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Black hole binaries formed dynamically in globular clusters are believed to be one of the main sources
of gravitational waves in the Universe. Here, we use our new population synthesis code, cBHBd, to
determine the redshift evolution of the merger rate density and masses of black hole binaries formed in
globular clusters. We simulate ∼2 million models to explore the parameter space that is relevant to real
globular clusters and overall mass scales. We show that when uncertainties on the initial cluster mass
function and their initial half-mass density are properly taken into account, they become the two dominant
factors in setting the theoretical error bars on merger rates. Uncertainties in other model parameters
(e.g., natal kicks, black hole masses, and metallicity) have virtually no effect on the local merger rate
density, although they affect the masses of the merging black holes. Modeling the merger rate density
as a function of redshift as RðzÞ ¼ R0ð1þ zÞκ at z < 2, and marginalizing over uncertainties, we find:
R0 ¼ 7.2þ21.5

−5.5 Gpc−3 yr−1 and κ ¼ 1.6þ0.4
−0.6 (90% credibility). The rate parameters for binaries that merge

inside the clusters are R0;in ¼ 1.6þ1.9
−1.0 Gpc−3 yr−1 and κin ¼ 2.3þ1.3

−1.0 ; ∼20% of these form as the result
of a gravitational-wave capture, implying that eccentric mergers from globular clusters contribute
≲0.4 Gpc−3 yr−1 to the local rate. A comparison to the merger rate reported by Laser Interferometer
Gravitational Wave Observatory-Virgo shows that a scenario in which most of the detected black hole
mergers are formed in globular clusters is consistent with current constraints and requires initial cluster
half-mass densities ≳104 M⊙ pc−3. Interestingly, these models also reproduce the inferred black hole mass
function in the range 13–30 M⊙. However, all models underpredict the data outside this range, suggesting
that other mechanisms might be responsible for the formation of these sources.
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I. INTRODUCTION

Several black hole (BH) binaries have been detected
by the advanced Laser Interferometer Gravitational Wave
Observatory (LIGO) and Virgo interferometer [1–10]. The
recently released Second Gravitational-Wave Transient
Catalog (GWTC-2), includes a total of 44 confident BH
binary (BHB) events [11,12]. While the astrophysical
origin of these sources is still unknown, one widely
discussed possibility is that they formed in the dense core
of globular clusters (GCs) through dynamical three-body
interactions [13–17].
The realistic modeling of the dynamical evolution of

BHs in the core of a GC represents a complex computa-
tional challenge requiring an enormous dynamical range in

both space and time. For this reason, it is only very recently,
thanks to major improvements in computational methods
and hardware, that it became possible to make robust
predictions about the numbers and physical properties of
BHB mergers produced in GCs [18–22]. Thanks to these
past efforts it is now clear that a large fraction of the sources
detected by LIGO-Virgo could have been dynamically
assembled in GCs. However, as discussed below, a full
characterization of the model uncertainties related to the
BHB merger rate from the GC channel is still missing.
Several recent studies only considered the contribution

from clusters that have survived to the present day [e.g.,
[19,23] ]. These studies found that the present-day pop-
ulation of GCs produces BHB mergers at a local rate of
≈5 Gpc−3 yr−1. This represents a lower limit to the actual
merger rate as there likely existed a population of clusters,
which did not survive to the present, but that contributed
significantly to the local merger rate [24]. In fact, it is
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believed that the GC mass function (GCMF) today is the
result of an initial GCMF that was shaped by dynamical
processes [e.g., [25–30] ]. These processes, e.g., relaxation
driven evaporation and tidal shocking, are particularly
efficient at destroying low-mass clusters. A key uncertainty
in estimating a merger rate from all GCs is that the amount
of such disrupted clusters is not known.
Previous estimates for the BHB merger rate ignored the

fact that the fractional mass that has been lost from the GC
population by the present time, K (see Eq. (6) below), is
very uncertain as it cannot be tightly constrained from the
present-day properties of the GC population. We will show
that once this uncertainty is taken properly into account, it
becomes one of the dominant factors in setting the error
bars on local merger rate estimates from the GC channel.
For example, both Fragione and Kocsis [24] and Rodriguez
and Loeb [31] used a single value for K which was derived
under one assumption for the initial GCMF. Although
Rodriguez and Loeb [31] considered the effect of different
GCMFs on their results, they neglected that K should be
related to the choice of the initial GCMF and that its value
can be constrained by the present-day GCMF once evapo-
ration mass loss is taken into account. A different initial
GCMF not only changes the mass of the GCs which make
the BHBs, but it also sets the amount of mass that is lost
from the GC system; and it turns out that the BHB merger
rate is quite sensitive to both effects.
The properties and merger rate of BHBs depend on

several other physical processes, many of which lack strong
observational constraints [32]. For example, the distribu-
tion of the natal kicks controls the number of BHs that are
ejected from the GC upon formation, as well as the fraction
of BHs that retain their binary companion after supernova.
Different assumptions about the early stages of BH for-
mation will also reflect on the evolution of the host cluster,
affecting its total lifetime and final properties. Moreover,
merger rates are expected to be sensitive to the assumed
density and the related mass-radius relation of GCs at
formation which is also unconstrained observationally [33].
The full implications of these uncertainties is still not fully
explored. The main reason for this is that standard
numerical techniques such as N-body and Monte Carlo
simulations are still too slow to allow a full parameter space
exploration. This is why in this study we employ our new
population synthesis code clusterBHBdynamics (hereafter
cBHBd) [34] to systematically vary assumptions made for
the model parameters and over the full range of initial
conditions relevant to real GCs. Thus, we examine the
effect of these initial assumptions on the number and
properties of merging BHBs using a suite of about
20 million cluster models.
In summary, the merger rate of BHBs produced dynami-

cally in GCs has been studied by multiple teams [e.g.,
[16,19,20,35] ]. Here we build on former studies in two
ways which allow us to place error bars on theoretical

estimates for the BHB merger rate density and on its
redshift evolution: (i) we constrain the fractional mass that
has been lost from GCs over cosmic time by fitting an
evolved Schechter mass function to the observed GCMF in
the Milky Way today and using a simple model for cluster
evaporation. (ii) We employ our new population synthesis
code cBHBd to explore how the BHB merger rate depends
on uncertain parameters in the models (e.g., initial cluster
densities, BH formation recipes, and natal kicks) and
explore the parameter space that is relevant to real GCs
and overall mass scales.
The paper is organized as follows. In Sec. II we compute

the GC formation rate density as a function of time using
constraints from the present-day GCMF. In Sec. III we
describe our population synthesis model and detail the
modifications we made to it with respect to the version used
in [34]. Section IV describes our main results. We discuss
the implications of our results and conclude in Sec. V.

II. CLUSTER FORMATION RATE

In order to compute a BHB merger rate we need the
cluster formation rate density (i.e., per unit of volume) as a
function of time: _ρGCðtÞ. We do this by imposing that in our
model: (i) the present-day GCmass density in the Universe,
ρGC, is consistent with its empirically inferred value and
(ii) the present-day GCMF is consistent with the observed
mass function of the Milky Way GCs.

A. Globular clusters density in the Universe

To derive ρGC we use the same approach as [18], who use
the empirically established relation between the total mass
of a GC population (MGCs) and the dark matter halo mass of
the host galaxy (Mh). The ratio of these two quantities is
remarkably constant over a large range of halo masses
(1010 ≲Mh=M⊙ ≲ 1015) and for different galaxy types:
η≡MGCs=Mh ≃ ð3–7Þ × 10−5 [36–40]. We can also esti-
mate this ratio for the Milky Way: the total luminosity of
all Milky Way GCs from the Harris catalogue [41,42] is
1.75 × 107 LV;⊙. Adopting a mass-to-light ratio in the
V-band of ϒV ¼ 2 M⊙=LV;⊙ and a virial mass of the
Milky Way of Mh ¼ 1.3 × 1012 M⊙ [43], we find η ¼
2.7 × 10−5 for our Galaxy. Table 1 in [39] summarizes eight
results from different studies. We use the seven studies that
include at least 25 galaxies and combine this with the result
of η ¼ 2.9 × 10−5 by [40] that was published after this
summary. We also add the Milky Way estimate from above
to find a mean value of

hηi ¼ ð4.4� 1.6Þ × 10−5: ð1Þ
We determine the dark matter halo mass function from

simulations of large scale structure formation by [44] using
the HMFcalc tool [45]. The total mass density in dark
matter halos with individual masses Mh ≥ 1010 M⊙=h is
ρDM ¼ 3.64 × 1019 h2 M⊙ Gpc−3. Combined with our
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value for η from Eq. (1) and h ¼ 0.674 from the Planck
Collaboration [46], we find

ρGC ¼ hηiρDM ¼ ð7.3� 2.6Þ × 1014 M⊙ Gpc−3: ð2Þ

The relation between MGCs and Mh may hold down to
dwarf galaxy masses of Mh ≃ 109 M⊙ [47], and including
these low-mass galaxies would increase ρDM and ρGC by
about 15%, but because of the uncertain GC occupation
fraction below Mh ≃ 1010 M⊙, we continue with the result
of Eq. (2).1

B. Globular cluster mass function

For our population synthesis model of the next section,
we need the initial mass density of GCs in the Universe
(ρGC0). To find the relation between ρGC0 and ρGC from the
previous section, we adopt a simple model for the mass
evolution of GCs. We assume that the initial GCMF is a
Schechter-type function [48], i.e., a power law with
index −2 at low masses with an exponential high-mass
truncation at Mc, as is found for young massive clusters in
the Local Universe [49]. We assume that this initial
GCMF is universal throughout the Universe and across
cosmic time. There are arguments for a flatter initial GCMF
(i.e., fewer low-mass GCs) in dwarf galaxies at high
redshift and low metallicity [50], but we proceed with
the assumption of a universal initial GCMF.Wewill discuss
the effect of flatter initial GCMFs on the BHB merger rate
in Sec. V.
To find an expression for the GCMF today, resulting

from the initial GCMF, we follow a similar approach as
[27,30] and assume that all GCs have lost an amount of
mass Δ ¼ j _Mjt, where _M is the mass loss rate from
escaping stars and t is the age of the GCs. We do not
specify the escape mechanism and let Δ be constrained by
the Milky Way GCMF. Details of the various processes can
be found in literature: relaxation driven evaporation [51];
disc and bulge shocks [52,53]; interactions with molecular
gas clouds (at young ages) [54–56], and combinations of
the various effects [25,27,57,58]. From here on we refer to
the mechanism responsible for _M, regardless of what the
underlying physical process may be, as “evaporation.”
We then assume that Δ is a constant, i.e., independent of

GC mass, host galaxy, orbit, and formation epoch. This is
clearly not realistic because _M depends on the (time-
dependent) tidal field and the GC orbit within their galaxy
[51]. However, this exercise is merely meant to arrive at an
order of magnitude estimate of how much mass GCs lose
between formation and now, rather than developing a
realistic description of GC evolution. The present-day
GCMF, ϕcl, defined as the number of GCs per unit volume

(nGC) in the mass range ½M;M þ dM�, is given by the
“evolved Schechter function” [30]

ϕcl ¼ AðM þ ΔÞ−2 exp
�
−
M þ Δ
Mc

�
: ð3Þ

At low masses, where the GCMF is affected by mass
loss (M ≲ Δ≲Mc), this function approaches a constant
ϕcl ≃ A=Δ2. In fact, any initial GCMF evolves towards a
uniform ϕcl at low masses if _M is constant [59]. The GCMF
is often plotted as the number of GCs in logarithmic mass
bins (∝ dN=d logM), which increases linearly with M at
low masses and peaks at Mpeak ≃ Δ (for Δ≲Mc). The
simple functional form of Eq. (3) provides a good descrip-
tion for the Milky Way GCMF and the luminosity function
of GCs in external galaxies [30]. The constant of propor-
tionality A is found from the constraint that all GCs
must add up to the present-day GC mass density in the
Universe:

R∞
Mlo

ϕclMdM ¼ ρGC, with ρGC from Eq. (2)
and Mlo ¼ 100 M⊙.
The GC evolution model we use in the next section

also considers mass loss by stellar evolution, which
mostly happens in the first few 100 Myr. The fraction of
mass that clusters lose as a result of stellar evolution
depends on metallicity, the stellar initial mass function,
stellar evolution details, and on whether BHs are ejected, or
not. For the cluster evolution model of the next section we
need the remaining mass in stars and white dwarfs (M⋆).
We use single stellar evolution (SSE) to compute M⋆
at 11 Gyr for a Kroupa initial mass function (IMF) in
the range 0.1–100 M⊙. We find that for metallicities
of [0.01, 0.1, 1] solar, the remaining mass fraction is
M⋆ð11 GyrÞ=M⋆ð0Þ ≃ ½0.54; 0.53; 0.55�. The absence of
an obvious metallicity trend is because the remaining mass
fraction of stars (white dwarfs) decreases (increases) with
metallicity in approximately similar magnitudes. This
justifies the assumption that the remaining M⋆ is indepen-
dent of metallicity and when excluding mass loss by BH
ejections a cluster loses approximately half of its initial
mass by stellar evolution. We, therefore, assume that
clusters lose half their mass by stellar evolution alone.
Next, we assume that stellar evolution and escape affect the
GCMF sequentially (i.e., first stellar mass loss and then
escape). We can then write M0 ¼ 2ðM þ ΔÞ, and we can
find the initial GCMF from the continuity equation [27]

ϕcl;0 ≡ dnGC
dM0

¼ ϕclðM0Þ
���� ∂M∂M0

����: ð4Þ

Because ∂M=∂M0¼0.5 and ϕclðM0Þ¼AðM0=2Þ−2
exp½−M0=ð2McÞ�, the initial GCMF that corresponds to
the present-day GCMF of Eq. (3) is given by

ϕcl;0 ¼ 2AM−2
0 exp

�
−

M0

2Mc

�
: ð5Þ

1For an average GC mass of hMi ¼ 3 × 105 M⊙ this mass
density implies a number density of nGC ¼ 2.4� 0.9 Mpc−3 and
in Sec. V we discuss how this compares to other studies.
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We note that the Schechter mass of the initial GCMF is
2Mc, where Mc is derived from the present-day GCMF.
We then introduce a factor K for the ratio ρGC0

over ρGC, i.e.,

K ¼ ρGC0
ρGC

¼
R
∞
Mlo

ϕcl;0M0dM0R∞
Mlo

ϕclMdM
: ð6Þ

In the next section we include the contribution from
clusters of all masses, and it is, therefore, important to
understand the exact value of K, or better the distribution of
K. To find a posterior distribution for K, we fit the evolved
Schechter functions from Eq. (3) to the Milky Way GCs
and then derive K using Eqs. (5) and (6). We use the
V-band luminosities of the 156 GCs in the 2010 edition of
the Harris catalogue [41,42] and then assume a constant
mass-to-light ratio of ϒV ¼ 2 M⊙=LV;⊙ to convert lumi-
nosities to masses. A histogram of the resulting mass
function is shown in Fig. 1. The Milky Way values are
binned in bins with 15 GCs each, with the highest mass bin
containing 6 GCs. The black dots are the average masses of
the GCs in each bin, while the horizontal error bars show the
bin range and the vertical error bars show the Poisson errors.
We then use the normalized evolved Schechter function

of Eq. (3) as a likelihood function to find Δ andMc. We use

the Markov Chain Monte Carlo (MCMC) code EMCEE [60]
to maximize the log-likelihood and vary logΔ and logMc,
assuming flat priors in the range 3 ≤ logðΔ=M⊙Þ ≤ 7 and
3 ≤ logðMc=M⊙Þ ≤ 7. In Fig. 1 we show the result. For 104

walker positions of the converged chains we compute the
GCMF [Eq. (3)] and the initial GCMF [Eq. (5)] from Δ and
Mc and at each mass we determine the [5%, 50%, 95%]
percentiles of the initial and present-day GCMF. The full
blue and dashed green lines show the 50% (i.e., median)
values for the GCMF and initial GCMF, respectively, while
the shaded regions indicate the 90% credible intervals. The
fit results are similar to what was found by [30] for the 1996
Harris catalogue: logΔ ¼ 5.4� 0.1 and Mc ¼ 5.9� 0.1.
Note that Jordán et al. did not consider stellar evolution
mass loss, so their initial GCMF was truncated atMc, while
ours is truncated at 2Mc.
We also compute K with Eq. (6) for these 104 walker

positions and find K ¼ 32.5þ86.9
−17.7 (90% credible). The

spread in K provides an estimate of the uncertainty in
K, given the 156 Milky Way GC masses. The merger rate
will not increase by the same factor of K. This is firstly
because half of the value of K is due to stellar mass loss.
The decrease in GC population mass by evaporation is
KΔ ¼ K=2 ¼ 16.3þ43.5

−8.87 . Using the approximation for the
number of mergers in the observable redshift range from
[34], Nmerge ∝ M1.6

0 r−0.67h;0 , we can estimate the fractional
increase in the merger rate (Kmerge) as a function ofKΔ. The
relation between Kmerge and KΔ depends on the adopted
mass-radius relation. If we parametrize this as rh;0 ∝ Mμ

0,
then we find that for μ ¼ 0 (i.e., a constant initial radius)
that then Kmerge ≃ 3.5; for μ ¼ 1=3 (i.e., a constant initial
half-mass density) we find Kmerge ≃ 5 and for μ ¼ 0.6 (i.e.,
a Faber–Jackson-like relation, [33,61]) we find Kmerge ≃ 8.
The reason that Kmerge increases with μ is because for
large μ the low-mass clusters are denser and produce more
BHB mergers. Because we do not know the initial mass-
radius relation, the value of Kmerge is thus in the range
2.4–17.6, corresponding to the range in KΔ mentioned
above: 10.1–31.2.
Previous studies adopted a constant K ¼ 2.6 to account

for evaporation [31,62] and then assumed that Kmerge ¼ K.
This value for Kmerge is on the lower boundary of our
estimated range of KΔ for clusters with a constant radius,
corresponding to a factor of ∼2 below the lower boundary
of the distribution of K. For our upper boundary of KΔ for
μ ¼ 0.6 this value of Kmerge is a factor of 6.8(13.4) lower
than our KΔðKÞ.

C. The GC formation rate

Next, we compute the cluster formation rate _ρGC≡
_ρGCðτÞ, where τ is lookback time, for a set of model
assumptions. We do this in terms of a normalized GC
formation rate R≡ RðτÞ, such that R 0

∞ Rdτ ¼ 1. In the next

FIG. 1. GCMF of 156 Milky Way GCs from the Harris
catalogue (black dots with error bars). The blue line shows an
evolved Schechter function fit [Eq. (3)]. The resulting initial
GCMF, corrected for mass loss by stellar evolution (factor of 2)
and evaporation (Δ), is shown as a green dashed line. The shaded
regions and uncertainties of quoted values indicate the 90%
credible intervals. The inferred K value implies that the total mass
of the Milky Way GC population was 32.5 times higher, initially.
Half of this mass reduction is because of stellar mass loss and the
remaining factor of 16 is due to evaporation.
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section we will derive R from a model for GC formation
across cosmic time. For a given present-day ρGC [Eq. (2)],
and no mass loss, the GC formation is then found from
_ρGC ¼ ρGCR. We now show how _ρGC can be easily derived
for a population of GCs with a given present-day mass
function that have lost mass by stellar evolution and/or
escape. Thus, after we determine ϕcl;0, we can find _ρGC
from imposing

_ρGC ¼ KρGCR: ð7Þ

The cluster mass formed per unit volume integrated over
all times is

ρGC0 ¼
Z

0

∞
_ρGCdτ ¼ KρGC; ð8Þ

¼ 2.4þ2.3
−1.2 × 1016 M⊙ Gpc3: ð9Þ

The large error bars are because of the uncertainty in K and
hηi and imply that ρGC0 is uncertain by a factor of 2. In the
next section we include this uncertainty in the predictions
for the merger rate.

III. METHODOLOGY

The evolution of the BHBs in our cluster models is
computed using the fast code cBHBd. While the details of
this method are described in Antonini and Gieles [34], here
we give a brief summary of the model philosophy, includ-
ing the full set of differential equations that are used to
compute the secular evolution of the cluster models and the
merging BHBs they produce.

A. ClusterBH

We assume that the cluster consists of two types of
members: BHs and all the other members (i.e., other stellar
remnants and stars). Each contribute a total mass of MBH
and M⋆, respectively, such that the total cluster mass is
Mcl ¼ M⋆ þMBH. We assume that after several relaxation
timescales the cluster reaches a state of balanced evolution
[63,64], so that the heat generated in the core by the BHBs
and the evolution of the cluster global properties are related
as [59,64,65]:

_E ¼ ζ
jEj
trh

; ð10Þ

where E ≃ −0.2GM2
cl=rh is the total energy of the cluster,

withMcl the total cluster mass, and rh the half-mass radius.
The constant ζ ≃ 0.1 [65], and trh is the average relaxation
timescale within rh, which is given by [e.g., [66] ]

trh ¼ 0.138

ffiffiffiffiffiffiffiffiffiffiffi
Mclr3h
G

r
1

hmalliψ ln κ
: ð11Þ

Here hmalli is the mean mass of the stars and remnants
(initially hmalli ¼ 0.638 M⊙), and ln κ is the Coulomb
logarithm, which varies slowly with N, but we fix it to
ln κ ¼ 10. The quantity ψ depends on the mass spectrum
within rh, for which we adopt the following form:

δ ¼ 1þ a1fBH; ð12Þ

where fBH ¼ MBH=Mcl is the fraction of mass in BHs to
the total cluster mass, and a1 is a constant that was
determined from a comparison to N-body models (see
below). We define the start of the balanced evolution as

tcc ¼ Nrhtrh;0: ð13Þ

Under the above assumptions, the set of coupled ordinary
differential equations given below are integrated forward in
time to obtain solutions for MBHðtÞ, MclðtÞ, and rhðtÞ.
The mass loss rate of BHs is coupled to the energy

generation rate, which itself is coupled to the total E and trh
of the cluster [Eq. (10)], such that [64]

_MBH ¼
�
0; t < tcc or MBH ¼ 0;

−β Mcl
trh

; t ≥ tcc and MBH > 0:
ð14Þ

The cluster mass loss due to stellar evolution is

_M⋆;sev ¼
�
0; t < tsev;

−νM⋆
t ; t ≥ tsev;

ð15Þ

with tsev ≃ 2 Myr. We include here an additional (mass
independent) term which was not present in Antonini and
Gieles [34], and that accounts for cluster evaporation

_M⋆;ev ¼ −
Δ
hti ; ð16Þ

with hti ≃ 10 Gyr the averaged cluster formation time. The
total mass loss rate of the cluster is then

_M ¼ _M⋆;sev þ _M⋆;ev þ _MBH: ð17Þ

In balanced evolution, the expansion rate of the cluster
radius as the result of relaxation is

_rh;rlx ¼ ζ
rh
trh

þ 2
_M

Mcl
rh: ð18Þ

Before balanced evolution, the cluster radius expands
adiabatically as the result of stellar mass loss at a rate

_rh;sev ¼ −
_M⋆;sev
Mcl

rh: ð19Þ

The final expression for the half-mass radius evolution is
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_rh ¼
�
_rh;sev; t < tcc;

_rh;sev þ _rh;rlx; t ≥ tcc:
ð20Þ

The remaining parameters were obtained in Antonini and
Gieles [34] by fitting the results of N-body simulations:
Nrh ¼ 3.21, β ¼ 2.80 × 10−3, ν ¼ 8.23 × 10−2, and a1 ¼
1.47 × 102.

B. BHBdynamics

The initial contraction of the cluster core due to two-
body relaxation leads to high central densities of BHs
which favor the formation of binaries through three-body
processes. The energy produced by the BHBs reverts the
contraction process of the core and powers the subsequent
expansion of the cluster as described by Eq. (18). We can
then relate the BHB hardening rate to the rate of energy
generation

_Ebin ¼ − _E; ð21Þ
where _Ebin is the hardening rate of all core binaries.
Equation (21) allows us to couple in a simple way the
evolution of the BHBs to the evolution of the cluster model.
It is important to stress that the hardening rate equation (21)
depends neither on the number of binaries present in the
cluster core nor on the exact mechanism leading to their
formation.
In order to compute a merger rate and the binary proper-

ties from Eq. (21), we need to further specify the dynamical
processes that lead to the hardening and merger of the
binaries. We are interested in mergers that occur through
(strong) binary-single dynamical encounters in the cluster
core [e.g., [67,68] ]. Thuswe consider: (i) mergers that occur
in between binary-single encounters while the binary is still
bound to its parent cluster (in-cluster inspirals); (ii) mergers
that occur during a binary-single (resonant) encounter as two
BHs are driven to a short separation such that gravitational
wave (GW) radiation will lead to their merger (GW
captures); and (iii) mergers that occur after the binary is
ejected from its parent cluster. We use BHBdynamics to
determine the rate and masses of the BH binary mergers
produced by these three dynamical channels.
In balanced evolution, after a binary is ejected or merges

a new binary must quickly form to meet the energy demand
from the cluster. Under such conditions, the binary for-
mation rate nearly equals the binary ejection rate and it is
given, therefore, by the BH mass ejection rate equation (14)
divided by the total mass ejected by each binary

Γbin ≃ −
_MBH

mej
; ð22Þ

where mej was computed using Eq. (38) in [34], and it is
approximately a fixed number mej ≃ 6m. The number of
BHBs that merge before a time t from the formation of the
cluster is [34]

N ð< tÞ ¼
Z

t

0

Γbin½Pin þ Pejðt − t0Þ�dt0; ð23Þ

where Pejðt − tejÞ is the probability that a binary ejected
dynamically from the cluster at a time tej will merge due to
GW emission within a time t from the formation of the
cluster, and Pin is the probability that a binary merges
inside the cluster. Specifically, Pin is the sum of the
probability that a binary merges through an in-cluster
inspiral and the probability of a GW capture. As described
in [34], the probability that a binary merges in between two
binary-single interactions is given by integrating the differ-
ential merger probability per binary-single encounter over
the total number of binary-single interactions experienced
by the binary. Similarly, the probability that a binary
merges through a GW capture is obtained by dividing
each binary-single encounter into 20 intermediate resonant
states, as in [68], and by integrating the differential merger
probability per resonant encounter over all encounters
experienced by a binary. The merger probabilities are
computed by assuming that the eccentricity of the BHBs
follows that of a so-called thermal distribution NðeÞ ∝ e
[e.g., [69] ], and their full expressions can be found in
Antonini and Gieles [34]. Moreover, when evaluating Pej

and Pin we set Ebin ¼ −Gm1m2=2a, with a the binary
semimajor axis and m1 and m2 the mass of the BH
components, i.e., we have assumed that only one BHB
is responsible for all the heating at any given time.
However, because the dependence is weak, e.g., Pin ∝
_E−2=7
bin [34], and the number of hard binaries is expected to

be of order unity in the type of clusters we consider [70],
this simplification is reasonable.

C. Black hole mass function and natal kicks

In order to calculate the merger rate through Eq. (23) we
need a physically motivated model for the BH mass
function and its time evolution.
We sample 100 stellar progenitor masses from the initial

mass function ϕ⋆ðm⋆Þ ∝ m−2.3⋆ [71] between m⋆;lo and
100 M⊙ with m⋆;lo ≃ 20 M⊙, the stellar mass above which
a BH forms. The resulting masses of the BHs are then
obtained using the fast stellar evolution code SSE [72],
which we modified to include up to date prescriptions for
stellar wind driven mass loss [73], compact-object for-
mation, and supernova kicks [74,75], and we also include
prescriptions to account for pulsational-pair instabilities
and pair-instability supernovae [76]. The initial mass
fraction in BHs is set equal to the total mass in BHs
divided by the total mass in stars between 0.1 and m⋆;lo for
a Kroupa [71] initial mass function and ranges from fbh ≃
0.04 to 0.07, depending on the metallicity and the adopted
prescription for compact-object formation. These mass
fractions first increase as the result of stellar evolution
mass loss and then they reduce due to the ejection of BHs
caused by natal kicks and dynamical ejections. The BH
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natal kicks are computed using a standard fallback model in
which the BHs receive a kick drawn from a Maxwellian
distribution with dispersion σ ¼ 265 km s−1 [77], lowered
by the fraction of the ejected supernova mass that falls back
into the compact object. The fallback fraction and remnant
masses are determined according to the chosen remnant-
mass prescription. We adopt here the rapid supernova
prescription described in Sec. IV of Fryer et al. [75], in
which the explosion is assumed to occur within the first
250 ms after bounce. But later in Sec. IV B we also explore
other choices for the compact-object formation recipe.
The cluster dynamically processes its BH population

such that the mass of the merging BHBs progressively
decreases with time because the most massive BHs are the
first to reach the cluster core, form hard binaries, and merge
[e.g., [78] ]. Assuming that the merger products of BHB
mergers are ejected, simulations of dense star clusters also
show that the merging BHBs have a distribution of mass
ratio that is strongly peaked around one [e.g., [20] ]. Thus,
we assume that the BHs taking part in the dynamical
interactions have the same mass and that at any given time
this mass is equal to that of the largest BH in the cluster, i.e.,
m1 ¼ m2 ¼ m3 ¼ mmax. The value of mmax at a given time
can be easily linked to the time evolution of the total mass
in BHs given by clusterBH. For a generic BH mass function
ϕ•, we use the fact thatZ

mmax

mlo

ϕ•mdm ¼ MBH; ð24Þ

where the integral on the left hand side is simply the
cumulative distribution of BH masses computed with SSE.
We then invert numerically this relation to findmmaxðMBHÞ.

D. Cluster formation and initial properties

We sample the initial cluster masses from the Schechter
mass function equation (5), i.e., we assume that both
evaporation and stellar mass loss are important. The values
[Δ, Mc] needed to compute ϕcl;0 and K are sampled from
their posterior distributions derived in Sec. II B.
An important property of balanced evolution is that the

value of a cluster half-mass radius today is largely
independent of its initial value [33,59]. It is, therefore,
not possible to infer the initial density of GCs from their
properties today. We, therefore, consider three choices
for the initial stellar mass density within the half-mass
radius, ρ0 ¼ 3M0=ð8πr3h;0Þ, which we set equal to ρ0 ¼
104 M⊙pc−3 for our canonical Mod1, and increase
(decrease) by a factor of 10 in Mod2 (Mod3) to explore
the effect of initial cluster density.
For the cluster metallicity, we fit a quadratic polynomial

to the observed age-metallicity relation for the Milky Way
GCs [79] to obtain the mean metallicity

logðZmean=Z⊙Þ≃0.42þ0.046

�
t

Gyr

�
−0.017

�
t

Gyr

�
2

:

ð25Þ

Given the cluster age t, we then assume a log-normal
distribution of metallicity around the mean with standard
deviation σ ¼ 0.4 dex. This takes into account the large
spread found in the observed age-metallicity relation. In
order to determine the effect of metallicity on our results we
will later consider additional models where the cluster
metallicity is set to a fixed value.
We obtain the distribution of cluster formation times

from the semianalytical galaxy formation model of El-
Badry et al. [80]. The same model has also been used in
recent works [e.g., [31,81] ], allowing a direct comparison
of our results to literature. El-Badry et al. [80] describe the
process of GC formation as resulting from star formation
activity in the high-density disks of gas-rich galaxies.
Motivated by the results of simulations of molecular cloud
collapse, they assume that massive bound clusters form
preferentially when the gas surface density exceeds a
certain threshold. Applying this ansatz to a semianalytic
gas model built on dark matter merger trees, they make
predictions for the cosmological formation rate of GCs.
The resulting cluster formation history peaks at a redshift of
∼4, which is earlier than the peak in the cosmic star
formation history (redshift ∼2, [82]). We sample the
formation redshift of our cluster models from the total
cosmic cluster formation rate given by the fiducial model of
El-Badry et al. [80] and integrated over all halo masses.
This corresponds to the formation rate per comoving
volume of their Fig. 8 with their parameters βΓ ¼ 1 and
βη ¼ 1=3, where βΓ sets the dependence of the cluster
formation efficiency on surface density, and βη the depend-
ence of the star formation rate on the halo virial mass. We
then normalize the GC formation to a unit total number to
obtain R [Eq. (7)]. Thus, we only sample the cluster
formation redshift from the El-Badry et al. [80] model,
while the total cluster formation rate is given by our Eq. (7).
For this model, approximately 25% of the cosmic star
formation [82] is in star clusters at redshifts ≳4 (i.e., before
the peak) for K ¼ 32.5, implying that K ¼ 130 is an upper
limit to ensure that the cluster formation rate is below the
star formation rate. This limit corresponds to 2.5σ in our K
distribution and hence it is unlikely to occur. Later, in order
to determine the importance of our assumption about the
cluster formation history, we will consider another class of
models with different values for βΓ and βη.
Given the initial cluster mass, radius, metallicity, and

formation time, the BHB merger rate _N is obtained
from cBHBd.

IV. BINARY BLACK HOLE MERGER RATE

The merger rate density of BHBs at a lookback time τ is

RðτÞ ¼
Z Z Z

ϕcl;0ðM0ÞRðτ0ÞsðZÞ

× _N ðτ0 − τ;M0; rh;0; ZÞdτ0dM0dZ; ð26Þ
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where _N ðt;M0; rh;0; ZÞ is the BHB merger rate corre-
sponding to a cluster with an initial mass M0, half-mass
radius rh;0, and metallicity Z at a time t after its formation;
RðτÞ is the normalized cluster formation rate and sðZÞ is the
normalized formation rate of clusters with a metallicity Z at
a time τ,

R
sðZ; τÞdZ ¼ 1, which can be calculated given a

model for the time evolution of metallicity, e.g., Eq. (25).
In practice, for each model assumption in Table I we

sample 100 values over the posterior distributions of the
parameters Mc and Δ obtained from the MCMC fit to the
observed Milky Way GCMF. Then, for each pair [Mc, Δ],
we evolve Ncl ¼ 600 models with masses sampled over a
grid of constant logarithmic step size, δ logM=M⊙ ¼ 0.01,
in the range 102–108 M⊙ and use that as follows:

RðzÞ ≃ KρGC

PNcl
i¼1

_N ðz;M0;iÞϕcl;0ðM0;iÞM0;iPNcl
i¼1 ϕcl;0ðM0;iÞM2

0;i

; ð27Þ

where the formation time of each cluster is randomly
sampled from the corresponding RðτÞ distribution; we then
use Eq. (25) to compute the mean metallicity Zmean that
corresponds to that formation time and thus find the cluster
metallicity by drawing from a log-normal distribution
around Zmean. The half-mass radius of the cluster is
obtained from the cluster mass given the assumed half-
mass density. Note that because each cluster has its own
metallicity each time we generate a new BH population
using SSE; the fraction of clusters withZ < 0.1Z⊙ is≃84%.
We also take into account the uncertainty on themass density
of GCs in the Universe, ρGC. We assume that the parameter
ρGC follows a Gaussian distribution with mean 7.3 ×
1014 M⊙ Gpc−3 and σ ¼ 2.6 × 1014 M⊙ Gpc−3. We sample
1000 values from this latter distribution and for each of them
we use Eq. (27) to determine a merger rate estimate for each
of the [Mc,Δ] values and thus obtain a distribution ofmerger
rate density values.
Because our results turn out to be more sensitive to the

cluster initial density than to other parameters, we first
focus on Mod1, Mod2, and Mod3 in Table I. In these
models we vary ρ0 in a range that is relevant to real globular
clusters, while keeping fixed all the other parameters as
given in the Table. This allows us to bracket a plausible
range of values for the local merger rate density and its
redshift evolution. In Fig. 2 we plot the median of the
merger rate distribution and credible intervals as a function
of redshift and the primary BH mass distribution of binaries
merging at redshifts z < 1 as well as the initial mass
distribution of the clusters where these binaries originated.
Figure 2 shows that the difference between our upper and

lower bounds on the comoving BH merger rate density is
about a factor ∼10 for any density assumption. This is due
to the fact thatR ∝ K at a very good approximation and, as
we discussed above, tight constraints onK cannot be placed
from the present day Milky Way GCMF. Moreover, rates

are not too sensitive to the initial cluster density—two
orders of magnitude difference in the initial density leads to
a factor of ∼5 variation in the local value of R. From this
we conclude that the initial density uncertainty is as
important as the unknown initial GCMF.
For each initial GCMF, corresponding to new values of

[Mc, Δ] and hηi, we fit the redshift distribution of the
merger rate density at z < 2 using

RðzÞ ¼ R0ð1þ zÞκ ð28Þ

to derive a distribution of values for the parameters R0

and κ for each of our three density assumptions. In this
analysis we neglect the uncertainties associated to each fit
because their standard deviations are much smaller than the
variation in the inferred parameters across the different
models. The initial parameters for each of the three
densities and the corresponding median values and uncer-
tainties (5 and 95 percentiles) of R0 and κ are given in
Table I (Mod1, Mod2, and Mod3). The distributions
obtained from this analysis are shown in Fig. 3. The local
BHmerger rate density from GCs varies in the range R0 ≃ 1

to 50 Gpc−3 yr−1. A comparison to the local merger rate
inferred from the GW detections 23.9þ14.9

−8.6 Gpc−3 yr−1 (for
their redshift independent results and 19.1þ16.2

−9.0 Gpc−3 yr−1

when the merger rate is allowed to evolve with redshift)
[12] shows that BHBs formed dynamically in GCs are
likely to explain a significant fraction of the BHB mergers
detected by LIGO-Virgo. Note, however, that if GCs are
formed with high densities, ∼105 M⊙ pc−3, then our
merger rate estimates are consistent with the LIGO-
Virgo merger rates within uncertainties. We note that
although this high density is preferred to explain the overall
rates, the rates in the mass range 13–30 M⊙ are somewhat
better reproduced by Mod1 (104 M⊙ pc−3, see Fig. 2).
Combining the three models together, i.e., assuming a
universe in which one-third of the clusters form as in Mod1,
one-third as in Mod2 and the remaining as in Mod3, we
find

R0 ¼ 7.2þ21.5
−5.5 Gpc−3 yr−1; κ ¼ 1.6þ0.4

−0.6 ; ð29Þ

where uncertainties refer to the 90% credible intervals.
The middle panel of Fig. 2 shows the primary BH mass

distribution normalized to the BH merger rate density in the
local Universe (z < 1). Our models Mod1 and Mod2
reproduce well the shape as well as the normalization of
the BH mass function inferred from the GWTC-2 [12] in
the range 13–30 M⊙. The BH mass distribution appears to
be sensitive to the initial cluster density, in the sense that
higher densities lead to a higher fraction of lower mass BHs
among the merging population. It is interesting that the
higher density models, Mod1 and Mod2, provide a better
match to the inferred BH mass function and the rates. The
additional low-mass BHs in high density GCs is due to the
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TABLE I. Model parameters used in the calculations. Here βΓ and βη refer to the parameters of the cosmological models in El-Badry
et al. [80] that are used to sample the cluster ages in our simulations. The rightmost three columns give the local merger rate density of
BHBs, the rate evolution parameter κ, and the local merger rate of in-cluster mergers (including GW captures).

Density Natal R0 R0;in-cluster

Model M⊙ pc−3 Z Cluster formation BH masses Kicks _M⋆;ev [Gpc−3 yr−1] κ [Gpc−3 yr−1]

Mod1 104 Eq. (25) βΓ¼1; βη ¼ 1=3 Rapid Fallback Eq. (16) 7.2þ12.7
−4.5 1.61þ0.26

−0.37 1.8þ1.6
−1.0

Mod2 105 � � � � � � � � � � � � � � � 12.2þ32.9
−7.9 1.92þ0.16

−0.17 2.0þ1.7
−1.1

Mod3 103 � � � � � � � � � � � � � � � 3.0þ5.6
−1.9 1.23þ0.53

−0.35 1.1þ1.2
−0.6

Mod4 104 0.01Z⊙ � � � � � � � � � � � � 6.8þ13.6
−3.9 1.60þ0.22

−0.33 1.8þ1.8
−1.1

Mod5 � � � 0.1Z⊙ � � � � � � � � � � � � 7.5þ16.0
−5.3 1.57þ0.27

−0.38 2.0þ2.0
−1.2

Mod6 � � � Z⊙ � � � � � � � � � � � � 6.9þ15.4
−3.2 1.51þ0.30

−0.26 2.7þ2.5
−1.7

Mod7 � � � Eq. (25) All form at z ¼ 3 � � � � � � � � � 7.5þ15.5
−4.5 1.72þ0.26

−0.34 1.8þ1.8
−1.1

Mod8 � � � � � � βΓ ¼ 0; βη ¼ 1=3 � � � � � � � � � 7.6þ16.3
−5.1 1.53þ0.25

−0.38 2.1þ2.5
−1.4

Mod9 � � � � � � βΓ ¼ 1; βη ¼ 1=6 � � � � � � � � � 6.6þ13.6
−4.6 1.54þ0.29

−0.29 1.8þ1.8
−1.0

Mod10 � � � � � � βΓ ¼ 1; βη ¼ 1=3 [83] � � � � � � 7.1þ13.6
−4.0 1.68þ0.22

−0.31 1.5þ1.3
−0.9

Mod11 � � � � � � � � � [84] � � � � � � 7.8þ16.1
−4.8 1.64þ0.30

−0.26 1.7þ1.5
−1.0

Mod12 � � � � � � � � � Delayed � � � � � � 7.1þ14.6
−4.4 1.58þ0.27

−0.36 1.8þ1.9
−1.0

Mod13 � � � � � � � � � Rapid No kicks � � � 10.0þ21.4
−6.9 1.52þ0.26

−0.31 2.4þ2.5
−1.4

Mod14 � � � � � � � � � � � � Momentum � � � 8.0þ14.5
−6.1 1.50þ0.31

−0.34 2.2þ2.2
−1.3

Mod15 � � � � � � � � � � � � Fallback 0 2.2þ1.4
−1.4 1.22þ0.13

−0.29 0.9þ0.2
−0.2

Mod16 105 0.01Z⊙ � � � � � � � � � Eq. (16) 12.2þ29.6
−8.0 1.87þ0.14

−0.17 1.9þ1.9
−1.1

Mod17 � � � 0.1Z⊙ � � � � � � � � � � � � 12.7þ32.4
−8.1 1.93þ0.12

−0.20 2.0þ1.9
−1.2

Mod18 � � � Z⊙ � � � � � � � � � � � � 10.3þ24.5
−6.7 2.28þ0.12

−0.35 2.3þ2.9
−1.5

Mod19 � � � Eq. (25) All form at z ¼ 3 � � � � � � � � � 11.1þ27.9
−7.2 2.10þ0.03

−0.12 1.8þ1.5
−1.2

Mod20 � � � � � � βΓ ¼ 0; βη ¼ 1=3 � � � � � � � � � 12.3þ29.4
−8.3 1.91þ0.19

−0.21 2.2þ2.2
−1.3

Mod21 � � � � � � βΓ ¼ 1; βη ¼ 1=6 � � � � � � � � � 11.5þ28.1
−7.6 1.90þ0.10

−0.15 1.8þ1.7
−1.1

Mod22 � � � � � � βΓ ¼ 1; βη ¼ 1=3 [83] � � � � � � 13.1þ34.0
−8.4 1.90þ0.11

−0.16 1.9þ1.9
−1.1

Mod23 � � � � � � � � � [84] � � � � � � 14.5þ36.7
−8.8 1.88þ0.13

−0.13 2.0þ1.8
−1.2

Mod24 � � � � � � � � � Delayed � � � � � � 11.8þ27.3
−6.8 1.96þ0.12

−0.19 1.9þ1.7
−1.3

Mod25 � � � � � � � � � Rapid No kicks � � � 18.1þ36.7
−6.1 1.80þ0.14

−0.17 3.1þ2.9
−1.7

Mod26 � � � � � � � � � � � � Momentum � � � 14.2þ32.6
−9.2 1.86þ0.18

−0.20 2.7þ2.4
−1.7

Mod27 � � � � � � � � � � � � Fallback 0 3.2þ2.4
−2.1 1.87þ0.10

−0.19 1.0þ0.4
−0.4

Mod28 103 0.01Z⊙ � � � � � � � � � Eq. (16) 2.7þ4.7
−1.8 1.30þ0.49

−0.33 1.0þ0.9
−0.6

Mod29 � � � 0.1Z⊙ � � � � � � � � � � � � 3.4þ5.8
−2.2 1.16þ0.52

−0.27 1.1þ1.2
−0.8

Mod30 � � � Z⊙ � � � � � � � � � � � � 3.5þ7.3
−2.5 0.91þ0.32

−0.30 1.4þ2.0
−0.8

Mod31 � � � Eq. (25) All form at z ¼ 3 � � � � � � � � � 2.9þ5.2
−1.9 1.39þ0.48

−0.35 1.0þ1.0
−0.7

Mod32 � � � � � � βΓ ¼ 0; βη ¼ 1=3 � � � � � � � � � 3.3þ5.9
−2.1 1.19þ0.41

−0.35 1.1þ1.2
−0.6

Mod33 � � � � � � βΓ ¼ 1; βη ¼ 1=6 � � � � � � � � � 2.9þ4.0
−1.9 1.26þ0.47

−0.38 1.0þ1.0
−0.6

Mod34 � � � � � � βΓ ¼ 1; βη ¼ 1=3 [83] � � � � � � 2.7þ4.5
−1.6 1.44þ0.46

−0.39 0.9þ0.8
−0.5

Mod35 � � � � � � � � � [84] � � � � � � 2.9þ4.9
−1.7 1.39þ0.47

−0.33 1.0þ0.9
−0.6

Mod36 � � � � � � � � � Delayed � � � � � � 2.9þ5.0
−1.9 1.22þ0.44

−0.35 1.0þ1.0
−0.6

Mod37 � � � � � � � � � � � � No kicks � � � 3.7þ6.4
−2.5 1.32þ0.46

−0.31 1.2þ1.1
−0.7

Mod38 � � � � � � � � � � � � Momentum � � � 2.9þ3.9
−1.8 1.02þ0.54

−0.34 1.1þ1.0
−0.6

Mod39 � � � � � � � � � � � � Fallback 0 0.8þ0.6
−0.4 0.62þ0.21

−0.30 0.46þ0.02
−0.06
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higher retention fraction of lower mass BHs in higher
density models after a natal kick due to the high escape
velocities from these clusters, and to the fact that denser
clusters process their BH populations faster, thereby “eat-
ing” away their BH mass function more.

Given the number of complex features that can be
seen in the BH mass distributions we do not attempt
here a parametrization over the full range of BH masses.
Moreover, as we will show later in Sec. IV B, these
distributions are sensitive to the uncertain prescriptions
for BH formation, natal kicks, and metallicity. We instead
consider the mass range 13 M⊙ to 30 M⊙, where a simple
power law model dR=dm ∝ mα does a reasonable job. In
this mass range we find α ¼ 0.1þ0.9

−0.5 (Mod3), α ¼ −1.1þ0.4
−0.5

(Mod1), and α ¼ −1.8þ0.6
−0.4 (Mod2), where the reported

values are the median of the distributions obtained by
fitting each of the 100 BHmass distributions corresponding
to different [Mc, Δ], and the uncertainties refer to the 5 and
95 percentiles. As before, we neglect the uncertainties
associated to each fit because their standard errors are much
smaller than the variation of α across the different models.
By combining the three density models together, we find

α ¼ −1.1þ1.5
−1.0 : ð30Þ

Negative values of α are preferred, though positive values
are also acceptable. The value of the power law index found
by us is broadly consistent with the value of α ¼ −1.58þ0.82

−0.86
reported by [12] for their low-mass (< 40 M⊙) slope of the
broken power law model. For comparison, the BH initial
mass function integrated over all metallicities is shown in
the middle panel of Fig. 2. Within the same BHmass range,
m ¼ 13 M⊙ to 30 M⊙, the best fit power law model to the
initial mass function had a spectral index α ≈ −1.8. The
most striking feature, however, is that all mass distributions
in Fig. 2 are strongly depleted at m≲ 15 M⊙. The fraction
of BHs below this mass decreased by more than 1 order of
magnitudewith respect to the BH initial mass function. Due
to this, all our models underpredict the number of BHBs at
m ∼ 10 M⊙ compared to the mass distribution inferred
from the LIGO-Virgo detections. Moreover, we note some
features that are common to the three models considered
here. All three models show peaks at m ≃ 13 M⊙, 20 M⊙,
and 30 M⊙. Above m ¼ 30 M⊙ the BH mass distribution

FIG. 2. Median of the merger rate distribution (solid lines) for
different initial cluster half-mass densities corresponding to
Mod1, Mod2, and Mod3 in Table I. The dashed lines contain
90% of all model realizations (between the 5 and 95 percentiles).
The upper panel gives the merger rate as a function of redshift.
The middle and lower panels show the differential local merger
rate as a function of the primary BH mass and initial cluster mass,
respectively. We compare our results to the median (solid) and the
90% credible intervals (hatched regions) inferred from the
GWTC-2 catalogue in [12]. In the middle panel, we have used
their “Power Law & Peak” model and the thick red line gives the
BH initial mass function (in arbitrary units). In the lower panel we
show the initial GCMF (in arbitrary units) for our best fit value
logð2Mc=M⊙Þ ¼ 6.26. Vertical dotted line corresponds to the
LIGO Voyager upgrade horizon for ð10þ 10ÞM⊙ BHBs [85].
The observable horizons of the Einstein telescope [86] and the
Cosmic Explorer [85] extend to the very early Universe and are
both to the right of the x-axis range in the figure.

FIG. 3. Distribution of the rate parameter κ and the local merger
rate R0 for each of the three models of Fig. 2. Colors are as in
Fig. 2.
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starts to decline rapidly with mass until a break at m ≃
38 M⊙ above which the decline becomes much steeper. All
models show essentially no BHs with mass above 40 M⊙
or below 5 M⊙. The low merger rate value at ≳40 M⊙ is a
consequence of the stellar mass loss prior to the formation
of the BHs because a down-turn above 30 M⊙ is also seen
in the BH IMF, and we find it even in models that do not
include any prescription for pair instability [87]. Our
pulsational-pair instabilities and pair-instability supernovae
prescriptions are taken from [76], and for the maximum
initial stellar mass we considered 100 M⊙, they have little
or no effect on the resulting BH masses. Note also that we
do not consider hierarchical mergers [88]. Their contribu-
tion to the merger rate is sensitive to the distribution of BH
natal spins, which is poorly constrained. Assuming that
BHs are formed with no spin, Rodriguez et al. [89] finds
that ∼10% of BHB mergers come from previous mergers;
when the BH dimensionless spin parameter is increased
above 0.1, the contribution drops to only a few percent or
less. In addition, in the discussion (Sec. V C) we show that
with our adopted mass-radius relation, less 2nd generation
mergers are expected compared to Rodriguez et al. [90].
Thus, including hierarchical mergers is not expected to
significantly change our integrated merger rate estimates.
However, the high mass BHs resulting from multiple
mergers can partly fill up the mass distributions above
m ∼ 40 M⊙, where the merger rates from our models are
nearly zero.
The bottom panel of Fig. 2 shows the differential

contribution of clusters with different masses to the local
merger rate (z < 1). This contribution increases with
cluster mass until about 106 M⊙, above which the rate
starts to rapidly decrease because of the exponential
truncation of the initial GCMF aboveMc. The contribution
of clusters with masses larger than 107 M⊙ or smaller than
103 M⊙ is negligible. In our models, clusters that have a
mass M0 < 4 × 105 M⊙ are fully disrupted by the present
time. These clusters have been neglected in some previous
work [e.g., [18,20,23,78] ], but we find that they contribute
a significant fraction of the local merger rate: ≈0.33, 0.48
and 0.30 for Mod1, Mod2, and Mod3, respectively.

A. In-cluster vs ejected binaries

The merger of a BHB in our models can occur either
after the binary has been ejected dynamically from the
cluster, or within the cluster itself. In-cluster mergers are
relevant because they can lead to the formation of BHs with
mass above the pair-instability gap at ≈50 M⊙ [88,90,91],
and the observational implications of this have been
discussed in a number of previous papers, e.g., [92–94].
Among all in-cluster mergers, GW captures are also
particularly important because a fraction of them are
expected to have a finite eccentricity at the moment they
first chirp within the LIGO frequency band above 10 Hz

[68,90,95–97]. Thus, they could be identified among other
binaries due to their unique eccentric signature.
In Fig. 4 we show separately the rate evolution of BH

mergers occurring among the ejected binaries, those
forming inside the cluster and GW captures, as well as
the mass distributions of mergers at z < 1 and the mass
distribution of their parent clusters. While in-cluster
mergers dominate the rate density at early times, z≳ 2,
most of the BHB mergers in the local Universe are
produced among the ejected population. The local rate
of in-cluster mergers is ≃2 Gpc−3 yr−1 and that of GW
captures is ≃0.4 Gpc−3 yr−1 with little dependence on the
initial density assumed. However, the fractional contribu-
tion of in-cluster mergers does depend quite strongly on the
cluster initial conditions, in the sense that higher densities
lead to lower fractions—for ρ0 ¼ 103 M⊙ pc−3, nearly 40%
of the local mergers are formed in-cluster, while for the
highest initial densities ρ0 ¼ 105 M⊙ pc−3, in-cluster merg-
ers only contribute ≃15% of the total. The percentage of all
in-cluster mergers that occur through a GW capture is
≈20% in the local Universe and increases smoothly with

FIG. 4. As Fig. 2 but we now show separately the median of the
merger rate distribution of all in-cluster mergers (dashed lines),
only GW captures (dot-dashed lines), and mergers among the
ejected binaries (solid lines).
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redshift, reaching ≈30% near the peak of cluster formation
activity. Because an order of unity fraction of gravitational
wave captures are expected to have a finite eccentricity
(≳0.1) above 10 Hz frequency, we conclude that eccentric
mergers from globular clusters contribute ≲0.4 Gpc−3 yr−1

to the merger rate in the local universe. This low rate is
consistent with the nondetection of eccentric binaries in
current searches [98].
Our models, Mod1 and Mod2, show a decrement for the

local fraction of in-cluster mergers over previous estimates
which bracketed this between 30% and 50% of the total rate
[e.g., [31] ]. This difference arises from the fact that this
previous work only considered clusters with mass
≳105 M⊙ for which about half of the overall merger rate
is due to in-cluster binaries. However, as shown in Fig. 4,
lower mass clusters contribute significantly to the local rate,
although the mergers they produce only occur among the
ejected population. The reason for this is that their BHs
have all been ejected by z ¼ 1. Thus, including these
systems leads to an overall reduction of the contribution
of in-cluster mergers and also affects the redshift evolution
of the merger rate density.
Figure 5 shows the distributions of R0 and κ obtained by

fitting Eq. (28) to the merger rate evolution of in-cluster and
ejected binaries separately. The merger rate of in-cluster
binaries evolves steeply with redshift κ ≈ 3, albeit with a
large scatter, while for ejected binaries the dependence is
much weaker, κ ≈ 1. If, as before, we assign equal
probability to each of our density assumptions and fit

the total merger rate density of in-cluster binaries using
Eq. (28) we find

R0;in ¼ 1.5þ1.7
−0.9 Gpc−3 yr−1; κin ¼ 2.3þ1.3

−1.0 ; ð31Þ

while for ejected binaries

R0;ej ¼ 5.7þ21.5
−4.4 Gpc−3 yr−1; κej ¼ 1.2þ0.4

−0.5 : ð32Þ

We now use a simplified analytical model to gain some
physical insights on this result.
From Eq. (23), the merger rate for in-cluster binaries is

dN
dt

����
in
¼ ΓbinPinðtÞ; ð33Þ

while for ejected binaries we have

dN
dt

����
ej
¼ d

dt

Z
t

0

ΓbinPejðt − t0Þdt0: ð34Þ

The merger probabilities that enter in the integral
equations above can be linked to the evolution of the
cluster properties in a simple way under some simplifying
assumptions. If we neglect cluster mass loss and that the
BHs have a range of masses—both have little effect on the
merger rate evolution (see Sec. IV B)—we can write
trhðtÞ ¼ trh;0ð1þ 3

2
ζt=trh;0Þ and ρðtÞ ¼ ρ0ð1þ 3

2
ζt=trh;0Þ−2

[91,99]. If rh ∝ t2=3 andM ¼ constant, then ρ ∝ t−2, vesc ∝
t−1=3 and, therefore, vesc ∝ ρ1=6. Then from [34] we know
Pin ∝ v20=7esc , hence Pin ∝ ρ10=21 (neglecting captures) and
Pej ∝ ðt − tejÞ2=7ρðtÞ8=21 [34]. We can then determine the
redshift dependence of the merger rate through Eqs. (33)
and (34).
At times t ≫ trh;0=ζ, for in-cluster binaries, we have

dN
dt

����
in
∝ ð1þ zÞ2.9; ð35Þ

where we used that tðzÞ ∝ ð1þ zÞ−3=2 in order to convert
time into redshift. For ejected binaries we have dN

dt jej ∝
t−5=7, or

dN
dt

����
ej
∝ ð1þ zÞ1.1: ð36Þ

Although we have neglected some important ingredients
(e.g., mass loss, BH mass function), the expected value of κ
for the two populations is consistent with the ones found
above and, as expected, it is much steeper for in-cluster
mergers. This fits into the view that the rate at which the
merging BHBs are produced by a cluster is controlled by
the relaxation process within the cluster itself, providing a
physical interpretation to our results. Moreover, it implies

FIG. 5. Distribution of the rate parameter κ and the local merger
rateR0 for each of the three models of Fig. 2 and for the in-cluster
mergers and ejected binary mergers separately. Colors are as in
Fig. 2.
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that most of the merging BHBs are produced by clusters
that are still in the expansion phase.
Another result of our analysis is that the local rate of in-

cluster inspirals and GW captures are nearly independent of
the initial density assumed. In general, we find that other
model variations also have little effect on the merger rate of
in-cluster binaries. This result is because cluster evolution
during balanced evolution, i.e., at late stages when in-
cluster mergers that we can observe occur, is insensitive to
the initial conditions.
Due to the expansion powered by the BHBs, all clusters

evolve asymptotically to (approximately) approach the
same value of half-mass relaxation time. Hence, after some
time, the merger rate of in-cluster binaries must also
become approximately the same for all clusters. This
concept is illustrated in Fig. 6 where we show the evolution
of a set of cluster models with the same mass but different
ρ0. For M0 ¼ 3 × 106 M⊙ (left panels), the BHB merger
rate at ≳10 Gyr only varies by a factor of ∼2 between the
models, although these were started with widely different
densities. The middle panel gives the cluster half-mass
relaxation time, which also tends to evolve to the
same value for all models. This roughly recovers Hénon’s
result that t=trh increases until trh ∼ trh;0=ζ, after which
trh ∝ t [33].

In the right panel of Fig. 6 we consider the evolution of
clusters with an initial lower mass M0 ¼ 3 × 105 M⊙. In
these models all BHs are ejected at t≲ 5 Gyr. Thus, their
in-cluster binaries do not contribute to the merging popu-
lation at late times. This explains why in the population
models above the local merger rate of in-cluster binaries is
widely dominated by high mass systems, M0 ≳ 106 M⊙
(e.g., lower panel of Fig. 4). Moreover, the binary merger
rate near the end of the simulations shows a larger variation
among different models than in the high mass cluster case.
This simply reflects the large difference in the cluster
density at early times when these binaries were formed and
ejected.

B. Dependence on model parameters

In the previous section we consider the merger rate
density evolution for three choices of initial cluster density.
Here we discuss the results for a larger set of models in
which for each of the three density assumptions we vary the
prescription for the cluster metallicity, the cosmological
cluster formation model, the BH formation mechanism, the
BH natal kicks, and the cluster mass loss rate. All the model
parameters we considered are listed in Table I (Mod4 to
Mod39), together with the corresponding values of merger
rate evolution parameters and uncertainties. We stress that
not all the models analyzed here are realistic representa-
tions of a globular cluster population. They are nevertheless
useful in order to understand the impact of different model
parameters on the merger rate evolution and BH mass
distribution. Our main message here is that variations in
other model assumptions have little effect on the local value
of the BHB merger rate density and its redshift evolution.
Thus, we conclude this section by presenting the results
from an additional set of models where ρ0 is varied over a
wider range of values than in Sec. IV to more systemati-
cally explore its effect on the BHB merger rate.
Metallicity. In order to explore the dependence of the

merger rate on metallicity, we consider models where the
clusters all have the same metallicity which we set to
Z ¼ 0.01, 0.1, or 1 × Z⊙. Since mass loss due to stellar
winds is less effective in metal-poor stars, the forming
merger remnant mass increases with decreasing metallicity.
At solar metallicity, the mass distribution of the final
merger products spans from a few solar masses up to
about 30 M⊙ and peaks near 10 M⊙. At lower metallicity,
Z ¼ 0.01 and 0.1, the distribution of remnant masses is
much wider with its maximum at ∼50 M⊙. This has an
obvious effect on the mass distribution of the merging
BHBs as can be seen in Figs. 7, 8, and 9. The value of
metallicity affects also what type of clusters make the BH
mergers in the local universe, with their mass distribution
being skewed towards higher values for solar metallicities.
The important result here, however, is that the evolution of
the merger rate density is largely unaffected by the choice
of metallicity and its dependence on cluster age. Even in the

FIG. 6. Example of the BHB merger rate evolution for two
cluster masses and separately for in-cluster and ejected binaries.
The middle panels give the cluster relaxation time, and the lower
panels, the total BH mass in units of the initial value. Different
lines correspond to different initial half-mass density ρ0 ¼ 0.03,
0.1, 0.3 and 1 × 105 M⊙ pc−3. The initial density increases with
line thickness. Here we set Δ ¼ 3 × 105 M⊙ and the simulations
are terminated either after 13 Gyr of evolution or after all BHs
have been ejected.
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unrealistic case in which all clusters are formed at solar
metallicity, the merger rate density only starts to deviate
significantly from the other models at z > 2. Such lower
merger rate at early times is expected, and it is a
consequence of the longer trh due to the lower initial
BH mass fraction.
We conclude that a detailed knowledge of the metal-

licity distribution of GCs and its dependence on time is
not necessary in order to determine a BHB merger
rate, although it has an important effect on their mass
distribution.
Cluster ages. We implemented two additional choices

for the parameters in the cosmological model of El-Badry
et al. [80] which determine the distribution of cluster ages:
[βη ¼ 1=6] and [βΓ ¼ 0, βη ¼ 1=3]. These two models are
shown in Fig. 8 of El-Badry et al. [80]. Moreover, we
consider an additional case of a burst-like cluster formation
history in which all clusters are formed at z ¼ 3.
From Figs. 7, 8, and 9 we can see that, for a given initial

density, our results at z ≲ 2 are also independent of the
exact distribution of cluster formation times. Within this

redshift even the oversimplified case, in which all clusters
form at z ¼ 3, leads to a merger rate density and BH mass
distribution that are consistent with those obtained from the
full cosmological models. At z > 2, however, the redshift
evolution of the merger rate is clearly affected with its peak
coinciding with the peak of cluster formation activity in
each model.
BH formation. We consider three more recipes to

computing the BH mass distribution based on different
core-collapse/supernova models. We use the delayedmodel
in which the supernova explosion is allowed to occur over a
much longer timescale than in the previously employed
rapid model [75]. We then use the compact-object mass
prescriptions from [83,84]. These two latter models use
slightly different recipes for the protocompact object
masses while adopting the same formulae to determine
the amount of fallback material. We note that the effect of
the BH formation recipe is two fold as it influences both the
mass distribution of the BHs as well as their natal kicks.
Apart from the effect on the BH mass function, however,
there is very little change of the merger rate evolution

FIG. 7. Median of the merger rate distribution (solid lines) and 90% confidence intervals (dashed lines) for the models Mod4 to Mod15
in Table I where the initial half-mass density is set to 104 M⊙ pc−3. Middle panels give the distribution of primary BH masses for
mergers at z < 1. The lower panels show the mass distribution of clusters where these merging binaries were formed.
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among the various prescriptions with the delayed model
leading to a slightly lower merger rate at all redshifts than
the others.
Natal kicks. Two additional assumptions about the BH

natal kicks are explored. In one the BHs are formed with no
kick, and in the other the BHs receive the same momentum
kick as neutron stars, meaning that their kick velocities are
drawn from a Maxwellian distribution with dispersion σ ¼
265 km s−1 [77] and then reduced by the neutron star to BH
mass ratio 1.4 M⊙=m. Among the model variations con-
sidered in this section, the BH natal kick prescription has
the largest (but still mild) impact on our results.
The zero kick and the momentum kick prescriptions

lead, respectively, to a larger and smaller retention fraction
of BHs compared to the fallback prescription [100]. The
difference becomes especially important in clusters with
initial mass M0 ≲ 104 M⊙ because of their lower escape
velocities. In these clusters, virtually no BHs are left after
the momentum kicks have been imparted, which is
reflected in the mass distribution of useful clusters shown
in the bottom-right panels of Figs. 7, 8, and 9.
Cluster evaporation. Our mass-independent and orbit-

independent mass loss rate for cluster evaporation is

certainly a simplified one. To understand its effect on
the cluster and BHB evolution, we computed three
additional models with exactly the same initial conditions
as in Mod1, Mod2, and Mod3 but with _M⋆;ev ¼ 0. Here we
still compute the initial GCMF from Eq. (5) and use the
½Mc;Δ� values obtained from the MCMC analysis
above, but we do not include any prescription for mass
loss when evolving the clusters. Thus, this exercise is
only meant to determine the importance of the mass loss
effect on the secular evolution of the clusters and the BHBs
they produce. We find that in these new models, the local
value of the merger rate density and of κ, as well as the BH
mass and progenitor cluster mass distributions, are con-
sistent with those found in the models with cluster
evaporation included. For the same initial conditions as
in Mod1, Mod2, and Mod3, the median values of the local
merger rate are R0 ¼ 6.9 Gpc−3 yr−1, 14.1 Gpc−3 yr−1,
and 3.5 Gpc−3 yr−1, respectively. This shows that cluster
evaporation has a small effect on the dynamics of
the BHBs.
In our models, however, tidal mass loss must become

important at some point, e.g., for high enough Δ, GCs will
evaporate before they can produce BHBs. We now quantify

FIG. 8. Same as Fig. 7 but for ρ0 ¼ 105 M⊙ pc−3, i.e., Mod16 to Mod27 in Table I.
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how high Δ needs to be in order to change the BH
dynamics significantly. To do this we compare the tidal
mass loss timescale, tev ≡M0=j _M⋆;evj, to the timescale
after which the BHs have been nearly depleted by dynami-
cal ejections, which we define to be tBH ≡MBH;0=j _MBHj.
We should expect that for tBH < tev most BHBs will have
formed already before the cluster mass has changed
significantly due to evaporation. This will happen if Δ is
smaller than the critical value

Δc ≃
hti
trh;0

β

fBH
M0: ð37Þ

For ρ0 ¼ 103 M⊙ pc−3 and fBH ¼ 0.05, we find Δc ≈
106 M⊙ independent of the initial cluster mass; for
ρ0 ¼ 105 M⊙ pc−3, we have Δc ≈ 107 M⊙. These values
are larger than any value of Δ used in our models (see
Fig. 1), explaining the small impact of cluster evaporation
on the results.
While the models discussed above show that the impact

of cluster evaporation on the BHB dynamics is small, they
do not asses its effect on the merger rate. Thus, we consider

three new models with _M⋆;ev ¼ 0 but now use an initial
GCMF that only accounts for mass loss due to stellar
evolution. If only stellar evolution is included, the initial
GCMF that gives rise to the present-day GCMF shown in
Fig. 1 becomes:

ϕ0
cl;0 ¼ 0.5AðM0=2þ ΔÞ−2 exp½−ðM0=2þ ΔÞ=Mc�; ð38Þ

and K ≃ 2. These new models provide us with a safe
lower limit on the BHB merger rate for each density
assumption; they are Mod15, Mod27, and Mod39 in
Table I and Figs. 7, 8, and 9. From these results we see
that the merger rate in models without evaporation are
about three times smaller than in models where the effect of
cluster evaporation is included.
Cluster density. The model variations explored above

show that for a given initial GCMF, the initial cluster
density is clearly the most important parameter for setting
the BHB merger rate density and its redshift evolution.
Thus, here we perform a more systematic exploration of
such dependence by running an additional set of models
where the initial cluster density is varied in the range ρ0 ¼
102 M⊙ pc−3 to 107 M⊙ pc−3. All other model parameters

FIG. 9. Same as Fig. 7 but for ρ0 ¼ 103 M⊙ pc−3, i.e., Mod28 to Mod39 in Table I.
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are set as in Mod1 of Table I. The results from these
additional models are shown in Figs. 10 and 11.
From Fig. 10 we see that the peak of the merger

rate and the redshift, at which it occurs in each model,
increase with ρ0 and vary from ≃3Gpc−3yr−1 at z¼3 for
ρ0 ¼ 102 M⊙ pc−3 to ≃103 Gpc−3 yr−1 at z ¼ 4.5 for
ρ0 ¼ 107 M⊙ pc−3. The situation is different, however,
when we look at the merger rate in the local Universe.
In Fig. 11 we see that the median value of R0 has a
maximum value of ≃20 Gpc−3 yr−1 at ρ0 ≃ 105 M⊙ pc−3.
This is an important result as it shows that the local BHB
merger rate density from the GC channel has a robust upper
limit of ≃50 Gpc−3 yr−1—the upper error bar estimate for
the ρ0 ¼ 105 M⊙ pc−3 model.
The reason why R0 decreases with ρ0 above a certain

density can be understood from the lower panel in Fig. 10.

This plot shows the mass distribution of clusters from
which the BHBs that merge in the local universe are
formed. For initial densities above 105 M⊙ pc−3 the con-
tribution from clusters in the mass range 105 M⊙ ≲M0 ≲
107 M⊙ gradually decreases as the distribution of cluster
masses contributing to the mergers becomes bimodal. Such
narrowing of the range of cluster masses that can produce
local mergers explains the relatively low merger rate in
the higher density models. It also affects the distribution of
the primary BH masses as shown in the middle panel
of Fig. 10.
We looked into the density dependence of the cluster

mass distribution shown in the lower panel of Fig. 10 in
more detail. We found that the lower mass peak seen in
the cluster mass distribution for ρ0 ¼ 106 M⊙ pc−3 and
107 M⊙ pc−3 is only due to ejected binaries, while the
higher mass peak is only due to in-cluster mergers. Thus,
we can explain the depletion of BHBs that come from
intermediate mass clusters by considering the behavior of
the two merging populations when varying ρ0. Above a
certain initial cluster mass, vesc becomes large enough
(≳100 km s−1) that all BHBs merge inside the cluster. But,
because vesc ∝ M1=3ρ1=6, the value of initial cluster mass
that still allows for dynamical ejections to occur goes down
as ρ0 increases. This explains why the upper end of the
mass distribution of clusters that produce mergers from
ejected BHBs decreases as ρ0 increases. Clusters with an
initial mass larger than this value only produce in-cluster
mergers. Such clusters, however, can only produce mergers
in the local universe if they still contain BHs at the present
time. Because the BHs are processed at a rate t−1BH ∝ ffiffiffi

ρ
p

=M,
the value of the initial cluster mass above which BHs are
still present in the local universe increases with density.
This explains why the lower end of the mass distribution of
systems that produce in-cluster mergers moves towards
larger masses as ρ0 increases; clusters with a mass smaller
than this value get rid of all their BHs by z ¼ 1.
Figure 10 shows that only models in which GCs start

with an initially high density ρ0 ≳ 104 M⊙ pc−3 can
account for a large fraction of the LIGO-Virgo BHB
mergers. Interestingly, these models also give a better fit
to the inferred BHmass function abovem≳ 13 M⊙ as seen
in Fig 2. Future GWobservations will reduce the error bars
associated with the merger rate estimates and the BH mass
distribution, providing important clues on the initial den-
sities of GCs.
Finally, we consider two additional model realizations.

In one we evolve the same initial conditions as in [31,62]
where half of the clusters have rh;0 ¼ 0.8 pc and the
remaining half have rh;0 ¼ 1.6 pc; in the other model,
the cluster half-mass radius scales as

log

�
rh;0
pc

�
¼ −3.56þ 0.615 log

�
M0

M⊙

�
: ð39Þ

FIG. 10. The upper panel shows the median of the merger rate
density distribution as a function of redshift; the middle panel
gives the distribution of primary BH mass for z < 1 mergers
(median values); and the bottom panel gives the initial mass
distribution of clusters contributing to the local mergers (median
values). In these calculations we varied the initial cluster density
within the indicated range while keeping all the other model
parameters the same and as in Mod1 of Table I.
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This latter relation was derived by [33] from the results of
Haşegan et al. [61] who fit this Faber–Jackson-like
relation to ultracompact dwarf galaxies and elliptical
galaxies. Gieles et al. [33] derived the initial mass-radius
relation correcting for mass loss and expansion by stellar
evolution and correcting radii for projection. All the
other model parameters are the same as in Mod1 of
Table I. The results of these two new models are shown
in Fig. 12. Interestingly, both give a local merger rate,
≃10 Gpc−3 yr−1, which is similar to the maximum merger
rate value we obtained before. Moreover, these results show
how the choice of initial half-mass radius relation has a
significant effect on both the BH mass and initial cluster
mass distributions. For rh;0 ∝ M0.6

0 , the cluster mass dis-
tribution becomes nearly flat so that, roughly speaking, all
clusters with initial mass in the range 104–106 M⊙ con-
tribute equally to the local merger rate.

V. DISCUSSION AND CONCLUSIONS

Our models are based on some assumptions and approx-
imations. These are discussed in the following sections,
which also present a more detailed comparison to the
literature. We end the paper with a brief summary of our
main results.

A. Present-day GC mass density

Our value of ρGC is larger than what was found by [18]: if
we adopt their assumption of an average GC mass of
3 × 105 M⊙, we find that Eq. (2) corresponds to a GC
number density of nGC ¼ 2.4 Mpc−3, which is 3.3 times
larger than their nGC ¼ 0.72 Mpc−3, but similar to the value
used in [15,23]. Part of this difference is because
we adopted a larger value of η: if we use their mild

FIG. 11. Merger rate parameters as a function of the initial cluster half-mass density for the models of Fig. 10. The black points
represent median values, while the lower and upper error bars give the 5 and 95 percentiles of the distributions.

FIG. 12. Merger rate evolution, primary BH mass of mergers at
z < 1, and the initial cluster mass distributions, where these
binaries originated, for a model where half of the clusters have
rh;0 ¼ 0.8 pc and the other half have rh;0 ¼ 1.6 pc similar to [31]
(black lines) and for a model where rh;0 ∝ M0.6

0 (blue lines).
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Mh-dependent η from [39], we find nGC ¼ 1.50 Mpc−3,
which corresponds to our lower error bar hηi. However,
this is still a factor of 2.1 higher than what was found by
[18]. We are not sure what causes this remaining difference,
but we note that nGC ¼ 1.50 Mpc−3 is about a factor h−2

larger than nGC ¼ 0.72 Mpc−3 (Carl Rodriguez, private
communication).

B. Initial GC density in the Universe

To derive ρGC0, a different approach was adopted
by [31,62]. They use the total mass density of GCs
forming in the semianalytical galaxy formation model
of El-Badry et al. [80]. They approximate the numerical
results with analytical functions and find a total
ρGC0 ¼ 5.8 × 1014 M⊙ Gpc−3, about 15% higher than El-
Badry et al. [80] and 20% lower than our adopted ρGC
[Eq. (2)]. They then assume that the initial masses of all GCs
were a factor of 2.6 higher (from [101]) because of stellar
mass loss and evaporation and find that initialmass density of
GCs more massive than 105 M⊙ is ρGC0ðM0 > 105 M⊙Þ≃
1.5 × 1015 M⊙ Gpc−3. This is a factor of ∼4 higher than
found by [31]. The reason we find a higher value is that their
assumption that the present-dayGCdensity in theUniverse is
made from GCs withM0 > 105 M⊙ that lost (only) a factor
of 2.6 in mass implies a mass loss rate that is much lower in
our models. In our models the present-day ρGC0 is made of
GCs with M0 ≳ 4 × 105 M⊙.
In addition, we do consider the contribution to the

merger rate of lower mass GCs with M0 < 105 M⊙. We
use cBHBd to evolve the same initial conditions as in [31,62]
where half of the clusters have rh;0 ¼ 0.8 pc and the
remaining half have rh;0 ¼ 1.6 pc but extended the initial
GCMF down to Mlo ¼ 100 M⊙ (see Fig. 12). We find that
≃10% of the local mergers come from GCs with M0 <
105 M⊙ and, therefore, conclude that for the exact same
initial GCMF, our models would lead to a local merger rate
that is still ≃4 times that found in [31,62]. Our Schechter
mass isMc ≃ 2 × 106 M⊙, sowe compare to the results from
[31] formass functionswithMc ¼ ð2.5 − 5Þ × 106 M⊙. For
these, the rates in [31] are 5 to 10 Gpc−3 yr−1. Themedian of
the merger rate distribution computed from our models is
10 Gpc−3 yr−1. Rodriguez and Loeb [31] use a fit to the
results of a set of Monte Carlo simulations to determine the
number of mergers produced by a cluster as a function of
time. Because these fitting formulae are not public, it is
currently difficult to establish the reason why our rates are
only 1 to 2 times, and not 4 times, those in [31]. We note in
passing that we compared our models to the number of
mergers from the two examples shown in Fig. 2B of [31] and
found very good agreement.

C. O-star ejections and IMBH formation

Our cBHBd model makes the simplifying assumption that
all BHs are in place when the cluster forms. Because the

typical timescale of GC evolution (i.e., 100 Myr–Gyr) is
much longer than the timescale of BH formation (i.e.,
10 Myr), this is fine in most cases. However, for very dense
low-mass clusters, the relaxation time is so short that
O-stars are ejected as “runaway stars” before they form
BHs [102,103]. As a result, the initial BH fraction is lower in
these clusters than what we assume in our models, possibly
affecting the merger rate and properties of the mergers. To
quantify this, we use the fact that the dynamical process
that ejects O-stars is the same as the one that ejects BHs
at a later stage. We, therefore, adopt clusterBH and replace
the BH population by a massive star population between
10–100 M⊙, with a logarithmic slope of −2.3 and a mass
fraction of 18%, as appropriate for a Kroupa IMF. We then
determine for a grid of initial cluster masses and half-mass
radii the maximum mass of massive stars that form BHs
inside the cluster. In Fig. 13 we show contours for 20 M⊙
(the minimum mass of an O-star to produce a BH), 35 M⊙
(approximately half of the mass in BHs is produced by stars
more massive than this) and 100 M⊙ (the upper limit of our
IMF). We also overplot the three initial cluster densities
adopted in the previous section. From this we see that
clusters withM0 ≲ 104 M⊙ are affected by O-star ejections,
which affects about half of the mass in the initial GCMF.

FIG. 13. GC initial mass-radius diagram showing the 3 initial
cluster densities adopted in this work with dashed lines. The
magenta, full line shows the initial mass-radius relation that
describes the most massive GCs (≳106 M⊙) and ultracompact
dwarf galaxies (≳107 M⊙) [33,61]. Full lines show the maximum
mass of O-stars that form BHs inside the cluster. Clusters with
M ≲ 104 M⊙ will eject some O-stars before they become BHs,
and these clusters will, therefore, have slightly lower BHB
mergers than in our model. The red full line shows an initial
escape velocity of 300 km=s, which is the minimum escape
velocity required for IMBH formation to occur [91]. This process
is not playing a role in our adopted initial conditions.
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However, these low-mass GCs are only responsible for
∼15% of the mergers. The fraction of clusters for which
more than half of the BH mass is ejected is only a few
percent. Clusters that produce runaways will have fewer
massive BHs, leading to a slightly higher merger rate of
slightly lessmassiveBHs. This effect is small butwould lead
to a slightly steeper BH mass function especially for the
densest models. However, we conclude that runaway stars
do not significantly affect our results and that the effect is
probably smaller than other uncertainties in our model.
Another process that is not included in cBHBd is repeated

mergers of BHs. After a merger, the BH merger remnant
receives a general relativistic momentum kick of several
100 km=s, and if this is smaller than the escape velocity
from the center of the cluster, then it can be involved in
subsequent mergers [88–90], possibly forming an inter-
mediate-mass BH (IMBH) [91]. This can only occur for an
initial escape velocity ≳300 km=s, and in Fig. 13 we show
that only in our densest (≳105 M⊙=pc3), most massive
(≳107 M⊙) models, could this happen. Ignoring the effect
of IMBH formation via dry BH mergers is, therefore, not
affecting our results. Although the formation of IMBHs
through repeated mergers is unlikely, we note that hierar-
chical mergers can still contribute to the BHmerger rate. As
discussed above, hierarchical mergers represent only ten
percent or less of the total number of BHB mergers
expected from GCs [89,90]. Thus, they will not affect
significantly our integrated merger rate estimates. On the
other hand, second-generation mergers can produce BHs
with a mass higher than predicted by stellar evolution
alone, broadening the BH mass distributions we derived
and populating them above ∼40 M⊙.

D. Cluster mass loss and initial GCMF

Our models adopt a constant mass loss for all clusters of
Δ ≃ 2 × 105 M⊙. This is what is required to evolve the
initial GCMF with a power law slope of −2 at low-masses
to the peaked GCMF of old GCs, but it is inconsistent with
some studies of GC evolution. Firstly, N-body simulations
of tidally limited clusters show that _M ∝ M1=3 [51], rather
than _M ∝ M0. Including this mass dependence in _M and
maintaining the constraint that all GCs formed with the
same universal initial mass function, implies that clusters
need to lose more mass for the turnover in the GCMF to
move to 2 × 105 M⊙ [104], resulting in a twice as large
value of K ≃ 64 [105] as we found for a mass independent
_M. Secondly, the models of [51] show that Δ for a typical
Milky Way GC is smaller and depends on the apocenter
and eccentricity of the galactic orbit. For the median
Galactocentric distance of Milky Way GCs (∼5 kpc) and
an age of 10 Gyr, these models find Δ ≃ 4 × 104 M⊙, i.e., a
factor of 5 smaller than what we assumed. These simu-
lations considered the secular evolution of clusters in a
static tidal field and, therefore, underestimate mass loss of

clusters if additional disruption processes are important.
For example, interactions with massive gas clouds in the
early evolution (first Gyr) can be disruptive [54,55], have a
similar mass dependence as relaxation driven evaporation
in a static tidal field [58], and lead to a turn over in the
GCMF [56,106]. If this is the cause for the value of Δ, then
j _Mj is much higher in the early evolution, which would
affect the resulting merger rate. Because the relaxation time
decreases if the mass reduces, including this type of mass
evolution will lead to a higher merger rate than in our
models with an _M that is constant in time. The models of
[51] also do not contain BHs, and it has been shown that
retaining a BH population significantly increases the escape
rate of stars [107,108]. The BH population can increase j _Mj
by an order magnitude (Gieles et al., in prep), especially
towards the end of the evolution. This implies a relatively
low(high) j _MjðtrhÞ in the early evolution compared to our
models, leading to a reduction of the merger rate. In
addition, for _M ∝ Mγ with γ < 0, the required K to get
the turnover at the right mass is lower than for γ ¼ 0. If BHs
are responsible for the value of Δ, our merger rates could,
therefore, also be slightly overestimated for this reason.
However, we do not expect this effect to be important for
dense clusters (≳104 M⊙=pc3) because their BHB mergers
are produced when the clusters are still unaffected by the
galactic tides. We plan to include the effect of relaxation
driven escape in a tidal field in a future version of cBHBd to
address this issue.
Finally, we have assumed that all GC masses are drawn

from an initial GCMF that is constrained by the shape of the
Milky Way GCs. Although the present-day GCMF is
remarkably universal across galaxies, variations in the
inferred Mc and Δ values of a factor of ∼5 are found
across GC populations in galaxies in the Virgo cluster [30].
Higher Mc and lower Δ values are found in brighter
galaxies. Although variations in Mc and Δ are partially
captured by the uncertainties in Mc and Δ, this accounts
only for up to a factor of ∼2. We may, therefore, under-
populate the most massive clusters.

E. Primordial binaries

The effect of binaries that form in the star formation
process and undergo stellar evolution in the first stages of
cluster evolution has not been discussed so far. We argue
here that primordial binaries have a negligible effect on the
merger rate and the distribution of the BH masses we
derived. Because of the Hénon principle, the energy
generation rate by binaries is determined by the relaxation
process in the cluster as a whole. Whether dynamically
active binaries form in three-body encounters from single
BHs, or in encounters involving BHBs that formed from
primordial binaries will, therefore, result in a central binary
with the same properties. However, primordial binaries
might affect the initial BH mass function due to binary
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evolution processes. But, because BHB mergers from
primordial binaries in GCs are a subdominant population
at low redshifts (see Fig. 2 in [18]), the effect on the local
BHB mass distribution is also expected to be small.

F. Conclusions

In this paper we have considered the dynamical for-
mation of BHB mergers in GCs. Using our new population
synthesis code cBHBd we have evolved a large number of
models covering a much wider set of initial conditions
than explored in the literature. This allowed us to place
robust error bars on the merger rate and mass distributions
of the merging BHBs. We find that the GC channel
produces BHB mergers in the local universe at a rate of
7.2þ21.5

−5.5 Gpc−3 yr−1, where the error bars are mostly set by
the unknown initial GC mass function and initial cluster
density. By comparing to the merger rate inferred by LIGO-
Virgo, our results imply that a model in which most of the
detected mergers come from GCs is consistent with current
constraints. This would require, however, that GCs form
with half-mass densities larger than ≳104 M⊙ pc−3 and the
suppression of other formation mechanisms. All our
models show a drop in the merger rate of binary with
primary BH mass outside the range ≃13–30 M⊙, for which
there is no evidence in the gravitational wave data. This
might suggest that another mechanism is responsible for the
production of these sources.
Our results have a number of implications for the

formation of BHB mergers and GCs. The dependence of
the merger rate and BHB properties (e.g., eccentricity,
mass) on the model parameters suggests that a direct

comparison to the gravitational wave data will allow us
to place constraints on the initial conditions of GCs and
their evolution. Our models will also help to understand
other uncertain parameters that control the formation of
BHs and their natal kicks. While these latter parameters
have little effect on the merger rate, they have a significant
impact on the masses of the merging BHBs. Thus, useful
constraints could be placed once the number of gravita-
tional wave detections will be large enough to allow for a
statistically significant comparison to the inferred BH mass
function.
In the future, we plan to consider other type of clusters

such as open and nuclear star clusters, which are also
believed to be efficient factories of gravitational wave
sources [88,91,109–111]. The study of these systems will
require us to add additional physics to cBHBd.
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