Lomax, Whitworth, and Cartwright 2013), and

range in mass from 0.1 M� to tens of solar masses. They are much denser than typical

molecular clouds, with central molecular hydrogen densities often exceeding 105 cm−3.

The high density means their interiors are also well shielded from the ISRF. Thus

cores are initially very cold (∼10 K).

The initial phase of core evolution is the starless core, which can be gravita-

tionally bound or unbound. By considering a sphere of radius rJ = λJ , it is possible

to derive the mass above which the sphere will collapse due to gravity, termed the

Jeans Mass:

MJ ∼
(

4π

3

)
ρr3

J =

(
4π

3

)
c3
s

G3/2ρ1/2
. (1.8)

where ρ is the average mass volume density of the core. Starless cores with masses

greater than the Jeans mass are bound, and are called pre-stellar cores, as they will

collapse to form protostars at their centres. Starless cores with masses less than

the Jeans mass, or which have additional mechanisms to support themselves against
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gravitational collapse, are unbound. Unbound cores which are not pressure confined

will disperse on a time scale given by

td ≈
r

σ
, (1.9)

where σ is the internal velocity dispersion of the core (Ward-Thompson and Whit-

worth 2015).

Protostars are classified into several observationally distinct Classes from 0 to

III (Lada 1987; Andre, Ward-Thompson, and Barsony 1993). Class 0 is the earliest

type of protostar and has features comparable with a modified black body spectrum

at ∼30 K. Physically, it is believed to have most of the core mass still contained

in the core envelope. Class I cores are those whose infrared spectrum can be well

described by a power law with a spectral index, α > 0.3, when measured between

2.2 µm and 20 µm. The physical transition from Class 0 to Class I is thought to

take place when the fraction of the core mass contained within the central protostar

exceeds 50%. However, as the protostar is still deeply embedded, Class 0 and Class

I sources share many physical and observational properties and are difficult to tell

apart observationally. Therefore, they are often grouped together as Class 0/I sources.

Class II cores have a spectral index −0.3 > α > −1.6. The steepening slope is due

to the lost their envelopes through a combination of accretion onto the protostar,

excavation with bipolar outflows, and other dispersive processes, leaving them with

just the circumstellar discs surrounding the central objects. Class III stars have lost

all circumstellar material, and are considered pre-main sequence stars. They exhibit

α < −1.6.

While theoretical work has allowed some physical understanding of the state

of protostars associated with different Classes, observational nature of the Class sys-

tem can lead to confusion and misidentification of cores in different geometries. For

example, a Class II protostar viewed edge on might exhibit the same infrared spec-

trum as a Class I source, as the thick, circumstellar disk behaves like an envelope,

obscuring the central object. It is sometimes beneficial to refer to protostellar Stages

(Robitaille et al. 2006; Robitaille et al. 2007; Robitaille 2017), which are derived from

the physical parameters of protostars in simulations. The mass budget of Stage 0/I

protostars is dominated by an infalling envelope, while Stage II protostars have very

tenuous envelopes but optically thick circumstellar discs. Stage III protostars have

lost most or all of their discs. Synthetic observations of these protostellar models

reveal that in most cases, a Stage is analogous to a Class of the same order. However,

they also indicate how viewing angle can change the observational appearance, and
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thus Class, of a protostar. As protostars are not the main focus of this thesis, and

I am simply concerned with their observational properties, I utilise the Class system

throughout.

During the initial contraction of a prestellar core, gravitational potential en-

ergy is converted into inward radial kinetic energy and thermal kinetic energy of the

gas and dust. In the early stages of collapse, cores are generally optically thin. This

allows the thermal energy to be radiated away via emission. As long as this holds

true, the contraction will approach freefall collapse, with a timescale given by

tff =

(
3π

32Gρ

)1/2

. (1.10)

As the density of the protostellar core increases, the gas and dust become

increasingly optically thick. This reduces the efficiency with which thermal energy is

radiated away from the interior of the core, leading to an increase in temperature.

The protostar is first observable as a deeply embedded point source in the centre

of a gas- and dust-rich envelope when the central object has reached a temperature

between 20 K and 40 K. This corresponds to a peak wavelength of between 160 µm

and 70 µm (PACS Bright Red Sources, Stutz et al. 2013). As the protostar continues

to warm, its emission peak shifts to shorter wavelengths.

Eventually, the density of the protostellar core increases to the point where

thermal energy is unable to be radiated away from the core interior faster than it is

generated through conversion of gravitational potential energy. This halts the collapse

and forms the First Hydrostatic Core (FHC) in the centre of the envelope. The FHC

is heated by accretion shocks and the Kelvin-Helmholtz contraction, and this allows

it to shrink, becoming a Class 0 protostar.

Mass continues to accrete from the envelope onto a circumstellar disc, and

then onto the protostar itself. When the mass of the protostar exceeds the mass of

the remaining envelope, it becomes a Class I protostar. As the temperatures continue

to rise, the molecular hydrogen within the protostar dissociates, and it undergoes an-

other rapid collapse towards the Second Hydrostatic Core (SHC). Continued accretion

onto the SHC eventually raises the density and temperature to the point where fu-

sion processes begin to occur, and the remaining envelope is dispersed (Larson 1969a;

Larson 1969b; Masunaga and Inutsuka 2000; Commerçon et al. 2011; Bate, Tricco,

and Price 2014).

These processes describe the formation of low- and intermediate-mass stars.

The formation process of high-mass stars is less certain. One theory proposes high-

mass stars form from high-mass cores, in much the same way as low-mass stars.
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These cores, which greatly exceed the Jeans mass, are supported through high inter-

nal turbulent pressures. On very short timescales (typically on the order of a single

freefall time), the turbulence dissipates and the core collapses monolithically, rapidly

forming a high-mass protostar. This “turbulent core” model was first proposed by

McKee2002. A second theory suggests that high-mass stars begin as low-mass cores,

that are continually fed material as they collapse at a rate equivalent to the matter be-

ing accreted. Such models (Vazquez-Semadeni2009; Vazquez-Semadeni2017)

is based on the earlier “competitive accretion” model (Smith2009), and requires

that the parent cloud is arranged in such a way as to funnel material towards the

core. Such a system is believed to be present in hub-and-spoke filament networks,

where several filaments converge on a central, dense region. Observational evidence

for either scenario is proving difficult to obtain, due to the small number of high-

mass stars to low-mass stars, and due to the short timescales involved (Motte2007;

Tige2017; Motte2018). Eventually, the intense radiation from the massive central

protostar drive the formation of an ionised HII bubble, which, together with stellar

winds and other processes, stall further accretion and excavate a cavity within the

parent cloud. This transition begins to occur when the core exceeds 8 M�.

1.1.4 The Gould Belt and the Radcliffe Wave

John Herschel (1847) first noted a large number of bright stars visible from

the Southern Hemisphere that appeared to form a coherent structure inclined to the

Galactic Plane by ∼20°. Benjamin Gould (1879) produced the first detailed study of

this structure, finding that the stars formed a complete ring on the sky. The structure

was therefore given his name: the Gould Belt. Shapley (1919) further confirmed that

the Gould Belt was not part of the Galactic Plane by determining that the stars

which made up the belt were much closer to the solar system (<600 pc) than the

clusters found within the rest of the Galaxy. Later studies linked the Gould Belt not

just with stars, but also sites of active star formation (Taylor, Dickman, and Scoville

1987; Porras et al. 2003).

The Gould Belt is believed to be a 50 pc thick, elliptical structure, inclined

between 16° and 22° to the galactic plane, with semi-major and semi-minor axes of

∼350 pc and ∼250 pc respectively. The Sun is estimated to be 40 pc from the line

connecting the two nodes of the ellipse, placing it slightly off centre (Bobylev 2014).

Many theories have been proposed for creating such a ring, including an expanding

bubble driven by stellar feedback (Poppel 1997), the impact of a high velocity cloud

with the galactic disc (Comeron and Torra 1994), and the collision of a GMC with
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Figure 1.3. A diagram of the star forming clouds surrounding the solar system. A coherent,
elongated structure is clearly visible in red. This structure appears to form a wave consistent with a
damped harmonic oscillator when viewed in the yz plane. Diagram taken from Alves et al. (2020).
I have added the black dashed ring to indicate the approximate location of the Gould Belt. The
ring passes through several clouds that are considered part of the Radcliff Wave, as well as a cluster
of clouds that are not part of the wave . The position of the ring is taken from Perrot and Grenier
(2003).

a rogue, dark matter dominated cloud (Bekki 2009). Despite this, no one theory

has been able to fully explain the observed structure. However, a recent study has

indicated that this may be because the Gould Belt is not a single structure. Gaia

Data Release 2 measurements of the distances and velocities of stars associated with

molecular clouds have shown that the star forming regions that make up one half of

the Gould Belt may belong to a much larger density wave spanning >2.5 kpc (see

Figure 1.3) called the Radcliffe Wave (Alves et al. 2020).

This finding suggests that the Gould Belt did not form as a ring, but is in-

stead only the coincidental projection of several star forming regions. Nevertheless,

the Gould Belt remains a useful name for grouping the nearest star forming clouds.

These clouds are of great importance, as they allow us to examine the star formation

processes with unparalleled spatial resolution across a number of environments, in-

forming our understanding of cloud collapse, filament formation, core fragmentation,

low and high mass star formation and feedback processes.

1.2 Dust

As highlighted previously, dust is an important component of the ISM, making

up ∼ 1% its mass. However, the origin of dust still remains a mystery. While dust

is produced by stars in the red giant or red supergiant phase, and given off in stellar

winds (Ferrarotti and Gail 2006; Sargent et al. 2010), the observed production rate

is insufficient to produce all the dust seen in the ISM (Matsuura et al. 2009; Dunne
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et al. 2011). Large quantities of dust have also been observed in young supernova

remnants, indicating that they are significant factories of dust (Dwek and Scalo 1980;

Dunne et al. 2003; Matsuura et al. 2011), but much of that dust is thought to be

destroyed by the supernova reverse shock. Dust could also form in situ through

reactions in the diffuse ISM, though no viable chemical pathways have so far been

identified. Regardless of its formation, however, the presence of dust in the ISM, and

its importance to galactic processes is without dispute.

Most of the interstellar dust grains in the Milky Way are between 10 nm and

10 µm in diameter (Kim and Martin 1994). Such grains scatter and absorb a signifi-

cant fraction (30%) of all light in the universe in a process called extinction (Popescu

and Tuffs 2002; Viaene et al. 2016; Bianchi et al. 2018). Shorter wavelength radiation

(e.g. UV or blue light) is more strongly extincted than longer wavelength radiation

(e.g. red and infrared) as the strength of the effect has a ∼ λ−1 dependence. This is

further compounded at wavelengths comparable to the size of the dust grains, where

the dependence on the scattering goes as λ−4. Therefore, extinction produces a red-

dening effect on sources seen through dust clouds. During the absorption process the

energy of the absorbed photons is not lost, but is re-emitted at longer wavelengths.

This effect helps to regulate the thermal balance of the ISM, and is particularly im-

portant for removing thermal energy from dense, star forming cores, allowing them

to collapse.

Dust grains are also important molecular factories, with H2 and other, more

complex, molecules forming on the surfaces of the grains. The grains then aid in

shielding those molecules, preventing them from becoming dissociated by UV radia-

tion. Dust grains also form the building blocks for planet formation.

In most situations, the dust is dynamically coupled to the gas, and thus is

concentrated in molecular clouds. While it is therefore a good indicator of molecular

cloud position, the dust blocks optical and UV emission which makes it difficult to

observe the structures and processes in the cloud interiors. This is a problem for

understanding the star formation that takes place within these dense, dark clouds.

However, it is possible to examine the effects of dust itself, and use it as a tracer for

these deeper structures.

One method is to observe dust through extinction. Radiation from stars be-

hind dense clouds of dust and gas is attenuated by the dust grains due to scattering

and absorption. As mentioned previously, shorter wavelength radiation is more atten-

uated than longer wavelength radiation, which leads to a reddening of the observed

light. This reddening can be used to compare stellar magnitudes in different optical

bands, such as the blue magnitude (B) and red magnitude (R). By modelling the
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stars, it is possible to compare the observed colour difference (B− V ) to the the the-

oretical colour difference from the unattenuated stars, (B − V )0, and thus determine

the degree of reddening

E(BV ) = (B − V )− (B − V )0 (1.11)

This is often converted to an absolute extinction, AV = RE(B − V ), where R is the

ratio of total to selective extinction; in the diffuse ISM, R ∼ 3.1 (Cardelli, Clayton,

and Mathis 1989).

Unfortunately, AV is difficult to measure for dense molecular clouds due to

the high opacity meaning they are nearly completely opaque to optical wavelengths.

Instead, near infrared extinction (AK) is often used (Lada et al. 1994; Lombardi and

Alves 2001). This is determined via the same procedure, but utilises near infrared

observing bands. AK can be converted to an equivalent AV (e.g. Rieke and Lebofsky

1985), and then into an estimate of H2 column density (e.g. Bohlin, Savage, and Drake

1978). It can therefore be used to track changes in column density across the cloud,

and to measure the total cloud mass and the masses of the smaller sub-structures.

However, it gives no information on the dust temperature or variations in the dust

opacity properties.

An alternative method of using dust as a tracer of the gas in molecular clouds

is to directly observe the thermal emission from the dust grains. At the typical tem-

peratures of molecular clouds, this emission is in the far infrared and sub-millimetre

wavebands. The emission mechanism and methods for estimating H2 mass, temper-

ature, and opacity index are described in the following Sections.

1.2.1 Dust Emission as a Tracer of Molecular Cloud Mass

The first thorough analysis of far infrared and sub-millimetre dust emission

as a good tracer for the mass of molecular clouds was performed by Hildebrand

(1983). The mass estimation begins by considering the emission and transmission

of radiation itself. From a generalised observational perspective, the transmission of

radiation through a medium to an observer is governed by the equation of radiation

transport (e.g. Chandrasekhar 1960),

dIλ
ds

= −αλIλ + jλ, (1.12)

where Iλ is the specific intensity of radiation at a given wavelength, λ, s is a position

in space along the line of sight between the observer and the emitting object, αλ is
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a coefficient that describes the absorption properties of the medium, and jλ is the

emission coefficient. By defining an optical depth, τλ such that dτλ = αλds, and by

assuming that the emission term is independent of this optical depth, the solution of

equation 1.12 is

Iλ = I0e
−τλ + Sλ(T )

(
1− e−τλ

)
, (1.13)

where Sλ(T ) is the source function, and is in turn given by jλ/αλ. T is the temperature

of the source, and I0 is the unattenuated emission from the medium though which the

radiation propagates. In the case where the observed radiation is far infrared and sub-

millimetre emission from an interstellar dust cloud which is in thermal equilibrium,

the source term is given by the Planck function∗

Sλ(T ) = Bλ(T ) =
2hc2

λ5

1

exp
(

hc
λkBT

)
− 1

. (1.14)

Furthermore, when the background intensity is negligible (I0 ∼ 0) the solution to

equation 1.12 then becomes

Iλ =
(
1− e−τλ

)
Bλ(T ), (1.15)

which can be further simplified in optically thin environments (τλ � 1) to

Iλ ≈ τλBλ(T ). (1.16)

In the case of a molecular cloud, where the radiation is due to thermal emission

from a population of uniform, spherical dust grains at a temperature TD, the optical

depth is directly related to the properties of the emitting dust within the cloud by

the equation

τλ = σgrainNDQλ, (1.17)

where σgrain is the cross section of a dust grain, ND is the column density of the dust

grains, and Qλ is an efficiency coefficient which describes the ratio between the power

emitted by a dust grain at wavelength, λ, and the power emitted by a black body with

∗A peculiarity of far infrared and sub-millimetre dust astronomy is that specific intensity is often
quoted in units of some multiple of janskys per unit solid angle (e.g. MJy sr−1 for Herschel SPIRE
observations), while observation bands are quoted in terms of wavelength. The jansky is a measure
of power per unit area per unit frequency with 1 Jy = 10−23 erg s−1 cm−2 Hz−1. Therefore, while
the formalism in this thesis is to present all analysis in terms of wavelength, care is taken to ensure
quantities are correctly converted to maintain the correct dimensionality.
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the same effective temperature at the same wavelength. The value of Qλ is related

to the physical absorption and emission properties of the individual dust grains. In

the regime where the dust grains are much smaller than the wavelength of emitted

light (which holds true for dust in molecular clouds radiating in the far infrared and

sub-millimetre), Qλ can be related to the emission wavelength by considering the Mie

(1908) approximation to Maxwell’s equations. This gives the relation

Qλ ∝ λ−β, (1.18)

where β is the dust opacity index†. The spectral luminosity of dust grains in an

observed dust cloud with surface area Acloud is given by

Lλ = 4πAcloudNDσgrainQλBλ(TD). (1.19)

The specific intensity is recovered by considering the surface area of a sphere

centred on the cloud and through the observer, over which the luminosity from

equation 1.19 is spread and noting that the solid angle subtended by the cloud is

Ω = Acloud/D
2, where D is the distance to the cloud from the observer. The specific

intensity is therefore given by

Iλ = σgrainNDQλBλ(TD). (1.20)

As the emission has a form similar to that of a black body radiator, it is often referred

to as a grey body, or modified black body (MBB). It is common to replace the column

density of dust, ND, with the column density of hydrogen molecules, NH2 , by assuming

a dust to gas ratio, RD2G. Thus, equation 1.20 can also be expressed as

Iλ = σgrainNH2RD2GQλBλ(TD). (1.21)

As, in reality, the dust in a molecular cloud is not formed from uniform, spher-

ical grains, σgrain is poorly constrained. Similarly, the value of Qλ depends on the

physical properties of the grains such as size, mass, heat capacity and chemical com-

position which are often exceedingly difficult or impossible to determine accurately.

It is, therefore, convenient to group these terms, along with the dust to gas ratio,

such that

†the terms “opacity index” and “emissivity index” are both used to describe β in published works.
I choose to use “opacity index” to remain consistent with Marsh, Whitworth, and Lomax (2015),
which introduces the PPMAP algorithm.
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σgrainQλRD2G = m̄H2κλ, (1.22)

where m̄H2 is the mean mass associated with each hydrogen molecule when account is

taken of other species, and κλ is the mass opacity coefficient which describes the dust

opacity properties in a single parameter. For gas with solar composition, in which all

the hydrogen is molecular, m̄H2 ≈ 4.77× 10−24g.

As with equation 1.18, in the small grain regime, the wavelength dependence

of κλ can be expressed by a power law:

κλ = κ0

(
λ

λ0

)−β
, (1.23)

where κ0 is the reference mass opacity coefficient, which has units of area per unit

mass, at wavelength λ0.

The reference mass opacity coefficient is typically found to have uncertainties

of at least a factor 2 due to the underlying uncertainty in the values of σgrain and

Qλ. Throughout this thesis, I use a reference mass opacity at 300 µm, κ300 µm, of

0.1 cm2 g−1, which is the value adopted by the Herschel Gould Belt Survey team, and

is consistent with the observationally derived reference opacity at 1.3 mm commonly

used for dense, prestellar cores and clumps (e.g. Preibisch et al. 1993; Andre, Ward-

Thompson, and Motte 1996; Motte, Andre, and Neri 1998). This value is very close

to the opacity proposed by Hildebrand (1983), and is consistent with a gas to dust

ratio of 100 (i.e. RD2G = 0.01).

Once κ0 is fixed, variations in the dust emission properties can be expressed

as changes to the opacity index, β. Through observation and experiment (e.g. Dunne

and Eales 2001; Smith 2013; Demyk et al. 2013), β has been found to take a value

close to 2, while Planck Collaboration et al. (2014) estimates a median opacity index

value within the Milky Way of 1.76, with a standard deviation of 0.08.

It has been suggested that high values of the opacity index (β ≈ 2) indicate

the presence of metallic or crystalline dust grains, while lower values of the opacity

index (β ≈ 1) are indicative of small (<300 nm) amorphous grains (Tielens and

Allamandola 1987). However, grains made of layered silicate structures have been

found to complicate this relationship, as linking between the layers produces β >

1. Additionally, while grain growth and ice mantle formation has been found to

significantly alter the value of the opacity index (Testi et al. 2014), the relationships

refer exclusively to grains typically found in proto-planetary discs, which are larger

than interstellar grains (>10 µm). Furthermore, Agladze et al. (1996) found that

the value of β changes significantly with increasing temperature over the range 1.2 K
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to 30 K for 0.1 µm to 1 µm amorphous iron silicate grains when observed between

700 µm and 2900 µm, though similar cryogenic analyses of the dust opacity index of

other compounds are sparse, and few focus on the far infrared and sub-millimetre

wavebands. Thus, while dust opacity index variations are likely to be a good tracer

of changes in dust properties, the precise nature of those changes remains uncertain.

By substituting equation 1.22 and equation 1.23 into equation 1.21, I obtain

a MBB with the form

Iλ = NH2m̄H2κ0

(
λ

λ0

)−β
B(TD). (1.24)

The mass column density is often represented by a single parameter, ΣH2 ,

where ΣH2 = NH2m̄H2 .

The hydrogen column density along a given line of sight can be obtained by

rearranging equation 1.24 to produce

NH2 =
Iλ

m̄H2κ0

(
λ
λ0

)−β
B(TD)

, (1.25)

and the cloud total mass can then be derived by integrating over the surface area of

the cloud to give

MH2 = NH2m̄H2Acloud =
Iλ

κ0

(
λ
λ0

)−β
B(TD)

Acloud. (1.26)

1.2.2 Fitting a Spectral Energy Distribution

While, in theory, equation 1.25 can be used to obtain the H2 column density

along a sight line from a single measurement of specific intensity, it would require

known values of the line of sight dust temperature and opacity index. These values

are, however, very difficult to determine independently. Instead, targets are typically

observed at multiple wavelengths. This makes it possible to fit a spectral energy

distribution (SED) consisting of one or more MBBs to the observations. If there are

enough independent data points, the total H2 column density, the dust temperatures

and opacity indices of each constituent MBB along a given line of sight can be treated

as free parameters, and thus are estimated simultaneously. It is common to assume

that the emission can be modelled as a by single MBB (this is called the MBB fitting

technique to distinguish it from other, more complex SED models) with constant line

of sight dust temperature and dust opacity index.
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Although MBB fitting is simple and quick to perform, it does have significant

pitfalls. To accurately estimate H2 column density, MBB fitting requires that the ob-

servations accurately capture all the emission from along the line of sight. Therefore,

the target must be optically thin. Otherwise self absorption of emission within the

target will lead to an underestimate of the column density. Fortunately, this condition

is expected to hold true for far infrared and sub-millimetre emission in all but the

densest protostellar cores. As stated previously, a single MBB fit assumes that the

dust along the line of sight has a single, fixed temperature and opacity index. This

assumption is clearly a gross simplification due to the highly sub-structured nature of

molecular clouds and filaments, which are subject to heating from the ISRF at their

surfaces, cooling though dust and molecular line emission, and feedback effects from

protostellar objects and young massive stars.

Figure 1.4 shows the effect of changing dust temperature and dust opacity

index on a modified black body function. The intensity of each of the displayed MBB

curves has been normalised for convenience. Comparing the MBB curves shows that

by lowering the temperature from 20 K (black curve) to 16 K (red curve), the peak

of the MBB is shifted to longer wavelengths. However, a similar shift in the peak

position can be achieved by keeping temperature fixed, and instead lowering the value

of the opacity index, β, from 2 (black curve) to 1 (blue-dashed curve). Only in the

longer wavelength Rayleigh-Jeans tail can the two effects be disentangled. This effect

has been well noted as an observed temperature and opacity index anti-correlation

(ShettyA2009; ShettyB2009). Therefore, to accurately fit both parameters, we

require observations that well sample both the peak and the tail of the function.

For warm targets (dust temperature >25 K), this is not typically much of

an issue. However, for colder targets (dust temperature <25 K), such as molecular

clouds, this can be difficult to achieve. Ground based observatories that are capable

of imaging at longer wavelengths (λ >500 µm) struggle to produce observations of

extended structure due to the filtering required to remove atmospheric effects. Long

wavelength space observatories are limited by the poorer angular resolution inevitable

with smaller telescopes, while space observatories with high resolution have not car-

ried instruments capable of observing beyond 500 µm (because of the competition for

such observations from ground-based facilities).

Therefore, in most studies of molecular clouds the dust opacity index is not

only assumed to be constant along the line of sight, but is also typically fixed at a

single value across the entire region or even multiple regions. The commonly assumed

value of opacity index for molecular clouds within the Gould Belt is 2 (see André et al.

2010; Könyves et al. 2010), which is consistent with Hildebrand (1983).



1.3. Thesis Outline 27

Figure 1.4. The effect of variable dust temperature (red curve) and variable dust opacity index
(blue-dashed curve) on the shape of a MBB (black curve). Comparison of the red and blue-dashed
curves reveal that the effect on the MBB peak of a drop in dust temperature can be reproduced by a
drop in dust opacity index. In contrast, the two variations can be distinguished by their effect on the
Rayleigh-Jeans tail at longer wavelengths. The intensity of the MBB functions has been normalised
for easy reference.

A further requirement of SED fitting is that the observations all share a com-

mon resolution. This is typically achieved by convolving the observations with the

beam profile of the observation with the coarsest resolution. This degrades the image

quality of the other observation bands, leading to information loss. A few common

techniques, such as the one presented in Palmeirim et al. (2013), are able to recover

some of the lost angular resolution through careful comparison of low-resolution,

high-accuracy column density maps produced from all available observations, and

higher-resolution, lower-accuracy column density maps made from a subset of the ob-

servations after excluding those with the coarsest resolutions. However, the recovered

resolution comes at the expense of an increased level of noise.

1.3 Thesis Outline

Accurate measurements of the properties of environments surrounding star

forming filaments, and the structure of the filaments themselves, are vital to under-

stand their role in star formation. However, attempts to measure these properties

from observations of dust emission suffer from the limitations of fitting MBBs noted

above. The recently developed PPMAP algorithm provides a method of estimating

H2 column density and dust properties without having to resort to the simplified

assumptions of standard MBB fitting techniques.

Using the superior diagnostic capabilities of PPMAP, I analyse two of the

closest star forming regions within the Gould Belt, using multiband mapping by the
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Herschel PACS and SPIRE cameras, and ground-based sub-millimetre maps from the

James Clerk Maxwell Telescope (JCMT): the Taurus L1495/B213 complex, and the

Ophiuchus L1688 and L1689 sub-regions. These are the closest regions of active star

formation to the Sun, lying at a distance of ∼140 pc. This enables very high spatial

resolution mapping, sufficient to resolve the filamentary structure that mediates star

formation. In both regions, I identify the main filamentary structures and analyse

the filament properties, with a particular focus on determining variations in width

and line density along the lengths of each of the filaments. I also use PPMAP to

investigate both the line of sight and plane-of-sky variations in the dust temperature

and dust opacity index within each region. I then link both the filament properties

and dust properties to sites of active core formation to build a picture of how these

variations affect, or are affected by, the star formation processes.

This analysis reveals several key findings:

• I show for the first time that the main Taurus B211/B213 filament is better fit

by a p = 4 Plummer-like profile than by the standard p = 2 profile.

• I determine that the main Taurus B211/B213 filament is globally thermally

trans-critical, and areas of active core formation are only locally super-critical.

• In the Ophiuchus L1688 and L1689, I identify several filaments and perform the

first large scale analysis of their properties.

• In both the Taurus and Ophiuchus regions, I find the filaments are approxi-

mately half as wide as previously reported, and that the conventional width of

0.1 pc is likely to be a result of single MBB fitting techniques misidentifying the

warm, diffuse dust in the outer portions of filaments as colder, denser material.

1.3.1 Thesis Structure

In Chapter 2, I give an overview of the main instruments and techniques

involved in producing and reducing the observational data for this thesis. Chapter 3

describes the mathematical underpinnings for the PPMAP algorithm, and explains

its implementation. In Chapter 4, I present the results of a number of tests I have

performed to test the capabilities of the PPMAP algorithm. Chapter 5 presents my

analysis of the results of the application of PPMAP to far infrared and sub-millimetre

observations of the Taurus L1495/B213 complex, and compares the findings with

previous observational work conducted by Palmeirim et al. (2013). In Chapter 6, I

discuss the results of my application of PPMAP to far infrared and sub-millimetre
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observations of the Ophiuchus L1688 and L1689 star forming sub-fields. Within this

Chapter, I present the first analysis of the properties of filaments within the fields. In

Chapter 7, I summarise the main conclusions from this thesis, and outline my future

plans to expand upon these analyses.





Chapter 2

Instrumentation and Data

Reduction

The observations analysed in this thesis are taken in far infrared and the sub-millimeter

wavebands. The presence of water vapour in the Earth’s atmosphere means that it

is effectively opaque at many of these wavelengths. To combat this, ground based

telescopes must be located at high altitudes, where there is very little water content.

This opens transmission windows through which certain wavelength bands can be

observed. Figure 2.1 (Casey, Narayanan, and Cooray 2014) shows that transmission

rates of 80% can be obtained at the summit of the extinct, Hawaiian volcano, Mauna

Kea, for precipitable water vapour (PWV) content of 0.5 mm (very good conditions).

This is the site of the James Clerk Maxwell Telescope (JCMT), which provided data

for part of this thesis.

Another way to overcome poor atmospheric transmission is to locate the tele-

scope in space. Additionally, space operation avoids other unwanted effects such as

thermal radiation from the atmosphere in the observing band, which can increase

noise. In this thesis, data have been used from primarily the Herschel Space Obser-

vatory, with supplemental data from the Infrared Astronomy Satellite (IRAS ) and

Planck Surveyor missions. IRAS was stationed in a geocentric, Sun-synchronous

low-Earth orbit, while Herschel and Planck operated from orbits around the second

Lagrangian point of the Sun-Earth system (L2).

Another source of noise is the thermal emission from the telescope structures

and instruments. Together with atmospheric thermal emission, these effects are called

photon noise. With modern bolometric and photo-conducting detectors, it is these

thermal fluctuations that provide the ultimate limit on sensitivity. As such, detectors

and optics are often cooled to temperatures a few tenths of a degree above absolute

31
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Figure 2.1. Atmospheric transmission of sub-millimetre and millimetre wavelengths, atop Mauna
Kea, for a Precipitable Water Vapour (PWV) level of 0.5 mm. Reproduced from Casey, Narayanan,
and Cooray (2014), with permission.

zero. The placement of telescopes in space allow for the entire system to be cooled,

rather than just the focal plane.

Observations in this work are photometric, though the spectroscopic capabil-

ities of each telescope are briefly discussed.

2.0.1 Herschel

The Herschel Space Observatory (Pilbratt et al. 2010), was a far infrared and

sub-millimetre space telescope operated by the European Space Agency (ESA), cov-

ering a wavelength range of 55 µm to 671 µm. It was launched in May 2009, and

placed in a quasi-halo orbit around the Sun-Earth second Lagrangian point (L2).

As a far infrared/sub-millimetre telescope, it was highly sensitive to photon noise,

which typically dominates over the range of wavelengths Herschel was designed to

observe. L2 provides a stable platform for telescope operations as the orientation of

the Sun-Earth-satellite system prevents the temperature of the satellite from fluctuat-

ing greatly. In turn, this reduces thermo-elastic fluctuations which could degrade the

pointing precision during observing runs. Further advantages of L2 over low-Earth

orbit are to reduce the angular size of the Earth, allowing for a greater observable

region at a given time, and to minimise the effects of the Earth acting as a thermal

radiator, which could limit the degree of cooling possible for a telescope. Satisfying
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Figure 2.2. Digital models of the full spacecraft (left), comprising the PLM, SVM and sunshield,
and of the cryostat (middle), showing the instruments placed on top of the helium tank. The final
panel (right) displays Herschel being prepared for acoustic testing. Image credit Pilbratt et al.
(2010).

these conditions was vital for ensuring Herschel’s outstanding sensitivity.

Figure 2.2 shows a diagram of the Herschel spacecraft (left), in which its com-

ponents are clearly visible. As with many scientific satellites, Herschel was divided

into a Payload Module (PLM), a Service module (SVM), and a sunshade to protect

from direct solar radiation. Solar arrays to power the craft were situation on the back

side of the sunshade, which was directed to face the Sun at all times during operation.

The PLM was comprised of the primary and secondary mirrors, and a liquid

helium cryostat for cooling the instruments. Herschel ’s 3.5 m diameter primary mir-

ror was the largest primary mirror of any space astronomy telescope to date. The

secondary mirror was slightly undersized to ensure that the insturments could not

see thermal emission from the spacecraft itself. This limited the effective telescope

diameter to 3.28 m.

Directly below the primary mirror is the cryostat, with a capacity of 2200 l.

This contained the liquid helium coolant at a temperature of 1.7 K, with the instru-

ments mounted on an optical bench above the helium tank. A diagram of the cryostat

can be seen in the middle panel of Figure 2.2.

The space-facing side of Herschel was painted black to maximise the rate at

which the telescope could be cooled. This, and further passive cooling techniques,

maintained the telescope itself at ∼80 K. The liquid helium was boiled off through a

series of pipes to cool the instruments to ∼5 K, which were thermally insulated from

the telescope by a series of nested shields. Finally, the PACS and SPIRE bolometers
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(described below) were cooled by internal refrigerators to 0.3 K.

The SVM, situated below the PLM, housed the computers, telemetry equip-

ment, and other systems vital for operating the spacecraft. The SVM was kept

thermally isolated from the PLM by low-thermal conductance support struts, as the

SVM had an operating temperature of 300 K.

Although Herschel ’s primary mirror was large for space telescopes, it was still

much smaller than ground-based observatories dedicated to comparable wavebands

(e.g. JCMT’s 15 m dish). This was due to restrictions on the size and mass of the

Ariane 5 rocket which carried it into orbit. The 3.28 m effective diameter of the

primary determined the diffraction-limited beam size of the Herschel bands. This

beam size is given by

fwhm ∼ λ

3.28 m
, (2.1)

where the observation wavelength, λ, is given in metres. This beam size varied be-

tween ∼5.5′′ at 70 µm at the slowest scan speed, and 36.6′′ at 500 µm for the fastest

scan speed.

Herschel had three science instruments, HIFI, PACS, and SPIRE, capable of

observing the universe through spectroscopy and photometry. The instruments were

designed to compliment each other, providing spectroscopy and photometry across

the full wavelength coverage of the observatory. These instruments are discussed

below, with particualr emphasis on PACS and SPIRE, which provided much of the

data used in this thesis.

Herschel maintained a high operating efficiency, observing for an average of

∼21 hours per day, with the remaining time utilised for cooler recycling and data

transmission. After expending the last of its liquid helium coolant, Herschel was

unable to continue observations due to photon noise from the craft dominating the

observing bands. It was deactivated in June 2017. While a proposal was made for

placing it on a lunar collision course, intended to generate a large plume of ejecta

which could be analysed from the ground, it was eventually decided to place Herschel

into a safe heliocentric orbit, which ensured it will not interact with the Earth again

for thousands, if not millions of years.

2.0.1.1 Herschel Spectroscopy and Photometry

As previously stated, Herschel was capable of observing the universe through

both sub-millimetre spectroscopy and sub-millimetre photometry. Spectroscopy is

sensitive to the emission or absorption of particular wavelenghts of light by molecules

or atoms. In the sub-millimetre regime, this occurs when small polar molecules are
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thermally excited to higher rotational states. The molecules then decay to lower

energy states, releasing excess energy in the form of mono-chromatic light. Another

pathway for sub-millimetre line emission is hyper-fine splitting, where bound electrons

are encouraged to change spin state, leading to the splitting up of single emission or

absorption lines into closely grouped multiples. Both forms of transition are typically

collisionally motivated. It is possible to infer the total mass in a region by observing

the intensity of individual lines, and the intensity ratios between lines from different

molecules, though this requires assumptions regarding e.g. optical depth, molecular

abundance, coupling to other molecules, and excitation populations.

As spectral emission lines are often nearly monochromatic, and occur at pre-

cisely known wavelengths in a rest frame, they are highly susceptible to shifts in

frequency due to the Doppler effect. The frequency of an observed molecular emis-

sion line, νObs, is related to its rest emission frequency νEm by

νObs =

(
1 +

∆v

c

)
νEm, (2.2)

where ∆v is the velocity of the molecule along the line of sight. By observing these

shifts in emission frequency, it is possible to determine the kinematics of the gas. The

velocity shifts can occur due to random thermal motions, turbulence within the gas,

and systematic motions, such as gas infall/outflow or large scale motion towards or

away from the observer.

Photometry is the recording of the total amount of power received within a

broad waveband. Generally photometry is concerned with recording the continuum

emission of the source. This often involves sampling its spectral energy distribution

(SED). As stated in Chapter 1, at far infrared and sub-millimetre wavelenghts, this

emission is largely from interstellar dust grains at temperatures typically between 10 K

and 100 K, which have been heated by a release of gravitational potential energy, or

by reprocessing of short wavelength emission into longer wavelength emission. If the

emitting source is optically thin, the intensity is directly related to the amount of

emitting material, and again assumptions can be made to estimate the total mass of

dust and gas within the source.

Bolometers are the favoured detectors for continuum observations in the far

infrared and sub-millimetre. Bolometers function as temperature-sensitive resistors,

which are heated by the absorption of radiation over a very broad band. When cooled

to very low temperatures, bolometers can achieve a sensitivity limited only by the

photon noise.

The PACS and SPIRE instruments were designed for large area observing.
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This required scanning the telescope across areas of sky much larger than the instru-

ment fields of view, often several square degrees. These observations were susceptible

to drifts and low frequency variations, called 1/f noise, which manifest as slow in-

creases in detector output over the course of an observation. In turn, this can be seen

in output observations as “stripes” of high and low intensity, alternating with each

scan leg. 1/f noise is characterised by a knee frequency (the frequency at which the

noise has increased by a factor of
√

2) which translates to artefacts with a particular

angular scale during the scanning process. Sources of 1/f noise include atmospheric

effect, which are the limiting factor for many ground based observatories, and fluc-

tuations in the temperature of the detectors. Locating Herschel at L2 eliminated

the contribution to the noise from the atmosphere, though detector temperature re-

mained as a noise source. The PACS and SPIRE 1/f noise limits, and strategies for

artefact removal, are discussed in the PACS and SPIRE instrument Sections below.

2.0.1.2 HIFI

The dedicated high-resolution spectrometer aboard Herschel was the Hetero-

dyne Instrument for the Far-Infrared (HIFI, de Graauw et al. 2010). It contained two

observing bands at 157 µm to 212 µm and 240 µm to 625 µm, with a spectral resolving

power of 107. The spectral resolving power, R, can be determined from both the

smallest observable wavelength change in a given waveband, and by the change in

velocity of the source relative to the speed of light,

R =
λ

∆λ
=

c

∆v
. (2.3)

Thus HIFI was sensitive to velocity shifts as small as 0.03 km s−1. The instrument

utilised superconducting mixers as detectors, and had only a single pixel on the sky,

designed for single point spectral analysis rather than wide area scan mapping. This,

in addition to HIFI being designed to examine spectral lines for astrochemistry rather

than examine continuum emission from interstellar dust, meant that I did not use

data from the instrument in this thesis.

2.0.1.3 PACS

Unlike the Herschel HIFI instrument, the Photometric Array Camera and

Spectrometer (PACS, Poglitsch et al. 2010) instrument contained both an integral

field unit (IFU) spectrometer, and an imaging photometer (i.e., a camera).

An IFU allows a spectrometer to obtain spatially resolved spectra of astro-

nomical fields, allowing for more rapid mapping of extended regions. The PACS IFU,

based on a grating spectrometer and an image slicer, covered a range of wavelengths
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Figure 2.3. Normalised response functions for the three PACS bands, centred on 70 µm, 100 µm
and 160 µm. Data from Müller, Okumura, and Klass (2011).

from 55 µm to 210 µm, and covered a 47′′×47′′ field of view. The spectral resolving

power of 1000 to 4000 allows PACS to be sensitive to velocity changes (∆v) between

75 km s−1 to 350 km s−1. As with HIFI, the aims of this thesis did not facilitate the

use of data from the PACS spectrometer.

The PACS photometer covered three broad wavebands with λ/∆λ > 2; 68 µm

to 85 µm, 85 µm to 130 µm, and 130 µm to 210 µm. The wavebands are referred to

by their relative colour or central wavelength; the “blue” 70 µm band for 68 µm to

85 µm, the “green” 100 µm band for 85 µm to 130 µm, and the “red” 160 µm band for

130 µm to 210 µm. The filter transmission profiles of these wavebands are shown in

Figure 2.3. Only two bands, viewing the same area of sky, could be observed at once.

Instead, emission in the “red” band was always recorded by a rectangular detector

composed of two 16 × 16 filled silicon bolometer arrays operating at 0.3 K, while

a mechanism was used to select either the “blue” or “green” band, which was then

projected onto a 4×2 block of 16×16 bolometer arrays. While each 16×16 bolometer

array was completely filled, small gaps were present between arrays. These gaps were

compensated for by various scanning techniques (covered in Section 2.0.1.5). The

PACS bolometers had a field of view of 3.5′×1.75′.

In this thesis, PACS observations were taken in the PACS/SPIRE parallel

mode. Therefore, it is appropriate to quote the 1σ sensitivities that could be achieved

in this mode for a 1 square degree field observed for 1 hour. The PACS/SPIRE parallel

mode 1σ sensitivities quoted for the “blue” and “red” PACS bands by Poglitsch et al.

(2010) are 19.8 mJy and 116 mJy, respectively, for a 4 square degree field observed
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Table 2.1. 1σ sensitivity values for the PACS and SPIRE instruments operating in the
PACS/SPIRE parallel mode for a 1 square degree field observed over 1 hour. Sensitivities are
derived from from Poglitsch et al. (2010) and Griffin (2007).

Band Sensitivity (mJy)
PACS 70 µm 17.1
PACS 160 µm 44.0
SPIRE 250 µm 4.8
SPIRE 350 µm 5.3
SPIRE 500 µm 6.3

over 3 hours. While it is a simple task to rescale the sensitivities to the correct field

size and observation time, the quoted “red” sensitivity is dominated by confusion. A

confusion-less sensitivity can be estimated by comparing the ratio in the “blue” band

between the PACS/SPIRE parallel mode uncertainty, and the 5σ uncertainty for the

smaller scan mapping mode (3.7 mJy for a 150 square arcminute field observed for 30

hours). This ratio can then be used to scale the “red” band uncertainty for the smaller

scan mapping mode (9.5 mJy), which is not dominated by confusion. This produces

a 1σ uncertainty of 50.8 mJy for a 4 square degree field observed for 3 hours. By

rescaling for a 1 square degree field observed for 1 hour, the 1σ uncertainties for the

“blue” and “red” PACS bands operating in PACS/SPIRE parallel mode are 17.1 mJy

and 44.0 mJy, respectively. In practice, the uncertainty in observations of fields within

the Galaxy is likely to be dominated by emission from cirrus objects, leading to source

confusion. The PACS 1σ uncertainties are summarised in Table 2.1.

PACS had a relatively large 1/f knee of between 1 Hz to 5 Hz. Careful selection

of scanning methods could not be used to overcome this degree of noise, and “de-

striping” algorithms were needed to remove the resulting artefacts. The algorithms

work by modelling the intensity shifts present in the scan legs, which then allows the

signal to be corrected.

The process to convert from bolometer output to a value of surface bright-

ness (i.e. MJy/sr) requires accurate flux calibration and knowledge of the instrument

beam profiles. For PACS, this was achieved through scans of well-understood point

sources. These comprised a selection of standard stars and asteroids with high ac-

curacy thermophysical models. It was found that the PACS beams were heavily

dependent on the scanning speed, and were distorted for most observations. This was

due to the detector response speed being too slow in relation to the beam crossing

time, particularly at higher scan speeds. The beam properties, including the degree

of distortion, are given in Table 2.2 for the SPIRE/PACS parallel scanning mode,

while azimuthally averaged radial beam profiles are shown in Figure 2.6.
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2.0.1.4 SPIRE

As with PACS, the Spectral and Photometric Imaging REceiver (SPIRE, Grif-

fin et al. 2010) was able to observe both spectroscopically and photometrically.

SPIRE’s spectroscopic capabilities came in the form of an imaging Fourier-

Transform Spectrometer, with a circular field of view of 2.6′. It covered two separate

wavebands, 194 µm to 313 µm and 303 µm to 671 µm. In addition, it had two resolution

modes. The high resolution mode allowed for a spectral resolving power of 370-1300,

equating to a ∆v of 230 km s−1 to 810 km s−1, while the Low resolution mode had

a resolving power between 20 and 60, with a corresponding ∆v of 5000 km s−1 to

15 000 km s−1. As stated before, spectroscopic data was not utilised as part of this

thesis.

The SPIRE photometer, like the PACS photometer, had three bands, com-

monly referenced by their nominal wavelength: 250 µm, 350 µm, and 500 µm, with

each waveband having a width characterised by λ/∆λ ∼ 3. The SPIRE filter relative

response functions are shown in Figure 2.4. Unlike PACS, SPIRE was able to ob-

serve simultaneously in all three photometric bands, as each had a dedicated detector

array. The arrays were comprised of doped germanium “spider web” bolometers, cou-

pled to the incident lightby conical feedhorns with a circular entrance aperture. The

feedhorns were hexagonally close-packed, and the three arrays cover the same 4′×8′

field of view. While the PACS filled array detectors directly measure all radiation

incident on the arrays, the SPIRE feedhorns act as an antenna, coupling directly to

the telescope beam. This reducing the collection of stray light. The feedhorns had

a diameter of ∼ 2λ/D, but had a beam size of ∼ λ/D, resulting in gaps between

the beams on the sky. This was by design, and was compensated for by the design

of the scanning techniques. This is discussed in more detail in Section 2.0.1.5. A

diagram of the feedhorn arrays is shown in Figure 2.5. The 250 µm array contained

139 detectors, the 350 µm array 101 detectors, and the 500 µm array 43 detectors.

The SPIRE sensitivities presented in Griffin (2007) are given in terms of the

time required to observe a 1 square degree field to a 1σ uncertainty limit of 3 mJy.

It is, therefore, trivial to estimate the 1σ sensitivity that would be achieved for an

observation time of 1 hour. For the SPIRE 250 µm, 350 µm and 500 µm, the associated

PACS/SPIRE parallel mode 1σ uncertainties limit for a 1 square degree field observed

for 1 hour are 4.8 mJy, 5.3 mJy and 6.3 mJy, respectively. These uncertainties are

summarised in Table 2.1. As with the PACS instrument, uncertainties for observations

of galactic objects are likely to be dominated by cirrus confusion.

The 1/f knee for SPIRE was much lower than that of PACS at 1 mHz to
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Figure 2.4. Normalised response functions for the three SPIRE bands, centred on 250 µm, 350 µm
and 500 µm. Data from Valtchanov (2017).

Figure 2.5. Diagrams of the three SPIRE bolometer arrays, showing overlapping detectors. Image
credit Griffin et al. (2010).
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3 mHz, allowing for removal of 1/f noise simply by rapidly scanning large regions of

the sky.

The primary flux calibration souce for the SPIRE photometer was Neptune,

which has a well-understood spectrum and appeared as a point source for SPIRE,

with a 2′′ angular size. Unlike PACS, the beams were not greatly affected by the

scan speed, and thus are known to a great degree of accuracy. As above, the beam

properties are given in Table 2.2, and azimuthally averaged radial beam profiles are

shown in Figure 2.6.

2.0.1.5 PACS and SPIRE Observing Modes

In order to appropriately observe objects of various sizes, Herschel was capable

of several mapping techniques, including scan mapping for both PACS and SPIRE,

and jiggle mapping for SPIRE.

SPIRE jiggle mapping procedures were designed to obtain fully-sampled maps

of sources smaller than the array field of view. Once the telescope had be oriented to

point at a target, small motions would be made to “jiggle” the detector array over

the source, enabling any unfilled areas of the feedhorn arrays to be compensated for.

Ultimately, jiggle mapping was rarely used, as the SPIRE scan mapping proved to

have exceptional sensitivity over all spacial scales, even for compact objects. Further-

more, jiggle mapping was not possible when Herschel operated in Parallel mode (see

below).

Scan mapping was intended to allow the Herschel instruments to fully sample

large fields. As stated previously, while the PACS bolometer arrays are filled, small

gaps in coverage exist between adjacent arrays, leading to incomplete sampling, and

the SPIRE feedhorn arrays under-sampled the sky by design.

The telescope scans were orientated so that the detector arrays moved across

the target field, with any single point being sampled by multiple individual detectors.

Although the scan areas were fully sampled (even with one scan) to ensure the highest

quality data and enhance sensitivity any single scan (termed the nominal scan) was

also complemented with a second perpendicular cross scan (the orthogonal scan). For

PACS, these two opposing scans could be combined to help in circularising beams

that were distorted by the scanning process. In addition, this technique also served

to double the number of observations in an area, thus reducing noise and improving

sensitivity. A diagram of the cross scan orientation for Herschel SPIRE can be seen

in Figure 2.7.

Scans of large areas were conducted by slewing the telescope across the target

area in long, parallel strips, as shown in Figure 2.8. These strips were spaced such
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Figure 2.6. Radial beam profiles for the Herschel PACS 70 µm, 100 µm and 160 µm bands, and the
SPIRE 250 µm, 350 µm and 500 µm bands. The beams have been modelled as azimuthally averaged
profiles and do not account for smearing due to scanning speed. The FWHMs of the beams are
given in the top right of each plot axis. Due to instrumental noise, the PACS beams contain areas
of < 0 relative intensity, which appear as breaks in the profile. The PACS images are known to a
radius of 116′′ for the 70 µm and 100 µm bands, and 120′′ for the 160 µm band. The SPIRE beams
are modelled to much larger radii. The profiles presented here are produced from data published
by Geis and Lutz (2010) for the PACS instrument, and from the Herschel Science Archive for the
SPIRE instrument.
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Figure 2.7. Diagram of Nominal and Orthogonal scan directions across a SPIRE bolometer array.
The scan directions are optimised so every path is seen by at least two different feed horns. Image
credit Valtchanov (2017)

that the instrument FOV caused a small overlap between adjacent scan legs. One set

of nominal legs was completed for an entire observable region before the orthogonal

scans were conducted.

Scan speeds were optimised to allow regions to be mapped without being

affected by significant temporal or thermal drifts in detector noise during operation,

and to minimise beam smearing. As the telescope had to accelerate to the required

scanning speed before beginning a leg, and decelerate at the end of a leg before

turning and slewing back in the opposite direction, a larger area than required was

observed. This ensured that the entire target area was completely observed at the

optimal scanning speed, and provided additional data around the field.

The PACS and SPIRE instruments could be operated together, providing si-

multaneous coverage with all three SPIRE bands, the PACS 160 µm band, and one of

the two other PACS bands, in an observing mode known as the SPIRE/PACS Parallel

mode (Müller, Cesarsky, and AOT WG 2011). A diagram of a typical Parallel mode

scan is shown in Figure 2.9. The spacing of adjacent scan legs was determined by

the 47′′×47′′ FOV of the PACS instrument, which was smaller than the SPIRE 4′×8′

FOV, and thus required a closer spacing to fully sample a target area. This led to a

greater degree of spatial oversampling for SPIRE, which further reduced noise. Con-

versely, the angle of scan was optimised for the SPIRE detectors, to ensure the gaps
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Figure 2.8. Diagram of SPIRE scan directions relative to bolometer array. Scan angle is chosen
to achieve maximal coverage for the detector arrays, while scan leg separation is chosen for the
array field of view. The scan images an area larger than that requested to account for telescope
acceleration and deceleration at the begininning and end of each run. Image credit Valtchanov
(2017).

between the SPIRE detector beams were efficiently filled. As the PACS and SPIRE

instruments had viewing angles separated by 21′, the telescope scanned a much larger

area than the target field to ensure that both instruments sampled the required area.

Parallel mode was carried out with one of two available scanning speeds:

20 ′′ s−1, and 60 ′′ s−1. The faster scan speed was well suited for SPIRE, and en-

abled large regions to be mapped quickly. However, the PACS beams were greatly

elongated at this speed, essentially producing a coarser resolution than that of the

slower scan speed. The lower speed was used for producing high quality maps of small

areas. All Herschel data utilised in this thesis are from observations of large fields,

and were taken with the faster scan speed of 60 ′′ s−1.

2.0.2 JCMT

The James Clerk Maxwell Telescope (JCMT, Phillips 2002) is a ground-based

sub-millimetre telescope located at an altitude of 4.1 km near the summit of the

Mauna Kea dormant volcano on the Big Island of Hawaii. While completion was

delayed due to high seas piracy shortly before it was scheduled to be offloaded, it

nevertheless began operations in 1987, under the command of the Joint Astronomy
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Figure 2.9. Diagram of scanning with SPIRE/PACS Parallel mode, showing extra observed area
to compensate for SPIRE and PACS offsets, and narrower scan leg separations, optimized for PACS,
leading to a greater degree of oversampling for the SPIRE arrays. Image credit Müller, Cesarsky,
and AOT WG (2011)



46 Chapter 2. Instrumentation and Data Reduction

Table 2.2. Beam properties for the Herschel PACS and SPIRE instruments during SPIRE/PACS
Parallel Mode operations. The FWHM of the distorted PACS and SPIRE beams are given by their
semi-minor and -major axes. As the SPIRE beams exhibit a small distortion, their orientation
angle was not recorded. The beams are given for a scan speed of 60 ′′ s−1. Beam properties from
Valtchanov (2017) and Exter (2017).

Band Beam FWHM (′′) Beam Orientation (°)
PACS 70 µm 5.86×12.16 63.0
PACS 100 µm 6.98×12.70 63.0
PACS 160 µm 11.64×15.65 53.4
SPIRE 250 µm 18.3×17.0 n/a
SPIRE 350 µm 24.7×23.2 n/a
SPIRE 500 µm 37.0×33.4 n/a

Centre (JAC), a multinational collaboration between Canada, the Netherlands, and

the UK. The telescope was initially funded up to February 2015. JCMT is the largest

dedicated sub-millimetre telescope in the world. Its altitude places it above the usual

cloud base, and above 97% of atmospheric water vapour. This ensures a high degree

of sub-millimetre transmission, as shown in Figure 2.1.

Figure 2.10 shows the telescope features. The dome houses the telescope and

provides protection against severe weather. The telescope itself is an azimuthally

mounted Cassegrain, with a 15 m primary mirror, providing a diffraction limited

beam FWHM of 14.3′′. A Gore-Tex sheet is normally deployed in front of the primary

mirror during operation. The sheet, which is 97% transparent to millimetre and sub-

millimetre wavelenghts, protects the telescope from damage from wind and dust, while

allowing, in principle, 24 hour operation. A rotating tertiary mirror directs incident

light to different instruments.

The instruments currently operating on the JCMT are the Heterodyne Array

Receiver Program (HARP), which has a set of 4 × 4 detector beams on the sky

and operates with the Auto Correlation Spectral Imaging System (ACSIS)to form a

325 GHz to 375 GHz spectrometer, and the Submillimetre Common-User Bolometer

Array 2 (SCUBA-2), a continuum camera that is discussed in detail below.

When JAC funding ceased in 2015, the East Asian Observatory (EAO) took

up operations, which it continues at the present time.

2.0.2.1 SCUBA-2

SCUBA-2 (Holland et al. 2013) is a 10,000 pixel bolometer array capable of

observing dust continuum emission at 450 µm and 850 µm, with narrow filter bands

matched to the atmospheric windows giving λ/∆λ of 14 and 10 respectively. The

response functions for the 450 µm and 850 µm bands are presented in Figure 2.11.
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Figure 2.10. Image of the JCMT, showing the telescope dome and primary mirror. A Gore-Tex
sheet can be manoeuvred in front of the mirror to allow for continuous day and night observa-
tions, while protecting the telescope from wind and particulate damage. Image credit East Asian
Observatory (2017).

The two wavebands are observed simultaneously. As with Herschel PACS, SCUBA-2

uses filled bolometer arrays (four for each waveband) without the use of feedhorns.

These arrays are butted together with a small spacing between them. Thus, various

scanning modes need to be employed to ensure full coverage of an observational target.

The bolometer arrays have a 45′ field of view.

The SCUBA-2 detectors are transition edge superconducting (TES) bolome-

ters, which are cooled to ∼0.1 K by a dilution refrigerator. As with other ground

based instruments, SCUBA-2 is not limited to a pre-determined finite lifespan, and

is not restricted by mass or size, as space telescopes are. The cooling system can

operate for up to a year with continuous use, after which it requires servicing.

Sensitivity limits for SCUBA-2 are presented in Table 2.3 for a number of

different scanning modes. The sensitivities are given as the value of the 3σ noise level

after one hour of integration time (in mJy). Despite the large uncertainties, SCUBA-

2 can achieve similar sensitivities to its predecessor with scanning speeds between 100

and 150 times greater. This is due to the increase in bolometer count between the

two instruments.

The 1/f knee is at the high value of 0.7 Hz, which led to the development of

scanning modes that ensured multi-pixel sampling of a source with high scan speeds.
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Table 2.3. SCUBA-2 sensitivities for different scanning modes. The sensitivities are given as the
value of the 3σ noise level after an integration time of one hour. Data from Dempsey et al. (2013).

Observing Mode 450 µm (mJy) 850 µm (mJy)
DAISY 39.0 5.6

PONG900 85.0 11.9
PONG1800 166.0 23.0
PONG3600 361.0 49.0
PONG7200 732.0 98.0

Figure 2.11. Response functions for the SCUBA-2 450 µm and 850 µm bands. Under typical
operating conditions, both response functions would be reduced by the atmospheric transmission.
Data accessed from East Asian Observatory (2010).
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Table 2.4. Parameters of the Gaussian functions used to fit the SCUBA-2 450 µm and 850 µm
beam profiles. Data from Dempsey et al. (2013).

450 µm 850 µm
FWHM Main Beam (θ

MB
) 7.9′′ 13.0′′

FWHM Secondary Component (θ
S
) 25.0′′ 48.0′′

Relative Amplitude Main Beam (α) 0.94 0.98
Relative Amplitude Secondary Component (β) 0.06 0.02

In addition, a high-pass filter with an edge frequency of ∼0.1 Hz to 1.0 Hz is used to

remove residual noise, and sky noise not removed by background subtraction (Chapin

et al. 2013). Unfortunately, this destroys large scale structures in observations. At

typical scanning speeds of 600 ′′ s−1, this translates to objects with length scales larger

than ∼10′.

Flux calibration for SCUBA-2 was initially performed on Mars and Uranus

(Dempsey et al. 2013). The planets were observed and the instrument output (in

pW) was compared to surface planetary models (in Jy) to produce a Flux Conversion

Factor (FCF). The FCF is checked nightly against secondary calibrators.

The SCUBA-2 beam profiles were determined from observations of Uranus,

and both wavebands can be well fit by a double Gaussian approximation. This ap-

proximation is composed of a narrow main Gaussian, and a wider secondary Gaussian.

The two beams are related by the sum of the two Gaussian profiles by the equation

G
Total

= αG
MB

+ βG
S
. (2.4)

Here α and β are the relative powers of the two profiles. The parameter values for

the SCUBA-2 beams are given in Table 2.4. The total FWHMs of the beam profiles

are well approximated by the FWHMs of the main components. Figure 2.12 shows

the beam SCUBA-2 beam profiles produced from equation 2.4.

2.0.2.2 SCUBA-2 Scanning Modes

SCUBA-2 employs a number of different scanning modes. These can be sub-

divided into two groups: “DAISY” scans, for smaller regions, and “PONG” scans,

for larger areas. “DAISY” scans are typically used when the observable field has a

smaller angular size than the instrument field of view. The telescope tracks a roughly

circular path at a constant velocity, keeping the target within the bounds of the

detector arrays, as shown in the top left panel of Figure 2.13. After a single rotation

of the “DAISY” pattern, the telescope is rotated and the scan is repeated, offset from

the original scan, to increase integration time, thus reducing noise, and to improve

multi-pixel coverage. The effects of this are shown in the top right of Figure 2.13.
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Figure 2.12. SCUBA-2 beam profiles for the 450 µm and 850 µm wavebands, produced from the
models provided by Dempsey et al. (2013).

The “PONG” scanning modes allow for observation of areas larger than the

instrument field of view, and can reach sizes up to 1 square degree. “PONG” paths

are constructed by defining a square box around the target region, and slewing the

telescope across it. Where the telescope pointing encounters the edge of the box, it

is “bounced” onto a different trajectory, much like the classic arcade game “Pong”

from which the scanning mode derives its name. An example of a single rotation of

a “PONG” scan is given in the bottom left panel of Figure 2.13. Once the box has

been well covered, the area is rotated, and a second “PONG” scan takes place. These

rotated scans build to form the roughly circular pattern observed in the bottom right

panel of Figure 2.13. As above, this rotation is intended to improve sensitivity by

lowering noise and cross-linking neighbouring detector pixels.

There are several “PONG” scans of varying angular sizes. They are de-

fined by their diameter in arcseconds: “PONG900”, “PONG1800”, “PONG3600”

and “PONG7200”.

In order to ensure the telescope acceleration remains roughly constant during

a single scan, the “bounces” performed at the edges of the target box are typically

rounded, producing a modified scanning mode called “CURVY PONG”. SCUBA-2

data used in this thesis were taken in the “CURVY PONG1800” mode.

2.0.3 IRAS

The InfraRed Astronomical Satellite (IRAS , Neugebauer et al. 1984) was

launched in January 1983, as a joint effort by the United States, the UK, and the
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Figure 2.13. Diagrams of the SCUBA-2 “DAISY” (top), and “PONG” (bottom) scanning modes.
The images show how a single rotation of each mode (left) can be enhanced by combining multiple
rotations (right) to achieve better coverage. Image credit Holland et al. (2013).
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Figure 2.14. A diagram of the IRAS focal plane, showing the band detectors in the centre, the
spectrometer on the right of the plane, and the visible star sensors as slits to the top and bottom.
Solid black rectangles indicate dead detectors. Image credit Beichman et al. (2002a).

Netherlands. Placed in a Sun-synchronous polar Earth orbit, IRAS was designed to

produced an unbiased infrared survey of the entire sky over four wavebands; 12 µm,

25 µm, 60 µm and 100 µm. IRAS also had a low resolution spectrometer (LRS), and

a chopped photometric channel (CPC), for analysis of individual sources.

The 0.57 m mirror was cooled to <10 K, and the detectors to <2 K, by a liquid

helium cryostat (Beichman et al. 2002b). The mirror and detectors were protected

from solar and ambient radiation by a Sun shield and baffle. The position of the

detectors on the focal plane are shown in Figure 2.14.

For the sky survey 62 detectors were subdivided into eight modules, with two

modules for each of the four filter bands. These were arranged such that any source

passing over the detectors was imaged by at least two detectors in each of the four

bands. The detector characteristics are summarised in Table 2.5.

Table 2.5 presents the 1σ sensitivities for the IRAS detectors after five minutes

of observation. The band filter profiles are shown in Figure 2.15.
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Table 2.5. IRAS field detector characteristics. Data from Beichman et al. (2002a).

Detector Field of View Waveband 1σ Sensitivity
(µm) (′) (µm) (mJy)

12 0.75× 4.5 8.5− 15 105
25 0.75× 4.6 19− 30 125
60 1.5× 4.7 40− 80 170
100 3.0× 5.0 83− 120 580

Figure 2.15. Normalsied response functions for the IRAS detectors. Data from Beichman et al.
(2002a).
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Figure 2.16. A diagram of the polar IRAS orbit. The schematic shows how IRAS maintains a
constant angle to the Sun, and uses its rotation around the Earth to map vertical strips of the sky.
Rotation of the Sun-Earth system would, over time, cause the vertical strips to pass over nearly the
entire sky, allowing for a full survey. Image credit Beichman et al. (2002a).

Flux calibration of the field detectors was achieved by using the 12 µm band to

observe the star α Tauri, and compare the detector output with SEDs obtained from

ground based observations. Once the 12 µm band had been calibrated, it could be

used to calibrate the other bands through observations of asteroids for which reliable

thermal models were available. The flux calibration for point sources was absolute,

but extended emission calibration was only relative.

The IRAS spacecraft was decommissioned after a 10 month operation, having

surveyed more than 96% of the sky in all four bands.

2.0.3.1 IRAS Observing Mode

Unlike Herschel and JCMT, IRAS was not designed to point at specific tar-

gets. Instead, IRAS utilised its orbit around the Earth, and the orbit of the Earth

around the Sun, to continuously map the full sky. Figure 2.16 gives a diagram of the

observation mode. IRAS maintained a fixed angle relative to the Sun, ensuring its

instrumentation was always protected by the Sunshield. It then took observations in

vertical strips as it passed around the Earth. This produced an effective scan speed

of 3.85 ′′ s−1.

The visible star sensors shown in Figure 2.14 were used to identify known

stars in visible wavelengths, allowing for adjacent scans to be stitched together to
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Figure 2.17. A diagram of the Planck satellite. The solar array is clearly visible at the base,
indicating that Planck was kept at a constant angle to the Sun. The V-grooves act as a thermal
insulator and radiator between the warm service module and the cold telescope. The baffles help to
reduce contamination from ambient radiation. Image credit Tauber et al. (2010).

form coherent maps, and provide cross scan capabilities which allowed for higher

sensitivity.

2.0.4 Planck

The ESA Planck satellite was carried to L2 on the same rocket as Herschel .

At the end of the launch sequence, the two spacecraft were injected into separate tra-

jectories that propelled them into different halo orbits around L2. Planck carried two

instruments covering a broad range of wavelengths from 350 µm to 10 mm. Although

in many ways a direct successor to IRAS , Planck was not intended to observe the in-

frared emission of the sky as a primary aim, but instead to map the small anisotropies

of the cosmic microwave background (CMB) radiation. However, Planck needed to

produce highly accurate all-sky maps of foreground sub-millimetre dust emission and

longer wavelength synchrotron emission to enable accurate subtraction of foreground

astrophysics and derive the CMB signals. It is these observations that make Planck

of particular interest to this thesis.

As seen in Figure 2.17, Planck comprised a passivly cooled telescope module,

thermally separated from the uncooled service module by low conductance structs

and thermal shields, and protected from solar radiation by a sunshield (Tauber et

al. 2010). Planck was kept at a constant orientation to the Sun as it performed its
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observations, and a large solar panel on the Sun side of the sunshield provided power.

The telescope contained an elliptical primary mirror, with semi-major and -minor

axes of 1.9 m×1.5 m, set at an angle such that in projection it behaved as a circular

mirror with radius 1.5 m.

The Low Frequency Instrument (LFI) had three bands with central wave-

lenghts of 10 mm, 6.8 mm and 4.3 mm. LFI was cooled to 20 K. Data from the LFI

is not used in this thesis.

The High Frequency Instrument (HFI) contained 52 spider-web bolometers

split between six wavebands centred at 3000 µm, 2098 µm, 1382 µm, 850 µm, 550 µm

and 350 µm (Lamarre et al. 2010). Bands at 3000 µm, 2098 µm, 1382 µm and 850 µm

contained two orthogonally positioned groups of four bolometers each, and were ca-

pable of detecting polarized emission. Additional bands at 2098 µm, 1382 µm and

850 µm, as well as the bands at 550 µm and 350 µm, contained four bolometers each,

and were insensitive to linear polarization. The bolometer arrays were coupled to the

incident radiation via conical feedhorns.

Due to the cold (40 K) telescope and the need for long wavelength observations,

the sensitivity requirements for HFI were more stringent than those for Herschel -

SPIRE, and required cooling the bolometers to 0.1 K. This cooling was provided by

a complex cryogenic system involving passive cooling to ∼40 K, a pulse-tube cooler

stage to achieve ∼18 K, a further mechanical cooler to reach ∼2 K, and a liquid helium

dilution cooler to reach 100 mK.

The sensitivities of the Planck instruments are not presented in the same form

as those of Herschel or SCUBA-2. The longer wavelength bands, which primarily

observed temperature and polarisation fluctuations in the CMB, had their sensitivity

estimates quoted in terms of noise equivalent temperature fluctuation level (NE∆T)

in µK. This is the temperature change observable above the 1σ noise level over

the full mission. The two shortest wavelenghts had their sensitivities recorded in

Noise Equivalent Flux Density (NEFD) in kJy sr−1 °. These sensitivities are given

in Table 2.6. The sensitivities were computed for a square pixel with side length

1° (Planck Collaboration 2018a). The Planck sensitivity curves for each band are

displayed in Figure 2.18.

The HFI beam profiles were estimated through scans of Jupiter and Saturn,

with validation of the beams carried out using scans of Mars (Planck Collaboration

2016a). Initial relative flux calibration of the 350 µm and 550 µm bands was conducted

through observations of Uranus and Neptune, and comparison with thermal models

of the planets as point-like sources. Temperature calibration of the longer wavelength

HFI bands was done by measurements of the CMB dipole. This is described in detail



57

Band Wavelength Sensitivity Beam FWHM
(µm) (µK deg) (arcminute)
3000 1.29 9.66
2098 0.55 7.22
1382 0.78 4.90
850 2.56 4.92

(µm) (kJy sr−1 deg) (arcminute)
550 0.78 4.67
350 0.72 4.22

Table 2.6. Sensitivities and beam profile angular sizes of the HFI bands.

Figure 2.18. Normalised response functions for the six HFI bands. Data from Planck Collaboration
(2018b).
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Figure 2.19. Diagram of Planck scanning mode, indicating how the telescope was kept at a constant
angle away from the Sun. The rotation at a speed of 1 rpm enabled Planck to scan a circular strip,
while its orbit around the Sun ensured that it would view the entire sky approximately once every
six months, due to the 1 °/day angular velocity. Image credit Tauber et al. (2010).

in Planck Collaboration (2016b).

The lifetime of Planck was limited by its supply of helium for the dilution

refrigerator, and it ceased operating in October 2013, after which it was deactivated

and placed in a heliocentric orbit, moving it away from L2.

2.0.4.1 Planck Observing Mode

Much like IRAS , Planck was designed to survey the full sky autonomously.

Figure 2.19 shows that Planck maintained a position where its solar panels continually

faced the Sun. The telescope, therefore, had a fixed viewing angle offset from the

Planck-Sun system by 85°.

The spacecraft rotated continuously around this axis at a rate of 1 rpm, tracing

an almost complete great circle with each revolution. As Planck orbited the Sun, its

view of the sky is shifted by approximately 1° every 24 hours. This ensured that the

entire sky was observed twice every six months. The high rate of rotation allowed

Planck to repeatedly image the same region of the sky, providing redundancy in the

data and building up integration time.

A benefit of this continuous rotation is that Planck observed the galactic

poles once each revolution. These regions contain very little dust emission, and thus

comparison with COBE-FIRAS data, which provide absolute flux values, allowed for

the Planck data to be corrected for zero flux emission.
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2.1 Observations and Data Reduction

This Section will discuss the observations and general data reduction for the

products utilised in this thesis. The Herschel observations formed the primary data

source for the project, and were reduced utilising the latest pipelines to take account

of improved calibration scripts. Thus, a detailed description of the reduction process

is provided in Section 2.1.2. Ancillary data, including the SCUBA-2 observations

were retrieved as final products from their respective archives, and only a general

overview of the reduction processes for each data set is presented.

2.1.1 The Herschel Gould Belt Survey

The Herschel observations for this project come from the Herschel Gould Belt

Survey (HGBS, André et al. 2010). This survey with PACS and SPIRE aimed to

tackle questions regarding the origins of the stellar initial mass function by taking a

census of pre- and protostellar cores in the star forming regions contained within the

Gould Belt.

Herschel observations were organised with a mix of guaranteed time (GT),

set aside for use by the PI consortium, and open time (OT), which could be applied

for by anyone. GT made up approximately 32% of the total allotted observing time.

Observing proposals were chosen by the Herschel Observing Time Allocation Com-

mittee, and all Herschel data became public after a short propitiatory period. The

HGBS formed one of the GT Key Projects of the Herschel program, and required

extensive use of both PACS and SPIRE in the SPIRE/PACS parallel observing mode.

The HGBS concentrated on the most nearby star-forming molecular clouds,

achieving spatial resolution as small as 0.01 pc. Its combination of sensitivity and

angular resolution was vital in establishing the ubiquity and importance of filamentary

structures in the formation of pre-stellar objects.

2.1.2 Herschel Data Products

Before they could be viewed as useful observational maps, Herschel data had

to be run though an extensive data reduction process. This is because the raw data

from the instruments are not images, or even a series of images strips forming in-

dividual scan legs, but are simply lists of voltage time series from the bolometers,

each with a corresponding time for the reading. These time sequences, along with

telemetry data indicating the pointing location of the telescope at the time of the
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observation, form a Herschel Level-0 data product∗. To reach the point where the

data is useful for analysis, the Level-0 data must be processed through standard re-

duction pipelines, before being uploaded to the Herschel Science Archive (HSA). This

is typically achieved through a series of automated scripts in the Herschel Interactive

Processing Environment (HIPE). HIPE is also available for users who wish to man-

ually reprocess observations from low level products, either to make use of updated

pipeline procedures that were not part of the available archive data pipelines at a

given time, or to use modified pipeline procedures for specific tasks.

The first step in data reduction is to process the Level-0 voltage time series

data into time series given in physical units, creating Level-1 data. This is done in

such a way as to make the data, in principle, instrument independent. Level-2 is the

designation for data which have been converted into a true image map of adjacent

scans of a region for a single scan direction. At this stage, the data are nominally

ready for analysis. However, as discussed above, optimal coverage and sensitivity

for the Herschel instruments is obtained by combining nominal and orthogonal scans

into a single map. This intermediate step denotes Level-2.5 data. Finally, Level-3

data products are formed when neighbouring regions are mosaicked together to form

larger coherent maps.

Prior to 2017, Herschel products available in the HSA, and the then release

version of HIPE 14, utilised older models and scripts during data reduction. However,

the final build of HIPE (version 15) was released in December 2016, and all products

on the HSA were reprocessed by February the following year. This took advantage

of improved models for the PACS photometric beam profiles, and an improved script

for background flux calibration for the SPIRE observations. All analysis in this thesis

utilised data products obtained from HIPE 15.

For PACS observations, I opted to produce higher level data products myself,

utilising HIPE 15, rather than simply retrieve the Level-2.5 data present on the HSA.

This was initially due to the complicated scan nature of the Taurus region, which is

discussed in Section 5, and was repeated for the Ophiuchus region for consistency. I

used a modified version of the JScanam script, provided by Matt Smith, to take the

Level-1 data and process it into usable Level-3 data in an automated fashion. The

JScanam script combines a map maker, mosaicking script, and de-striping algorithm

into a single action. As discussed above, post-processed de-striping of PACS data is

required due to the high 1/f noise knee of the instrument.

Data reduction was simpler for the SPIRE data, though it still required some

manual reduction of lower level products, again due to the unusual scan pattern of

∗http://herschel.esac.esa.int/hcss-doc-15.0/index.jsp

http://herschel.esac.esa.int/hcss-doc-15.0/index.jsp
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the target regions. Without the need for de-striping due to a much lower 1/f knee, I

opted to retrieve the Level-2 products, and utilise the HIPE 15 mosaic task to co-add

nominal and orthogonal scans, and join adjacent regions into finalised Level-3 data.

2.1.3 The JCMT Gould Belt Survey Data Reduction

The JCMT Gould Belt Legacy Survey (GBS, Ward-Thompson et al. 2007)

was designed to survey star forming regions contained within the Gould Belt using

a combination of three instruments: SCUBA-2 for dust continuum emission, HARP

for molecular line emission, and SCUBA-2’s ancillary polarimeter, POL-2, for deter-

mining the dust polarisation of each region. All SCUBA-2 observations were taken

between 2012 and 2014 while JCMT was under the control of the JAC. An archive

of all GBS data is maintained by the Canadian Astronomy Data Centre (CADC)†.

All SCUBA-2 data reduction for the GBS followed the same routine. Indi-

vidual pointings, taken with the “PONG1800” mapping mode, are reduced with an

iterative map making process in the Sub-Millimetre User Reduction Facility (SMURF,

Chapin et al. 2013). First, the pointings are resampled to 6′′ at 850 µm, a process

which essentially acts as a low-pass filter to remove noise while resolving structure on

the scale of the beam profile. An initial iterative map making pass is conducted on

the resampled pointings to define a signal-to-noise mask of the region, which is used

to identify useful emission. This mask is then used to inform a second reduction pass,

with the results being mosaicked together to produce the completed map.

To reduce the effect of 1/f noise, the map making process applies a 10′ spatial

filter in Fourier space. Tests with synthetic data have shown that flux from Gaussian

sources with FWHM <2.5′ is largely unaffected by the filter, while sources with

FWHM between 2.5′ to 7.5′ have both their flux and their angular size underestimated

as a result. Structures with angular scales larger than 7.5′ are often largely removed

from the filtered maps. This presents a problem for this thesis, which aims to examine

the properties of extended structure. However, large scale emission can be recovered

from the SCUBA-2 maps through a technique described in Section 2.1.7.

2.1.4 IRIS

The IRAS extended emission maps were first published as part of the SkyFlux

Atlas in 1984. The IRAS Sky Survey Atlas (ISSA) was released in 1992, and featured

†http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/search/?collection=JCMT&noexec=

true. This research used the facilities of the Canadian Astronomy Data Centre operated by the
National Research Council of Canada with the support of the Canadian Space Agency.

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/search/?collection=JCMT&noexec=true
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/search/?collection=JCMT&noexec=true
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reprocessed maps constructed with a better understanding of the instruments, and

a rudimentary destriping method (Wheelock et al. 2002). In addition, new zodiacal

light models allowed for better flux correction across the fields. While ISSA boasted a

factor five sensitivity increase over the SkyFlux Atlas, significant glitches and striping

remained.

A new catalogue of cleaned, destriped and zero-calibrated IRAS fields was re-

leased in 2005, termed the Improved Reprocessing of the IRAS Survey (IRIS, Miville-

Deschênes and Lagache 2005). In the first step, small scale glitches and point sources

were identified, and removed or masked respectively. The cleaned fields were then

subject to a wavelet analysis which removed large scale variation, before a fast Fourier

transform was applied to identify the striping. Once the striping had been removed in

Fourier space, the inverse transform was then added to the original field. Figure 2.20,

taken from Miville-Deschênes and Lagache (2005), shows the effect of this destriping

on one of the ISSA tiles.

With the striping removed, the fields could then be recalibrated for each band.

This was done to take account of improved models of the instruments. By comparison

with the DIRBE instrument on the COBE satellite, which provided an absolute flux

calibration, the response of each band at differing scales and brightnesses could be

estimated and corrected for. A final comparison with DIRBE at large scales allowed

for zero level calibration of the IRIS products.

This process was applied to each field from both complete surveys (hour con-

firmation, HCON, 1-2) and those of the incomplete survey (HCON-3). Cleaned fields

were then coadded to further improve sensitivity. Each IRIS tile is 12.5°×12.5° in

size, with a 1.5′ pixel resolution. All the IRIS fields are publicly available from the

IRIS Data Collection Atlas‡.

2.1.5 Planck All-Sky Dust Models

To complete its mission to produce high-sensitivity maps of the CMB anisotropies,

Planck results needed to be corrected for contribution from the foreground emission.

This is because over much of the sky, galactic emission, especially near the plane of

the Milky Way, dominates at wavelengths sensitive to the variations in the CMB.

As such, the Planck consortium needed to produce highly detailed models of dust

foreground emission.

The Planck all-sky dust models were constructed from a combination of Planck

HFI 350 µm, 550 µm and 850 µm thermal dust maps, with the addition of modified

‡https://irsa.ipac.caltech.edu/data/IRIS/

https://irsa.ipac.caltech.edu/data/IRIS/
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Figure 2.20. The figure shows the effect of the IRIS destriping algorithm on an ISSA tile (top left)
at 60 µm. The wavelet filtered tile (top right) is passed through a fast Fourier transform (middle
left) where the directional stripes are identified and removed (middle right). The inverse transform
is then added back to the original image (bottom left) to remove the striping. The bottom right
panel shows the ratio of the power spectrum between the striped and destriped images. Figure taken
from Miville-Deschênes and Lagache (2005).
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IRAS 100 µm data (Planck Collaboration 2016d). Initially, the raw temperature sky

maps from all nine Planck bands are treated to remove contamination from zodiacal

light (Planck Collaboration 2014) by fitting them to the COBE/DIRBE zodiacal

models (Kelsall et al. 1998). For data at 100 µm, the IRAS IRIS tiles were combined

with the low resolution, large-scale map produced by Schlegel, Finkbeiner, and Davis

(1998).

The maps were then cleaned by removing point sources identified in the Planck

Catalogue of Compact Sources (Planck Collaboration 2016c). The masked regions

were filled using a spline interpolation of neighbouring pixels.

A foreground dust map produced through the Generalized Needlet Internal

Linear Combination (GNILC, Remazeilles, Delabrouille, and Cardoso 2011) tech-

nique. This enables removal of anisotropic contribution to the foreground emission

by the Cosmic Infrared Background (CIB) by applying a series of spherical wavelets

of varying radii to all observation bands, and comparing components at different spa-

tial scales in both Fourier and real space. The result of the GNILC technique can

be seen in Figure 2.21. Here the raw 850 µm image (top left) is stripped of CMB

emission (top right), and fitted with a MBB to produce a dust model (bottom left).

The result of the GNILC algorithm being applied to the dust model is shown in the

bottom right panel. This process is repeated for all nine bands.

Once foreground dust emission maps had been produced, maps of dust tem-

perature, dust opacity index, and optical depth could be estimated with a simple

MBB with three free parameters, fit to the 350 µm, 550 µm and 850 µm and modified

100 µm data. The MBB function is given by the equation

Iν(p) = τ0(p)

(
ν

ν0

)β(p)

Bν(T (p)), (2.5)

where Iν(p) is the intensity in band ν and at pixel p, τ0 is the dust optical depth

at the reference frequency 350 GHz (850 µm, β(p) and T (p) are the dust opacity index

and dust temperature at pixel p, and Bν(T ) is the Planck function. The parameters

were fit simultaneously at 5′ resolution.

The dust model maps can be accessed publicly from the Planck Public Data

Release 2 archive§.

§https://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/ysz_index.

html

https://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/ysz_index.html
https://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/ysz_index.html


2.1. Observations and Data Reduction 65

Figure 2.21. Images showing the steps to produce Planck foreground dust emission maps. The
panels show: the Planck 850 µm emission map (top left); the 850 µm map with CMB removed
(top right); dust model produced from MBB fitting of the CMB subtracted map (bottom left); the
GNILC foreground dust emission map (bottom right). Wavebands are given in frequency as per
Planck Collaboration convention. In each case, the mean intensity has been subtracted. Image
taken from Planck Collaboration (2016d).
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2.1.6 Zero-Point Corrections

As the photometric backgrounds (from the telescope in the case of Herschel ,

and from the atmosphere and telescope in the case of SCUBA-2) are far larger than the

astrophysical signals, the observations do not provide a measurement of the absolute

astronomical sky brightness. The lack of a reference point for zero flux introduces

a systematic error because an area of sky with zero emission cannot be recorded as

such by the arrays. This zero point error has to be corrected before any analysis can

take place.

The Constant-Offset Technique was first described in Bernard et al. (2010),

and further expanded upon in other works, e.g. Lombardi et al. (2014) and Abreu-

Vicente et al. (2017). It involves the use of the Planck all sky surveys and IRIS tiles

to produce synthetic, zero-point calibrated observations at the Herschel wavelengths,

which can then be used to compare with the true observations. SPIRE zero-point

correction is carried out as a standard procedure in the HIPE data pipeline.

However, PACS and post-feathering SCUBA-2 observations must be calibrated

manually. The process to accomplish this is described below.

2.1.6.1 PACS and SCUBA-2

I took sections of the Planck all-sky models of dust opacity index, β, tempera-

ture, and optical depth at 850 µm, τλ0 , located around my target region. From these,

I constructed a series of synthetic, monochromatic observations at 250 µm, 350 µm,

500 µm and 850 µm through the equation

Iλ = Bλ(λ, T ) · τλ0
(
λ

λ0

)−β
. (2.6)

At typical temperatures for dusty, star forming regions, these monochromatic

observations tightly constrain the Rayleigh-Jeans tail of the Planck function, and pro-

vide good reference points for calibrating SPIRE and SCUBA-2 observations. How-

ever, PACS wavebands lie around the black body peak, or in the Wien’s regime, which

is poorly constrained with these observations alone. To counter this, I took the IRIS

100 µm tile that spanned my region of interest, and convolved it with the 5′ Planck

beam profile. This allowed me to construct an SED at every point in my target region

that was well constrained across all Herschel bands.

I then finely sampled this SED over both PACS wavebands, and convolved the

resultant fluxes with the Herschel response functions to produce synthetic PACS ob-

servations, albeit at 5′ resolution. I will term these ObsPlanck, with surface brightness

SPlanck.
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I then convolved the true PACS observations, ObsPACS, with the 5′ Planck

beam profile, and performed a linear fit between ObsPlanck and ObsPACS,

SPACS = m · SPlanck + c. (2.7)

The gradient of the fit, m, should return a value close to 1.0, indicating good

relative flux calibration of the PACS instrument. The offset c is then the average

surface brightness value by which the ObsPACS is lower than the ObsPlanck. The

negative of c is, therefore, the value of the offset that must be applied to the Herschel

PACS observations to correctly zero-point correct them.

As the Planck and PACS observations are sensitive to emission at different

size scales, in regions with bright, extended sources, it was sometimes necessary to

limit fitting to background regions. I achieved this by defining a background flux

level in each set of observations and masking regions in both images that exceeded

this level.

The process to zero-point correct the feathered SCUBA-2 observations is, in

principle, simpler. This is because the 850 µm band is already well constrained by

just the Planck bands. However, as the combined IRAS/Planck SED had already

been constructed, I used an identical pipeline to the one described above to perform

the offset. Equation 2.7 then becomes

SSCUBA−2 = m · SPlanck + c. (2.8)

Thus, the offset can be identified and applied as before.

2.1.7 Ground Based Observation Extended Emission Recovery

As discussed in Section 2.1.3, the 10′ Gaussian filter, applied to reduce the

effect of 1/f noise, also removes much of the emission from extended sources with

an angular size greater than 7.5′. Conversely, the Planck 850 µm HFI band does not

need to contend with 1/f noise contribution from the atmosphere, but cannot resolve

structures smaller than 5′.

Planck and SCUBA-2 850 µm maps of the same area can be combined in

Fourier space to produce observations with the resolution of SCUBA-2, and the ex-

tended structure of Planck . First, the Planck observation, ObsP is resampled at the

same pixel scale as the SCUBA-2 observation, ObsS. A 2D Gaussian filter, ObsG,

with FWHM 5′ is also generated at the centre of a pixel grid with the same dimen-

sions and sample rate as the observations. A 2D fast Fourier transform (FFT) is then
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performed to produce F{ObsS}, F{ObsP}, and F{ObsG}. Fourier Transforming the

images places them into the frequency domain, which allows objects of a certain spa-

cial scale to be identified. F{ObsG} is renormalised to ensure it has a peak amplitude

of 1. It is then applied to the observations, and the resultant images are combined,

such that

F{ObsSG} = F{ObsS} · (1−F{ObsG}) (2.9)

F{ObsPG} = F{ObsP} · F{ObsG} (2.10)

F{ObsSP} = F{ObsSG}+ F{ObsPG}, (2.11)

where F{ObsSG} and F{ObsPG} are the Fourier combinations of the Gaussian filter

with the SCUBA-2 and Planck observations, respectively, and F{ObsSP} is then the

Fourier combination of the two filtered observations. By applying the filter in this

way, the SCUBA-2 image has objects with angular size <5′ partially suppressed,

reducing the effect of small scale stochastic noise, which structures in the Planck

observations much larger than the filter scale are similarly suppressed. This allows

for a seamless combination of the images based on the spatial scales of the observed

structures, which would be prohibitively difficult to achieve in the image plane. The

inverse FFT is then taken of F{ObsSP} to produce the final combined observation,

ObsSP. This process does not automatically apply the Planck zero point correction,

which has to be performed via the method described in Section 2.1.6.

The algorithm used to combine SCUBA-2 and Planck observations for the

analysis in this thesis was constructed by Matt Smith (in prep.), and is based on the

CASAfeather algorithm (McMullin et al. 2007).

2.2 Colour Corrections

Many of the detectors described in this chapter are calibrated assuming that

an observed source has a spectrum that remains constant across the entire observing

band. In particular, both the Herschel PACS and SPIRE instruments use an assumed

source function of

λIλ = const. (2.12)

While this approximation holds true for narrow observation bands (e.g. those



2.2. Colour Corrections 69

of the SCUBA-2 instrument), this is not true for the wide bands of Herschel , espe-

cially when observing emission from cold dust, which can vary significantly across a

single observing band due to the band covering the peak of the modified black body

spectrum.

Thus the intensity reported by the detecting instrument is often offset from

the true intensity of the source. This effect can be corrected for by generating a series

of colour correction factors. The factors are calculated by comparing the estimated

intensity a detector would produce if observing a modified black body, with the true

intensity of that source

K(T, β, λ0) = λ−β0 B(T, λ0)

[ ∫
band

λR(λ)µ(λ)Ω(λ)dλ∫
band

λ−βB(T, λ)R(λ)µ(λ)Ω(λ)dλ

]
., (2.13)

where T and β are the dust temperature and opacity index respectively, λ0 is the

central wavelength of the waveband for which the colour correction factors are being

generated, B(T, λ) is the Planck function, R(λ) is the value of the spectral response

function for a given wavelength, µ(λ) is the aperture efficiency, and Ω is the solid

angle of the effective beam profile. By varying the value of T and β, a series of

colour correction factors can be generated for different dust conditions. Colour cor-

rection factors for a small range of temperatures and opacity indices for the Herschel

instruments are given in Exter (2017) and Valtchanov (2017).

These corrections must be applied to all observations before accurate mea-

surements of dust column density can be made. For conventional MBB fitting, this

is often an iterative process. Typically, a fixed value of the opacity index is set to

reduce the complexity of the fitting. This also limits the scope of the corrections to

be applied to just those that vary with temperature. Initially, the temperature of the

source is not known, and therefore the appropriate correction cannot be applied. An

inaccurate estimate of dust column density and temperature is made, and therefore

be used to apply an appropriate temperature-dependent colour correction to each sky

location in each observation band. The fitting can then be repeated, producing a

more accurate estimate of the column density and temperature, and thus allowing for

a more accurate application of the colour correction factors. This process continues

until convergence is reached between iterations.

The PPMAP application of colour corrections is somewhat different, and is

discussed in chapter 3.





Chapter 3

PPMAP: Theory and the

Algorithm

In this chapter, I introduce the PPMAP algorithm as a method of analysing hy-

drogen column density derived from multi-wavelength dust emission observations to

determine the intrinsic properties of the dust. Initially, I introduce the mathematical

concepts behind the point process method, and their specific application to PPMAP.

I then describe how the theory is implemented in the code, and discuss the operation

of the algorithm. Finally, I discuss the data products produced by PPMAP, and

introduce several derived products that are useful for the analysis of the dust models.

3.1 Point Process Mapping

PPMAP is a Bayesian Point Process algorithm for estimating the opacity of

different populations of interstellar dust by analysing multi-wavelength far infrared

and sub-millimetre continuum observations, where each population can be charac-

terised by a single representative dust temperature and dust opacity index. PPMAP

was first described by Marsh, Whitworth, and Lomax (2015), although other appli-

cations of the Point Process formalism had been described earlier, by Richardson

and Marsh (1987) for use in acoustic imaging, by Richardson and Marsh (1992) for

the identification and tracking of moving targets in RADAR data, and by Marsh,

Velusamy, and Ware (2006) for planet detection with interferometric observations.

The mathematical theory behind PPMAP, and the operations of the algorithm, are

described in the following sub-sections.

71



72 Chapter 3. PPMAP: Theory and the Algorithm

3.1.1 The Mathematical Theory

The Point Process method refers to the concept that nearly any system in

“real space” can be approximated by a number of “points”, each occupying a “single-

point state space” whose extent covers all possible values of the important properties

of the system. In the case of PPMAP, a “point” of the system can be thought of as

a single unit of dust opacity, while the extent of “single-point state space” represents

the total range of possible values in the (x, y) sky coordinates, the range of possible

dust temperatures, T , and the range of potential dust opacity indices, β. The whole

system is then made up of many “points” all occupying a different locations within a

“multi-point state space”.

To reduce the complexity of the problem, “multi-point state space” is sub-

divided into a number of elements, each characterised by a characteristic value for

each of the properties, with the total number of elements given by the quantity

Nstates. Therefore, one only needs to ensure that the elements are suitably spaced to

characterise each parameter sufficiently well. The system can then be characterised

by the set of occupation numbers, Γ, for each of those elements. Γ is a vector with

Nstates dimensionality, with each element, Γn, containing the occupation number of

the nth element in “multi-point state space”. A full description of how PPMAP solves

for Γ, and converts the output to a hydrogen column density, is given blow.

3.1.1.1 The Measurement Model

The underlying model for the PPMAP algorithm can be expressed simply as

d = AΓ + µ, (3.1)

where d represents an M -dimensional matrix of measurements, or observations, where

the mth element represents the observed intensity at location (Xm, Ym) at wavelength

λm. The quantity µ is a Gaussian random process, with covariance Cµ, and represents

noise in the measurement matrix, d. A is the response matrix, with dimensions

M × Nstates, which links element dm to the “points” in element Γn, corresponding

to the “multi-point state space” spatial coordinates (xn, yn). Element Amn measures

the response of dn to Γn by containing the information about the model, and can be

expressed as

Amn = Hλm(Xm − xn, Ym − yn)Kλm(Tn)Bλm(Tn)κ(λm, βn)∆Ωm, (3.2)

where Hλm(Xm − xn, Ym − yn) is the emission spread over the beam profile for the

observations taken at wavelength λm when it is centred on, and convolved with,
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a single “point” at spatial position (xn, yn) in “multi-point state space”; Kλm(Tn)

is the colour correction due to finite passband width that would be applied to an

observation at wavelength λm, due to a “point” with a dust temperature Tn; Bλm(Tn)

is the Planck function response at wavelength λm and temperature Tn; ∆Ωm is the

solid angle subtended by observational element m; κ is the dust opacity law, which

is given by

κ = κ300 µm

(
λm

300 µm

)−βn
. (3.3)

The reference opacity at 300 µm, κ300 µm, is assumed in this work to be 0.1 cm2 g−1,

and is defined per unit mass of both dust and gas. It is consistent with a gas to dust

ratio of 100.

The role of the response matrix, A, can be further explored by considering the

quantity AΓ, which can be expressed by the alternative formalism

AΓ =
∑
n

f(zn)Γn. (3.4)

As described above, Γn represents the occupation number of “points” in the nth el-

ement in “multi-point state space”, while zn is the vector of coordinates of the nth

element of “multi-point state space”. In the case of PPMAP, zn has a dimension-

ality of four, corresponding the the x, y, T , and β coordinates. f(zn) is then the

noiseless observation of the singly occupied element (the equivalent of that element

in “single-point state space”), taking into account the beam profile, colour correction,

Planck function, opacity law, and solid angle appropriate to the element’s position,

temperature and β values, and the waveband in which it is being observed. Thus,

f(zn)Γn is the contribution to the noiseless observations of all the “points” in the nth

element, and the sum over all n builds up the full set of observations.

The initial state of the Γ vector is considered to be a Gaussian random process,

with the individual elements, Γn, being statistically independent, with individual

“points” equally likely to occupy any given x, y position, and any given value in the

distribution of log T . This initial distribution across all positions and temperatures

is expressed as

P (Γn) =
1

σ
√

2π
exp
−(Γn − η)2

2σ2
, (3.5)

where σ =
√
η(1− p), with p being the probability that any given element in Γ is oc-

cupied if only one “point” is present in the system, i.e. p = 1/Nstates. η is the dilution

parameter, defined by η = N0/Nstates, where N0 is the a priori expectation number of

“points” in the system. Therefore, η can be considered a resolution parameter, where
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a low value of η will force PPMAP to construct the model with a small number of

“points”, relative to the number of elements in “state space”.

To enable PPMAP to lift the T − β degeneracy, the distribution of “points”

across the range of opacity indices is not flat, but is itself drawn from a Gaussian

distribution, with a mean value of β̄, and a standard deviation, σβ. This modifies

the value of P (Γn), by appending a factor derived from the probability that a given

state, n, has a particular value of β.

The a priori distribution of states over all Γ can be obtained from

P (Γ) =
Nst∏
n=1

P (Γn). (3.6)

3.1.1.2 Defining the Density of Occupied States

The aim of the PPMAP algorithm is to estimate Γ, given the observations, d.

This is achieved by minimising the mean square error, which ensures that the best

estimate is the a posteriori expectation value of Γ. This is given by

E(Γn|d) =
∑

Γ

ΓnP (Γ|d). (3.7)

The quantity P (Γ|d) is derived from Bayes’ rule,

P (Γ|d) =
P (d|Γ)P (Γ)

P (d)
. (3.8)

P (d|Γ) is given by

lnP (d|Γ) = −1

2
(d−AΓ)>C−1

µ (d−AΓ) + const. (3.9)

> denotes the transpose. P (d) is a normalisation factor, while P (Γ) is given by

equation 3.6.

The expectation value of Γ is also equivalent to the density of the states,

ρ(zn|d) ≡ E(Γn|d). (3.10)

ρ(zn|d) (hereafter, simply ρ) is termed a density as it measures the local concentration

of “points” within each of the elements of Γ. ρ is the quantity that the PPMAP

algorithm ultimately estimates, through the procedure described below.
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3.1.1.3 The Stepwise Change in ρ

The PPMAP algorithm performs the estimation of ρ using a stepwise approach

in which it initially assumes an artificially high value for the noise in the model, such

that the observations, d, essentially contribute no information to the distribution of

“points” in Γ. The level of artificial noise is then incrementally decreased, updating

the value of ρ at each step as the observations contribute information to the model.

This is done until the artificial noise level reaches the true noise level in the observa-

tions. The steps of the algorithm are tracked by a “time” variable, t, which increases

from t = 0 at the initial step, to t = 1 when the artificial noise level matches the true

noise level, and measures the degree of conditioning of the data (i.e. how close the

artificial noise level is to the true measurement noise). This measurement model at a

given time is then

d(t) = AΓ(t) + ν(t), (3.11)

where ν(t) represents the level of the assumed artificial noise level at time t. At t = 1,

ν(1) = µ. Just as µ is considered to be a Gaussian random process with a covariance

matrix Cµ, so ν is also a Gaussian random process, with covariance Cν .

At a given time, t, the state of ρ can be written as

ρ(zn|dt) ≡ E(Γn|dt) =
∑

Γ

ΓnP (Γ|dt), (3.12)

where the superscript, t, denotes all times up to, but exclusive of, the current time t.

Therefore, the change in ρ due to a new measurement at time t+ ∆t is simply

∆ρ(zn|dt) ≡ ∆E(Γn|dt) =
∑

Γ

Γn∆P (Γ|dt). (3.13)

∆t is initially set to a very small value, and is updated dynamically to ensure that

changes to the model between consecutive iterations are as large as they can be while

remaining linear (and thus reducing the time it takes to fit a model). The term

∆P (Γ|dt) can be defined by considering the time dependent form of equation 3.8;

P (Γ|dt) =
P (d(t)|Γ)P (Γ)

P (d(t))
, (3.14)

where dt is the full set of all measurements up to time t, and d(t) is the set of
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measurements at the current iteration time. P (d(t)|Γ) can then be expressed as

P (d(t)|Γ) =
∏
m

1√
2πCν|m

exp

−1

2

∑
m

1

Cν|m

(
dm(t)−

∑
n

AmnΓn

)2
 . (3.15)

Therefore, for the initial state where t = 0 equation 3.14 and equation 3.15

can be written as

P (Γ|d(0)) =
P (d(0)|Γ)P (Γ)

P (d(0))
(3.16)

P (d(0)|Γ) =
∏
m

1√
2πCν|m

exp

−1

2

∑
m

1

Cν|m

(
dm(0)−

∑
n

AmnΓn

)2
 . (3.17)

The expression for P (Γ|dt+∆t) is identical to the generic expression given in equation

3.14, with the a priori value of P (Γ), such that

P (Γ|dt+∆t) = P (d(t)|Γ)P (Γ|dt)/P (d(t)). (3.18)

Thus, the change in the conditional probability of Γ between subsequent time steps

can be expressed by

∆P ≡ P (Γ|dt+∆t)− P (Γ|dt) (3.19)

= P (Γ|dt) {[P (d(t)|Γ)/P (d(t))]− 1} . (3.20)

Equation 3.20 can be expanded and simplified by substituting in equation 3.15, bring-

ing the P (Γ|dt) factor over the the left side. This is shown by

∆P

P (Γ|dt)
=

(∏
m

1√
2πCν|m

exp[E ]

/
P (d(t))

)
− 1, (3.21)

where exp[E ] is given by the expression

exp[E ] = exp

−1

2

∑
m

1

Cν|m

(
dm(t)−

∑
n

AmnΓn

)2
 (3.22)

= exp

[
−1

2

∑
m

1

Cν|m

(
dm(t)2 − 2dm(t)

∑
n

AmnΓn

+

[∑
n

AmnΓn

]2
 (3.23)
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= exp

[
−1

2

∑
m

dm(t)2

Cν|m

]
exp

[
−1

2

∑
m

1

Cν|m

(
−2dm(t)

∑
n

AmnΓn

+

[∑
n

AmnΓn

]2
 . (3.24)

For most cases, where the number of states is extremely large (in practice,

where Nstates > 20), the value of Cν|m is also very large, and thus the prefactor,

1/Cν|m, approaches 0. In this case, P (d(t)) is defined by a Gaussian random process

with variance Cµ:

P (d) ≈
∏
m

1√
2πCν|m

exp

(
−1

2

∑
m

dm(t)2

Cν|m

)
. (3.25)

Applying equation 3.25 to equation ??, and approximating the remaining ex-

ponential term with exp[−x] ≈ 1 − x, produces the Probability Update Equation,

which is explicitly given by

∆P

P (Γ|dt)
≈ −1

2

∑
m

1

Cν|m

−2dm(t)
∑
n

AmnΓn +

[∑
n

AmnΓn

]2
 . (3.26)

Thus, the change in state density at time t is given by

∆ρ ≈
∑
n

ΓnP (Γ|dt)
∑
m

1

Cν|m

dm(t)
∑
n

AmnΓn −
1

2

[∑
n

AmnΓn

]2
 (3.27)

3.1.1.4 ρ as a Truncated Hierarchy of Infinite Equations

While equation 3.27 represents the change in density of the zn position in

“multi-point state space” given the measurements d up to time t, the dimensionality

of the equation is still in practice too large to compute. For even small models, the

value of Nstates can still exceed several million. This is a particular problem for the

final term in the expression, which does not have a dimensionality M × Nstates, but

M ×N2
states. Fortunately, it is possible to truncate equation 3.27 to an approximately

correct solution with a much lower dimensionality.

The initial step is to expand the summation terms by extracting the first order
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term, such that

∆ρ =
∑
n

ΓnP (Γ|dt)
∑
m

1

Cν|m

dm(t)

[
AmnΓn +

∑
n′ 6=n

Amn′Γn′

]

− 1

2

[
AmnΓn +

∑
n′ 6=n

Amn′Γn′

]2


(3.28)

=
∑
n

ΓnP (Γ|dt)
∑
m

1

Cν|m

dm(t)

[
AmnΓn +

∑
n′ 6=n

Amn′Γn′

]

−1

2

(AmnΓn)2 + 2AmnΓn
∑
n′ 6=n

Amn′Γn′

+
∑
n′ 6=n
n′′ 6=n

Amn′Γn′Amn′′Γn′′


 .

(3.29)

Equation 3.29 can be expressed in terms of ρ(zn|dt), and higher order terms,

by substituting in equation 3.12. This produces

∆ρ =
∑
m

1

Cν|m

dm(t)

[
ρ(zn|dt)Amn +

∑
n′ 6=n

ρ(zn, zn′ |dt)Amn′

]

−1

2

ρ(zn|dt)A2
mn + 2Amn

∑
n′ 6=n

ρ(zn, zn′ |dt)Amn′

+
∑
n′ 6=n
n′′ 6=n

ρ(zn, zn′ , zn′′ |dt)Amn′Amn′′


 .

(3.30)

It is possible to further expand equation 3.30, by extracting the second order

term for state n′ from the summations, and to continue the expansion for all higher

order terms. However, it is possible at this point to introduce the closure approxima-

tions which will allow the infinite series to be truncated at the first order expansion.
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The closure approximations are given by

ρ(zn, zn′ |dt) = ρ(zn|dt)ρ(zn′|dt) (3.31)

ρ(zn, zn′ , zn′′ |dt) = ρ(zn|dt)ρ(zn′|dt)ρ(zn′′|dt). (3.32)

There are an infinite number of closure approximations expanding the higher order

forms of ρ, though for reasons that will become apparent, only the two listed above are

required. The closure approximations are substituted into equation 3.30 to produce

∆ρ =
∑
m

1

Cν|m

dm(t)

[
ρ(zn|dt)Amn + ρ(zn|dt)

∑
n′ 6=n

ρ(zn′ |dt)Amn′

]

− 1

2

ρ(zn|dt)A2
mn + 2ρ(zn|dt)Amn

∑
n′ 6=n

ρ(zn′|dt)Amn′

ρ(zn|dt)
∑
n′ 6=n
n′′ 6=n

ρ(zn′ |dt)Amn′ρ(zn′′ |dt)Amn′′




(3.33)

= ρ(zn|dt)
∑
m

1

Cν|m

dm(t)

[
Amn +

∑
n′ 6=n

ρ(zn′|dt)Amn′

]

− 1

2

A2
mn + 2Amn

∑
n′ 6=n

ρ(zn′|dt)Amn′

∑
n′ 6=n
n′′ 6=n

ρ(zn′ |dt)Amn′ρ(zn′′|dt)Amn′′




(3.34)
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= ρ(zn|dt)


∑
m

1

Cν|m

[
dm(t)−

∑
n′ 6=n

ρ(zn′ |dt)Amn′

]
Amn

−1

2

∑
m

1

Cν|m
A2
mn +

∑
m

1

Cν|m

dm∑
n′ 6=n

ρ(zn′ |dt)Amn′

−
∑
n′ 6=n
n′′ 6=n

ρ(zn′ |dt)Amn′ρ(zn′′|dt)Amn′′


 .

(3.35)

As the last term in equation 3.35 is independent of zn, it must be constant

over all “multi-point state space”. It can therefore be inferred that its value is equal

to 0. Thus the equation simplifies to

∆ρ

ρ(zn|dt)
=
∑
m

1

Cν|m

[
dm(t)−

∑
n′ 6=n

ρ(zn′ |dt)Amn′

]
Amn −

1

2

∑
m

1

Cν|m
A2
mn. (3.36)

The effect of this is to truncate the density update equation, greatly reducing the

dimensionality of the problem. Equation 3.36 is equivalent to the differential equation

∂ρ

∂t
+ φ1ρ = 0, (3.37)

where φ1 is the conditioning factor, given by the negative of the term on the right

hand side of equation 3.36. It is then a simple procedure to numerically integrate

equation 3.37 to achieve the density of “points” in a given state element, though the

process remains computer intensive for large values of Nstates. However, strategies

employed during pre-processing can reduce the scale of the integration needed. These

are discussed in Section 3.1.2.

When considered for all states, φ1 can be expressed as

φ1 = −(d−Aρ)>C−1
ν A + b/2, (3.38)

where b is a vector formed from the diagonal elements of A>C−1
ν A.

The initial value of ρ at time t = 0 is simply the a priori expectation value

of Γ, which is equivalent to the value of the dilution parameter, modified by the a
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priori Gaussian distribution of β values,

ρn|t=0 = η × α exp
−(βn − β̄)2

2σ2
β

. (3.39)

The α term is a normalization constant which ensures that the mean value of ρt=0

over all n states remains equal to η.

3.1.2 PreMAP and the PPMAP Input Variables

For PPMAP to produce a solution for the optimal value of ρ, it requires a

parameter file describing the full extent of the “state space” of the desired model,

a set of far infrared and sub-millimetre observations of dust emission for the region

of interest, high accuracy 2D models of the beam profiles of the systems responsible

for producing the observations, and colour corrections for each of the observation

wavebands, given the discrete values which define the positions of each of the elements

along the dust temperature dimension of the “state space”. The model, observation

images, and beam profiles must all share a common sample rate (pixel size), though

the observations should not be convolved to a common angular resolution, as they

must for conventional MBB fitting techniques. Furthermore, the observations must

be in units of Jy pix−1.

While each of these input variables can be manually passed to PPMAP, the

preprocessing sub-routine, preMAP, simplifies the process by generating the PPMAP

parameter file from a more human-readable preMAP parameter file. An image of a

typical preMAP input file is given in Figure 3.1.

The gloncent and glatcent parameters specify where to position the centre

of the model in world coordinates, while the fieldsize parameter dictates the an-

gular size of the model. All three parameters only accept values in decimal degrees.

It is assumed that the coordinates of the field centre are given in the same projection

system as the input observations; either RA and Dec, or galactic latitude and longi-

tude. The pixel parameter governs the angular side length of each model element in

the x and y, plane of the sky dimensions. The parameter assumes values are given

in arcseconds. PPMAP elements are square in the xy plane. As PPMAP models

are Nyquist sampled in the xy plane, the pixel parameter effectively determines the

angular resolution of the model, which is twice the value provided.

The dilution parameter represents the value of η. As discussed above, η

relates to the number of “points” PPMAP has available to fit the model to the data,

and can be though of as the “state space” resolution. Typical values of η range from
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Figure 3.1. A preMAP input file showing the most parameters most commonly parsed to preMAP.
Where a single parameter requires two or more variables, the values are separated by white space.
A small description of each parameter is given after the parameter tag.

∼ 0.1 to ∼ 3. η should be as small as possible while still achieving a reduced χ2 ≈ 1.

maxiterat sets the limit on the number of iterations PPMAP will perform if it does

not reach convergence, or a divergent solution is detected. As with η, this value

should be just large enough to ensure a reasonable fit to the data, as the model will

become progressively noisier with each iteration.

The kappa300 parameter defines the value of the reference opacity, κ0, at the

reference wavelength of 300 µm. nbeta gives the number discrete opacity index values

PPMAP should include in the model, while betagrid lists the individual β values.

The optional betaprior parameter accepts two arguments which define the mean and

standard deviation of the Gaussian prior imposed on the opacity index. If betaprior

is excluded, preMAP will parse a prior with a mean of 2, and a standard deviation

of 10000; essentially a flat distribution. The Nt parameter specifies the number of

discrete temperature values available to PPMAP. temprange defines the values of the

lowest and highest temperature values. preMAP will then produce a logarithmically

spaced array of temperatures of length Nt, from the lowest value of temprange to the

highest. This array then defines the temperature values of the PPMAP model.

The nbands parameter indicates the total number of observational wavebands

that will be supplied to PPMAP, while the wavelen parameter lists the wavelengths

(in microns) of each band. An optional parameter, sigobs, provides a list of noise
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estimates for the input observations. If sigobs is excluded, preMAP will attempt to

estimate the noise present in each input observation.

ccfile gives the file name of a colour correction table for all of the input

wavebands across a large range of finely sampled temperatures. preMAP will inter-

polate an array of colour correction factors for each of the temperature bands and

wavebands from this file. At present, PPMAP assumes that colour corrections are

not necessary for variations in opacity index.

The ncells and noverlap parameters define the side-length and linear over-

lap, in pixels, of the PPMAP subtiles. As discussed above, to update the value of

the occupation density at a single location in “state space”, PPMAP calculates the

effect on that location of the current state of all other locations with the model. This

is shown in equation 3.36 by the term

∑
n′ 6=n

ρ(zn′|dt)Amn′ . (3.40)

The sum over all n′ states can pose a problem computationally due to the large

number of states present, even for models with small angular sizes. However, the

states are only coupled to each other by the observational beam profiles, with states

separated from each other by an angular separation much larger than the beam size

having a negligible effect on one another. Therefore, preMAP utilises the ncells

and noverlap parameters to split the model in the xy plane to produce a series of

smaller, uncorrelated, overlapping models, which can be fitted independently. This

greatly reduces the scale of the summation. The only requirement is that the subtiles

are larger than the beam sizes for the observations, and that the overlap between

neighbouring subtiles is sufficient to ensure a smooth transition across the entire

model when the subtiles are later recombined. The separation of the model into

small subtiles also allows those tiles to be processed in parallel, further reducing

runtime.

The final input parameter is obsimages, which is a list of the observation

input files, given in the same order as the list of input wavelengths.

Once the parameters have been read by preMAP, the algorithm them produces

the correctly formatted PPMAP input file. preMAP also re-samples the observations,

and their corresponding beam profiles, at the same pixel scale as the defined PPMAP

xy grid. This re-sampling of the data does not increase the resolution of the observa-

tions, though it does have the potential to decrease the resolution should the angular

size of the pixels be larger than the beam of a given observation.

The current form of preMAP also assumes that the intensity is initially in
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units of MJy sr−1, as most Herschel observations are typically processed in these

units. However, as I mention above, PPMAP requires observations to be in units of

Jy pix−1. preMAP therefore converts the intensity units of the input observations to

the correct form during the re-sampling process.

The final step for preMAP is to generate a series of scripts to call PPMAP to

operate on the individual sub-tiles, and then to queue and execute the scripts on the

supercomputer cluster. An example PPMAP script file is shown in Figure 3.2.

3.1.3 The Operations of the PPMAP Algorithm

The initial step of the PPMAP algorithm itself, after reading in the input file

generated by preMAP, and the command line parameters shown in Figure 3.2, is to

set up the measurement and occupation density vectors (d and ρ respectively), and

the response matrix, A. In the context of the algorithm, each of the n dimensions

of A represents the intensity produced in the mth waveband when the only “point”

present in the system is a single unit of column density in the nth state (i.e. having

position X, Y , temperature T , and opacity index β), when modified by the Planck

function, colour correction, and beam profile. The constant term b/2, defined in

equation 3.38, is also generated at this point.

As shown in equation 3.11, the mathematical theory behind PPMAP assumes

that at each time step, the measurement model is provided with an artificially inflated

value of the observational noise, ν(t), which will approach the true value of the noise,

µ, as t → 1. The goal is to maintain a reduced χ2 = 1 at each iteration, which

requires the density model to converge on an appropriate solution as the uncertainty

decreases towards the true value. However, the implementation in the algorithm

is somewhat different. Instead of injecting an artificially high uncertainty at the

first iteration, PPMAP specifies an initially high threshold value for the reduced

χ2. The noise remains constant across all iterations, and is fixed to the true value

parsed to PPMAP at initialization. Thus, the model is initially allowed to be poorly

constrained given a small uncertainty, as opposed to the theoretical principal that the

model should always be well constrained, but that the uncertainty is initially very

large. The reference reduced χ2 is then reduced in value as the algorithm progresses,

forcing the model to converge to a well constrained solution.

The algorithm then begins the primary fitting loop. At each iteration, a vector

of noiseless observations, d′, is generated by multiplying A by the current state of

the occupation density vector, ρ. The value of the reduced χ2 between these noiseless

observations and the true observations, given the fixed value of the noise, is calculated
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Figure 3.2. A PPMAP script file for calling the algorithm to run on a subset of the sub-tiles.
Each sub-tile is modelled independently, and so to reduce computation time, the total collection
sub-tiles are grouped into smaller collections and run with different processes in parallel across
multiple computer cores. The list of sub-tiles to be modelled by the process called by this script file
is generated by parsing the index of the first and last sub-tile in the list as command line arguments.
This script represents the last script for a particular PPMAP run, and will be scheduled to run last.
Therefore, it also calls the mosaic sub-routine to gather all the fully modelled sub-tiles and mosaic
them together to produce the full 4D data hypercube of column densities.
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and compared to the reference reduced χ2. If the current reduced χ2 is less than, or

equal to, the value of the reference reduced χ2, then the current reduced χ2 becomes

the new reference value. Otherwise the solution is deemed divergent, and the process

is terminated.

As discussed previously, A contains the colour corrections for each of the ob-

servations bands, which ensures that PPMAP is able to accurately calculate the χ2

between the noiseless observations, d′, and the true observations, d. Unlike conven-

tional fitting techniques, PPMAP does not apply these corrections as factors to the

true observations in an iterative process, but instead directly applies the corrections

as divisors to the model. As the temperature bands of the model are defined as delta

functions, the corrections can be correctly applied in a single step, rather than requir-

ing a further iterative process. PPMAP, therefore, does not correct the assumptions

made about a detector source, but rather modifies the true source to match those

assumptions. The outcome of both methods is identical (assuming the conventional

iterative method properly converges), but this faster application method is impossible

for MBB fitting techniques to perform, as the temperatures of the final output are

unknown.

φ1 is then generated, and ρ is updated by assuming a linear solution to equation

3.26, through

ρt+1 = ρt − εφ1ρt, (3.41)

where ε is a factor relating to the step size between the current and next iteration. A

series of conditions allow for ε to be dynamically updated at regular intervals during

the run. This allows for ρ to initially rapidly converge on an approximate solution,

and then for smaller updates to ρ to occur to enable fine tuning the model at later

iteration times.

Further conditions monitor if the current run has converged to, or diverged

from, a suitable solution for ρ, or if the maximum iteration count is reached. If the

algorithm detects a convergence to a solution, or the maximum iteration count has

been reached, the current state of ρ is written out. However, if a divergent solution is

detected, the state of ρ from the previous iteration is taken as the best distribution

for the density of “points” in the current sub-tile.

The elements of ρ are then mapped to the elements of the 4D data hypercube,

and are converted from number densities of “points”, each representing a unit of

optical depth, to a H2 column density, assuming a mean molecular weight of 2.8, and

the mass of a single hydrogen atom to be 1.6726× 10−24 g, and that each “point” is
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represented by a Nyquist Gaussian kernel with a FWHM of twice the pixel size. The

sub-tile is then saved to a FITS file, with the header denoting the relative position of

the sub-tile to the full field, and its reduced χ2.

Once each of the sub-tiles have been written out, PPMAP mosaics them to-

gether into the full 4D data hypercube. A mean background column density is cal-

culated for each sub-tile, which allows for corrections to be applied to neighbouring

tiles to ensure the final model does not greatly suffer from fluctuations in column

density at the boundaries of sub-tiles. A 4D uncertainty hypercube of the standard

deviation to the expectation value of the column density (given by ρ) is also produced,

by calculating the response to the observational data of the current model, given the

uncertainty in the observations. The uncertainty calculation is based on a procedure

described in Whalen (1971) to identify the variance of simultaneous estimates. To

achieve this, the matrix, γ, is constructed such that

γ = A>C−1
µ A +

1

µ
I, (3.42)

where I is the identity matrix of order Nstates. The elements of γ are therefore the

second derivatives of the expression for the χ2 of the model. The uncertainty is then

given by the diagonal elements,

σn =
[
(γ−1)nn

]1/2
. (3.43)

In regions of the model where the local density of “points” greatly exceeds N0, the

uncertainty calculation can diverge. When this occurs, an approximation to the

uncertainty can be made by replacing the values of (γ−1)nn with the reciprocals of

the non-inverted form, 1/γnn. This is equivalent to the Cramér-Rao lower bound for

the uncertainty.

Calculating the uncertainty for every position in the data hypercube would

be a computationally prohibitive task. As such, the uncertainty is instead calculated

for the highest value of the column density in each tile, and for the central value of

the tile after it has been smoothed by a large spatial filter, providing a measure of

the uncertainty of the background. Uncertainties for the remaining elements within

a tile, and between neighbouring tiles, are then interpolated assuming Poisson noise.

A 2D map of the reduced χ2 for each sub-tile is also written out, along with

other 2D secondary data products. Their production, along with a more detailed

overview of the structure of the 4D data hypercubes, is given in Section 3.1.4.
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3.1.4 The Structure of PPMAP Data Products

As briefly described above, PPMAP outputs a number of multi-dimensional

data products, designed for easy analysis. These can be considered in broad categories

consisting of primary products, which provide information about the model directly,

secondary or derived products, which are lower dimensionality products derived from

from the primary products, or from additional information about the model, and sup-

plementary products, which I produce from combinations of primary and secondary

products. Each data product is explained in more detail below.

3.1.4.1 Primary Products

The first of the primary data products is the 4D column density hypercube,

with two positional dimensions, (xi, yj), a dimension representing the opacity index

grid, βk, and a dimension representing the associated temperature grid, Tl. Thus, any

given element of the hypercube gives the expectation value of the column density at

a given position, β, and temperature.

As 4D data cubes are hard to visualise, I typically marginalise out the β or

temperature dimensions in turn, producing a pair of 3D data cubes describing the

distribution of column density as functions of line-of-sight temperature or opacity

index, respectively. These cubes can then be viewed as a series of 2D images. To

obtain a cube of the column density variations with line-of-sight temperature, I sum

the column density over all discrete values of β, such that

NH2;l =
∑
k

{NH2;kl} . (3.44)

Similarly, if I wish to examine the how the distribution of column densities

varies with the line-of-sight β variations, I sum over the discrete values of the tem-

peratures,

NH2;k =
∑
l

{NH2;kl} . (3.45)

The next primary data product is the hypercube of the uncertainty in the

column density estimates. This product is also four dimensional, providing the un-

certainty in the column density estimate at every position, temperature, and β. As

before, it is often useful to reduce the dimensionality of the hypercube. This is done

by summing in quadrature along one axis;
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σl|k =

∑
k|l

{
σ2
kl

}1/2

. (3.46)

3.1.4.2 Secondary Products

The fist of the secondary products is the 2D map of total column density across

all temperatures and opacity indices. This is produced by PPMAP by marginalising

out both the temperature and β dimensions of the 4D column density hypercube, via

the equation

NH2 =
k=n∑
k=0

l=m∑
l=0

{NH2;kl} . (3.47)

This map is analogous to the column density maps produced by MBB fitting algo-

rithms.

The next two secondary products are the maps of column-density-weighted (or

mass-weighted), mean line-of-sight temperature and β. These are analogous to the

maps of dust temperature produced through MBB fits, though it should be noted that

MBB fitting produces a flux-weighted temperature, not a column-density-weighted

temperature. These products are produced through the equations

β̄ =
1

NH2

l=m∑
l=0

k=n∑
k=0

{βkNH2;kl} , (3.48)

T̄ =
1

NH2

l=m∑
l=0

k=n∑
k=0

{TlNH2;kl} . (3.49)

3.1.4.3 Supplementary Products

During my analysis of PPMAP data, I found it useful to construct maps of the

total uncertainty, to complement the total column density maps, and maps of signal-

to-noise ratio. The total uncertainty map was produced by summing in quadrature

over both the temperature and β dimensions of the uncertainty hypercube with the

equation

σ =

(
l=m∑
l=0

k=n∑
k=0

{σkl}

)1/2

. (3.50)

From this 2D map of uncertainty, I produce a map of the Point Process Sta-

tistical Degeneracy (PPSD). The PPSD is a measure of the statistical degeneracy
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inherent in the Point Process method. A large value of the PPSD indicates that

there is a small number of possible “states” that reproduce the input data well, and

so the expectation value has a small uncertainty. Conversely, a small value of the

PPSD indicates that there is a large number of states that reproduce the input data,

and hence the expectation value of the model (the estimate of the H2 column density

in the case of PPMAP) has a large uncertainty. The PPSD is calculated through the

equation

PPSD =
NH2

σ
. (3.51)

3.1.5 A Note on Degrees of Freedom and Unique Solutions

A common query of PPMAP is to ask how it is capable of producing a dust

model with seemingly many more free parameters (the number of discrete dust tem-

perature bins multiplied by the number of discrete dust opacity bins) than the set of

input observations (typically five Herschel bands and one SCUBA-2 band)? Certainly,

for conventional MBB fitting techniques where the parameters (column density, dust

temperature, and potentially dust opacity index) are all fitted simultaneously, it is

vitally important that there are an equal or greater number of observation bands.

The answer to this question requires a shift in perspective. PPMAP is not

attempting to constrain a single underlying SED with a large number of free dust

temperature and opacity index parameters at each pixel with a small number of

input bands. Instead, it is creating a smooth dust model, spanning a range of theo-

retically continuous dust temperatures and opacity indices. This model represents the

probability-weighted average (expectation) of all possible dust distributions given the

current information in any given iteration. The emission from the model is compared

to the input observations, and the comparison to each band is used to update the

model.

The number of observation bands has an effect on the probability of the model

which is analogous to the effect the diameter of a telescope mirror has on the resolution

of images produced by that telescope. Increasing the number of observations more

tightly constrains the likelihood of the current model, diminishing the chances that

another dust distribution is responsible for the observed emission.

The division of the continuous temperature and opacity index ranges into dis-

crete bins is, therefore, analogous to gridding the continuous emission from the night

sky onto a set of pixels. Thus, increasing or decreasing the number of temperature

or opacity index bands is equivalent to resampling an existing pixelated image onto a
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different pixel grid. As with image resampling, care should be taken to appropriately

sample the temperature and opacity index dimensions to not over- or under-sample

the model.

A second concern that has been raised regarding the algorithm is that the

models it produces may not be unique solutions. With so many ways to distribute

dust throughout a model, there may be many configurations which could produce

very similar emission maps. As with the question regarding degree of freedom, the

answer here is that the models PPMAP produces are the averages of all possible

models, weighted by how likely they are to occur. This expectation solution is, by

definition, always unique.

Information regarding how likely other, similar distributions are to produce

similar emission maps, and how well sampled the model is, are encoded in the uncer-

tainty hypercube and supplementary maps, as well as the reduced chi squared value

produced for each band.

While PPMAP has a number of metrics which help to define how well con-

strained a model is, application of appropriate synthetic tests can go further to en-

suring that the algorithm is performing as expected. A selection of tests coving this

and other aspects of PPMAP are presented in Chapter 4.





Chapter 4

PPMAP: Testing and Limitations

In this chapter, I present a series of tests that I have performed to establish PPMAP’s

accuracy and limitations. I demonstrate a method for recovering the input observa-

tions from PPMAP column density data hypercubes, and show that PPMAP better

estimates the contribution from each of the Herschel observation bands to the H2

column density than conventional MBB fitting techniques. I develop a series of syn-

thetic observations derived from model filaments to demonstrate that PPMAP is able

to accurately estimate the column density of dusty, astrophysical structures, and that

it is able to lift the dust temperature and dust opacity index degeneracy observed

with standard MBB fitting routines.

4.0.1 Recovery of Observed Flux Density

After producing a dust model from a multi-band set of observed maps, PPMAP

provides the user with an estimate of how closely this model matches each observation

band. This estimate is in the form of a mean reduced χ2 across the entire region.

However, it is important to verify the validity of PPMAP models externally to the

program. This is done by producing synthetic images from the dust column density

hypercube.

In this test, I utilise the equation of radiation transport to derive a value of

monochromatic flux density at every sky location in the PPMAP output in a number

of observation bands. Colour corrections are applied during the process, and the

resultant intensity maps are convolved with appropriate instrument beam profiles

before being re-sampled at rates consistent with the original input observations. This

allows for a pixel by pixel comparison between the synthetic observations recovered

from PPMAP, and the actual observed maps.

93



94 Chapter 4. PPMAP: Testing and Limitations

For a given waveband specified by its nominal wavelength, λ, the surface

brightness, Iλ for at a specific sky location is given by

Iλ =
n∑
i,j

NH2:Ti,βj · m̄H2 · κ300 µm

(
λ

300 µm

)−βj
Bλ(Ti) ·K(Ti). (4.1)

Here NH2:Ti,βj is the number column density of hydrogen molecules assigned to Ti and

βj, while m̄H2 is the mean mass of a hydrogen molecule in grams. Bλ(Ti) is the value

of the Planck function in a given PPMAP temperature band T , in MJy/sr, and K(Ti)

is the colour correction factor for that band.

The term

κ300 µm

(
λ

300 µm

)−βj
(4.2)

gives the opacity of gas and dust at wavelength, λ, for a given opacity index band,

βj. κ300 µm is the reference opacity at 300 µm, with a value of 0.1 cm2 g−1.

The result is a series of surface brightness maps at the resolution of the PPMAP

model, in a number of wavebands. I then convolve the synthetic images with the ob-

servation beam profiles with the Python astropy.convolve.convolve fft package,

before utilising the reproject package to resample the images to the native sample

rates of their equivalent true observations.

Figure 4.1 shows the result of this process on the Taurus L1495 molecular

cloud region in four Herschel bands from 160 µm to 500 µm. The recovered surface

brightness observations are displayed in the left hand column, while the true obser-

vations used to derive the PPMAP dust model are displayed in the middle column.

The PPMAP dust model is discussed in detail in Chapter 5. The synthetic observa-

tions in the rightmost column are derived from single temperature MBB estimates

of column density. Their generation is discussed in Section 4.0.1.1. It can be clearly

seen that the reproduction of Herschel observations from the PPMAP dust model is

very faithful to the real observations in all displayed bands, indicating that PPMAP

produces a model that is an extremely good fit to the input data. By comparison, the

MBB fitting technique overestimates the flux contribution from shorter wavelength

bands by a large factor. These differences are assessed quantitatively in the following

Sections.

4.0.1.1 Flux Recovery from MBB fitting

It is important to verify that not only can accurate surface brightness maps

be recovered from PPMAP column density models, but that these recovered surface
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Figure 4.1. A comparison of recovered surface brightness from PPMAP dust models, presented
as synthetic observations, (left) with the true Herschel observations used to derive the model (mid-
dle). A further comparison with surface brightness recovered from a MBB fitter (right) provides
a reference point for standard fitting techniques. The images are compared across four wavebands
from 160 µm (top) to 500 µm (bottom). All images share a common surface brightness colour scale.
The observations recovered from the PPMAP model (left) are clearly visually very similar to the
true Herschel observations (middle) across all bands. In contrast, the MBB recovered observations
clearly greatly overestimate the surface brightness of the 160 µm and 250 µm bands, though they are
a good match to the longer wavelength observations.
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brightness maps are better than those recovered from leading MBB fitting techniques.

The process to produce synthetic maps from MBB estimates of H2 column

density and dust temperature is simpler than the one for PPMAP. The MBB fit-

ting process produces a single value of column density and temperature at each sky

location, and does so for a single fixed value of β. Thus, Eq. 4.1 becomes

Iλ = NH2 · m̄H2 · κ300 µm

(
λ

300 µm

)−2

Bλ(T ) ·K(T ). (4.3)

This equation is equivalent to Eq. 4.1 for a model with a single line of sight

temperature and β value. As before, the synthetic flux density maps derived from Eq.

4.3 are then convolved with the appropriate Herschel beam profiles, and reprojected

to the sample rate of the true observations.

4.0.1.2 The Goodness of Fit Parameter

While the maps of synthetic flux density shown in Figure 4.1 allow one to

qualitatively compare flux recovered from different fitting techniques in different ob-

servational bands, they are not able to show, quantifiably, which technique produced

superior fits, or which bands prove difficult to recover. To that aim, we produce a

“goodness of fit” parameter, G, which is given by the expression

G =

(∑
PIXELS

{
I−1
B,true (IB,synth − IB,true)

2}∑
PIXELS {IB,true}

)1/2

. (4.4)

Here, IB,true is the true observed surface brightness in band B, while IB,synth is the syn-

thetic flux density in the same band. Therefore, G is the root mean square fractional

difference between the synthetic and true maps of any given band, with the contri-

bution from each pixel weighted by the true flux density within that pixel. Smaller

values of G indicate smaller deviations between the synthetic and true observations,

with a value of G = 0 indicating an exact match.

Table 4.1 gives the G values for the bands shown in Figure 4.1 for synthetic ob-

servations recovered from both the PPMAP algorithm and the MBB fitting technique

described in Palmeirim et al. (2013). In all bands, synthetic observations recovered

from PPMAP models are a closer fit to the true observations than those recovered

from the MBB fitting technique. This is particularly evident in both the 160 µm and

250 µm bands.
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Table 4.1. Goodness of fit, G values for the synthetic observations shown in Figure 4.1, recovered
from modles produced by PPMAP and the MBB fitting technique described in Palmeirim et al.
(2013) for the L1495 molecular cloud. Lower values of G indicate a better fit to the true observations
in each band.

Band (µm) GPPMAP GMBB

160 0.23 1.05

250 0.11 1.02

350 0.08 0.37

500 0.08 0.09

The L1495 synthetic observations and G values are further discussed and ex-

panded upon in Section 5, while observations and values for the Ophiuchus field are

analysed in Section 6.

4.0.2 Accurate Column Density and Temperature Estimation

While testing that accurate synthetic observations can be recovered from

PPMAP dust models helps to ensure the fidelity of the results, it is also impor-

tant to verify that PPMAP can correctly recover known dust column density and

temperature results when given observations of a synthetic filament. This is because

while a dust model may produce a good fit to the input observations, this many not

be a unique solution. Generally, when fitting dust column density and temperature,

the two variables are partially degenerate, and lower estimates of the dust mass can

be compensated for by an increase in temperature, or vice versa. Here I present the

results of a series of tests to determine whether the PPMAP dust model is accurate.

As the introduction of a variable dust opacity index, β, brings another degeneracy, a

fixed value of β = 2 was utilised throughout the tests. An investigation into PPMAP’s

ability to lift the temperature-β degeneracy is presented in Section 4.0.3.

For this test, I construct a synthetic filament with a Plummer-like density

profile given by

nH2(r) = 104H2cm−3
{

1 + (r/0.04pc)2
}−1

, (4.5)

and an inverse Plummer-like temperature profile given by

T (r) = 10K {1 + (r/0.04pc)}0.125 . (4.6)

I choose the outer radius of the filament to be 0.4 pc, an order of magnitude
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Figure 4.2. The synthetic filament number density (left) and temperature (right) models. From
these continuous models, the local density and temperature of the filament could be calculated, and
thus the contribution to the line of sight column density, mass weighted mean temperature, and
surface brightness. These parameters were determined with a stepwise integrator for a range of
impact parameters.

larger than the inner radius. The filament is placed in a diffuse cloud with a uni-

form column density of 1× 1020 H2 cm−2, and a uniform temperature of 17.5 K. The

background extends out to 1 pc to either side of the filament. The filament is axi-

ally symmetric and is placed at a nominal distance of 140 pc. Figure 4.2 shows the

filament density and temperature profiles as a function of radius.

I construct a stepwise integrator to perform simple radiation transport, as-

suming an optically thin regime. The integrator determines the surface brightness,

Iλ(b) for a given position at a given impact parameter, b in a particular observational

wavelength through the equation

Iλ(b) =

∫ s=−0.40pc

s=0.40pc

NH2(s)m̄H2κ0

(
λ

λ0

)−2

{Bλ(λ, T (s))− Iλ(s)} ds (4.7)

where NH2(s) is the molecular hydrogen column density at position s along the line

of sight, which is then added to the background column density. κ0 is the PPMAP

reference opacity at 300 µm, and T (s) is the dust temperature at position s. This

process is then repeated for all values of the impact parameter, b. A diagram of how s

relates to the impact parameter, b, and the filament radius, r, is shown in Figure 4.3.

This produces an array of surface brightness values spanning an impact param-

eter range from b = 0pc to b = 0.40 pc, with 1′′ resolution. To produce a filament-like

structure, the array is mirrored around b = 0 pc, and duplicated to elongate the struc-

ture parallel to the filament axis. The resultant filament is 0.80 pc in diameter, and
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Figure 4.3. The relation between s, denoting a position within the filament as measured along the
line of sight to the observer, the impact parameter, b, and the filament radius, r.

0.80 pc long.

Synthetic Herschel observations were then produced from monochromatic 1′′

surface brightness maps at 70 µm, 160 µm, 250 µm, 350 µm and 500 µm, by convolving

them with the appropriate beam profiles, and resampling them to the standard sample

rates of PACS and SPIRE observations. I added Gaussian noise to the observations

such that the standard deviation was equal to a peak signal-to-noise ratio of 100.

These observations were run through PPMAP. The input parameters are given

in Table 4.2. While PPMAP can, in principle, super-sample the input observations

at any resolution given good signal-to-noise, in practice PPMAP is limited by the

highest resolution observation (70 µm at ∼14′′ for Herschel fast scan speeds). In

addition, as the 70 µm band generally contains relatively little information about a

system emitting between 10 K to 20 K, it is often beneficial to ensure that the PPMAP

resolution is equal to or coarser than the two finest observations. As such, a resolution

for the final dust model of 16′′ (with 8′′ Nyquist sampled pixels) was chosen, as this

is equivalent to the 160 µm resolution. The total mass of the model filament and

background within the chosen PPMAP field of view is 17.8 M�.

Figure 4.4 compares the PPMAP estimated model with the true distribution

of the synthetic filament, split into the ten PPMAP temperature bands. PPMAP

performs well, recovering column density in each band close to the true distribution,

with the exception of the bands between 7.0 K to 10.7 K. In the lower three of these

bands, PPMAP distributes ∼1.7 M� of material in a region along the filament spine,

where there is no dust present in the true model. A further ∼1.6 M� of material is

then attributed to the fourth band, a quantity significantly lower than the ∼3.8 M�
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Table 4.2. The PPMAP input parameters for the column density test. Parameters with list values
are shown here separated by commas, but are to be separated by whitespace when running PPMAP.
A description of each parameter is given in Chapter 3. The Herschel.txt colour correction table is
given in Appendix A.

Parameter Value
gloncent 0.0
glatcent 0.0
fieldsize 0.5, 0.5

pixel 8
dilution 0.3

maxiteration 10000
distance 140.0
kappa300 0.1
nbeta 1

betagrid 2.0
betaprior 2.0, 2.5

Nt 10
temperature 7.0, 25.0

ncells 40
noverlap 20
ccfile Herschel.txt
nbands 5

present in the fourth temperature band of the model. However, the total contribution

to the mass of the filament is approximately the same, as can be seen in the cumulative

mass function shown in Figure 4.5. PPMAP estimates ∼ 7% more total mass than

that present in the model when summed over all bands.

A small, square artefact can be seen to the right hand side near the spine of

the filament in the PPMAP model. This can be explained by interference fringing

produced when PPMAP resamples the observations, creating minor variations in the

exact location of the filament spine in each one, relative to the model grid. These

variations are propagated to individual PPMAP tiles, and artefacts appear in tiles

where the observations and the model grid are most misaligned. This is unlikely to

happen with observations of true astrophysical structures as the underlying shape of

the structures is unlikely to be aligned with the pixel grid.

Figure 4.6 and Figure 4.7 compare the model filament total column density

and mass weighted mean line of sight temperature with PPMAP. It is important to

present both total column density and mass weighted mean line of sight temperature

in addition to the temperature dependent column density cube as they are most

similar to the outputs of traditional modified black body fitting routines. Here we

can see the total PPMAP column density accurately predicts the high density central
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Figure 4.4. The 10 panel column density cube for the model filament compared with the estimated
dust model cube produced by PPMAP. PPMAP has populated the lowest three temperature bands
where the model contains no column density, and has a reduced column density in the fourth band
with respect to the model. However, Figure 4.5 indicates that this has not greatly affected the total
mass distribution.

Figure 4.5. The mass and cumulative mass functions of the model filament (black) and the PPMAP
estimated dust model (red) in each of the ten temperature bands, given in solar masses. The PPMAP
overestimation in the first three bands is largely offset by the underestimation in the fourth band.
PPMAP recovers a total mass just 7% more than the model.
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Figure 4.6. The total column density of the model (left) and of the PPMAP estimated dust model
(right). It is clear here that there is very little difference between the true model and the PPMAP
output.

filament, and replicates the profile of the column density from spine to edge. In

addition, it is able to predict accurately the background column density. This is also

true of the mass weighted mean line of sight temperature map.

4.0.2.1 Column Density Estimation with a MBB Fitting Routine

Not only should PPMAP be tested to ensure it can accurately predict column

densities and temperatures from a known synthetic filament, but it is important to

verify that it can do so at least as well as conventional MBB fitting techniques. To

verify this, I pass the synthetic observations described above to an algorithm derived

from the techniques described in Palmeirim et al. (2013). This technique fits a single

temperature modified black body to the 160 µm, 250 µm, 350 µm and 500 µm Herschel

bands, and uses spatial filtering to recover the 18′′ resolution of the 250 µm band. As

with many Herschel MBB fitters, it excludes the 70 µm observations.

The resulting column density and flux weighted mean line of sight temperature

maps are shown in Figure 4.8 and Figure 4.9 respectively. The algorithm recovers

∼ 70% of the column density in the spine of the filament, and has difficulty distin-

guishing the diffuse outer regions of the filament from the background, leading to a
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Figure 4.7. The mass weighted mean line of sight temperature of the model (left) and of the
PPMAP estimated dust model (right). Here, too, the temperature maps match well.

much narrower profile. The background itself has very little column density asso-

ciated with it. This is likely due to the exclusion of the 70 µm observation, which

contains information about the warmer medium in the filament wings and surround-

ing medium.

In contrast, the temperature estimation is accurate in the filament wings

and background, but is several degrees too high at the filament spine. However,

it should be noted that the temperature maps produced by MBB fitting techniques

are flux weighted, and so are more sensitive to brighter, warmer regions, and not mass

weighted, which would tend to favour the denser, colder environments.

4.0.3 β and Temperature Correlations

PPMAP is designed to break the apparent anti-correlation between the effects

of changes in temperature and β seen in Herschel observations at 10 K to 20 K.

To verify this, I construct a test composed of two axially symmetric filaments,

with Plummer-like density profiles given by

nH2(r) = 104H2cm−3
{

1 + (r/0.04pc)2
}−1

(4.8)

as above, and linear temperature profiles given by
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Figure 4.8. The total column density of the model (left) and of the column density estimate
produced by a leading MBB fitting routine (right). While much of the filament is well reproduced,
the column density through the central spine estimated by the MBB fitter is just ∼ 65% of central
column denisty of the model. In addition, the MBB fitting routine failed to differentiate the less
dense regions of the filament from the surrounding background, and also failed to fit the background
at all, leading to poor estimates of the column density. This is likely due to missing information
otherwise provided by the 70 µm emission, which is not taken into account with traditional MBB
fitters.
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Figure 4.9. The mass weighted mean line of sight temperature of the model (left) and of the flux
weighted mean line of sight temperature produced by a leading MBB fitting routine (right).

T (r) = 10K + 10K(r/0.40pc). (4.9)

One of the filaments, the “correlated” filament, is given a positive linear β

profile

β(r) = 1 + (r/0.40pc) (4.10)

while the second filament, the “anti-correlated” filament, has a negative linear β

profile

β(r) = 2− (r/0.40pc). (4.11)

The model profile is then imposed on a diffuse background with a column

density of 1× 1020 H2 cm−2, an opacity index of 1.0 in the anti-correlated case, an

opacity index of 2.0 in the correlated case, and a temperature of 20 K. The background

extends out to 1 pc from the filament centre.

Radiation transport is employed to calculate the surface brightness of the

filaments, assuming an optically thin regime. This surface brightness at a given

impact parameter, b, is given by
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Iλ(b) =

∫ s=−0.40pc

s=0.40pc

NH2(s)m̄H2κ0

(
λ

λ0

)−β(s)

{Bλ(λ, T (s))− Iλ(s)} ds (4.12)

where NH2(s), β(s), and T (s) are the hydrogen column density, β, and temperature

of dust in the filament at a given distance, s, along the line of sight from the centre

of the filament. The angular resolution of the radiation transport routine is set to 1′′.

As above, this produces an array of surface brightnesses spanning an impact

parameter range from b = 0 pc to b = 0.40 pc. To produce a filament-like structure,

the array is mirrored around b = 0 pc, and duplicated to elongate the structure to

left and right. The resultant filaments are 0.80 pc in diameter, and 0.80 pc long.

Synthetic Herschel observations are produced as for the column density test. An

additional synthetic band at 850 µm is produced in a nearly identical manner, but is

convolved with the appropriate beam from the JCMT SCUBA-2 instrument. I add

Gaussian noise to the observations such that the peak signal-to-noise was 100.

4.0.3.1 Tests with the five Herschel bands

These synthetic observations were passed through PPMAP, with input pa-

rameters given in Table 4.3, in the column marked “Cold”. The results were then

analysed by taking a Gaussian kernel density estimate (KDE) of the column density-

weighted, line of sight mean dust temperature and β maps for both the “correlated”

and “anti-correlated” filaments. These KDEs are shown in Figure 4.10. Performing

a Pearson Correlation Test on the data gave a quantitative review of the degree of

correlation in each case.

PPMAP performs well at identifying the “correlated” filament, but poorly at

picking out an anti-correlation between β and temperature. I believe this is because

for the “correlated” case, the true correlation works to weaken the degeneracy in-

herent in the Herschel bands at low temperatures, producing synthetic images with

observational anti-correlations that are weaker than those produced by a model with

no physical correlation. The only way PPMAP can achieve a good response to such

observations is with a strongly correlated dust model.

However, in the “anti-correlated” filament, the effects of the degeneracy are

reinforced observational anti-correlations which could be the result of either an anti-

correlated model, or an un-correlated model. PPMAP becomes unable to produce

a model that is a good fit to the available data. A positive correlation is observed

in the Gaussian KDE, covering a very narrow range of temperatures and β values,

clustering near the mean value of the β prior.
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Table 4.3. The PPMAP input parameters for the correlated β and temperature tests. Parameters
with list values are shown here separated by commas, but are to be separated by whitespace when
running PPMAP. Parameters in brackets are for tests including the 850 µm band. A description of
each parameter is given in Chapter 3. The Herschel.txt and Herc850.txt colour correction tables are
given in Appendix A.

Cold Hot
Parameter Value
gloncent 0.0 0.0
glatcent 0.0 0.0
fieldsize 0.5, 0.5 0.5, 0.5

pixel 8 8
dilution 0.3 0.3

maxiteration 10000 10000
distance 140.0 140.0
kappa300 0.1 0.1
nbeta 5 5

betagrid 0.9, 1.2, 1.5, 1.7, 2.1 0.9, 1.2, 1.5, 1.7, 2.1
betaprior 1.5, 0.25 1.5, 0.25

Nt 13 13
temperature 9.0, 21.0 19.0, 31.0

ncells 40 40
noverlap 20 20
ccfile Herschel.txt (Herc850.txt) Herschel.txt (Herc850.txt)
nbands 5 (6) 5 (6)
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Figure 4.10. 2D KDE of the measured correlations between temperature and β estimates for the
Tcold synthetic filament observed only with five synthetic Herschel bands. The colour scale gives
the estimated density of pixels corresponding to a given value of temperature and β, derived from
the KDE. The Pearson p value is vanishingly small.
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To test this hypothesis, I produce a second set of filaments with identical

density and β profiles, but with higher temperatures, given by the profile

T (r) = 20K + 10K(r/0.40pc). (4.13)

This shifts the observations far into the Rayleigh-Jeans tail of the modified

Planck function, where values of β are better encoded, and the observational degen-

eracy is naturally broken. The production of synthetic observations was identical to

that described above, and the PPMAP input parameters were identical, save for a

different range of temperatures, given in Table 4.3 by the “Hot” column. As before,

a KDE of the column density-weighted, line of sight mean dust temperature and β

maps for both the “correlated” and “anti-correlated” filaments is given in Figure 4.11.

PPMAP finds a stronger positive correlation in the “correlated” case. Un-

like the cold test, however, PPMAP is now able to recover a strongly anti-correlated

model. The bulge towards low temperatures and opacity indices in the “anti-correlated”

case is due to confusion between the filament and the background at the filament

boundary.

Thus I conclude that PPMAP is able to determine the presence of structures

that are positively correlated in temperature and opacity index in most cases with only

the five Herschel bands, and can correctly determine the presence of anti-correlations

in cases where β is strongly encoded in the observations. This occurs at temperatures

in excess of 20 K.

4.0.3.2 Tests including the SCUBA-2 850 µm band

In the tests previously discussed, variations in the opacity index are well en-

coded in the Rayleigh-Jeans tale of the Planck function. As PPMAP can accept

continuum observations from any waveband given colour correction tables and accu-

rate beam profiles for the correct instrument, I expand the tests to include synthetic

SCUBA-2 850 µm observations. Even at temperatures below 20 K, 850 µm lies far

from the peak of the Planck function on the Rayleigh-Jeans tail.

I rerun PPMAP on the cold “correlated” and “anti-correlated” observations

with the parameters listed in Table 4.3, expanding to include all five Herschel bands,

and the synthetic 850 µm band. The Gaussian KDEs of the column density-weighted,

line of sight mean temperature and opacity index maps for both the “correlated” and

“anti-correlated” case are shown in Figure 4.12.

The additional opacity index information encoded in the 850 µm observations

has tightened the relation in the “correlated” test, and has reversed the relation,

recovering a strong anti-correlation in the “anti-correlated” filament. I note, however,
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Figure 4.11. 2D KDE of the measured correlations between temperature and β estimates for the
Thot synthetic filament observed only with five synthetic Herschel bands. The colour scale gives the
estimated density of pixels corresponding to a given value of temperature and β, derived from the
KDE. The Pearson p value is vanishingly small.
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Figure 4.12. 2D KDE of the measured correlations between temperature and β estimates for the
Tcold synthetic filament observed with synthetic Herschel and SCUBA-2 850 µm bands. The colour
scale gives the estimated density of pixels corresponding to a given value of temperature and β,
derived from the KDE. The Pearson p value is vanishingly small.
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that the spread of values in the “anti-correlated” test is still limited to a small subset

of the full range of temperatures and opacity indices.

I also repeat the 20 K to 30 K “correlated” and “anti-correlated” tests with an

850 µm component, and present the results in Figure 4.13.

As before, the correlations are narrower in both cases when compared with the

same model without the 850 µm observations. The low temperature and low opacity

index bulge in the “anti-correlated” case is more extended, which appears to weaken

the Pearson correlation coefficient, ρ. This is due to a better fitting of the background

temperature and opacity index.

Thus I conclude that inclusion of observations longward of 500 µm is important

for correctly identifying relations between temperature and opacity index in the tem-

perature range 10 K to 20 K. Wavelengths >500 µm are still helpful in constraining

these relations at temperatures above 20 K, but are not strictly necessary.

As many dense star-forming regions are assumed to contain dust with tem-

peratures from ∼10 K to ∼50 K, inclusion of SCUBA-2 850 µm observations with five

Herschel bands should be considered a minimum requirement for applying PPMAP

with both temperature and opacity index as free parameters.

4.1 Point-Source Artefacts

While PPMAP is able to avoid many of the unphysical assumptions that must

be taken when performing MBB fitting on sub-millimetre observations, it is still lim-

ited by the need for the emission in each band to be from optically thin environments.

This assumption holds true for most structures in star forming environments, partic-

ularly when observed at longer wavelengths. However, Herschel 70 µm observations

of dense regions do become optically thick, thus violating this assumption. This

most commonly occurs for young, deeply embedded protostars. Such regions violate

the underlying PPMAP model, and lead to the creation of ring-like artefacts around

bright, dense, 70 µm point sources. An example of these artefacts can be seen in

Figure ??.

I performed a number of investigations into the precise source of these artefacts

in an attempt to derive a method for their correction or removal. As the artefacts

appear only around sources which are optically thick in shorter wavelength bands, it

is logical to assume that removal of the optically thick observations would lead to a

PPMAP model free of the artefacts. However, removal of both the 70 µm and 160 µm

bands had very little effect on the artefacts. I found that the rings appear to have

similar diameters (approximately 40′′), which might suggest they are somehow linked
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Figure 4.13. 2D KDE of the measured correlations between temperature and β estimates for the
Thot synthetic filament observed with synthetic Herschel and SCUBA-2 850 µm bands. The colour
scale gives the estimated density of pixels corresponding to a given value of temperature and β,
derived from the KDE. The Pearson p value is vanishingly small.
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to the 500 µm beam model (with a fwhm of ∼36′′), although tests without the 500 µm

band also failed to impact the rings. I do note that the intensity of the ring itself is

directly related to the relative intensity of the central point source to the background,

with fainter sources producing fainter rings. Based on this finding, the decision was

made to proceed by producing an initial PPMAP model for a target field, analyse the

severity of the artefacts, and their potential impact on further analysis and, if deemed

necessary, mask out any bright 70 µm sources in the observations, before creating a

final “clean” model. This procedure was utilised for both of the regions discussed in

the following chapters.



Chapter 5

The Taurus L1495/B213 Complex∗

In this chapter I present the results of applying the PPMAP column density esti-

mation procedure to Herschel and SCUBA-2 observations of the L1495/B213 star

forming complex in the Taurus molecular cloud. I discuss variations in the dust prop-

erties as revealed by PPMAP. I identify a large filamentary structure and discuss its

physical properties, such as its width and its line mass. I explore how these prop-

erties vary dependent on location within the filament, and how they relate to the

distribution of pre- and protostellar cores.

5.1 An Overview of the Taurus Molecular Cloud

The Taurus molecular cloud is situated 140 pc away (Elias 1978; Galli et al.

2018; Zucker et al. 2019). In optical wavelengths, the region consists of a series of

dark nebulae, due to extinction. It was first identified by Barnard (1927) in his

Catalogue of 349 dark objects in the sky. Much of the region was later reclassified by

Lynds (1962) as the L1495 complex, combining many of the smaller dark regions into

a singular entity. Figure 5.1 presents a finding chart for various regions within the

L1495/B213 complex.

Due to its close proximity to the Earth, and its large angular size (2° by

2°), the L1495/B213 complex has been extensively studied as a site of low- and

intermediate-mass star formation (Shu, Adams, and Lizano 1987; Strom and Strom

1994; Nakamura and Li 2008; Hacar et al. 2013; Palmeirim et al. 2013; Seo et al. 2015;

Tafalla and Hacar 2015; Marsh et al. 2016; Ward-Thompson et al. 2016; Punanova

et al. 2018).

∗The work presented here is published in Howard et al. (2019)
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Figure 5.1. A finding chart of the Taurus L1495/B213 complex, indicating the different regions
associated with the Barnard (1927, regions in red boxes, codified B#) and Lynds (1962, blue hatched
region, L1495) catalogues of dark nebulae.

Previous studies by Palmeirim et al. (2013), and by Arzoumanian et al. (2019),

have used Herschel observations of thermal dust emission and MBB fitting techniques

to estimate the global properties of the filament. They find that the B211/B213

filament agrees well with the general picture of a thermally super-critical filament

having an approximately 0.1 pc wide central region. There are several pre-stellar

cores (e.g. Onishi et al. 2002; Marsh et al. 2016) and protostellar objects (e.g. Motte

and André 2001; Rebull et al. 2010) embedded in the L1495 filament, suggesting that

it has fragmented along its length. However, Schmalzl et al. (2010) point out that

the B211 filament section contains no protostellar cores.

5.2 Observations of the Taurus Molecular Cloud
The primary observations for this investigation of the L1495 complex are five

SPIRE/PACS Parallel observations, taken as part of the Herschel Gould Belt Survey

in the PACS 70 µm and 160 µm and SPIRE 250 µm, 350 µm and 500 µm bands. The

observations comprise 17 individual scans, covering the areas shown in Figure 5.2.

Due to the high aspect ratio and large angular size of the L1495 complex, the

scans are not taken in the standard form of one nominal and one orthogonal scan for

each pointing. Instead, a single nominal scan is taken parallel to the long axis of the

L1495/B213 complex (shown in red), and two orthogonal scans are overlaid parallel to
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(a) PACS scan areas.

(b) SPIRE scan areas.

Figure 5.2. Herschel scan areas for the PACS and SPIRE observations. Both images show nominal
(red box, ObsID 1342202254), and orthogonal (blue boxes, ObsID 1342190616, 1342202090) scans.
Due to the fixed field of view offset between the PACS and SPIRE instruments, a supplementary
orthogonal scan (green box, ObsID 1342242047) was made to fill in an area of missing data in the
PACS observations. Background image taken from the Planck optical depth model of the region, at
5′ resolution (Planck Collaboration 2016d).
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the short axis (depicted in blue). For the SPIRE bands, these scans overlap. However,

due to the difference in field of view between the PACS and SPIRE instruments, as

discussed in Chapter 2, Section 2.0.1.5, the PACS orthogonal scans are separated by

a small angular distance. To rectify this, a supplementary scan in the same direction

is taken to fill in the missing data, and is shown in green on the diagram. The

observation identifiers, or ObsIDs, and their observation dates, are given in Table 5.1.

Table 5.1. The ObsIDs of the Herschel PACS and SPIRE scans of L1495, and their observation
dates.

Scan Direction ObsID Date

PACS and SPIRE

Nominal 1342202254 08/08/2010

Orthogonal 1342190616 03/08/2010

Orthogonal 1342202090 08/08/2010

PACS only

Supp. Orthogonal 1342242047 20/03/2012

The data reduction follows the procedure outlined in Chapter 2, Section 2.1.2.

Once the observations have been mosaicked , the zero-point corrections for the PACS

bands are generated using the method described in Chapter 2, Section 2.1.6. The

derived offsets for PACS, and those already applied to the SPIRE Level 2 products,

are given in Table 5.2.

Table 5.2. Zero-Point Offsets and global Gaussian noise estimates for PACS, SPIRE and SCUBA-2
observations of the L1495/B213 complex. I obtained the PACS and SCUBA-2 offsets through the
procedure described in Chapter 2, Section 2.1.6, while SPIRE offsets were applied as part of the
archive data reduction process to obtain Level 2 products. Gaussian noise was estimated through
manual inspection of each band, as described below.

Band Offset (MJy/sr) Noise (MJy/sr)

PACS 70 µm 4.3 5.62

PACS 160 µm 69.2 3.55

SPIRE 250 µm 34.3 1.42

SPIRE 350 µm 21.4 0.67

SPIRE 500 µm 9.4 0.41

SCUBA-2 850 µm -5.2 2.27

The SCUBA-2 850 µm supplementary observations were first published by

Buckle et al. (2015), and have been supplied pre-reduced by Emily Drabek-Maunder.

The observations are part of the JCMT Gould Belt Survey, and consist of seven 30′
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Figure 5.3. JCMT SCUBA-2 850 µm scan area for the composite observation of the L1495/B213
complex. The observations, taken as part of the JCMT Gould Belt Survey, were first published by
Buckle et al. (2015), and were supplied pre-reduced by Emily Drabek-Maunder. Background image
taken from the Planck optical depth model of the region, at 5′ resolution (Planck Collaboration
2016d).

diameter pointings, taken in the PONG1800 mapping mode. Reduction then follows

the procedure described in Chapter 2, Section 2.1.3, with specific details published

by Buckle et al. (2015). The reduced pointings are then mosaicked together into a

continuous region, the coverage of which is shown in Figure 5.3.

As discussed in Chapter 4, Section 4.1, PPMAP produces circular ring-like

artefacts around optically thick, bright 70 µm protostars. To combat this, I mask the

locations of these objects in the observations, before running PPMAP. I first identify

the locations of the sources with the FellWalker algorithm (Berry 2015). FellWalker

identifies peaks in an emission map by locating a random pixel, and “walking” up

positive intensity gradients until it reaches a maximum point; These peak positions

are recorded. The key properties for the FellWalker run are provided in Table 5.3.

Protostellar cores are then identified from the distribution of peaks by visual inspec-

tion, to avoid masking bright regions of extended emission. I then apply a circular

mask with an angular diameter of 72′′ to each remaining location. These appear as

white circles in on Figures like Figure 5.4.

Figure 5.4 shows the reduced observations for the five Herschel bands (70 µm,

160 µm, 250 µm, 350 µm and 500 µm), and the SCUBA-2 850 µm band. The observa-

tions are restricted to a 2.8° by 1.8° region, centred on 04h19m04.95s, +27°54′36.84′′

(64.770 631 33°, +27.910 232 62°), at an angle of −38° to North.

For PPMAP to properly estimate the column density of a region, accurate
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Table 5.3. The key parameters for the FellWalker algorithm used to identify bright protostellar
cores in the 70 µm Herschel observations so they could be masked prior to running PPMAP.

Parameter Value
RMSa 20

NOISEb 40
MINPIXc 7

MINHEIGHTd 40
MINDIPe 40

MAXJUMPf 4

a: The global root mean square noise level of the observation. In this instance, RMS is required by the script, but
made redundant by the NOISE parameter. b: Absolute value of the noise in the image - no walk will start from a
pixel below this value. c: The smallest number of pixels a clump can contain. d: Not considered a clump unless the
peak is larger than this value. e: Two neighbouring peaks are considered part of the same clump, and are merged,
if this value is greater than the difference of clump peaks and the minimum between them. f : The radius around a
peak, in pixels, that the algorithm checks to establish if it is only a local maximum.

Figure 5.4. Herschel PACS 70 µm and 160 µm and SPIRE 250 µm, 350 µm and 500 µm observations,
and JCMT SCUBA-2 850 µm observations of the L1495/B213 complex. White circles are masked
regions centred on bight 70 µm sources identified using FellWalker.
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Gaussian noise levels need to be given for each observation band. At present, this is

best achieved by manual estimation. In each observation I select circular regions away

from the bright structure, and take the standard deviation of the surface brightness.

The circular regions have an angular radius ∼5′. The noise estimates for each band

are presented in Table 5.2.

5.3 PPMAP Analysis of the L1495/B213 Complex

Initially, I have run PPMAP with a 12′′ resolution (6′′ Nyquist sample rate),

utilising just the Herschel observations. However, I later opt for an 18′′ resolution (9′′

Nyquist sample rate) to better compare with existing publications (see e.g. Palmeirim

et al. 2013; Arzoumanian et al. 2019). I also add the longer wavelength SCUBA-2

observations, which help to provide a tighter constraint on the value of the opacity

index, β. While all the analysis is conducted at this 9′′ pixel scale, the spine of the

filament has been identified on the earlier, higher resolution results, leading to a spine

point spacing of 6′′; this super-sampling has no effect on the results, and is discussed

in greater detail in Section 5.3.2.

I choose 12 logarithmically spaced temperature bins, 7.0 K, 8.2 K, 9.6 K, 11.3 K,

13.2 K, 15.5 K, 18.1 K, 21.2 K, 24.9 K, 29.1 K, 34.1 K and 40.0 K. Each bin represents

the dust temperature in a small range around the given value, i.e. the 7.0 K bin en-

compasses dust with temperatures between 6.5 K and 7.6 K. The temperature range

from 7.0 K to 40.0 K is chosen to adequately sample the distribution of dust temper-

atures within the L1495/B213 complex. The complex is well known as a site of low

mass star formation, and thus not subject to heating from internal OB stars. I choose

four linearly spaced values of β, 1.0, 1.5, 2.0, 2.5, and utilise the standard PPMAP

Gaussian prior on β, with a mean value of 2.0, and a narrow standard deviation of

0.25, to aid in lifting the temperature/β degeneracy. The range of β values is chosen

to broadly cover the range of expected values. The full PPMAP input parameters

are shown in Table 5.4.

The L1495/B213 results are produced by running PPMAP on the Cardiff

University Advanced Research Computing Facility (ARCCA) Raven super computer.

5.3.1 Basic PPMAP products

As I discuss in Chapter 3, Section 3.1.4.1, it is difficult to present the full

results of the 4D hypercube of column densities that PPMAP produces. Therefore, I

choose to marginalise out first the β dimension, and then the temperature dimension.



122 Chapter 5. The Taurus L1495/B213 Complex

Table 5.4. The PPMAP input parameters for the L1495/B213 field. Parameters with list values
are shown here separated by commas, but are to be separated by whitespace when running PPMAP.
A description of each parameter is given in Chapter 3. The Herc850.txt colour correction table is
given in Appendix A.

Parameter Value
gloncent 64.77063133
glatcent 27.91023262
fieldsize 2.8, 1.8

pixel 9.0
dilution 0.3

maxiteration 10000
distance 140.0
kappa300 0.1
nbeta 4

betagrid 1.0, 1.5, 2.0, 2.5
betaprior 2.0, 0.25

Nt 12
temperature 7.0, 40.0

ncells 40
noverlap 20
ccfile Herc850.txt
nbands 6

Figure 5.5 shows slices from the resultant cube of column densities in different line-of-

sight temperature bins when the hypercube is summed along all β. The colour bar is

the same for all slices, and gives the column density of molecular hydrogen, assuming

a gas-to-dust ratio of 100, and a mean molecular weight of H2 of 2.8. However, I again

stress that the model PPMAP produces is one that traces optical depth derived from

thermal dust emission.

Figure 5.5 indicates that dust within the filament is cold (≤15.0 K). The

coldest dust (∼8.2 K) is concentrated in a narrow region close to the centre of the

filament. The temperature bin centred at 7.0 K contains very little dust, except for a

few dense knots located along the filament. The model contains very little dust in the

filament spine at ≥18.1 K. This view is consistent with results from the Green Bank

Ammonia Survey (GAS) observations, which estimate the kinetic gas temperature of

the L1495-B213 filament to be between 8 K and 15 K (Seo et al. 2015).

In contrast, the more diffuse regions surrounding the filament have large quan-

tities of dust between 11.3 K and 18.1 K. This indicates that the surrounding cloud

is warmer than the filament itself. Due to the high pass filtering and critical density

thresholds required, GAS estimates of the temperature of material in the surroundings

are not available. An area of much higher temperature (∼25 K) is present around the
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Herbig Ae/Be star V892 Tau, marked by the red star marker. This object is known

to be producing X-ray flares (Giardino et al. 2004), and is presumably a source of

local heating.

The temperature split between cold material (<16 K) and warm material

(>16 K) may suggest that a two temperature SED model could be used to esti-

mate the column density, temperature and opacity index of L1495, rather than a

PPMAP model. However, the two estimates of temperature for each pixel that would

be returned would still suffer from similar issues as a single temperature MBB fitting

algorithm; these temperatures would be line of sight averages, and all other informa-

tion regarding temperature variations would be lost. In particular, the granularity of

being able to see the central spine of the filament grow through adjacent temperature

slices would not be achievable. Furthermore, a two temperature SED model is flux

weighed rather than mass weighted as PPMAP’s results are. The effects of such a

distinction are discussed in Chapter 7. Finally, a two temperature SED would seek to

fit four variables (column density, two temperature values, and an opacity index) from

six data points at each pixel, leading to a very few degrees of freedom, and increasing

the chances of overfitting the model. PPMAP is able to somewhat circumvent the

degrees of freedom problem, as discussed in Chapter 3, Section 3.1.5.

While PPMAP does reveal substructure within the filament that is otherwise

not visible in the maps presented by Palmeirim et al. (2013), the resolution of this

model is too coarse to draw a direct comparison with the fibres identified by Hacar

et al. (2013). Furthermore, the dust temperature slices are too widely spaced and too

sparse to perform a search for temperature coherent structures analogous to velocity

coherent fibres.

When I instead marginalise out the temperature dimension, leaving only the

distribution of column densities in different β slices, I produce the four images shown

in Figure 5.6. As with Figure 5.5, the colour bar gives the derived H2 column density

for all four panels, shown on the same scale. From this, I deduce that the surrounding

medium has a higher mean opacity index, with β̄ & 1.7, while dust near the filament

spine has a value of β̄ . 1.5. Only a very few dense regions contain dust in the

β = 1.0 slice.

Almost no dust is found in the highest, β = 2.5 slice, apart from a small

region around V892 Tau. The dust here may be undergoing physical changes due to

the strong local radiation field. The straight-edged shapes present in this slice arise

because, in tiles where the input data contains insufficient information, PPMAP

adopts a nearly uniform column density. The column density discontinuities are not

statistically significant (above the 1σ uncertainty level).
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Figure 5.5. The distribution of dust, converted to H2 column densities, in 12, logarithmically
spaced line of sight temperature bins for the L1495/B213 complex. These maps are obtained by
marginalising out the opacity index dimension of the PPMAP hypercube. The red star marker
indicates the position of the Herbig Ae/Be star, V892 Tau.
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Figure 5.5 (cont.). The distribution of dust, converted to H2 column densities, in 12, logarithmi-
cally spaced line of sight temperature bins for the L1495/B213 complex. These maps are obtained
by marginalising out the opacity index dimension of the PPMAP hypercube. The red star marker
indicates the position of the Herbig Ae/Be star, V892 Tau.
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Figure 5.5 (cont.). The distribution of dust, converted to H2 column densities, in 12, logarithmi-
cally spaced line of sight temperature bins for the L1495/B213 complex. These maps are obtained
by marginalising out the opacity index dimension of the PPMAP hypercube. The red star marker
indicates the position of the Herbig Ae/Be star, V892 Tau.
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Figure 5.6. The distribution of dust, converted to H2 column densities, in 4 linearly spaced line of
sight opacity index bins for the L1495/B213 complex. These maps are obtained by marginalising out
the temperature dimension of the PPMAP hypercube. The red star marker indicates the position
of the Herbig Ae/Be star, V892 Tau.
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Figure 5.7 is the total column density map I obtain by marginalising out both

the temperature and β dimensions. “Marginalising out” is the process of lowering the

dimensionality of a distribution by summing the distribution along one or more of

its dimensions in order to reduce the complexity of the data. The underlying mathe-

matical process of marginalising out dimension from PPMAP models is discussed in

Chapter 3, Section 3.1.4. I identify the spines of the B213 and B211 filaments with

the DisPerSE algorithm (Sousbie 2011; Sousbie, Pichon, and Kawahara 2011), and

plot them as the red and blue lines, respectively. I adopt a persistence threshold of

40× 1020 H2 cm−2, and utilise the skelconv option to join the smaller sub-spines

into larger structures. For this, I choose a smoothing length of 5 pixels, and trim

branches with values below 45× 1020 H2 cm−2. I enable the assemble option with

an acceptance angle of 60°. I manually combine the spines into a single structure,

and use an algorithm provided by Sümeyye Suri to trace the spine from one end to

the other, placing the points in a sequence that followed the full length of the fila-

ment. The spine is identified with a 6′′ sample rate because this is the resolution at

which earlier results from PPMAP have been analysed, and around which many of

my analysis tools have been constructed. The 18′′ (9′′ Nyquist sampled) results are

resampled to 6′′ in order to identify the spine, so that the tools continue to work. This

is only important for locating the spine points, and the remainder of the analysis is

conducted at the 9′′ sample rate. While this oversamples the number of points along

the filament, none of the results presented here depend upon a physical distance along

the spine.

Figure 5.8 shows the associated Point Process Statistical Degeneracy (PPSD)

for the L1495/B213 complex. The spine and inner region of B211/B213 filament,

and the head of L1495, have a PPSD ≥ 5. This indicates that these regions are well

constrained. The background regions are less well constrained, with a PPSD ∼ 1.

Figure 5.9 and Figure 5.10 show maps of the line-of-sight mean dust tempera-

ture and opacity index, respectively. These are produced via the method outlined in

Chapter 3, Section 3.1.4.2. They show that the mean temperature decreases sharply

towards the spine of the filament, while β shows a more shallow decrease. While the

sharp temperature decrease is almost certainly due to attenuation of the ambient ra-

diation field, the shallow β decrease suggests another process has been at work. This

might be due to processes occurring in the accretion shock at the filament boundary.

Palmeirim et al. (2013) provide evidence for such a shock, noting that they found in-

fall velocities between 0.5 km s−1 and 10 km s−1, and a sound speed of just 0.19 km s−1.

This implies a Mach number between 2.6 and 5.3.

Figure 5.9 also indicates that the temperature is lower on the southern side
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Figure 5.7. Total H2 column density, derived from the PPMAP dust model. This map is obtained
by marginalising out both the temperature and opacity index dimensions. The red and blue lines
denote the spines of the B213 and B211 sub-filaments, respectively.

Figure 5.8. Map of the Point Process Statistical Degeneracy (PPSD, see Chapter 3, Section 3.1.4.3)
for the L1495/B213 complex. The uncertainty hypercube used to derive the map of PPSD is shown
in Appendix B.
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Figure 5.9. The mean line of sight dust temperature, T̄D at every pixel, obtained by marginalising
out the opacity index dimension and then taking a weighted average of the temperature bins of the
hypercubes, with the H2 column density in each bin as the weighting factor.

Figure 5.10. The mean line of sight dust opacity index, β̄ at every pixel, obtained by marginalising
out the temperature dimension and then taking a weighted average of the opacity index bins of the
hypercubes, with the H2 column density in each bin as the weighting factor.
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of the filament when compared with the northern side. This may point towards

a difference in the strength of the ambient radiation field. If I take TD ∝ U
1/(4+p)
RAD ,

where URAD is the density of the ambient radiation field, and p ≈ 2, then URAD;South ∼
0.67URAD;North.

5.3.2 Analysis of B211/B213

Once I define and order the spine of the filament, I analyse the filament struc-

ture in a more quantitative way. I take all 1100 discrete spine points, each separated

from the neighbouring points by approximately 0.004 pc, and use them to fit a cubic

spline to the filament. This allows me to identify the local tangent at each point.

I then sample the column density, along a line orthogonal to the local tangent

of each spine point, at discrete values of the impact parameter, b. The sample rate is

set to that of the PPMAP maps (9′′, or ∼0.006 pc), out to a distance of 1 pc either side

of the spine. Thus, for each spine point, I produce an array of 329 column densities

corresponding to a 2 pc-long cut across the filament.

I exclude 68 cuts which contain poor or missing data due to the protostellar

masking, or which run off the edge of the model, and thus contain regions with edge

effects. This leaves 1032 cuts, which are used to analyse the filament.

5.3.2.1 Global Median Profile

To better compare with established literature (e.g., Arzoumanian et al. 2011;

Palmeirim et al. 2013; Arzoumanian et al. 2019), I first produce an average cut across

the filament by taking the median column density at each impact parameter over all

1032 cuts to produce a single cut of median values at each value of b. I also produce an

array of the Median Absolute Deviation (MAD, analogous to the standard deviation

for a mean), and divide it by the square root of the number of cuts to produce the

error on the median (MAD
NH2

:
(b)

= MAD/
√
ncut, where ncut = 1032 ).

I choose to use a model of a cylindrically symmetric filament with the H2

column density at impact parameter, b, from the spine of the filament given by a

Plummer-like profile

NH2(b) = N0

{
1 +

(
b

r0

)2
}−(p−1)/2

+NB, (5.1)

N0 = n0r0B
(

1

2
,
p− 1

2

)
sec i. (5.2)
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Table 5.5. Values of the fitted parameters and their uncertainties produced by fitting Equation 5.1
to the cut of median column densities for L1495.

Parameter North South
N0/(1× 1021 H2 cm−2) 6.38± 0.09

r0/(0.01 pc) 2.80± 0.14 1.67± 0.06
p 2.02± 0.05 1.73± 0.02

NB/(1× 1021 H2 cm−2) 0.28± 0.03 0.13± 0.04

N0 represents the column density value on the spine of the filament, NB is the back-

ground column density, B is the Euler Beta Function (Casali 1986), and i is the

inclination of the filament to the plane of the sky, assumed in this case to be 0°.
I apply this function to the median column density cut using the lmfit Python

package (Newville et al. 2014), with MAD
NH2

:
(b)

as a constraint on the error of the

sample. To account for variations in the filament between the north and south side, I

choose to fit two values of each parameter r0, p, and NB; one set is fit using data from

the north side of the filament, while the other uses data from the south side. I note,

however, that the function I apply is continuous across both sides of the spine, and

produces a single value of N0 at the central spine point. Following Palmeirim et al.

(2013), I constrain my fitting to sample points ≤0.4 pc to either side of the spine.

Table 5.5 gives the fitting parameters and their uncertainties. Figure 5.11(a)

shows the cut of median column densities with impact parameter as light blue and

pink circles for the north and south side of the filament, respectively. The yellow

error bars represent the MAD at each impact parameter; the MAD
NH2

:
(b)

is too small

to visualise on the plot. The dashed blue and red lines represent the fitted profile

extending to the north and south of the filament.

Figure 5.11 (b) and (c) show the median filament profiles of the line-of-sight

mean dust temperature and line-of-sight mean β. I shall refer to these quantities TD
:

(b)

for the median profile of mean dust temperatures, and β
:

(b) for the median profile of

mean β values. The profiles are produced from the maps shown in Figure 5.9 and

Figure 5.10 in the same way as the median column density cuts. Both TD
:

(b) and

β
:

(b) decrease as b → 0. However, TD
:

(b) decreases much more steeply, and with a

much narrower minimum, than β
:

(b). Therefore, while they exhibit similar general

trends, the two quantities are not significantly correlated. The rise in values of β
:

(b)

immediately around b = 0 is not statistically significant, and is likely due to PPMAP

being unable to break the observed temperature/β degeneracy in the coldest, densest

parts of the filament, which are not as well sampled in the Rayleigh-Jeans regime.

I estimate the width of the median filament profile, by taking the fwhm of

the fitted Plummer-like profile. I refer to this quantity as fwhmPMP, where the PMP
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Figure 5.11. Median profiles of the (a) column density, NH2(b), (b) mean line of sight dust
temperature, TD(b), and (c) mean line of sight dust opacity index, β(b), for the L1495/B213 complex.
These parameters are given as a function of impact parameter from the spine of the filament, b.
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subscript is an acronym of “Plummer-like Median Profile”, i.e., the Plummer-like fit

to the median cut of column densities. The fwhm of a generic Plummer-like profile

is given by the equation

fwhm = 2r0

√
0.5−2/(p−1) − 1. (5.3)

I take the average of the north and south values of both r0 and p (i.e. r̄0 = 0.022pc

and p̄ = 1.88) and derive a value of the fwhmPMP of (0.087± 0.003) pc. I calculate

the line density of the median profile, µPMP, by integrating the median Plummer-like

fit out to b = 0.4 pc. The line density of an axially symmetric Plummer-like profile is

µ = 2

∫ b=bmax

b=0

N0

{
1 +

(
b

r0

)2
}−(p−1)/2

db. (5.4)

This produces a value of µPMP = 26.8 M� pc−1, assuming the value of N0 presented in

Table 5.5. N0 = 6.4× 1021 H2 cm−2 is a factor of ∼ 2.5 less than the value published

in Palmeirim et al. (2013), N0 = 16×1021 H2 cm−2. Similarly, Palmeirim et al. (2013)

derive a line mass of 54 M� pc−1, nearly double the value I recover.

However, the standard method of estimating filament widths is to calculate

the fwhm of a Gaussian function which is fit to the median filament profile in a

narrow region around b = 0 pc. Thus, to compare my results with the literature

values, I convert my value for fwhmPMP into an equivalent fwhmGMP (where GMP

stands for Gaussian Median Profile). This is done by equating second derivatives of

the Plummer-like and Gaussian functions at the peak, giving

fwhmGMP =

(
8 ln 2

p− 1

)1/2

r0. (5.5)

This produces a value of fwhmGMP = 0.056 ± 0.002 pc, which lies at the low end

of the distribution of filament widths published in Arzoumanian et al. (2019), and is

nearly a factor of two smaller than the width of the L1495/B213 complex presented

in Palmeirim et al. (2013).

5.3.2.2 Variation Along the Filament Length

While a single, median cut defining the entire filament can provide useful global

parameters, it provides no information as to the variations along the filament length.

Therefore, to evaluate these variation, I returne to the 1100 individual column density

cuts across L1495/B213, and utilise a modified version of the FilChaP algorithm

(Suri et al. 2019) to fit many Plummer-like models along the length of the spine.

Individual cuts often have a poor signal to noise, and are not well fit by a Plummer-like
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model, so FilChaP bundles adjacent cuts together, which produces a local median

profile for each bundle in a similar method to deriving the global median profile

above. I set the number of cuts in a bundle to 12, which means adjacent bundles

are separated by ∼0.05 pc (∼72′′). At this stage, the 68 corrupted cuts are again

removed. This means that some bundles contain less than 12 cuts, but, by removing

the cuts after the bundling process I ensure that each bundle is spaced equally along

the filament. This process produces 92 local median profiles.

Each bundle is then fit independently with a Plummer-like profile. Due to

the lower signal to noise in the bundles compared to the global median profile, I fix

the value of the Plummer exponent to p = 2. In addition, FilChaP automatically

performs a background subtraction, thus setting the value of NB = 0, and does not

account for variation between the north and south sides of the filament. Thus equation

5.1 becomes

NH2(b) = N0

{
1 +

(
b

r0

)2
}−1/2

, (5.6)

where N0 becomes n0r0π sec i. The algorithm returns only values of N0 and r0 for

each fitted bundle.

As before, I uses these parameters to calculate a fwhm and a line density, µ,

for each bundle. Figure 5.12 (a) shows the variation in the fwhm along the filament

as coloured circles placed at the central position of each of the 92 bundles. The me-

dian and MAD of the distribution of widths is fwhm
:

= 0.08 ± 0.02 pc, while the

average uncertainty an individual width estimate is 0.005 pc. Figure 5.12(b) indicates

the value of N0 for each bundle, with a median and MAD of N0
:

= (4.93±1.46)×1021

H2 cm−2. As with the width estimates, the average uncertainty on individual esti-

mates of the central column density is an order of magnitude smaller than the MAD

of the distribution of all central column densities, with a value of 0.2× 1021 H2 cm−2.

Both these median values are consistent with the values I derive from the median

filament profile.

Figure 5.12(c) gives the line density at every spine point, calculated from

equation 5.4. The median and MAD of the distribution of line densities is µ: =

17.8±4.4 M� pc−1. I compare this value with the critical line density above which an

isothermal cylinder can no longer be supported against gravity by thermal pressure

alone,

µc =
2c2

s

G
, (5.7)
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Figure 5.12. Results from using the FilChaP algorithm to investigate variations in (a) fwhm,
(b) central column density, N0, and (c) line density, µ, along the length of the filament. The value
of each parameter at the location of each FilChaP bundle is given by the colour of each circle.
Red outlines around circles in (c) indicate bundles with a line density exceeding the nominal critical
value of 16 M� pc−1 for a gas temperature of 10 K. Panel (d) shows the positions of pre-stellar cores
taken from Marsh et al. (2016), with vertical dashed lines in (c) and (d) highlighting the location of
each core. Panel (e) indicates the degree of resolved sub-structure, S, identified by FilChaP.
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where cs is the isothermal sound speed. Palmeirim et al. (2013) estimate cs = 0.19

km s−1 from CO observations, which corresponds to a kinetic gas temperature of

10 K, and hence µc =16.2 M� pc−1. With these values the filament appears to be

trans-critical. We note that the PPMAP estimates indicate that the mean line-of-

sight mass-weighted dust temperature of the filament is ∼14 K, and is higher in the

surroundings, but the gas and dust temperatures are not necessarily equal.

In Figure 5.12(c), I highlight bundles with µ > µc with a red outline. There

is a clear break close to the junction of the B213 and B211 sub-filaments, with the

B213 filament containing far fewer super-critical bundles than B211. The median

line density for bundles in the B213 filament is µB213
: = 13.4 M� pc−1, while for B211

µB211
: = 19.9 M� pc−1.

To investigate this further, in Figure 5.12(d) I plot the locations of the pre-

stellar cores from Marsh et al. (2016) as black triangles, and place vertical lines on

both panels (c) and (d) to mark the position of each core. There are only nine pre-

stellar cores on or near the spine of the B213 sub-filament, while there are 19 on

the B211 sub-filament. In addition, the positions of these cores align well with the

positions of the super-critical bundles. There are 9 masked protostellar objects near

the B213 filament which do not appear to match well with super-critical regions.

However, in the process of masking, flux, and thus column density, is removed from

the map, so I cannot draw conclusions from their positions, other than to note that

B213 may be in a more advanced state of evolution.

These differences between the two sub-filaments can be explained if I consider

turbulent mass accretion (Clarke et al. 2017). This suggests that the line density of the

filament has never been uniform, and that some regions have reached a super-critical

point before others. Fragmentation occurs in regions that become super-critical; pre-

stellar cores then form, and grow to become protostellar objects. The time scale

for this evolution is approximately 0.5 Myr (e.g., Enoch et al. 2008). As these cores

evolve, they will deplete mass from the filament as they draw material along its

length, potentially reducing the line density in neighbouring regions. Assuming an

infall rate onto the filament of ∼32 M� pc−1 Myr−1 (Clarke, Whitworth, and Hubber

2016; Palmeirim et al. 2013), the condensation time scale is comparable to the time

scale for replenishment of the line density.

Thus I infer that B213 initially grew more rapidly to a super-critical state, and

thus fragmented and evolved faster. It is now in a state of replenishment. Conversely,

B211 grew more slowly, and is now at the stage where it is beginning to fragment

into pre-stellar cores.

To further test this inference, for each of the 24 pre-stellar cores, I identify
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Figure 5.13. Kernel smoothed PDFs of the line masses of bundles closest to each of the pre-stellar
cores that lie along the spine of the filament (from Marsh et al. 2016) in red, and of all other bundles,
excluding those closest to the cores in blue. Vertical blue and red dashed lines indicate the median
line density of each distribution.

the nearest bundle and note its line density. The red curve in Figure 5.13 shows the

kernel-smoothed PDF of those values, and the red vertical dashed line indicates the

median line density of the distribution, µ:red = 25.5 M� pc−1. Due to the positions of

the cores, a single bundle is occasionally closest to two separate cores. In this instance,

it is counted twice in the distribution. The blue curve shows the distribution of line

densities from the remaining 72 bundles, with the blue vertical dashed line providing

a median value of µ:blue = 16.8 M� pc−1. I perform a Kolmogorov-Smirnov (KS)

two-sample test to determine the distance between the two distributions, and find

DKS = 0.58. This indicates that the two distributions are well separated, while

the probability that they are drawn from the same underlying distribution is just

pKS = 4× 10−6. Thus, I conclude that the prestellar cores lie, almost exclusively, on

regions of the filament that are super-critical.

FilChaP also returns a substructure parameter, S, for each bundle. The algo-

rithm obtains this by counting the number of secondary maxima and inflection points

in a bundle. Thus, it is a measure of the 2D plane-of-sky resolved sub-structure. It can

be assumed that some of the internal 3D sub-structure is lost due to projection effects.

Figure 5.12(e) gives the substructure value of each bundle within the filament. Clarke
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et al. (2018) suggests, on the basis of simulations, that internally sub-structured fil-

aments can be supported against collapse, even as their line density increases above

the critical limit due to the velocity dispersion between the sub-structured elements.

This effect could appear in my analysis of the L1495/B213 complex as a correlation

between S, the bundle line density, and the bundle fwhm.

Figure 5.14 displays the relationship between each of the returned FilChaP

parameters, or their derivatives. Below each plot, the Pearson correlation coefficient,

rP, and Pearson p-value, pP, is given. rP gives the degree to which two parameters are

correlated, with a value of ±1 indicating perfect positive/negative correlation, and a

value of 0 indicating that the parameters are uncorrelated, while pP is the probability

that a correlation of rP is found in a data set containing no correlation.

I find no correlation between S and any of the remaining parameters, and thus,

I cannot determine if the resolved 2D sub-structure in the filament is supporting the

structure against collapse. I also find no correlation between N0 and fwhm, nor

between µ and fwhm. However, I find a strong, positive correlation between N0 and

µ, with an rP = 0.874, and a vanishingly small pP. This indicates that the the low

values of µ, when compared with the literature, are largely due to lower estimates of

the central column density, N0.

5.3.2.3 Fitting with p = 4

As noted in Section 5.3.2.1, and in works such as Arzoumanian et al. (2011),

Palmeirim et al. (2013), and Arzoumanian et al. (2019), when fitting to the global

median filament profile, a value close to p = 2 is often recovered. However, an

isothermal cylinder in hydrostatic equilibrium, has a p = 4 profile (Ostriker 1964).

Plummer-like profiles can be subject to a degeneracy, with the effect of small

values of p and r0 being mimicked by large values of p and r0 (Suri et al. 2019), if the

dynamic range of the profile is limited. This is true, in general, for the L1495/B213

filament, where N0/NB ∼ 20. Therefore, while FilChaP does not allow the value

of p to vary during the fitting process, I have rerun the algorithm with an imposed

value of p = 4. The result is, on average, a much better fit, with a median reduced

χ2
p=4 = 8.35 for all bundles. This is in contrast to the much higher value of the median

reduced χ2
p=2 = 29.23 obtained with p = 2. This may suggest that the filament is

much closer to an ideal model of a hydrostatic, isothermal cylinder than previously

believed. This could be due to efficient CO cooling inside the accretion shock at the

boundary of the filament, as proposed by Whitworth and Jaffa (2018).

While a p = 4 profile is a better fit to individual bundles, a value of p̄ = 1.88

is found on the global median profile. This result may appear to be a contradiction.
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Figure 5.14. Relationship between each of the four parameters derived from the FilChaP analysis;
central column density, N0

H2
, fwhm, line density, µ, and resolved sub-structure parameter, S. At the

top of each column, a histogram shows the distribution of each parameter, along with the median
and MAD.
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However, this can be explained as the global median profile is an average of all 1032

individual cuts across the filament, which will, in principal, each have their own

value of N0 and r0. Slight variations to either side of the spine, or any resolved sub-

structure, have the effect of broadening the profiles, and thus reducing the apparent

value of p. The FilChaP bundles are much smaller regions, which individually will

suffer less from this effect.

In fitting the bundles with a value of p = 4, I recover a value of r0
: = 0.063±

0.023 pc. The larger value of the Plummer-like exponent modifies the equation for

the fwhm, giving

fwhm = 2
(
22/3 − 1

)1/2
r0. (5.8)

The median value of the widths of the bundles is fwhm
:

= 0.097±0.036, which

is consistent with both the values recovered from the FilChaP p = 2 fitting, and the

global median profile fitting. This is because a p = 4 Plummer-like profile drops off

much more steeply than a p = 2 profile for r > r0.

5.3.3 Comparison with Herschel Observations

As discussed in Chapter 4, I note the importance of verifying that PPMAP

produces a model that is a good fit to the observation data, both on a local, pixel-

by-pixel scale, and on a global scale through the Goodness of Fit parameter, G. I

also note that it is vital to ensure that the PPMAP results are at least as good

a fit, if not better, than those of a standard MBB fitting routines. To facilitate

this, I first produce a column density and temperature map from a MBB routine

modified with the resolution recovery technique described in Palmeirim et al. (2013).

I use a fixed, global value of β = 2 as described in their work, but substitute the

Herschel observations I use to produce my PPMAP models. This is done to produce

results as close to the published work as possible, while making use of the updated

HIPE pipelines, and allowing a better comparison between the PPMAP and the MBB

technique.

Figure 4.1 shows the recovered Herschel observations for both PPMAP and

the MBB fitting routine. These are produced via the method described in Chapter 4,

Sec 4.0.1, for the 160 µm, 250 µm, 350 µm and 500 µm bands. I exclude the 70 µm and

850 µm bands, as they do not inform the MBB fit, and thus a comparison for those

bands cannot be drawn. The left-most column shows synthetic observations derived

from PPMAP. The centre column are the true Herschel observations, while the right-

most column are the synthetic observations recovered from the MBB products.
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Table 5.6. Goodness of Fit parameter, G, for synthetic observations recovered from the models
produced by PPMAP and a MBB fitting technique. Columns titled as “Whole Map” denote the
values for the entire region, while columns labelled “Filament Region” provide values for a 1 pc
radius strip around the B211 and B213 sub-filaments.

Whole Map Filament Region
Band GPPMAP GMBB GPPMAP GMBB

160 µm 0.23 1.05 0.13 1.01
250 µm 0.11 1.02 0.10 0.92
350 µm 0.08 0.37 0.07 0.38
500 µm 0.08 0.09 0.08 0.10

PPMAP produces a good fit to the data in both the 160 µm and 250 µm bands

in all regions of the observations, while the MBB technique significantly overestimates

the contribution from the flux at shorter wavelengths. At 350 µm and 500 µm, the two

techniques are more comparable, though PPMAP still performs better in the diffuse

regions.

The Goodness of Fit parameter for each band and technique is presented in

Table 5.6, for both the entire observable region, and for a 1 pc radius strip around

the B211 and B213 sub-filaments. In all cases, PPMAP reproduces the observations

better than the MBB fitting routine. This is particularly noticeable in the shorter

wavelength bands and in the denser regions surrounding the filament.

5.4 Conclusions

I use PPMAP and Herschel observations that benefit from the final reduction

pipeline to produce a dust model of the Taurus L1495/B213 complex. This gives

an estimate of the H2 column density, as inferred from dust column density with a

gas-to-dust ratio of 100, at every sky position, and spanning 12 temperature bands

and four opacity index bands. The results indicate that the fwhm and line density,

µ, of the filament are smaller than previously published values. In addition, they also

provide evidence that the temperature falls sharply within the filament structure, and

that there is a shift in values of β between dust within the filament and dust in the

surrounding cloud.

I conclude that much of the dust within the filament has a mean line-of-sight

temperature ≤16 K, while the surrounding medium has a dust temperature of ≥16 K.

Only a single region near to a Herbig Ae/Be star shows significant quantities of dust

at temperatures above 18 K. The range of temperatures populated in the model is

broader than those returned by standard MBB techniques.
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Dust within the filament has a mean line-of-sight opacity index of β ≤ 1.5,

while the surrounding cloud generally displays β ≥ 1.7. It is, therefore, likely that

there is a change in the dust properties at the filament boundary, which could be due

to changes such as those found in an accretion shock, or due to mantle growth around

grains.

A median cut across the filament is well fit by a Plummer-like profile, with an

exponent of p̄ = 1.88, and an inner radius of r̄0 = 0.022 pc. This gives an average

fwhmPMP of the filament of 0.087 pc. While this appears to agree with previously

published widths of 0.09 pc for the L1495/B213 complex, those widths are obtained

by fitting a Gaussian profile to the inner portion of the filament. For comparison, I

convert the Plummer-like fwhm to one for an equivalent Gaussian, which produces

a value of fwhmGMP = 0.056 pc, a reduction in width of almost 1/2.

The shallow Plummer-like exponent of p ∼ 2 that is returned by fitting the

median filament profile is likely a consequence of the smoothing of resolved sub-

structure, and confusion between variations along the filament length. I find that

fitting Plummer-like models to smaller bundles along the spine shows that a value of

p = 4 produces a better fit to the data.

Additionally, I find that the line density of the filament has a median value

of just 17.8 ± 4.4 M� pc−1, three times smaller than the 54 M� pc−1 published in

Palmeirim et al. (2013). I assume the canonical value of the critical line density,

as determined from a gas temperature of 10 K, and find only small, local sections

of the filament are super-critical, and prone to collapse under gravity alone. These

regions agree closely with the positions of pre-stellar cores, which suggests that local

variations in density, rather than global ones, are responsible for determining where

and how filaments fragment into cores.

Finally, I determine that PPMAP produces a much better fit to the observed

data than typical MBB fitting techniques, and that the ability to distinguish dust

temperatures along the line of sight is vital for obtaining an accurate column density

of a region.





Chapter 6

The Ophiuchus L1688 and L1689

Clouds

In this chapter I present the results of applying the PPMAP column density esti-

mation procedure to Herschel and SCUBA-2 observations of the L1688 and L1689

sub-regions of the Ophiuchus molecular cloud. I compare variations in the dust prop-

erties between the two sub-regions as revealed by PPMAP. I identify a network of

filamentary structures within the sub-regions, and present a detailed analysis of their

physical properties. I explore the distribution of mass within each of the sub-regions,

and link it to the mass associated with prestellar cores and dense, compact clumps. I

examine the impact of the S1 and HD147889 pre-main sequence stars on the filaments

in the L1688 sub-region.

6.1 An Overview of the Ophiuchus Molecular Cloud
The Ophiuchus molecular cloud complex is a star-forming region commonly

associated with the Gould Belt. As with the Taurus L1495/B213 complex, the Ophi-

uchus complex is estimated to lie at an average distance of ∼140 pc from the solar

system (Mamajek 2008; Ortiz-León et al. 2018). Lynds (1962) classified a num-

ber of sub-regions within the complex, describing two large concentrations of mass

(L1688 and L1689) and a number of additional, lower density streamers which extend

eastwards from those clumps. Figure 6.1 presents a finding chart for the two mass

concentrations. Recent VLBA and Gaia observations have verified the distance to

the cloud complex, and have indicated that L1688 lies ∼5 pc to ∼10 pc closer than

L1689 (138.4 pc for L1688, and 144.2 pc for L1689)(Ortiz-León et al. 2017; Ortiz-León

et al. 2018).

145



146 Chapter 6. The Ophiuchus L1688 and L1689 Clouds

Figure 6.1. A finding chart of the Ophiuchus molecular cloud complex, indicating the different
regions associated with the Lynds (1962) L1688 and L1689 catalogue dark nebulae. L1688 is further
sub-divided into the clumps Oph A, Oph B, Oph C, Oph E, and Oph F, while L1689 is split into
three regions, L1689-North, L1689-South, and L1689-East.
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The large scale shape of the cloud complex is suspected to be largely due to

feedback from the Upper Scorpius OB2 association (e.g., Loren and Wootten 1986;

Motte, Andre, and Neri 1998), which is located west of the region, sweeping up ma-

terial, enhancing the density of L1688 and L1689, and increasing their star-formation

rates (particularly for the L1688 sub-region, Nutter, Ward-Thompson, and André

2006), while driving the low density streamers to the north and east. The L1688

and L1689 sub-regions themselves are typically subdivided into a number of visually

distinct regions. Loren, Wootten, and Wilking (1990) identifies six dense gas clumps

(Oph A to Oph F) within L1688, while L1689 is split into three clumps, which are

given the identifiers L1689-East, L1689-North, and L1689-South (Loren, Wootten,

and Wilking 1990; Pattle et al. 2015). These sub-divisions are indicated on Figure

6.1.

The streamer and hub nature of the cloud was first identified by Loren (1989),

who indicated that the streamers and denser sub-regions resembled tangled cobwebs,

while recent work has identified filaments within L1688 and L1689 (Ladjelate et al.

2020). Despite this, many studies of the Ophiuchus molecular cloud complex focused

directly on the formation of pre- and protostellar cores without relating them to

filaments, as typically done in other fields. These studies have indicated that L1688

has a higher star formation rate than L1689 (Nutter, Ward-Thompson, and André

2006; Pattle et al. 2015; Ladjelate et al. 2020), with L1689 presenting lower activity

than many Gould Belt regions (André et al. 2010; Könyves et al. 2015). As with

many nearby star forming regions, polarimetry data indicates a magnetic field which

is initially parallel to low density striations in the dust, but which switches to being

perpendicular to high density filaments, indicating that these structures may be being

fed along magnetic field lines, as is proposed for the Taurus L1495/B213 complex

(Soler 2019).

This thesis marks the first detailed investigation of the filament properties

within the L1688 and L1689 sub-regions.

6.2 Observations of the Ophiuchus Molecular Cloud

The primary observations for the investigation of the Ophiuchus Molecular

Cloud were five SPIRE/PACS Parallel observations, taken as part of the Herschel

Gould Belt Survey in the PACS 70 µm and 160 µm, and SPIRE 250 µm, 350 µm and

500 µm bands. The observations comprised 10 individual scans, covering the areas

shown in Figure 6.2.
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(a) PACS scan areas.

(b) SPIRE scan areas.

Figure 6.2. Herschel scan areas for the PACS and SPIRE observations of the Ophiuchus molecular
cloud. Both images show nominal (red box, ObsID 1342205093), and orthogonal (blue box, ObsID
1342205094) scans. Background image taken from the Planck optical depth model of the region, at
5′ resolution (Planck Collaboration 2016d).
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Unlike the L1495/B213 region, the Ophiuchus Molecular Cloud could be ob-

served with a single pair of nominal (red) and orthogonal (blue) scans. The ObsIDs

and scan dates are given in Table 6.1.

Table 6.1. The ObsIDs of the Herschel PACS and SPIRE scans of Ophiuchus, and their observation
dates.

Scan Direction ObsID Date

PACS and SPIRE

Nominal 1342205093 25/09/2010

Orthogonal 1342205094 25/09/2010

As with the L1495/B213 complex, the data reduction followed the method

described in Chapter 2, Section 2.1.2; Zero-point corrections were determined and

applied to the PACS band observations. Table 6.2 gives the offsets for the PACS and

SPIRE bands.

Table 6.2. Zero-Point Offsets and regional Gaussian noise estimates for PACS, SPIRE and SCUBA-
2 observations of Ophiuchus. I obtained the PACS and SCUBA-2 offsets through the procedure
described in Chapter 2, Section 2.1.6, while SPIRE offsets were applied as part of the archive data
reduction process to obtain Level 2 products. Gaussian noise was estimated through visual inspection
of each band, as described below.

L1688 L1689

Band Offset (MJy/sr) Noise (MJy/sr)

PACS 70 µm -8.4 15.0 8.45

PACS 160 µm 243.5 17.1 12.4

SPIRE 250 µm 93.0 14.0 5.80

SPIRE 350 µm 47.6 4.76 3.28

SPIRE 500 µm 18.1 2.08 1.46

SCUBA-2 850 µm 12.3 2.26 1.75

The SCUBA-2 850 µm supplementary observations were first published by Pat-

tle et al. (2015), and have been supplied already reduced by Emily Drabek-Maunder.

The observations are part of the JCMT Gould Belt Survey, and consist of seven 30′

diameter pointings, taken in the PONG1800 mapping mode. Reduction then follows

the procedure described in Chapter 2, Section 2.1.3, with specific details published in

Pattle et al. (2015). The reduced pointings are mosaicked together into a continuous

region, the coverage of which is shown in Figure 6.3.

As previously discussed PPMAP produces artefacts around bright point sources
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Figure 6.3. JCMT SCUBA-2 850 µm scan area for the composite observation of the Ophiuchus
molecular cloud. The observations, taken as part of the JCMT Gould Belt Survey, were first pub-
lished by Pattle et al. (2015), and were supplied by Emily Drabek-Maunder. Background image
taken from the Planck optical depth model of the region, at 5′ resolution (Planck Collaboration
2016d).
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Figure 6.4. Herschel PACS 70 µm and 160 µm and SPIRE 250 µm, 350 µm and 500 µm observations,
and JCMT SCUBA-2 850 µm observations of the Ophiuchus molecular cloud complex.

associated with 70 µm emission from optically thick objects. However, unlike the Tau-

rus molecular cloud, extended emission from Ophiuchus dominates the artefacts in

most regions. Therefore, I do not mask all protostellar sources in the observations.

Figure 6.4 shows the reduced observations in each of the five Herschel bands and the

single SCUBA-2 band at 70 µm, 160 µm, 250 µm, 350 µm, 500 µm and 850 µm, in a 6.2°
by 5.3° region centred on 16h28m06.32s, −24°08′04.61′′ (247.026 370 4°, −24.134 614 26°),
with a position angle of 0°.
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6.2.1 Division into Sub-Regions

As PPMAP can take a long time to fit dust models to fields with large an-

gular sizes, I define two sub-regions in the Ophiuchus observations which encompass

the L1688 and L1689 structures. For each sub-region, I reproject the observations in

each of the six bands to produce smaller intensity maps, which can then be passed

to PPMAP. The L1688 observations cover a 1.2° by 0.8° field of view centred on

16h27m01.02s, −24°28′00.00′′ (246.750 000 0°, −24.466 666 6°). The L1689 observa-

tions cover a 1.0° by 1.0° area centred on 16h33m01.53s, −24°39′00.00′′ (248.250 000 0°,
−24.666 666 6°). The sub-regions are shown in Figure 6.1.

A set of initial tests of PPMAP on the sub-regions had indicated that, while the

artefacting due to point sources in L1688 did not greatly inhibit fitting the extended

emission, two sources in L1689 prevented a reliable fit to the data. These sources are

located at 16h32m00.96s, −24°56′42.00′′ and 16h32m22.56s, −24°28′33.60′′. I identify

them in the literature as L1689-IRS6 (Greene et al. 1994), a Class I source, and IRAS

16293-2422 (Mundy et al. 1992), a binary/multiple Class 0 system. I mask both

objects with a 40′′ diameter circular patch in each of the input observations before

conducting further PPMAP runs.

As previously stated PPMAP requires estimates of the noise level in each

observation to produce good quality fits to the data. I follow the procedure for the

L1495/B213 complex, identifying the standard deviation away from areas of bright

structure in each observing band, within circular regions with angular radius ∼5′.

The Ophiuchus estimates for each band and sub-region are given in Table 6.2.

6.3 PPMAP Analysis of Ophiuchus

For this investigation I choose to run PPMAP with a 14′′ resolution (7′′ Nyquist

sample rate) to make the best use of the high resolution 70 µm and 850 µm bands.

I choose 12 logarithmically spaced temperature bins, 7.0 K, 8.4 K, 10.0 K,

12.0 K, 14.3 K, 17.1 K, 20.5 K, 24.5 K, 29.2 K, 35.0 K, 41.8 K and 50.0 K. The tem-

perature range from 7.0 K to 50.0 K is wider than the one chosen for the L1495/B213

complex to account for the different dynamics in the region. The Ophiuchus cloud is

known to be influenced by photodissociation regions (PDRs) produced by the S1 and

HD147889 B-class pre-main sequence stars, and the more distant Upper Scorpius OB

association. Thus, it is likely subject to greater heating than Taurus. PDRs are low

density regions, which allow for high energy ultraviolet photons to propagate without

being scattered or absorbed by dust grains. In turn, these photons dissociate complex
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Table 6.3. The PPMAP input parameters for the L1688 and L1689 subregions. Parameters with
list values are shown here separated by commas, but are to be separated by whitespace when running
PPMAP. A description of each parameter is given in Chapter 3. The Herc850.txt colour correction
table is given in Appendix A.

L1688 L1689
Parameter Value
gloncent 246.75 248.25
glatcent -24.466666 -24.6666666
fieldsize 1.2, 0.8 1.0, 1.0

pixel 7
dilution 0.3

maxiteration 10000
distance 140.0
kappa300 0.1
nbeta 3

betagrid 1.0, 1.5, 2.0
betaprior 2.0, 0.25

Nt 12
temperature 7.0, 50.0

ncells 40
noverlap 20
ccfile Herc850.txt
nbands 6

molecules such as CO. In the case of S1 and HD147889, the PDRs are associated with

HII regions created by the intense radiation fields from each object (Andre et al. 1988;

Casassus et al. 2008). It is the radiation pressure from these ionised regions, together

with strong winds from the OB association which serve to sweep up material in Ophi-

uchus, creating concentrations of dust and gas, and compressing the material when

it becomes situated between any two of the sources. S1 lies a projected 0.07 pc to the

North East of the central ridge of the nearest filamentary structure, while HD137889

lies 0.17 pc to the West (assuming a distance to L1688 of 140 pc).

I choose three linearly spaced β values, 1.0, 1.5, and 2.0. The decision to

exclude a value at β = 2.5 is made after the L1495/B213 results indicate that the

high-β band contains very little dust. I again impose a Gaussian prior on the β

values with a mean of 2.0 and a standard deviation of 0.25. The full PPMAP input

parameters for each sub-region are shown in Table 6.3.

The L1688 and L1689 results are produced by running PPMAP on the Super

Computing Wales (SCW) HAWK super computer.
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6.3.1 Basic PPMAP Products

As with my analysis of the Taurus L1495/B213 complex, the raw 4D data hy-

percubes for the L1688 and L1689 sub-fields are difficult to visualise. Therefore, I use

a similar procedure to that discussed in Chapter 5 to reduce the dimensionality of the

data hypercubes before presenting the data. The sub-fields are discussed separately.

6.3.1.1 L1688

For the L1688 sub-field I initially marginalise out the β dimension to produce

a data cube of the H2 column density in different line of sight temperature bins.

This is shown in Figure 6.5. The conversion from PPMAP thermal-dust-emission

derived optical depth to H2 column density is again made with the assumption of a

gas-to-dust ratio of 100, and a mean molecular H2 weight of 2.8.

Figure 6.5 indicates that there is very little dust at ≤8.4 K, with only a few

dense cores visible above the background level in the central and north-eastern por-

tions of the sub-field. The dense, narrow, central spines of several filament-like struc-

tures can be seen to the east and centre of the image in the 10.0 K slice. These

structures grow in width and mass through successive temperature slices up to the

14.3 K slice.

The intensity of the filamentary structures to the north east of L1688 rapidly

decreases in successive temperature bands. They appear to contain very little dust

in the 17.1 K slice, and are not visible at all in the 20.5 K band. This indicates that

those structures remain relatively cold. The structures in the central region of the

image persist strongly into the 17.1 K slice, but do not appear above the background

at 20.5 K.

A single large filamentary structure can be seen spanning the region from the

extreme south east, through the centre of the region, to the north west. However,

its full extent is not visible in any single temperature slice. Instead, only the most

south easterly portion (∼0.5 pc) contains any significant quantity of dust at 14.3 K.

The filament then appears to exhibit a strong temperature gradient along its length,

as the 17.1 K, 20.5 K and 24.5 K bands appear to show the filament migrating to

the north west of the sub-region. This does not show a true, spatial migration, but

instead indicates that the dense dust within the filament is cooler to the south east,

and hotter to the north west.

The temperature slices from 29.2 K to 50.0 K indicate two large regions of

high temperature dust in the central and eastern portions of the sub-field. These

regions are shown as voids in the column density at temperatures ≤24.5 K. These

high temperature regions are likely due to PDRs associated with the S1 (central)



6.3. PPMAP Analysis of Ophiuchus 155

Figure 6.5. The distribution of dust, converted to H2 column density, in 12 logarithmically spaced
line of sight temperature bins for the L1688 sub-region. These maps are obtained by marginalising
out the opacity index dimension of the PPMAP data hypercube. The red star markers indicate the
positions of the S1 and HD147889 pre-main sequence stars.
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Figure 6.5 (cont.). The distribution of dust, converted to H2 column density, in 12 logarithmi-
cally spaced line of sight temperature bins for the L1688 sub-region. These maps are obtained by
marginalising out the opacity index dimension of the PPMAP data hypercube. The red star markers
indicate the positions of the S1 and HD147889 pre-main sequence stars.
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Figure 6.5 (cont.). The distribution of dust, converted to H2 column density, in 12 logarithmi-
cally spaced line of sight temperature bins for the L1688 sub-region. These maps are obtained by
marginalising out the opacity index dimension of the PPMAP data hypercube. The red star markers
indicate the positions of the S1 and HD147889 pre-main sequence stars.
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and HD147889 (eastern) pre-main sequence stars (shown as red stars in Figure 6.5).

The influence of S1 and HD147889 are also likely to be the cause of the temperature

gradient seen in the large filamentary structure previously discussed, and of the larger

scale east/west temperature gradient across the sub-field.

Figure 6.6 shows the distribution of column density across the three β slices

when I marginalise out the temperature dimension of the 4D data hypercube. As with

Figure 6.5, the colour bar gives the column density of H2 derived from the optical

depth.

Dust with an opacity index of 1.0 is only present in the central region of L1688.

The surrounding medium is instead comprised largely of dust contained within the

β = 1.5 and β = 2.0 slices. The filamentary structures are most strongly traced by

dust with β = 1.5, while only one of the structures is well traced in the β = 1.0 slice.

I note that dust in the PDR associated with HD147889 is better populated by

dust in the β = 2.0 slice, while the S1 PDR appears to contain a high proportion of

dust with β = 1.5.

The total column density map is shown in Figure 6.7. I obtain this map by

marginalising out both the temperature and β dimensions from the 4D data hyper-

cube. I apply the FilFinder algorithm (Koch and Rosolowsky 2015) to the total

column density map to identify the filamentary structures observed in Figure 6.5.

Figure 6.8 outlines the process of identifying and selecting the structures. FilFinder

initially produces image masks of all potential filaments within a given field. I define

a glob thresh value of 80, and a size thresh of 400. The glob thresh variable ex-

cludes pixels from the mask with intensities below this value, while the size thresh

disregards masks with fewer than this number of pixels. I use FilFinder to extract fil-

aments from the masks, trimming branches with a length <0.3 pc. Assuming a mean

filament internal width of 0.1 pc, FilFinder will therefore only exclude branches with

a minimum aspect ratio of 3.0 (Arzoumanian et al. 2011). All selected structures of

this type are shown in Figure 6.8(b). I perform a selection cut, excluding filaments

whose spine pixels have a median signal to noise value of < 5, and whose total length

is <0.3 pc. This ensures that any selected filaments have a minimum aspect ratio of

3.0. The filaments that remain after this cut are shown in Figure 6.8(c). Finally, I

identify the longest continuous path through each of the filaments, and give each one

a classifier of the form f#, with the integer increasing from south to north. This final

selection is shown in Figure 6.8(d). Figure 6.8(a) serves as a reference image, and is

a duplicate of column density map shown in Figure 6.7.

Figure 6.9 shows the associated Point Process Statistical Degeneracy (PPSD)

for the L1688 sub-region. The network of filamentary structures in L1688 have a
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Figure 6.6. The distribution of dust, converted to H2 column density, in three linearly spaced line
of sight opacity index bins for the L1688 sub-region. These maps are obtained by marginalising
out the temperature dimension of the PPMAP data hypercube. The red star markers indicate the
positions of the S1 and HD147889 pre-main sequence stars.
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Figure 6.7. Total H2 column density for L1688, derived from the PPMAP dust model. This map
is obtained by marginalising out both the temperature and opacity index dimensions.

Figure 6.8. Diagram of the filament network in L1688 identified by FilFinder. Panel (b) shows
all the filamentary structures after pruning branches with a length <0.3 pc, while panel (c) displays
the subset of filaments with a longest path length >0.3 pc. Panel (d) shows the paths through each
filament selected as the primary spine. Panel (a) is the column density map shown in Figure 6.7, and
is included for reference. The column density map is also the background in the remaining panels,
over which the filaments are plotted.
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Figure 6.9. Map of the Point Process Statistical Degeneracy (PPSD, see Chapter 3, Section 3.1.4.3)
for the L1688 sub-region. The uncertainty hypercube used to derive the map of PPSD is shown in
Appendix B. The red stars indicate the positions of S1 and HD147889.

PPSD ≥ 5, and are, therefore, well constrained. The surrounding medium between

the filaments is less well constrained, with a PPSD ∼ 2. While the PDRs associated

with S1 and HD147889 are comparatively poorly constrained when compared with

the network of filaments, they still exceed a PPSD of 1, which indicates that the

signal still dominates over the uncertainty inherent in the model.

Figure 6.10 and Figure 6.11 show the line of sight mean dust temperature, T̄D,

and the line of sight mean dust opacity index, β̄D, respectively.

Figure 6.10 clearly indicates a temperature gradient from east to west within

L1688, with the highest dust temperatures present in the PDRs around S1 and

HD147889. Most of the filaments are not immediately identifiable from the mean

dust temperature map, as they appear to have a similar mean temperature to their

surroundings. f4 is a clear exception, appearing as a cold, <14 K region surrounded

by warm, >17 K material. In contrast, Figure 6.11 does not indicate an east/west

gradient in mean dust opacity index, β̄D. Instead, dust with a lower mean opacity

index (< 1.5) is concentrated in the centre of the region, with higher values of the

opacity index in the surrounding medium. None of the previously identified filaments

are clearly traced by variations in β̄D. The PDRs are also not obviously traced by β̄

variations, suggesting that they have little effect on the opacity index of the dust.
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Figure 6.10. The mean line of sight dust temperature, T̄D, at every pixel for L1688, obtained by
marginalising out the opacity index dimension and then taking a weighted average of the temperature
bins of the hypercube, with the H2 column density in each bin as the weighting factor.

Figure 6.11. The mean line of sight dust opacity index, β̄D, at every pixel for L1688, obtained
by marginalising out the temperature dimension and then taking a weighted average of the opacity
index bins of the hypercube, with the H2 column density in each bin as the weighting factor.
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6.3.1.2 L1689

Figure 6.12 shows the distribution of H2 column density through the 12 dust

temperature bands for the L1689 sub-field, after I marginalise out the β dimension.

Very little dust appears to occupy the lowest temperature bands in L1689, with

only highly localised regions of diffuse material visible in Figure 6.12 at 8.4 K. These

regions correspond well with the L1689 East, L1689 North, and L1689 South sub-

clouds (Nutter, Ward-Thompson, and André 2006). The sub-clouds remain isolated

in both the 10.0 K and 12.0 K slices, while the proportion of dust in each sub-cloud

increases with an increase in temperature band when compared with lower bands.

A low density network of filamentary structures connecting the sub-clouds is

visible in the 14.3 K and 17.1 K slices. The dust in the surrounding medium is mostly

contained within these temperature slices.

L1689 East contains almost no dust at ≥20.5 K, while L1689 North and L1689

South remain connected by a large, diffuse cloud. This connecting cloud is not seen

at 24.5 K. Instead, only two small, elongated structures are present in the slice. The

northern most structure has a dense head around the masked source L1689-IRS6,

and extends ∼0.5 pc to the south west. The southern structure has a semi-major axis

∼0.4 pc and runs south east to north west. It forms the southern edge of the L1689

South sub-cloud.

Very little dust is contained within slices with temperatures ≥29.2 K, and no

further structures are visible.

When I instead marginalise out the β dimension, I produce Figure 6.13. All of

the dust occupying the β = 1.0 slice is contained within the North, South and East

sub-clouds of L1689. In contrast, the β = 1.5 and β = 2.0 slices contain dust more

evenly distributed throughout the L1689 sub-region, with over-densities that more

accurately trace the filamentary structure. These structures are more strongly traced

at β = 1.5 than at β = 2, indicating that the denser, better shielded regions harbour

the dust with the lowest opacity indices.

By marginalising out both the temperature and opacity index dimensions from

the 4D data hypercube, I produce the total column density map, which is shown in

Figure 6.14. As with the L1688 sub-region, I use FilFinder to identify filaments. All

identified structures are shown in Figure 6.15(b), while only those with a total length

in excess of 0.3 pc are indicated in 6.15(c). These are given identifiers following the

convention derived for L1688 (shown in Figure 6.15(d)). The southward loop structure

at the midpoint of f2 appears to trace a network of over-dense fragments, rather than

a continuation of the filament. Therefore, I choose to exclude the loop, splitting the
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Figure 6.12. The distribution of dust, converted to H2 column density, in 12 logarithmically spaced
line of sight temperature bins for the L1689 sub-region, plotted for the eight lowest temperatures.
These maps are obtained by marginalising out the opacity index dimension of the PPMAP data
hypercube.
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Figure 6.12 (cont.). The distribution of dust, converted to H2 column density, in 12 logarith-
mically spaced line of sight temperature bins for the L1689 sub-region, plotted for the four highest
temperatures. These maps are obtained by marginalising out the opacity index dimension of the
PPMAP data hypercube.
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Figure 6.13. The distribution of dust, converted to H2 column density, in three linearly spaced
line of sight opacity index bins for the L1689 sub-region. These maps are obtained by marginalising
out the temperature dimension of the PPMAP data hypercube.
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Figure 6.14. Total H2 column density for L1689, derived from the PPMAP dust model. This map
is obtained by marginalising out both the temperature and opacity index dimensions.

Figure 6.15. Diagram of the filament network in L1689 identified by FilFinder. Panel (b) shows
all the filamentary structures after pruning branches with a length <0.3 pc, while panel (c) displays
the subset of filaments with a longest path length >0.3 pc. Panel (d) shows the paths through each
filament selected as the primary spine. Panel (a) is the column density map shown in Figure 6.7, and
is included for reference. The column density map is also the background in the remaining panels,
over which the filaments are plotted.
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Figure 6.16. Map of the Point Process Statistical Degeneracy (PPSD, see Chapter 3, Section
3.1.4.3) for the L1689 sub-region. The uncertainty hypercube used to derive the map of PPSD is
shown in Appendix B.

f2 filament into two, f2a and f2b, with similar orientations.

Figure 6.16 shows the associated PPSD for the L1689 sub-region. The promi-

nent structures in L1689 have a PPSD ≥ 6, while the surroundings have a typical

PPSD ∼ 3, indicating that the model is generally well constrained. Only at the edges

of the model does the PPSD fall to ∼ 1, indicating it is less well constrained.

Figure 6.17 shows the mass weighted mean line of sight dust temperature,

T̄D for L1689. The range of dust temperatures is much smaller than that observed

in L1688. In addition, much of the complex variation shown in Figure 6.12 is lost.

Figure 6.18 shows the mass weighted mean line of sight dust opacity index, β̄D for

L1689. In contrast to Figure 6.17, the variation in dust opacity index is clearly visible,

with the background value of β̄D ∼ 1.75, and falling sharply in the densest regions to

β̄D ≤ 1.25.

6.3.1.3 Comparison of Column Density with Planck and 2MASS/NICER

To verify that the model produced by PPMAP for the L1688 and L1689 sub-

regions provides an accurate estimate of the column density in the regions, I compare

the sub-regions with column densities derived from the Planck dust models.

To derive the PPMAP-equivalent H2 column density from the Planck dust

models, I first equate equation 2.6 with equation 1.24, which produces
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Figure 6.17. The mean line of sight dust temperature, TD, at every pixel for L1689, obtained by
marginalising out the opacity index dimension and then taking a weighted average of the temperature
bins of the hypercube, with the H2 column density in each bin as the weighting factor.

Figure 6.18. The mean line of sight dust opacity index, βD, at every pixel for L1689, obtained
by marginalising out the temperature dimension and then taking a weighted average of the opacity
index bins of the hypercube, with the H2 column density in each bin as the weighting factor.
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ΣH2 =
τ850 µm

κ300 µm

(
300 µm

850 µm

)−β850 µm

. (6.1)

Values with the subscript 300 µm represent parameters which use the PPMAP as-

sumptions of dust opacity, while those with subscript 850 µm are the parameters

obtained from the Planck dust models. I convolve the PPMAP total column density

map with a 5′ Gaussian kernel, which approximates the Planck beam profile. I repro-

ject both the PPMAP column density, and the Planck derived column density onto the

same pixel grid. I produce a median ratio between the PPMAP and Planck derived

column densities of Σ
:
PPMAP/Σ

:
Planck = 1.44 for L1688, and Σ

:
PPMAP/Σ

:
Planck = 1.31

for L1689.

As a second method of verification, I convert the PPMAP column densities

into visual extinction, Av, and compare with Av measurements derived from the

2MASS/NICER extinction maps (Juvela and Montillaud 2016). The two micron all

sky survey (2MASS, Skrutskie et al. 2006) utilised autonomous telescopes to produce

simultaneous maps of near infra-red (NIR) colour in the J (1.25 µm), H (1.65 µm),

and Ks (2.17 µm) bands. The resolution of the maps is ∼1′ near the galactic plane but

degrades near the galactic poles. The near infra-red colour excess revised (NICER

Lombardi and Alves 2001) method was developed to convert NIR colour to NIR

extinction for a few small regions, and was applied to the entire 2MASS data set to

produce all sky 2MASS/NICER maps of extinction by Juvela and Montillaud (2016)

with a 3′ resolution. These maps are publicly available∗, and can be obtained with

extinction scaled to AJ , AH , or AK .

I obtain 2MASS/NICER maps of AK , covering the L1688 and L1689 sub-

regions, and convert to an approximate map of AV by multiplying the AK maps by a

factor of 8.93. This factor is consistent with the Rieke and Lebofsky (1985) reddening

law, appropriate for 2MASS (Carpenter 2001; Lombardi, Alves, and Lada 2006). I

convert the PPMAP column density maps to approximate AV maps by assuming a

column density to AV conversion of NH2 = 0.94× 10211 H2 cm−2AV (Bohlin, Savage,

and Drake 1978). The resultant maps of AV derived from column density are then

convolved with a 3′ Gaussian kernel, and both the 2MASS/NICER and PPMAP

derived AV maps are reprojected to the same pixel grid. As with the Planck column

density comparison, I produce a median ratio of A
:
V :PPMAP/A

:
V :2MASS = 0.83 for

L1688 and A
:
V :PPMAP/A

:
V :2MASS = 1.17 for L1689.

Therefore, I conclude that the PPMAP column density estimates are consistent

with the 2MASS/NICER visual extinction maps to within 20%, though they produce

∗https://www.interstellarmedium.org/Extinction/

https://www.interstellarmedium.org/Extinction/
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a ∼ 35% over-estimate of the column density relative to the Planck dust models.

However, given the large uncertainty in the value of the reference opacity, κ0, the

PPMAP models and the Planck models can still be considered in good agreement.

6.3.2 Comparison of the Large Scale Properties

To compare the large scale differences between the L1688 and L1689 sub-

regions, I first produce a series of three-colour images from the column density cubes

of each region. To create three-colour images of the variation in column density

with temperature, I first marginalise out the β dimension of the 4D data hypercube.

I then define a low temperature dust column density map, by summing over the

7.0 K, 8.4 K, 10.0 K, 12.0 K and 14.3 K bands, a mid temperature dust column density

map comprised of the column density contained within the 17.1 K, 20.5 K and 24.5 K

bands, and a high temperature dust column density map derived from the column

density contained within the remaining 29.2 K, 35.0 K, 41.8 K and 50.0 K bands. This

is done for both sub-regions. I utilise the multicolorfits tool (Cigan 2019) to

convert the maps into three-colour images, assigning a different colour to each of the

three temperature ranges. Standard three-colour image production assumes that the

maximum and minimum of each component image is equivalent to the maxima and

minima of the other images. However, in this instance the contribution to the total

column density from the low, mid, and high temperature column density maps is

not necessarily equal. Therefore, I normalise the relative intensity of each map to

the total column density of the region. This ensures the total intensity contribution

from each colour map is in proportion to its fraction of the total mass. The resultant

images are shown in Figure 6.19 for the L1688 sub-region, and in Figure 6.20 for the

L1689 sub-region.

The effect of the S1 and HD147889 can be clearly seen in Figure 6.19, with the

dust contained within the high temperature regime (TD ≥ 29.2 K) clearly dominating

the centre of the two PDRs. The upper portion of f1 passes between the two PDRs,

and appears to contain dust which mostly occupies the mid temperature range (17.1 K

≤ TD ≤ 24.5 K. The remaining portion of f1, along with the other filaments, are

mostly comprised of dust occupying the low temperature (TD ≤ 14.3 K) range. The

largest contribution to the mass of the surrounding medium in the southern and

eastern portions of the field is also found within the low temperature range, while the

dust surrounding the PDRs occupies the middle temperature range.

In contrast, Figure 6.20 presents a picture of a comparatively quiescent field,

with very little dust in the high temperature range. The dense clumps associated with
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Figure 6.19. A three colour image of L1688, depicting the distribution of dust in three broad
ranges covering multiple PPMAP temperature bands. The extent of the temperature ranges, and
the associated colours, are shown in the diagram in the top left. The black star marks denote the
positions of the S1 and HD147889 pre-main sequence stars.

Figure 6.20. A three colour image of L1689, depicting the distribution of dust in three broad
ranges covering multiple PPMAP temperature bands. The extent of the temperature ranges, and
the associated colours, are shown in the diagram in the top left.
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Figure 6.21. A three colour image of L1688, depicting the distribution of dust in the three PPMAP
opacity index bands. The colours associated with each band are shown in the diagram in the top
left. The black star marks denote the positions of the S1 and HD147889 pre-main sequence stars.

L1689 North, East, and South are dominated by dust in the low temperature range,

while the network of connecting filamentary structures have a larger proportion of

their mass contained within the mid temperature range. This is a view commonly

associated with archetypal low mass star forming regions, with dense, cold filaments

and clumps embedded in a warmer medium.

By marginalising out the temperature dimension from the 4D data hypercube

of column densities, and repeating the method of generating the three-colour images,

I produce comparison images of the column density variation with opacity index. As

the hypercube only contains three β bands, I do not define a set of opacity index

ranges, but instead allow each band to be wholly represented by a different colour.

The resultant three-colour images are shown in Figure 6.21 for the L1688 sub-region,

and in Figure 6.22 for the L1689 region.

The variations in the populations of dust with different opacity indices are

broadly similar in both Figure 6.21 and 6.22. In the outer, diffuse medium surrounding

each sub-region, the mass is dominated by dust with β = 2.0, with the opacity index

falling towards the denser structures. When viewed as a composite three-colour image,

as opposed to separate panels as with Figure 6.6, it is not possible to deduce an effect

on the dust opacity index from the PDRs.
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Figure 6.22. A three colour image of L1689, depicting the distribution of dust in the three PPMAP
opacity index bands. The colours associated with each band are shown in the diagram in the top
left.

To quantify the differences between L1688 and L1689 I first examine the mass

distribution in each field. I convert the column density within the field of view of

each model to a total mass of hydrogen through the equation

MH2 = NH2m̄H2 ·∆2
pix, (6.2)

where m̄H2 is the mean molecular mass of the gas, assuming a gas molecular gas frac-

tion of 2.8, and ∆pix is the pixel width in cm. The mean molecular mass has a value of

m̄H2 = 1.68× 10−57 M�. The total mass of H2 across the 5.74 pc2 field of view, derived

from the PPMAP dust model of L1688, is (650.7± 0.4) M�. The mass uncertainty is

determined from the PPMAP uncertainty hypercube. The hypercube is flattened to

produce a 2D column density uncertainty map by summing in quadrature along the

temperature and opacity index dimensions as discussed in Chapter 3, Section 3.1.4.3.

The flattened uncertainty map is then converted to a map of pixel mass uncertainty

via equation 6.2. The pixel mass uncertainties are then summed in quadrature over

the same area used to derive the mass. The average surface density of the observed re-

gion is 113.3 M� pc−2. The total mass of the 5.96 pc2 model of the L1689 sub-region is

(395.4± 0.3) M� giving an average surface density of 66.3 M� pc−2. Therefore, L1688

is nearly 1.5 times as dense as L1689 over approximately the same extent as L1689.
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Figure 6.23. Map of the dense mass of L1688, bounded by the grey contours at AV > 7 (Σ >
7× 1021 H2 cm−2). The centroid positions of the filament bundles are given by the filled white
circles, with the filament spines traced by the white lines. The Pattle2015 core locations are shown
as open black circles.

I note that these masses are likely lower bounds for the total masses of the sub-

regions, as their boundaries are not well defined, and they likely extend beyond the

edges of the models. A more robust measurement of cloud mass can be obtained from

looking only at the mass of the dense gas contained within each sub-region. To obtain

this I define a contour at the 7× 1021 H2 cm−2 column density limit which corresponds

to an approximate visual extinction of 7. This limit was chosen as AV = 7 has been

found to mark the transition between regions with low core forming efficiency and

high core forming efficiency (André et al. 2010; Lada, Lombardi, and Alves 2010;

Könyves et al. 2015). Therefore, it is a convenient transition point for defining the

edge of an active star-forming GMC. The contoured regions marking this boundary

for L1688 and L1689 are shown in grey in Figure 6.23 and Figure 6.24 respectively.

The mass of L1688 in the region above Av = 7 is (285.3± 0.2) M� over an area

of 1.2 pc2. L1689 has a total mass of (88.5± 0.1) M� distributed across a 0.37 pc2

region. Both sub-regions have a similar average surface density of dense gas within

this regime (239.0 M� pc−2 for L1688 and 242.4 M� pc−2 for L1689). I note that this

is to be expected because the masses and areas are calculated based on the same

threshold in column density in each sub-region. Instead, it is important to note that

the dense gas accounts for 21% of the total area shown in Figure 6.23, while only
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Figure 6.24. Map of the dense mass of L1689, bounded by the grey contours at AV > 7 (Σ >
7× 1021 H2 cm−2). The centroid positions of the filament bundles are given by the filled white
circles, with the filament spines traced by the white lines. The Pattle2015 core locations are shown
as open black circles.

6% of the total area of Figure 6.24 is considered dense by the same metric. Thus,

while the surface density of the dense gas is similar in both sub-regions, a much higher

proportion of the totality of L1688 is dense, leading to the much higher average surface

density across the full field of view.

6.3.2.1 Starless Core Distribution

To compare the evolutionary state of the two sub-regions, I analyse the distri-

bution of starless cores contained within L1688 and L1689. I utilise the core catalogue

published in Pattle et al. (2015). The catalogue contains both starless and protostellar

cores, and covers several more sub-regions not analysed in this thesis. As previously

discussed, PPMAP is unable to fit optically thick protostellar cores with central bright

70 µm sources. Therefore, I only select cores from the catalogue that are classified

as starless, and which fall within the L1688 and L1689 sub-regions. The cores are

plotted as black edged circles in Figure 6.23 and Figure 6.24.

I obtain masses for the cores by utilising the photutils Python package to

apply an elliptical aperture at the centroid position of each one. The aperture semi-

major and -minor axes and position angles are obtained from the catalogue. I convert

the total column density map to a map of H2 mass per pixel with equation 6.2, before
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summing over the pixels within the aperture. Pixels which are bisected by the edge

of the aperture have their mass contribution adjusted in proportion to how much of

the pixel is within the ellipse. The mass uncertainty of each core is determined from

the PPMAP uncertainty hypercube. The hypercube is flattened to produce a 2D

column density uncertainty map by summing in quadrature along the temperature

and opacity index dimensions as discussed in Chapter 3, Section 3.1.4.3. The flattened

uncertainty map is then converted to a map of pixel mass uncertainty via equation

6.2. This map is then passed to photutils, which returns the uncertainty on the mass

for each aperture. Table 6.4 displays the core centroid positions, masses, semi-major

and minor axes, position angles, and the Pattle et al. (2015) identifiers for reference.

The L1688 sub-region contains 36 starless cores with a cumulative mass of

(20.93± 0.04) M�. They account for ∼ 3.2% of the total mass, and ∼ 7.3% of the

mass of the dense portion of the cloud. In contrast, only 10 starless cores are located

within L1689, totalling (4.28± 0.01) M�. They make up ∼ 1.1% of the total sub-

region mass. However, this still accounts for ∼ 4.8% of the total mass of the dense

region. All the cores in both regions lie within the AV > 7 boundary. This result

suggests that core formation is more strongly dependent on the local surface density,

and less dependent on total cloud mass. This is consistent with the findings presented

by Ladjelate et al. (2020), and by Nutter, Ward-Thompson, and André (2006), though

I note that the absolute percentages of cloud mass (or dense gas mass) bound in

cores for L1688 and L1689 are markedly lower than that presented by Ladjelate et al.

(2020). The absolute percentages are consistent with results presented by Nutter,

Ward-Thompson, and André (2006). There are several potential factors contributing

to this effect. For example, the full extent of the clouds is defined differently, the

column density fitting methods are different, and the observation bands used to obtain

the column density estimate are not the same. Furthermore, the core catalogue differs

between these works, with Ladjelate et al. (2020) obtaining 142 cores, while Pattle et

al. (2015) identify 46 cores. However, while the value of the core formation efficiency

differs, the broad trends I observe agree well with existing literature; namely that

as a fraction of total cloud mass, L1688 has a higher core formation efficiency than

L1689, but the sub-regions have similar efficiencies at an AV > 7.

To verify these results I produce an independent catalogue of compact objects.

I apply a dendogram to the total column density maps of L1688 and L1689, with a

minimum column density threshold set to five times the median uncertainty for each

sub-region, a minimum difference between nested structures equal to the median

uncertainty, and a minimum size of 10 pixels, equating to ∼0.0002 pc2 at the nominal

cloud distance of 140 pc. The minimum column density threshold differs from that
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Table 6.4. The positions, semi-major and semi-minor axes, PPMAP estimated mass, and position
angles of the 46 starless cores in L1688 and L1689. The core positions, sizes and angles are taken
from the catalogue presented by Pattle et al. (2015), as are the core identifiers, listed in column P15
ID.

L1688
P15 R.A. Dec. PPMAP Mass a b θ
ID (°) (°) (M�) ′′ ′′ (°)
1 246.614 -24.398 1.96± 0.006 20.4 16.2 178.7
2 246.613 -24.393 1.28± 0.006 19.6 15.5 170.0
3 246.622 -24.407 1.55± 0.007 29.0 17.2 139.0
5 246.611 -24.376 0.88± 0.008 36.2 18.0 106.2
6 246.615 -24.384 1.16± 0.008 30.9 22.1 169.6
7 246.620 -24.376 0.64± 0.007 28.3 19.2 24.3
8 246.631 -24.413 0.69± 0.007 27.2 17.7 88.3
9 246.591 -24.393 0.29± 0.007 26.5 19.2 3.6
10 246.600 -24.364 0.44± 0.006 27.2 17.7 88.3
11 246.605 -24.360 0.19± 0.004 14.3 15.7 100.0
15 246.681 -24.290 0.56± 0.006 29.7 22.4 71.0
19 246.542 -24.327 0.24± 0.005 22.8 14.5 41.8
20 246.627 -24.370 0.36± 0.007 31.9 19.9 80.7
23 246.631 -24.366 0.24± 0.006 30.0 20.6 90.9
26 246.548 -24.412 0.17± 0.005 25.7 16.7 109.1
27 246.578 -24.419 0.11± 0.004 16.8 16.0 78.8
28 246.542 -24.386 0.23± 0.006 29.4 20.1 94.9
29 246.801 -24.497 0.62± 0.006 26.9 19.2 136.6
30 246.813 -24.511 0.57± 0.006 26.2 19.2 114.9
31 246.816 -24.506 0.28± 0.004 19.5 12.9 38.4
32 246.817 -24.519 0.35± 0.006 25.1 17.6 98.3
35 246.831 -24.454 0.48± 0.006 27.1 18.2 26.8
36 246.836 -24.449 0.43± 0.006 29.6 17.4 172.2
37 246.851 -24.464 0.34± 0.004 14.3 15.7 80.0
38 246.857 -24.448 0.91± 0.008 32.6 18.0 156.2
41 246.873 -24.443 0.91± 0.008 34.5 20.6 150.1
43 246.889 -24.438 0.88± 0.007 34.9 14.3 38.2
44 246.885 -24.443 1.16± 0.008 36.6 19.1 23.3
45 246.886 -24.451 0.53± 0.006 25.9 16.3 112.9
46 246.896 -24.438 0.38± 0.004 14.3 15.7 100.0
48 246.746 -24.574 0.50± 0.006 28.8 19.5 117.0
49 246.754 -24.578 0.27± 0.005 24.5 14.3 151.7
50 246.759 -24.581 0.32± 0.006 28.3 19.2 48.3
53 246.770 -24.654 0.27± 0.005 28.1 15.8 148.4
58 246.840 -24.664 0.22± 0.004 14.3 15.7 100.0
70 246.994 -24.561 0.50± 0.006 29.2 18.5 38.6
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Table 6.4 (cont.). The positions, semi-major and semi-minor axes, PPMAP estimated mass, and
position angles of the 46 starless cores in L1688 and L1689. The core positions, sizes and angles
are taken from the catalogue presented by Pattle et al. (2015), as are the core identifiers, listed in
column P15 ID.

L1689
P15 R.A. Dec. Mass a b θ
ID (°) (°) (M�) ′′ ′′ (°)
75 247.988 -24.954 0.37± 0.004 28.3 19.2 65.7
78 247.973 -24.933 0.27± 0.003 22.8 14.5 158.2
79 248.001 -24.929 0.13± 0.002 14.3 15.7 86.2
80 247.907 -24.830 0.54± 0.004 29.2 18.5 161.4
81 247.912 -24.833 0.26± 0.003 14.3 15.7 80.0
82 247.925 -24.826 0.40± 0.004 28.1 16.1 109.9
84 248.120 -24.486 0.70± 0.003 14.3 15.7 80.0
86 248.125 -24.480 0.75± 0.004 23.5 14.3 44.7
87 248.111 -24.470 0.52± 0.005 25.6 21.4 23.6
88 248.090 -24.461 0.33± 0.004 22.1 18.8 74.3

used to estimate the boundary of the dense regions so as to avoid misidentifying small

scale edge effects as objects.

The set of objects for each sub-region is then produced by selecting only the

top level density structures, or leaves, of each dendogram, excluding any leaves which

cover an area larger than 0.0079 pc2. This eliminates objects whose area on the sky

is greater than that of a spherical core with a diameter of 0.1 pc. I note that the

objects I have identified only represent dense, compact clumps and they have not

been verified as starless cores. I identify 75 objects in L1688, and 20 in L1689. The

objects are highlighted by black contours in Figure 6.25 and Figure 6.26.

The positions of the cores identified by Pattle et al. (2015) agree well with

many of the objects identified in the dendogram, although many objects appear to

be comprised of several overlapping cores. The dendogram also identifies many addi-

tional objects which do not have counterparts in the core catalogue. The total mass

of the objects is (54.1± 0.8) M�, which accounts for 19.0% of the dense mass, and

8.3% of the total mass in L1688. The clump mass uncertainty was calculated in a

method similar to that of the sub-region and dense gas mass uncertainties.

As with L1688 the core positions in L1689 agree well with several of the dense

dendogram objects, with the dendogram identifying several additional compact ob-

jects. The combined L1689 object mass is (18.9± 0.3) M�, which accounts for 21.3%

of the dense mass, and 4.8% of the total sub-region mass.

While the dendogram objects clearly account for a much larger percentage

of the mass in both sub-regions, the results still appear to indicate that while the
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Figure 6.25. The set of dense objects detected in L1688 utilising a dendogram technique.

Figure 6.26. The set of dense objects detected in L1689 utilising a dendogram technique.
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fraction of L1688 that is attributable to these structures is greater (by nearly a factor

of two) than that of L1689, the fraction of the dense mass in objects is similar in both

sub-region. This further suggests that global cloud mass does not directly influence

core formation efficiency, but instead drives the formation of dense regions which,

once they reach a given threshold, appear to have similar core formation efficiencies.

6.3.2.2 Filament Networks

To investigate the properties of the filaments identified in Section 6.3.1, I fit

each filament with the FilChaP routine. I determine the local tangent to the filaments

at every point along the spines by fitting adjacent spine points with a cubic polynomial

and taking the derivative. From this I derive the perpendicular at each spine point,

and take a slice in the data along the perpendicular out to 1 pc on either side of the

filament. The slices are then passed to FilChaP which bundles neighbouring slices

into contiguous groups of 12, and produces a local median filament profile located

at the centre of each bundle. Therefore, the local median profiles are separated by

∼0.057 pc (∼84′′). The local median profile positions are indicated in Figure 6.23 and

Figure 6.24 by the white points, while the filament shapes are approximately traced

by the white connecting lines.

Each local median profile is independently fitted with a p = 2 Plummer-like

function. FilChaP performs an automatic local background subtraction, and assumes

the median profile can be fit by a symmetric function. The form of the Plummer-like

function is identical to equation 5.6, with FilChaP returning values of the central

column density, N0, and the Plummer-like inner radius, r0, for each local median

profile position. r0 is converted to a fwhm for a Plummer-like function through

equation 5.3. The variation of these quantities along the filament lengths, along with

other derived quantities for individual filaments, are discussed in detail in Section

6.3.3.

For each filament, I derive the total mass contained within the dense inner

region within the fwhm. As the variation in r0 and N0 along the length of a filament

is found to dominate over the uncertainty in either the column density map or the

uncertainty in the fitting of the parameters for any given bundle, I utilise a bootstrap-

ping method to determine the filament masses and associated uncertainties. For each

local median profile, I draw random value of r0 and N0 from Gaussian distributions

created from the previously fitted parameters. I then calculate the local line density

for each local median profile using these randomly obtained parameters by employing

equation 5.4, integrating out only to a distance of the fwhm. I then multiply each

line mass by the nominal separation of the bundles, and sum the resulting values for
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every bundle in a given filament. This produces a single value of the total filament

mass. This process is repeated 10000 times, drawing a new set of r0 and N0 values for

each of the local median profiles each time. Thus, a distribution of possible filament

masses is constructed, from which I draw the median and MAD values.

In L1688 all the filaments lie wholly within the AV > 7 contours (as shown

in Figure 6.23). The inner filament regions have a mass of (81.0± 0.5) M� which

accounts for ∼ 12.4% of the total mass within the field of view, and ∼ 28.4% of the

mass of the dense gas. Figure 6.24 shows that, in L1689, while f1 and f2a (identified in

Figure 6.15) are entirely enclosed by the AV > 7 region, f2b and a portion of f3 extend

beyond the contours into the more diffuse material. Therefore, when calculating the

fraction of the dense gas in L1689 that is contained within the inner regions of the

filaments, I exclude the mass contributions from the bundles that do not fall within the

contours. The cumulative mass of the filaments in L1689 comes to (42.2± 0.3) M�,

accounting for ∼ 8.0% of the total cloud mass. The filament mass excluding f2b and

the low density portion of f3 is (31.7± 0.3) M�, and accounts for ∼ 35.8% of the

dense gas mass.

6.3.3 Individual Filament Properties

The properties obtained from FilChaP for the filaments in the L1688 and

L1689 sub-regions are shown by the coloured points for each of the local median

profile locations in Figure 6.27 and Figure 6.28 respectively. In both Figures, panel (a)

details the local measure of the fwhm, derived from the Plummer-like r0 parameter.

Panel (b) gives the central column density, N0, while panel (c) shows the derived line

mass, obtained by integrating the Plummer-like function at each bundle position with

equation 5.4 out to 0.4 pc either side of the filament spine. Average parameter values

are calculated for each filament by taking the median and MAD of each parameter

for all the bundles in a given filament. These are presented in Table 6.5. An average

value for each parameter is also calculated for each sub-region by considering all the

bundles from each of the filaments within the sub-region boundaries.

Figure 6.27 indicates that the fwhm of the filaments in L1688 is generally

drawn from a tight distribution around ∼0.1 pc. However, stark departures from this

trend are present around the eastern ends of the f1 and f2 filaments, and in f5 and f6. f4

appears narrower than the other filaments, and indeed has the lowest median filament

width, fwhm
:

f4 = 0.07±0.01pc. f4 also has the highest median central column density,

N0
:

f4 = 222 × 1020 ± 62 × 1020H2 cm−2. The bundles in f1 directly between the S1

and HD147889 are narrower than the remaining filament, and also have a higher
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Figure 6.27. Results from L1688 of using the FilChaP algorithm to investigate variations in (a)
fwhm, (b) central column density N0, and (c) line density, µ. The value of each parameter is given
by the colour of each circle. Red outlines around circles in (c) indicate bundles with a value of µ
that exceeds the nominal critical line density µc = 16.2 M� pc−1, for a gas with a temperature of
10 K.
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Table 6.5. The properties of each of the filaments identified in the L1688 and L1689 sub-regions.
N0

H2
, fwhm and µ are length averaged median values.

L1688
Fil N0 fwhm µ Length Mass Mcores

Mfil

Ncores

(1020 H2 cm−2) (10−1 pc) (M� pc−1) (pc) (M�)
f1 81.3±3.6 1.00±0.04 42.4±1.4 1.76 36.1±0.5 0.32 18
f2 31.0±1.7 0.95±0.02 10.5±1.4 0.28 1.4±0.1 0.0 0
f3 94.7±1.9 1.21±0.08 43.6±4.5 0.81 17.8±0.4 0.03 1
f4 222.7±9.4 0.66±0.02 70.1±5.9 0.35 10.1±0.4 0.77 13
f5 75.2±2.8 2.21±0.06 46.0±4.7 0.35 10.4±0.2 0.0 0
f6 61.1±1.2 1.39±0.03 32.8±5.7 0.24 5.3±0.1 0.0 0

L1689
Fil N0 fwhm µ Length Mass Mcores

Mfil

Ncores

(1020 H2 cm−2) (10−1 pc) (M� pc−1) (pc) (M�)
f1 85.8±3.0 1.58±0.08 46.9±3.5 0.61 14.2±0.3 0.05 2
f2a 78.8±3.7 0.98±0.07 41.3±4.4 0.46 10.0±0.2 0.23 4
f2b 27.2±0.6 3.15±0.08 23.8±1.3 0.36 7.1±0.2 0.0 0
f3 53.8±2.9 2.60±0.03 45.4±4.4 0.42 10.9±0.2 0.0 0

central column density, indicating that they may be experiencing compression from

the two PDRs. The line mass of all the filaments varies between 5.3 M� pc−1 and

136.8 M� pc−1. The compressed bundles in f1 have line masses of 117.1 M� pc−1 and

136.8 M� pc−1. f4 has the highest median line mass at 71.0 M� pc−1.

By taking the nominal density threshold for thermally supercritical gas at 10 K,

16.2 M� pc−1, I can infer which parts of the filaments are likely unable to support

themselves against gravitational collapse with thermal pressure alone. I mark these

super-critical bundles with a red outline in Figure 6.27. I find that very few regions of

the L1688 filaments can be described as sub-critical by this metric. However, I note

that the mean dust temperature in L1688 is higher than 10 K, and given the presence

of the two PDRs, the true gas temperature also likely exceeds this value. Therefore,

the critical threshold of 16.2 M� pc−1 is likely an extreme lower limit.

The filaments in L1688 have a median width of fwhm
:

L1688 = (0.11± 0.04) pc,

with an average uncertainty on a single width measurement of 0.007 pc. The median

value for the filament central column density, N0
:

L1688 = (8.4 ± 2.6) × 1021 H2 cm−2,

with an average individual bundle uncertainty of 0.2×1021 H2 cm−2. The median line

mass, µ:L1688 = 43± 14 M� pc−1.

By associating the starless cores with individual filaments, I can determine

which filaments are more readily forming stars. For each of the 36 cores in L1688, I

determine the distance to the nearest spine point on any filament. Cores are associated

with the filament which contains the nearest bundle if this distance is less than the
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0.1 pc median fwhm for L1688. By this metric, only three of the filaments contain

associated cores: f1, f2 and f4. f2 contains only a single core, while f1 contains 18

and f4 contains 13. One core is not associated with any of the identified filaments.

However, I note that it does reside in a filamentary spur to the north of the S1 PDR,

which is initially detected by FilFinder, but is rejected from the final sample as its

length does not exceed 0.3 pc.

The mass of cores accounts for ∼ 25% of the total mass of filaments in L1688.

The mass of each filament which is bound in the cores is given in Table 6.5.

In L1689 filaments f1, f2a, and the section of f3 that falls within the AV > 7

contour display a similar distribution of widths to the filaments in L1688. However,

f2b and the diffuse region of f3 have much larger widths. In both f1 and f2a the sections

of the filaments near the masked protostars both appear pinched, with narrower

widths when compared to the other segments in the filaments. The median width

of f2b is three times greater than that of f2a, and twice the median width of f1.

In addition, f2b and f3 have lower median central column density values (N0
:

f3 =

(54± 19)× 1020H2 cm−2 and N0
:

f2b = (27± 4)× 1020H2 cm−2 respectively) than those

of f1 and f2b (N0
:

f1 = (85± 19)× 1020H2 cm−2 and N0
:

f2a = (79± 24)× 1020H2 cm−2).

The variation in column density along the length of the filaments is relatively smooth,

with the exception of the squeezed bundles near IRAS 16293-2422. These bundle

points display an increase in column density of approximately a factor of five.

The L1689 median filament width, fwhm
:

L1689, is (0.19± 0.08) pc, with an

average uncertainty on an estimate from an individual bundle of 0.007 pc. The median

filament width in L1689 is nearly twice the median filament width in L1688. However,

this estimate of median width includes the contributions from the low density, more

diffuse sections of f3 and f2b, which have a much wider profile, as shown in Table

6.5. By excluding these low density structures, the median filament width for L1689

is (0.14± 0.05) The median value for the filament central column density, N0
:

L1689 =

(6.8±3.3)×1021 H2 cm−2, with an average uncertainty of 0.1×1021 H2 cm−2. If I again

exclude the contribution from filament f2b and the low density tail of f3, the median

central column density for the filaments in L1689 rises to (8.3± 2.5)× 1021 H2 cm−2.

By assuming the same critical density threshold as L1688, the filaments in

L1689 are super-critical at all points. Here too, I assume the value for the critical

density to be a lower limit, as the dust in L1689 appears to be hotter than 10 K,

indicating this may also be true for the gas. However, L1689 is much less strongly

heated than L1688.

The median line mass for the filaments in L1689 is µ:L1689 = 43± 12 M� pc−1.

This value also includes the contributions from the low density portion of f3, and from
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Figure 6.28. Results from L1689 of using the FilChaP algorithm to investigate variations in (a)
fwhm, (b) central column density N0, and (c) line density, µ. The value of each parameter is given
by the colour of each circle. Red outlines around circles in (c) indicate bundles with a value of µ
that exceeds the nominal critical line density µc = 16.2 M� pc−1, for a gas with a temperature of
10 K.
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the f2b sub-filament. By excluding these low density filament sections, I estimate a

median line density of 45± 12 M� pc−1.

As with L1688, I attempt to associate the cores within L1689 with parent

filaments. Four of the 10 cores are not associated with any filaments, while two are

associated with f1, and the remaining four are part of f2a. The f1 and f2a cores

are clustered near the masked protostars. The cores account for ∼ 13% of the total

filament mass in L1689.

6.3.3.1 The Effect of S1 and HD147889 on L1688 f1

As discussed in Section 6.3.1, the PPMAP data hypercube for L1688 indicates

that the north west portion of the f1 filament is being impacted by its proximity

to the PDRs produced by S1 and HD147889. To investigate this, I first define the

straight line directly connecting S1 and HD147889. I make the assumption that this

connecting line represents the axis of strongest combined influence between the two

pre-main sequence stars.

Figure 6.29 shows the position of the filament spine points in relation to S1

and HD147889 (indicated by the blue star markers). For each spine point along the

L1688 f1 filament I record the column density, line of sight mean dust temperature and

line of sight mean dust opacity index. I also calculate the shortest distance from the

point to the S1-HD147889 axis. Figure 6.30, Figure 6.31 and Figure 6.32 show plots

of the spine point column density, temperature, and opacity index respectively as a

function of this distance. In all cases, the black markers in the Figures indicate spine

points located to the south east of the S1-HD147889 axis, while the black-edged, grey

markers indicate spine points that lie to the north west. Markers with a red boarder

highlight spine points at the positions of local maxima in the column density.

The relationship shown in Figure 6.30 displays an initially sharp decrease in

the column density of the filament spine with distance from the S1-HD147889 axis.

The fall in surface density, of more than an order of magnitude, persists from the peak

near the S1-HD147889 axis, out to 0.2 pc, and is seen to both the north west and the

south east. While the north west spur of f1 then terminates at ∼0.2 pc, the south east

region retains an approximately constant column density over its remaining extent

out to a projected distance of 1 pc from the axis. The peak in column density occurs

at the point closest to the S1-HD147889 axis, indicating that this region is likely being

compressed by the two sources.

Two secondary peaks in column density occur at 0.5 pc and 0.8 pc from the

axis. By comparing Figure 6.29 with Figure 6.23, it can be seen that these secondary

maxima corrispond with the positions of several of the identified pre-stellar cores
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Figure 6.29. The spine of the L1688 f1 filament with respect to the pre-main sequence stars, S1
and HD147889 (blue star markers). The solid black line represents the portion of the spine to the
south east of an axis drawn directly between the stars, while the grey line represents the portion of
the filament to the north west of this axis. Red outlines indicate local maxima in the column density
of the spine.

Figure 6.30. Variations in column density at each spine point along L1688 f1, with distance from
the axis defined between S1 and HD147889. The black markers are taken from spine points to the
south east of the axis, while the grey markers are from spine points to the north west of the axis.
The markers with red outlines highlight the spine points at local maxima. The error bars show the
total column density uncertainty derived from the PPMAP uncertainty data-hypercube.
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Figure 6.31. Variations in mean line of sight dust temperature at each spine point along L1688 f1,
with distance from the axis defined between S1 and HD147889. The black markers are taken from
spine points to the south east of the axis, while the grey markers are from spine points to the north
west of the axis. The markers with red outlines correspond to spine points at local maxima in the
column density. The error bars show the associated error-on-the-mean for each of the mean dust
temperatures.

Figure 6.32. Variations in mean line of sight dust opacity index, β, at each spine point along L1688
f1, with distance from the axis defined between S1 and HD147889. The black markers are taken
from spine points to the south east of the axis, while the grey markers are from spine points to the
north west of the axis. The markers with red outlines correspond to spine points at local maxima
in the column density. The error bars show the associated error-on-the-mean for each of the mean
opacity indices.
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obtained from the Pattle et al. (2015) catalogue.

Figure 6.31 shows a decrease in the line of sight mean dust temperature with

distance from the axis at each of the spine points. In contrast to the column density,

the decrease in dust temperature is approximately linear over the 1.0 pc distance

range. The spine points associated with the column density maxima are located at

local minima in temperature. The temperature peaks sharply to either side of these

points, with the south eastern side of these regions experiencing the greatest increase

in temperature. The anti-correlation between column density and temperature in this

instance is consistent with a view of young sites of active star formation becoming

denser and colder than the surrounding medium as they contract and become more

optically thick to the ambient radiation field. The rise in temperature to either side

of these regions can potentially be explained by heating from more massive, faster

forming proto-stars which warm the edges of these dense regions.

There is no equivalent fall in the value of the dust opacity index with distance

seen in Figure 6.32. Similarly, there is no apparent correlated trend in the dust

opacity index at the positions of the column density maxima at 0.005 pc and 0.8 pc.

However, as with temperature, the local column density maxima at 0.5 pc from the

axis coincides with a minimum in the dust opacity index. At present, there is no

clear explanation for this phenomenon, though as the dust temperature and opacity

index exhibit similar trends at this location, the temperature-β anti-correlation can

be ruled out as a cause.

6.3.4 Comparison with Herschel Observations

To ensure that the PPMAP column density hypercubes of the regions are a

good fit to the data, I perform the flux recovery tests outlined in Chapter 4 and

Chapter 5. I first produce maps of column density for both the L1688 and L1689

regions by conducting a MBB fitting routine on the 160 µm to 500 µm observations,

with the Palmeirim et al. (2013) resolution recovery technique, using a fixed value of

β = 2.

I then recover Herschel -like and SCUBA-2-like observations from the PPMAP

and MBB products with the method described in Chapter 4. Unlike the L1495 tests,

I generate recovered observations for all six bands (70 µm to 850 µm) from both the

PPMAP and MBB products, despite only four bands being used to generate the MBB

maps. This allows me to ensure PPMAP is a good fit to the data over all observation

bands. I note, therefore, that the 70 µm and 850 µm observations recovered from

the MBB products are not necessarily expected to be good fits to the true Herschel
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observations.

Figure 6.33 and Figure 6.34 show the recovered observations from both PPMAP

and the MBB technique for all observation bands alongside the true observations for

L1688 and L1689 respectively. Even neglecting the artefacts present in the MBB

recovered observations, it is clear that PPMAP produces a better fit to the back-

ground medium than the MBB technique, though both methods perform well in the

more dense regions. As expected, this is particularly true for the 70 µm and 850 µm

bands, which are not available to the MBB fitting algorithm. The same trend is

seen in Figure 6.34 for the L1689 region, with PPMAP more accurately recovering

extended emission. Both techniques encounter problems with areas of low true emis-

sion in the 160 µm band. The black contour is plotted over the recovered and true

160 µm observations, highlighting the region where the true Herschel observation has

a value of 52.0 MJy sr−1. This threshold represents the value below which lies the

lowest quartile of emission. Within this contour, both fitting techniques perform

well at recovering the true emission. However, the lower signal to noise outside of

this contour contributes to PPMAP greatly overestimating, and the MBB technique

underestimating, the true emission.

Table 6.6 presents the Goodness of Fit parameter, G (defined in equation 4.4 in

Chapter 4, Section 4.0.1.2), for each of the recovered observations for the L1688 and

L1689 sub-regions. In L1688, PPMAP produces a better fit to the true observations

in all bands except the 160 µm and 500 µm band, though both methods perform

reasonably well across all bands. The Goodness of Fit is much better for PPMAP

than the MBB technique in L1689, with the exception of the 160 µm band, where

the effects of PPMAP overestimating the contribution from the lowest quartile of

emission dominate the parameter calculation. When the lowest quartile of emission

is excluded from the calculation of G, indicated in the Table by the 160C µm band,

PPMAP and the MBB technique perform equally well.

As the poor fit to the lowest quartile of emission only affects the edges of the

map, and a small area of low density material near the centre, while much of the

analysis takes place away from these zones, I find PPMAP produces a model that

is generally a good fit to the input observations for both regions across all bands.

This fit is comparable to or better than the fit produced by a MBB technique across

bands common to both algorithms, and benefits from the added bands at 70 µm and

850 µm.
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Figure 6.33. A comparison of recovered intensity from the PPMAP dust model of L1688, presented
as synthetic observations (left), with the true Herschel and SCUBA-2 observations used to derive
the model (middle). A further comparison with intensity recovered from a MBB fitting technique
(right) provides a reference for the standard method. The images are compared across six bands
(70 µm to 850 µm), and share a common intensity colour scale.
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Figure 6.34. A comparison of recovered intensity from the PPMAP dust model of L1689, presented
as synthetic observations (left), with the true Herschel and SCUBA-2 observations used to derive
the model (middle). A further comparison with intensity recovered from a MBB fitting technique
(right) provides a reference for the standard method. The images are compared across six bands
(70 µm to 850 µm), and share a common intensity colour scale. The red contour on the images for the
160 µm band are drawn at the level of the lowest quartile of emission from the Herschel observation,
and act as a method of excluding the edges and a low signal to noise region of the models, which
are subject to poor fitting.



194 Chapter 6. The Ophiuchus L1688 and L1689 Clouds

Table 6.6. Goodness of Fit parameter, G, for synthetic observations recovered from the models
produced by PPMAP and a MBB fitting technique for the L1688 and L1689 sub-regions. The row
for band 160C µm gives the Goodness of Fit parameters for L1689 within a contour excluding the
edges and a low signal to noise region of the observations. This contour is at the level of the lowest
quartile of emission in the Herschel 160 µm observation.

L1688
Band GPPMAP GMBB

70 µm 0.21 0.61
160 µm 0.29 0.21
250 µm 0.19 0.30
350 µm 0.20 0.25
500 µm 0.28 0.21
850 µm 0.32 0.53

L1689
Band GPPMAP GMBB

70 µm 0.57 0.97
160 µm 19.76 1.96

160C µm 0.50 0.50
250 µm 0.18 0.57
350 µm 0.17 0.43
500 µm 0.28 0.31
850 µm 0.32 0.56

6.4 Conclusions

I utilise the PPMAP algorithm to produce a dust model from Herschel and

SCUBA-2 observations of the L1688 and L1689 sub-regions of the molecular cloud.

This produces an estimate of the H2 column density, as inferred from the dust optical

depth, assuming a gas-to-dust ratio of 100 at every sky position, and assuming that

the dust can be represented by 12 temperature bands and three opacity index bands.

The dust model is found to be consistent both with column density derived from the

Planck all sky dust model (which has a value of Σ
:
PPMAP/Σ

:
Planck = 1.44 for L1688,

and 1.31 for L1689), and the 2MASS/NICER (with AV :PPMAP/AV :2MASS = 0.83 for

L1688, and 1.17 for L1689).

The dust models indicate that both sub-regions are highly sub-structured and

fragmented. The areas of the models covering the two sub-regions are similar (5.74 pc2

for L1688, and 5.96 pc2 for L1689, assuming a distance of 140 pc). L1688 is more mas-

sive, with a total mass contained within the model of (650.7± 0.4) M�, while L1689

contains just (395.4± 0.3) M� of material. The proportion of the total model area in

each sub-region which has a visual extinction greater than AV = 7 (7× 1021 H2 cm−2)

is much greater for L1688 (21%) than for L1689 (6%). The total mass of dense mate-

rial for the two sub-regions of (258.3± 0.2) M� and (88.5± 0.1) M�, respectively. A
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Table 6.7. A summary table of the mass distributions associated with different structures in the
L1688 and L1689 sub-regions.

L1688 L1689
General Properties

Dust Model Area 5.74 pc2 5.96 pc2

Total Mass in Model 650.7±0.4M� 395.4±0.3M�
Mass of Dense Material (AV ≥ 7) 285.3±0.2M� 88.5±0.1M�

Area Percentage of Dense Material (AV ≥ 7) 21% 6%
Mass Percentage of Dense Material (Av ≥ 7) 43% 22%

Starless Cores
Number of Pattle Cores 36 10

Mass of Pattle Cores 20.93±0.04M� 4.28±0.01M�
Percentage of Total Mass in Pattle Cores 3.2% 1.1%
Percentage of Dense Mass in Pattle Cores 7.3% 4.8%

Number of Dendogram Clumps 75 20
Mass of Dendogram Clumps 54.1±0.8M� 18.9±0.3M�

Percentage of Total Mass in Dendogram Cores 8.3% 4.8%
Percentage of Dense Mass in Dendogram Cores 19.0% 21.3%

Filament Properties
Mass of Inner Portion of Filaments 81.1±0.5M� 42.2±0.3M�

Percentage of Total Mass in Inner Filaments 12.4% 8.0%
Percentage of Dense Mass in Inner Filaments 28.4% 35.8%

summary of the mass distributions of the sub-regions, as well as the mass distributions

of smaller structures contained within the sub-regions, is given in Table 6.7.

The distribution of the dust with different temperatures also differs between

the two sub-regions. The dense structures in L1689 are mostly composed of material

with a dust temperature between 10.0 K and 17.1 K, while the diffuse surrounding

medium comprises dust which occupies the temperature range 14.3 K and 20.5 K.

Very little dust is found in the L1689 dust model with temperatures above 24.5 K.

The L1688 dust model presents a strong temperature gradient from east to west, with

significant quantities of dust occupying the 29.2 K and 35.0 K band. Two low density

PDRs blown by the stars contain dust at 41.8 K over a large area, with smaller areas

of dust at 50.0 K. In contrast, both sub-regions exhibit similar variations in dust

opacity index, with dense structures containing dust in all three opacity index bands,

while dust in the diffuse surrounding medium is mostly contained within the β = 1.5

and β = 2.0 bands.

I utilise the starless core catalogue produced by Pattle et al. (2015) to estimate

the mass of 36 cores in L1688, and ten cores in L1689. All the cores in both sub-

regions are located in areas with AV ≥ 7. The total mass of cores in L1688 is 20.9 M�,
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and the mass of the cores in L1689 is 4.3 M�. While this accounts for 3.2% of the total

mass of the L1688 dust model and only 1.1% of the total mass of L1689, the cores in

each region make up a roughly similar proportion of the dense material, at 7.3% and

4.8% respectively. The star formation efficiencies as measured over the entirety of

each sub-region is three times larger in L1688 than L1689. However, the proportion

of the mass of the dense material in each sub-region associated with cores is much

closer (∼ 1.5 times higher in L1688). I therefore propose that the star formation

efficiency is not directly bound to the total mass of the parent cloud. Instead, once

dense structures form, star formation progresses with similar efficiency across all such

structures. It is differences in the properties of, and influences on, parent clouds that

govern the rate of formation of these dense structures, and drive apparent differences

in global star formation efficiency.

To verify this result I produce a catalogue of dense clumps for both regions via

a dendogram method. The clumps each have a maximum area less than 0.0079 pc2

(the projected area of a spherical object with a 0.1 pc diameter). The position of

the starless cores from the Pattle et al. (2015) catalogue agree well with several

of the dense clumps identified in the dendogram, though the cores are not uniquely

associated with clumps, and many identified clumps do not have an associated starless

core. Therefore the clumps should be considered a loose proxy for the star formation

efficiency, indicating structures which could fragment, or have fragmented into one

or more starless cores. I identify 75 dense clumps in L1688, with a total mass of

54.1 M� accounting for 19.0% of the dense material by mass, and 8.3% of the total

mass. In L1689, I identify 20 dense clumps, with a combined mass of 18.9 M�, which

equates to 21.3% of the mass of the dense material, and 4.8% of the total mass. These

figures are consistent with the hypothesis that dense regions fragment into cores with

comparable efficiency, and that differences in sub-region and cloud star formation

efficiencies are a consequence of clouds forming AV > 7 structures at different rates.

I apply the FilFinder algorithm to the sub-regions, and identify six filaments

within L1688, and three filaments in L1689. I split one filament in L1689 into two due

to the algorithm tracing a structure at the midpoint that does not appear to be part

of the filament. I take perpendicular slices in the column density at each spine point

along the filament, and use FilChaP to bundle the slices in groups of 12, and return a

median column density profile at 0.057 pc intervals along each of the filament spines.

FilChaP fits an axially symmetric Plummer-like function with a p = 2 exponent

to each of the median profiles, and performs an automatic background subtraction.

FilChaP returns a fitted value of the central column density, N0, and the inner radius,

r0 (which I convert into a measure of the fwhm of the Plummer-like function) for each
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median profile. I estimate the mass contained within the inner portion of each filament

by integrating the Plummer-like functions out to their fwhm to produce an estimate

of the inner line density at each bundle centroid position, and then integrating these

values along each filament. I find that in L1688, the filaments have a total inner

mass of (81.1± 0.5) M�, and account for 12.4% of the total sub-region mass, and

28.4% of the dense mass. The filaments in L1689 have a combined inner mass of

(49.8± 0.3) M�, and make up 12.6% of the total sub-region mass. By excluding the

parts of the filaments in L1689 which fall outside the AV ≥ 7 material, I calculate the

proportion of the dense mass of L1689 bound in the filamentary structures is 35.8%.

This result is at odds with that produced by the analysis of the full sub-regions

the cores and dense clumps. As summarised in Table 6.7, while the proportion of the

mass of cores in L1688 is approximately a factor three higher than the proportion of

the mass of cores in L1689, the proportion of the dense material in each region which

is bound in cores is much closer. The same is true of the dense clumps identified via

the dendogram analysis. However, the mass of material of L1688 associated with the

inner portions of the filaments is only ∼ 1.5 times larger than that of L1689, while

the proportion of the dense material associated with filament sis actually higher for

L1689 than L1688.

The filaments in L1688 have a median width of 0.11±0.04 pc, a median central

column density of (8.4 ± 2.6) × 1021 H2 cm−2, and a median line density of 43 ±
14 M� pc−1. In L1689, the median width is 0.19± 0.08 pc, the median central column

density is (6.8± 3.3)× 1021 H2 cm−2, and the median line density is 43± 12 M� pc−1.

However, the f2b sub-filament, and a portion of the f3 filament in L1689 are much

more diffuse than the other filaments, with a greater median width. By excluding

sub-filament f2b and the low density portion of f3, the median values for the remaining

filaments in L1689 are fwhm
:

= 0.14± 0.05 pc, N0
:

= (8.3± 2.5)× 1021 H2 cm−2, and

µ: = 45± 12 M� pc−1.

I attempt to associate each of the starless cores from the Pattle et al. (2015)

catalogue with a filament, by identifying the closest filament to each core. Cores

further than 0.1 pc from the filaments are deemed not to have an association with

any filament. I then calculate the proportion of the mass of each filament that is

contained within its associated cores. In L1688, the f1 filament has 18 associated

cores, making up 32% of its mass. The f3 filament has a single associated core, which

accounts for 3% of its mass, while the f4 filament has 13 associated cores, which

containing 77% of its mass. In L1689, f1 has two associated cores, comprising 5% of

its mass, while f2a is associated with four cores, which make up 23% of its mass.

The f1 filament in L1688 is the longest filament in either sub-region, running
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1.76 pc. The dust model indicates that it has a significant temperature gradient along

its length, with the hottest region coinciding with the most dense region, directly

between the PDRs associated with S1 and HD147889. To investigate the impact

of these PDRs on the filament, I define an axis between the two parent stars, and

calculate the distance of each spine point along the filament to this axis. From this I

am able to plot the value of the column density, mean line of sight dust temperature,

and mean line of sight dust opacity index as a function of distance from the axis. I

deduce that the two PDRs are causing significant heating and squeezing, with both

temperature and density falling off rapidly with increasing distance from the axis.

This is likely the trigger for the formation of a cluster of cores directly between the

two stars. Two local maxima in the column density at ∼0.5 pc and ∼0.8 pc from the

axis coincide with the locations of smaller core clusters, and have accompanying local

peaks in temperature. The temperature peaks are offset from the column density

peaks by a small distance, which is likely evidence that the edges of these regions are

strongly heated, while the inner, denser portions are better shielded and thus colder.

There is no systematic variation in the dust opacity index with distance from the

axis.



Chapter 7

Summary and Future Work

In this chapter I summarise the key points and results from Chapters 4 to 6, which

constitute the original work in this thesis. In particular I emphasise the advances in

our understanding of filament structure and properties, and their role in mediating

star formation, and I establish the PPMAP algorithm as a powerful tool for analysing

far infrared and sub-millimetre observations of dusty star forming regions.

I also outline areas of potential future work to place PPMAP in the public

domain and extend the scope of this research programme.

7.1 Testing PPMAP
In Chapter 4 I carry out a series of tests with real and synthetic data to verify

that PPMAP is able to accurately produce four dimensional models of the column

density of dusty objects as a function of line of sight dust temperature and dust

opacity index. I derive synthetic specific intensity maps at 160 µm, 250 µm, 350 µm

and 500 µm from the PPMAP column density data hypercube produced from Herschel

observations of the Taurus L1495/B213 star forming complex. These synthetic maps

are convolved with the beam profiles of the corresponding Herschel observing bands

to produce simulated Herschel -like observations.

I visually compare the simulated observations with the true observations used

to derive the PPMAP model, and with similarly produced synthetic observations de-

rived from a MBB fitting routine applied to the same set of observations. In addition,

I derive a “goodness of fit” parameter to quantify how well the synthetic observations

match the true observations. I find that while the synthetic observations from both

PPMAP and the MBB fitting routine closely match the Herschel observations at

350 µm and 500 µm, PPMAP is much more accurate in estimating the contribution

199
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from the 160 µm and 250 µm bands, with the MBB fitting technique tending to over-

estimate the contribution from the background at shorter wavelengths.

In Chapter 6, I perform a similar flux recovery test on dust models of regions

in the Ophiuchus molecular cloud. This produces similar results, although in this

case the MBB fitting routine underestimates the contribution from the background

at short wavelengths. I also note that the edges of the PPMAP maps can be subject

to high uncertainty due to both boundary effects during the fitting procedure, and

increased measurement noise at the edges of scan regions in the input observations.

This can negatively impact the accuracy of estimation of the contribution from the

observing bands. This effect is particularly apparent for the 160 µm band in the L1689

sub-region.

To verify that the algorithm is able to accurately recover the mass of an as-

trophysical object, I produce a PPMAP column density hypercube from synthetic

observations of a model filament. The filament is axially symmetric, and has a

Plummer-like radial density profile. The filament has a uniform opacity index of

2, and a temperature profile given by an inverse Plummer-like function. The filament

is placed in a diffuse background with uniform column density, dust temperature and

opacity index. I find that PPMAP produces an estimate of the total mass of the

synthetic filament which is 7% larger than the true mass. In contrast, a MBB fitting

technique applied to the same set of synthetic observations underestimates the mass,

recovering only 70% of the total column density through the spine of the filament.

In order to ensure that PPMAP can accurately probe dust temperature and

dust opacity index simultaneously, I produce a series of PPMAP hypercubes from syn-

thetic observations of four model filaments. All the model filaments have a Plummer-

like radial density profile identical to the model filament described above. The fil-

aments are constructed such that there is a pair of “cold” (10 K to 20 K) filaments

with correlated and anti-correlated dust temperature and dust opacity index profiles,

and a pair of “hot” (20 K to 30 K) filaments with correlated and anti-correlated dust

temperature and dust opacity index profiles. The synthetic observations of these

filaments are produced at 70 µm, 160 µm, 250 µm, 350 µm, 500 µm and 850 µm, and

are convolved with the appropriate Herschel and SCUBA-2 beam profiles. The re-

sults indicate that PPMAP is able to lift the dust temperature and dust opacity

index degeneracy provided it has observations which probe sufficiently far into the

Rayleigh-Jeans tail of a modified black body function. This can be achieved with

only the Herschel bands for dust temperatures in the range of 20 K to 30 K, or for

structures with dust temperatures between 10 K and 20 K with a combination of both

Herschel observing bands and SCUBA-2 850 µm observations.
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7.2 Dust Temperature and Dust Opacity Index Vari-

ations
In Chapter 5 and Chapter 6, I present the results of applying the PPMAP

algorithm to Herschel and SCUBA-2 observations of the Taurus L1495/B213 and the

Ophiuchus L1688 and L1689 star forming complexes.

In both the Taurus L1495/B213 complex and the Ophiuchus sub-regions, the

dust in the more diffuse background clouds mainly occupies the dust opacity index

bands where β ≥ 1.5. While the more dense clumps and filamentary structures also

contain large reservoirs of dust at these higher opacity indexes, their central regions

contain significant quantities of dust which occupies the β = 1.0 PPMAP band. The

presence of dust with a lower opacity index in the better shielded regions of the dense

structures may be an indicator of grain growth or other physical or chemical changes

to the dust structure.

In the L1495/B213 complex and the L1689 sub-region, the lower density back-

ground clouds contain very little cold dust. The dust that is present is found to

predominantly occupy the warm (>12 K) PPMAP dust temperature bands. The

dust occupying the low temperature bands (≤12 K) is almost exclusively found in the

centres of dense clumps and filaments. These structures also contains large reservoirs

of dust in the warm bands. This dust is likely to be in outer envelopes or sheaths, or

is found near sources of local heating.

The variations in dust temperature in the L1688 sub-region present a more

confused picture. The influence of the nearby Upper Scorpious OB association, and

pre-main sequence stars S1 and HD147889, produce strong heating effects. This leads

to a sharp temperature gradient across the region. Therefore, the diffuse background

material and the dense structures in the West of the sub-region are significantly

warmer than those in the East. Despite this, inspection of the column density in the

PPMAP dust temperature bands reveals that the centres of dense structures harbour

colder dust than their local surroundings.

Dense structures in the PPMAP dust models of Taurus and Ophiuchus are

found to have lower column densities and higher mean line of sight temperatures

compared with estimates produced by single-temperature MBB fitting techniques.

This effect is due to single-temperature MBB fitting techniques confusing the contri-

bution to the total emission from less dense, warmer material with the contribution

from more dense, colder material along the line of sight. This is a consequence of

requiring all emission along the line of sight to come from material with a single

temperature. PPMAP overcomes this problem by distributing the dust into different
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line of sight temperature bins. PPMAP is therefore able to disentangle the contribu-

tion from different dust populations, and reveal the presence of warm dust in dense

structures.

7.3 Filament properties

In the PPMAP dust models of Taurus and the Ophiuchus, I identify several

filamentary structures. I present the analysis of the properties Taurus B211/B213

filament in Chapter 5, and compare the results to those presented by Palmeirim et al.

(2013). In Chapter 6, I identify several filamentary structures in both the L1688 and

L1689 sub-regions of Ophiuchus, and present the first systematic investigation of their

properties.

7.3.1 Length Averaged Properties of the B211/B213 Filament

To investigate the properties of the Taurus L1495/B213 complex, I produce a

length averaged median profile of the B211/B213 filament. I achieve this by taking a

series of profiles of the column density perpendicular to the spine of the filament at

0.004 pc intervals along its length, out to a distance of 1 pc either side of the spine. I

then take the median value of the column density at evenly spaced values of the impact

parameter from the spine. To this median profile, I fit a Plummer-like function. I

do not perform a background subtraction, and do not require that the function be

symmetric, though the function is continuous across the filament spine. This allows

for simultaneous fitting of the central column density, N0, and independent values of

the inner width, r0, Plummer-like exponent, p, and background NB, for the North

and South side of the filament.

The average of the North and South Plummer-like exponents is p̄ = 1.88±0.05,

which is consistent with the results published by Palmeirim et al. (2013). I recover

a value of N0 = (6.38 ± 0.09) × 1021 H2 cm−2, and an average value of r̄0 = 0.022 ±
0.002 pc, which are both significantly lower than the values reported by Palmeirim

et al. (2013).

An estimate of the inner width of the filament is produced by utilising r̄0 and p̄

to calculate the fwhm of the fitted Plummer-like function. I estimate the width of the

B211/B213 filament to be 0.087 pc. This is approximately half the width reported by

Palmeirim et al. (2013), and at the extreme lower end of the distribution of filament

widths presented by Arzoumanian et al. (2019) when adjusted for differences in the

fitting techniques.
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7.3.2 Comparison of Filament Properties between Taurus and

Ophiuchus

I analyse variations in filament properties along the length of identified fila-

ments in both Taurus and Ophiuchus with the FilChaP algorithm. FilChaP splits

the filament into a series of perpendicular bundled profiles, performs a background

subtraction, and fits a symmetric Plummer-like p = 2 function to each bundle with

N0 and r0 as free parameters.

The filament width and central column density is found to vary significantly

along the length of each filament in both Taurus and Ophiuchus. The median filament

width in L1495 is (0.08± 0.02) pc. The average uncertainty of a single estimate of the

width at a point along the spine is just 0.005 pc, half an order of magnitude smaller

than the variation in the distribution of all width estimates along the filament spine.

As with the length averaged fit, the median of the distribution of widths estimated

at points along the filament spine is much less than the width reported by Palmeirim

et al. (2013). In L1688 I recover a median filament width of (0.11± 0.04) pc, while

in L1689, the median filament width is (0.19± 0.08) pc. While this is nearly two

times larger than the median width of the filaments in L1688, and more than twice

the median width of the B211/B213 filament, the 0.19 pc median width in L1689

includes the contributions from filament f2b and a section of filament f3 (see Figure

6.15 in Chapter 6). These structures are less dense and significantly wider than the

other filaments within the region. If they are excluded from the analysis, the median

width of the remaining filaments in L1689 is (0.14± 0.05) pc.

The median of the mixed distribution of the filament bundle widths from all

the regions is (0.10± 0.04) pc. As discussed in Chapter 5, this is the median width of

the fwhm of the Plummer-like profiles fitted to the filament bundles. By converting

to the fwhm of an equivalent Gaussian profile fitted to the inner regions (b ≤ r0)

of the bundles, I obtain a median Gaussian width of (0.071± 0.026) pc. This is

somewhat lower than the median filament width of 0.09 pc reported by Arzoumanian

et al. (2019).

I use the N0 and r0 values of the fitted bundles to calculate the local line

density at points along each of the filaments. In the L1495/B213 complex, I estimate

a median line density of (17.8± 4.4) M� pc−1. This is close to the critical line density

of 16.2 M� pc−1, assuming a gas temperature of 10 K. This result is inconsistent with

the B211/B213 filament being globally super-critical as concluded by Palmeirim et

al. (2013). I do, however, find that the positions of starless cores (taken from Marsh

et al. 2016), correlate with locally super-critical bundles along the filament.
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In contrast, I find the median filament line densities in L1688 and L1689 to

be (43± 14) M� pc−1 and (43± 12) M� pc−1 respectively. These values are much

higher than the median line density I observe in the L1495/B213 complex. While

this indicates that the filaments are super-critical as they have line densities that

greatly exceed 16.2 M� pc−1, I note that the the gas temperature here may be higher

than 10 K due to the local feedback. If the gas is as 25 K, the critical line density is

43 M� pc−1.

I also use FilChaP to fit the bundles of the B211/B213 filament with p = 4

Plummer-like functions. I find that the p = 4 Plummer-like functions produce a

better fit to the data than the p = 2 Plummer-like profiles. This indicates that the

B211/B213 filament might be closer to the hydrostatic equalibrium solution for an

isothermal filament derived by Ostriker (1964), and that the shallower p = 2 profile

may be a consequence of averaging over resolved substructure along the length of the

filament.

7.4 Measurements of Mass Distribution in Ophi-

uchus

To compare the L1688 and L1689 sub-regions, I analyse the mass distribution

of different structures contained within them. I find that while the area covered

by the dust models is approximately the same (5.74 pc2 for L1688 and 5.96 pc2 for

L1689), the L1688 model contains ∼ 1.5 times more mass than the L1689 model

((650.7± 0.4) M� and (395.4± 0.3) M�, respectively). I estimate the percentage of

dense material in the sub-fields by defining a contour at 7× 1021 H2 cm−2. This is

equivalent to a visual extinction of AV = 7, which has been shown to mark the

transition between low core formation efficiency and high core formation efficiency

(e.g. André et al. 2010). The dense material accounts for 21% of the area of the

L1688 model, while the dense material in L1689 covers only 6% of the model area.

I utilise the catalogue produced by Pattle et al. (2015) to locate starless cores

within the two sub-regions. I determine the masses of the cores by performing aper-

ture photometry on maps of H2 column density derived using PPMAP. I find that

the 36 cores located within L1688 have a total mass of (20.93± 0.04) M�, while the

10 cores in L1689 have a total mass of (4.28± 0.01) M�. The cores account for 3.2%

of the total mass and 7.3% of the dense (AV ≥ 7) mass of L1688, and 1.1% of the

total mass and 4.8% of the dense mass of L1689. The percentage of sub-region mass
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contained within cores is three times larger in L1688 than L1689. However, the per-

centage of the dense mass contained within cores in L1688 is only 1.5 times larger.

This finding is consistent with similar analyses conducted by Ladjelate et al. (2020)

and Nutter, Ward-Thompson, and André (2006).

As an independent verification of these findings, I utilise dendograms to iden-

tify a series of dense, compact objects in the L1688 and L1689 dust models. Each of

the objects had an upper size threshold of 0.0079 pc2. This threshold equates to the

cross-sectional area of a spherical core with a diameter of 0.1 pc. I identify 75 dense

objects in L1688 with a total mass of (54.1± 0.8) M�, which accounts for 8.3% of the

total mass of the model, and 19.0% of the dense material. In L1689, I identify 20

dense objects with a total mass of (18.9± 0.3) M�. Therefore the dense objects in

L1689 make up 4.8% of the total model mass, and 21.3% of the total mass. As with

the Pattle et al. (2015) core catalogue, the proportion of total model mass contained

within the dense objects is larger (by nearly a factor of two) for L1688 than for L1689,

while the fraction of dense material associated with the objects is much lower (and

nearly equal across the two sub-regions). This suggests that global cloud mass does

not directly affect core formation efficiency, but instead drives the formation of dense

regions. These regions, once they achieve a density ≥7× 1021 H2 cm−2, form starless

cores with similar core formation efficiencies.

I also determine the mass contained within the inner portion of each of the

filaments identified in the two sub-regions. I limit my mass estimates to the inner

portions of the filaments as it facilitates a comparison between the filaments and

the dense (AV ≥ 7) material. I find the filaments in L1688 have a total inner mass

of (81.1± 0.5) M�, which accounts for 12.4% of the total model mass. All of the

filaments in L1688 lie fully within the AV = 7 contour. Therefore, they account for

28.4% of the mass of the dense material. The total inner mass of the L1689 filaments

is (49.8± 0.3) M�. The inner portions of the filaments therefore make up 12.6% of

the total mass of the sub-region. Unlike L1688, the filaments in L1689 do not all

lie within the dense material. Therefore, I exclude the f2b filament and a portion of

the f3 filament before comparing the filament inner mass with the mass of the dense

material. The remaining filaments make up 35.8% of the dense material.

7.5 Impacts of Feedback on L1688 Filament f1

I investigate the effect of the S1 and HD147889 pre-main sequence stars on

the f1 filament in L1688. I plot the H2 column density, dust temperature, and dust

opacity index of the spine points along f1 as a function of their distance from the
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axis which connects the two pre-main sequence stars. The column density and dust

temperature both peak near to the axis itself, and fall off rapidly with distance from

the axis. Therefore, I deduce that S1 and HD147889 are responsible for significant

squeezing and heating of the filament. This region between the PDRs blown by the

stars harbours a large number of starless cores. This might indicate that the impact

of the stars has led to an increase in core formation rate. The f1 filament shows two

local maxima in the column density and dust temperature at 0.5 pc and 0.8 pc from

the S1-HD147889 axis. Both local maxima coincide with the positions of groups of

starless cores. In each case, the peak temperature is offset from the peak column

density. This suggests that the outer edges of the denser regions are being heated,

but the inner portions of these regions are colder due to shielding. I am unable to

find a correlation between dust opacity index and distance from the S1-HD147889

axis.

7.6 Future Work

This thesis showcases the ability of PPMAP to produce column density maps

of star forming regions without degrading the resolution of the finest resolution ob-

servations, and highlights variations in the dust opacity index and dust temperature

both in the plane of the sky and along the line of sight. I use PPMAP to produce

detailed studies of the filamentary structures in two different environments within the

Gould Belt star forming clouds, and to probe their temperature and density structure

and dust properties with significantly more discrimination than previously adopted

analyses. At this stage, several areas of further study present themselves.

7.6.1 Developing PPMAP for the Astronomy Community

This thesis constitutes a successful pilot study and validation of the PPMAP-

based analysis methodology. If applied systematically to nearby star forming clouds,

it has the potential to bring about a major advance in the diagnostic capabilities of

multi-band dust continuum observation, and in our understanding of how filamentary

structure mediates star formation. In addition, PPMAP has been successfully applied

to both extragalactic environments (Marsh et al. 2018; Whitworth et al. 2019) and

supernova remnants (Chawner et al. 2019).

However, while PPMAP is a powerful tool, installation, set-up and use of

the algorithm is difficult. This limits usability to a small subset of people who are
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already experienced with its operation. Furthermore, there is no documentation for

the algorithm, nor any publicly available tests or examples.

I would develop PPMAP into a user-friendly, well documented tool, and place

it in the public domain. As part of this process, I would refine the tests presented

in Chapter 4 into a series of working examples which demonstrate the functionality,

robustness, and limitations of the algorithm. I would also develop a new test, com-

prising a series of uniform discs of gas and dust, with differing column densities and

dust temperatures (and potentially opacity indices). The discs would be tuned to

probe the 70 µm optically thick boundary. By producing synthetic observations of an

array of these discs (each separated from its neighbour by a small distance), I could

produce PPMAP models of temperature and column density. Thus I could construct

a correction table based on these two parameters, allowing optical depth issues to be

corrected by post-processing procedures.

While PPMAP already includes beam profiles and colour correction factors for

the Herschel and SCUBA-2 observing bands, I would create a number of complemen-

tary scripts to allow users to create observation beam profiles and colour correction

factors for other instruments. I would also continue to develop the functionality of the

preMAP and PPMAP algorithms. These developments would expand the capabilities

of PPMAP, allowing for use of colour corrections dependent on both dust temperature

and dust opacity index, and enabling the user to select both logarithmic and linear

discrete dust temperature scales. An extensive installation and user manual would

allow PPMAP to be compiled and run on a wide array of supercomputing clusters,

and aid in the production and interpretation of the results. This would pave the way

for PPMAP to become a standard alternative to the traditional MBB-based analysis

methodologies.

7.6.2 Continued Analysis of L1495 and Oph

The analysis in this thesis focused primarily on the B211/B213 filament in

Taurus, and the L1688 and L1689 sub-fields of Ophiuchus. An obvious first step in

extending this work would be to study the complex head region of L1495 and the

network of diffuse structures and cores which extend beyond the head to the West of

the region. In addition, the investigation of Ophiuchus should be extended to cover

the L1709 structure, which lies North of L1689, and North East of L1688, and appears

to be composed of a single, isolated filament similar to B211/B213, which is more

quiescent than either L1688 or L1689 (see Figure 7.1).

In addition, I would revisit the core formation efficiency investigation, utilising
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Figure 7.1. A three colour image of the Ophiuchus star forming cloud showing the position of the
L1709 structure in relation to the L1688 and L1689 sub-fields. Image credit Ladjelate et al. (2020).

the Ladjelate et al. (2020) core catalogue, allowing for a more direct comparison with

their results.

Polarimitary studies show that magnetic fields play an important role in the

evolution of filament structure. In the L1495/B213 complex, for example, the back-

ground magnetic field lies perpendicular to the primary B211/B213 filament, and

parallel to diffuse striations which appear to be feeding mateiral onto the main fila-

mentary structure (Palmeirim et al. 2013). This change in the orientation of structures

relative to the magnetic field appears to coincide with the transition in dust opac-

ity index from higher values in low-density structures to lower values in high-density

structures. I would use the high resolution PPMAP dust models to analyse the rela-

tive orientation of structure in Taurus and Ophiuchus with respect to the background

magnetic field, and attempt to link the magnetic field to variations in the line of sight

dust opacity index and dust temperature. This would likely require new polarimitary

data to be taken with, for instance, the Pol-2 instrument on the JCMT. This inves-

tigation would also involve producing a new model of the L1495/B213 complex at

the higher 14′′ resolution used to create the Ophiuchus dust models. Quantifying the

filament orientation in Ophiuchus would also enable further analysis of the impacts

of the Upper Scopius OB association on the evolution of L1688 and L1689.

It is also important to conduct a more in-depth core analysis of the regions, to
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better determine how the large scale structures are linked to prestellar and protostellar

cores. Such an analysis would examine the core spacing and try to determine the

characteristic length scale of fragmentation along the filaments with the FragMent

algorithm (Clarke et al. 2019). However, this and other core studies will have to

involve either a modification of PPMAP to attempt to resolve the artefacts caused

by optically thick cores with bright central 70 µm sources, or else a better pipeline for

masking those sources which does not cause such severe data loss from the filament

structure.

7.6.3 Extension to Other Gould Belt Fields

The L1495/B213 complex and Ophiuchus cover only a small subset of the

environments within the Gould Belt. In future studies, I would apply PPMAP to

the remaining Gould Belt star forming regions. This would allow for high resolution

comparisons of filament and cloud dust properties spanning a large range of cloud

properties. The active formation of massive stars in Orion A, for example, will provide

a particularly important contrast in terms of environment with the low mass star

forming L1495/B213 complex.

These investigations would aim to utilise ArTéMiS 350 µm and 450 µm ob-

servations from the 12 m diameter APEX telescope to improve the resolution of the

Herschel SPIRE observations by up to a factor of three. As ArTéMiS is ground

based, feathering the observations with similar Herschel bands will be required to

recover the extended emission. This is easily achieved for the 350 µm band, which is

common to both ArTéMiS and SPIRE. The 450 µm band does not have a direct Her-

schel counterpart. However, 450 µm SCUBA-2 observations have been successfully

feathered with SPIRE 500 µm observations by Matt Smith (in prep.), indicating that

a similar process could be used here.

With the increase in resolution that this would facilitate, any resolved filament

sub-structure revealed by PPMAP could be compared with the studies of velocity

coherent fibres (see e.g. Hacar et al. 2013; Henshaw et al. 2017; Hacar, Tafalla, and

Alves 2017; Hacar et al. 2018) to identify if a correlation exists between the structures.

7.6.4 Probing Dust Opacity Index Variations with NIKA 2,

MUSCAT, and TolTEC

Chapter 4 has shown that while PPMAP is able to lift the degeneracy between

estimates of dust temperature and dust opacity if it is supplied with sufficiently long
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wavelength observations. The results presented in this thesis have shown that high

column density regions can harbour reservoirs of dust with low opacity indices. To

better explore this result, future studies of star forming regions should include not

just SCUBA-2 850 µm data, but also 1.1 mm observations from the NIKA2 (Adam

et al. 2018) instrument on the 30 m diameter IRAM telescope, or from the MUSCAT

(Castillo-Dominguez et al. 2018) and TolTEC (Bryan 2018) instruments due to begin

operation shortly on the 50 m diameter Large Millimetre Array. Delivery and instal-

lation of TolTEC is expected to be operational by the latter part of 2020. MUSCAT

delivery has been postponed due to the outbreak of the SARS-CoV-2 virus and sub-

sequent global COVID 19 pandemic (WHO 2020). As with SCUBA-2 and ArTéMiS,

1.1 mm observations would be feathered with a corresponding observing band from a

space-borne telescope; in this case, the 1 mm band on Planck .

TolTEC will be particularly useful, as it is sensitive to the polarisation angle of

the incoming light, allowing it to complement studies of the magnetic fields performed

with the JCMT Pol-2 instrument.
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PPMAP colour correction tables

This appendix presents the colour correction factors for the Herschel instruments and

the SCUBA-2 850 µm as a function of dust temperature. The tables are generated

via the method described in Chapter 2, section 2.2. The colour correction factors

are utilised by PPMAP in the estimation of accurate column density distributions as

described in Chapter 3, Section 3.1.3.

Table A.1. The Herschel.txt table of colour correction factors utilised by PPMAP to produce
column density models.

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm

5 0.00545 0.33405 0.88318 0.98683 1.04955

6 0.03217 0.53344 0.95294 1.01432 1.06084

7 0.09056 0.70145 0.99104 1.02526 1.06074

8 0.17397 0.82788 1.01143 1.02835 1.05637

9 0.27008 0.91693 1.02173 1.02767 1.05064

10 0.36847 0.97685 1.02622 1.02520 1.04474

11 0.46235 1.01555 1.02733 1.02198 1.03915

12 0.54804 1.03933 1.02646 1.01851 1.03403

13 0.62400 1.05277 1.02447 1.01506 1.02943

14 0.69004 1.05915 1.02188 1.01176 1.02531

15 0.74673 1.06076 1.01899 1.00866 1.02164

16 0.79495 1.05916 1.01599 1.00580 1.01836

17 0.83573 1.05545 1.01300 1.00315 1.01542

18 0.87006 1.05040 1.01009 1.00073 1.01277

19 0.89889 1.04451 1.00729 0.99850 1.01039

Continued on next page
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Table A.1 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm

20 0.92304 1.03817 1.00463 0.99646 1.00824

21 0.94323 1.03160 1.00212 0.99458 1.00629

22 0.96009 1.02499 0.99975 0.99286 1.00451

23 0.97413 1.01846 0.99753 0.99127 1.00289

24 0.98580 1.01207 0.99544 0.98980 1.00140

25 0.99546 1.00587 0.99348 0.98845 1.00003

26 1.00345 0.99991 0.99165 0.98719 0.99877

27 1.01000 0.99418 0.98992 0.98603 0.99760

28 1.01535 0.98871 0.98831 0.98494 0.99652

29 1.01968 0.98349 0.98679 0.98393 0.99551

30 1.02315 0.97851 0.98536 0.98299 0.99458

31 1.02588 0.97378 0.98402 0.98210 0.99370

32 1.02799 0.96927 0.98275 0.98128 0.99289

33 1.02957 0.96499 0.98156 0.98050 0.99212

34 1.03070 0.96092 0.98043 0.97977 0.99140

35 1.03145 0.95705 0.97937 0.97908 0.99073

36 1.03188 0.95336 0.97836 0.97843 0.99009

37 1.03203 0.94986 0.97740 0.97782 0.98949

38 1.03195 0.94652 0.97650 0.97724 0.98892

39 1.03167 0.94335 0.97564 0.97669 0.98838

40 1.03122 0.94032 0.97482 0.97617 0.98787

41 1.03064 0.93744 0.97405 0.97568 0.98739

42 1.02994 0.93468 0.97331 0.97521 0.98693

43 1.02913 0.93205 0.97260 0.97476 0.98649

44 1.02825 0.92954 0.97193 0.97433 0.98607

45 1.02730 0.92714 0.97129 0.97393 0.98567

46 1.02629 0.92485 0.97068 0.97354 0.98529

47 1.02525 0.92265 0.97009 0.97317 0.98493

48 1.02416 0.92055 0.96953 0.97281 0.98458

49 1.02305 0.91853 0.96899 0.97248 0.98425

50 1.02192 0.91659 0.96848 0.97215 0.98393

51 1.02078 0.91474 0.96798 0.97184 0.98363

52 1.01962 0.91296 0.96751 0.97154 0.98333

Continued on next page
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Table A.1 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm

53 1.01846 0.91124 0.96705 0.97125 0.98305

54 1.01730 0.90960 0.96661 0.97097 0.98278

55 1.01615 0.90801 0.96619 0.97071 0.98252

56 1.01499 0.90649 0.96578 0.97045 0.98227

57 1.01385 0.90502 0.96539 0.97021 0.98203

58 1.01271 0.90360 0.96501 0.96997 0.98180

59 1.01158 0.90224 0.96465 0.96974 0.98157

60 1.01047 0.90092 0.96430 0.96952 0.98135

61 1.00937 0.89965 0.96396 0.96930 0.98115

62 1.00829 0.89842 0.96363 0.96910 0.98094

63 1.00721 0.89724 0.96331 0.96890 0.98075

64 1.00616 0.89609 0.96301 0.96870 0.98056

65 1.00512 0.89498 0.96271 0.96852 0.98037

66 1.00410 0.89391 0.96242 0.96834 0.98020

67 1.00309 0.89287 0.96214 0.96816 0.98002

68 1.00210 0.89187 0.96187 0.96799 0.97986

69 1.00113 0.89089 0.96161 0.96783 0.97970

70 1.00018 0.88995 0.96136 0.96767 0.97954

71 0.99924 0.88903 0.96111 0.96751 0.97939

72 0.99832 0.88815 0.96087 0.96736 0.97924

73 0.99741 0.88728 0.96064 0.96721 0.97909

74 0.99653 0.88645 0.96041 0.96707 0.97895

75 0.99566 0.88563 0.96019 0.96693 0.97882

76 0.99480 0.88484 0.95998 0.96680 0.97869

77 0.99396 0.88408 0.95977 0.96667 0.97856

78 0.99314 0.88333 0.95957 0.96654 0.97843

79 0.99234 0.88260 0.95937 0.96642 0.97831

80 0.99155 0.88190 0.95918 0.96630 0.97819

81 0.99077 0.88121 0.95900 0.96618 0.97808

82 0.99001 0.88054 0.95881 0.96606 0.97796

83 0.98926 0.87989 0.95864 0.96595 0.97785

84 0.98853 0.87925 0.95846 0.96584 0.97775

85 0.98781 0.87863 0.95830 0.96574 0.97764

Continued on next page
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Table A.1 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm

86 0.98711 0.87803 0.95813 0.96563 0.97754

87 0.98642 0.87744 0.95797 0.96553 0.97744

88 0.98574 0.87687 0.95781 0.96543 0.97734

89 0.98508 0.87631 0.95766 0.96534 0.97725

90 0.98443 0.87576 0.95751 0.96524 0.97715

91 0.98379 0.87523 0.95737 0.96515 0.97706

92 0.98316 0.87470 0.95722 0.96506 0.97697

93 0.98255 0.87420 0.95708 0.96497 0.97689

94 0.98194 0.87370 0.95695 0.96489 0.97680

95 0.98135 0.87321 0.95681 0.96480 0.97672

96 0.98077 0.87274 0.95668 0.96472 0.97664

97 0.98020 0.87227 0.95656 0.96464 0.97656

98 0.97964 0.87182 0.95643 0.96456 0.97648

99 0.97909 0.87137 0.95631 0.96448 0.97640

100 0.97855 0.87094 0.95619 0.96441 0.97633

101 0.97802 0.87051 0.95607 0.96433 0.97626

102 0.97750 0.87010 0.95596 0.96426 0.97619

103 0.97699 0.86969 0.95585 0.96419 0.97612

104 0.97649 0.86929 0.95574 0.96412 0.97605

105 0.97600 0.86890 0.95563 0.96405 0.97598

106 0.97552 0.86852 0.95552 0.96398 0.97591

107 0.97504 0.86814 0.95542 0.96392 0.97585

108 0.97457 0.86778 0.95532 0.96385 0.97578

109 0.97412 0.86742 0.95522 0.96379 0.97572

110 0.97367 0.86706 0.95512 0.96373 0.97566

111 0.97322 0.86672 0.95502 0.96367 0.97560

112 0.97279 0.86638 0.95493 0.96361 0.97554

113 0.97236 0.86604 0.95484 0.96355 0.97548

114 0.97194 0.86572 0.95475 0.96349 0.97543

115 0.97153 0.86539 0.95466 0.96344 0.97537

116 0.97112 0.86508 0.95457 0.96338 0.97531

117 0.97072 0.86477 0.95448 0.96333 0.97526

118 0.97033 0.86447 0.95440 0.96327 0.97521

Continued on next page
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Table A.1 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm

119 0.96994 0.86417 0.95432 0.96322 0.97516

120 0.96956 0.86388 0.95424 0.96317 0.97510

121 0.96919 0.86359 0.95416 0.96312 0.97505

122 0.96882 0.86331 0.95408 0.96307 0.97500

123 0.96846 0.86303 0.95400 0.96302 0.97496

124 0.96810 0.86276 0.95392 0.96297 0.97491

125 0.96775 0.86249 0.95385 0.96292 0.97486

126 0.96741 0.86223 0.95378 0.96288 0.97481

127 0.96707 0.86197 0.95370 0.96283 0.97477

128 0.96674 0.86171 0.95363 0.96278 0.97472

129 0.96641 0.86146 0.95356 0.96274 0.97468

130 0.96608 0.86122 0.95349 0.96270 0.97464

131 0.96576 0.86097 0.95343 0.96265 0.97459

132 0.96545 0.86074 0.95336 0.96261 0.97455

133 0.96514 0.86050 0.95329 0.96257 0.97451

134 0.96484 0.86027 0.95323 0.96253 0.97447

135 0.96454 0.86005 0.95316 0.96249 0.97443

136 0.96424 0.85982 0.95310 0.96245 0.97439

137 0.96395 0.85960 0.95304 0.96241 0.97435

138 0.96366 0.85939 0.95298 0.96237 0.97431

139 0.96338 0.85917 0.95292 0.96233 0.97427

140 0.96310 0.85896 0.95286 0.96229 0.97424

141 0.96283 0.85876 0.95280 0.96226 0.97420

142 0.96256 0.85855 0.95275 0.96222 0.97416

143 0.96229 0.85835 0.95269 0.96218 0.97413

144 0.96203 0.85816 0.95263 0.96215 0.97409

145 0.96177 0.85796 0.95258 0.96211 0.97406

146 0.96151 0.85777 0.95252 0.96208 0.97402

147 0.96126 0.85758 0.95247 0.96204 0.97399

148 0.96101 0.85739 0.95242 0.96201 0.97396

149 0.96077 0.85721 0.95237 0.96198 0.97392

150 0.96053 0.85703 0.95232 0.96195 0.97389
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Table A.2. The Herc850.txt table of colour correction factors utilised by PPMAP to produce
column density models.

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm 850 µm

5 0.00545 0.33405 0.88318 0.98683 1.04955 1.00000

6 0.03217 0.53344 0.95294 1.01432 1.06084 1.00000

7 0.09056 0.70145 0.99104 1.02526 1.06074 1.00000

8 0.17397 0.82788 1.01143 1.02835 1.05637 1.00000

9 0.27008 0.91693 1.02173 1.02767 1.05064 1.00000

10 0.36847 0.97685 1.02622 1.02520 1.04474 1.00000

11 0.46235 1.01555 1.02733 1.02198 1.03915 1.00000

12 0.54804 1.03933 1.02646 1.01851 1.03403 1.00000

13 0.62400 1.05277 1.02447 1.01506 1.02943 1.00000

14 0.69004 1.05915 1.02188 1.01176 1.02531 1.00000

15 0.74673 1.06076 1.01899 1.00866 1.02164 1.00000

16 0.79495 1.05916 1.01599 1.00580 1.01836 1.00000

17 0.83573 1.05545 1.01300 1.00315 1.01542 1.00000

18 0.87006 1.05040 1.01009 1.00073 1.01277 1.00000

19 0.89889 1.04451 1.00729 0.99850 1.01039 1.00000

20 0.92304 1.03817 1.00463 0.99646 1.00824 1.00000

21 0.94323 1.03160 1.00212 0.99458 1.00629 1.00000

22 0.96009 1.02499 0.99975 0.99286 1.00451 1.00000

23 0.97413 1.01846 0.99753 0.99127 1.00289 1.00000

24 0.98580 1.01207 0.99544 0.98980 1.00140 1.00000

25 0.99546 1.00587 0.99348 0.98845 1.00003 1.00000

26 1.00345 0.99991 0.99165 0.98719 0.99877 1.00000

27 1.01000 0.99418 0.98992 0.98603 0.99760 1.00000

28 1.01535 0.98871 0.98831 0.98494 0.99652 1.00000

29 1.01968 0.98349 0.98679 0.98393 0.99551 1.00000

30 1.02315 0.97851 0.98536 0.98299 0.99458 1.00000

31 1.02588 0.97378 0.98402 0.98210 0.99370 1.00000

32 1.02799 0.96927 0.98275 0.98128 0.99289 1.00000

33 1.02957 0.96499 0.98156 0.98050 0.99212 1.00000

34 1.03070 0.96092 0.98043 0.97977 0.99140 1.00000

35 1.03145 0.95705 0.97937 0.97908 0.99073 1.00000

Continued on next page
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Table A.2 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm 850 µm

36 1.03188 0.95336 0.97836 0.97843 0.99009 1.00000

37 1.03203 0.94986 0.97740 0.97782 0.98949 1.00000

38 1.03195 0.94652 0.97650 0.97724 0.98892 1.00000

39 1.03167 0.94335 0.97564 0.97669 0.98838 1.00000

40 1.03122 0.94032 0.97482 0.97617 0.98787 1.00000

41 1.03064 0.93744 0.97405 0.97568 0.98739 1.00000

42 1.02994 0.93468 0.97331 0.97521 0.98693 1.00000

43 1.02913 0.93205 0.97260 0.97476 0.98649 1.00000

44 1.02825 0.92954 0.97193 0.97433 0.98607 1.00000

45 1.02730 0.92714 0.97129 0.97393 0.98567 1.00000

46 1.02629 0.92485 0.97068 0.97354 0.98529 1.00000

47 1.02525 0.92265 0.97009 0.97317 0.98493 1.00000

48 1.02416 0.92055 0.96953 0.97281 0.98458 1.00000

49 1.02305 0.91853 0.96899 0.97248 0.98425 1.00000

50 1.02192 0.91659 0.96848 0.97215 0.98393 1.00000

51 1.02078 0.91474 0.96798 0.97184 0.98363 1.00000

52 1.01962 0.91296 0.96751 0.97154 0.98333 1.00000

53 1.01846 0.91124 0.96705 0.97125 0.98305 1.00000

54 1.01730 0.90960 0.96661 0.97097 0.98278 1.00000

55 1.01615 0.90801 0.96619 0.97071 0.98252 1.00000

56 1.01499 0.90649 0.96578 0.97045 0.98227 1.00000

57 1.01385 0.90502 0.96539 0.97021 0.98203 1.00000

58 1.01271 0.90360 0.96501 0.96997 0.98180 1.00000

59 1.01158 0.90224 0.96465 0.96974 0.98157 1.00000

60 1.01047 0.90092 0.96430 0.96952 0.98135 1.00000

61 1.00937 0.89965 0.96396 0.96930 0.98115 1.00000

62 1.00829 0.89842 0.96363 0.96910 0.98094 1.00000

63 1.00721 0.89724 0.96331 0.96890 0.98075 1.00000

64 1.00616 0.89609 0.96301 0.96870 0.98056 1.00000

65 1.00512 0.89498 0.96271 0.96852 0.98037 1.00000

66 1.00410 0.89391 0.96242 0.96834 0.98020 1.00000

67 1.00309 0.89287 0.96214 0.96816 0.98002 1.00000

68 1.00210 0.89187 0.96187 0.96799 0.97986 1.00000

Continued on next page
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Table A.2 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm 850 µm

69 1.00113 0.89089 0.96161 0.96783 0.97970 1.00000

70 1.00018 0.88995 0.96136 0.96767 0.97954 1.00000

71 0.99924 0.88903 0.96111 0.96751 0.97939 1.00000

72 0.99832 0.88815 0.96087 0.96736 0.97924 1.00000

73 0.99741 0.88728 0.96064 0.96721 0.97909 1.00000

74 0.99653 0.88645 0.96041 0.96707 0.97895 1.00000

75 0.99566 0.88563 0.96019 0.96693 0.97882 1.00000

76 0.99480 0.88484 0.95998 0.96680 0.97869 1.00000

77 0.99396 0.88408 0.95977 0.96667 0.97856 1.00000

78 0.99314 0.88333 0.95957 0.96654 0.97843 1.00000

79 0.99234 0.88260 0.95937 0.96642 0.97831 1.00000

80 0.99155 0.88190 0.95918 0.96630 0.97819 1.00000

81 0.99077 0.88121 0.95900 0.96618 0.97808 1.00000

82 0.99001 0.88054 0.95881 0.96606 0.97796 1.00000

83 0.98926 0.87989 0.95864 0.96595 0.97785 1.00000

84 0.98853 0.87925 0.95846 0.96584 0.97775 1.00000

85 0.98781 0.87863 0.95830 0.96574 0.97764 1.00000

86 0.98711 0.87803 0.95813 0.96563 0.97754 1.00000

87 0.98642 0.87744 0.95797 0.96553 0.97744 1.00000

88 0.98574 0.87687 0.95781 0.96543 0.97734 1.00000

89 0.98508 0.87631 0.95766 0.96534 0.97725 1.00000

90 0.98443 0.87576 0.95751 0.96524 0.97715 1.00000

91 0.98379 0.87523 0.95737 0.96515 0.97706 1.00000

92 0.98316 0.87470 0.95722 0.96506 0.97697 1.00000

93 0.98255 0.87420 0.95708 0.96497 0.97689 1.00000

94 0.98194 0.87370 0.95695 0.96489 0.97680 1.00000

95 0.98135 0.87321 0.95681 0.96480 0.97672 1.00000

96 0.98077 0.87274 0.95668 0.96472 0.97664 1.00000

97 0.98020 0.87227 0.95656 0.96464 0.97656 1.00000

98 0.97964 0.87182 0.95643 0.96456 0.97648 1.00000

99 0.97909 0.87137 0.95631 0.96448 0.97640 1.00000

100 0.97855 0.87094 0.95619 0.96441 0.97633 1.00000

101 0.97802 0.87051 0.95607 0.96433 0.97626 1.00000
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Table A.2 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm 850 µm

102 0.97750 0.87010 0.95596 0.96426 0.97619 1.00000

103 0.97699 0.86969 0.95585 0.96419 0.97612 1.00000

104 0.97649 0.86929 0.95574 0.96412 0.97605 1.00000

105 0.97600 0.86890 0.95563 0.96405 0.97598 1.00000

106 0.97552 0.86852 0.95552 0.96398 0.97591 1.00000

107 0.97504 0.86814 0.95542 0.96392 0.97585 1.00000

108 0.97457 0.86778 0.95532 0.96385 0.97578 1.00000

109 0.97412 0.86742 0.95522 0.96379 0.97572 1.00000

110 0.97367 0.86706 0.95512 0.96373 0.97566 1.00000

111 0.97322 0.86672 0.95502 0.96367 0.97560 1.00000

112 0.97279 0.86638 0.95493 0.96361 0.97554 1.00000

113 0.97236 0.86604 0.95484 0.96355 0.97548 1.00000

114 0.97194 0.86572 0.95475 0.96349 0.97543 1.00000

115 0.97153 0.86539 0.95466 0.96344 0.97537 1.00000

116 0.97112 0.86508 0.95457 0.96338 0.97531 1.00000

117 0.97072 0.86477 0.95448 0.96333 0.97526 1.00000

118 0.97033 0.86447 0.95440 0.96327 0.97521 1.00000

119 0.96994 0.86417 0.95432 0.96322 0.97516 1.00000

120 0.96956 0.86388 0.95424 0.96317 0.97510 1.00000

121 0.96919 0.86359 0.95416 0.96312 0.97505 1.00000

122 0.96882 0.86331 0.95408 0.96307 0.97500 1.00000

123 0.96846 0.86303 0.95400 0.96302 0.97496 1.00000

124 0.96810 0.86276 0.95392 0.96297 0.97491 1.00000

125 0.96775 0.86249 0.95385 0.96292 0.97486 1.00000

126 0.96741 0.86223 0.95378 0.96288 0.97481 1.00000

127 0.96707 0.86197 0.95370 0.96283 0.97477 1.00000

128 0.96674 0.86171 0.95363 0.96278 0.97472 1.00000

129 0.96641 0.86146 0.95356 0.96274 0.97468 1.00000

130 0.96608 0.86122 0.95349 0.96270 0.97464 1.00000

131 0.96576 0.86097 0.95343 0.96265 0.97459 1.00000

132 0.96545 0.86074 0.95336 0.96261 0.97455 1.00000

133 0.96514 0.86050 0.95329 0.96257 0.97451 1.00000

134 0.96484 0.86027 0.95323 0.96253 0.97447 1.00000
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Table A.2 – Continued from previous page

Temp Colour Correction Factors

(K) 70 µm 160 µm 250 µm 350 µm 500 µm 850 µm

135 0.96454 0.86005 0.95316 0.96249 0.97443 1.00000

136 0.96424 0.85982 0.95310 0.96245 0.97439 1.00000

137 0.96395 0.85960 0.95304 0.96241 0.97435 1.00000

138 0.96366 0.85939 0.95298 0.96237 0.97431 1.00000

139 0.96338 0.85917 0.95292 0.96233 0.97427 1.00000

140 0.96310 0.85896 0.95286 0.96229 0.97424 1.00000

141 0.96283 0.85876 0.95280 0.96226 0.97420 1.00000

142 0.96256 0.85855 0.95275 0.96222 0.97416 1.00000

143 0.96229 0.85835 0.95269 0.96218 0.97413 1.00000

144 0.96203 0.85816 0.95263 0.96215 0.97409 1.00000

145 0.96177 0.85796 0.95258 0.96211 0.97406 1.00000

146 0.96151 0.85777 0.95252 0.96208 0.97402 1.00000

147 0.96126 0.85758 0.95247 0.96204 0.97399 1.00000

148 0.96101 0.85739 0.95242 0.96201 0.97396 1.00000

149 0.96077 0.85721 0.95237 0.96198 0.97392 1.00000

150 0.96053 0.85703 0.95232 0.96195 0.97389 1.00000



Appendix B

PPMAP uncertainty maps

This appendix presents the uncertainty on the PPMAP models for the Taurus L1495/B213

complex (presented in Chapter 5) and the Ophiuchus L1688 and L1689 sub-regions

(presented in Chapter 6). An explanation of how the uncertainty is calculated for a

PPMAP model is given in Chapter 3, Section 3.1.3.
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Figure B.1. The uncertainty in the H2 column density model, in 12, logarithmically spaced line
of sight temperature bins for the L1495/B213 complex. These maps are obtained by marginalising
out the opacity index dimension of the PPMAP hypercube.
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Figure B.1 (cont.). The uncertainty in the H2 column density model, in 12, logarithmically
spaced line of sight temperature bins for the L1495/B213 complex. These maps are obtained by
marginalising out the opacity index dimension of the PPMAP hypercube.
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Figure B.1 (cont.). The uncertainty in the H2 column density model, in 12, logarithmically
spaced line of sight temperature bins for the L1495/B213 complex. These maps are obtained by
marginalising out the opacity index dimension of the PPMAP hypercube.
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Figure B.2. The uncertainty in the H2 column density model, in 4 linearly spaced line of sight
opacity index bins for the L1495/B213 complex. These maps are obtained by marginalising out the
temperature dimension of the PPMAP hypercube.
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Figure B.3. The uncertainty in the H2 column density model, in 12 logarithmically spaced line
of sight temperature bins for the L1688 sub-region. These maps are obtained by marginalising out
the opacity index dimension of the PPMAP data hypercube. The red star markers indicate the
positions of the S1 and HD147889 pre-main sequence stars.
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Figure B.3 (cont.). The uncertainty in the H2 column density model, in 12 logarithmically spaced
line of sight temperature bins for the L1688 sub-region. These maps are obtained by marginalising
out the opacity index dimension of the PPMAP data hypercube. The red star markers indicate the
positions of the S1 and HD147889 pre-main sequence stars.



228 Appendix B. PPMAP uncertainty maps

Figure B.3 (cont.). The uncertainty in the H2 column density model, in 12 logarithmically spaced
line of sight temperature bins for the L1688 sub-region. These maps are obtained by marginalising
out the opacity index dimension of the PPMAP data hypercube. The red star markers indicate the
positions of the S1 and HD147889 pre-main sequence stars.



229

Figure B.4. The uncertainty in the H2 column density model, in three linearly spaced line of sight
opacity index bins for the L1688 sub-region. These maps are obtained by marginalising out the
temperature dimension of the PPMAP data hypercube. The red star markers indicate the positions
of the S1 and HD147889 pre-main sequence stars.
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Figure B.5. The uncertainty in the H2 column density model, in 12 logarithmically spaced line of
sight temperature bins for the L1689 sub-region, plotted for the eight lowest temperatures. These
maps are obtained by marginalising out the opacity index dimension of the PPMAP data hypercube.
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Figure B.5 (cont.). The uncertainty in the H2 column density model, in 12 logarithmically spaced
line of sight temperature bins for the L1689 sub-region, plotted for the four highest temperatures.
These maps are obtained by marginalising out the opacity index dimension of the PPMAP data
hypercube.
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Figure B.6. The uncertainty in the H2 column density model, in three linearly spaced line of sight
opacity index bins for the L1689 sub-region. These maps are obtained by marginalising out the
temperature dimension of the PPMAP data hypercube.
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Radiative Properties of the First-Core Accretion Shock”. In: Astronomy &

Astrophysics 530, A13. issn: 0004-6361, 1432-0746. doi: 10.1051/0004-6361/

201016213. url: http://www.aanda.org/10.1051/0004-6361/201016213

(visited on 04/14/2020).

De Graauw, Th. et al. (July 2010). “The Herschel-Heterodyne Instrument for the

Far-Infrared (HIFI)”. In: Astronomy & Astrophysics 518, L6, p. L6. doi: 10.

1051/0004-6361/201014698.

Dempsey, J. T. et al. (Apr. 2013). “SCUBA-2: On-Sky Calibration Using Submillime-

tre Standard Sources”. In: Monthly Notices of the Royal Astronomical Society

430.4, pp. 2534–2544. doi: 10.1093/mnras/stt090.

Demyk, K. et al. (Jan. 2013). “FIR and Submm Optical Properties of Astrophysically

Relevant Minerals”. In: Proceedings of the Life Cycle of Dust in the Universe:

Observations, p. 44.

Dib, Sami, C. Jakob Walcher, Mark Heyer, Edouard Audit, and Laurent Loinard

(Sept. 21, 2009). “The Orientations of Molecular Clouds in the Outer Galaxy:

Evidence for the Scale of the Turbulence Driver?” In: Monthly Notices of the

Royal Astronomical Society 398.3, pp. 1201–1206. issn: 00358711, 13652966.

doi: 10.1111/j.1365-2966.2009.15201.x. url: https://academic.oup.

com/mnras/article-lookup/doi/10.1111/j.1365-2966.2009.15201.x

(visited on 04/13/2020).

https://doi.org/10.1093/mnras/stw407
https://doi.org/10.1093/mnras/stz248
http://arxiv.org/abs/1901.06205
http://arxiv.org/abs/1901.06205
https://doi.org/10.1093/mnras/sty1675
https://doi.org/10.1051/0004-6361/201016213
https://doi.org/10.1051/0004-6361/201016213
http://www.aanda.org/10.1051/0004-6361/201016213
https://doi.org/10.1051/0004-6361/201014698
https://doi.org/10.1051/0004-6361/201014698
https://doi.org/10.1093/mnras/stt090
https://doi.org/10.1111/j.1365-2966.2009.15201.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2009.15201.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2009.15201.x


BIBLIOGRAPHY 239

Dickey, J. M., Y. Terzian, and E. E. Salpeter (Jan. 1978). “Galactic Neutral Hy-

drogen Emission-Absorption Observations from Arecibo”. In: The Astrophys-

ical Journal Supplement Series 36, p. 77. issn: 0067-0049, 1538-4365. doi:

10.1086/190492. url: http://adsabs.harvard.edu/doi/10.1086/190492

(visited on 04/10/2020).

Dobbs, Clare L. (Mar. 11, 2015). “The Interstellar Medium and Star Formation on

Kpc Size Scales”. In: Monthly Notices of the Royal Astronomical Society 447.4,

pp. 3390–3401. issn: 1365-2966, 0035-8711. doi: 10.1093/mnras/stu2585.

url: http://academic.oup.com/mnras/article/447/4/3390/1747462/

The - interstellar - medium - and - star - formation - on - kpc (visited on

04/13/2020).

Dobson, Trevor (2015). Whateye Image. url: https://petapixel.com/assets/

uploads/2015/04/whateye.jpg (visited on 09/30/2020).

Drabek-Maunder, E., J. Hatchell, J. V. Buckle, J. Di Francesco, and J. Richer (Mar. 21,

2016). “The JCMT Gould Belt Survey: Understanding the Influence of Out-

flows on Gould Belt Clouds”. In: Monthly Notices of the Royal Astronomical

Society: Letters 457.1, pp. L84–L88. issn: 1745-3925, 1745-3933. doi: 10 .

1093/mnrasl/slv202. url: https://academic.oup.com/mnrasl/article-

lookup/doi/10.1093/mnrasl/slv202 (visited on 04/13/2020).

Drabek-Maunder, Emily (2017). In:

— (2019). In:

Duarte-Cabral, Ana and C. L. Dobbs (Oct. 1, 2017). “The Evolution of Giant Molec-

ular Filaments”. In: Monthly Notices of the Royal Astronomical Society 470.4,

pp. 4261–4273. issn: 0035-8711, 1365-2966. doi: 10.1093/mnras/stx1524.

url: https://academic.oup.com/mnras/article/470/4/4261/3871368

(visited on 04/13/2020).

Dunne, L. and S. A. Eales (Nov. 1, 2001). “The SCUBA Local Universe Galaxy

Survey - II. 450- m Data: Evidence for Cold Dust in Bright IRAS Galaxies”.

In: Monthly Notices of the Royal Astronomical Society 327.3, pp. 697–714.

issn: 0035-8711, 1365-2966. doi: 10.1046/j.1365-8711.2001.04789.x. url:

https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.

1365-8711.2001.04789.x (visited on 04/13/2020).

Dunne, L. et al. (Oct. 21, 2011). “Herschel-ATLAS: Rapid Evolution of Dust in Galax-

ies over the Last 5 Billion Years: Evolution of Dust Mass”. In: Monthly Notices

of the Royal Astronomical Society 417.2, pp. 1510–1533. issn: 00358711. doi:

10.1111/j.1365-2966.2011.19363.x. url: https://academic.oup.com/

https://doi.org/10.1086/190492
http://adsabs.harvard.edu/doi/10.1086/190492
https://doi.org/10.1093/mnras/stu2585
http://academic.oup.com/mnras/article/447/4/3390/1747462/The-interstellar-medium-and-star-formation-on-kpc
http://academic.oup.com/mnras/article/447/4/3390/1747462/The-interstellar-medium-and-star-formation-on-kpc
https://petapixel.com/assets/uploads/2015/04/whateye.jpg
https://petapixel.com/assets/uploads/2015/04/whateye.jpg
https://doi.org/10.1093/mnrasl/slv202
https://doi.org/10.1093/mnrasl/slv202
https://academic.oup.com/mnrasl/article-lookup/doi/10.1093/mnrasl/slv202
https://academic.oup.com/mnrasl/article-lookup/doi/10.1093/mnrasl/slv202
https://doi.org/10.1093/mnras/stx1524
https://academic.oup.com/mnras/article/470/4/4261/3871368
https://doi.org/10.1046/j.1365-8711.2001.04789.x
https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.1365-8711.2001.04789.x
https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.1365-8711.2001.04789.x
https://doi.org/10.1111/j.1365-2966.2011.19363.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.19363.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.19363.x


240 BIBLIOGRAPHY

mnras/article-lookup/doi/10.1111/j.1365-2966.2011.19363.x (visited

on 04/13/2020).

Dunne, Loretta, Stephen Eales, Rob Ivison, Haley Morgan, and Mike Edmunds (July

2003). “Type II Supernovae as a Significant Source of Interstellar Dust”. In:

Nature 424.6946, pp. 285–287. issn: 0028-0836, 1476-4687. doi: 10.1038/

nature01792. url: http://www.nature.com/articles/nature01792 (vis-

ited on 04/13/2020).

Dwek, E. and J. M. Scalo (July 1980). “The Evolution of Refractory Interstellar

Grains in the Solar Neighborhood”. In: The Astrophysical Journal 239, p. 193.

issn: 0004-637X, 1538-4357. doi: 10.1086/158100. url: http://adsabs.

harvard.edu/doi/10.1086/158100 (visited on 04/13/2020).

Dwek, Eli (July 10, 1998). “The Evolution of the Elemental Abundances in the

Gas and Dust Phases of the Galaxy”. In: The Astrophysical Journal 501.2,

pp. 643–665. issn: 0004-637X, 1538-4357. doi: 10.1086/305829. url: http:

//stacks.iop.org/0004-637X/501/i=2/a=643 (visited on 04/10/2020).

East Asian Observatory (2010). Cryostatic Window, Filter and Dichroic Specifica-

tion and Measurements. url: https://www.easobservatory.org/jcmt/

insturmentation/continuum/scuba-2/filters/ (visited on 07/16/2019).

— (2017). Image 7441. url: eaobservatory . org / jcmt / public / gallery /

images/img_7441/ (visited on 07/16/2019).

Elias, J. H. (Sept. 1978). “A Study of the Taurus Dark Cloud Complex.” In: The

Astrophysical Journal 224, pp. 857–872. doi: 10.1086/156436.

Elmegreen, Bruce G. (Feb. 10, 2000). “Star Formation in a Crossing Time”. In: The

Astrophysical Journal 530.1, pp. 277–281. issn: 0004-637X, 1538-4357. doi:

10.1086/308361. url: http://stacks.iop.org/0004-637X/530/i=1/a=277

(visited on 04/13/2020).

Enoch, Melissa L. et al. (Sept. 2008). “The Mass Distribution and Lifetime of Prestel-

lar Cores in Perseus, Serpens, and Ophiuchus”. In: The Astrophysical Journal

684.2, pp. 1240–1259. doi: 10.1086/589963.

Exter, K. (2017). “The PACS Handbook”. In: Herschel Explanatory Supplement III.

Federrath, Christoph (Mar. 21, 2016). “On the Universality of Interstellar Filaments:

Theory Meets Simulations and Observations”. In: Monthly Notices of the Royal

Astronomical Society 457.1, pp. 375–388. issn: 0035-8711, 1365-2966. doi: 10.

1093/mnras/stv2880. url: https://academic.oup.com/mnras/article-

lookup/doi/10.1093/mnras/stv2880 (visited on 04/13/2020).

https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.19363.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.19363.x
https://doi.org/10.1038/nature01792
https://doi.org/10.1038/nature01792
http://www.nature.com/articles/nature01792
https://doi.org/10.1086/158100
http://adsabs.harvard.edu/doi/10.1086/158100
http://adsabs.harvard.edu/doi/10.1086/158100
https://doi.org/10.1086/305829
http://stacks.iop.org/0004-637X/501/i=2/a=643
http://stacks.iop.org/0004-637X/501/i=2/a=643
https://www.easobservatory.org/jcmt/insturmentation/continuum/scuba-2/filters/
https://www.easobservatory.org/jcmt/insturmentation/continuum/scuba-2/filters/
eaobservatory.org/jcmt/public/gallery/images/img_7441/
eaobservatory.org/jcmt/public/gallery/images/img_7441/
https://doi.org/10.1086/156436
https://doi.org/10.1086/308361
http://stacks.iop.org/0004-637X/530/i=1/a=277
https://doi.org/10.1086/589963
https://doi.org/10.1093/mnras/stv2880
https://doi.org/10.1093/mnras/stv2880
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stv2880
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stv2880


BIBLIOGRAPHY 241

Ferrarotti, A. S. and H.-P. Gail (Feb. 2006). “Composition and Quantities of Dust

Produced by AGB-Stars and Returned to the Interstellar Medium”. In: As-

tronomy & Astrophysics 447.2, pp. 553–576. issn: 0004-6361, 1432-0746. doi:

10.1051/0004-6361:20041198. url: http://www.aanda.org/10.1051/

0004-6361:20041198 (visited on 04/13/2020).

Ferriere, Katia (Aug. 20, 1998). “The Hot Gas Filling Factor in Our Galaxy”. In: The

Astrophysical Journal 503.2, pp. 700–716. issn: 0004-637X, 1538-4357. doi:

10.1086/306003. url: http://stacks.iop.org/0004-637X/503/i=2/a=700

(visited on 04/10/2020).

Field, G. B., D. W. Goldsmith, and H. J. Habing (Mar. 1969). “Cosmic-Ray Heating

of the Interstellar Gas”. In: The Astrophysical Journal 155, p. L149. issn: 0004-

637X, 1538-4357. doi: 10.1086/180324. url: http://adsabs.harvard.edu/

doi/10.1086/180324 (visited on 04/13/2020).

Fischera, J. and P. G. Martin (June 2012). “Physical Properties of Interstellar Fila-

ments”. In: Astronomy & Astrophysics 542, A77, A77. doi: 10.1051/0004-

6361/201218961.

Galli, Phillip A. B. et al. (May 21, 2018). “The Gould’s Belt Distances Survey (GO-

BELINS). IV. Distance, Depth and Kinematics of the Taurus Star-Forming

Region”. In: The Astrophysical Journal 859.1, p. 33. issn: 1538-4357. doi:

10.3847/1538-4357/aabf91. url: http://arxiv.org/abs/1805.09357

(visited on 07/21/2020).

Geis, N. and D. Lutz (Mar. 8, 2010). “Herschel/PACS Modelled Point-Spread Func-

tions”. In: Herschel Explanatory Supplement 2.0.

Giardino, G., F. Favata, G. Micela, and F. Reale (Jan. 2004). “A Large X-Ray

Flare from the Herbig Ae Star V892 Tau”. In: Astronomy & Astrophysics

413, pp. 669–679. doi: 10.1051/0004-6361:20034151.
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Miville-Deschênes, Marc-Antoine and Guilaine Lagache (Apr. 2005). “IRIS: A New

Generation of IRAS Maps”. In: The Astronomical Journal 157.2, pp. 302–323.

doi: 10.1086/427938.

https://doi.org/10.1111/j.1365-2966.2009.14743.x
https://doi.org/10.1111/j.1365-2966.2009.14743.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2009.14743.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2009.14743.x
https://doi.org/10.1126/science.1205983
https://www.sciencemag.org/lookup/doi/10.1126/science.1205983
https://www.sciencemag.org/lookup/doi/10.1126/science.1205983
https://doi.org/10.1086/165267
http://adsabs.harvard.edu/doi/10.1086/165267
http://adsabs.harvard.edu/doi/10.1086/165267
https://doi.org/10.1086/155667
http://adsabs.harvard.edu/doi/10.1086/155667
http://adsabs.harvard.edu/doi/10.1086/155667
https://doi.org/10.1051/0004-6361/201014668
https://doi.org/10.1051/0004-6361/201014668
http://www.aanda.org/10.1051/0004-6361/201014668
http://www.aanda.org/10.1051/0004-6361/201014668
https://doi.org/10.1002/andp.19083300302
http://doi.wiley.com/10.1002/andp.19083300302
http://doi.wiley.com/10.1002/andp.19083300302
https://doi.org/10.1051/0004-6361/201014678
https://doi.org/10.1051/0004-6361/201014678
https://doi.org/10.1086/427938


BIBLIOGRAPHY 249

Miyama, S. M., S. Narita, and C. Hayashi (Nov. 1, 1987). “Fragmentation of Isother-

mal Sheet-Like Clouds. I: Solutions of Linear and Second-Order Perturba-

tion Equations”. In: Progress of Theoretical Physics 78.5, pp. 1051–1064. issn:

0033-068X, 1347-4081. doi: 10.1143/PTP.78.1051. url: https://academic.

oup.com/ptp/article-lookup/doi/10.1143/PTP.78.1051 (visited on

04/13/2020).

Morton, D. C. et al. (May 1973). “Spectrophotometric Results from the Copernicus

Satellite. II. Composition of Interstellar Clouds”. In: The Astrophysical Journal

181, p. L103. issn: 0004-637X, 1538-4357. doi: 10.1086/181195. url: http:

//adsabs.harvard.edu/doi/10.1086/181195 (visited on 04/13/2020).
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