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In this paper we study explicit strong solutions for two difference-differential
fractional equations, defined via the generator of an immigration-death process,
by using spectral methods. Moreover, we give a stochastic representation of the
solutions of such difference-differential equations by means of a stable time-changed
immigration-death process and we use this stochastic representation to show
boundedness and then uniqueness of these strong solutions. Finally, we study the
limit distribution of the time-changed process.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Birth-death processes constitute an important class of continuous time Markov chain (CTMC). They

are widely used, for instance, in population and evolutionary dynamics (see [35,36]), queueing theory (see

[43]) and in epidemiology (see [3]). A complete classification and characterization of birth-death processes is

due to Karlin and McGregor, whose papers [18,19] are the starting point of the study of family of classical

orthogonal polynomials linked to such processes.

Classical orthogonal polynomials are widely used to study the solutions of Kolmogorov equations as in the

case in which the state space of the process is continuous, as well as in the discrete one. In the continuous

case, the families of classical orthogonal polynomials are used to give a spectral decomposition of Kolmogorov

equations induced by the generators of Pearson diffusions [14]. In the discrete case, the discrete analogue of

Pearson diffusions is given by a certain class of solvable birth-death processes. Moreover one can associate

to any family of classical orthogonal polynomials of discrete variable another particular family, called the

dual family [34]. In some cases, a family of classical orthogonal polynomials of discrete variable could be in

duality with itself: in this case it is called self-dual family [42]. Among self-dual families, the simplest one

is the family of Charlier polynomials, whose self-duality is induced by the following formula

* Corresponding author.

E-mail addresses: giacomo.ascione@unina.it (G. Ascione), leonenkon@cardiff.ac.uk (N. Leonenko), enrica.pirozzi@unina.it
(E. Pirozzi).

https://doi.org/10.1016/j.jmaa.2020.124768
0022-247X/© 2020 Elsevier Inc. All rights reserved.
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Cn(x, α) = Cx(n, α), n, x ∈ N0,

called duality formula for Charlier polynomials (see Section 3 for the definition of Charlier polynomials).

Charler polynomials are really useful in the study of immigration-death processes (or M/M/∞ queues) [42]

and in their general version on 1-dimensional lattice, called Charlier processes [1]. Indeed, one can give a

spectral decomposition of the strong solutions of Kolmogorov equations induced by the generator of the

immigration-death processes in terms of such polynomials.

For Pearson diffusions, the classical orthogonal polynomials are powerful tools to study strong solutions

of fractional Kolmogorov equations and characterize a stochastic representation of such solutions via time-

changed (through the inverse of a Lèvy subordinator) Markov processes [15,25–27]. In the discrete case,

fractional (time-changed) processes have been widely considered via different approaches. First of all, a

fractional version of the Poisson process has been introduced using Mittag-Leffler distributed inter-jump

times instead of exponential ones [2,23,24,29,30] (this approach has been also applied to general counting

processes [12]). Such process can be also obtained using a fractional differential-difference equations ap-

proach [7,8] and by means of a time-change [31].

With the same approach, some classes of fractional birth-death processes have been introduced and studied

[37–39]: in these papers, properties of these processes are deduced from a fractional version of their Kol-

mogorov forward equation. Let us recall that fractional processes are shown to be interesting in different

application contexts, as, for instance, queueing theory ([4,5,11]).

Here, following the approach of [25], we show the existence of strong solutions for the time-fractional coun-

terpart of the Kolmogorov backward and forward equations of immigration-death processes with the aid of

Charlier polynomials and link them to a time-changed immigration-death process.

In particular:

• in Section 2 we give some basics on birth-death processes;

• in Section 3 we give some notions on the classical immigration-death process, defining its generator and

its forward operator;

• in Section 4 we show the existence of strong solutions of the time-fractional Kolmogorov backward and

forward equations under suitable assumptions on the initial data;

• in Section 5 we introduce a fractional immigration-death process and show how the strong solutions

of the time-fractional Kolmogorov backward and forward equations can be interpreted by using such

process;

• in Section 6, we show the uniqueness of such strong solutions by using the aforementioned stochastic rep-

resentation and a uniqueness criterion for uniformly bounded solutions [4], under suitable assumptions

on the initial data;

• finally, in Section 7 we give the limit distribution of the constructed fractional immigration-death process

and we discuss its autocovariance function.

2. Birth-death processes

Let us give some information about general birth-death processes, following the lines of [18,19]. We say

that a time-homogeneous continuous time Markov chain N(t) defined on N0 = {0, 1, 2, . . . } is a birth-death

process if and only if, denoting with

p(t, x; y) = P (N(t + s) = x|N(s) = y), x, y = 0, 1, 2, . . . ; t, s ≥ 0,

the transition probability function and P (t) = (p(t, x; y))x,y≥0 the transition probability matrix, it is solution

of the following two differential equations
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P ′(t) = A P (t), P ′(t) = P (t) A, (1)

with initial condition P (0) = I and the infinite matrix A = (A(x, y))x,y≥0 is such that:

A(x, x + 1) = B(x) x ≥ 0, A(x, x) = −(B(x) + D(x)) x ≥ 0,

A(x, x − 1) = D(x) x ≥ 1, A(x, y) = 0 |x − y| > 1,

where B(x) > 0 for any x ≥ 0, D(x) > 0 for any x ≥ 1 and D(0) ≥ 0. Equations (1) are called respectively

backward and forward Kolmogorov equation. In order to obtain P (t) we need to impose other two properties:

Pi,j(t) ≥ 0,

+∞∑

j=0

Pi,j(t) ≤ 1.

In particular it is possible to show that N(t) is a birth-death process if and only if its generator is given by:

G f(x) = (B(x) − D(x))∇+f(x) + D(x)∆f(x)

= (B(x) − D(x))∇−f(x) + B(x)∆f(x),

for x = 0, 1, 2, . . . and f(−1) = 0, where the difference-type operators ∇± and ∆ are defined as

∇+f(x) = f(x + 1) − f(x) ∀x ∈ N0

∇−f(x) = f(x) − f(x − 1) ∀x ∈ N0

∆f(x) = f(x + 1) − 2f(x) + f(x − 1) ∀x ∈ N0,

and we consider (P (t))t≥0 as a c0-semigroup acting on a suitable Banach sequence space (b, ‖·‖). In particular

the generator G can be represented in terms of the infinite matrix A, whenever f ∈ Dom(G), x ∈ N0 and

f(x) is considered as a column vector, as G f(x) = (A f)(x), where (A f)(x) is the x-th term of the sequence

A f .

The following discrete versions of the Leibnitz rule will be useful

∇+(fg)(x) = f(x + 1)∇+g(x) + g(x)∇+f(x) (2)

∇−(fg)(x) = f(x)∇−g(x) + g(x − 1)∇−f(x) (3)

∆(fg)(x) = f(x + 1)∇+g(x) − f(x − 1)∇−g(x) + g(x)∆f(x). (4)

The backward Kolmogorov equation becomes, for fixed x ∈ N0

{
p′(t, x; y) = G p(t, x; y)

p(0, x; y) = δx,y,

where G works on y and

δx,y =

{
1 x = y

0 otherwise,

is Kronecker symbol.

Moreover we can find a forward operator
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L f(x) = −∇−((B(·) − D(·))f)(x) + ∆(D(·)f)(x)

= −∇+((B(·) − D(·))f)(x) + ∆(B(·)f)(x),

so that for fixed y ∈ N0 the forward Kolmogorov equation becomes

{
p′(t, x; y) = L p(t, x; y)

p(0, x; y) = δx,y,

where L works on x. As for G, if we consider f ∈ Dom(L), y ∈ N0 and f(y) as a row vector, we can represent

L in terms of the infinite matrix A as L f(y) = (f A)(y) where (f A)(y) is the y-th term of the sequence

f A.

We will focus on the case in which the generator is in the form:

G = p1(x)∇+ + p2(x)∆,

where p1(x) and p2(x) are polynomials such that deg p1(x) ≤ 1 and deg p2(x) ≤ 2. Then we can find the

classical orthogonal polynomials of discrete variable as solution of the equation

G f(x) = −λf(x),

for some λ, which is an hypergeometric type difference equation. The values that these polynomials assume

on a lattice {D1, D1 + 1, . . . , D2} for some D1, D2 fully characterize the transition probability and the

solutions of the backward and forward Kolmogorov equations. Moreover, these polynomials respect an

orthogonality relation in ℓ2(m) for some measure m called the spectral measure, which is an atomic measure

on the lattice. In this case, the spectral measure coincides with the invariant measure of the process N(t)

and its mass function m(x) = m({x}) is solution of a discrete analogue of the Pearson equation

∇+(p2(x) m(x)) = p1(x) m(x).

For p1(x) = a − bx, we can recognize the following three class of solvable birth-death processes:

• For p2(x) = bx we have the Immigration-Death process;

• For p2(x) = 1
2σ2x where 1

2σ2 6= b we have a negative binomial process;

• For p2(x) = 1
2σ2x(A − x) we have a hypergeometric process.

However, we will focus only on the first case for the choice of the polynomials p1 and p2.

3. Immigration-death processes

Fix a, b > 0 the operator

G = (a − bx)∇− + a∆;

which is a discrete version of the Ornstein-Uhlenbeck generator on N0.

A continuous time Markov chain N(t) defined on N0 that admits G as generator will be called immigration-

death process (or also M/M/∞ queue: see, for instance, [42]). This process can be generalized to a particular

birth-death process with values on a 1-dimensional lattice called Charlier process (see [1]), but we will focus

on the N0-valued one. For such process, the backward Kolmogorov equations are in the form
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du

dt
(t, x) = G u(t, x).

Moreover, from G we can recognize the birth and death parameters as

B(x) = a, D(x) = bx,

and thus the forward operator as

L f(x) = −∇+((a − bz)f(z))(x) + a∆f(x),

where with ∇+((a − bz)f(z))(x) we intend the operator ∇+ applied to the function z 7→ (a − bz)f(z) and

then evaluated in x.

The operators G and L can be represented as infinite matrices. In particular we have G = (G(x, y))x,y≥0

where, for x > 0

G(x, x − 1) = bx G(x, x) = −(a + bx) G(x, x + 1) = a

G(0, 0) = −a G(0, 1) = a

and L = (L(x, y))x,y≥0 where, for x > 0

L(x, x − 1) = a L(x, x) = −(a + bx) L(x, x + 1) = b(x + 1)

L(0, 0) = −a L(0, 1) = b.

The stationary measure of the process N(t) is the Poisson distribution of parameter α = a
b
, given by:

m({x}) = e−α αx

x!
, x = 0, 1, 2, . . . .

Now let us introduce the main Banach sequence spaces we will use through this paper:

• Let us denote with ℓ∞ the Banach space of bounded functions f : N0 → R equipped with the norm

‖f‖ℓ∞ = sup
x∈N0

|f(x)|;

• Let us denote with c0 the subspace of ℓ∞ of bounded functions f : N0 → R such that limx→+∞ f(x) = 0;

• Let us denote with ℓ1 the Banach space of the functions f : N0 → R such that

‖f‖ℓ1 =

+∞∑

x=0

|f(x)| < +∞.

• Let us denote with ℓ2 the Hilbert space of functions f : N0 → R such that

‖f‖2
ℓ2 :=

+∞∑

x=0

f2(x) < +∞

equipped with the scalar product

〈f, g〉ℓ2 =
+∞∑

x=0

f(x)g(x)
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• Let us denote with ℓ2(m) the Hilbert space of functions f : N0 → R such that

‖f‖2
ℓ2(m) :=

+∞∑

x=0

m({x})f2(x) < +∞

equipped with the scalar product

〈f, g〉ℓ2(m) =

+∞∑

x=0

m({x})f(x)g(x).

Remark 3.1. Let us observe that ℓ2 is continuously included in ℓ2(m). Consider a function f ∈ ℓ2. Then

+∞∑

x=0

m(x)f2(x) = e−α

+∞∑

x=0

αx

x!
f2(x).

Now, let us observe that the sequence x 7→ αx

x! converges to 0 as x → +∞, hence there exists a constant

C(α) such that αx

x! ≤ C(α). Thus

e−α

+∞∑

x=0

αx

x!
f2(x) ≤ e−αC(α) ‖f‖2

ℓ2 .

Moreover, since ℓ1 is continuously included in ℓ2 (see [45]), we have that ℓ1 is also continuously included in

ℓ2(m). Finally, let us observe that, being m a probability measure, also ℓ∞ (and then c0) is continuously

embedded in ℓ2(m), with embedding of norm 1.

Concerning the semigroup (P (t))t≥0, we consider it acting on ℓ2(m) and then Dom(G) = Dom(L) = ℓ2(m).

From the matrix representation of the generator G and the forward operator L one can prove the following

Lemma.

Lemma 3.2. The operators G : ℓ2(m) 7→ ℓ2(m) and L : ℓ2(m) 7→ ℓ2(m) are continuous.

Proof. The proof is a straightforward consequence of Schur’s test (see [17]). 2

Moreover, another interesting property that follows from the matrix representation of G is given by the

following Lemma.

Lemma 3.3. The process N(t) is a Feller process, i.e. the semigroup (P (t))t≥0 is strongly continuous, con-

tractive and positive on c0 and P (t)1 = 1 for any t ≥ 0, where 1(x) = 1 for any x ∈ N0.

Proof. The proof is a straightforward consequence of [13, Corollary 3.2, Chapter 8]. 2

Let us also observe that the spectrum of G is given by the sequence λn = −bn, while the eigenfunctions

are defined as x 7→ Cn(x, α) where α = a
b

and Cn are the Charlier polynomials (see [34,42]), which are

defined by the generating function

+∞∑

n=0

Cn(x, α)
tn

n!
= e−t

(
1 +

t

α

)x

, t ∈ R

or via the three terms recurrence relations:
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−xCn(x, α) = αCn+1(x, α) − (n + α)Cn(x, α) + nCn−1(x, α), n ≥ 0,

where C0(x, α) ≡ 1 and C−1(x, α) ≡ 0, or

Cn+1(x, α) =
1

α
[xCn(x − 1, α) − Cn(x, α)] .

The first few Charlier polynomials are

C0(x, α) = 1, C1(x, α) =
x

α
− 1, C2(x, α) =

x(x − 1)

α2
− 2

x

α
+ 1, . . .

The orthogonality relation between the polynomials Cn is given by

+∞∑

x=0

Cn(x, α)Cm(x, α) m({x}) =
n!

αn
δn,m,

where δn,m is the Kronecker delta symbol. Thus, posing d2
n = n!

αn , we have that

‖Cn(·, α)‖ℓ2(m) = dn.

Let us then define an orthonormal system of polynomials given by

Qn(x) =
Cn(x, α)

dn

. (5)

Let us also recall that we can exploit the decomposition of a function g ∈ ℓ2(m) by means of the orthonor-

mal basis {Qn}n∈N0
. Indeed for any g ∈ ℓ2(m), given the decomposition g(x) =

∑+∞

n=0 gnQn(x) where

gn = 〈g, Qn〉ℓ2(m), the sequence {gn}n∈N0
∈ ℓ2.

By using such orthonormal system of polynomials, it is well known (see [18,19]) that the transition proba-

bility function of the immigration-death process is given by

p(t, x1; x0) = m(x1)

∞∑

n=0

e−bntQn(x0)Qn(x1),

where m(x) = m({x}) and is the fundamental solution of the backward Kolmogorov equation, that is to

say that the Cauchy problems

{
du
dt

(t, x) = G u(t, x)

u(0, x) = g(x),

and

{
dv
dt

(t, x) = L v(t, x)

v(0, x) = f(x),

with g, f/m ∈ ℓ2(m) admit strong solutions v given by

u(t, x) =

+∞∑

y=0

p(t, y; x)g(y) =

+∞∑

n=0

gne−bntQn(x), (6)
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and

v(t, x) =
+∞∑

y=0

p(t, x; y)f(y) = m(x)
+∞∑

n=0

fne−bntQn(x),

where g(x) =
∑+∞

n=0 gnQn(x) and f(x)/m(x) =
∑+∞

n=0 fnQn(x) and the convergence is uniform. With strong

solutions, we intend here that both the functions t ∈ [0, +∞) 7→ u(t, ·) ∈ ℓ2(m) and t ∈ [0, +∞) 7→ v(t, ·) ∈
ℓ2(m) belong to C([0, +∞); ℓ2(m)) ∩ C1((0, +∞); ℓ2(m)) and the equations hold pointwise.

In particular from (6) one easily obtains that

E[N(t)|N(0) = x] = xe−bt + α(1 − e−bt). (7)

4. Strong solutions in the fractional case

Let us introduce the fractional derivative operator (see [28]). Fix ν ∈ (0, 1) and consider the Caputo

fractional derivative given by

∂νu

∂tν
(t, x) =

1

Γ(1 − ν)


 ∂

∂t

t∫

0

(t − τ)−νu(τ, x)dτ − u(0, x)

tν


 , (8)

that, if u is differentiable in t, can be written also as

∂νu

∂tν
(t, x) =

1

Γ(1 − ν)

t∫

0

(t − τ)−ν ∂u

∂t
(τ, x)dτ,

and set, for ν = 1, ∂ν u
∂tν = ∂u

∂t
. Note that the classes of functions for which the Caputo fractional derivative

is well defined are discussed in [32, Section 2.2 and 2.3] (in particular one can use the class of absolutely

continuous functions).

Denote with

ũ(s, x) =

+∞∫

0

e−stu(t, x)dt, s > 0

the one-sided Laplace transform of u with respect to t. Thus we have that the Laplace transform of ∂ν u
∂tν is

given by

sν ũ(s, x) − sν−1u(0+, x).

We want to find strong solutions for fractional Cauchy problems in the form:

{
∂ν u
∂tν (t, x) = G u(t, x);

u(0, x) = g(x),
(9)

for g ∈ ℓ2(m) with the decomposition g(x) =
∑+∞

n=0 gnQn(x). A strong solution of the fractional Cauchy

problem (9) will be a function u : [0, +∞) × N0 → R such that t 7→ u(t, ·) belongs to C([0, +∞), ℓ2(m)),
∂ν u
∂tν (t, x) exists for any t > 0 and x ∈ N0, t 7→ ∂ν u

∂tν (t, ·) belongs to C((0, +∞); ℓ2(m)) and the equation

holds pointwise.
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The main idea is to find a solution via separation of variables. Indeed, we can suppose that u(t, x) = T (t)ϕ(x)

and then observing that, if u is solution of the first equation of (9), then

ϕ(x)
dνT

dtν
(t) = T (t) G ϕ(x),

that leads, if ϕ and T do not vanish, to the two coupled equations:

{
G ϕ(x) = −λϕ(x),
dν T
dtν (t) = −λT (t),

which are two eigenvalue problems. In particular we have observed that the first one admits a non zero

solution if and only if λ = −bn for some n ∈ N0 and in that case we can consider ϕ(x) = Qn(x). Moreover,

the second problem admits a solution in the form

T (t) = Eν(−λtν),

where Eν is the Mittag-Leffler function defined as

Eν(z) =
+∞∑

j=0

zj

Γ(1 + νj)
, z ∈ C (10)

(see, for instance, [21]). Thus the idea is to find a solution in the form

u(t, x) =

+∞∑

n=0

unEν(−bntν)Qn(x).

Moreover, the initial condition suggests that

+∞∑

n=0

unQn(x) =
+∞∑

n=0

gnQn(x),

so we have un = gn and then we expect the solution to be

u(t, x) =
+∞∑

n=0

gnEν(−bntν)Qn(x). (11)

These heuristic arguments have shown us how should the solution look like, hence we have to prove that

such function u is the solution we are searching for.

With the following Lemma, we will first exhibit the fundamental solution of the fractional Cauchy problem

in Eq. (9).

Lemma 4.1. Consider the series

pν(x, t; y) = m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)Qn(y), (12)

where Qn and Eν are the functions defined in Equations (5) and (10) and m(x) = m({x}). Then such series

converges for fixed t > 0 and x, y ∈ N0.
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Proof. To show the convergence of pν(x, t; y), we need the following self-duality property of the Charlier

polynomials (see [34, Equation 2.7.10a]):

Cn(x, α) = Cx(n, α), ∀n, x ∈ N0. (13)

From this relation we have

pν(x, t; y) = m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)Qn(y)

= m(x)
+∞∑

n=0

1

d2
n

Eν(−bntν)Cn(x, α)Cn(y, α)

= m(x)
+∞∑

n=0

1

d2
n

Eν(−bntν)Cx(n, α)Cy(n, α),

hence we need to show the convergence of the series

+∞∑

n=0

1

d2
n

Eν(−bntν)Cx(n, α)Cy(n, α).

Now, let us observe that equation (13) made us fix the degrees of the polynomials involved in the series.

Thus, let us denote with zx and zy the last real zeroes of Cx(·, α) and Cy(·, α) and then let us consider

n0 > max{zx, zy}.

We will equivalently prove that the series

+∞∑

n=n0

1

d2
n

Eν(−bntν)Cx(n, α)Cy(n, α) (14)

converges. To do this, we need to recall another property of the Charlier polynomials. In particular it is

known (see [34, Table 2.3]) that the director coefficient of Cn(·, α) is given by

cn =
1

(−α)n
.

In particular, recalling that α = a
b
, α > 0 since a, b > 0 and then cn > 0 if n is even and cn < 0 if n is odd.

By using this observation, we can distinguish two cases:

i If x + y is even, then, since cxcy > 0, for any n ≥ n0 Cx(n, α)Cy(n, α) > 0 and then the series (14)

admits only positive summands. Recalling that Eν(−bntν) ≤ 1 we obtain

+∞∑

n=n0

1

d2
n

Eν(−bntν)Cx(n, α)Cy(n, α) ≤
+∞∑

n=n0

1

d2
n

Cx(n, α)Cy(n, α)

where the RHS series converges since

+∞∑

n=0

1

d2
n

Cx(n, α)Cy(n, α) = eα

+∞∑

n=0

αn

n!
e−αCx(n, α)Cy(n, α) = eαd2

xδx,y. (15)
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ii If x + y is odd, then, since cxcy < 0, for any n ≥ n0 Cx(n, α)Cy(n, α) < 0 and then the series (14)

admits only negative summands. As before, we obtain

+∞∑

n=n0

1

d2
n

Eν(−bntν)Cx(n, α)Cy(n, α) ≥
+∞∑

n=n0

1

d2
n

Cx(n, α)Cy(n, α)

where the RHS series converges for equation (15). 2

With Lemma 4.1, we have exploited the fundamental solution of the equation in (9). Now we have to

show that a function in the form (11) is a solution for such fractional Cauchy problem. To do this, let us

first show a technical lemma.

Lemma 4.2. For any t0 > 0, there exists a constant K(t0, ν) such that

bnEν(−bntν) ≤ K(t0, ν), t ∈ [t0, +∞).

Proof. Let us use the uniform estimate for the Mittag-Leffler function given in [44, Theorem 4]:

bnEν(−bntν) ≤ bn

1 + bntν

Γ(1+ν)

.

Consider the function

f(x) =
x

1 + Cx
, C =

tν

Γ(1 + ν)
.

Thus we have

f ′(x) =
1

(1 + Cx)2
> 0

hence the function f is strictly increasing. So we have

f(x) ≤ lim
x→+∞

f(x) =
1

C
=

Γ(1 + ν)

tν
,

and then

bnEν(−bntν) ≤ bn

1 + bntν

Γ(1+ν)

≤ Γ(1 + ν)

tν
≤ Γ(1 + ν)

tν
0

=: K(t0, ν). 2

Now let us exhibit a strong solution for our fractional Cauchy problem.

Theorem 4.3. Let g ∈ ℓ2(m) with decomposition g(x) =
∑+∞

n=0 gnQn(x). Then the fractional difference-

differential Cauchy problem

{
∂ν u
∂tν (t, x) = G u(t, x)

u(0, x) = g(x),
(16)

admits a strong solution u in the form

u(t, x) =

+∞∑

y=0

pν(t, y; x)g(y) =

∞∑

n=0

Eν(−bntν)Qn(x)gn. (17)
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Proof. First let us observe that obviously if u is in the form (17), then u(0, x) = g(x).

Now, let us notice that

G Eν(−bntν)Qn(x)gn = Eν(−bntν)gn G Qn(x) = −bnEν(−bntν)gnQn(x) = gnQn(x)
dνEν(−bntν)

dtν
.

Hence we need to show that the series in (17) is convergent at least uniformly in t and that we can change

the series with the operators.

Starting from the convergence of the series, by using Cauchy-Schwartz inequality we have

+∞∑

n=0

|Eν(−bntν)Qn(x)gn| ≤
+∞∑

n=0

|Qn(x)gn|

≤
(

+∞∑

n=0

αn

n!
C2

n(x, α)

) 1

2
(

+∞∑

n=0

g2
n

) 1

2

= ‖g‖ℓ2(m)

(
+∞∑

n=0

αn

n!
C2

x(n, α)

) 1

2

= ‖g‖ℓ2(m) e
α

2 dx,

(18)

hence the series in (17) totally converges.

To show that the series converges in ℓ2(m) for any t > 0, let us recall that gn ∈ ℓ2 by definition. Let us

consider N ∈ N and define

uN (t, x) =
N∑

n=0

Eν(−bntν)Qn(x)gn.

Then we have, for any N, M ∈ N with N < M , by also using Lemma 4.2

‖uN (t, ·) − uM (t, ·)‖2
ℓ2(m) =

∥∥∥∥∥

M∑

n=N

Eν(−bntν)Qn(·)gn

∥∥∥∥∥

2

ℓ2(m)

=
M∑

n=N

E2
ν(−bntν)g2

n

≤
M∑

n=N

g2
n,

that implies the convergence in ℓ2(m) of the sequence uN (t, ·) by Cauchy’s criterion.

Now we need to show that one can exchange the operators with the series. To do that, let us first observe

that

t∫

0

(t − τ)−νu(τ)dτ =

t∫

0

u(τ)

ν − 1
d(t − τ)1−ν ,

and since (t − τ)1−ν is strictly decreasing in [0, t] we can use [40, Theorem 7.16] with the total convergence

of the series (17) to obtain
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t∫

0

(t − τ)−ν

+∞∑

n=0

Eν(−bnτν)Qn(x)gndτ =

+∞∑

n=0

t∫

0

(t − τ)−νEν(−bnτν)Qn(x)gndτ.

Now we want to use the following relation:

d

dt

t∫

0

(t − τ)−ν

+∞∑

n=0

Eν(−bnτν)Qn(x)gndτ =
d

dt

+∞∑

n=0

t∫

0

(t − τ)−νEν(−bnτν)Qn(x)gndτ

=
+∞∑

n=0

d

dt

t∫

0

(t − τ)−νEν(−bnτν)Qn(x)gndτ,

but to do this, by using [40, Theorem 7.17], we need to show the uniform convergence of

+∞∑

n=0

d

dt

t∫

0

(t − τ)−νEν(−bnτν)Qn(x)gndτ,

in any compact interval included in (0, +∞). Hence, by definition of Caputo fractional derivative, as given

in (8), we actually need to show the uniform convergence of

+∞∑

n=0

dν

dtν
Eν(−bntν)Qn(x)gn (19)

in any interval of the form [t0, +∞). To do this, let us recall that dν

dtν Eν(−bntν) = −bnEν(−bntν) and thus

we need to show the uniform convergence of

+∞∑

n=0

−bnEν(−bntν)Qn(x)gn.

Thus, fix t0 > 0 and observe that

+∞∑

n=0

|bnEν(−bntν)Qn(x)gn| ≤ K(t0, ν)
+∞∑

n=0

|Qn(x)gn|

≤ K(t0, ν) ‖g‖ℓ2(m) e
α

2 dx, t ∈ [t0, +∞),

where the first inequality follows from Lemma 4.2 and the second inequality from Cauchy-Schwartz inequal-

ity as done before in (18). Hence we have shown the total convergence of (19) in any interval of the form

[t0, +∞).

We have already shown that
∑+∞

n=0 Eν(−bntν)Qn(x)gn totally converges with respect to t: in the same way

we have that also
∑+∞

n=0 Eν(−bntν)Qn(x − 1)gn and
∑+∞

n=0 Eν(−bntν)Qn(x + 1)gn totally converge with

respect to t.

Now, observe that
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∇−

+∞∑

n=0

Eν(−bntν)Qn(x)gn =

+∞∑

n=0

Eν(−bntν)Qn(x)gn −
+∞∑

n=0

Eν(−bntν)Qn(x − 1)gn

= lim
N→+∞

N∑

n=0

Eν(−bntν)Qn(x)gn − lim
N→+∞

N∑

n=0

Eν(−bntν)Qn(x − 1)gn

= lim
N→+∞

(
N∑

n=0

Eν(−bntν)Qn(x)gn −
N∑

n=0

Eν(−bntν)Qn(x − 1)gn

)

= lim
N→+∞

N∑

n=0

Eν(−bntν)∇−Qn(x)gn

=
+∞∑

n=0

Eν(−bntν)∇−Qn(x)gn,

(20)

and in the same way one can show that

∆
+∞∑

n=0

Eν(−bntν)Qn(x)gn =
+∞∑

n=0

Eν(−bntν)∆Qn(x)gn.

By using these last two relations, it is easy to show that

G
+∞∑

n=0

Eν(−bntν)Qn(x)gn =
+∞∑

n=0

Eν(−bntν) G Qn(x)gn.

Finally we have that

dν

dtν

+∞∑

n=0

Eν(−bntν)Qn(x)gn =

+∞∑

n=0

dν

dtν
Eν(−bntν)Qn(x)gn

=
+∞∑

n=0

G Eν(−bntν)Qn(x)gn

= G
+∞∑

n=0

Eν(−bntν)Qn(x)gn,

and we have shown the pointwise relations.

Moreover, ∂ν u
∂tν (t, x) belongs to ℓ2(m) by definition of G. By continuity of the operator G, if we show that

(t 7→ u(t, ·)) ∈ C([0, +∞); ℓ2(m)), then also
(
t 7→ ∂ν u

∂tν (t, ·)
)

∈ C((0, +∞); ℓ2(m)). Let us show the continuity

of t 7→ u(t, ·) at 0, since for any point t ∈ (0, +∞) the proof is analogous. To do this, let us observe that,

since all the series involved are uniformly convergent

‖u(t, ·) − g(·)‖ℓ2(m) =

∥∥∥∥∥

+∞∑

n=1

(Eν(−bntν) − 1)Qn(·)gn

∥∥∥∥∥
ℓ2(m)

=
+∞∑

n=1

(1 − Eν(−bntν))2g2
n.

Now let us fix ε > 0 and consider nε ≥ 1 such that
∑+∞

n=nε
g2

n ≤ ε. Then we have
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‖u(t, ·) − g(·)‖ℓ2(m) ≤ (1 − Eν(−bnεtν))2 ‖g‖ℓ2(m) + ε,

thus, sending t → 0+ and ε → 0+ we conclude the proof. 2

The same strategy can be used to exhibit a strong solution to the fractional forward Kolmogorov equation.

Theorem 4.4. Let f be a function such that f/m ∈ ℓ2(m) with decomposition f(x)/m(x) =
∑+∞

n=0 fnQn(x).

Then the fractional difference-differential Cauchy problem

{
∂ν u
∂tν (t, x) = L u(t, x)

u(0, x) = f(x),
(21)

admits a strong solution u = u(t, x) given by

u(t, x) =

+∞∑

y=0

pν(t, x; y)f(y) = m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)fn.

Proof. Since {fn}n∈N ∈ ℓ2, then, from the previous theorem, we already know that we can exchange

operators and series. We only need to prove that the single summand of the series is a solution of the

equation and that u(0, x) = f(x).

Let us first notice that

u(0, x) = m(x)
+∞∑

n=0

Qn(x)fn = m(x)
f(x)

m(x)
= f(x),

thus the function u satisfies the given initial condition.

To show that the single summand is solution of the equation, let us write L as

L h(x) = −∇−((a − bz)h(z))(x) + ∆(bzh(z))(x),

for a generic function h.

Moreover, let us observe that

G h(x) = (a − bx)∇−h(x) + a∆h(x)

= ah(x) − ah(x − 1) − bx∇−h(x) + ah(x + 1) − 2ah(x) + ah(x − 1)

= ah(x + 1) − ah(x) − bx∇−h(x)

= a∇+h(x) − bx∇−h(x).

Let us also recall that m solves a discrete Pearson equation:

∇+(b · m(z))(x) = (a − bx)m(x). (22)

Now, let us observe that

L(m(z)Qn(z)Eν(−bntν)fn)(x) = fnEν(−bntν) L(m(z)Qn(z))(x),

hence we will only study L(m(·)Qn(·)). In particular we have

L(m(z)Qn(z))(x) = −∇−((a − bz)m(z)Qn(z))(x) + ∆(bzm(z)Qn(z))(x),
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hence, by using the Discrete Leibnitz Rule ((3) and (4)), we obtain

L(m(z)Qn(z))(x) = −[Qn(x)∇−((a − bz)m(z))(x) + (a − b(x − 1))m(x − 1)∇−Qn(x)]

+ Qn(x)∆(bzm(z))(x) + b(x + 1)m(x + 1)∇+Q(x)+

− b(x − 1)m(x − 1)∇−Qn(x)

= Qn(x)[−∇−((a − bz)m(z))(x) + ∆(bzm(z))(x)]+

− am(x − 1)∇−Qn(x) + b(x + 1)m(x + 1)∇+Qn(x).

First let us observe that ∆ = ∇−∇+, then

−∇−((a − bz)m(z)) + ∆(bzm(z)) = −∇−((a − bz)m(z)) + ∇−∇+(bzm(z))

= ∇−(∇+(bzm(z))(x) − (a − bx)m(x)) = 0,

since m satisfies equation (22). Moreover

am(x − 1) = a
αx−1

(x − 1)!
e−α =

a

α
xm(x) = bxm(x),

while

b(x + 1)m(x + 1) = b(x + 1)
αx+1

(x + 1)!
e−α = bαm(x) = am(x),

thus

L(m(z)Qn(z))(x) = −bxm(x)∇−Qn(x) + am(x)∇+Qn(x)

= m(x)[∇+Qn(x) − bx∇−Qn(x)]

= m(x) G Qn(x).

Finally, we obtain:

L(m(z)Qn(z)Eν(−bntν)fn) = fnEν(−bntν) L(m(z)Qn(z))

= fnEν(−bntν)m(x) G Qn(x)

= −bnfnEν(−bntν)m(x)Qn(x)

= fnm(x)Qn(x)
dνEν(−bntν)

dtν

=
dν

dtν
(fnm(x)Qn(x)Eν(−bntν)). 2

Remark 4.5. It is easy to see that pν(t, x; y) is strong solution of the fractional backward equation

{
dν pν

dtν (t, x; y) = G pν(t, x; y)

pν(0, x; y) = δx,y,
(23)

where G operates on y, and is also strong solution of the fractional forward equation

{
dν pν

dtν (t, x; y) = L pν(t, x; y)

pν(0, x; y) = δx,y,
(24)
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where L operates on x. In particular, as shown by Theorems 4.3 and 4.4, it is the fundamental solution of

such equations.

5. Stochastic representation of the solutions

Now we want to exhibit a process whose “transition probability” is the fundamental solution pν(t, x; y)

we have described previously.

To do this, let us consider a classical immigration-death process N1(t) (as defined before). Let us also

consider a ν-stable subordinator σν(t) with Laplace transform

E[e−sσν (t)] = e−tsν

, s > 0, ν ∈ (0, 1)

and its inverse process (or first passage time process) Lν(t) defined as

Lν(t) := inf{s > 0 : σν(s) > t}.

The latter admits density (see [2,33])

P (Lν(t) ∈ dy) = fν(y, t)dy =
t

ν

1

y1+ 1

ν

gν

(
t

y
1

ν

)
dy y ≥ 0, t > 0,

where gν(x) is the density of σν(1) given by

gν(x) =
1

π

+∞∑

k=1

(−1)k+1 Γ(νk + 1)

k!

1

xνk+1
, x ≥ 0.

Alternatives for fν(y, t) are given in [20,22].

Thus, let us define the fractional immigration-death process as Nν(t) := N1(Lν(t)). This is a semi-Markov

process as defined in [16]. However, we say that such process admits a transition probability mass pν(t, x; y)

if for any B ⊆ N0:

P (Nν(t) ∈ B| Nν(0) = y) =
∑

x∈B

pν(t, x; y).

Hence, we can use such process to characterize the fundamental solution we found in the previous section.

Theorem 5.1. The process Nν(t) admits a transition probability mass pν(t, x; y) in the form (12).

Proof. Let us first recall that (see, for instance, [33]) the process Lν(t) admits a density ft(τ) = P (Lν(t) ∈
dτ). Moreover, let us recall (see [9]) that

+∞∫

0

e−sτ ft(τ)dτ = Eν(−stν), s > 0.

Now, observe that for any B ⊆ N0, since N1(t) admits a transition probability mass, we have
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P (Nν(t) ∈ B|Nν(0) = y) =

+∞∫

0

P (N1(τ) ∈ B|N1(0) = y)ft(τ)dτ

=

+∞∫

0

∑

x∈B

p1(τ, x; y)ft(τ)dτ.

Now, if B is a finite set, we have

+∞∫

0

∑

x∈B

p1(τ, x; y)ft(τ)dτ =
∑

x∈B

+∞∫

0

p1(τ, x; y)ft(τ)dτ.

If B is infinite, let us consider the sets Im := {x ∈ N0 : x ≤ m} and Bm := B ∩ Im. Thus, Bm is finite and

then

+∞∫

0

∑

x∈Bm

p1(τ, x; y)ft(τ)dτ =
∑

x∈Bm

+∞∫

0

p1(τ, x; y)ft(τ)dτ.

Since p1(τ, x; y)ft(τ) is non-negative, we can use the monotone convergence theorem to obtain, taking the

limit as m → +∞

+∞∫

0

∑

x∈B

p1(τ, x; y)ft(τ)dτ =
∑

x∈B

+∞∫

0

p1(τ, x; y)ft(τ)dτ.

Now let us only consider

+∞∫

0

p1(τ, x; y)ft(τ)dτ,

and recall that (see [18,19])

p1(τ, x; y) = m(x)
+∞∑

n=0

e−bnτ Qn(x)Qn(y).

Hence we have

+∞∫

0

p1(τ, x; y)ft(τ)dτ = m(x)

+∞∫

0

+∞∑

n=0

e−bnτ Qn(x)Qn(y)ft(τ)dτ.

Now we have to show that we can exchange integral and series. To do this, let us first observe that

+∞∑

n=0

e−bnτ Qn(x)Qn(y)ft(τ) =
+∞∑

n=0

αn

n!
e−bnτ Cn(x, α)Cn(y, α)ft(τ)

=

+∞∑

n=0

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ).
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Let us consider zx and zy the last real zeros of Cx(n, α) and Cy(n, α) and consider a n0 ∈ N such that

n0 > max{zx, zy}. Thus we have

+∞∑

n=0

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ) =

n0∑

n=0

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)

+

+∞∑

n=n0+1

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ),

and

+∞∫

0

+∞∑

n=0

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ =

+∞∫

0

n0∑

n=0

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ

+

+∞∫

0

+∞∑

n=n0+1

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ

=

n0∑

n=0

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ

+

+∞∫

0

+∞∑

n=n0+1

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ.

Now, fix τ0 > 0 and observe that for τ > τ0 and n ≥ n0 + 1 the function

(τ, n) 7→ αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)

does not change sign, by Fubini’s theorem (see [41, Theorem 8.8]) we have that

+∞∫

τ0

+∞∑

n=n0+1

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ =

+∞∑

n=n0+1

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

τ0

e−bnτ ft(τ)dτ.

Now we have to pass to the limit as τ0 → 0. To do this, let us observe that

+∞∫

τ0

e−bnτ ft(τ)dτ ≤
+∞∫

0

e−bnτ ft(τ)dτ = Eν(−bntν),

and let us distinguish two cases.

i) If x + y is even,

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

τ0

e−bnτ ft(τ)dτ ≥ 0,

and in particular we have
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αn

n!
Cx(n, α)Cy(n, α)

+∞∫

τ0

e−bnτ ft(τ)dτ ≤ αn

n!
Cx(n, α)Cy(n, α)Eν(−bntν)

≤ αn

n!
Cx(n, α)Cy(n, α),

where

+∞∑

n=n0+1

αn

n!
Cx(n, α)Cy(n, α) < +∞,

as we observed before. Then we can use dominated convergence theorem to take the limit as τ0 → 0

and obtain

+∞∫

0

+∞∑

n=n0+1

Cx(n, α)Cy(n, α)e−bnτ ft(τ)dτ =

+∞∑

n=n0+1

Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ.

ii) If x + y is odd, then

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

τ0

e−bnτ ft(τ)dτ ≤ 0,

and in particular we have

−αn

n!
Cx(n, α)Cy(n, α)

+∞∫

τ0

e−bnτ ft(τ)dτ ≤ −αn

n!
Cx(n, α)Cy(n, α)Eν(−bntν)

≤ −αn

n!
Cx(n, α)Cy(n, α),

where

−
+∞∑

n=n0+1

αn

n!
Cx(n, α)Cy(n, α) < +∞,

as we observed before. Then we can use dominated convergence theorem to take the limit as τ0 → 0

and obtain

+∞∫

0

+∞∑

n=n0+1

Cx(n, α)Cy(n, α)e−bnτ ft(τ)dτ =

+∞∑

n=n0+1

Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ.

Hence in general we have for any x, y ∈ N0

+∞∫

0

+∞∑

n=n0+1

Cx(n, α)Cy(n, α)e−bnτ ft(τ)dτ =
+∞∑

n=n0+1

Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ

and then
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+∞∫

0

p1(τ, x; y)ft(τ)dτ =

+∞∫

0

m(x)

+∞∑

n=0

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ

= m(x)

n0∑

n=0

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ

+ m(x)

+∞∫

0

+∞∑

n=n0+1

αn

n!
e−bnτ Cx(n, α)Cy(n, α)ft(τ)dτ

= m(x)

n0∑

n=0

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ

+ m(x)
+∞∑

n=n0+1

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ

= m(x)

+∞∑

n=0

αn

n!
Cx(n, α)Cy(n, α)

+∞∫

0

e−bnτ ft(τ)dτ

= m(x)
+∞∑

n=0

αn

n!
Cx(n, α)Cy(n, α)Eν(−bntν).

Finally we have

P (Nν(t) ∈ B|Nν(0) = y) =

+∞∫

0

∑

x∈B

p1(τ, x; y)ft(τ)dτ

=
∑

x∈B

+∞∫

0

p1(τ, x; y)ft(τ)dτ

=
∑

x∈B

m(x)

+∞∑

n=0

αn

n!
Cx(n, α)Cy(n, α)Eν(−bntν).

Thus pν(t, x; y) exists and

pν(t, x; y) = m(x)
+∞∑

n=0

αn

n!
Cx(n, α)Cy(n, α)Eν(−bntν). 2

Now we are ready to prove the following Theorem.

Theorem 5.2. Let g ∈ c0 such that g(x) =
∑+∞

n=0 gnQn(x). Then the function

u(t; x) = E[g(Nν(t))|Nν(0) = x]

is a solution of (16).
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Proof. First of all observe that

+∞∑

x=0

m(x)g2(x) ≤ ‖g‖2
ℓ∞ ,

hence g ∈ ℓ2(m) and we are under the hypotheses of Theorem 4.3.

Consider a generic f ∈ c0 and define the family of operators

Ttf(x) = E[f(N1(t))|N1(0) = x] =
∑

y∈N0

p1(t, y; x)f(y).

In particular, by Lemma 3.3, we know that N1(t) is a Feller process, hence (Tt)t≥0 is a Feller semigroup.

Moreover, strong continuity of (Tt)t≥0 follows from [10, Lemma 1.4]. Then, by using [6, Theorem 3.1], we

know that, since G is the generator of Tt, the function

u(t; x) :=

+∞∫

0

T( t

s

)
ν g(x)gν(s)ds,

where gν(s) is the density of σν(1), is a solution of (16). But if we use the change of variables τ =
(

t
s

)ν
,

and the fact that ft(τ) = t
ν

τ−1− 1

ν gν(tτ− 1

ν ) for τ ≥ 0 (see, for instance, [33]), we obtain

u(t; x) =
t

ν

∞∫

0

Tτ g(x)τ−1− 1

ν gν(tτ− 1

ν )dτ

=

+∞∫

0

Tτ g(x)ft(τ)dτ

=

+∞∫

0

E[g(N1(τ))|N1(0) = x]ft(τ)dτ

= E[g(N1(Lν(t)))|N1(0) = x] = E[g(Nν(t))|Nν(0) = x], t ≥ 0, x ∈ N. 2

Finally, we can provide the stochastic representation of solutions of (21).

Corollary 5.3. Let pν(t, x; y) be the transition density of Nν(t). Then, for any f such that f
m

∈ ℓ2(m) with

decomposition f(x)/m(x) =
∑+∞

n=0 fnQn(x). Thus

u(t, x) =
∑

y∈N0

pν(t, x; y)f(y)

is a solution of (21).

Proof. This easily follows from Theorems 5.1 and 4.4. 2

We can use the last Corollary to exploit the asymptotic behaviour of the density of the process Nν(t).



ARTICLE IN PRESS

Please cite this article in press as: G. Ascione et al., Fractional immigration-death processes, J. Math. Anal. Appl. (2021),
https://doi.org/10.1016/j.jmaa.2020.124768

JID:YJMAA AID:124768 /FLA Doctopic: Real Analysis [m3L; v1.297] P.23 (1-27)

G. Ascione et al. / J. Math. Anal. Appl. ••• (••••) •••••• 23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6. Uniqueness of strong solutions

In this section, we aim to show that the strong solutions of (16) and (21) are unique under some hy-

potheses.

Proposition 6.1. The function pν(t, x; y) given in (12) is the unique global solution of (23) (for fixed x) and

(24) (for fixed y).

Proof. Let us first notice that, by Theorem 5.1 we know that 0 ≤ pν(t, x; y) ≤ 1 and

+∞∑

x=0

pν(t, x; y) = 1,

+∞∑

y=0

pν(t, x; y) ≤ 1,

hence ‖pν(t, ·; y)‖ℓ1 = 1 and ‖pν(t, x; ·)‖ℓ1 ≤ 1. Thus pν(t, x; y) is bounded in ℓ1 uniformly with respect

to t ≥ 0 for fixed x or y. Since ℓ1 is continuously embedded in ℓ2(m) (see Remark 3.1), then pν(t, x; y) is

uniformly bounded also in ℓ2(m). Moreover, we have shown in Lemma 3.2 that the operators G and L are

continuous. Hence by [4, Corollary 2] we can conclude that pν(t, x; y) is the unique global solution of (23)

and (24). 2

Now let us show the uniqueness of the solutions of the backward equation (16).

Proposition 6.2. Let g ∈ ℓ∞ such that g(x) =
∑+∞

n=0 gnQn(x). Then the strong solution u(t, x) of (16) is in

ℓ∞, hence also in ℓ2(m), for any t ≥ 0 and it is the unique global solution in ℓ2(m).

Proof. First of all, let us observe that if g ∈ ℓ∞, then g ∈ ℓ2(m) too, so we are under the hypotheses of

Theorem 4.3. Moreover we have, by using Theorem 5.1 and Jensen inequality:

u2(t, x) =

(
+∞∑

y=0

pν(t, y; x)g(y)

)2

≤
+∞∑

y=0

pν(t, y; x)g2(y) ≤ ‖g‖2
ℓ∞ ,

and then

+∞∑

x=0

m(x)u2(t, x) ≤ ‖g‖2
ℓ∞ ,

obtaining the uniform bound for x 7→ u(t, x). Hence u(t, ·) ∈ ℓ2(m) for any t ≥ 0. Moreover, since G is a

continuous operator, by [4, Corollary 2], it is the unique global solution of (16). 2

Remark 6.3. We can actually show uniqueness as g ∈ ℓ2(m). Indeed, since u(t, x) is a strong solution of

(16), then it belongs to ℓ2(m) and

‖u(t, ·)‖2
ℓ2(m) =

+∞∑

n=0

E2
ν(−bntν)g2

n ≤ ‖g‖2
ℓ2(m)

for any t ≥ 0, hence it is uniformly bounded in ℓ2(m), concluding uniqueness by [4, Corollary 2].
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We can also obtain the uniqueness of solutions of (21).

Proposition 6.4. Let f : N0 → R be a function such that f
m

∈ ℓ2(m) and f(x)
m(x) =

∑+∞

n=0 fnQn(x). Then the

strong solution u(t, x) of (21) is in ℓ∞, hence in ℓ2(m), and it is the unique global solution in ℓ2(m).

Proof. Let us observe that

u2(t, x) =

(
+∞∑

y=0

pν(t, x; y)f(y)

)2

=

(
+∞∑

y=0

m(y)pν(t, x; y)
f(y)

m(y)

)2

.

Thus, by Jensen inequality, we have

u2(t, x) ≤
+∞∑

y=0

m(y)p2
ν(t, x; y)

f2(y)

m2(y)
.

Now, from Theorem 5.1, we know that pν(t, x; y) ≤ 1, then

u2(t, x) ≤
+∞∑

y=0

m(y)
f2(y)

m2(y)
= ‖f/m‖2

ℓ2(m) .

Finally, we have

+∞∑

x=0

m(x)u2(t, x) ≤ ‖f/m‖2
ℓ2(m)

+∞∑

x=0

m(x) = ‖f/m‖2
ℓ2(m)

thus, since L is a continuous operator, from [4, Corollary 2] we have that u(t, x) is the unique global solution

of (21). 2

Remark 6.5. The condition f/m ∈ ℓ2(m) is stronger than f ∈ ℓ2 for any probability measure m on N0.

Indeed we can show that the following two properties

a) f ∈ ℓ2;

b) f/
√

m ∈ ℓ2(m);

are equivalent: this can be done simply observing that

+∞∑

x=0

f2(x) =

+∞∑

x=0

m(x)

(
f(x)√
m(x)

)2

.

Moreover, if we consider the property

c) f/m ∈ ℓ2(m);

we can see that c) ⇒ a). Indeed we have, since m(x) ≤ 1

+∞∑

x=0

f2(x) =
+∞∑

x=0

m2(x)

(
f(x)

m(x)

)2

≤
+∞∑

x=0

m(x)

(
f(x)

m(x)

)2

.

However, if we consider f(x) =
√

m(x), it is easy to verify that f ∈ ℓ2 but f/m /∈ ℓ2(m).
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7. Limit distribution of Nν(t)

In this section we want to give some results on the limit distribution of Nν(t). In particular we have

Theorem 7.1. Let pν(t, x; y) be the transition probability mass of Nν(t). Then, given any initial probability

mass f such that f/m ∈ ℓ2(m) and f(x)/m(x) =
∑

n∈N0
fnQn(x), the probability mass of Nν(t) asymptot-

ically converges towards a Poisson measure, that is to say if pν(t, x) =
∑

y∈N0
pν(t, x; y)f(y), then

lim
t→+∞

pν(t, x) = m(x).

Proof. By Corollary 5.3 we know that pν(t, x) is solution of (21). Moreover, since f/m ∈ ℓ2(m), we know

that this solution is unique from Proposition 6.4. Finally, from Theorem 4.4, we have that

pν(t, x) = m(x)
∑

n∈N0

Eν(−bntν)fnQn(x).

In particular we have

pν(t, x) = m(x)f0Q0(x) + m(x)
∑

n∈N

Eν(−bntν)fnQn(x).

But Q0(x) = 1 and f0 =
∑

x∈N0
f(x) = 1 since f is a probability mass. Thus we have

pν(t, x) = m(x) + m(x)
∑

n∈N

Eν(−bntν)fnQn(x).

Now, by Cauchy-Schwartz inequality, the fact that Eν(−bntν) ≤ 1 and the duality formula for Cn(x, α), we

obtain

∑

n∈N

|Eν(−bntν)fnQn(x)| ≤
∑

n∈N

|fnQn(x)|

≤ ‖f/m‖ℓ2(m)

(
∑

n∈N

αn

n!
C2

n(x, α)

) 1

2

≤ e
α

2 ‖f/m‖ℓ2(m) d2
x

hence the second series totally converges. Thus we can take the limit inside the series and, since

limt→+∞ Eν(−bntν) = 0, we have

lim
t→+∞

pν(t, x) = m(x) + m(x)
∑

n∈N

lim
t→+∞

Eν(−bntν)fnQn(x) = m(x). 2

From Theorem 7.1 we know that whatever is the distribution of Nν(0), the limit distribution of Nν(t) is

always m. Moreover, we can show that m is an invariant one-dimensional distribution for Nν(t), that is to

say that if Nν(0) has distribution m, then Nν(t) admits m as distribution for any t > 0.

Proposition 7.2. Suppose Nν(0) has distribution m. Then for any t > 0, Nν(t) has distribution m.

Proof. Let us observe that the density of Nν(t) is given by

pν(t, x) =
∑

y≥0

pν(t, x; y)m(y).
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From Theorem 5.1 we have that

pν(t, x; y) = m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)Qn(y)

then we have

pν(t, x) =
∑

y≥0

(
m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)Qn(y)

)
m(y)

= m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)

(
+∞∑

y=0

Qn(y)m(y)

)
.

Recalling that Q0(y) ≡ 1 we have that

+∞∑

y=0

Qn(y)m(y) =

+∞∑

y=0

Q0(y)Qn(y)m(y) = δn,0

hence

pν(t, x) = m(x)

+∞∑

n=0

Eν(−bntν)Qn(x)δn,0 = m(x). 2

However, since Nν(t) is not Markovian, this Proposition does not guarantee the stationarity of the process

when Nν(0) admits m as distribution. However, it is still possible to compute the autocovariance function

of the process Nν(t).

Proposition 7.3. Suppose Nν(t) admits m as initial distribution. Then, for any t ≥ s > 0, it holds

Cov(Nν(t), Nν(s)) = α


Eν(−btν) +

bνtν

Γ(1 + ν)

s

t∫

0

Eν(−btν(1 − z)ν)

z1−ν
dz


 . (25)

We omit the proof of this Proposition since it is identical to the one in [26], after observing that if N1(t)

admits m as initial distribution, then N1(t) is stationary and, from (7),

Cov(N1(t), N1(0)) = αe−bt.

Remark 3.2 and 3.3 of [26] easily apply also to our process Nν(t). Indeed, since in this case Nν(t) is

distributed as Nν(0), then the variance D[Nν(t)] = D[Nν(0)] = α, which can be obtained from (25) when

t = s with the same calculations as in [26, Remark 3.2]. Moreover, N1(t) exhibits short-range dependence,

while, with the same calculations of [26, Remark 3.3], one can show that Cov(Nν(t), Nν(s)) decays as a

power of t, hence it exhibits long-range dependence.
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