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Abstract 12 
  13 
Across the middle Miocene, Earth’s climate underwent a major cooling and expansion of the 14 
Antarctic ice sheet. However, the associated response and development of the tropical climate 15 
system is not fully understood, in part because this is influenced by both global climate and 16 

also low latitude tectonic gateways and paleoceanography. Here we use combined 18O and 17 
Mg/Ca of planktic foraminifera to reconstruct the thermal history and changes in hydrology 18 
from the Indo-Pacific region from 16.5 to 11.5 Ma. During the warmth of the early middle 19 
Miocene, our records indicate a dynamic ocean-atmosphere system in the Indo-Pacific region, 20 

with episodes of saltier and warmer tropical surface waters associated with high pCO2 and 21 
retreat of the Antarctic ice sheet. We show that across the middle Miocene Climate Transition 22 
(MMCT) surface ocean temperatures in the Indo-Pacific cooled by ~ 2˚C, synchronous with the 23 
advance of the Antarctic ice sheet. The associated cooling in the Southern Ocean appears to have 24 
started earlier, and was stronger. Further, we show that western Pacific Ocean warmed and 25 
eastern tropical Indian Ocean freshened following the MMCT, likely caused by the  constriction 26 
of the Indonesian Seaway and reduced connectivity between the Pacific and Indian Oceans 27 
following Antarctic glaciation.  The MMCT therefore represented a key phase in the evolution 28 
of the West Pacific Warm Pool and associated tropical climate dynamics.   29 
 30 
Keywords: Miocene, Tropics, Mg/Ca, planktic foraminifera, glaciation, Indo-Pacific 31 
 32 
Key Points: 33 

• Low latitude Indo-Pacific sea surface temperatures cooled synchronous with 34 
the advance of the Antarctic ice sheet 35 

• Eastern Tropical Indian Ocean freshened following the Middle Miocene Climate 36 
Transition 37 

• Sea level fall and changing paleogeographic conditions constricted the 38 
Indonesian Seaway modifying the Tropical Indian Ocean climate and 39 
warming the western Pacific ocean. 40 

 41 
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1. Introduction & Background 56 

Across the Middle Miocene, the Earth’s climate gradually changed from a period of global 57 

warmth and retreat of the Antarctic ice sheet known as the Miocene Climatic Optimum 58 

(MCO;~17-14.7 Ma) to a cooler climate with regrowth of the Antarctic ice sheet at the 59 

Middle Miocene Climate Transition (MMCT), exhibited by an stepwise increase in the 60 

benthic foraminiferal oxygen isotope record (14.2-13.9 Ma).  Global warmth and high carbon 61 

dioxide (CO2) levels were pervasive during the MCO, with global surface temperature 62 

perhaps > 7C than present (Shevenell et al., 2004; Lewis et al., 2007; Verducci et al., 2007; 63 

Kuhnert et al., 2009; Majewski & Bohaty, 2010; Levy et al., 2016; Super et al., 2018; 64 

Hartman et al., 2018; Sangiorgi et al., 2018). Following the MCO, CO2 decreased from ~580-65 

670 ppm  to 380-420 ppm, and the Antarctic ice sheet re-advanced, causing a sea level fall of 66 

several tens of metres (Lear et al., 2010, John et al., 2011; Foster et al., 2012, Badger et al., 67 

2013; Sosdian et al., 2018). Understanding the driving mechanisms of this major step in 68 

Earth’s climate evolution where the Antarctic ice sheet transitioned from a wet-based to dry 69 

based ice sheet (i.e. more modern like ice sheets) (Lewis et al., 2007)  is critical to understand 70 

the interactions between carbon cycle, cryosphere and climate change. Existing records 71 

demonstrate large scale cooling in regions proximal to Antarctica and the North Atlantic 72 

(Shevenell et al., 2004; Lewis et al., 2007; Verducci et al., 2007; Kuhnert et al., 2009; 73 

Majewski & Bohaty, 2010; Levy et al., 2016; Super et al., 2018; Hartman et al., 2018; 74 

Sangiorgi et al., 2018), reorganization of polar frontal systems (Verducci et al., 2007; Kuhnert 75 

et al., 2009), and intensification of equatorial upwelling and overturning circulation 76 

(Holbourn et al., 2013; 2014).  For example, the continuous, orbitally-resolved Mg/Ca-sea 77 

surface temperature (SST) and planktic isotope  record from the Pacific sector of the Southern 78 

Ocean shows a 6 to 7C cooling and freshening preceding the main glaciation step by 300 kyr 79 

(Shevenell et al., 2004), although non-thermal effects (e.g., pH, dissolved inorganic carbon) 80 

on Mg/Ca must be considered and warrant caution when interpreting the nature and extent of 81 

cooling (Gray & Evans,  2019;  Holland et al., 2020). The timing of these changes has led to 82 

the idea that meridional heat/moisture transport and an early thermal isolation of the Antarctic 83 

continent played a fundamental role in triggering ice growth (Shevenell et al., 2004).  Recent 84 

Antarctic ice-proximal reconstructions (e.g., Sangiorgi et al., 2018) have shown sea ice 85 

expansion, increasing SST gradients and cooling of ice-proximal surface waters across the 86 

MMCT hinting at a northward shift in the Southern Ocean frontal system.  As most SST 87 

records are derived from circum-polar regions, it is difficult to determine the  global climatic 88 

signature of the MMCT and identify the role of Southern Ocean processes, carbon cycle, or 89 

oceanographic changes (Shevenell et al., 2004; Verducci et al., 2007; Kuhnert et al., 2009; 90 

Super et al., 2018; Sangiorgi et al., 2018). Records from both high and low latitude sites are 91 
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necessary to mechanistically understand the cause and effects of this key climate transition 92 

and test proposed hypotheses.  93 

 The middle Miocene also witnessed important changes in the tectonic configuration 94 

of low latitude ocean seaways, which must be considered when interpreting records of 95 

tropical sea surface temperature and hydrology. Low latitude tectonic events (e.g. 96 

Panamanian and Indonesian Seaway constriction) could affect the distribution of heat 97 

between ocean basins and reorganize tropical surface ocean structure and climate patterns 98 

(Gourlan et al., 2008; von der Heydt & Dijkstra, 2011; Hamon et al., 2013; Bialik et al., 2019). 99 

In the present day, the Indonesian Throughflow transports the warm waters of the Western 100 

Pacific Warm Pool (WPWP) and excess heat and freshwater through a series of straits and 101 

shallow seas eventually entering and warming the Indian Ocean. This heat export affects 102 

ocean-atmosphere coupling in the tropical Pacific and Indian Oceans with implications for the 103 

development of Indian Ocean Dipole events and changes in global atmospheric circulation 104 

patterns  (Schneider, 1998; Wajsowicz and Schneider, 2001; Sprintall, 2003). 105 

On geological timescales the long-term drift of Australia towards Asia has 106 

progressively changed the structure of this seaway. From the late Oligocene to the early 107 

Miocene, the Indonesian seaway became a shallow water throughflow effective for surface 108 

water transport while the transport of deep water between the deep oceans diminished (Kuhnt 109 

et al., 2004). Early biogeographic studies of discrete time slices (22, 16, 8 Ma) suggested 110 

tectonic closure of the  Indonesian seaway as a trigger for invigoration of tropical surface 111 

ocean circulation systems in the middle Miocene (Kennett et al., 1985), although tectonic 112 

reconstructions suggest that the  Indonesian seaway became restricted before the middle 113 

Miocene (Ali et al., 1994; Hall, 1996; 2002). Further, the deeper and more open Indonesian 114 

seaway could impact the position of the WPWP, with a Miocene warm pool residing in the 115 

eastern Indian Ocean (von der Hedyt & Dijkstra, 2011).  This suggests a pivotal role for the 116 

seaway in setting the climate budget of the Indo-Pacific region, proximal seas and distal 117 

outflow locations in the Miocene Tropical Indian Ocean. 118 

 119 

To unravel the relative roles of paleogeography, CO2, and glaciation in middle Miocene 120 

climate, equatorial surface ocean temperature records are required. However, documentation 121 

of low-latitude conditions is limited both spatially and temporally, and a deeper understanding 122 

awaits development of records comparable to those available from the Southern Ocean. 123 

Oxygen isotope records from the equatorial Pacific region show a warming across the middle 124 

Miocene, however confident interpretation of these records is difficult due to likely diagenetic 125 

overprints (Savin et al. 1985; Stewart et al. 2004). Orbital scale Mg/Ca-derived sea surface 126 

temperature (SST)  and oxygen isotope (18O) records from the South China Sea (SCS) show 127 
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dynamic changes in tropical hydrology (i.e. warming and freshening) in response to Antarctic 128 

glaciation suggesting a role for large shifts in the Intertropical Convergence Zone (ITCZ) 129 

position (Holbourn et al. 2010). In contrast, low resolution alkenone-derived SST 130 

reconstructions from the Eastern Equatorial Pacific (EEP) shows a cooling event across the 131 

MMCT (Rousselle et al. 2013), although this record is difficult to interpret due to proxy 132 

saturation during the warm MCO, prior to the MMCT. In the eastern tropical Indian Ocean, 133 

Sosdian et al. (2020) show that SSTs in this region cooled along with the MMCT.  These lines 134 

of evidence suggest that the MMCT was associated with a climate reorganization event in the 135 

low latitudes, however, additional records are needed to resolve the roles of CO2, glaciation, 136 

and paleogeography in context of tropical climate evolution. 137 

  138 

Here we present records of surface ocean hydrographic conditions derived from combined 139 

planktic foraminiferal Mg/Ca and oxygen isotope (18Op)  data from Ocean Drilling Program 140 

(ODP) Site 806 located in the western equatorial Pacific Ocean and 18Op record from ODP 141 

Site 761 from the eastern tropical Indian Ocean. The climate records span the time period 142 

from 16.5 to 11.5 Ma and allow us to explore regional versus global changes in climate. We 143 

further use the combined Mg/Ca and 18Op from surface dwelling planktic foraminifera to 144 

reconstruct the oxygen isotope composition of seawater (18Osw) in order to evaluate temporal 145 

changes in tropical surface ocean salinity across the middle Miocene. Overall we find that the 146 

Indo-Pacific cooled across the MMCT in step with Antarctic glaciation. Further, we show that 147 

the Indian Ocean freshened relative to the Pacific  and western equatorial Pacific warmed 148 

following this transition likely caused by the constriction of the Indonesian Seaway.  The 149 

Middle Miocene Climate Transition therefore likely represented a key phase in the evolution 150 

of the West Pacific Warm Pool and associated tropical climate dynamics. 151 

 152 

2. Materials & Methods 153 

2.1 Age models and oceanographic settings of study sites 154 

2.1.1 ODP Site 806B – western equatorial Pacific Ocean 155 

Ocean Drilling Program (ODP) Site 806B (2520 m water depth, 0°19.1’N, 159°21.7’E; Fig. 156 

1) is located on the Ontong Java Plateau in the western equatorial Pacific and has relatively 157 

high sedimentation rates (20-30 m/Myr) with a complete Miocene section of carbonate ooze. 158 

A 5° latitudinal northward drift of the Ontong Java Plateau since the Middle Miocene puts 159 

this site in a tropical location during the present day (~5˚S; Figure S1). This study uses 160 

sediment samples from cores 43 to 60 (400–566 metres below seafloor (mbsf)), with a 161 

temporal resolution of ~130 kyr during the study interval (16.5 to 11.5 Ma). We use the age 162 

model of Lear et al., (2015) which is a fourth order polynomial fit through nannofossil and 163 
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planktic foraminiferal biostratigraphical events at ODP 806B on the Berggren et al., (1995) 164 

timescale for new planktic Mg/Ca presented here and previously published oxygen isotope 165 

records (Corfield & Cartlidge, 1993; Nathan & Leckie, 2009; Lear et al., 2015).  The benthic 166 

oxygen isotope (18Ob) data from Holbourn et al. (2013) are presented on the Lear et al., 167 

(2015) age model. 168 

 169 

ODP Site 806 is today located in the warm waters of the WPWP, due to the buildup of warm 170 

waters trapped in front of the Indonesian archipelago (Figure 1). Here, the modern day 171 

thermocline is deep and surface waters exceed 29°C, with a small range of ~29- 29.5°C. Since 172 

at least the early Miocene, ODP Site 806 has remained in western Pacific equatorial waters 173 

(Sclater et al., 1985). On interannual timescales, the El Niño Southern Oscillation shoals the 174 

thermocline and lessens the precipitation in the WPWP. Due to its location, good core 175 

recovery, and preservation of microfossils, ODP Site 806 is an ideal location to examine the 176 

thermal stability over wide range of timescales (i.e. kyr-Myr) of the western equatorial Pacific 177 

region. 178 

 179 

 180 

2.1.2 ODP Site 761B – eastern tropical Indian Ocean 181 

ODP Site 761 was cored in 2179 m water depth on the Wombat Plateau, off northwest 182 

Australia (16°44.23′S, 115°32.10′E ; Fig. 1).  A 10-15° latitudinal northward drift of 183 

Australia since the Middle Miocene puts this site in a subtropical to tropical location during 184 

the present day (~21˚S; Scotese et al., 1988; Figure S1). The continuously cored Neogene 185 

section studied here extends between 35 and 50 mbsf and slow sedimentation rates have led to 186 

unusually shallow burial depths (<50 m) for the middle Miocene sequence, leading to 187 

enhanced foraminiferal preservation. 20 cc sediment samples were taken at approximately 10 188 

cm resolution, resulting in average temporal resolution of ~23 kyr for planktic foraminiferal 189 

stable isotopes. Previously published benthic foraminiferal stable isotope and planktic 190 

foraminiferal Mg/Ca data exist at this site with an average temporal resolution of 17 and 23 191 

kyr respectively (Holbourn et al., 2004; Lear et al., 2010; Sosdian et al., 2020).  We use the 192 

age model of Lear et al., (2010) which is a fourth order polynomial fit through the 193 

biostratigraphic and isotopic datums provided by Holbourn et al. (2004)  on the Berggren et 194 

al. (1995) timescale. Surface salinity estimates from nearby sites are 34.5 (GLODAP; Key et 195 

al., 2004). 196 

 197 

 198 

 199 
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ODP Site 761 sits in the midst of a dynamic hydrographic regime in the eastern Indian Ocean. 200 

During the austral winter, a subtropical high occupies the site and dry easterly winds blow 201 

over the Australian continent and into the Indian Ocean.  During the austral summer, the 202 

subtropical high moves poleward and the ITCZ penetrates further south delivering monsoonal 203 

rain. Seasonal temperatures range from 30.9°C in the austral summer to 25.3°C in the austral 204 

winter with mean annual temperatures around 28°C. Since the middle Miocene, it has been 205 

proximal to the western edge of the present day Indonesian throughflow, which transports 206 

cool, low salinity North Pacific thermocline water to the Indian Ocean.  Additionally it is 207 

directly under the influence of the modern Leeuwin Current, a narrow, shallow current that 208 

transports warm, low-salinity, nutrient-deficient water southward along the west coast of 209 

Australia (Pattiaratchi, 2009; Gallagher et al., 2009), derived from water formed within the 210 

Indonesian Throughflow and the Central Indian Ocean (Wijffels et al., 2002; Domingues et 211 

al., 2007). Surface salinity estimates from nearby sites are 34.15 (GLODAP; Key et al., 212 

2004). 213 

 214 

2.2 Mg/Ca and 18
O Analysis 215 

Between 20-30 tests of planktic foraminifera Dentoglobigerina altispira and 30-40 216 

tests of the planktic foraminifera Trilobatus trilobus were picked from the 300-355 μm size 217 

fraction at ODP Sites 806 and 761, respectively. The picked specimens were weighed and 218 

crushed between plates and homogenized for analysis. In some samples (~25 out of 229 219 

samples), where planktic foraminifera abundance was low, fewer specimens (10-20 220 

individuals) were analyzed. The Mg/Ca and 18Op data were generated from splits of the same 221 

samples after initial homogenization of crushed tests. Mg/Ca data for ODP Site 761 were 222 

previously published in Sosdian et al., (2020), in this study we also present the 18Op data 223 

from the same samples. 224 

 Test fragments for Mg/Ca analyses were cleaned using a protocol to remove clays 225 

and organic matter (Barker et al., 2003). Between the clay removal and oxidative steps the 226 

samples were examined under a binocular microscope, and non-carbonate particles were 227 

removed using a fine paintbrush. Samples were dissolved in trace metal pure 0.065M HNO3 228 

and diluted with trace metal pure 0.5M HNO3 to a final volume of 350 l. Samples were 229 

analyzed at Cardiff University on a Thermo Element XR ICP-MS against standards with 230 

matched calcium concentration to reduce matrix effects (Lear et al., 2002). Mg/Ca data for a 231 

sample was rejected when Al/Ca exceeded 80 mol/mol and/or Fe/Mg>1. Cleaning 232 

effectiveness was supported by uncorrelated Mg/Ca, Fe/Ca, and Mn/Ca. Long term precision 233 

as determined by analyzing an independent consistency standard during each run for one year 234 

is ∼0.5% (r.s.d.) for Mg/Ca. 235 
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 Stable oxygen and carbon isotope ratios were measured at Cardiff University on a 236 

Finnigan MAT 252 micro-mass spectrometer Kiel III Carbonate Device when sample weights 237 

were less than 100 g and measured on a Delta isotope ratio mass spectrometer when samples 238 

were greater than 100 g. Analytical errors based on replicate measurements of a laboratory 239 

standard (NBS 19) are 0.08‰ for 18O (2σ). 240 

 241 

2.4 Planktic Foraminiferal Taxonomy and Ecology 242 

At ODP Site 806, the abundant D. altispira is an ideal species to reconstruct SST in 243 

the western equatorial Pacific as it is a near-surface dweller, and common in tropical waters 244 

(Fig. S2; Corfield & Cartlidge, 1992). D. altispira evolved in the late Oligocene and became 245 

extinct in the late Pliocene (Kennett & Srinivasan, 1983 Gasperi & Kennett, 1992, 1993; 246 

Chaisson & Leckie, 1993; Norris et al. 1993). Comparison of isotope records of a typical 247 

planktic foraminiferal assemblage in the western equatorial Pacific shows that D. altispira 248 

behaves as a shallow water species for the middle Miocene, and probably harbors symbionts 249 

similar to contemporeanous T. trilobus (Pearson, 1995). 250 

 251 

In the modern ocean, T. trilobus is considered to be a morphospecies of T. sacculifer, 252 

although T. sacculifer did not evolve until the Pliocene (Figure S2; Kennett & Srinivasan, 253 

1983; Spezzaferri et al., 2015). T. trilobus, a multi-chambered and symbiont-bearing species, 254 

is predominantly a mixed layer dweller calcifying at 0-50m and is abundant in subtropical to 255 

tropical oceans. Numerous studies have successfully used this foraminiferal species to study 256 

low latitude surface processes in the Quaternary and Neogene time periods (e.g., Elderfield & 257 

Ganssen, 2000; Wara et al., 2005; Badger et al., 2013). At ODP Site 761, T. trilobus is 258 

abundant throughout the middle Miocene and thus is an ideal species to estimate SSTs 259 

(Zachariasse, 1992). Studies have shown that temperatures derived from T. sacculifer are 260 

most suitable for estimating annual mean SST in tropical waters, between 20° N/S within 261 

±1˚C (Anand et al., 2003; Fraile et al., 2009; Sosdian et al., 2020). 262 

 263 

2.5 Mg/Ca-paleotemperature relationship and non-thermal influences 264 

Test Mg/Ca and calcification temperature in planktic foraminifera show an exponential 265 

relationship across a range of modern day surface ocean temperatures deduced from core-top, 266 

culturing and sediment trap studies (Dekens et al., 2002; Anand et al., 2003; Duenas-267 

Bohorquez et al., 2011). The exponential constant that describes the temperature sensitivity 268 

(A in equation 1)  ranges from 0.070 to 0.113 determined from a wide range of modern 269 

planktic species (Elderfield and Ganssen, 2000; Rosenthal and Lohmann, 2002; Anand et al., 270 

2003; Cleroux et al., 2008; Regenberg et al., 2009).   271 
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Mg/Caforam= BeAT  (eq. 1) 272 

Accurate reconstructions of Miocene sea surface temperatures derived from planktic Mg/Ca 273 

ratios requires consideration of variations in seawater Mg/Ca.   274 

𝑀𝑔

𝐶𝑎 𝑓𝑜𝑟𝑎𝑚
= [

𝑀𝑔

𝐶𝑎 𝑠𝑤
(𝑡)

𝑀𝑔

𝐶𝑎 𝑠𝑤
(0)

]

𝐶

𝐵𝑒𝐴𝑇            (eq. 2) 275 

where Mg/Casw(t) and Mg/Casw(0) are seawater Mg/Ca ratios for the Miocene and present 276 

respectively and A, B, and C are constants (A=exponential, B=pre-exponential, C=power law 277 

constant).  Mg and Ca have relatively long residence times (~13 Myr and ~1 Myr 278 

respectively) in the ocean (Broecker and Peng, 1982). Changes in weathering, hydrothermal 279 

activity, and carbonate deposition could lead to secular changes in Mg/Casw.  Seawater Mg/Ca 280 

values are independently estimated from a range of proxies (fluid inclusions, calcite veins, 281 

echinoderm, paired Mg/Ca-clumped isotope measurements of benthic foraminifera, fossil 282 

corals) (Dickson, 2002; Horita et al., 2002; Coggon, 2010; Rausch et al., 2013; Brennan et al., 283 

2013;Gothmann et al., 2015; Evans et al., 2018). The modern day seawater Mg/Ca value is 284 

5.2 mol/mol (Broecker & Peng, 1982) and Miocene estimates derived from proxy data show 285 

an increase from 30 Ma to modern day.  Several studies have used modelling to explore 286 

variations in Mg/Casw with predictions for Mg/Casw derived from pore water modelling data 287 

for the past 20 Myr (Fantle & DePaolo, 2006; hereafter FD06) and 40 Myr (Higgins & 288 

Schrag, 2012; hereafter HS12).  Given the residence time of Mg and Ca, these models exhibit 289 

potentially short-term changes in Mg/Casw and further predicts a large and rapid increase in 290 

Mg/Ca seawater over the Neogene, with considerable uncertainty in the input parameters 291 

(Figure S3).  The estimated SSTs for ODP Site 761 show a large divergence particularly 292 

between the HS12 SST scenarios and others, with SST >35 °C in the MCO. Overall, we 293 

prefer the proxy data compilation as it derived from range of disparate proxies which 294 

converge to show a consistent increase in Mg/Casw (Figure S4). Note we do not include the 295 

fossil coral data from Gothmann et al., (2015) data as it contains a considerable amount of 296 

variability. Thus, to account for changes in Mg/Casw we fit a  4th order polynomial curve fit 297 

(eq. 3) through compiled Mg/Casw proxy records to account for the changes in Cenozoic 298 

Mg/Casw (eq. 3; Figure S5) including those derived from calcite veins (Coggon et al., 2010; 299 

Rausch et al., 2013), fluid inclusions (Horita et al., 2002; Brennan et al., 2013), echinoderms 300 

(Dickson et al., 2002), and larger benthic foraminifera (Evans et al., 2018). 301 

 302 

𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟 
𝑀𝑔

𝐶𝑎
= 5.3 − (0.153 ∗ 𝐴𝑔𝑒) + (0.00257 ∗ 𝐴𝑔𝑒2) − (1.88𝑒−5 ∗ 𝐴𝑔𝑒3)303 

+ (4.85𝑒−8 ∗ 𝐴𝑔𝑒4)  304 

(eq. 3) 305 
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In addition to variations in seawater Mg/Ca, when converting planktic Mg/Ca into 306 

temperature there must be consideration of  non-thermal influences on shell Mg/Ca such as 307 

changes in salinity and the carbonate system.  Studies have shown a positive relationship 308 

between salinity and shell Mg/Ca for some species (G. ruber, O. universa, T. sacculifer) with 309 

a sensitivity of ~4 to 5% per PSU (Kisakurek et al., 2008; Duenas-Bohorquez et al., 2009; 310 

Honisch et al., 2013).  Further, Gray and Evans (2019) demonstrated that changes in pH 311 

influences shell Mg/Ca with a -7.3% per increase in 0.1 pH unit and proposed a multi-variable 312 

temperature calibration.  However, their work shows that pH sensitivity is observed in some 313 

species (e.g., O. universa, G. ruber, and G. bulloides) and not others (e.g., T. sacculifer).  314 

Building on this carbonate system control, Holland et al., (2020) suggest that not pH but 315 

changes in dissolved inorganic carbon (DIC) drive variations in O. universa Mg/Ca, with an 316 

increase in DIC corresponding to an increase in Mg/Ca, however further work is needed to 317 

explore the possible DIC sensitivity across a range of species.  318 

 319 

Here we present a new planktic record based on D. altispira Mg/Ca (near surface dweller, 320 

symbiont bearing) and revisit the Mg/Ca record derived from planktic T. trilobus (mixed layer 321 

dweller, symbiont bearing) previously published by Sosdian et al., (2020) (Figure S6; S7) 322 

across the middle Miocene.  Available records of the carbonate system across the middle 323 

Miocene suggest changes in the surface ocean pH and carbon reservoir (Foster et al., 2012; 324 

Badger et al., 2013; Greenop et al., 2014; Sosdian et al., 2018; Sosdian et al., 2020) and we 325 

consider these below when estimating SST.  There is limited information on salinity 326 

variations in the Indo-Pacific across the middle Miocene (Holbourn et al., 2010), but we 327 

conduct a sensitivity analysis to consider these possible changes. 328 

 329 

We calculate paleotemperatures from both records with consideration of the factors described 330 

above. D. altispira is an extinct species and does not have a modern taxa equivalent. 331 

However, the D. altispira Mg/Ca variations are similar to those from other modern planktic 332 

taxa.  For example, the range of Miocene Mg/Ca values (mean=3.6, max=3.9, min=3.3 333 

mmol/mol) is similar to G. ruber, T. trilobus, and G. bulloides Mg/Ca values (mean=3.6, 334 

max=4.7, min=1.7 mmol/mol) (this study; Kuhnert et al., 2009; Tripati et al., 2009). Thus, to 335 

estimate the calcification temperature from D. altispira Mg/Ca, we assume that this species 336 

incorporates Mg into its calcite lattice similarly to modern taxa. However, across the middle 337 

Miocene, a boron isotope derived pH compilation shows an increase of 0.1 pH units (Fig. 2A) 338 

(Sosdian et al., 2018). As D. altispira is an extant species, accounting for changes in the 339 

carbon system and its influences is not straightforward, as some modern species are 340 

insensitive to pH changes (Gray & Evans, 2019).  Here we apply the multi-species Mg/Ca-pH 341 
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correction from Evans et al., (2016) to assess the impact of middle Miocene pH increase on 342 

Mg/Ca ratios and the SST reconstruction 343 

Mg/CaCORRECTED = (1 − (8.05 − pH) × 0.70 ± 0.18) × Mg/CaMEASURED.   (eq. 4) 344 

For pH we use the interpolated pH estimates from Sosdian et al., (2018). Briefly, a  smoothed 345 

trendline was fitted through the ‘G17’ pH scenario and interpolated at the sampling resolution 346 

of the D. altispira Mg/Ca dataset.  347 

Due to the lack of site specific records documenting salinity variations across the middle 348 

Miocene, we perform a sensitivity analysis assuming  modern,  +1 PSU above modern, and -1 349 

PSU below modern. We apply the multi-species Mg/Ca-salinity correction from Hollis et al., 350 

(2019) to explore the impact of middle Miocene salinity changes. 351 

Mg/CaCORRECTED = (1 − (salinity − 35) × 0.042 ± 0.008) × Mg/CaMEASURED  (eq. 5) 352 

We convert D. altispira Mg/Ca to SST using the multi-species equation of Anand et al., 353 

(2003) which has an exponential constant A=0.09 and pre-exponential constant B=0.38. The 354 

temperature equation is as follows: 355 

 356 

𝑀𝑔

𝐶𝑎 𝑓𝑜𝑟𝑎𝑚
=

𝑀𝑔
𝐶𝑎 𝑠𝑤

(𝑡)

𝑀𝑔
𝐶𝑎 𝑠𝑤

(0)

0.41

0.38𝑒0.09𝑇        (eq. 6)     357 

 358 
 359 
Where Miocene Mg/Casw (t) is estimated using  eq. 3 (this study).  In previous studies, a linear 360 

relationship between Mg/Caforam and Mg/Casw was assumed (Lear et al., 2000). However it 361 

has since been shown that a power function best describes this relationship (Hasiuk & 362 

Lohmann, 2010; Lear et al., 2015).   Here we use the power law constant  of C=0.41, similar 363 

to the value applied for T. trilobus, a symbiont-bearing, mixed layer dweller (Delaney et al., 364 

1985; Evans and Müller 2012).  365 

 366 

Converting T. trilobus Mg/Ca ratios in SSTs is more straightforward, as thermal and non-367 

thermal influences on T. sacculifer Mg/Ca are better constrained.  Gray and Evans (2019) 368 

showed that T. sacculifer Mg/Ca is insensitive to pH change but sensitive to salinity changes. 369 

Previously, mean annual SSTs were calculated for T. trilobus in Sosdian et al., (2020), using 370 

the T. sacculifer calibration without sac from Anand et al., (2003) where A=0.09, B=0.347 371 

after accounting for seawater Mg/Ca assuming a power constant of C= 0.41 as determined by 372 
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Evans and Müller (2012) based on the data of Delaney et al., (1985).  Those authors assumed 373 

a constant value of 3.43 mol/mol for seawater Mg/Ca derived from fluid inclusion data 374 

(Horita et al., 2002) for the duration of the record.  Here we modify the approach of Sosdian 375 

et al., (2020) to incorporate varying seawater Mg/Ca as set out in this study for 
𝑀𝑔

𝐶𝑎 𝑠𝑤
(𝑡)  term 376 

in the paleotemperature calculation (eq. 3; Figure S5; Fig. 2B).  Further we consider it more 377 

appropriate to use the species-specific equation of Gray and Evans (2019) which takes into 378 

account changes in temperature and salinity to estimate SST (eq.7). 379 

 380 

Mg/Ca = exp(a(S-35) + bT + c(pH-8) + d).    (eq. 7) 381 

 382 

Where a=0.054, b=0.063, c=0.01, and d=-0.24.  Due to the lack of site specific records 383 

documenting salinity variations across the middle Miocene in the Indian Ocean, we perform a 384 

sensitivity analysis assuming modern, +1 PSU above modern, and -1 PSU below modern 385 

salinity, similar to the analysis for ODP site 806. 386 

 387 

To compare these tropical SST records to the high latitudes, we include the orbitally resolved 388 

Southern Ocean G. bulloides Mg/Ca record from ODP Site 1171 (Shevenell et al., 2004). 389 

Shevenell et al., (2004) converted G. bulloides Mg/Ca to SST using the Mg/Ca-SST 390 

temperature equation from Mashiotta et al., (1999) and assumed modern Mg/Casw. Here, to 391 

ensure consistency amongst the comparisons, we recalculate SST from this Mg/Ca record 392 

using the Gray and Evans (2019) multi-variable regression (eq. 7) for G. bulloides Mg/Ca, 393 

where a=0.036, b=0.064, c=-0.88, and d=0.15 which takes into account temperature, pH, and 394 

salinity. We use the interpolated pH record (Figure 2A) and the polynomial regression (eq. 3) 395 

to estimate Mg/Ca seawater variations through the interval, and a C value of 0.72 (eq. 2) based 396 

on calibration data (Evans et al., 2016). Due to the lack of site specific records documenting 397 

salinity variations across the middle Miocene in the Southern Ocean, we perform a sensitivity 398 

analysis assuming modern (34.5), +1 PSU above modern, and -1 PSU below modern salinity, 399 

similar to ODP Sites 806 and 761. 400 

In section 3.1 we present the planktic Mg/Ca records from ODP Sites 806 and 761 across the 401 

middle Miocene and highlight the main their main features. In section 3.2 we consider the 402 

thermal and non-thermal influences on these records and implications for interpretation and 403 

uncertainties associated with the SST and planktic oxygen isotope records and paleoclimatic 404 

variations. 405 

 406 
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2.6 Foraminiferal Preservation 407 

Diagenesis alters the elemental composition of the test via partial dissolution, 408 

overgrowths, or recrystallization, and thus burial conditions and preservation of the calcite 409 

test need to be considered (Edgar et al., 2015).  Partial dissolution in the water column or at 410 

the seafloor selectively removes Mg2+ from the foraminiferal test (Rosenthal and Lohmann, 411 

2002; Dekens et al., 2002; Regenberg et al., 2006). This dissolution effect is critical at 412 

carbonate saturation values below 20 mol/kg, as defined from core-top studies. Calcite 413 

dissolution decreases Mg/Ca and increases 18Op, acting to bias both toward cooler values.  414 

 415 

ODP Site 806 lies well above the modern lysocline and was above it during the middle 416 

Miocene. SEM images of D. altispira from ODP Site 806 show original microstructure with 417 

minimal infilling and dissolution indicators (Figure S2). However, although ODP Site 806 is 418 

above the lysocline, modern carbonate saturation (CO3
2-) values are on average 10 mol/kg 419 

(data from WOCE cruise P10, station 10, Lewis and Wallace, 1998). Regenberg et al., (2006) 420 

showed that the critical threshold values for which Mg2+ loss initiates is 20 mol/kg and thus 421 

ideally Mg/Ca values should be corrected for dissolution. However, the species-specific 422 

equation established from core-tops in the Regenberg et al., (2006) study and others (Dekens 423 

et al., 2002; Rosenthal and Lohmann 2002) is not applicable to D. altispira as it is an extinct 424 

species. Here we compare the Mg/Ca and 18Op records with dissolution indicators to assess 425 

whether temporal changes in calcite preservation could affect the interpretation of 426 

paleoclimate records at ODP Site 806. Potential dissolution indicators, such as percent coarse 427 

fraction (%CF) and average shell weight do not covary with Mg/Ca or 18Op (R2<0.2; Figure 428 

S6). This suggests minor effects of dissolution on these records and moving forward we 429 

assume that the overall changes in Mg/Ca and 18Op at ODP Site 806 are related to climatic 430 

signals. 431 

 Several lines of evidence suggest that dissolution does not significantly affect the 432 

18Op or Mg/Ca values at ODP Site 761 as well. ODP Site 761 is situated well above the 433 

modern lysocline, above the critical 20 mol/kg CO3
2-, in a relatively shallow burial depth 434 

during the middle Miocene (<50 m). Visual examination (Figure S2) of T. trilobus from ODP 435 

Site 761 shows moderately good preservation with no visible signs of infilling or dissolution. 436 

Average shell weight of T. trilobus, from the 300-355 m size fraction does not covary 437 

(R2=0.20) with the 18Op or Mg/Ca record, supporting our argument that these values are not 438 

biased (Figure S7). 439 

  Despite the reasonable appearance of foraminifera from both sites, all tests appear 440 

frosty or opaque in contrast to exceptionally well preserved translucent test shells from 441 

hemipelagic muds (Pearson et al., 2001). However, this preservation state is typical of most 442 
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deep-sea carbonates and is caused by micro-recrystallization of calcite. Diagenesis likely 443 

affected the absolute 18Op values, however large scale textural changes caused by 444 

recrystallization are not evident in SEM images (Figure S2) suggesting that diagenesis did not 445 

drive prominent shifts in 18Op. Additionally, Sr/Ca ratios from both cores show relatively 446 

high values (~1.1-1.2 mmol/mol) that are consistent across much of the record suggesting that 447 

diagenesis did not have a major influence on the variations of Mg/Ca and 18Op. Furthermore, 448 

Sexton et al., (2006) showed that Mg/Ca values decrease by a negligible amount with initial 449 

diagenetic alteration, thus temporal changes in Mg/Ca are less likely to be affected.  For the 450 

reasons outlined above we believe that diagenesis had a minimal effect on our records and we 451 

therefore interpret the geochemical records in terms of changing paleoceanographic 452 

conditions and interpret relative changes in SST rather than absolute SSTs.  453 

 454 

2.7 Calculation of surface seawater 18
O 455 

To assess changes in surface ocean evaporation and precipitation changes in the Indo-456 

Pacific region we use combined measurements of 18Op and Mg/Ca from surface dwelling 457 

foraminifera, D. altispira and T. trilobus (Fig. 2C; Figure S6, S7). The foraminiferal 18Op 458 

signal is dependent upon SST, salinity, and ice volume, whereas the Mg/Ca signal is primarily 459 

a temperature signal. Here we calculate planktic 18Osw using the following equation (8) from 460 

Bemis et al., (1998): 461 

𝛿18𝑂𝑠𝑤(𝑉 − 𝑆𝑀𝑂𝑊) = 0.27 +
((𝑇(°𝐶)−16.5+4.8×𝛿18𝑂𝐶(𝑉−𝑃𝐷𝐵) 

4.8
  (eq. 8) 462 

The calculated 18Osw reflects a combination of changes in global ice volume and local 463 

changes in 18Osw attributable to local salinity changes.  We compare overall changes in 464 

18Osw at each site which approximates changes in salinity (Rohling et al., 2007). Calculation 465 

of absolute salinity requires assumptions regarding the relationship between 18Osw and 466 

salinity at a regional level and how this relationship has changed in the past. Thus, due to the 467 

large uncertainties associated with this assumption we interpret the 18Osw record in terms of 468 

salinity variations but do not calculate absolute salinity. 469 

 470 

3. Results  471 

3.1 Mg/Ca records from the middle Miocene 472 

At ODP Sites 806 and 761, planktic Mg/Ca decreases across the MMCT (14-13 Ma) along 473 

with the positive increase in benthic foraminiferal 18O (18Ob) indicative of cooling and 474 

Antarctic glaciation (Fig. 2C).  A point to point comparison shows that ODP Site 806 D. 475 

altispira Mg/Ca declines by 0.60 mmol/mol (i.e. 3.85 to 3.25 mmol/mol) and 761 T. 476 

trilobatus Mg/Ca declines by 0.90 mmol/mol (i.e.  4.6 to 3.5 mmol/mol) (Fig. 2C) from 14.0 477 
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to 13.0 Ma.   Average Mg/Ca values in the warm MCO (16.5-15 Ma) were higher than post-478 

MMCT (13-11.5 Ma) at both sites (Fig. 2C) with ODP Site 806 Mg/Ca values decreasing 479 

from 3.7 to 3.5 mmol/mol and ODP Site 761 Mg/Ca values decreasing from 4.1 to 3.8 480 

mmol/mol, respectively.  During the MCO, both Mg/Ca records show short-term variations 481 

with higher Mg/Ca ratios aligning with more negative 18Ob values or periods of 482 

warmth/reduced ice volume.  Overall the similarities in planktic Mg/Ca and 18Ob suggest that 483 

Mg/Ca is reflecting temperature variations across the middle Miocene. 484 

 485 

3.2 Sensitivity Analysis 486 

As stated previously, to consider the potential impact of pH and salinity changes on the 487 

long-term trends in Mg/Ca, we perform a sensitivity analysis.  Specifically, we consider the 488 

influence of  (1) varying pH and salinity on D. altispira Mg/Ca-SST and 18Osw estimates and 489 

(2) varying salinity on T. trilobus Mg/Ca-SST and 18Osw estimates.   490 

As specified in section 2.5, we employ a pH and salinity correction to D. altispira Mg/Ca 491 

ratios to examine the influence on the long and short-term trends in Mg/Ca (Fig. 3).  The 492 

magnitude of uncertainty on the Mg/Ca temperatures due to unconstrained salinity variations 493 

is 1C (Fig. 3A).  The pH-corrected and pH-uncorrected D. altispira Mg/Ca record shows 494 

similar values following the MMCT with a gradual increase in Mg/Ca. However, during the 495 

MCO the pH corrected and uncorrected Mg/Ca records diverge with the pH corrected Mg/Ca 496 

lower by ~0.3 mmol/mol equivalent to ~1°C (Fig. 3B). During the MCO, the pH corrected 497 

Mg/Ca record shows lower average Mg/Ca values relative to the post-MMCT time interval. 498 

However, both pH corrected and pH uncorrected Mg/Ca records show a cooling associated 499 

with the MMCT and similar short-term variations during the MCO (i.e. higher Mg/Ca values 500 

during the warm periods) (Fig. 3B). 501 

 502 

As stated in section 2.5, some species, such as symbiont bearing T. sacculifer are insensitive to 503 

pH changes. In the same vein, it is therefore possible that D. altispira, a symbiont bearing 504 

species as well, might have a similarly muted response. Additionally, more work is needed to 505 

identify the controlling carbonate system parameter on foraminifera, given that some studies 506 

suggest pH or DIC. We also acknowledge that without a site specific pH reconstruction, it is 507 

difficult to determine if the boron isotope pH derived record from the Indian and Pacific 508 

Ocean is representative for the WPWP region. Considering these uncertainties and unknowns, 509 

here we employ the multi-species calibration from Anand et al., (2003) (eq. 6) to estimate 510 

SSTs in the WPWP. To account for the uncertainty associated with pH and salinity variations, 511 

we incorporate an uncertainity envelope of 2C from 16.5 to 13.0 Ma and 1C from the 512 
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13.0 to 11.5 Ma in the ODP Site 806 SST reconstruction and present an associated uncertainty 513 

enveloped in the corresponding 
18Osw reconstruction. 514 

 515 

As specified section 2.5, to convert T. trilobus Mg/Ca into temperature, we apply the Gray 516 

and Evans (2019) temperature equation with variable seawater Mg/Ca estimates from  this 517 

study.  Sosdian et al., (2020) use a constant Miocene Mg/Casw value of 3.43 mol/mol which is 518 

within the range of Miocene Mg/Casw values (3.4-3.9 mol/mol) applied here.  The 519 

recalculated SST record from T. trilobus Mg/Ca data presented in Sosdian et al., (2020) has 520 

lower absolute values in comparison to the Sosdian et al., (2020) estimates but similar short-521 

term and long-term trends (Figure S8). We consider this a more appropriate approach as the 522 

polynomial regression used in this study includes compiled seawater Mg/Ca proxy records 523 

from a range of approaches.  524 

 525 

We perform a sensitivity analysis to consider changes in salinity and its influence on the SST 526 

record. Figure 4 shows the three SST and 18Osw reconstructions for the salinity sensitivity 527 

analysis. The magnitude of uncertainty on the Mg/Ca temperatures due to unconstrained 528 

salinity variations is 1C.  To account for the salinity uncertainty we incorporate an 529 

uncertainity envelope of 1C in the ODP Site 761 SST reconstruction and present an 530 

associated uncertainty enveloped in the 
18Osw reconstruction. 531 

 532 

Here we also revisited the G. bulloides Mg/Ca dataset from Shevenell et al., (2004). These 533 

authors used the Mashiotta et al., (1999) Mg/Ca-T equation and assumed modern Mg/Casw to 534 

calculate SST.  Here, we calculate SST in the similar manner to the T. trilobus record where 535 

we apply the Gray and Evans (2019) equation with variable Mg/Casw (this study) and  pH 536 

correction. We perform a salinity sensivity analysis in the similar vein as above. Figure S9 537 

shows the SST reconstructions from the salinity sensitivity analysis. The magnitude of 538 

uncertainty on the Mg/Ca temperatures due to unconstrained salinity variations is 0.5C. 539 

As expected, the ODP 1171 recalculated Mg/Ca-SST record has higher absolute values, due 540 

to lower Mg/Casw values used to to estimate SST. The overall short-term and long-term trends 541 

are similar to the original record (Shevenell et al., 2004; Figure S9). To account for the 542 

salinity uncertainty we incorporate an uncertainity envelope of 0.5C in the SST 543 

reconstruction. 544 

 545 

In section 3.2 we present and review the main features of ODP Site 806 and revisited ODP 546 
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site 761 Mg/Ca-SST reconstructions with their corresponding uncertainty envelopes as 547 

specified above. Alongside this, we present the 
18Osw reconstructions with an uncertainty 548 

envelope as specified above. Overall when comparing the SST and 
18Osw trends, we present 549 

the relative anomaly, as relative change with respect to baseline average from 15.5-16.0 Ma, 550 

with uncertainty envelopes as specified above.   This approachs helps avoid additional 551 

uncertainties on absolute values associated with the factors mentioned above (e.g. Mg/Casw, 552 

diagenesis). 553 

 554 

 555 

3.2 Mg/Ca-temperature and 18O history 556 

The near-surface dwelling species D. altispira Mg/Ca temperature record of ODP 557 

Site 806 in the western equatorial Pacific broadly varies by 2°C between cold and warm 558 

periods. From 14.1 to 13.7 Ma, SSTs in the western equatorial Pacific sharply cooled by 559 

~1.8°C coincident with Antarctic glaciation and the positive 18Ob excursion at ODP Site 806 560 

(Figure 5A).  However, following the MMCT the reconstructed SST record shows a gradual 561 

long-term warming of ~1°C from 13.5 to 11.5 Ma. 562 

The D. altispira 18Op data from this study compare well with the previously 563 

published D. altispira and T. trilobus 18Op records from Corfield and Cartlidge (2003) and 564 

Nathan and Leckie (2009) and here we compile all these datasets (Figure 5B). Average D. 565 

altispira 18Op decreases from the early MCO (-0.76‰) to the lowest values around ~ 15 Ma 566 

(-1.25‰), followed by a small increase following the MMCT (to -0.92‰). The compiled D. 567 

altispira 18Op long-term trend does not bear resemblance to the Mg/Ca-SST record  at this 568 

site indicating that the 18Op signal largely reflects changes in surface ocean 18Osw. The D. 569 

altispira 18Op record differs markedly from the 18Ob with no change across the climate 570 

transition itself, suggesting that variations in local salinity are compensating for the global 571 

increase in 18Osw caused by the glaciation.  572 

The surface dwelling T. trilobus Mg/Ca-SST record from eastern equatorial Indian 573 

Ocean ODP Site 761 shows small long-term 1.5°C cooling across the middle Miocene 574 

calculated by averaging the SST estimates from before and after 14.0-13.5 Ma.  This small 575 

long-term cooling is punctuated by a sharp 2.8°C cooling from 14.0 to 13.8 Ma concomitant 576 

with the positive benthic 18Ob excursion from 14.1 to 13.9 Ma indicative of a sea level 577 

change associated with Antarctic glaciation (Holbourn et al., 2004; Lear et al., 2010; John et 578 

al., 2011) (Fig. 6). SSTs varied by ~3°C between warm, deglaciated and cool, glaciated 579 

conditions prior to the MMCT.  Around 13.5 Ma following the sharp decrease in temperature 580 

and transition into the stable icehouse of today, SSTs varied by 2°C. 581 
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 The middle Miocene long-term cooling and decrease in SST variability are not 582 

reflected in the corresponding 18Op record (Fig. 6). Average 18Op decreases from the early 583 

MCO (-0.45 ‰) to the late middle Miocene (-0.87 ‰).  18Op values show a sharp positive 584 

excursion of 0.86 ‰ synchronous with the SST cooling and 18Ob excursion from 14.1-13.9 585 

Ma followed by a return to average pre-excursion values. The 18Op (Fig. 6B) record shows a 586 

long-term decrease at this site indicative of a possible freshening and fluctuates considerably 587 

across the middle Miocene implying that substantial variations in salinity are superimposed 588 

on the 18Op curve. 589 

Using the Mg/Ca-derived SST records from ODP Sites 806 and 761 we reconstruct 590 

variations in  18Osw at both sites (Figure 7B). ODP Site 806 18Osw shows short-term 591 

variability during cold and warm periods prior to the MMCT with no discernible change in 592 

18Osw across the middle Miocene or the MMCT.  In agreement with ODP Site 806, ODP Site 593 

761 shows similar short term changes across the middle Miocene but of larger magnitude 594 

with variations ~1 ‰ pre-MMCT, with fresher conditions during cooler, icier intervals and 595 

saltier conditions during warmer, less icy intervals. In contrast to the indiscernible long-term 596 

change at ODP Site 806, the ODP Site 761 18Osw record shows a long-term freshening trend 597 

from the warmth of the MCO to the post-MMCT conditions. This is punctuated by a sharp 598 

freshening from 13.9-13.4 Ma following by small amplitude (~0.5 ‰) variability post-599 

MMCT. Overall these 18Osw records indicate a dynamic hydrologic history of the Indo-600 

Pacific region and that the Indian Ocean freshened relative to the Pacific following the major 601 

glaciation step at 13.9 Ma. Although we do caveat that  due to the low resolution of the ODP 602 

806 SST record and its associated uncertainties (pH, salinity correction), interpretation of the 603 

806 18Osw record might evolve with a more detailed evaluation of salinity changes at this site 604 

and the Mg/Ca-pH sensitivity for D. altispira.  605 

 606 

4. Discussion 607 

Our new trace metal and stable isotope records span a 5 Myr interval from the warmth of the 608 

MCO through the MMCT (Fig. 5-7). Here we examine the overall features of the SST and 609 

18Osw records across the middle Miocene on short and long-term (>1 Myr) time scales in 610 

context of global changes in pCO2 and ice volume to constrain the global nature of these 611 

changes and any tropical-high latitude linkages. Further, we examine changes in 612 

paleogeography and constriction of the Indonesian Seaway in driving regional surface 613 

hydrography changes in the eastern tropical Indian Ocean. 614 

 615 

4.1. Tropical Sea Surface Cooling across the middle Miocene 616 



 
 

 

18 

Previously, the magnitude and nature of temperature change deduced from low latitude 617 

isotopic records across the middle Miocene has been contentious (Stewart et al., 2004). 618 

Earlier isotopic studies of the tropical region suggested a warming in the Indo-Pacific region 619 

across the middle Miocene in contrast to our findings (Savin et al., 1985). Reconstruction of 620 

Miocene atmospheric CO2 concentrations show higher than modern values of ~470-630 ppm 621 

from 17-15 Ma, with large swings in CO2 concentrations during the MCO and a decline in 622 

CO2 concentration across the MMCT of ~200 ppm (Foster et al., 2012; Badger et al., 2013; 623 

Greenop et al., 2014; Sosdian et al., 2018). These dynamic changes in CO2 concentration 624 

occur alongside the waxing and waning of ice sheets and sea level (Figure 7; Lear et al., 2010; 625 

John et al., 2011). Under the high CO2 concentrations of the MCO, climate models simulate a 626 

warmer-than-modern tropical Indo-Pacific region (Tong et al., 2009; Krapp & Jungclaus, 627 

2011).  Here we examine relative changes in Indo-Pacific SSTs, in lieu of examining absolute 628 

SSTs relative to modern, due to the uncertainties associated with estimating absolute SSTs in 629 

the middle Miocene. 630 

During the MCO, the Indo-Pacific cooling and warming is tightly coupled to the 631 

waxing and waning of the ephemeral ice sheets and CO2 (Figure 7). This is evident at 15.5 632 

Ma where SSTs were warm during an interval of high pCO2, high sea level stand, and warm 633 

deep ocean waters. At 15 Ma SSTs cool during an interval of low CO2 concentrations, low sea 634 

level, and cool deep ocean waters (Shevenell et al., 2004; Lear et al., 2010; Foster et al., 2012; 635 

Sosdian et al., 2018). The orbitally resolved South China Sea SST record exhibits a SST 636 

pattern that generally follows this trend during the MCO (Holbourn et al., 2010) suggesting a 637 

tropics-wide response. During the MCO, temperature records in both the high and low 638 

latitudes are responding in a similar manner, evident from comparison of SST records from 639 

ODP Site 1171 and from this study (Fig. 8; Shevenell et al., 2004; Sosdian et al., 2020).  640 

Although correlation of age models is difficult due to differences in available stratigraphic 641 

datums at each site, from 16.8 to16.2 Ma both the high latitudes and tropics were warming 642 

together, evident when comparing similarly resolved SST records from ODP Sites 761 and 643 

1171 (Fig. 8; Figure S10. S11 ). Overall, these oscillations in the Indo-Pacific region suggest 644 

that the tropics responded dynamically to changes in greenhouse gas forcing, alongside 645 

Antarctic ice sheet dynamics and high latitude temperature change.  646 

 647 

 Following the warmth of the MCO, atmospheric CO2 concentrations declined with  a 648 

punctuated CO2 decrease associated with the glaciation event at 13.9 Ma (Foster et al., 2012; 649 

Badger et al., 2013; Sosdian et al., 2018). The 1.8-2.8°C cooling in the low latitude Indo-650 

Pacific region is associated with the glaciation event and CO2 decline at 13.9 Ma (Holbourn et 651 

al. 2004; Lear et al., 2010; Badger et al., 2013; Foster et al., 2012; Sosdian et al., 2018). A 652 
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low resolution alkenone-derived SST record from the eastern equatorial Pacific shows a 2 °C 653 

transient cooling around 14 Ma consistent with our findings and indicating a tropics wide 654 

response, although the reconstructed temperatures surrounding this transient cooling event are 655 

near the saturation limit of the proxy and the cooling may be a low end estimate  (Rousselle et 656 

al., 2013). However, an orbitally resolved SST record from ODP Site 1146 in the SCS shows 657 

no long-term cooling across the MMCT but rather discrete warming events from 14.6 Ma 658 

onward associated with glaciation. These lines of evidence suggest that despite its tropical 659 

location the Indo-Pacific was not insensitive to temperature change across the middle 660 

Miocene.  Further the tropics cooled in the EEP and Indo-Pacific region across the MMCT 661 

but distinct differences exist regionally in the tropical surface ocean across the Miocene.  662 

 663 

Across the MMCT, the orbitally resolved Southern Ocean SST record shows three distinct 664 

cooling steps at 14.2, 14.0 and 13.9 Ma of a total magnitude of  6-7 ˚C (Figure 8; Figure S10) 665 

(Shevenell et al., 2004). This ODP Site 1171 SST record is of higher resolution (~9 kyr) 666 

across the MMCT interval (45 data points; 14.2 to 13.8 Ma) than ODP Site 761 (~37 kyr; 10 667 

data points) and ODP Site 806 (~ 150 kyr; 3 data points) which makes a point to point 668 

comparison difficult.  However, examination of the temperature trends at each site shows that 669 

the Indo-Pacific cooling step initiated at 14.0 Ma occurs synchronous with the final two steps 670 

in the Southern Ocean cooling  (Figure 8).  671 

 672 

This interpretation of the lead/lag nature of the SST records from the Indo-Pacific and 673 

Southern Ocean hinges on how tightly constrained site specific age models are, and whether 674 

the lead/lags could be within error of the age model across the middle Miocene. Overall, there 675 

are several reasons to support the interpretation of the lead of Southern Ocean cooling over 676 

the tropical Indian Ocean.  The age model for ODP Site 1171 was developed based on 11 677 

magneto- and five biostratigraphic (foraminifer) and seven stable isotope datums (Shevenell 678 

& Kennett, 2004) and has not been updated since original publication. The age model for 679 

ODP Site 761 is a fourth order polynomial fit based on the biostratigraphic and isotopic 680 

datums from Holbourn et al., (2004) and ODP Site 806 age model is based on fourth order 681 

polynomial fit through nannofossil and planktic foraminiferal biostratigraphical events (Lear 682 

et al., 2015).  All biostratigraphic datums are on the on the Berggren et al., (1995) timescale. 683 

Within each record there are several datums that anchor the MMCT and further each site has 684 

a highly resolved 18Ob  and 13Cb records that allow comparison to the individual SST 685 

records (Figure S10-S12; Table S1). The three step cooling as exhibited in the ODP Site 1171 686 

Mg/Ca-SST record (14.2, 14.0, 13.9 Ma) precedes the positive 18Ob excursion (13.9 Ma), 687 

indicative of Antarctic ice growth by 0.30 Myr, whilst the cooling exhibited in the ODP Site 688 
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761 Mg/Ca-SST record (14.0 Ma) occurs in step with the positive 18Ob excursion (14.0 Ma) 689 

(Figure 8).  Considering the lower resolution nature of the Mg/Ca-SST relative to the 18Ob  690 

record, the cooling at ODP Site 806 (13.97 Ma) occurs in step with the positive 18Ob 691 

excursion (13.91 Ma; Figure 8).  In summary, the relative timing of the Mg/Ca-SST cooling 692 

compared with the 18Ob  and 13Cb  shifts are different at each site and suggest that the 693 

Southern Ocean cooling leads the Indo-Pacific by a few hundred thousand years (Figure 8). 694 

 695 

The lead of Southern Ocean cooling versus ice volume has been tied to the decoupling of 696 

Southern Ocean surface hydrography and global ice volume, caused by circulation changes 697 

and/or thresholds for Antarctic ice growth (Shevenell et al., 2004). These new records support 698 

the global signature of the MMCT cooling from 14.0 to 13.9 Ma  and hint that the early 699 

cooling in the Southern Ocean is tied to a regional change in climate and/or non-thermal 700 

influences on the ODP Site 1171 planktic Mg/Ca record. This indicates that both the high and 701 

low latitudes cooled as ice sheets advanced at 13.9 Ma supporting an important role for the 702 

carbon cycle in driving the glaciation (e.g., Foster et al., 2012) and/or representing important 703 

positive feedbacks (e.g., Badger et al., 2013).   704 

 705 

Post-MMCT, ODP Site 806 shows a gradual overall warming of 1˚C  from 13.5 to 11.5 Ma. 706 

However in contrast, following the MMCT, ODP Site 761 shows short term minor variations 707 

in SST but no long-term trend in SST from 13.5 to 11.5 Ma. SSTs from exceptionally well 708 

preserved foraminifera 18Op records in Tanzania show a warming from 12.2 to 11.55 Ma, 709 

however this is based on only two time slices (Stewart et al., 2004).  Available organic-based 710 

SST records from the middle late Miocene derive mostly from locations outside of the 711 

WPWP, due to the saturation of the proxy in SST greater than 29˚C.  A Uk’
37-derived SST 712 

record the from EEP across the late middle Miocene shows no long-term change in SST 713 

(Rouselle et al., 2003) across the late middle Miocene. Other available Uk’
37-derived SST 714 

record only capture ~12.5 to 11.5 Ma and show no discernible long-term change in SSTs 715 

(Zhang et al., 2014; Herbert et al., 2016).  716 

 717 

The gradual warming at ODP Site 806 could be driven by changes in CO2 levels, however 718 

there is considerable uncertainty in CO2 reconstructions during the late middle Miocene, with 719 

estimates showing either change or an increase from 13 Ma to 11 Ma (Bolton et al., 2016; 720 

Mejia et al., 2017; Sosdian et al., 2018). A paleogeographic modeling study shows that with a 721 

more open Indonesian Seaway the warm pool migrates west into the eastern Indian Ocean and 722 

closure acts to reduce the flow through the seaway and warm waters pile up on the eastern 723 

part of the seaway (von der Heydt & Dijkstra, 2011).  Using 18Op  and foraminiferal 724 
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assemblage records (64 kyr resolution) from ODP Site 806, Nathan and Leckie (2009) 725 

showed there was a dynamic, deep thermocline in the western equatorial Pacific from 13.2 to 726 

11.6 Ma with a stable warm pool forming after 11.6 Ma. Thus constriction of the Indonesian 727 

Seaway associated with eustatic sea level fall (596 m; John et al., 2011) across the MMCT 728 

could have altered the position of proto-warm pool and contributed to the gradual warming at 729 

ODP Site 806 until the formation of a stable warm pool.  However, due to  the low resolution 730 

nature of the ODP Site 806 SST record and uncertainty in the size and latitudinal extent of the 731 

late middle Miocene proto-warm pool, additional higher resolution record from the western 732 

equatorial Pacific are needed to fully resolve the evolution of the WPWP and its dynamics. 733 

 734 

4.2 Tropical Indian Ocean surface freshening across the middle Miocene 735 

Middle Miocene Antarctic cryosphere expansion had the potential to affect the 736 

tropical hydrological cycle and cause significant salinity changes (Chiang & Bitz, 2005). In 737 

this context, Holbourn et al., (2010) argued that records of South China Sea surface ocean 738 

hydrography are attributable to northward migration of the ITCZ induced by southern 739 

hemisphere glaciation events and subsequent favoring of the relatively warmer northern 740 

hemisphere following 14.5 Ma (Holbourn et al., 2010). Due to the low resolution of the 741 

18Osw from ODP Site 806 and uncertainty in non-thermal effects on Mg/Ca, we focus our 742 

discussion on the ODP Site 761 18Osw. ODP Site 761 sits outside of the present-day ITCZ 743 

influence and thus the proposed northward shift of the ITCZ at 13.9 Ma would place the ITCZ 744 

even further north and does not explain the freshening at ODP Site 761 across MMCT. Here 745 

we consider the role of Antarctic glaciation and paleogeographic changes during the Miocene 746 

as a mechanism to explain the freshening in the tropical eastern Indian Ocean. Specifically, 747 

we propose that the freshening in the Indo-Pacific region was related to the constriction of the  748 

Indonesian Seaway passages, driven by Antarctic glaciation induced sea level fall and 749 

ongoing paleogeographic changes. We explore this mechanism further in Section 4.2.1, 750 

examining the influence the  Indonesian Seaway has on the regional surface ocean 751 

hydrography in the Indo-Pacific Ocean. 752 

 753 

4.2.1 Miocene Constriction of the Indonesian Seaway 754 

 The modern Indonesian Seaway, a critical tropical ocean passageway, transports heat 755 

and freshwater from the Pacific into the Indian Ocean (Gordon & Fine, 1996). The nature and 756 

type of flow through the Indonesian Seaway is dictated by the positions of deep basins and 757 

channels connecting the oceans, the dominant source water, and the openness of the seaway. 758 

The intensity and nature of these pathways is likely to have been affected by past changes in 759 

eustatic sea level on multiple time scales (Kuhnt et al., 2004). For example, during the Last 760 
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Glacial Maximum sea level was lower than today by ~120 m. Under these conditions, the 761 

modern major deep flow through the Makassar Strait would have still persisted while the 762 

shallow Timor Passage would have been exposed and flow reduced (Figure 9).  763 

 764 

Plate reconstructions from Hall et al., (2002) show that SE Asia collided with Australia 765 

around 25 Ma, restricting the deep water pathway between the Pacific and Indian Oceans. The 766 

Makassar strait would have been wider than today and only shallow and intermediate waters 767 

of possibly North Pacific origin would flow through, while shallow flow of water of South 768 

Pacific origin possibly continued through Sulawesi and New Guinea. Kuhnt et al., (2004) 769 

estimate that the Indonesian Seaway was at its narrowest from 10-5 Ma with no evidence for 770 

tectonic changes between 17 and 12 Ma.  Further, as stated previously, the openness of the 771 

Indonesian Seaway is also key in setting the position of the WPWP and intensity of tropical 772 

surface ocean circulation (von der Heydt & Dijkstra, 2011).  773 

 774 

We propose that the eustatic sea level drop (596 m; John et al., 2011; Figure 7) at the 775 

MMCT restricted the already relatively shallow  Indonesian Seaway. The seaway constriction 776 

would result in a change in the proportion of source waters transported through shallow 777 

passages from primarily warmer, saltier South Pacific water to primarily colder, fresher North 778 

Pacific water.  The switch in source waters would act to cool and freshen the distal outflow 779 

regions of the seaway and the Leeuwin Current, as evident in our ODP Site 761 SST and 780 

18Osw records (Figure 7).  781 

In addition to changes in the source waters, constriction of the Indonesian Seaway 782 

might affect the intensity of the proto-Leeuwin Current. Presently, ODP Site 761 is under the 783 

influence of the Leeuwin current, an anamolous eastern boundary current, transporting 784 

tropical waters poleward along the west Australian coast. The Leeuwin current is primarily 785 

fed from  Indonesian seaway waters and to some extent remote equatorial Indian Ocean 786 

waters and the flow is driven by large scale meridional pressure gradient (Wijffels et al., 787 

2002; Domingues et al., 2007)) (Fig.9). Thus, changes in the nature of the seaways that guide 788 

the Indonesian waters from the Pacific to Indian Ocean, are of importance to the Leeuwin 789 

Current. Indeed, paleoceanographic records on Cenozoic and Quaternary timescales suggest 790 

that Leeuwin current intensity and composition was dictated by changes in source water and  791 

Indonesian seaway connectivity (McGowran et al., 1997; Wyrwool et al., 2009; Spooner et 792 

al., 2011).   793 

Paleontological data along the northwestern shelf of Australia suggest the current 794 

flowed episodically in the late Oligocene/earliest Miocene, but it is likely that the initiation of 795 

the modern-day Leeuwin like current was established in the middle Miocene when the 796 
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tectonic structure was favorable (Wyrwoll et al., 2009). Here we postulate that the transport 797 

capacity of the  Indonesian Seaway would have been restricted as the flow in the shallow 798 

passageways would have been minimized and the proto-Leeuwin current reduced. Reduced 799 

intrusion of Leeuwin current waters into the Indian Ocean could act to freshen and cool this 800 

region through increased northward transport of the opposing current, similar to the West 801 

Australian Current. Further, a reduction in Leeuwin Current would enhance coastal upwelling 802 

and enhance productivity (Veeh et al., 2000). Planktic to benthic carbon isotopic differences 803 

at ODP Site 761, an indicator of productivity, show that following the MMCT this region 804 

became more productive (Figure S13) in line with a reduction in the Leeuwin Current. 805 

Overall, these findings indicate a significant role for the  Indonesian Seaway in development 806 

of modern surface ocean circulation in the Tropical Indian Oceans and tropical heat and 807 

moisture transport in these regions.  808 

 809 

5. Summary and Conclusions 810 

Here we present middle Miocene climate records derived from Mg/Ca and oxygen 811 

isotopes in planktic foraminifera from the eastern equatorial Indian Ocean and western 812 

equatorial Pacific Ocean. Our records show dynamic changes in SST across the middle 813 

Miocene with warmer SSTs during the Miocene Climatic Optimum and an abrupt cooling 814 

associated with the glaciation step at 13.9 Ma. It appears that the high latitudes cooled first, 815 

followed by Antarctic glaciation and concomitant cooling at both high and low latitudes. This 816 

finding supports a role for the carbon cycle in driving the glaciation and/or representing 817 

important positive feedbacks.  818 

The Middle Miocene Climate Transition was associated with a significant freshening 819 

of the tropical eastern Indian Ocean relative to the western Pacific Ocean. We speculate that 820 

the sea level fall associated with the Antarctic ice sheet expansion constricted the Indonesian 821 

Seaway acting to modify the surface ocean circulation and hydrography in the Indo-Pacific 822 

region. More detailed records documenting the SST patterns in Pacific are needed to further 823 

explore the response and development of the modern western equatorial Pacific Ocean 824 

climate setting, and formation of the western Pacific Warm Pool. Nevertheless, it seems that 825 

the Middle Miocene Climate Transition represented a key phase of the evolution of tropical 826 

climate dynamics.  827 
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Figure Captions 1210 

 1211 
Figure 1 Mean annual sea surface temperature (WOCE; Gouretski & Koltermann, 2004) 1212 
showing modern locations of ODP sites used in this study (white triangles) and the location of 1213 
the West Pacific Warm Pool (WPWP) and Indonesian Throughflow. The WPWP is the large 1214 

body of water in the western Pacific denoted by SSTs greater than 28C.  Sea surface 1215 
temperature plot made using Ocean Data View (Schlitzer, 2012).   1216 

 1217 
Figure 2 Input parameters for Mg/Ca-temperature sensitivity analysis. (A) interpolated pH 1218 

estimates derived from the ‘11Bsw -G17’ reconstruction, fluid inclusion data for [Mg2+] and 1219 
[Ca2+] seawater, and ‘Pälike’ CCD scenario (Sosdian et al., 2018); (B) Fourth order 1220 
polynomial curve fit through compiled seawater Mg/Ca proxy records based on fluid 1221 
inclusions, calcite veins,  echinoderms, and large benthic foraminifera (Dickson, 2002, Horita 1222 
et al., 2002, Brennan et al., 2013; Coggon et al.,  2010; Rausch et al., 2013; Evans et al. 1223 
2018). The grey envelope represents the ±0.5 mol/mol uncertainty window. (C) Measured 1224 
Mg/Ca ratios (mmol mol-1) for D. altispira and T. trilobus from ODP Sites 806 and 761, 1225 
respectively. Three scenarios for past changes in salinity at ODP Sites 806 and site 761 are 1226 
explored, specifically assuming modern values for each site and ±1 PSU modern values. 1227 

 1228 
Figure 3 ODP site 806 Mg/Ca sensitivity analysis output for a range of scenarios. ODP site 1229 
806 D. altispira Mg/Ca measured in comparison to Mg/Ca corrected for (A) salinity and (B) 1230 
pH variations. 1231 

 1232 
Figure 4 ODP site 761 Mg/Ca sensitivity analysis output for a range of scenarios. (A) SST 1233 
estimates derived from ODP site 761 T. trilobus Mg/Ca  with varying salinity scenarios 1234 

(constant modern, constant modern +1 PSU, constant modern -1 PSU); (B) 18Osw records 1235 
using three salinity scenarios. 1236 

 1237 
Figure 5 Climate proxy data from Ontong Java Plateau ODP Site 806 (0°19.1’N, 1238 
159°21.7’E). (A) Mg/Ca-SST anomaly from measured Mg/Ca (black circles) with 1239 
uncertainty envelope specificed in text; (B) planktic foraminifera oxygen isotope records 1240 
from this study and previously published records (Corfield & Cartlidge, 1993; Nathan & 1241 
Leckie, 2009); (C) Benthic foraminifera oxygen isotope records from previously published 1242 
records (Corfield & Cartlidge, 1993; Nathan & Leckie, 2009; Holbourn et al., 2013; Lear et 1243 
al., 2015). MCO denotes the Miocene Climatic Optimum and MMCT denotes the middle 1244 

Miocene Climate Transition and the timing is determined from the 18Ob record. Temperature 1245 
anomaly was calculated as relative temperature change with respect to baseline average from 1246 
15.5-16.0 Ma. 1247 

 1248 
Figure 6 Climate proxy data from Wombat Plateau ODP Site 761 (16˚44.23’S, 115˚32.10’E). 1249 
(A) Mg/Ca-SST anomaly, generated on planktic foraminifera T. trilobus across the middle 1250 
Miocene (Sosdian et al., 2020) with uncertainty envelope as specified in the text; (B) T. 1251 
trilobus oxygen isotope record from this study; (C) Benthic oxygen isotope records from 1252 
previously published records (Holbourn et al., 2004; Lear et al., 2010). MCO denotes the 1253 
Miocene Climatic Optimum and MMCT denotes the middle Miocene Climate Transition and 1254 

the timing is determined from the 18Ob record. Temperature anomaly was calculated as 1255 
relative temperature change with respect to baseline average from 15.5-16.0 Ma. 1256 

 1257 
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Figure 7 Site comparison between ODP 806 and 761 (A) Temperature anomaly, as 1258 
relative temperature change with respect to baseline average from 15.5-16.0 Ma, determined 1259 
from planktic foraminifera Mg/Ca records from this study and Sosdian et al., (2020) with 1260 

uncertainty envelope highlighted; (B) planktic 18Op from T. trilobus (blue) and D. altispira 1261 

(grey) from this study and previously published study (Corfield & Cartlidge, 1993);(C) 18Osw 1262 
anomaly, as relative 18Osw change with respect to baseline average from 15.5-16.0 Ma and 1263 
uncertainty envelope highlighted; (D) Boron isotope derived atmospheric pCO2 record using 1264 

three 11Bsw scenarios which incorporate various 11Bsw  scenarios (LO2; RH13; G17), fluid 1265 
inclusion Mg/Casw data, and ‘Palike’ CCD reconstructions (Sosdian et al., 2018). (E) 1266 
Eustatic sea level change from the Marion Plateau (John et al., 2011 (F) Estimates of changes 1267 

in global ice volume as derived from 18Osw at ODP site 761. The shaded regions showcase 1268 
the range in estimates between grey circles are uncorrected BWT estimates whereas dark grey 1269 
circles are corrected for changes in deep ocean carbon saturation state changes  (Lear et al., 1270 
2010). Note BWT estimates are corrected for changes in Mg/Casw. MCO and MMCT denote 1271 
the time intervals of the Miocene Climatic Optimum and the middle Miocene Climate 1272 

Transition and the timing is determined from the 18Ob record.  The 13.9 Ma glaciation step is 1273 
highlighted by a purple vertical line. Uncertainty envelopes are included for ODP site 806 1274 
records and a uncertainty bar is used for ODP site 761 in panels A and C. 1275 

 1276 
Figure 8 Comparison of Indo-Pacific ODP Sites 806 and 761 and Southern Ocean site 1277 
1171(A, B) Mg/Ca-derived SST anomaly for ODP site 806 and 761 (Sosdian et al., 2020; this 1278 
study) and (C) Mg/Ca-derived SST anomaly from ODP site 1171 (Shevenell et al., 2004) 1279 
recalculated in this study using the Gray and Evans (2019) multi-variable regression as 1280 
specified in the text and variable Mg/Casw. Uncertainty envelopes are plotted for each 1281 
temperature reconstruction. (D, E) ODP Site 806 and 761 and (F) ODP Site 1171 benthic 1282 
oxygen isotope records (Corfield & Cortlidge, 1993; Holbourn et al., 2004; Shevenell et al., 1283 
2004; Nathan & Leckie, 2009; Lear et al., 2010; Holbourn et al., 2013) from across the 1284 
middle Miocene (13-15.5 Ma). The blue arrows highlights the cooling steps observed at each 1285 
site. The temperature scale is different in panel A-B and C to showcase the variations in each 1286 
location. The 13.9 Ma glaciation step is highlighted by a grey vertical line. 1287 

 1288 
 Figure 9 Modern regional surface ocean currents and study sites in the Indo-Pacific region. 1289 
Indonesian throughflow straits include Makassar Strait, Lombok Strait, and Timor Passage. 1290 
Surface ocean currents include North Equatorial Current (NEC), South Equatorial Current 1291 
(SEC), North Equatorial Counter Current (NECC), Leeuwin Current (LC) and Western 1292 
Australian Current (WAC). NP (North Pacific) and SP (South Pacific) sources waters are 1293 
identified alongside of West Pacific Warm Pool (WPWP). Map made using Ocean Data 1294 
View. 1295 
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Introduction  15 

We provide supporting information for our paleoclimate reconstructions associated with 16 

site-specific age models, study site locations, sample preservation, and SST sensitivity 17 
analysis. Specifically, we provide a map of mid-Miocene paleolocations for sites used in SST 18 
reconstructions. We present SEM images from the planktic foraminifera used in the trace 19 

metal and isotope records produced in this study and compare records of coarse fraction 20 
and average shell size from ODP site 806 and 761 alongside trace metal and isotope records 21 
to assess downcore diagenetic alterations.  We consider a range of scenarios for 22 

recalculating SST from published Mg/Ca datasets and consider site-specific age models 23 
associated with each. We provide modern snapshot of the surface ocean salinity alongside 24 
locations of key study sites to consider past changes in salinity across the middle Miocene.  25 
We compare gradients in planktic and benthic carbon isotopes to explore changes in 26 

productivity at ODP site 761. All data are presented in the Supplementary Tables. 27 

 28 
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 30 
 31 
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 33 
Figure S1 Locations of sites discussed in this study. Paleo-latitude and geographic 34 
reconstruction for (A) 0 and (B) 15.0 Ma were generated from http://www.odsn.de/ 35 
Green circles represent ODP sites with site 806 and 761 highlighted in red and brown circles, 36 
respectively. Note the long-term northward migration of both ODP sites 806 and 761. 37 



 3 

 38 
Figure S2 SEM images of species used in this study. (A) Whole test of T. trilobus from ODP 39 

761B 05-05 103-105 cm 300-355 m size fraction (39.73 m below seafloor); (B) Wall 40 
structure of T. trilobus test showing original microstructure; (C-D) Whole test spiral and 41 
umbilical side view of D. altispira; (E) Wall structure of D. altispira test. 42 
 43 
 44 
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 4 

 45 
Figure S3 Various Mg/Ca seawater reconstructions from a compilation of published proxy 46 
data (this study) and porewater modeling (Fantle & DePaolo, 2006; Higgins & Schrag, 2012).   47 
Note a linear fit was used in lieu of the model output for FD06 and HS12 to look at long-term 48 
trends and impact on Mg/Ca-SST trends and consider two scenarios for FD06 as presented in 49 

Fante & DePaola, 2006). 50 

 51 
Figure S4 (A) Various Miocene Mg/Ca seawater estimates and (B) corresponding estimated 52 
T. trilobus Mg/Ca-SST using the Gray and Evans (2019) equation as specified in the 53 
manuscript. 54 
 55 
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 56 
Figure S5 Fourth order polynomial curve fit through compiled seawater Mg/Ca proxy records 57 
based on fluid inclusions, calcite veins, echinoderms, and large benthic foraminifera 58 
(Dickson, 2002, Horita et al., 2002, Brennan et al., 2013; Coggon et al., 2010; Rausch et al., 59 
2013; Evans et al., 2018). 60 
 61 



 6 

  62 
Figure S6 ODP site 806 D. altispira 18Op (A) and Mg/Ca (B) records plotted against (C) 63 
average shell weight and (D) percent coarse fraction. Solid black lines represent 25% 64 
weighted fit line. 65 
 66 
 67 
 68 



 7 

  69 
Figure S7 ODP Site 761 (A) T. trilobus 18Op and (B) Mg/Ca ratios (Sosdian et al., 2020)  70 
records plotted alongside (C) average shell weight and (D) coarse fraction. Solid black lines 71 
represent 10% weighted fit line. 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
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 80 
Figure S8 ODP site 761 Mg/Ca-SST reconstructions for a range of scenarios as follows (1) 81 
application of Gray and Evans (2019)(GE19) multi-variable regression accounting for 82 
changes in Mg/Casw, (2) application of Anand et al., (2003) T. sacculifer Mg/Ca-T equation 83 
with Miocene Mg/Casw value of 3.43 mmol/mol as estimated in Sosdian et al., (2020), and (3) 84 
application of Gray and Evans (2019) multi-variable regression with constant Miocene 85 
Mg/Casw value of 3.43 mmol/mol. 86 
 87 

 88 
 89 
Figure S9 ODP site 1171 Mg/Ca-SST reconstructions derived from the sensitivity analysis 90 
(A) SST estimates derived from ODP site 1171 G. bulloides Mg/Ca with varying salinity 91 
scenarios (constant modern, constant modern +1 PSU, constant modern -1 PSU);  (B) SST 92 
estimates derived using the Mg/Ca-T equation from Mashiotta et al., (1999) and assuming 93 
modern values for Mg/Casw (Shevenell et al., 2004) and using Gray and Evans (2019) multi-94 
variable regression accounting for changes in pH, salinity, and Mg/Casw. 95 
 96 
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 97 

 98 
Figure S10 ODP Site 1171 (A) Mg/Ca-derived SST anomaly (calculated from record of 99 
Shevenell et al., (2004) and (B) benthic foraminiferal oxygen isotope records.  Datums used in 100 
the age model are shown by colored squares (biostratigraphic datums-red squares, isotopic 101 
datums-purple squares, magnetostratigraphic datums-grey squares; Shevenell & Kennett, 102 
2004).  Blue arrows show major cooling steps in the Southern Ocean (Shevenell et al., 2004). 103 
Initial surface cooling step follows CM-5, but precedes magnetostratigraphic datum C5ACn, 104 
isotope event CM6 and the glaciation step (grey arrow). 105 
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 106 
Figure S11 ODP Site 761 (A) Mg/Ca-derived SST anomaly (this study) and (B) benthic 107 
foraminiferal oxygen isotope records (Holbourn et al., 2004; Lear et al., 2010).  Datums used 108 
in ODP Site 761  age model are shown by colored squares (biostratigraphic datums-red squares, 109 
isotopic datums-purple squares). Major MMCT surface cooling is shown by blue arrow, and 110 
occurs in step with CM6 and the main glaciation step (grey arrow). 111 
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 112 
Figure S12 ODP Site 806 (A) Mg/Ca-derived SST anomaly (this study) and (B) benthic 113 
foraminiferal oxygen isotope records (Corfield and Cartlidge, 1983; Nathan and Leckie, 2009; 114 
Holbourn et al., 2013; Lear et al., 2015). Datums used in ODP Site 806  age model are marked 115 
by colored squares (biostratigraphic datums-red squares, isotopic datums-purple squares, 116 
magnetostratigraphic datums-gray squares).  Cooling (blue arrow) and glaciation step (grey 117 
arrow) are marked in each record. Note CM6 isotope datum was not used in Lear et al., (2015) 118 
age model. 119 
  120 
 121 
 122 
 123 
 124 
 125 
 126 



 12 

 127 
Figure S13 (A) 13C  difference between planktonic (T. trilobus; Sosdian et al., 2020) and 128 
benthic foraminifera (Cibicidoides sp.; Holbourn et al., 2004;  Lear et al., 2010) indicative of 129 

productivity at site 761 in the tropical Indian Ocean alongside the (b) compiled 18Ob records 130 

from ODP site 761 (Holbourn et al., 2004; Lear et al., 2004).  Note more positive 13C  values 131 
indicate more productivity. 132 



 133 
Supplementary Tables 134 
 135 
Supplementary Table S1 Datums used in Age Models for ODP Sites 761, 806 and 1171 across the Middle Miocene Climate Transition (13-15.5 Ma). 136 

ODP site 761 
Datum Age (Ma) Datum Type Reference 

FO Globorotalia fohsi robusta 13.18 Biostratigraphic Holbourn et al. 2004 

FO Globorotalia fohsi s.l. 13.42 Biostratigraphic Holbourn et al. 2004 

CM6 14.06 Isotopic Holbourn et al. 2004 

FO Globorotalia praefohsi 14 Biostratigraphic Holbourn et al. 2004 

LO Globorotalia archeomenardii 14.2 Biostratigraphic Holbourn et al. 2004 

E 14.23 Isotopic Holbourn et al. 2004 

CM5 14.56 Isotopic Holbourn et al. 2004 

D 14.88 Isotopic Holbourn et al. 2004 

FO Globorotalia peripheroacuta 14.8 Biostratigraphic Holbourn et al. 2004 

FO Orbulina suturalis 15.1 Biostratigraphic Holbourn et al. 2004 

    

ODP site 806 
Datum Age (Ma) Datum Type Reference 

FO G. fohsi 13.4 Biostratigraphic Lear et al. 2015 

LO C. floridanus 13.2 Biostratigraphic Lear et al. 2015 

LO S. heteromorphus 13.6 Biostratigraphic Lear et al. 2015 

FO G. praefohsi 14.0 Biostratigraphic Lear et al. 2015 

FO G. peripheroacuta 14.7 Biostratigraphic Lear et al. 2015 

    

ODP site 1171 
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Datum Age (Ma) Datum Type Reference 

Top C5ABn 13.302 Magneto Shevenell & Kennett, 2004 

 C5ABn 13.51 Magneto Shevenell & Kennett, 2004 

CM6 13.6 Isotopic Shevenell & Kennett, 2004 

 Top C5ACn 13.703 Magneto Shevenell & Kennett, 2004 

 C5ACn 14.076 Magneto Shevenell & Kennett, 2004 

CM5 14.46 Isotopic Shevenell & Kennett, 2004 

 FO Orbulina suturalis (F) 15.1 Biostratigraphic Shevenell & Kennett, 2004 
 137 

Supplementary Table S2 D. Altispira Mg/Ca and oxygen isotope data at ODP site 806. 138 
 139 

Site-

Hole Core Sect Interval (cm) 

Depth 

(MCD) 

Age 

(Ma) 

Mg/Ca 

(mmol/mol) 

D. altispira  

𝞭18O (‰) 

806B 43 2 80 85 399.8 11.3 3.64 -0.73 

806B 44 2 83 87 409.52 11.6 3.44 -0.89 

806B 44 5 93 95 414.13 11.7 3.83 -0.76 

806B 44 6 113.5 115.5 415.835 11.8 3.72 -0.78 

806B 45 2 92 97 419.32 11.9 3.50 -0.78 

806B 45 3 76 78 420.66 11.9 3.54 -0.90 

806 B 45 5 81 86 423.71 12.0 3.66 -0.91 

806B 45 6 108.5 110.5 425.485 12.0 3.55 -0.96 

806 B 46 2 82 87 428.82 12.1 3.48 -0.68 

806B 46 5 82 87 433.32 12.3 3.47 -0.84 
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806 B 47 2 70 76 438.3 12.4 3.31 -0.66 

806 B 47 5 38 43 442.48 12.5 3.65 -0.50 

806 B 48 2 64 69 447.94 12.7 3.29 -1.06 

806 B 48 5 60 65 452.4 12.8 3.41 -0.74 

806B 49 2 68 73 457.68 13.0 3.37 -0.73 

806 B 50 2 70 75 465.8 13.2 3.33 -0.95 

806B 50 5 80 85 470.4 13.4 3.25 -1.05 

806 B 51 2 68 73 475.48 13.5 3.44 -0.78 

806 B 51 5 80 85 480.1 13.7 3.56 -0.70 

806 B 52 2 88 93 484.98 13.8 3.77 -1.29 

806 B 52 5 77 82 489.37 14.0 3.80 -0.94 

806 B 53 2 71 76 494.51 14.1 3.66 -1.04 

806 B 53 4 80 85 497.6 14.2 3.79 -1.02 

806 B 54 2 71 76 504.11 14.4 3.71 -0.97 

806 B 54 5 66 68 508.56 14.6 3.61 -0.92 

806 B 55 2 80 85 513.9 14.8 3.68 -1.05 

806 B 55 5 102 104 518.4 14.9 3.58 -1.02 

806B 55 7 19 21 520.79 15.0 3.51   

806 B 56 2 87 92 523.67 15.1 3.34 -1.29 

806 B 56 4 69 74 526.49 15.2 3.56 -1.48 

806 B 57 2 70 75 533.1 15.4 3.71 -0.93 

806 B 57 5 80 85 537.7 15.5 3.61 -0.79 
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806 B 58 2 70 75 542.7 15.7 3.86 -0.82 

806 B 58 5 75 80 547.25 15.9 3.72 -1.26 

806 B 59 2 70 75 552.4 16.0 3.87 -0.72 

806 B 59 5 80 85 557 16.2 3.88 -1.09 

806 B 60 2 80 85 562.2 16.3 3.74 -0.83 

806 B 60 5 36 41 566.26 16.5 3.45 -1.24 
 140 

Supplementary Table S3 T. trilobus oxygen isotope data at ODP site 761. 141 

Site-

Hole Core Section 

Interval 

(cm) MBSF MCD 

Age 

(Ma) 

T. trilobus 

𝞭18O (‰) 
761B 5 2 88-90 35.08 35.58 11.55 -0.96 

761B 5 2 103-105 35.23 35.73 11.59 -0.94 

761B 5 2 108-110 35.28 35.78 11.60 -0.86 

761B 5 2 113-115 35.33 35.83 11.61 -0.88 

761B 5 2 123-125 35.43 35.93 11.64 -0.94 

761B 5 2 128-130 35.48 35.98 11.65 -0.93 

761B 5 2 138-140 35.58 36.08 11.68 -1.04 

761B 5 2 148-150 35.68 36.18 11.71 -1.27 

761B 5 3 3-5 35.73 36.23 11.73 -0.99 

761B 5 3 8-10 35.78 36.28 11.74 -1.07 

761B 5 3 13-15 35.83 36.33 11.76 -1.08 

761B 5 3 18-20 35.88 36.38 11.77 -1.03 

761B 5 3 23-25 35.93 36.43 11.79 -1.05 
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761B 5 3 33-35 36.03 36.53 11.82 -0.96 

761B 5 3 38-40 36.08 36.58 11.84 -0.95 

761B 5 3 43-45 36.13 36.63 11.85 -0.99 

761B 5 3 53-55 36.23 36.73 11.88 -0.80 

761B 5 3 58-60 36.28 36.78 11.90 -1.36 

761B 5 3 63-65 36.33 36.83 11.92 -0.87 

761B 5 3 68-70 36.38 36.88 11.94 -0.97 

761B 5 3 73-75 36.43 36.93 11.95 -0.87 

761B 5 3 78-80 36.48 36.98 11.97 -0.82 

761B 5 3 88-90 36.58 37.08 12.00 -0.70 

761B 5 3 93-95 36.63 37.13 12.02 -0.99 

761B 5 3 98-100 36.68 37.18 12.04 -1.45 

761B 5 3 103-105 36.73 37.23 12.06 -0.87 

761B 5 3 108-110 36.78 37.28 12.08 -0.81 

761B 5 3 118-120 36.88 37.38 12.11 -0.80 

761B 5 3 123-125 36.93 37.43 12.13 -1.06 

761B 5 3 128-130 36.98 37.48 12.15 -0.87 

761B 5 3 138-140 37.08 37.58 12.19 -0.80 

761B 5 3 148-150 37.18 37.68 12.22 -1.06 

761B 5 4 3-5 37.23 37.73 12.24 -0.85 

761B 5 4 8-10 37.28 37.78 12.26 -0.92 

761B 5 4 13-15 37.33 37.83 12.28 -1.00 

761B 5 4 18-20 37.38 37.88 12.30 -0.89 

761B 5 4 28-30 37.48 37.98 12.34 -0.81 

761B 5 4 38-40 37.58 38.08 12.38 -0.78 
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761B 5 4 43-45 37.63 38.13 12.40 -0.81 

761B 5 4 48-50 37.68 38.18 12.42 -0.98 

761B 5 4 58-60 37.78 38.28 12.46 -1.05 

761B 5 4 63-65 37.83 38.33 12.48 -0.88 

761B 5 4 68-70 37.88 38.38 12.50 -0.70 

761B 5 4 88-90 38.08 38.58 12.58 -0.90 

761B 5 4 98-100 38.18 38.68 12.62 -0.72 

761B 5 4 103-105 38.23 38.73 12.64 -0.78 

761B 5 4 113-115 38.33 38.83 12.68 -0.67 

761B 5 4 118-120 38.38 38.88 12.70 -0.74 

761B 5 4 128-130 38.48 38.98 12.74 -0.75 

761B 5 4 138-140 38.58 39.08 12.78 -0.66 

761B 5 4 143-145 38.63 39.13 12.80 -0.80 

761B 5 4 148-150 38.68 39.18 12.82 -0.62 

761B 5 5 3-5 38.73 39.23 12.84 -0.83 

761B 5 5 8-10 38.78 39.28 12.86 -0.69 

761B 5 5 18-20 38.88 39.38 12.90 -0.75 

761B 5 5 23-25 38.93 39.43 12.92 -1.01 

761B 5 5 28-30 38.98 39.48 12.95 -0.79 

761B 5 5 33-35 39.03 39.53 12.97 -0.92 

761B 5 5 43-45 39.13 39.63 13.01 -0.80 

761B 5 5 48-50 39.18 39.68 13.03 -0.96 

761B 5 5 53-55 39.23 39.73 13.05 -0.73 

761B 5 5 58-60 39.28 39.78 13.07 -0.92 

761B 5 5 63-65 39.33 39.83 13.09 -0.89 
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761B 5 5 73-75 39.43 39.93 13.13 -0.99 

761B 5 5 78-80 39.48 39.98 13.15 -1.22 

761B 5 5 83-85 39.53 40.03 13.17 -0.90 

761B 5 5 88-90 39.58 40.08 13.19 -1.05 

761B 5 5 93-95 39.63 40.13 13.21 -1.11 

761B 5 5 98-100 39.68 40.18 13.23 -0.98 

761B 5 5 108-110 39.78 40.28 13.27 -1.23 

761B 5 5 113-115 39.83 40.33 13.29 -1.20 

761B 5 5 118-120 39.88 40.38 13.32 -1.10 

761B 5 5 133-135 40.03 40.53 13.38 -1.45 

761B 5 5 138-140 40.08 40.58 13.40 -0.82 

761B 5 5 143-145 40.13 40.63 13.42 -0.77 

761B 5 6 3-5 40.23 40.73 13.46 -0.70 

761B 5 6 18-20 40.38 40.88 13.52 -1.05 

761B 5 6 23-25 40.43 40.93 13.54 -1.07 

761B 5 6 28-30 40.48 40.98 13.56 -0.57 

761B 5 6 38-40 40.58 41.08 13.60 -0.76 

761B 5 6 43-45 40.63 41.13 13.62 -0.89 

761B 5 6 48-50 40.68 41.18 13.64 -0.87 

761B 5 6 58-60 40.78 41.28 13.68 -0.96 

761B 5 6 73-75 40.93 41.43 13.74 -0.80 

761B 5 6 78-80 40.98 41.48 13.76 -0.73 

761B 5 6 83-85 41.03 41.53 13.78 -0.49 

761B 5 6 93-95 41.13 41.63 13.81 -0.70 

761B 5 6 113-115 41.23 41.73 13.85 -0.39 
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761B 5 6 118-120 41.38 41.88 13.91 -0.41 

761B 5 6 128-130 41.48 41.98 13.95 -0.53 

761B 5 6 138-140 41.58 42.08 13.99 -0.70 

761B 5 7 3-5 41.73 42.23 14.04 -0.60 

761B 5 7 13-15 41.83 42.33 14.08 -1.17 

761B 5 7 28-30 41.98 42.48 14.13 -1.25 

761B 5 CC 8-10 42.32 42.82 14.26 -1.05 

761B 5 CC 18-20 42.42 42.92 14.29 -0.97 

761B 5 CC 28-30 42.52 43.02 14.33 -0.94 

761B 5 CC 33-35 42.57 43.07 14.35 -1.13 

761B 6 1 3-5 42.23 43.13 14.37 -0.64 

761B 6 1 8-10 42.28 43.18 14.38 -1.04 

761B 6 1 13-15 42.33 43.23 14.40 -0.81 

761B 6 1 18-20 42.38 43.28 14.42 -0.60 

761B 6 1 23-25 42.43 43.33 14.44 -0.85 

761B 6 1 38-40 42.58 43.48 14.49 -0.97 

761B 6 1 48-50 42.68 43.58 14.52 -0.93 

761B 6 1 53-55 42.73 43.63 14.54 -0.76 

761B 6 1 63-65 42.83 43.73 14.57 -1.03 

761B 6 1 68-70 42.88 43.78 14.59 -0.88 

761B 6 1 73-75 42.93 43.83 14.60 -0.93 

761B 6 1 78-80 42.98 43.88 14.62 -0.86 

761B 6 1 83-85 43.03 43.93 14.64 -0.98 

761B 6 1 88-90 43.08 43.98 14.65 -0.59 

761B 6 1 98-100 43.18 44.08 14.69 -1.02 
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761B 6 1 103-105 43.23 44.13 14.70 -0.65 

761B 6 1 108-110 43.28 44.18 14.72 -0.80 

761B 6 1 113-115 43.33 44.23 14.73 -0.72 

761B 6 1 118-120 43.38 44.28 14.75 -0.73 

761B 6 1 123-125 43.43 44.33 14.77 -0.90 

761B 6 1 128-130 43.48 44.38 14.78 -0.35 

761B 6 1 138-140 43.58 44.48 14.81 -0.74 

761B 6 1 143-145 43.63 44.53 14.83 -1.29 

761B 6 1 148-150 43.68 44.58 14.84 -0.70 

761B 6 2 3-5 43.73 44.63 14.86 -0.84 

761B 6 2 8-10 43.78 44.68 14.87 -0.75 

761B 6 2 13-15 43.83 44.73 14.89 -0.74 

761B 6 2 18-20 43.88 44.78 14.90 -1.14 

761B 6 2 23-25 43.93 44.83 14.92 -0.83 

761B 6 2 33-35 44.03 44.93 14.95 -0.85 

761B 6 2 43-45 44.13 45.03 14.98 -0.97 

761B 6 2 48-50 44.18 45.08 14.99 -1.00 

761B 6 2 53-55 44.23 45.13 15.01 -0.87 

761B 6 2 58-60 44.28 45.18 15.02 -0.79 

761B 6 2 73-75 44.43 45.33 15.07 -0.96 

761B 6 2 78-80 44.48 45.38 15.08 -0.97 

761B 6 2 83-85 44.53 45.43 15.10 -1.02 

761B 6 2 88-90 44.58 45.48 15.11 -0.97 

761B 6 2 93-95 44.63 45.53 15.12 -0.67 

761B 6 2 98-100 44.68 45.58 15.14 -0.26 
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761B 6 2 108-110 44.78 45.68 15.17 -0.91 

761B 6 2 113-115 44.83 45.73 15.18 -0.76 

761B 6 2 118-120 44.88 45.78 15.19 -0.70 

761B 6 2 123-125 44.93 45.83 15.21 -0.52 

761B 6 2 128-130 44.98 45.88 15.22 -0.77 

761B 6 2 133-135 45.03 45.93 15.24 -0.75 

761B 6 2 138-140 45.08 45.98 15.25 -0.70 

761B 6 2 138-140 45.08 45.98 15.25 -0.70 

761B 6 3 13-15 45.33 46.23 15.32 -0.56 

761B 6 3 28-30 45.48 46.38 15.36 -0.67 

761B 6 3 33-35 45.53 46.43 15.37 -0.70 

761B 6 3 38-40 45.58 46.48 15.39 -0.62 

761B 6 3 43-45 45.63 46.53 15.40 -0.37 

761B 6 3 46-48 45.66 46.56 15.41 -0.78 

761B 6 3 48-50 45.68 46.58 15.41 -0.66 

761B 6 3 53-55 45.73 46.63 15.43 -0.37 

761B 6 3 58-60 45.78 46.68 15.44 -0.13 

761B 6 3 63-65 45.83 46.73 15.45 -0.36 

761B 6 3 68-70 45.88 46.78 15.47 -0.52 

761B 6 3 73-75 45.93 46.83 15.48 -0.47 

761B 6 3 83-85 46.03 46.93 15.51 -0.40 

761B 6 3 88-90 46.08 46.98 15.52 -0.53 

761B 6 3 93-95 46.13 47.03 15.53 -0.42 

761B 6 3 98-100 46.18 47.08 15.55 -0.34 

761B 6 3 103-105 46.23 47.13 15.56 -0.57 
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761B 6 3 108-110 46.28 47.18 15.57 -0.20 

761B 6 3 113-115 46.33 47.23 15.59 -0.32 

761B 6 3 133-135 46.53 47.43 15.64 -0.43 

761B 6 3 143-145 46.63 47.53 15.67 -0.50 

761B 6 3 148-150 46.68 47.58 15.68 -0.22 

761B 6 4 38-40 47.08 47.98 15.79 -0.69 

761B 6 4 43-45 47.13 48.03 15.80 -0.52 

761B 6 4 53-55 47.23 48.13 15.83 -0.45 

761B 6 4 63-65 47.33 48.23 15.85 -0.74 

761B 6 4 68-70 47.38 48.28 15.87 -0.41 

761B 6 4 73-75 47.43 48.33 15.88 -0.35 

761B 6 4 83-85 47.53 48.43 15.91 -0.41 

761B 6 4 98-100 47.68 48.58 15.95 -0.31 

761B 6 4 118-120 47.88 48.78 16.00 -0.45 

761B 6 4 123-125 47.93 48.83 16.02 -0.34 

761B 6 4 128-130 47.98 48.88 16.03 -0.37 

761B 6 4 146-148 48.16 49.06 16.08 -0.43 

761B 6 4 148-150 48.18 49.08 16.09 -0.39 

761B 6 5 3-5 48.23 49.13 16.10 -0.52 

761B 6 5 23-25 48.43 49.33 16.16 -0.65 

761B 6 5 33-35 48.53 49.43 16.19 -0.49 

761B 6 5 43-45 48.63 49.53 16.22 -0.58 

761B 6 5 50-52 48.7 49.6 16.25 -0.52 

761B 6 5 63-65 48.83 49.73 16.29 -0.60 

761B 6 5 73-75 48.93 49.83 16.32 -0.52 
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761B 6 5 83-85 49.03 49.93 16.35 -0.44 

761B 6 5 93-95 49.13 50.03 16.38 -0.25 

761B 6 5 100-102 49.2 50.1 16.41 -0.45 

761B 6 5 108-110 49.28 50.18 16.43 -0.29 
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