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We review the current techniques used in the prediction of 

crystal structures and their surfaces and of the structures of 

nanoparticles. The main classes of search algorithm and 

energy function are summarized, and we discuss the 

growing role of methods based on machine learning. We 

illustrate the current status of the field with examples 

taken from metallic, inorganic and organic systems. 

 
This article is part of a discussion meeting issue 

‘Dynamic in situ microscopy relating structure and 

function’. 

 

 

1. Introduction 
 
Structure modelling and prediction are among the perennial 

challenges in solid state, surface and nano-science. The field 

is advancing rapidly with the development of new and 

improved search algorithms, with more accurate energetic 

models and with the growth in the use of tools and techniques 

from machine learning; as the predictive capability advances, 

it is increasingly integrated with experiment. In this article, 

we chart the development of the field, giving emphasis to the 

rapid recent progress. We survey first the methodological 

approaches, then the achievements and challenges, giving 

examples and case studies; and we conclude by discussing the 

likely future developments. The illustrations we provide 

include functional oxides, microporous inorganic crystals, 

pharmaceutical poly-morphism, functional organic crystals 

and metal and oxide nanoparticles—systems with wide-

ranging  
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applications, including energy generation and storage, in catalysis, in pharmaceutical science and in gas 

sorption and separation. 

Structure prediction is, of course, a major challenge in other areas of contemporary science, such as 

molecular biology, and many of the methodological challenges are shared across different fields. For 

recent developments in the field in bio-sciences, we refer to the review of Kuhlman & Bradley [1]. We 

also note that our account does not attempt to be comprehensive; for other discussions of the field, we 

refer to the proceedings of the Faraday Discussion on the topic, especially the papers of Price [2] and 

Oganov [3] and the discussions in [4–7]. 

 

2. Searching the energy landscape 
 
The fundamental challenge in structure prediction is the complexity of the configurational space, with 

both the coordinates of each particle and, in the case of crystals, the unit cell parameters representing, in 

principle, independent variables. As discussed by Woodley & Catlow [8], the general approach to this 

problem has been first to define some ‘cost function’, which provides a rapidly computable and simple 

figure of merit of the structure; and then to navigate, using a variety of approaches, the parameter 

landscape, searching for regions of low-cost function, which are expected to provide plausible possible 

structures. Having identified one or more such regions, standard minimization procedures are applied to 

generate the structure of minimum energy (or possibly free energy), with energies calculated using an 

interatomic potential model or a quantum mechanical technique, which for the latter case in recent work 

is generally based on density functional theory (DFT). In a system of any complexity, there will be 

several distinct local energy minima and it is hoped that the search is sufficiently comprehensive to 

identify the lowest, i.e. the global energy minimum. The global minimum in energy is assumed to be the 

most likely observable structure, although the kinetics of nucleation and growth can lead to crystallization 

of higher energy, metastable structures; the range of experimentally observed metastability has been 

surveyed in both organic [9,10] and inorganic [11,12] crystals through large-scale computational studies 

of known polymorphs. 

 

With increases in available computer resources, structures with a larger number of degrees of freedom 
(number of atoms in a cluster or unit cell) can be targeted and/or more expensive cost functions 

employed. There is, of course, a trade-off between the chosen quality of the cost function, E(ri), and the 

number of configurations that can be evaluated. Commonly, ri are the atomic coordinates. Ideally, the 

cost function has basins that correspond to regions of interest and their depths match the order of the 

relative stabilities of the configurations associated with each basin; it may also be beneficial that the 

basins of interest have a larger width, making them easier to locate in the search. Typically, E(ri) is an 

energy function and only approximate solutions on this landscape are initially required as these can be 

readily refined on a more accurate energy landscape, E
acc

(ri), at a later stage of calculations. For the 

same computer resource, employing a Born model and interatomic potentials [13] as opposed to an 
electronic structure approach [14] would correspond to being able to evaluate several orders of magnitude 

more configurations, providing more confidence in identifying all important structures. As with all 

models, the terms in the Hamiltonian for E(ri) should include only what is necessary to capture the 

important physics, such that, in this case, for each targeted energy minimum of E
acc

(ri) there needs to be 

one energy minimum configuration of E(ri) that is within the corresponding basin of E
acc

(ri) and that 

there is a good match between the minima rankings. As reported below, some approaches apply brute 

force and search directly on E
acc

(ri), whereas others try to first develop a suitable Hamiltonian for the 

system of interest [15–23].  
The main conceptual and algorithmic approaches for navigating the energy landscape have been 

discussed in earlier reviews and book chapters [8,13,24–26], and are as follows. 

Simulated annealing—the conceptual basis of which is simple: a Monte Carlo (MC) algorithm 

coupled with the Metropolis criterion or molecular dynamics (MD)—is used to generate a sequence of 

configurations that map out a path of a so-called walker across the energy landscape. A temperature 

schedule is followed to simulate the process of annealing: initially starting at a 

   



sufficiently high temperature that the energy barriers between different regions of phase space may be 

overcome, and upon reducing the temperature low-energy regions may be identified. There are critical 

temperatures when the walker may become trapped in a high-energy basin. Sufficient sampling of the 

accessible landscape just before such temperatures is required if lower energy basins are targeted. 

Increasing the step size between consequent points on the landscape may reduce the number of required 

steps but is itself constrained as an MC step must not straddle barriers and an MD step requires the local 

landscape to be sufficiently approximated by a few terms of its Taylor expansion. Each approach is 

straightforward and robust, with MC sampling many more configurations owing to the application of the 

Metropolis criterion and MD requiring the tracking of momentum for each atom within the simulation 

box. However, the search inevitably has some bias from the choice of the initial configuration. Thus, 

simulations are run several times using different starting configurations. With the current availability of 

computer resources, the global minimum is no longer the sole final target, but instead the relative 

stabilities of phases (locally ergodic regions) based on free energies are sought as a function of 

temperature and pressure, as well as the prediction of their lifetimes [12]. MC and MD can also be 

employed to gain an insight into the size (number of configurations) of an energy basin and the height of 

the energy barrier to escape and can help determine the likelihood, or probability, of finding this route of 

escape; see, for example, the threshold [27,28] and energy lid [28,29] algorithms. 

 

Basin hopping is another branch of global optimizers that effectively maps out the path of a walker 

across the energy landscape, but with the acceptance/rejection decisions based upon comparing energy 

minima [30–34]. Each attempted step on the landscape is either a mini-MD run or a standard MC step, 

followed by a full structural relaxation using a local optimization routine. Monte Carlo basin hopping 

(MCBH) has proved extremely popular for predicting the atomic structures of clusters. The energies of 

local minima (or possibly other stationary points unless the chosen local optimizer ensures only local 

minima are found) are typically compared within the Metropolis criterion. If the chosen method generates 

new trial configurations based only on perturbing optimized configurations, the MCBH step size will 

need to be much larger than a typical MC step and is adjusted on the fly to ensure a required average 

success rate of escape from the current basin. Alternatively, a standard MC step size is employed with 

acquired values of local energy minima fed into the Metropolis criterion: if a new configuration is 

accepted then the current configuration is replaced by the new non-relaxed configuration and the current 

value of energy is replaced by the energy minimum found from relaxing the newly accepted 

configuration. In the latter, the walker explores a landscape of plateaux with many fewer energy barriers 

than the original continuous energy landscape. It is easy to see why MCBH readily finds the bottom of a 

superbasin on the energy landscape as it is a simple basin on the landscape of plateaux. If the landscape 

of plateaux also contains many basins, then this approach will also inevitably have some bias from the 

choice of the initial configuration. Finally, in the case of minima hopping that employs MD, the kinetic 

energy and run time for each mini-MD run can be dynamically adjusted to achieve a desired average 

success rate of escaping the current basin and finding a new local minimum structure. 

 

 
Genetic algorithm techniques [22,24,35] are perhaps the best known of the methods that employ 

interacting walkers [36], or simultaneously consider more than one point on the energy landscape to find 

the global minimum, followed by the methods of particle swarm [37,38] and taboo [39] algorithms. 

Genetic algorithms or, more generally, evolutionary algorithms start with the creation of a population; 

typically, a set of random points (e.g. randomly chosen atomic coordinates for each configuration) on the 

energy landscape. Then, competition is simulated between current members of the population for survival 

and the chance to procreate. The probability of success in a competition is biased towards selecting lower 

energy configurations. Procreation, i.e. the creation of new configurations, or children, is simulated by the 

combining of information (e.g. structural fragments) taken from two or more of the configurations that 

won in a competition to become a parent. New configurations composed of better/worse features of their 

parents will typically go on to survive/die, respectively. As with other global optimization schemes, there 

are many 

 



variants, which is particularly true for evolutionary algorithms. Geometric constraints are often applied 

during the creation of new configurations, e.g. unphysically short interatomic distances are prevented. 

The benefits seen for MC techniques of basin hopping are also sought in the design of evolutionary 

algorithms, with populations being composed of fully relaxed configurations (energy minima). The 

success of an evolutionary algorithm in locating the global minimum is dependent upon the diversity of 

the population (having configurations within different basins, or super-basins, as opposed to all within the 

same basin). Hence, the process of mutation (typically a small MC step) is also applied to new 

configurations, as well as other strategies like the removal of duplicates and niching [40–43] when 

determining the survival of configurations in the current population. 

 
Topological procedures, which have a long history in crystallography going back to the early work of 

Wells [44,45], who developed topological approaches in exploring networks, can be used to rationalize 

and predict crystal structures. Such methods are most naturally applied to framework structures and have 

been used to considerable effect in the structural science of zeolites—framework-structured microporous 

alumino-silicates and silicas—where a powerful topological approach—tiling theory—was employed by 

Bell and co-workers [46] to enumerate possible network structures from which structures can then be 

generated by replacing nodes by linking tetrahedra. Lattice energy minimization using Born model 

interatomic potentials then allows low-energy structures to be identified. Other topological approaches in 

zeolite science are discussed by, for example, Treacy and co-workers [47,48]; also, as discussed by 

Arhangelskis et al. [49], the approach has been extended to the intensively studied family of metal–

organic framework (MOF) structures in which framework structures are generated by linking inorganic 

structural motifs, for example MO6 octahedra, with organic linkers. 

 

Generation of random configurations, in which the global optimization, algorithmic approach to 

explore the energy landscape is replaced by the generation of large numbers of random initial 

configurations which are then subject to screening of unphysical structures, followed by energy 

minimization. This approach might initially seem to rely on ‘brute force’ computational power, as the 

trial structures are not explicitly directed towards low-energy regions of the energy landscape. However, 

potential energy surfaces tend to have features that mean that even randomly generated structures find 

low-energy structures preferentially over high-energy structures [50]. Of particular relevance is the 

observation that low-energy local minima often have larger basins of attraction— the region of 

configurational space from which local energy minimization leads to a particular minimum—than high-

energy local minima [51]. More recent implementations [51,52] of such an approach have preferred the 

use of quasi-random, low-discrepancy sequences in place of random numbers; these are deterministic 

sequences that maintain some of the qualities of random sampling, while ensuring a more uniform 

sampling of configuration space. The method has enjoyed success in several cases [53–57] and for small, 

less complex structures a random approach may provide a sufficient sampling of configurational space. It 

also has the advantage that there is no in-built bias, which can be beneficial in identifying metastable 

structures, where the application of structure prediction is not only interested in the lowest energy 

structures and also is perfectly parallelizable because all structures are generated independently. But, as 

discussed by Woodley & Sokol [58] for larger more complex structures, the approach can become 

problematic as, even with large numbers of randomly generated configurations, significant regions of 

configurational space may remain unexplored. 

 

Molecular packing prediction, which has mainly been applied to organic molecular crystals, has 

employed many of the same methods as inorganic structure prediction, including systematic and random 

methods [59], genetic algorithms [60–62], simulated annealing [63] and other MC methods [64]. The 

exception is that topological approaches are less useful for molecular crystals, because their packing is 

rarely dominated by a particular intermolecular interaction. Instead, the packing of organic molecules is 

usually determined by a balance of many weak, often competing, interactions. The nearest to a 

topological approach is that proposed by Gavezzotti [65], in which crystals were built in stages, starting 

from searching for stable clusters, which were extended 

 



into translationally periodic structures through successive application of space group symmetry 

operations. 

A key difference for molecular packing prediction is that the basic building blocks of generated 

structures are the constituent molecules, which carry more degrees of freedom than the atoms that are 

treated in non-molecular systems. Therefore, in addition to the position within the unit cell, the 

orientation of each molecule must be sampled. Molecular geometries can also be influenced by their 

environment in a crystal; in particular, exocyclic single bonds can usually rotate with little energetic cost, 

so that intermolecular interactions in each predicted crystal structure can alter the molecular geometry. 

This flexibility can be accounted for in several ways. The simplest approach is to generate crystal 

structures using rigid molecules, constrained to their isolated molecule ‘gas-phase’ geometry, only 

introducing molecular flexibility by allowing the molecular geometry to relax at the local energy 

minimization stage of the procedure. This approach can miss structures where molecular deformation is 

required for a certain packing, so can be augmented by searches starting from higher energy saddle points 

on the isolated molecule energy surface [66]. A more comprehensive approach requires sampling of 

selected intramolecular degrees of freedom during structure generation, alongside the crystal packing 

variables—the unit cell dimensions, molecular positions and orientations [67]. 

 
The most widely applied energy models for molecular crystals are based on accurate interatomic 

potentials for intermolecular interactions, in which accurate models of electrostatics have been proven to 

be crucial [68,69], and dispersion-corrected solid-state DFT. The accuracies of these methods have been 

benchmarked against a reliable set of measured sublimation enthalpies of molecular crystals [70–72]. 

Although the differences in accuracy between the best methods are small, these must be interpreted in the 

context of the very small energy differences between structures of molecular organic crystals, which are 

usually less than 2 kJ mol
−1

 [9]. There has been considerable interest in recent years in including the 

contributions of lattice vibrations to the free energies of molecular crystal structures [9,72–74], so that 

relative stabilities can be predicted as a function of temperature [10,75]. Both lattice dynamics and MD 

methods have been applied to free energy prediction, with the latter also providing information about 

which structures are likely to interconvert at a given temperature [74,76]. 

 

 

3. The role of machine learning 
 
Machine learning methods have started to find applications across many areas of computational 

chemistry, which is also true in the area of structure prediction. Machine learning methods have been 

applied in attempts to improve the accuracy and speed of calculations, as well as adding insight into the 

analysis of structure prediction results.  
The clearest area where machine learning methods have promise in structure prediction is to learn the 

relationship between structure and energy. As discussed earlier, a computationally efficient cost function 

is required in the early stages of searching an energy landscape, because of the large number of cost 

function evaluations or structural optimizations that are required. Thus, interatomic potentials are 

commonly applied during structure searches. However, the final evaluation of structures usually requires 

an accurate energy model, which sometimes means that quantum mechanics (QM)-based energy 

evaluations (such as using DFT) are necessary on large numbers of candidate structures. The 

computational expense of such calculations can limit applications to simple systems or restrict the 

methods to researchers with access to very large computing resources. Machine learning has been shown 

to be able to predict high-level QM energies, either directly from descriptors of atomic structure [77,78] 

or as a correction to lower level energy calculations [79]. 

 

This approach has been applied in crystal structure prediction studies of molecular crystals. As an 

example, starting from the structures of several pentacene derivatives predicted by interatomic potentials, 

Gaussian process regression (GPR) was used to learn the energies of these predicted structures at a more 

accurate and expensive level of theory—in this case, solid-state DFT [80]. DFT calculations were 

performed on a training subset of the predicted crystal structures. Using 

 



the smooth overlap of atomic positions method [81,82] to quantify the similarities of atomic 

environments, GPR was then trained to learn the relationship between structure and the DFT energies, 

providing a model that can be quickly applied to predict the energies of the remaining structures. The 

results showed that DFT relative energies could be predicted to an accuracy of 1–2 kJ mol
−1

 using 

training set sizes of only 10%, although errors increased as the complexity of the molecule was increased 

[80]. The approach has also been applied in a multi-level machine learning model to predict expensive 

high-level energies of predicted crystal structures using an intermediate, lower cost method to reduce the 

number of expensive calculations required for training the model [83]. A similar method has been 

demonstrated using GPR to learn QM energies of fragments of predicted crystal structures, which are 

summed to give the total lattice energies [84]. The fragment-based method has the advantages of 

providing more data to the machine learning model, because each crystal structure provides multiple 

fragments, as well as allowing a wider range of QM methods, which are affordable on fragments, but not 

entire crystal structures. With the small errors achieved with these approaches, the ranking of predicted 

structures using the machine-learned energies was shown to reproduce the true QM-based ranking of 

predicted structures very well. 

 

Deringer and co-workers [85,86] have demonstrated the potential of machine learning in inorganic 

crystal structure prediction, using GPR to learn interatomic potentials from DFT energies during the 

structure search. By learning the energies at the same time as searching the energy landscape, the 

machine-learned energy model can be continually updated and used to drive the exploration for new 

structures.  
The successful application of machine learning models for modelling energies in structure prediction 

applications demonstrates that the structural descriptors used in these studies capture the features that are 

correlated with structural stability. This suggests that these descriptors could also form the basis of 

unsupervised learning approaches to investigate the structural diversity amongst structures. To investigate 

this, Musil et al. [80] applied dimensional reduction methods to project the predicted structures from their 

inherently high-dimensional space to a low-dimensional representation that can be visualized. The aim of 

these methods is to maintain as much information as possible on structural similarity in the low-

dimensional representation. The results for the landscape of predicted crystal structures of pentacene are 

shown in figure 1a. The projection shows groupings of similar crystal structures, which correspond to 

different packing motifs. These were confirmed by applying clustering methods to the similarity matrix 

of structures, which identified seven clusters on the pentacene landscape (coloured in figure 1a). 

Identification of these families of structures would otherwise have required painstaking manual 

inspection or the development of case-specific heuristic rules, showing that unsupervised learning could 

be powerful in gaining insight into recurring structural features on a structural landscape. The approach 

was extended in work by Yang et al. [89] to the analysis of 28 isomers of a promising organic 

semiconductor, showing that the method could identify structural families across the crystal structure 

landscapes of a series of related molecules (figure 1b) and aiding in identifying structure–property 

relationships within these sets of predicted materials. 

 

Another exciting area of interest for machine learning in structure prediction is the generation of 

structures themselves, using data-driven approaches in place of simulation-based exploration of the 

energy landscape. With many developments in generative models for molecules [90,91], this area is 

likely to move forward for crystals. A simple example is the prediction of possible new inorganic 

structures based on templates from known structures; Ryan et al. [92] trained a neural network model on 

a database of inorganic crystal structures to predict, based on atomic environment, which chemical 

compositions are likely to form certain, known structure types. Another recent example in this area was 

the development of a generative adversarial network trained on a large database of known zeolites that 

could generate new zeolite structures [93]. An attractive aspect of this work is that the generative model 

can be trained to produce new structures with targeted properties (e.g. methane heat of adsorption). This 

type of work could potentially be developed for more complex materials as an alternative to the 

simulation-based methods discussed above. 
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Figure 1. (a) Two-dimensional projection, using the sketch-map method [87], of the pentacene crystal structure 

landscape’s similarity matrix [80], showing groupings of predicted crystal packings with similar structures. Each point 

corresponds to a distinct, low-energy crystal structure, coloured according to cluster analysis using the HDBSCAN* method 

[88] (grey points are not part of any cluster). Representative crystal packings are shown for each identified cluster. (b) 

Sketch-map representation of the low-energy crystal structure landscapes for 28 isomers of a planar pyrrole-based 

azaphenacene from screening for potential organic semiconductors [89]. Each point corresponds to a distinct, low-energy 

crystal structure, coloured according to the molecular isomer. Adapted from [80], published by the Royal Society of 

Chemistry, and reprinted with permission from [89]. (Online version in colour.) 

 

 

4. Successes and challenges 
 

We now illustrate the current state of the art in the field by several case studies taking, first, two examples 

from inorganic structural science, which we follow with an account of the challenges posed by defective 

oxide surfaces. Oxide and metal nanoparticle structures illustrate the successes and problems of structure 

prediction in nano-science, including recent work on nanostructures on oxide surfaces; in the final 

section, the focus shifts to molecular systems, in particular crystals of pharmaceutical molecules and 

organic porous solids. 

 

 

(a) Structure prediction in inorganic crystallography 
 

Functional materials chemistry increasingly explores systems of high complexity either in their 

composition or in their crystal architecture. Here we highlight two areas where structure prediction 

methods have proved of considerable value in exploring novel functional materials. 
 

Our first example is taken from the work of Collins, Rosseinsky and co-workers [94] concerning the 

accelerated discovery of a new multicomponent oxide in a highly complex inorganic phase field. The 

approach is based on the intriguing use of structural motifs (e.g. MO6 octahedra) rather than individual 

atoms as the fundamental building blocks of crystal architectures, thereby allowing chemical knowledge 

and intuition to be integrated into the process. An MC-based simulated annealing algorithm (employing 

the Extended Module Materials Assembly (EMMA) software) explores different arrangements of the 

motifs and the ‘best’ structure is identified. DFT-based energy minimization is then used to generate the 

predicted structure. A new, interesting and highly complex structure illustrated in figure 2 is generated in 

the Y-Sr-Ca-Ga-O phase field and the predicted structure was successfully synthesized, with the 

experimental structure (determined using powder X-ray diffraction) being 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Predicted structure for a novel oxide in the Y-Sr-Ca-Ga-O phase field [94]. Atoms coloured 

as follows: Ga (brown), Sr (green), Ca (light blue) and O (red). (Online version in colour.) 
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Figure 3. Some microporous structures predicted to be stable as ‘silicas’ [46,95,96]. 
 

 
close to that predicted, clearly demonstrating the predictive power of current methodologies for this class 

of material. 

Our second case study is from the field of microporous materials, where, as discussed above, 

topological approaches have proved powerful. As noted, the work of Bell and co-workers [46,95,96] has 

combined an approach based on combinatorial tiling theory with lattice energy minimization to predict 

novel microporous structures. Figure 3 illustrates new structures which are found to have low energies as 

‘silicas’ (i.e. structures of composition SiO2) and which now present a challenge to synthesis. The 

locations of silicon atoms are typically referred to as T-sites, which are connected via bridging oxygens to 

form a network of corner-sharing SiO4 tetrahedra. Interestingly, other structures, illustrated in figure 

4a,b, which are also predicted to be stable as silicas, although not yet synthesized in that composition, are 

known in other quite different compositions, suggesting that the framework topology has intrinsic 

stability.  
The third example shown in figure 4 illustrates a different mode of structure generation, in this case of 

a small-pore nano-porous structure, where direct bonding between T-sites greatly reduces the size of the 

cavities to create the metastable body-centred tetragonal (BCT) structure of ZnS. There are, however, 

also examples of crystal structure prediction of nano-porous ZnO [100] and SiC [101] that have larger 

cavities (figure 5) which are constructed from secondary building units [102]. The framework topologies 

of silicas, or more generally zeolites, have also been exploited in the prediction of MOFs where organic 

molecules form the bridging units and thus much larger cavities; see, for example, the work on zeolitic 

imidazolate frameworks where the T-sites contain Zn [103]. 
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(C6H18N4)16[Ga32 Ge16 S96] LixH12–x–y+z[P12OyN24–y]Clz ZnS (BCT) 

 
Figure 4. Predicted microporous structures stable in non-silica composition. Left, after Zheng et al. [97]; centre, 

after Correll et al. [98]; right, after Hamad et al. [99]—two views of the ZnS BCT phase. (Online version in colour.) 
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Figure 5. (a) Cubic unit cell of the silica sodalite framework represented as a nano-porous network of zinc oxide [100] or silicon 

carbide [101]; (b) structural unit composed of 24 atoms taken from (a); (c) larger structural unit composed of 96 atoms with the same 

symmetry, Th , as that in (b); (d) predicted nano-porous framework (cubic unit cell) constructed from units shown in (b) and (c) and 

replacing T-sites with SiO4 tetrahedra; this is possibly a new microporous framework. (Online version in colour.) 

 

 

(b) Oxide surface structures 
 
The surfaces of oxides, even those such as MgO and ZnO which have the simplest of ionic crystal 

structures, can show remarkable complexity. Surface rumpling, i.e. differential perpendicular 

displacements of surface ions, occurs even on perfect terraces, owing to differences in the polarizabilities 

of cations and anions. Moreover, in addition to the well-known surface features, such as steps and 

corners, surface point defects are commonly present in appreciable concentrations, in some cases due to 

low formation energies; a special case is provided by ‘polar’ surfaces, i.e. those which in the surface 

repeat unit have a dipole moment perpendicular to the surface. Tasker [104] first showed that such 

surfaces are intrinsically unstable in ionic materials, owing to a divergence in the electrostatic energy. For 

stability, the surface dipole must be quenched, which may be achieved possibly by electron transfer 

between bulk and surface regions or by adsorption of polar species but is most commonly effected by the 

creation of charged surface defects in sufficiently high concentrations to cancel the surface dipole. 

 
The reconstruction of polar oxide surfaces has been widely studied and a particularly intriguing 

example is provided by ZnO. This wurtzite structured solid has four principal surfaces: 
¯ ¯ 

two non-polar, i.e. the (1010) and (1120), and two polar, i.e. the zinc-terminated (0001) and the 
¯ 

oxygen-terminated (0001). The non-polar surfaces have an interesting structure, as discussed by 

Whitmore et al. [105] and more recently by Mora Fonz et al. [106]. Zinc–oxygen vacancy pairs were 

shown in these computational studies to have low formation energies, leading to extensive surface 

grooving as observed experimentally. The polar surfaces, however, show remarkable 
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Figure 6. (a) Scanning electron microscopy image of the (0001) Zn-terminated surface of ZnO; after Parker et al. [107]. (b) Two 

predicted low-energy configurations of the reconstructed Zn-terminated polar surface of ZnO; after Mora Fonz et al. [108]. The white 

and yellow lines indicate the unit cell and observed triangular patterns, respectively. (Online version in colour.) 

 

 
reconstructions, as illustrated in figure 6a, for the case of the Zn-terminated structure, where vacancies 

cluster to form triangular features. 

DFT calculations by Kresse et al. [109] demonstrated the stability of such structures and the problem 

was re-examined in a comprehensive survey by Mora Fonz et al. [108]. Their procedure combined a 

generalized MC approach using the Knowledge Led Master Code (KLMC), developed by Woodley et al. 

[41,57], to explore the large number of vacancy configurations on the surface, with energy evaluations 

using the General Utility Lattice Program (GULP) [110]. Interestingly, the triangular features observed 

experimentally fell out from the simulations as the low-energy configurations, as illustrated in figure 6b. 

The calculations were also able to rationalize complex structures on the oxygen-terminated surface and 

changes of the surface structure with composition. KLMC has also been employed to predict the structure 

of the surface sublayer of KTaO3 [111]. This ternary oxide adopts the perovskite structure and, given the 

higher charge of the tantalum cation, it was previously suggested that the 001 surface should terminate 

with a potassium oxide layer together with vacancies to remove the surface dipole. Using the composition 

of a partially filled tantalum oxide-terminated 001 surface, KLMC found that the same partially filled 

potassium layer could be formed, supported by a mixed potassium and tantalum oxide layer that had a 

more stable surface energy (0.2 eV lower). 

 

Overall, computational and experimental studies have revealed the fascinating variety and complexity 

of the surface structure of apparently simple oxides and the ability of modelling techniques to rationalize 

the experimentally observed structures. 

 

(c) Nanostructure prediction 
 
Given that reactions occur on surfaces, it is not surprising to see research specifically based on nano-

particles as the external surface to volume ratio is maximized. Moreover, many properties scale with the 

size of the nanoparticle so that there is an additional tuning parameter [112] that can be used when 

seeking a material with a target value of a desired property that improves the performance of an 

application. For example, to harvest solar power efficiently on the surface of the Earth, it is desirable to 

have a material with a band gap that is suitable for capturing the most abundant source of photons, i.e. 

visible light. The atomic structure of a nanoparticle may resemble a cut taken from the bulk phase; 

typically, for crystalline materials, the equilibrium morphology is determined by the Wulff construction, 

where the distance from the centre of each faceted surface to the centre of the crystalline particle is 

proportional to its surface energy. Ignoring the complications that the effects the surrounding 

environment might have on the structure of the nanoparticle (nanoparticles may be capped with ligands to 

control their size and to add or 



enhance a desired property, or they may be supported as discussed below), the particle may contain grain 

boundaries and, as a function of particle size, may also undergo a structural phase change. Using MD, 

Sayle et al. [113,114] have simulated the melting of a particle cut of its bulk phase and then the 

recrystallization of a low-energy configuration, which nicely demonstrated the formation of grain 

boundaries and, for example, micro-twinning within a particle of MnO2. Bulk zinc sulfide can readily 

adopt the sphalerite or wurtzite phase. The former is more stable under ambient conditions; however, the 

latter becomes more thermodynamically stable for smaller sized nanoparticles. Moreover, as mentioned 

earlier, simulations have predicted cuts of other phases to become competitive [115] (figure 4c) and for 

the smallest sized clusters, the so-called nanoclusters, the low-energy structures form bubbles [116] and, 

therefore, no longer resemble a bulk from any known bulk phase. By exploitation of energies of both bulk 

and non-bulk clusters as a function of size, the critical sizes for ‘structural transitions’ are predicted; see, 

for example, a perspective on modelling nanocluster and nucleation [117] or the more recent paper by 

Bromley et al. [118], which both consider particles of zinc oxide. The former also highlights that such 

studies can help us to understand and gain insight into the atomic mechanisms of nucleation and the early 

stages of crystal growth. 

 

Nanoparticles, by definition, have a diameter of anything between 1 and 100 nm (10
−9

 metres). To 

calculate the energy based on classical atomistic methods for the larger particles would currently require 

modern high-performance computer facilities. For particles of approximately 10 nm, more accurate 

electronic structure methods can be employed. Only for the smaller sizes and below, i.e. for nanoclusters, 

can current computer resources be used to sample many configurations on the energy landscape. The 

global optimization methods described above have had enormous success in predicting the tentative low-

energy structures of nanoclusters as a function of size, where size relates to the number of atoms or 

formula units. Here we restrict ourselves to providing one recent example for a metallic, a covalent and 

an ionic system.  
Strictly speaking all small nanoclusters cannot be metallic as there are not enough electronic states to 

form bands. In figure 7, the tentative lowest energy configurations for titanium clusters of sizes 1–32 are 

shown [119]. Their energies and relaxed configurations were obtained using a DFT approach 

implemented within the all-electron, full potential electronic structure code FHI-aims [120] with the 

appropriate spin, the PBEsol exchange–correlation functional and a tight basis set equivalent to triple zeta 

plus polarization. To reduce dramatically the computational cost of finding the configurations shown in 

figure 7, the study first employed a genetic algorithm, as implemented within KLMC [41], to search for 

the lowest energy minima on the energy landscape that is defined using a many-body embedded atom 

method as implemented with GULP [110], which included a combination of a many-body attractive term 

and a repulsive two-body Born–Mayer interatomic potential. For each size, the best, as determined by 

GULP, 250 local minimum configurations generated by KLMC were further refined and reranked using 

FHI-aims. The final configurations suggest a growth mechanism that is based on forming coordination 

centres by interpenetrating icosahedra, icositetrahedra and Frank–Kasper polyhedra. A better view of 

these configurations, as well as those shown in figure 8, can be gained by using the website graphical 

interface of the WASP@N database [121], which contains data on published nanocluster structures. 

Change the element and a different set of global minima configurations are obtained; see, for example, 

the review by Baletto & Ferrando [122], who pay special attention to the interplay of energetic, 

thermodynamic and kinetic factors in the explanation of cluster structures that are observed in 

experiments. For bimetallic and more generally alloys, see [123,124]. 

 

 

Octahedral bubble-like nanoclusters, with Th, Td or T symmetry, which have been predicted for a 

range of compounds, including zinc sulfide [125], zinc oxide [126], gallium nitride [127] and silicon 

carbide [101], have recently been reported [128] as a new class of carbon nanostructures which, for the 

smallest sizes, have a similar stability to the well-known carbon fullerenes. The octahedral carbon 

clusters contain tetragonal rings, which, despite a common belief, prove to be an energy-efficient means 

of bending graphene sheets to make three-dimensional spheroid shapes. 
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Figure 7. Tentative global minimum atomic structures for clusters of titanium as 

measured using DFT with the PBEsol functional, as found by Lazauskas et al. [119].  
 
 
 
 

 

(Mg2SiO4)n 
 

n = 1 n = 2 n = 3 n = 4 n = 10 

 

 

(MgSiO3)m 
 

 
m = 1 m = 2 m = 3 m = 4 m = 10 

 
Figure 8. Tentative global minimum atomic structures for clusters of magnesium silicates as measured using DFT 

with the PBE0 hybrid functional, as found by Escatllar et al. [16]. Blue, yellow and red spheres represent 

magnesium, silicon and oxygen atoms, respectively. (Online version in colour.) 

Magnesium-rich silicates are likely to be particularly important for understanding the formation, 

processing and properties of cosmic dust grains. Although astronomical observations, e.g. from infrared 

spectra, and laboratory studies have revealed much about such silicate dust, many studies rely on 

comparisons with the properties of bulk silicates. It is common to assume that a continuous change in a 

property with respect to the nanoparticle size provides a route for estimating the size and, via a match 

between simulated and observed data, the composition of a particle. Extrapolating from bulk, under the 

assumption that the atomic structure of the particles remains bulk-like, right down into the smallest size 

regime, that of nanoclusters would, however, be a mistake as adding one or two atoms to a nanocluster 

will change the lowest energy atomic configuration, as already shown in figure 7. This was one of the 

motivations for predicting the tentative global minima for nanoclusters of magnesium silicates, as shown 

in figure 8, along with reporting of their infrared vibrational spectra [16]. 

 

Given that clusters of compounds with the same stoichiometry can adopt similar atomic structures it 

may be more efficient to data mine published atomic configurations as opposed to performing a search on 

the energy landscape [129,130]. Woodley & Bromley [13] provide a more complete description of these 

and other aspects of computational modelling of nanoparticles. 

 

(d) Supported nanoclusters 

  

 
Many applications of nanosystems involve nanostructures supported on oxides, which are especially 

common in catalytic applications. An important example is provided by copper 
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Figure 9. Predicted structure, as viewed from above, of the Cu8 nanocluster on the (11–20) surface of ZnO 

(black rectangle indicates the unit cell employed in the simulation) [18]. (Online version in colour.) 

 
 
supported on zinc oxide, which has been very widely studied owing to its use as an industrial catalyst for 

the conversion of syngas (CO/H2) to methanol. Fundamental problems remain, however, regarding both 

the atomic-level structure of the catalyst and the mechanism of the catalytic reaction. 

 
Work by Mora Fonz et al. [18] has addressed the problem of the structure of nano-Cu clusters initially 

on the non-polar surfaces of ZnO. The first step was to develop an effective interatomic potential for Cu–

ZnO interactions, which was achieved by performing a series of DFT calculations on the interaction of 

Cu atoms and small clusters with the surface; the resulting energy surface was then fitted to a potential 

model. Using the potential model derived, Cu clusters were ‘grown’ on the non-polar (11–20) surface by 

successive additions of single atoms, after which an optimization was performed using the KLMC 

software. Figure 9 illustrates the resulting structure for a supported Cu8 nanocluster. Interestingly, 

compared with the isolated Cu8 cluster, on the surface the cluster flattens out and effectively ‘wets’ the 

surface of the ZnO. Moreover, these configurations are not generated by a procedure in which the cluster 

is first optimized in isolation and then deposited on the surface and reoptimized. The lowest energy 

structure is only attained when the atom-by-atom method is used to grow the cluster on the surface. 

Further work is now in progress on larger clusters and on clusters on the polar surfaces. Once developed, 

these models will provide a basis for subsequent exploration of the catalytic mechanism. 

 

 

(e) Organic solids: pharmaceutical solid-form screening 
 
The application of crystal structure prediction methods to organic molecular crystals has, until recently, 

been dominated by pharmaceutical materials applications. The solid form of active pharmaceutical 

ingredients (APIs) is important in determining many properties, such as solubility rate, stability, 

hygroscopicity and compressibility. Therefore, polymorphism— where a molecule adopts multiple 

crystal structures, either concomitantly or under different crystallization conditions—is important when 

formulating an API. While polymorphism can be an opportunity for tuning materials properties, the 

appearance of an unanticipated polymorph of an API represents a significant risk for control of properties 

[131,132]. The application to polymorph risk assessment for pharmaceuticals [133] has motivated much 

of the development of structure prediction methods for organic molecular crystals. 

 

A particular challenge of completely sampling the energy landscape of possible crystal structures is 

the molecular flexibility of typical APIs. Conformational polymorphism, where different molecular 

conformers are adopted in different crystal structures of a molecule, is 

. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Chemical diagram of dalcetrapib, with arrows highlighting the 10 torsional 

degrees of freedom. Reproduced from [136]. 
 
 

 
not uncommon. More than one in three known polymorphic molecules exhibit conformational 

polymorphism [134]. Furthermore, highly flexible molecules often do not adopt the lowest energy 

conformer of the isolated molecule in their crystal structures, and intermolecular forces can distort 

molecules significantly from their gas-phase geometries [135]. Therefore, flexible degrees of freedom 

within a molecule (e.g. rotation about single bonds) must often be considered along with packing 

variables, such as the unit cell, molecular positions and orientations. This results in a high-dimensionality 

search space and predicted crystal structures whose relative stabilities are defined by a balance between 

many weak intermolecular interactions, relative conformational energies and intramolecular strain. The 

pharmaceutical application has, therefore, been an excellent application to drive forward structure-

searching methods and accurate models for ranking structures. 

 
Neumann et al.’s study of dalcetrapib [136], a molecule with 10 rotatable bonds (figure 10), illustrates 

the value of crystal structure prediction in the pharmaceutical context. Two polymorphs, related by a 

temperature-induced phase transition, were known after extensive crystallization screening. Structure 

prediction using solid-state DFT for energy ranking produced structures corresponding to these known 

polymorphs, with the global energy minimum corresponding to the low-temperature polymorph B. The 

predictions also produced slightly higher energy, higher density putative structures, which become lower 

in energy than the known polymorph if pressures approximately above 0.2 GPa are applied in the energy 

calculations. This suggested an experimental route to this predicted polymorph, which was confirmed by 

in situ high-pressure crystallization from solution, leading to a new crystal corresponding to one of these 

predicted polymorphs. 

 
Reported successful applications of polymorph prediction applications such as this are becoming more 

and more frequent, often with the results of structure prediction providing the impetus for further 

experimental screening. As another example, computational structure prediction was used as part of 

polymorph screening of the drug molecule galunisertib [137]; the screening revealed an astonishing 10 

polymorphs, as well as solvate crystal structures (where solvent molecules crystallize with the organic 

molecule, forming a two-component crystal). However, despite exploring a wide range of solvent-based 

crystallizations and more unusual crystallization conditions, the crystal structure corresponding to the 

global energy minimum has not been realized experimentally. In a final example, structure prediction 

identified [138] a likely new polymorph of the simple molecule trimesic acid, despite being subjected to 

considerable attention from the chemical crystallography community for 50 years [139]. The results 

prompted . 
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blue = prediction  
red = experiment 
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Figure 11. (a) Comparison between predicted and experimental powder X-ray diffraction patterns of 

the computationally predicted new polymorph of trimesic acid; (b) structural overlay of the predicted 

(blue) and the experimental (red) crystal structures. Reproduced from [138]. (Online version in colour.) 

      

           

  o
rg

/jo
u
r
n

a
l/rs

ta
 

. .
  

 . . . 

 
 
 
 
 
 
 
 
 

 
T2  

 

 

re
la

ti
v

e 
la

tt
ic

e 
en

er
g

y
 (

k
J 

m
o
l–

1
) 

 
100  

90  
80  
70  
60  
50  
40  
30  
20  
10  
0 

density (g cm
–3

)  
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
 
 
 

 
T2-a 

 
T2-g 

T2-b 
T2-d 

CH4 deliverable capacity 

  

 

 

 

  

  

<50  –  100 >150 

 50     

v/v 100  –  

 150 v/v 
   

v/v    v/v 
     

 
Figure 12. Chemical diagram of benzimidazolone T2 and its energy–structure–function map, showing simulated CH4 

deliverable capacities for all predicted crystal structures [140]. Experimentally observed crystal structures are circled and 

labelled T2-α to T2-δ. The data point for each predicted crystal structure is colour coded by its CH4 deliverable capacity (in 

units of v STP/v; 65–5.8 bar, 298 K). Reproduced from Pulido et al. [140]. (Online version in colour.) 

 
a high-throughput robotic crystallization screen of 280 solvent combinations, which led to experimental 

realization of the new predicted polymorph (figure 11). 

 

(f) Organic solids: functional materials discovery 
 
Molecular organic crystal structure prediction has more recently started to see broader applications in 

materials discovery. The discovery of materials with targeted properties switches the focus from gaining 

a detailed picture of the solid-form landscape of a single molecule to an evaluation of the likely crystal 

structures of larger sets of molecules. As long as the property of interest is readily calculable from the 

crystal structure, reliable structure prediction can help screen candidate molecules and prioritize synthetic 

efforts towards the most promising of these. In this area, Day, Cooper and co-workers introduced the 

concept of an energy–structure–function map [140,141], where the simulated properties of interest are 

projected onto the energy landscape of predicted crystal structures of a molecule. When such a map is 

presented visually (figure 12), it can offer a useful visual assessment of which candidate is most likely to 

lead to the best materials properties for a given application. 



An example is Pulido et al.’s computationally guided discovery of microporous molecular crystals 

[140]. Crystal structure prediction was performed on a set of eight molecules chosen as candidates to 

form porous molecular crystals, with the aim of finding materials with high methane deliverable 

capacities (e.g. for use in natural gas-powered vehicles). A porous solid must deliver at least 150 volumes 

of methane at standard temperature and pressure per volume of solid (v STP/v) over a storage and release 

cycle to be of practical interest for methane storage. Porosity is rare in organic molecular crystals because 

of the energetic driving force for molecular close packing, so candidate molecules were designed with 

characteristics that would oppose close packing—awkward, rigid shapes with strong, directional 

hydrogen bonding interaction sites. The energy–structure–function maps calculated for all eight 

molecules suggested the triptycene benzimidazolone molecule, T2, as the molecule with the most 

promising crystal structures (figure 12, dark red points). Three new polymorphs of T2 were subsequently 

realized (T2-β, T2-γ, T2-δ), all corresponding to predicted structures. These include T2-γ, which is the 

lowest density molecular crystal reported in the Cambridge Structural Database [142] of known organic 

crystal structures and whose measured surface area and CH4 capacity match those from the predictions. 

 

The experimentally observed crystal structures in this example are energetically far above the global 

lattice energy minimum, but occupy so-called ‘spikes’ on the energy landscape: low-density structures 

that are much lower in energy than the general energy-density trend on the landscape. These spikes are 

interpreted as corresponding to isolated, deep regions of the lattice energy surface, so that they can be 

kinetically trapped under the right crystallization conditions. Here, this corresponds to crystallization 

from solvent which fills the pores in the structure, but which can be removed from the crystal structure, 

yielding the activated porous structure. The importance of solvent stabilization in directing 

crystallization, shown in this example and also known in pharmaceutical crystallization [143], has led to 

further method development to understand the role of solvent in determining the final structure in 

microporous molecular crystals [144]. 

 
Apart from the area of microporous solids, energy–structure–function maps have also been used in 

screening for organic molecular semiconductors with high charge carrier mobilities [89,145–147] and 

studies of molecular organic photocatalysts [148]. These are other application areas where the property of 

interest depends strongly on crystal packing, so that crystal structure prediction is becoming an enabling 

technology for computationally led materials discovery. 

 

5. Perspective and future prospects 
 
This review has, we hope, showed the accelerating progress in this already fast-moving field. Structure 

prediction is now a reality for an increasingly diverse and complex range of compounds and materials. 

Future developments in the field will include first an increasingly close integration with experiment, with 

structure prediction techniques being used routinely to guide materials design; second, alongside 

continuing algorithmic developments, as in, for example [149–151], there will be a rapid growth in the 

use of machine learning and other approaches from computer science. Third, as we enter the era of exa-

scale computing, the horizons and ambitions of the field will expand. Structure prediction will continue to 

provide challenges for experimentalists, theoreticians and computational scientists. 
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