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ABSTRACT 31 
The nature and timing of post-collisional crustal thickening and its link to surface uplift 32 

in the eastern Lhasa block of the southern Tibetan plateau remain controversial. Here we report 33 
on Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. The Eocene (ca. 46 Ma) 34 
trachyandesites and trachydacites show slight fractionation of rare earth elements (REE), slightly 35 
negative Eu and Sr anomalies, and relatively homogeneous Sr-Nd and zircon Hf isotopes 36 
(87Sr/86Sr(i) = 0.7050–0.7063, Nd(t) = 0.92 to 0.03, Hf(t) = +2.6 to +4.8). Previous studies 37 
have suggested Neo-Tethys oceanic slab break-off at 50–45 Ma; thus, the Wuyu Eocene 38 
magmatism could represent a magmatic response to this slab break-off and originate from 39 
relatively juvenile Lhasa crust. The Miocene (ca. 15–12 Ma) dacites and rhyolites have adakitic 40 
affinities, e.g., high Sr (average 588 ppm), Sr/Y (29–136), and La/Yb (30–76) values, low Y (4–41 
12 ppm) and Yb (0.4–0.9 ppm) contents, and variable Sr-Nd and zircon Hf isotopes (87Sr/86Sr(i) 42 
= 0.7064–0.7142, Nd(t) = 11.7 to 3.7, Hf(t) = 3.2 to +4.5). Their more enriched Sr-Nd-Hf 43 
isotopes relative to the Eocene lavas indicate that they should be derived from mixed Lhasa 44 
lower crust comprising juvenile crust, ultrapotassic rocks, and probably Indian lower crust-45 
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derived rocks. This study has also revealed the transformation from Eocene juvenile and thin 46 
crust with a thickness of < 40 km to Miocene mixed and thickened crust with a thickness of > 50 47 
km. Combined with published tectonic data, we suggest that both lithospheric shortening and 48 
magma underplating contributed to eastern Lhasa block post-collisional crustal thickening. 49 
Given the spatial-temporal distribution of eastern Lhasa block magmatism and regional geology, 50 
we invoke a post-collisional tectonic model of steep subduction of the Indian plate and 51 
subsequent westward-propagating plate break-off beneath the eastern Lhasa block, which caused 52 
the surface uplift. 53 
INTRODUCTION 54 

Surface uplift of a mountain belt or plateau is commonly thought to be controlled 55 
primarily by crustal thickening (e.g., Dewey and Bird, 1970; Molnar, 1988; Bird, 1991; DeCelles 56 
et al., 2002; Chen et al., 2018) or deep dynamic processes (e.g., lithospheric mantle thinning, 57 
subduction dynamics) (e.g., England and Houseman, 1988; Molnar et al., 1993; Turner et al., 58 
1993; Chung et al., 1998; Currie et al., 2005; Husson et al., 2014). The Tibetan plateau is one of 59 
the largest and highest plateaus on Earth and is therefore ideal for studying the progress of, and 60 
the mechanism(s) responsible for, surface uplift. Nevertheless, the mechanism(s) of post-61 
collisional uplift of the southern Tibetan plateau remain(s) unclear (e.g., Turner et al., 1993; 62 
Williams et al., 2001; DeCelles et al., 2002; Chung et al., 1998, 2005; Husson et al., 2014; Webb 63 
et al., 2017). For example, post-collisional (< 40 Ma) surface uplift of the eastern Lhasa block 64 
east of 87°E in southern Tibet is generally ascribed to crustal thickening (e.g., Chung et al., 65 
2009; Zhu et al., 2017) based on the abundance of post-collisional adakitic intrusions and 66 
porphyries (e.g., Chung et al., 2003; Hou et al., 2004). 67 

However, three key points need clarification to help verify this crustal thickening model. 68 
Firstly, an assumption of this model is that the post-collisional adakitic rocks were derived from 69 
thickened Lhasa lower crust. However, various genetic models have been proposed for these 70 
rocks, including (1) partial melting of the Neo-Tethys oceanic slab (Qu et al., 2004) or thickened 71 
Lhasa lower crust (Chung et al., 2003; Hou et al., 2004; Guo et al., 2007) or subducted Indian 72 
lower crust (Xu et al., 2010; Zheng et al., 2012); (2) crustal assimilation with fractional 73 
crystallization (AFC) of basaltic magmas (Gao et al., 2007); and (3) mixing of ultrapotassic and 74 
juvenile crust-derived magmas (Zhang et al., 2014). Secondly, the process and mechanism of 75 
crustal thickening remains unclear. For example, Chung et al. (2009) emphasized the collision 76 
between the Indian plate and the Lhasa block, which induced significant contraction and 77 
thickening of the Lhasa block. However, Mo et al. (2007) and Zhu et al. (2017) suggested that 78 
the early Cenozoic (60–45 Ma) crustal thickening of the Lhasa block was mainly caused by 79 
basaltic magma underplating as a result of Neo-Tethys oceanic slab break-off, while post-80 
collisional (< 40 Ma) crustal thickening was largely a consequence of tectonic thickening due to 81 
intra-continent thrusting and subducted Indian plate underplating. The question of whether 82 
magma underplating contributed to post-collisional crustal thickening remains unresolved (Ji et 83 
al., 2012; DePaolo et al., 2019). Thirdly, the relationship between crustal thickening and plateau 84 
uplift remains unclear. Crustal thickening has been associated with plateau elevation based on 85 
the principle of isostasy (Watts, 2001). However, this simple link has recently been challenged 86 
by several studies (e.g., Leary et al., 2017; Deng and Jia, 2018). For example, Leary et al. (2017) 87 
proposed that wet and well-vegetated conditions with relatively low elevations existed in the 88 
India-Asia suture zone at ca. 40 Ma [[Should this instead be ~40 m.y.?]] after the start of 89 
collision and at least ca. 25 Ma [[Should this instead be ~25 m.y.?]] after major crustal 90 
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shortening in the region. Collectively, the nature and mechanism of post-collisional crustal 91 
thickening in the eastern Lhasa block and its link to surface uplift remain uncertain. 92 

In this study we have reassessed the Cenozoic (Eocene and Miocene) volcanic rocks in 93 
the Wuyu area along the southern margin of the eastern Lhasa block (Fig. 1). Our work shows 94 
that both Eocene lavas and Miocene adakitic rocks were generated by partial melting of Lhasa 95 
lower crust and so can be used to track post-collisional crustal thickening. On the basis of our 96 
new data and published results, we propose a geodynamic model for generating post-collisional 97 
magmatism in the Lhasa block. This model can explain the link between geodynamics, post-98 
collisional crustal thickening, and surface uplift of southern Tibet. 99 
GEOLOGICAL SETTING AND SAMPLES 100 

From south to north the Himalayan-Tibetan orogen consists of the Himalaya, Lhasa, 101 
Qiangtang, and Songpan-Ganze blocks, and these are separated from each other by the Indus-102 
YarlungZangbu, Bangong-Nujiang, and Jinsha sutures, respectively (Fig. 1). The Lhasa block in 103 
southern Tibet was the last terrane to be accreted onto Eurasia in the late Mesozoic before its 104 
collision with the northward-drifting Indian plate during the early Cenozoic (e.g., Yin and 105 
Harrison, 2000; Zhu et al., 2013). 106 

The prolonged northward subduction of the Indus-YarlungZangbu (Neo-Tethys) Ocean 107 
resulted in significant intrusive and extrusive magmatism in the Lhasa block during the Triassic 108 
to Late Cretaceous. Initial collision between India and Eurasia (India-Lhasa) was proposed to 109 
have occurred in the early Cenozoic (65–55 Ma) (e.g., Yin and Harrison, 2000; DeCelles et al., 110 
2011). The Indian continental plate was dragged downward by the subducting oceanic slab 111 
during the subsequent ongoing collision (e.g., Zhu et al., 2015). The buoyancy of the Indian plate 112 
would counteract the effects of the oceanic slab pull, eventually resulting in the separation of the 113 
oceanic and continental lithosphere (i.e., oceanic slab break-off) at ca. 50–45 Ma (e.g., 114 
Chemenda et al., 2000; Kohn and Parkinson, 2002; Mahéo et al., 2002, 2009). 115 

During the period from initial collision to oceanic slab break-off, the syn-collisional 116 
Linzizong volcanic succession and coeval granitoids were formed (Mo et al., 2007) on the 117 
central and southern Lhasa sub-blocks (Fig. 1). The Linzizong volcanic succession extends for > 118 
1200 km along the Lhasa block and is divided into the lower Dianzhong, middle Nianbo, and 119 
upper Pana Formations with ages of ca. 69–60 Ma, 56–54 Ma, and 52–43 Ma, respectively (Lee 120 
et al., 2012). After oceanic slab break-off, the collision zone evolved to a post-collisional intra-121 
continental setting with Indian plate subduction beneath the Lhasa block (Mo et al., 2007). 122 
Numerous studies (e.g., Chung et al., 2005) have identified a ca. 40–26 Ma magmatic gap in the 123 
western Lhasa block (west of 87°E). In contrast, minor magmatic rocks have been reported in the 124 
eastern Lhasa block during this period (Harrison et al., 2000; Zheng et al., 2012; Guan et al., 125 
2012; Jiang et al., 2014; Ma et al., 2017), e.g., ca. 38 Ma Wolong granites, ca. 35 Ma Quguosha 126 
gabbros, and ca. 30–26 Ma Zedang granitoids, which are proposed to represent prolonged 127 
magmatism as a result of oceanic slab break-off (Hou et al., 2012). 128 

Following this period, magmatism in the Lhasa block became much more prevalent and 129 
is characterized by the 25–8 Ma potassic-ultrapotassic and 30–10 Ma adakitic rocks (Fig. 1). The 130 
potassic lavas are distributed sporadically in the Xungba, Konglong, and Yangying areas (e.g., 131 
Miller et al., 1999). The ultrapotassic lavas were previously only found in the western Lhasa 132 
block (e.g., Coulon et al., 1986; Turner et al., 1996; Williams et al., 2001, 2004; Zhao et al., 133 
2009; Guo et al., 2015), but recent studies have identified further occurrences in the eastern 134 
Lhasa block, e.g., in the Bairong (90°E) and Zhunuo areas (87°30E) (e.g., Xu et al., 2017; Sun et 135 
al., 2018). The adakitic rocks commonly occur as intrusions and porphyries and are commonly 136 
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found along the southern margin of the eastern Lhasa block (Fig. 1B), and minor lava outcrops 137 
(e.g., at Yare and Dajiaco) have been reported in the western Lhasa block (e.g., Williams et al., 138 
2001). 139 

The present study focuses on the eastern Lhasa block’s Wuyu Basin, ~200 km west of 140 
Lhasa City, where the Wuyu Group crops out at the basin margins and is distributed in an 141 
elliptical area extending NE–SW (Fig. 1C). The Wuyu Group contains the Miocene Gazhacun 142 
Formation in the lower part and the Pliocene Zongdangcun Formation in the upper part. The 143 
Gazhacun Formation mainly consists of the felsic volcanic rocks and minor sandstones while the 144 
Zongdangcun Formation primarily consists of the sandstones and conglomerates. The Gazhacun 145 
Formation rests on the Linzizong volcanic succession across an angular unconformity and 146 
conformably underlies the Zongdangcun Formation. Zhou et al. (2010) reported a K-feldspar Ar-147 
Ar age (42.9 ± 2.5 Ma) for the Linzizong volcanic succession. Ar-Ar dating of biotite and 148 
plagioclase indicates that the lavas in the Gazhacun Formation were erupted at 15–12 Ma (Spicer 149 
et al., 2003; Zhou et al., 2010). To date, no zircon ages have been reported for Wuyu Cenozoic 150 
magmatism. 151 

We collected the Wuyu lava samples from a transect that crosses the Eocene Linzizong 152 
volcanic succession and Miocene Gazhacun Formation (Fig. 1C). The Eocene lavas are 153 
trachyandesites and trachydacites, whereas the Miocene lavas are mainly dacites and rhyolites. 154 
All samples are porphyritic and contain phenocrysts of biotite, plagioclase, and quartz in variable 155 
proportions and groundmass of plagioclase, quartz, and glass (Fig. 2). We focused on the 156 
petrogenesis and geochemical variations of Wuyu Cenozoic lavas in order to assess the 157 
mechanism of eastern Lhasa block post-collisional crustal thickening and its link to plateau 158 
uplift. 159 
METHODS AND RESULTS 160 

Whole-rock major- and trace-element and Sr-Nd isotope analyses and laser ablation-161 
multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) zircon Hf 162 
isotope analyses were carried out at the State Key Laboratory of Isotope Geochemistry, 163 
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China. 164 
LA-ICP-MS zircon U-Pb dating was conducted at the Institute of Geology and Geophysics, 165 
Chinese Academy of Sciences, Beijing, China. A more detailed discussion of the methodology 166 
and the analytical results is presented in the Appendix. 167 
LA-ICP-MS Zircon U-Pb Ages 168 

One Linzizong volcanic succession trachydacite sample (NML01-1) and two Gazhacun 169 
Formation dacite samples (NML04-1 and NML05-2) were chosen for zircon U-Pb dating (Figs. 170 
3A–3C). Zircons from these samples are euhedral and long-to-short prismatic with average 171 
lengths of ~250 m and length-to-width ratios of 3:1. Most of the zircons are transparent and 172 
colorless and show clear oscillatory zoning, which indicates a magmatic origin. 173 

Twenty-two analyses of zircons from NML01-1 are concordant, yielding a weighted 174 
mean 206Pb/238U age of 45.6 ± 0.7 Ma (mean square of weighted deviates [MSWD] = 0.72), 175 
which is broadly consistent with the K-feldspar Ar-Ar age (ca. 42.9 ± 2.5 Ma) (Zhou et al., 176 
2010). According to Lee et al. (2012), the Wuyu Linzizong volcanic succession lavas are ca. 46 177 
Ma and belong to the Pana Formation. 178 

Zircons from samples NML04-1 and NML05-2 yield weighted mean 206Pb/238U ages of 179 
12.3 ± 0.3 Ma and 11.7 ± 0.3 Ma, respectively. These ages, combined with the Ar-Ar dating of 180 
biotite and plagioclase (15–12 Ma) (Spicer et al., 2003; Zhou et al., 2010), confirm that the 181 
Wuyu Gazhacun Formation lavas are mid-Miocene in age. 182 
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Whole-Rock Major and Trace Elements 183 
The Wuyu Eocene lavas have SiO2 contents of 58.8–69.1 wt.% and high (K2O + Na2O) 184 

contents of 7.9–9.2 wt.%; therefore, they classify as trachyandesite and trachydacite on the total 185 
alkali-silica (TAS) diagram (Fig. 4A). They have high K2O contents of 3.9–5.0 wt.% and belong 186 
to the high-K calc-alkaline series (Fig. 4B). These rocks have low MgO (< 1.6 wt.%) and form 187 
clearly continuous major element variation arrays with the Pana Formation calc-alkaline rock 188 
suite (Lee et al., 2012) (Fig. 5). The Wuyu Eocene lavas show slight enrichment in light rare 189 
earth elements (LREE) on chondrite-normalized rare earth element (REE) plots (Fig. 6A) with 190 
(La/Yb)N = 10.8–13.6, where N indicates chondrite-normalized (Sun and McDonough, 1989). 191 
They also have flat, heavy REE (HREE) patterns with (Gd/Lu)N = 1.5–1.8 and slightly negative 192 
Eu anomalies (Eu/Eu* = 0.65–0.89). Their primitive mantle-normalized (Sun and McDonough, 193 
1989) trace-element patterns (Fig. 6B) are characterized by enrichment in large ion lithophile 194 
elements (LILEs) (e.g., Rb, Th, and Ba) and depletion in high field strength elements (HFSEs) 195 
(e.g., Nb and Ta) and Sr. The Wuyu Eocene lavas and Pana Formation calc-alkaline rock suite 196 
have similar REE and trace element distribution patterns (Figs. 6A–6B). 197 

The Wuyu Miocene dacites and rhyolites have high SiO2, Na2O, and K2O contents and 198 
belong mainly to the high-K calc-alkaline series (Fig. 4). They have relatively low MgO, TiO2, 199 
Fe2O3, Cr, and Ni contents (Appendix). Their chondrite-normalized REE patterns (Fig. 6A) show 200 
significant fractionation of REEs with (La/Yb)N = 21.2–54.3 and slightly to negligibly negative 201 
Eu anomalies (Eu/Eu* = 0.62–0.92). Primitive mantle-normalized trace element patterns (Fig. 202 
6B) for these rocks are characterized by enrichment in the LILEs and depletion in the HFSEs 203 
with slightly negative to positive Sr anomalies. The Wuyu Miocene lavas have similar REE and 204 
trace-element patterns as post-collisional adakitic rocks in the Lhasa block (Figs. 6A–6B). 205 
Major- and trace-element features (e.g., Fig. 6) of the Wuyu Miocene lavas indicate their adakitic 206 
affinities (Castillo, 2012), e.g., high SiO2 (58.1–75.9 wt.%), Al2O3 (13.3–17.3 wt.%), and Sr 207 
(139–1014 ppm with an average of 588 ppm, mostly > 400 ppm) contents, low Y (4–12 ppm) 208 
and Yb (0.4–0.9 ppm) contents, and high Sr/Y (29–136) and (La/Yb)N (21–54) ratios. 209 
Whole-Rock Sr-Nd Isotopes 210 

The Wuyu Eocene lavas have relatively homogeneous Sr-Nd isotopic compositions with 211 
87Sr/86Sr(i) = 0.7050–0.7063 and Nd(46 Ma) = 0.92 to 0.03 and have similar compositions to 212 
the calc-alkaline suite of the Pana Formation (Lee et al., 2012) (Fig. 7). In contrast, the Miocene 213 
Wuyu adakitic rocks have variable and more enriched Sr-Nd isotopic signatures with 87Sr/86Sr(i) 214 
= 0.7064–0.7142 and Nd(12 Ma) = 11.7 to 3.7, similar to post-collisional adakitic rocks 215 
elsewhere in the Lhasa block (Fig. 7). 216 
Zircon Hf Isotopes 217 

Hf isotopes were analyzed on zircon grains in the same domains in which U-Pb ages 218 
were measured. Twenty analyses of zircons from the Wuyu Eocene lava NML01-1 show 219 
relatively homogeneous 176Hf/177Hf ratios of 0.282816–0.282880, which correspond to Hf(t) 220 
values of +2.6 to +4.8 (Fig. 3D). These are the first reported zircon Hf isotopes of the Pana 221 
Formation in the southern Lhasa sub-block, and the values are similar to those of the Dianzhong 222 
and Nianbo Formations of the Linzizong volcanic succession (Lee et al., 2007) (Fig. 3D). 223 
Analyses of zircons from the Wuyu Miocene adakitic rocks, NML04-1 and NML05-2, show 224 
176Hf/177Hf ratios of 0.282675–0.282874 and 0.282743–0.282893, which correspond to Hf(t) 225 
values of 3.2 to +3.9 and 0.8 to +4.5, respectively (Fig. 3D). The zircon Hf isotopes of the 226 
Wuyu Miocene adakitic rocks are similar to those of the post-collisional adakitic rocks elsewhere 227 
in the Lhasa block (Fig. 3D). 228 
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DISCUSSION 229 
Petrogenesis of Wuyu Magmatism 230 
Wuyu Eocene Lavas 231 

An important observation is that the major element variations, trace element patterns, and 232 
Sr-Nd isotopic compositions of the Wuyu Eocene lavas imply a close genetic link to the Pana 233 
Formation calc-alkaline basaltic-intermediate-acidic rock suite (Lee et al., 2012) (Figs. 4–7). 234 
Therefore, the Wuyu lavas and the Pana calc-alkaline suite can be considered together in terms 235 
of their petrogenesis. Thus, it is feasible to suggest that the Wuyu Eocene felsic lavas could be 236 
derived from the Pana Formation basaltic rocks by various processes such as magma mixing, 237 
AFC, or re-melting of underplated basaltic rocks. 238 

The Wuyu Eocene lavas have the highest silica contents among the Pana Formation calc-239 
alkaline suite, and this would seem to preclude a petrogenetic origin by magma mixing. They 240 
have broadly same Sr-Nd isotopes as the Pana Formation calc-alkaline basic rocks, which 241 
indicates negligible crustal assimilation during their generation. Significant mineral fractionation 242 
(e.g., plagioclase) can also be ruled out given that it would yield increasingly negative Eu 243 
anomalies with increasing SiO2, which is not observed in the Wuyu Eocene lavas (Fig. 8A). The 244 
greater volume of felsic rocks in the Pana Formation calc-alkaline suite also argues against their 245 
generation via fractional crystallization (FC) process, which commonly produces smaller 246 
amounts of the evolved silicic magmas (Mo et al., 2008). Furthermore, on a plot of La versus 247 
La/Yb (Fig. 8B), the compositions of these rocks plot along the path of partial melting rather 248 
than FC. Thus, we prefer to suggest melting of underplated basaltic rocks (i.e., intrusive 249 
equivalents of Pana Formation basalts) as an explanation for the generation of the Wuyu Eocene 250 
lavas. This is consistent with their zircon Hf isotopes of +2.6 to +4.8, which suggests juvenile 251 
components in their sources. 252 

Significantly, zircon Hf isotope mapping (Hou et al., 2015) has identified the juvenile 253 
crustal block that was formed by Neo-Tethys oceanic subduction, particularly in the southern 254 
margin of the eastern Lhasa block. However, the Wuyu Eocene lavas and Pana Formation calc-255 
alkaline suite have slightly more enriched Sr-Nd isotopes than do arc rocks (Fig. 7D). This 256 
enrichment thus suggests that Indian crust may have released fluids into the mantle wedge during 257 
the syn-collisional stage (Mahéo et al., 2009). This indicates that the Wuyu Eocene lavas were 258 
generated by partial melting of relatively juvenile Lhasa crust. The relatively juvenile Lhasa 259 
crust was formed during a protracted Neo-Tethys oceanic subduction and was slightly modified 260 
by a shorter Indian continental subduction during the syn-collisional stage. As reviewed above, 261 
continuing collision following the initial impact of Lhasa and India in the early Cenozoic 262 
eventually induced Neo-Tethys oceanic slab break-off at ca. 50–45 Ma (e.g., Zhu et al., 2015; Ji 263 
et al., 2016). Accordingly, the Wuyu Eocene (ca. 46 Ma) lavas may represent a magmatic 264 
response to this oceanic slab break-off. 265 
Wuyu Miocene Adakitic Rocks 266 

Several models have been proposed for generating adakitic rocks, including AFC of 267 
mantle-derived magmas (Castillo et al., 1999; Macpherson et al., 2006), magma mixing (Streck 268 
et al., 2007), and partial melting of either oceanic crust (e.g., Defant and Drummond, 1990; 269 
Gutscher et al., 2000), subducted continental crust (e.g., Wang et al., 2008), or thickened lower 270 
continental crust (Atherton and Petford, 1993; Mahéo et al., 2009; Pang et al., 2016). 271 

The ultrapotassic rocks, as the only post-collisional mantle-derived magmas in the Lhasa 272 
block (e.g., Zhao et al., 2009; Chung et al., 2005), have much more enriched Sr-Nd isotopes than 273 
post-collisional adakitic rocks (Figs. 7D). Thus, assimilation of, or mixing with, juvenile crust by 274 
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basic magmas may represent a possible model for the formation of adakitic rocks. However, this 275 
model is not supported by the variation of SiO2 with Nd and Sr isotopes for the Wuyu adakitic 276 
rocks (Figs. 7A–7B). Furthermore, a positive correlation between K2O/Na2O and SiO2 (Fig. 4C) 277 
argues against their generation by mixing between ultrapotassic and crust-derived magmas, given 278 
that ultrapotassic melts have clearly lower SiO2 and higher K2O/Na2O than crust-derived melts. 279 
In addition, their Dy/Yb ratios decrease with increasing SiO2 (Fig. 8C), which argues against 280 
high-pressure garnet fractionation from basic magmas (Macpherson et al., 2006). 281 

The post-collisional adakitic rocks in the Lhasa block have variable and high-K contents 282 
and enriched Sr-Nd isotopes. These signatures are inconsistent with an oceanic slab origin, 283 
which generally yields adakites with low K2O contents and mid-oceanic-ridge, basalt-like 284 
depleted Sr-Nd isotopes (e.g., Defant and Drummond, 1990; Castillo, 2012). In addition to this, 285 
numerous studies have argued that, following the India-Lhasa collision, the Neo-Tethys oceanic 286 
slab detached from the Indian continental slab at ca. 45 Ma and sunk into the deep mantle during 287 
the Eocene (DeCelles et al., 2002; Mahéo et al., 2009). This being the case, the oceanic slab may 288 
not be a feasible candidate for the source of Lhasa Oligocene-Miocene adakitic rocks. 289 

The post-collisional adakitic rocks in the Lhasa block have clearly distinct Sr-Nd isotopes 290 
in comparison to the Himalayan late Oligocene-Miocene leucogranites (87Sr/86Sr(i) > 0.730 and 291 
Nd(t) < 10). These leucogranites were generated by re-melting of Himalayan upper crustal 292 
schists and gneisses (e.g., King et al., 2007[[King et al., 2007, is not in the reference list.]]) 293 
(Fig. 7C). Furthermore, the post-collisional adakitic rocks have high K2O/Na2O (up to 7) and 294 
different Sr-Nd isotopes compared to those of the Himalayan Eocene adakites (K2O/Na2O  1) 295 
(Figs. 4 and 7D), which were generated by partial melting of the Indian lower crust and mid-296 
crustal amphibolites (Zeng et al., 2011; Hou et al., 2012). Thus, the post-collisional adakitic 297 
rocks in the Lhasa block were unlikely to have been generated by partial melting of subducted 298 
Indian continental crust. Furthermore, Lhasa adakitic rocks have relatively low MgO (< 3 wt.%) 299 
(Fig. 8D), Cr (< 70 ppm), and Ni (< 50 ppm) contents. These compositions are inconsistent with 300 
adakitic rocks with high Cr, Ni, and MgO that are derived from melts of subducted continental 301 
crust that have interacted with overlying mantle (Wang et al., 2006). 302 

As discussed above, the zircon Hf isotope mapping has revealed the juvenile crustal 303 
block, especially along the southern margin of the eastern Lhasa block (e.g., Hou et al., 2015; 304 
Zhu et al., 2015) (Fig. 7), formed by the protracted Neo-Tethys oceanic subduction. For example, 305 
pre-collisional (ca. 80 Ma) lower crust-derived adakitic rocks in the eastern Lhasa block (Wen et 306 
al., 2008) have depleted Sr-Nd isotopes. The Linzizong volcanic succession rocks and coeval 307 
granitoids could represent juvenile crust formed during the syn-collisional stage, and the 308 
majority of them have Nd(t) >0 (Mo et al., 2007). Some of the Linzizong volcanic succession 309 
rocks (e.g., the Pana Formation lavas), as discussed above, have slightly more enriched Sr-Nd 310 
isotopes than oceanic subduction-related juvenile crust, suggesting minor contributions of Indian 311 
crust-released fluids into the mantle wedge during the syn-collisional stage (Mahéo et al., 2009). 312 
However, the Lhasa post-collisional adakitic rocks have much more enriched Sr-Nd isotopes 313 
than the juvenile crust (including the Pana Formation). On an initial 87Sr/86Sr vs Nd(t) diagram 314 
(Fig. 7D), the Lhasa post-collisional adakitic rocks plot on a mixing trend between an end-315 
member isotopically similar to the juvenile crust and an end-member similar to Lhasa post-316 
collisional ultrapotassic rocks or Indian Eocene adakites and their lower-middle crust sources 317 
(Zeng et al., 2011; Hou et al., 2012). The high K2O and K2O/Na2O values of the post-collisional 318 
adakitic rocks (Fig. 4) may indicate significant contributions of ultrapotassic rocks in their 319 
sources, though Indian lower crust-derived magma contributions cannot be ruled out. 320 
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The Lhasa post-collisional adakitic rocks yielded some negative zircon Hf(t) values, 321 
which are consistent with the more negative Hf(t) values of the ultrapotassic lavas (Fig. 3D). 322 
Significantly, it has been shown repeatedly that underplating of post-collisional ultrapotassic 323 
magmas beneath the eastern Lhasa block has played a key role in crustal reworking, porphyry Cu 324 
ore formations, and crust-mantle magma mixing (e.g., Yang et al., 2014[[Yang et al., 2014, is 325 
not in the reference list. 2015 here?]]; Hou et al., 2015; Sun et al., 2018; Wang et al., 2018; 326 
Hao et al., 2019a). Thus, we propose that the Lhasa post-collisional adakitic rocks were most 327 
likely generated by partial melting of mixed and thickened Lhasa lower crust, which was 328 
composed of relatively juvenile crust, ultrapotassic rocks, and probably Indian lower crust-329 
derived magmas. 330 
Post-Collisional Geodynamics of Southern Tibet 331 

As noted above, after Neo-Tethys oceanic slab break-off at ca. 45 Ma, the Himalaya-332 
Tibet collision zone became a post-collisional intra-continental setting (e.g., Chung et al., 2005). 333 
Three main geodynamic processes have been considered to play key roles in generating post-334 
collisional magmatism in south Tibet: (1) thinning of the lithospheric mantle beneath the Tibetan 335 
plateau (Houseman et al., 1981; Turner et al., 1993; Williams et al., 2001; Chung et al., 2005); 336 
(2) Indian continental subduction (Ding et al., 2003; Zhao et al., 2009); and (3) break-off of 337 
subducted Indian continental lithospheric slab (Chemenda et al., 2000; Mahéo et al., 2002, 2009; 338 
Williams et al., 2004). 339 

Models that invoke lithospheric mantle thinning propose that the Indian continental slab 340 
was unable to move further downward after oceanic slab break-off due to both the more buoyant 341 
nature of the Indian continental slab relative to the Asian lithosphere and a lack of slab pull. 342 
Accordingly, the continuous northward impingement of India resulted in significant contraction 343 
of the Lhasa lithospheric mantle that may have been thermally weakened and softened by 344 
previous arc and syn-collisional magmatism (Chung et al., 2005; Chen et al., 2017). The 345 
gravitational instability produced in response to lithospheric thickening would have resulted in 346 
lithospheric mantle thinning (wholesale mantle delamination or convective removal of the 347 
lithosphere basal layer) (Houseman et al., 1981; Houseman and Molnar, 1997; Conrad and 348 
Molnar, 1999). 349 

During lithospheric mantle thinning, the sinking lithosphere would have been replaced by 350 
hot, rising asthenospheric mantle. The juxtaposition of hot mantle against either the remaining 351 
lithospheric mantle and/or lower crust would trigger melting in these overlying domains (Turner 352 
et al., 1992). In the case of southern Tibet, convective removal of only a part of Asian 353 
lithospheric mantle has been invoked due to the occurrence of enriched, mantle-derived 354 
ultrapotassic magmas (e.g., Chung et al., 2005). However, an important limitation of the 355 
convective thinning model is related to the size and distribution of magmatic activity. Igneous 356 
rocks related to lithospheric convective thinning are usually spread over regional and broad 357 
domains (see Mahéo et al., 2009, for review). This contrasts with the localized linear belt 358 
distribution of post-collisional magmatism in southern Tibet and its western prolongation, the 359 
south Karokorum (150 km wide and more than 2000 km long) (Mahéo et al., 2002, 2009). 360 
Furthermore, we recently identified the first post-collisional A-type magmatism of the 361 
Himalayan-Tibetan orogen in the Lhasa block (Hao et al., 2019b), which strongly indicates a 362 
direct link between north-south extensional tectonics (e.g., the Main Central thrust and South 363 
Tibetan detachment system and the Kailas Basin) and the deep mantle process generating the 364 
post-collisional magmatism. These geological events straddled the Himalaya and Lhasa blocks 365 
and can be easily reconciled with break-off of subducted Indian continental slab (DeCelles et al., 366 
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2011; Leary et al., 2016; Hao et al., 2019b) (as discussed below) rather than lithospheric mantle 367 
thinning. Thus, our preferred model is that Indian continental slab continued to subduct 368 
northward beneath the Lhasa block after the Neo-Tethys oceanic slab break-off. 369 

The continental subduction model has the advantage of accounting for the extent of 370 
magmatism along a narrow zone parallel to the Indus–Yarlung Zangbo suture zones (IYSZ) (e.g., 371 
Ding et al., 2003; Mahéo et al., 2009). As discussed above, continental subduction was already 372 
active at 60–45 Ma (e.g., Chung et al., 2005), resulting in the more enriched Sr-Nd isotopes of 373 
the Pana Formation relative to oceanic subduction arc rocks (Fig. 7D). Therefore, the change in 374 
isotopic compositions between the southern Tibetan ultrapotassic rocks and the Pana Formation 375 
could reflect a greater contribution from Indian continent-released fluids and melts in post-376 
collisional mantle sources (Mahéo et al., 2009). However, this continuous continental subduction 377 
cannot easily account for the limited or absent magmatism during 40–30 Ma. Furthermore, 378 
continental subduction always proceeds at low thermal gradients and thus represents cold 379 
subduction (e.g., Zheng, 2019), resulting in cooling of the base of the wedge due to thermal 380 
conduction from the cold slab. Thus, continental subduction generally requires additional 381 
geodynamic processes to produce post-collisional magmas, e.g., roll-back or break-off. 382 
Geophysical data reveal two shallower anomalies beneath the India-Asia convergence zone (Van 383 
derVoo et al., 1999), which have been attributed to detachment of northward-subducted Neo-384 
Tethys oceanic lithosphere and Indian continental lithosphere (DeCelles et al., 2002; Replumaz 385 
et al., 2010). This may indicate Indian continental slab break-off. 386 

In the model of Indian continental slab break-off (e.g., DeCelles et al., 2011; Leary et al., 387 
2016; Hao et al., 2019b) (Fig. 9), part of the subducted Indian lithosphere becomes detached, 388 
thereby creating a gap into which asthenospheric mantle can rise and trigger partial melting of 389 
Indian continental slab and Asian mantle wedge metasomatized by subducted Indian crust-390 
released melts and fluids. The intrusion of mantle melts into the crust-induced partial melting of 391 
thickened and mixed Lhasa lower crust (juvenile crust, ultrapotassic rocks, and probably Indian 392 
lower crust-derived magmas) to generate the post-collisional adakitic rocks. 393 

Such a tectonic model of Indian continental slab break-off would have developed along 394 
orogen-perpendicular cross sections and thus cannot explain the along-strike variations of post-395 
collisional magmatism along the length of southern Tibet (e.g., Webb et al., 2017). For example, 396 
eastern Lhasa block post-collisional magmatism was restricted to the eastern Lhasa block 397 
southern margin while western Lhasa block post-collisional magmatism covers a relatively broad 398 
distribution that includes the Lhasa sub-block (Fig. 1B). In addition to this, at ca. 40–26 Ma 399 
magmatism and magmatic gap occurred in the eastern Lhasa block and western Lhasa block, 400 
respectively. Therefore, several studies (Leary et al., 2016; Webb et al., 2017) have highlighted a 401 
need for a three-dimensional evolutionary model for the India-Asia orogen. In Figure 10 we have 402 
adapted the 3D model for Indian continental subduction to illustrate the tectonic setting of post-403 
collisional magmatism in the Lhasa block. The different spatial distributions of post-collisional 404 
magmatism (Fig. 1B) may reflect low-angle subduction of the Indian plate beneath the western 405 
Lhasa block that reaches far beneath the central Lhasa sub-block (e.g., DeCelles et al., 2011; 406 
Leary et al., 2016; Webb et al., 2017; Wang et al., 2018; Hao et al., 2018, 2019b) and relatively 407 
steep subduction for a short distance beneath the eastern Lhasa block (Hou et al., 2012) (Fig. 408 
10A). Similar scenarios of subduction segmentation were suggested to have occurred in the Peru 409 
area of the Andes (e.g., Gutscher et al., 1999). 410 

The tectonic model of Indian plate flat subduction and subsequent foundering beneath the 411 
western Lhasa block has been recently demonstrated in detail for the post-collisional evolution of 412 
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the western Lhasa block-Himalaya orogen (Hao et al., 2019b). In the western Lhasa block case, 413 
Indian plate low-angle/flat subduction is compatible with the 40–25 Ma [[OK?]] magmatic gap 414 
because it would have prevented asthenosphere-derived heating and led to cooling of western 415 
Lhasa block mantle and crust (Chung et al., 2005). Subsequent ca. 25 Ma (ultra)potassic 416 
magmatism and coeval north-south extensional tectonics could be ascribed to foundering and 417 
break-off of the Indian continental slab (e.g., DeCelles et al., 2011; Hao et al., 2019b). 418 

Steep subduction of the Indian continental slab beneath the eastern Lhasa block is 419 
consistent with not only the restricted distribution along the IYSZ for post-collisional adakitic 420 
magmatism, but also the ca. 40–26 Ma magmatism along the Lhunze-Yalaxiangbo-Zedong 421 
traverse, which becomes younger to the north and ceases at ca. 30–26 Ma (Hou et al., 2012). 422 
Asthenospheric upwelling after oceanic slab break-off would melt the front edge of the 423 
subducted Indian continental plate (Hou et al., 2012; Zhang et al., 2014). Magmatism along with 424 
steep subduction (i.e., persistent plunging of Indian slab into the mantle beneath the eastern 425 
Lhasa block) would show a northward younging trend and eventually cease when the Indian slab 426 
subducted into the deep mantle and obstructed asthenospheric upwelling (Hou et al., 2012). 427 
Subsequent east-west 30–10 Ma magmatism in the eastern Lhasa block could have been caused 428 
by break-off of this steep Indian continental slab. During Indian continental slab break-off (Fig. 429 
9), the asthenospheric mantle can rise and trigger partial melting of the Indian continent and 430 
Asian mantle wedge metasomatized by subducted Indian crust-released melts and fluids. Magma 431 
underplating and tectonic shortening contributed to crustal thickening. The intrusion of mantle 432 
melts into the crust induced partial melting of mixed and thickened Lhasa lower crust (juvenile 433 
crust, ultrapotassic rocks, and probably Indian lower crust-derived magmas) to generate the 434 
adakitic rocks. This magmatism initiated at 30–26 Ma near the eastern Himalayan syntaxis 435 
(Linzhi area) (Chung et al., 2003; Pan et al., 2012; Zhang et al., 2014) and systematically 436 
decreases in age to the west to ca. 10 Ma near the Xigaze area (Webb et al., 2017). This east-to-437 
west younging trend could likely reflect westward-propagating break-off of subducted Indian 438 
continental slab beneath the eastern Lhasa block (Pan et al., 2012; Zhang et al., 2014; Leary et 439 
al., 2016; Webb et al., 2017) (Fig. 10B). 440 
Post-Collisional Crustal Thickening of Southern Tibet 441 

As discussed above, both the Eocene lavas and Miocene adakitic rocks in the Wuyu area 442 
were generated by partial melting of the Lhasa lower crust. Their geochemical characteristics can 443 
therefore be used to constrain the mineral assemblages of the crustal source rocks. Given that 444 
plagioclase is strongly enriched in Sr and Eu, and garnet is strongly depleted in LREEs and 445 
enriched in HREEs and Y (Rapp et al., 2003[[Rapp et al., 2003, is not in the reference list.]]; 446 
Wang et al., 2016), low Sr/Y and La/Yb ratios (Fig. 11) and slightly negative Eu and Sr 447 
anomalies of the Wuyu Eocene rocks could reflect a plagioclase-rich source with little or no 448 
garnet. In contrast, high Sr/Y and La/Yb ratios (Fig. 11), slightly negative to negligible Eu 449 
anomalies, and slightly negative to positive Sr anomalies of the Wuyu Miocene rocks could 450 
reflect a garnet-rich source containing little or no plagioclase. Increases in Sr/Y and La/Yb ratios 451 
of the Wuyu rocks from Eocene to Miocene, and temporal variations in mineral assemblages of 452 
the crustal source rocks, suggest post-collisional crustal thickening in the Wuyu area between the 453 
Eocene and Miocene. Several geochemical indicators (e.g., Sr/Y, La/Yb) in magmatic rocks have 454 
been used as proxies for crustal thickness (e.g., Chung et al., 2009; Chaharlang et al., 2020). 455 
Notably, the La/Yb ratio is less sensitive to differences in crustal thickness of 25–45 km, yet it 456 
can clearly show when crustal thickness exceeds ~50 km (DePaolo et al., 2019). In the Wuyu 457 
case, the crustal thickness in the Eocene can be estimated to be < 40 km based on their low 458 
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La/Yb ratios (< 20). The elevated La/Yb ratios in the Miocene adakitic rocks indicate that the 459 
crustal thickness is > 50 km. This is consistent with experimental petrology data (e.g., Xiong, 460 
2006) indicating that adakitic rocks could be produced by partial melting of garnet-bearing mafic 461 
rocks at depths of > 50 km in the lower crust. 462 

Furthermore, numerous studies have demonstrated the crustal thickening of the Lhasa 463 
block in the period ca. 50–40 Ma and ca. 30–25 Ma, i.e., the period between the late stage of the 464 
Linzizong volcanic succession volcanism and the beginning of the adakitic magma emplacement 465 
(Mo et al., 2007; Chung et al., 2009; Zhu et al., 2017; DePaolo et al., 2019). Additionally, on the 466 
basis of the Nd isotopes and La/Yb ratios of Gangdese granitoids, DePaolo et al. (2019) 467 
concluded that the southern margin of the eastern Lhasa block (south of 29.8°N latitude) was 468 
relatively thin, ~25–35 km thick until 45 Ma, but was thickened substantially to at least 55–60 469 
km (based on Nd isotopes) and possibly as much as 70–75 km (based on La/Yb) by 30 Ma. Our 470 
results, indicating that the crustal thickness of the Wuyu area (~29.7°N, Appendix) was < 40 km 471 
and > 50 km in the Eocene and Miocene, respectively, are strongly consistent with the 472 
conclusions of DePaolo et al. (2019). Moreover, our rock samples are from just one transect, 473 
which clearly demonstrates this post-collisional crustal thickening. Notably, this post-collisional 474 
crustal thickening is mainly restricted to the relatively narrow region between the present IYZS 475 
suture and ~30°N in the eastern Lhasa block , which was considered to be ascribed to the steep 476 
subduction of Indian continental slab beneath the eastern Lhasa block. In addition, as noted 477 
above, the Indian continental slab continued to subduct beneath the Lhasa block after oceanic 478 
slab break-off, and Lhasa lithospheric delamination (wholesale lithospheric mantle and a part of 479 
crust) would be unlikely to occur (Mahéo et al., 2009). Thus, the southern eastern Lhasa block 480 
most probably experienced a single stage of crustal thickening from Eocene to Miocene. 481 

Various mechanisms have been proposed to explain eastern Lhasa block post-collisional 482 
crustal thickening. For instance, Chung et al. (2005, 2009) suggested that the stage of post-483 
collisional crustal thickening corresponded to the apparent magmatic gap and emphasized that 484 
the intensity of the collision between the Indian plate and the Lhasa block induced significant 485 
contraction and thickening of the latter. In addition to this, Zhu et al. (2017) suggested that 486 
eastern Lhasa block post-collisional (< 40 Ma) crustal thickening was largely a consequence of 487 
tectonic thickening due to intra-continent thrusting and subducted Indian plate underplating. 488 
Here, we also propose that tectonic shortening contributed to crustal thickening as indicated by 489 
tectonic data. For example, significant thrust belts began to be widely emplaced in the IYSZ and 490 
southern Lhasa block during the post-collisional stage, e.g., ca. 30–23 Ma Gangdese Thrust (GT) 491 
(Yin et al., 1994, 1999), ca. 25–10 Ma Great Counter Thrust (GCT) (Harrison et al., 2000). This 492 
is a strong indication of crustal shortening and thickening at that time. Indeed, van Hinsbergen et 493 
al. (2011) have constrained ~40 km of N-S shortening of the Lhasa block to the 50–20 Ma 494 
period. 495 

This study has revealed that Lhasa post-collisional adakitic rocks have not only higher 496 
Sr/Y and La/Yb but also more evolved Sr-Nd-Hf isotopes than the Eocene rocks. This could 497 
reflect the transformation from Eocene relatively thin and juvenile crust with thickness < 40 km 498 
to late Oligocene-Miocene thickened and mixed crust (juvenile crust, ultrapotassic rocks, and 499 
probably Indian lower crust-derived magmas) with thickness > 50 km. Thus, in addition to 500 
tectonic shortening, magma underplating beneath the eastern Lhasa block could also play a key 501 
role in eastern Lhasa block post-collisional crustal thickening. 502 
Post-Collisional Surface Uplift of Southern Tibet 503 
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Stable isotope-based and paleobotanical paleoaltimeters have been used to quantitatively 504 
study surface uplift of the Tibetan plateau after India-Asia collision (e.g., Spicer et al., 2003; 505 
Currie et al., 2005; DeCelles et al., 2007; Ding et al., 2014, 2017; Deng and Ding, 2015; Su et 506 
al., 2019). Two high mountains of Qiangtang and Gangdese (> 4500 m) that sandwiched a low 507 
elevation Lunpola-Nima Basin should occur in Tibet in the early Cenozoic (e.g., Ding et al., 508 
2014; Su et al., 2019). Moreover, the Himalayas also have low elevations of ~1 km in the late 509 
Paleocene (e.g., Ding et al., 2017). Thus, it has been widely proposed that the wholesale “Roof 510 
of the World” Tibetan plateau has only been developing from the late Oligocene–early Miocene 511 
(Deng and Ding, 2015; Liu et al., 2016; Su et al., 2019). However, the mechanism of this post-512 
collisional uplift remains unclear. 513 

The contribution of post-collisional crustal thickening to eastern Lhasa block uplift has 514 
been widely proposed (e.g., DeCelles et al., 2002; Zhu et al., 2017). However, this study has 515 
demonstrated eastern Lhasa block significant post-collisional crustal thickening since the early 516 
Eocene. This may not explain why the plateau uplift took place in late Oligocene–early Miocene. 517 
Furthermore, modeling of Husson et al. (2014) indicates that the northward subduction of the 518 
Indian plate beneath the Asian plate would result in tectonic shortening but no significant surface 519 
uplift due to subduction traction of the Indian slab. Conversely, Indian slab break-off beneath the 520 
eastern Lhasa block could remove downward pull to switch the compressional stress in a 521 
collision zone to tensional stress (Lim and Kidd, 2007; Husson et al., 2014). With this release of 522 
slab dynamic traction and the relative southward translation of the slab weight, the range uplifted 523 
toward isostatic equilibrium and topography across the orogen increased (Webb et al., 2017). 524 
Thus, we propose that eastern Lhasa block post-collisional uplift could be most likely caused by 525 
the propagating slab break-off of Indian slab beneath the eastern Lhasa block since 30 Ma. 526 
Similar scenarios have been proposed in several orogens, e.g., the Romagnan Apennines and 527 
New York-Vermont-Quebec Taconic orogens (van der Meulen et al., 1999; Lim and Kidd, 528 
2007). 529 
CONCLUSIONS 530 
(1) Both Eocene lavas and Miocene adakitic rocks in the Wuyu area of the eastern Lhasa block 531 

(eastern Lhasa block ) were generated by partial melting of Lhasa lower crust. 532 
(2) Comparisons of trace-elemental and Sr-Nd-Hf isotopic characteristics between Eocene and 533 

Miocene rocks indicate the transformation from Eocene thin and juvenile crust with thickness 534 
< 40 km to Miocene thickened and mixed crust (juvenile crust, ultrapotassic rocks, and 535 
probably Indian lower crust-derived magmas) with thickness > 50 km. 536 

(3) Both tectonic shortening and magma underplating contributed to eastern Lhasa block post-537 
collisional (< 40 Ma) crustal thickening. 538 

(4) Eastern Lhasa block post-collisional magmatism can be ascribed to Indian plate steep 539 
subduction and subsequent westward-propagating break-off beneath the eastern Lhasa block, 540 
which could cause the surface uplift for the thick eastern Lhasa block of the southern Tibetan 541 
plateau. 542 
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Figure 1. (A) Sketch map shows the location of Tibet in a regional context. (B) Simplified 931 
geologic map shows outcrops of magmatic rocks in southern Tibet (Lhasa and Himalaya blocks), 932 
modified from Chung et al. (2009), Hou et al. (2015), and Ma et al. (2017). BNS—Bangong-933 
Nujiang suture; SNMZ—ShiquanRiver-NamTso mélange zone; LMF—Luobadui-Milashan 934 
Fault; IYZS—Indus-YarlungZangbu suture; STDS—South Tibet Detachment System; MCT—935 
Main Central Thrust; MBT—Main Boundary Thrust. The numbers in the figure are ages of 936 
representative post-collisional magmatic rocks (Ma). The Lhasa block can be divided into 937 
western and eastern segments (i.e., western Lhasa block, eastern Lhasa block ) at 87°E. (C) 938 
Simplified geological map of the Wuyu area (modified from Zhou et al., 2010) showing sample 939 
locations. The Eocene samples were collected from one location and the Miocene samples were 940 
collected from six locations along a stratigraphic section; the detailed GPS coordinates are 941 
shown in the Appendix. LVS—Linzizong volcanic successions; GF—Gazhacun Formation; 942 
ZF—Zongdangcun Formation; Q—Quaternary sediment. 943 
Figure 2. (A–C) Representative field photographs and (D–F) photomicrographs of the Wuyu 944 
Cenozoic lavas. (D) Eocene trachyandesite NML01-1. (E) Miocene rhyolite NML03-1. (F) 945 
Miocene dacite NML04-1. Pl—plagioclase; Bi—biotite; Qtz—quartz. 946 
Figure 3. (A–C) Laser altimetry-inductively coupled plasma-mass spectrometry zircon U-Pb 947 
Concordia diagrams with representative zircon cathodoluminescence images of the Wuyu 948 
Cenozoic lavas are shown. The yellow circles denote the analytical spots of U-Pb dating and Lu-949 
Hf isotopes. The yellow lines represent 100 um. The inserts are the plots of the weighted mean 950 
ages. (D) Laser altimetry-multicollector-inductively coupled plasma-mass spectrometry zircon 951 
Hf isotopes of the Wuyu Cenozoic lavas. The Linzizong volcanic successions (Lee et al., 2007) 952 
and post-collisional adakites (Chung et al., 2009; Xu et al., 2010; Zhang et al., 2014) and 953 
ultrapotassic lavas (Liu et al., 2017) were plotted for comparison. CHUR—chondritic uniform 954 
reservoir; MSWD—mean square of weighted deviates. 955 
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Figure 4. Major element diagrams for the Wuyu lavas are shown. (A–C) SiO2 versus Na2O + 956 
K2O, K2O, and K2O/Na2O, respectively. Indian Eocene adakites are from Zeng et al. (2011) and 957 
Hou et al. (2012). Pana Formation calc-alkaline rock suite is from Lee et al. (2012). Post-958 
collisional adakitic and ultrapotassic rocks are from Turner et al. (1996), Williams et al. (2001, 959 
2004), Ding et al. (2003), Guo et al. (2015), and Hao et al. (2019b) and references therein. 960 
Figure 5. Major-element Harker diagrams for the Pana Formation calc-alkaline rock suite and 961 
Wuyu Eocene lavas are shown. 962 
Figure 6. (A) Chondrite-normalized rare earth element diagram is shown; (B) primitive mantle-963 
normalized trace-element distribution pattern diagram for the Wuyu lavas; (C) Y versus Sr/Y; 964 
(D) YbN versus (La/Yb)N where N indicates chondrite normalized. Chondrite and primitive 965 
mantle normalization values are from Sun and McDonough (1989). ADR—[[Define.]] [[Explain 966 
what is shown by circles and triangles.]] 967 
Figure 7. (A–B) SiO2 versus 87Sr/86Sr(i) and 143Nd/144Nd(i) diagrams are shown, respectively. 968 
(C–D) Plots of 87Sr/86Sr(i) versus Nd(t) for Wuyu Cenozoic rocks. All isotopic values were 969 
corrected to 12 Ma for comparison. Lhasa crustal basement (Cambrian Amdo orthogneisses and 970 
Nima metabasalts) is from Harris et al. (1988) and Zhu et al. (2012). Indian upper crust and 971 
Himalaya leucogranites are after Zhang et al. (2014). Indian amphibolites and Eocene adakites 972 
are from Zeng et al. (2011) and Hou et al. (2012). Neo-Tethys oceanic subduction-related Lhasa 973 
juvenile crust is from Zhang et al. (2014) and Wen et al. (2008). Pre-collisional (80 Ma) adakitic 974 
rocks in the Lhasa block are from Wen et al. (2008). 975 
Figure 8. Shown are: (A) SiO2 versus Eu anomaly; (B) La versus La/Yb; (C) SiO2 versus Dy/Yb; 976 
(D) SiO2 versus MgO (after Wang et al., 2006). [[Explain what is shown by circles and 977 
triangles.]] 978 
Figure 9. Cartoon illustrates the tectonic model for eastern Lhasa block post-collisional adakitic 979 
magmatism (not to scale). Annotations  indicate partial melting of Indian continental crust 980 
induced by asthenospheric mantle upwelling during Indian continental slab break-off, of Asian 981 
mantle wedge metasomatized by subducted Indian crust-released melts and fluids, and of 982 
thickened and mixed lower crust (underplated magmas and juvenile crust) caused by the 983 
intrusion of mantle melts into the crust, respectively. Magma underplating and tectonic 984 
shortening contributed to crustal thickening. 985 
Figure 10. Cartoon diagrams show Indian continental subduction during the post-collisional 986 
stage (not to scale). (A) Indian continental slab subduction segmentation after oceanic slab 987 
break-off, i.e., low-angle subduction and high-angle subduction beneath western Lhasa block and 988 
eastern Lhasa block, respectively (modified from Gutscher et al., 1999). (B) The lateral 989 
propagation of Indian slab break-off from both west and east across southern Tibet (modified 990 
from Webb et al., 2017, and Leary et al., 2016). Significantly, break-off of Indian continental 991 
slab beneath the western Lhasa block may propagate more rapidly than that beneath the eastern 992 
Lhasa block (Webb et al., 2017; Hao et al., 2019b). [[Part A says: during 40~30-25 Ma. Please 993 
revise.]] 994 
Figure 11. La/Yb versus Sr/Y (Wang et al., 2016) diagram shows the effects of residual garnet 995 
and plagioclase during partial melting (see text for discussion). F1—adakitic melts derived from 996 
eclogitic rocks in the stability field of garnet with little or no plagioclase. F2—crustal melts in 997 
the stability field of plagioclase and garnet. F3—crustal melts in the stability field of plagioclase 998 
with little or no garnet. [[Explain what circles and triangles represent.]] 999 
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