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Mathematical Programming for Nominating Exchange Students for
International Universities: The Impact of Stakeholders’ Objectives and

Fairness Constraints on Allocations

Abstract

We consider the problem of nominating exchange students to attend international universities

where places are limited. We take into account three objectives: The sending university aims

to maximize the number of nominations, the students seek nomination for a highly preferred

university and, finally, the receiving universities strive for excellent incoming students. Pair-

wise comparison of students should guarantee the following fairness: A student with higher

academic achievements should be preferred over a student with lower academic achievements.

We provide mathematical programming models of the nomination problem which maximize the

overall objectives and guarantee different types of pairwise fairness. Several years of real data

from a major school are employed to evaluate the models’ performance including a benchmark

against the heuristic that is used by the school. We show analytically and experimentally that

the heuristic approach fails to guarantee some pairwise fairness. Our results reveal the following

four insights: First, compared to the current approach, up to 6.6% more students can be nom-

inated with our optimization model while ensuring all pairwise fairness perspectives. Second,

on average, students are nominated with better academic achievements. Third, the problem

instances can be solved to optimality within a fraction of a second even for large-size instances

comprising more than 500 students and about 150 schools offering nearly 450 exchange places.

This is important for its use in practice. Last, up to 17.9% more students can be nominated

when considering the overall objective to maximize nominations.

Keywords: Education, Student placement, Multiple knapsack problem, Greedy algorithm



1 Introduction

Spending a semester abroad during undergraduate or graduate studies has become highly attractive

to students world-wide (see Daly (2011); European Commission (2019)). As a central part of

fostering higher education, outbound mobility programs typically cover traveling expenses and

tuition fee waiving for student exchange between two universities in different countries. In order

to receive financial support, it is required that the student’s home university, henceforth denoted

as sending university, has a contract with a foreign university, henceforth denoted as receiving

university. In this bilateral agreement, it is specified the maximum number of students that can be

sent and received between the two universities within a period of time.

When assigning students to exchange places, henceforth denoted as nomination, we distinguish

three stakeholders: The sending university, the students and the receiving universities. Each stake-

holder has its own interests. First, the sending university strives to nominate as many students as

possible. Second, each student wants to be sent to the receiving university he or she mostly prefers

and when competing for scarce exchange places, he expects the nomination to be fair. Third, the

receiving universities want to receive excellent students where excellence is e.g. measured in terms

of grade point average (GPA), language proficiency and motivation to stay at the receiving school.

These different objectives as well as the competition between students for scarce exchange places

lead to the problem of fairly nominating students.

We formalize interests of the stakeholders with three objectives and two fairness perspectives.

Then, we formulate the problem by using mathematical programming. Our binary programs max-

imize the different objectives separately while the different types of fairness are employed as con-

straints. Afterwards, we provide a statistical analysis of the students’ application behavior observed

in several application years at a major business school in Europe. Finally, in an experimental study,

the solutions of the mathematical programs are compared with a heuristic nomination procedure.

The results of our computational study demonstrate that with the proposed mathematical

model, more students can be nominated by at the same time ensuring more fairness as compared to

the current approach. Our main contributions are therefore firstly, that we provide an innovative

approach to formulating different fairness perspectives when nominating students to exchange places

employing mathematical programming. Secondly, we provide an order of fairness without neglecting

the different objectives of the stakeholders of the nomination process. Finally, in our experimental

study using real data, we give managerial insights which approach should be considered in which

situation.

The remainder of the paper is structured as follows. The next section provides an overview

of related publications in which we highlight similarities and differences with our work. Section 3
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contains the problem description including the definition of fairness perspectives. Section 4 intro-

duces the mathematical programming formulation of the nomination problems. Section 5 presents

the nomination heuristic which is currently used by the school. A comprehensive computational

study including a detailed fairness evaluation is provided in Section 6, followed by a discussion of

the managerial relevance and concluding remarks in Section 7.

2 Literature Review

In the following we provide a literature review on matching and assignment problems in higher

education and academia. We state how our problem differs from and extends this literature.

Following the notion of Chu and Beasley (1997), the assignment problem is about jobs, which are

assigned to agents such that the capacity of the agents is respected and that the assignment costs

are minimized. In higher education and academia, examples for jobs and agents are students and

universities, respectively. Students are assigned to universities which have a limited capacity. Other

problems include students who have to be assigned to seminar theses or conference papers which

have to be assigned to reviewers.

To structure our review of related work, we will take into account our aspects: Fairness, pref-

erences, if each job has to be assigned to exactly one agent, and multiple objectives. Table 1 lists

the relevant literature in terms of these four criteria.
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Table 1: Related work

Fairness Preferences of Job to
agent
assign-
ment

Multi-
objective

Jobs Agents 1 6= 1
(e.g. students) (e.g. universities)

Abdulkadiroğlu and Sönmez (2003) X X X X
Alvarez-Valdés et al. (2000) X X X
Al-Yakoob and Sherali (2006) X X X X
Badri (1996) X X X X
Bafail and Moreb (1993) X X X X
Balinski and Sönmez (1999) X X X X
Bailey and Michaels (2019) X X X X
Behestian-Ardekani and Mahmood
(1986)

X X X X X

Breslaw (1976) X X
Cechlárová et al. (2018) X X
Chiarandini et al. (2019) X X X X
Diebold and Bichler (2017) X X X
Geiger and Wenger (2010) X X X X X
Graves et al. (1993) X X
Jin et al. (2020) X X X
Kenekayoro et al. (2020) X X X
Kominers et al. (2010) X X
Lee and Clayton (1972) X X X X
Manlove and O’Malley (2008) X X X
Miyaji et al. (1987) X X X X
Othman et al. (2010) X X
Özdemir and Gasimov (2004) X X X X
Reeves and Hickman (1992) X X X X
Saber and Ghosh (2001) X X X
Sanchez-Anguix et al. (2019) X X X X X
Santarisi and Salhieh (2005) X X
Schniederjans and Kim (1987) X X X
Sönmez and Ünver (2010) X X
Toroslu and Arslanoglu (2007) X X X
Wang et al. (2019) X X
Weitz and Jelassi (1992) X X X X
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The table reveals that matching and assignment in higher education and academia have been

studied extensively. We now highlight similarities and differences of our work with the literature

using the four introduced criteria.

Fairness Papers that address fairness can be divided into two streams: Firstly, fairness from the

individual students’ perspective and fairness in terms of balancing for example lecturers’ workload

or group sizes. One of the seminal papers on considering fairness from the individual students’

perspective is Balinski and Sönmez (1999) who introduce the concept of Pareto-optimality for the

student placement problem. They also introduce a fairness mechanism which always ensures that

students with better scores are assigned their higher preferences. By contrast, our models compare

individual applicants’ pairwise fairness and their preferences among each other, as Section 3.3 will

reveal: We introduce a refined concept of fairness and mathematical programming to prevent unfair

nominations on different fairness perspectives which is a major difference of our work as compared

to Balinski and Sönmez (1999).

Matching of students to schools under consideration of choices and fairness has also been studied

by Abdulkadiroğlu and Sönmez (2003) who propose a mechanism design approach. The difference

to our approach is, however, that each of the applicants is nominated for at most one university.

A third paper that considers fairness of individual students is Chiarandini et al. (2019) who define

a student-project allocation as being fair if the most disadvantaged students are allocated to their

highest preferences. The rational behind this is that the solution promotes a certain degree of

egalitarianism in the outcome. This is different to our setting where students compete against each

other for highly demanded and scarce exchange places.

Related work in the second stream, i.e. to fairly balance workload and group sizes, is Geiger and

Wenger (2010). They aim for a fair balance of workload across lecturers in their student assignment

problem. Similar to our approach, they employ a MIP where agents have a maximum capacity,

which allows to assign multiple jobs. In contrast to our approach, they do not consider pairwise

fairness between students. Al-Yakoob and Sherali (2006) propose a model that generates a class-

faculty assignment. They define fairness as equity measure among faculty teaching similar loads.

This is again different to our model because we are looking at fairness at the individual student

level and prevent unfair assignment using our MIP approach. Behestian-Ardekani and Mahmood

(1986) develop a model to assign students to groups for class projects. They define an allocation

as being fair if experienced and inexperienced students may learn equally well. Both experienced

and inexperienced students are assigned to groups in order to create an acceptable group balance.

This is again different to our work because there, we do not define groups of students or groups of

universities. Finally, Sanchez-Anguix et al. (2019) define fairness as a workload balancing measure
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across supervisors of student projects rather than considering fairness between two students who

compete for scarce places.

Preferences Several papers address preferences either by the jobs (e.g. students), agents (e.g. su-

pervisors or universities) or two-sided. One-sided preferences have been modeled by, for example,

Cechlárová et al. (2018) who, similarly to our work, model preferences of students by lexicographic

ordering them. However, they assign course bundles to students and not students to at most one

university. Papers that take into account two-sided preferences are, again, Abdulkadiroğlu and

Sönmez (2003) in which students have preferences for universities but also universities seek for

excellent students to be admitted to their programs. To the best of our knowledge, there is no lit-

erature that takes into account only one-sided preferences from an agent’s perspective, i.e. without

considering the students’ preferences.

Job to agent assignment Job to agent assignment can be differentiated into i) whether one

job must be assigned to exactly one agent or not and ii) whether an agent has a capacity for one

job or several jobs. If the assignment is optional and multiple agents with individual capacities are

considered, we have a multiple knapsack problem (see Section 3.4). Cechlárová et al. (2018) is an

example paper in which applicants have preferences over bundles of courses. The applicants are

then assigned to courses each having a limited capacity. Also, Jin et al. (2020) consider this feature

when addressing the reviewer assignment problem, in which reviewers’ capacities are scarce which

is modeled using a multiple knapsack constraint. In contrast, a problem where each job has to be

assigned to exactly one agent is given in Geiger and Wenger (2010) where each student must be

assigned to exactly one topic. This is different to our problem because it is not guaranteed that

students are nominated for a university. Another difference to our work is, that the interaction

between jobs (students) assigned to the same agent (lecturer) is not relevant for our problem. Also

the balancing of workloads or allocations is not our objective.

Multi-criteria optimization In terms of multi-criteria optimization, three approaches can be

found in the assignment and matching literature for higher education and academia: Aggregation

of objective functions by the weighted sum method, reference point methods such as goal program-

ming, and separate treatment of objective functions. An example of objective function aggregation

by the weighted sum method is Al-Yakoob and Sherali (2006) who seek to minimize the total

dissatisfaction and inequity costs associated with assigning faculty members to classes. The total

students’ dissatisfaction cost is combined with the sum of differences in dissatisfaction levels be-

tween faculty members having identical teaching loads. A weight factor is introduced to reflect
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the relative priorities of the different measures. Examples of the goal programming approach are

Badri (1996) and Bafail and Moreb (1993). Finally, an example for treating the objective functions

separately is Chiarandini et al. (2019), who tackle the problem of student to project allocation.

This is similar to our approach where we solve different combinations of one objective function and

fairness constraints.

As a conclusion, the models and methods proposed in this paper can be differentiated from the

literature as follows: With respect to fairness, we refine and extend the fairness concept of Balinski

and Sönmez (1999). Our approach takes into account an ordering of preferences of both students

and universities both in the objective function as well as in the constraints. The impact of the

different objective functions and the constraints is then evaluated in an experimental study. With

respect to job to agent assignment, our work has similarities with the Multiple Knapsack Problem

as considered in Jin et al. (2020) who have limited capacities of reviewers in their manuscript to

reviewer assignment problem. Finally, with respect to multi-criteria optimization, we provide a test

design that solves the different objective functions and constraints separately instead of aggregating

the different objectives by the weighted sum method as, e.g., undertaken in Jin et al. (2020).

3 Problem description and fairness perspectives

In this section, we first provide a problem description including all necessary notation. The relevant

objectives for the nomination problem are discussed in Section 3.2. Afterwards, Pareto efficiency

and the pairwise fairness perspectives are introduced in Section 3.3.

3.1 Problem description

Let S denote the set of students and U the set of universities. Each student s ∈ S applies for at

least one university u ∈ U which has a capacity cu ∈ N for receiving students. Let A be a set of

applications in which tuple (s, u) ∈ A represents an application of student s for university u. Similar

to the concept of course bidding, studied e.g. in Sönmez and Ünver (2010), students have preferences

which are expressed by ranks. Let rs,u denote the ordinal scaled rank of application (s, u) ∈

A. Without loss of generality, we assume that ranks for universities are totally ordered for each

student s ∈ S who applies for more than one university, i.e. {rs,u < rs,u′ |∀(s, u), (s, u′) ∈ A : u 6= u′}

meaning that for each pair of universities u, u′ ∈ U : u 6= u′, student s prefers one university u

strictly more than another university u′. Table 2(a) provides an example. It reveals that student s1

ranks university u1 higher than university u2. Moreover, students s2 and s3 rank university u1

equally.

In addition to ranks, we take into account the aptitudes of students. Aptitudes are measured on
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the basis of student’s application documents. The application documents and as a result aptitudes

can be either university-dependent or university-independent. University-dependent application

documents are for example language certificates and motivation letters. We denote university-

dependent aptitudes as as,u for application (s, u) ∈ A. The lower the student s’s aptitude as,u the

better his qualification for university u. Real-valued scores are normalized between 0 and 1 and

Appendix 2 provides details of the calculation. In contrast, the university-independent aptitude is

measured by the student’s grade point average (GPA), denoted by gs.

We also take into account the number of semesters student s has already spent at a university

abroad. The rationale behind this integer parameter, denoted by es, is because the aim is to

prioritize students who have spent less semesters abroad as compared to their competitors.

In the following, we represent a feasible solution for the nomination process by binary vector

x = (xs,u)(s,u)∈A; xs,u = 1, if application (s, u) ∈ A turns into a nomination, i.e. student s is

nominated to university u and 0 otherwise. Set X contains all feasible solutions.

3.2 Objectives

As stated above, we have three objectives reflecting the interests of the different stakeholders. The

objective of the sending university is to maximize the number of nominated students in order to

provide for as many students as possible an international experience (nomination-oriented objec-

tive). The receiving universities want to receive highly motivated students (rank-oriented objective)

as well as highly qualified students (aptitude-oriented objective). In general, the objectives are con-

flicting. In order to demonstrate the different objectives and to show that they are conflicting let

us introduce the following example.

Example. Assume we have students S := {1, 2, 3} and universities U := {1, 2, 3} of which each

has a capacity of cu = 1. Table 2(a) gives the ranks rs,u of the applications (s, u) ∈ A where empty

cells mean that student s does not apply for university u.

Table 2: Ranks and nominations for an example problem

(a) Ranks of students

rs,u uj ∈ U

si ∈ S u1 u2 u3

s1 2 3 1

s2 1 2

s3 1 2

(b) Solution which does

not meet the nomination-

oriented objective

x uj ∈ U

si ∈ S u1 u2 u3

s1 0 0 1

s2 0 0

s3 1 0

(c) Solution which does not

meet the rank-oriented objec-

tive

x uj ∈ U

si ∈ S u1 u2 u3

s1 1 0 0

s2 0 1

s3 0 1
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Tables 2(b) and (c) provide two different solutions. The solution provided in Table 2(b) is not

optimal with respect to the nomination-oriented objective because one more student could have

been nominated. The solution provided in Table 2(c) is not optimal with respect to the rank-

oriented objective because students are nominated for universities which are not ranked highest.

More precisely, by swapping assigments (s1, u1) and (s2, u3) to (s1, u3) and (s2, u1) for two students

the rank for students s1 and s2 can be improved from 2 to 1 which gives an average rank of 4
3

compared to 2.

3.3 Pareto-efficiency and pairwise fairness

3.3.1 Pareto-efficiency

We will define Pareto-efficiency and Pareto dominance following Balinski and Sönmez (1999). How-

ever, the difference is that we consider multiple objectives. We denote solution x ∈ X Pareto-

efficient if there is no solution x′ ∈ X\ {x} which is preferred by at least one student s′ ∈ S

because he receives a nomination with lower rank while all other students s ∈ S\ {s′} are indif-

ferent between solutions x and x′ because for them, the rank of the assigned university does not

change. A solution x is Pareto-dominated by another solution x′ if it is not Pareto-efficient.

Example. Consider a solution x ∈ X in which at least one student s′ ∈ S is not nominated

to any university, i.e.
∑

(s′,u)∈A xs′,u = 0. If there is at least one application (s′, u′) ∈ A and∑
(s,u′)∈A xs,u′ < cu′ , i.e. at least one exchange place of university u′ is still available, solution x is

Pareto-dominated by solution x′ ∈ X with x′s′,u′ = 1 and x′s,u = xs,u∀s ∈ S, u ∈ U\ {u′}.

3.3.2 Trivial pairwise fairness

Exchange semester-based pairwise fairness ensures that a student with a higher number of

already undertaken exchange semesters is only nominated for a university if all students applying

for the same university with a lower number of exchange semesters are nominated.

Rank- and aptitude-based pairwise fairness. Consider applications (s, u), (k, u) ∈ A of stu-

dent s, k : s 6= k with the same number of exchange semesters, i.e. es = ek. To compare student s

and student k with respect to their ranks of and aptitudes for university u, we distinguish the 5

cases a, . . . , e shown in Table 3.
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Table 3: Cases when two students apply for the same university

Let applications (s, u), (k, u) ∈ A :
s 6= k, es = ek

as,u < ak,u as,u = ak,u as,u > ak,u

rs,u < rk,u a c

rs,u = rk,u b d

rs,u > rk,u e

In terms of a fair nomination, cases a, b and c are trivial because student s dominates student k

and hence should receive the exchange place. The case d when the students s and k have equal

aptitudes and ranks is resolved by employing the GPA score gs and gk as a tie-breaker. In the

following, we treat the non-trivial case e.

3.3.3 Non-trivial pairwise fairness

Obviously, in case e we have no strict dominance of one student s compared to another student k

because s is better in terms of aptitude but k is superior in terms of rank.

Strong pairwise fairness. A nomination x ∈ X fulfills the strong pairwise fairness property for

applications (s, u) and (k, u) iff application (k, u) turns into a nomination as long as application

(s, u) turns into a nomination or as long as student s is nominated for any university that is ranked

by s with a lower rank than university u and vice versa. The subset of feasible solution vectors

fulfilling the strong pairwise fairness perspective is denoted by Xs ⊂ X .

Table 4 gives an example of this property. Balinski and Sönmez (1999) have shown that there is

no nomination model or algorithm which yields a nomination x ∈ X being strong pairwise fair and

Pareto-efficient.

The strong pairwise fairness is in favor of the best students. As a consequence, the chance to

study abroad for students with low grades is reduced. To overcome this drawback, consider the

following weakened definition of fairness for the nomination process.

Weak pairwise fairness. A nomination x ∈ X fulfills the weak pairwise fairness property for

applications (s, u) and (k, u) iff application (k, u) turns into a nomination as long as application

(s, u) turns into a nomination or student s is nominated for any other university within the student’s

set of applications. The subset of feasible solution vectors fulfilling the weak pairwise fairness

perspective is denoted by Xw ⊂ X .

A nomination (process) which respects the weak pairwise fairness perspectives always receives

a Pareto-efficient solution.
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Proposition 1. A solution x ∈ Xw which is weak pairwise fair is always Pareto-efficient.

A solution x ∈ Xs which is strong pairwise fair is also weak pairwise fair, but not vice versa.

This leads to the following result.

Proposition 2. Let nSPF and nWPF be the maximum numbers of nominations under strong and

weak pairwise fairness conditions, respectively. The solution space taking into account strong pair-

wise fairness is a non-proper subset of the solution space taking into account weak pairwise fairness,

i.e. Xs ⊆ Xw. As a result, we observe nSPF ≤ nWPF.

The following example demonstrates the two pairwise fairness principles.

Example. Consider the set of students S := {1, 2, 3}, the set of universities U := {1, 2, 3}, each

with a capacity of cu = 1, as well as the students’ ranks and aptitudes as given in Tables 4(a) and

(b), respectively.

Table 4: Example for the nomination of students according to the weak and strong pairwise fairness

(a) Ranks

rs,u u ∈ U

s ∈ S u1 u2 u3

s1 2 1

s2 1 2 3

s3 2 1

(b) Aptitudes

as,u u ∈ U

s ∈ S u1 u2 u3

s1 0.6 0.9

s2 0.8 0.7 0.7

s3 0.7 0.8

(c) Strong pairwise fair solu-

tion

x u ∈ U

s ∈ S u1 u2 u3

s1 1 0 0

s2 0 1 0

s3 0 0 0

(d) Pareto-efficient and weak

pairwise fair solution

x u ∈ U

s ∈ S u1 u2 u3

s1 0 1 0

s2 0 0 1

s3 1 0 0

In Table 4(c), the nomination based on the strong pairwise fairness is not Pareto-efficient as one

more student can be nominated while ensuring the weak pairwise fairness as shown in the Pareto-

efficient and weak pairwise fair solution of Table 4(d). However, the solution provided in Table 4(c)

is strong pairwise fair because the following can be observed: Students s1 and s2 pairwise compete

for university u1. Student s1 is nominated for this university because his aptitude is better than

or equal to the one of student s2. Moreover, student s1’s rank for this university is lower than
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or equal to the rank of student s2. Similar conditions hold true for university u2. Since student

s3’s aptitudes are worse than the ones of students s1 and s2 and capacity is scarce, he cannot be

nominated.

3.4 Complexity of special and general problems

In some universities and application settings, it may occur that students are allowed to give only

one preference in their set of applications. Then, an algorithm can be described as follows: Consider

universities in the order u1, u2, . . . , u|U|. For each university ui, sort applicants for this university

depending on the objective function criterion. Then, nominate the applicants until capacity is used

up. Running through the |U| universities and sorting can be done in polynomial time.

In the general case, however, we have a General Assignment Problem which is a variant of

the NP-hard Multiple Knapsack Problem: Each student and university correspond to a job and

agent, respectively. To prove NP-hardness, construct a directed graph with one source and one

sink node. Students and universities represent nodes. The source connects all student nodes with

a directed edge. All university nodes are connected with the sink node with a directed edge.

Now, connect student’s applications with universities with a directed edge. Since each student

must not be connected to multiple universities, we strive for (the NP-hard problem of) maximizing

unsplittable flows (Martens and Skutella (2006)) between the source and sink node because we

maximize nominations, preferences or aptitudes.

4 Model formulations

In this section, we present a model which covers the objectives as well as the fairness definitions

presented in the previous section.

4.1 Objectives and base model

Employing the decision variables

xs,u =

{
1,

0,

if application (s, u) ∈ A becomes a nomination

otherwise

we can formulate the nomination-oriented, rank-oriented and aptitude-oriented objectives zN, zR
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and zA introduced in Section 3.2 in Equations (1), (2) and (3), respectively.

Maximize zN(x) =
∑

(s,u)∈A

n̄·xs,u (1)

Maximize zR(x) =
∑

(s,u)∈A

r̄s,u·xs,u (2)

Maximize zA(x) =
∑

(s,u)∈A

ās,u · xs,u (3)

Since ranks and aptitudes are the smaller the better, we recalculate and normalize them. We

introduce the objective function coefficients n̄, r̄s,u and ās,u for one normalized nomination, rank

and aptitude objective, respectively. This ensures that z’s dimensions are between 0 and 1. An

explanation of the calculation is given in Section 2 of the Supplementary Materials. By adding

constraints (4)–(5) and decision variables (6) to the objectives, the problem turns out to be a

special zero-one Multiple Knapsack Problem (MKP) which is NP-hard (Kellerer et al. (2004) and

Martello and Toth (1990)).

∑
(s,u)∈A

xs,u ≤ 1 ∀s ∈ S (4)

∑
(s,u)∈A

xs,u ≤ cu ∀u ∈ U (5)

xs,u ∈ {0, 1} ∀(s, u) ∈ A (6)

Constraints (4) ensure that each student is nominated to at most one university while constraints (5)

ensure that the capacity of each university is not exceeded. Binary decision variables are defined

by (6). Alternatively, our problem can be formulated as an Assignment Problem (see e.g. Burkard

et al. (2009)) by introducing dummy universities with unlimited capacity. However, this would

require additional variables.

4.2 Pairwise fairness constraints

The semester-based pairwise fairness constraints read as follows:

xk,u ≤
∑

(s,l)∈A

xs,l ∀(s, u), (k, u) ∈ A : s 6= k and es < ek (7)

Constraints (7) ensure that if two students s and k compete for the same university u, the student

k with the larger number of exchange semesters is not nominated unless the student s with the
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lower number of exchange semesters is nominated for this or any other university in his set of

applications.

xk,u ≤
∑

(s,l)∈A:rs,l≤rs,u

xs,l

∀(s, u), (k, u) ∈ A : s 6= k, es = ek and

((rs,u < rk,u, as,u < ak,u) or case (a)

(rs,u = rk,u, as,u < ak,u) or case (b)

(rs,u < rk,u, as,u = ak,u) or case (c)

(rs,u = rk,u, as,u = ak,u, gs < gk)) case (d)

(8)

Constraints (8) become relevant when the numbers of exchange semesters of two applicants are

identical. Each line below the universal quantifier represents the cases a, b, c, and d as given in

Table 3. For example, let the pairwise comparison of applications (s, u) and (k, u) satisfy condition

a, i.e., application (s, u) represents a superior rank and aptitude score as compared to application

(k, u), then application (k, u) is only allowed to turn into a nomination, if application (s, u) turns

to a nomination for this or any higher ranked university. Set X contains all solutions described by

constraints (4)–(8).

4.2.1 The weak pairwise fairness constraint

The weak pairwise fairness constraints ensure that, considering one university, the application of

a student k with weaker aptitude turns into a nomination only if the application of a student s

with better aptitude turns into a nomination to any university. This is expressed by the following

additional constraints:

xk,u ≤
∑

(s,l)∈A

xs,l
∀(s, u), (k, u) ∈ A : s 6= k,

rs,u > rk,u, as,u < ak,u, es = ek
(9)

Depending on the input parameters, the solution when incorporating the weak pairwise fairness

constraint leads to a substantial reduction in nominations, compared to the nomination problem

without constraints (9). We will empirically investigate on this in the experimental study in Sec-

tion 6. Set Xw contains all solutions described by constraints (4)–(9).
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4.2.2 The strong pairwise fairness constraint

The additional constraints for the strong pairwise fairness are

xk,u ≤
∑

(s,l)∈A:rs,l≤rs,u

xs,l
∀(s, u), (k, u) ∈ A : s 6= k,

rs,u > rk,u, as,u < ak,u, es = ek
(10)

Incorporating weak or strong pairwise fairness constraints into the model increases the problem size

by |A|·(|A|−1)2 constraints. Set Xs contains all solutions described by constraints (4)–(8) and (10).

The strong pairwise fairness constraint (10) leads to additional reductions in nominations, compared

to the nomination problem without constraints (10) as our experimental study will reveal.

The number of decision variables of problem (4)–(8), regardless of the fairness constraints,

is |A|. The number of constraints is at most |S|+ |U|+ |A|·(|A|−1)
2 . Table 7 in Section 6 provides an

overview of the problem sizes of real-world instances. The actual number of generated constraints,

however, depends on the input data and cannot be stated generically.

5 Nomination heuristic

Currently, the school employs a nomination heuristic, for which the pseudo code is given in Al-

gorithm 1. It is similar to Martello and Toth (1981)’s greedy heuristic for the Multiple Knapsack

Problem with the following three major differences: i) all items’ weights are equal to 1 ii) the knap-

sacks (in our case universities) are not ordered by increasing capacity and iii) no local improvement

exchanges are performed.
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Algorithm 1 Nomination heuristic

1: Initialize xs,u := 0 ∀(s, u) ∈ A.

2: for all i = 0, . . . ,max
s∈S

es do

3: for all r = 1, . . . ,max(s,u)∈A rs,u do

4: for all u ∈ U (in arbitrary order) do

5: Tu := ∅;
6: for all (s, u′) ∈ A : u′ = u,

∑
(s,u)∈A

xs,u = 0, rs,u′ = r, es = i do

7: Insert (s, u′) ∪ Tu by ascending as,u′ and gs scores;

8: end for

9: for (s, u) ∈ Tu do

10: if cu > 0 ∧ xs,u = 0 then

11: xs,u := 1;

12: cu := cu − 1;

13: end if

14: end for

15: end for

16: end for

17: end for

The first outer loop (Lines 2–17) runs from zero undertaken exchange semesters to the maximum

number of undertaken exchange semesters over all students. The second outer loop (Lines 3–16)

runs from the highest to the lowest ranks. In the inner loop (Lines 4–15), all universities u ∈ U

are processed in an arbitrary order. The first step in the inner loop is an ordering step (Lines 6–

8): Applications with rank p for university u are inserted into a list (ordered set) Tu for each

university u ∈ U . The order is determined by ascending aptitude scores and the GPA sub-score is

used as a tie breaker if two students’ aptitudes are equal. The second step in the inner loop (Lines 9–

14) is the nomination step: The loop runs through the sorted list Tu. Students are nominated for

university u, if they have not been nominated to any other university and if, u’s capacity has not

been used up. In what follows, we highlight two properties of the heuristic nomination.

Proposition 3. The nomination heuristic ensures pairwise fairness a,. . . , d.

Proof. First, we observe that the algorithm runs sequentially through all ranks. Assume two

applications (s, u), (k, u) ∈ A with s 6= k for university u and rs,u < rk,u, i.e. student s has a

higher rank than student k for university u. In this case, the application of student s for university

u would be considered in an earlier loop than the application of student k, regardless of both

students’ aptitudes. If student k is nominated to university u, then it follows that the capacity of

u was not used up in the earlier loops. Consequently, student s was definitely nominated either

for u or any other higher ranked university in one of those loops. Hence, pairwise fairness a and
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c are ensured. PF condition c or d applies if student s and student k both submitted the same

rank for university u. Thus, both applications would be in the same list Tu. Since the list is sorted

according to descending aptitudes and descending GPA scores as a tie-breaker, student k can only

be nominated to university u if student s is nominated to u or any other higher ranked university,

because student s’s application is further up in the list.

Proposition 4. The nomination heuristic fails to ensure weak pairwise fairness and strong pairwise

fairness.

Proof. We show this by contradiction. Consider two students s1, s2 and one university u1 with

capacity cu1 = 1. Let as1,u1 < as2,u1 , i.e. student s1 has a better aptitude for that university

compared to student s2. Assume u1 is s1’s rank 3 university while it is s2’s rank 1 university, such

that rs1,u1 > rs2,u1 . Then student s2’s application is considered in an earlier loop than student

s1’s. If the capacity of university u1 is already used up when student s2’s application is considered

(because of the higher rank), and s1 was not nominated to this or any other higher ranked university

(note, we assume that there is only one university), student s1 ends up not being nominated at all.

This contradiction results in a violation of the weak pairwise fairness condition and, in consequence

(see Proposition 2), in a violation of the strong pairwise fairness condition.

6 Experimental study

In the experimental study, we test the models with real-world data provided by a European Business

School. The experimental study is organized as follows: Section 6.1 introduces the data and provides

summary statistics. Section 6.2 presents an overview of our evaluation measures as well as the

structured experimental design. A computation time analysis of real-word test instances is given

in Section 6.3, followed by a presentation and an evaluation of the results in Sections 6.4–6.8.

6.1 Data analysis

We use seven years worth of data containing applications that the school received in the years

2008–2013 (years 1 to 6 in Table 5) and 2020 (year 7 in Table 5). Each year, students apply for

exchange places. After the application deadline has passed, all application documents are evaluated

in order to determine the parameters for the nomination approach presented in Section 5. Table 5

provides summary statistics of all application years. For each year, each student could apply for at

most 3 universities.
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Table 5: Summary statistics for each application year

Application year 1 2 3 4 5 6 7

Number of students |S| 60 79 90 117 151 226 521

Number of universities |U| 26 27 33 44 50 65 142

Number of applications |A| 155 210 243 305 387 600 1,475

Number of exchange places
∑
u∈U

cu 70 80 97 138 153 210 448

Number of students per exchange place 0.857 0.988 0.928 0.848 0.987 1.076 1.163

The table reveals an increasing demand and a shortage of exchange places for year 6 and 7. The

average number of applications per student is quite constant between 2.56 and 2.83 within the

seven years.

6.2 Evaluation measures and experimental design

All mathematical programs and the nomination heuristic used by the school are assessed using the

same performance indicators: The number of nominations, the relative number of nominations to

1st, 2nd and 3rd rank universities, and the average aptitude of nominated students. In addition,

we evaluate violations of pairwise fairness introduced in Section 3.3. Furthermore, we provide an

analysis of the upper bound of students that can be nominated by relaxing all pairwise fairness

constraints.

The 9 test setups that we use in order to evaluate the different objectives combined with the

different fairness perspectives are shown in Table 6.

Table 6: Test setups are indicated by “•”. “◦” means that we do not evaluate the corresponding
objective or fairness constraint

Objective function Pairwise fairness

Setup Nominations (zN) Ranks (zR) Aptitudes (zA) Weak Strong

1 • ◦ ◦ ◦ ◦
2 • ◦ ◦ • ◦
3 • ◦ ◦ ◦ •
4 ◦ • ◦ ◦ ◦
5 ◦ • ◦ • ◦
6 ◦ • ◦ ◦ •
7 ◦ ◦ • ◦ ◦
8 ◦ ◦ • • ◦
9 ◦ ◦ • ◦ •

The table shows that the three different objectives are paired with the different pairwise fairness

constraints (off, weak and strong). As a consequence, we obtain 9 different setups given in Table 6.
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For all setups, we incorporate the rank- and aptitude- as well as the exchange semester-based

pairwise fairness as given by constraints (7) and (8), respectively (see also Section 3.3.3). The

reason to incorporate semester-based pairwise fairness is that we want a fair comparison with the

nomination heuristic used by the school which accounts for the exchange semester-based pairwise

fairness. The reason to generate nine setups is that we perform a full-factorial test design by

varying the three objectives given in equations (1)–(3) paired with in- and excluding the weak

pairwise fairness as given by constraints (9) and the strong pairwise fairness, see constraints (10).

6.3 Computational results

All computations were performed on a 3.1 GHz personal computer (Intel Core i7-4940MX) with

32 GB RAM running a Windows 10 operating system. The models were coded in Java 1.8 using

the 64 bit version of the application programming interface of IBM ILOG CPLEX 12.10. For the

sake of computational comparison, we coded the nomination heuristic in Java, too. Table 7 shows

the sizes of the test instances and the computation time in Milliseconds required to solve each test

instance.

Table 7: Number of decision variables, constraints and computation times

Application year 1 2 3 4 5 6 7

# Decision variables 155 210 243 305 387 600 1,475

# Constraints

Basic nomination problem (1), (4)–(6) 86 106 123 161 201 291 663

Incl. exchange semester-, rank-/apti-

tude-based and strong pairwise fairness

806 1,348 1,422 1,953 2,358 5,155 17,044

Computation time [ms]

Nomination heuristic 2 1 3 2 2 2 10

MIP (Setup 1) 14 22 20 22 40 89 93

MIP (Setup 2) 13 32 34 34 60 161 194

MIP (Setup 3) 12 25 27 32 55 53 136

MIP (Setup 4) 16 21 21 23 63 42 97

MIP (Setup 5) 13 33 31 28 156 63 130

MIP (Setup 6) 19 21 28 40 60 58 127

MIP (Setup 7) 18 52 26 31 418 246 146

MIP (Setup 8) 17 19 37 36 58 62 135

MIP (Setup 9) 14 20 34 33 42 85 121

We observe that the computation times for solving each model for each application year is below

one second time and that the solution time of the nomination heuristic is even faster. We can

also observe that the number of additional pairwise fairness constraints increases more than the
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constraints of the basic nomination problem. One explanation for this phenomenon is that the

number of applications increases faster than the number of available places per application.

6.4 Comparison with the nomination heuristic

The results of the nomination heuristic are provided in Table 8 and show that the ratio of nomina-

tions to all applicants is between 61% and 85%.

Table 8: Results of the nomination heuristic

Application year 1 2 3 4 5 6 7

# Nominations 51 59 69 90 120 146 318

Percentage of applying students 85.0 74.7 76.7 76.9 79.5 64.6 61.0

Percentage of nominations compared to setup 1 96.2 96.7 97.2 95.7 98.4 96.7 93.0

Percentage of nominations compared to setup 4 96.2 98.3 98.6 97.8 99.2 98.6 96.1

Percentage of nominations compared to setup 7 96.2 96.7 97.2 95.7 98.4 96.7 106.3

Percentage of rank 1 universities 74.5 74.6 73.9 76.7 77.5 70.5 74.2

Percentage of rank 2 universities 11.8 13.6 20.3 15.6 16.7 19.9 15.7

Percentage of rank 3 universities 13.7 11.9 5.8 7.8 5.8 9.6 10.1

Average aptitude of nominated students 0.43 0.56 0.53 0.50 0.76 0.57 0.42

Violations of exchange semester- and rank-/apti-

tude-based pairwise fairness

0 0 0 0 0 0 0

Violations of weak pairwise fairness 6 16 9 20 16 69 159

Violations of strong pairwise fairness 7 23 9 28 19 73 174

Due to Proposition 3, the exchange semester- as well as the rank- and aptitude-based pairwise

fairness are never violated. However, a considerable number of violations of weak and strong

pairwise fairness occur and as a consequence, some students are not nominated at all although

their aptitude is better than the lowest aptitude of the students, which have been nominated to

the same university. This demonstrates that the nomination heuristic is ill-suited for the fair

nomination of exchange students.

6.5 Results of the upper bound on nominations

Maximizing objective function (1) in combination with constraints (4)–(5), and decision vari-

ables (6) gives an upper bound on the number of nominations. Its results are presented in Table 9

and show that in none of the application years a 100% nomination rate is obtained.
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Table 9: Results of the upper bound problem (1), (4)–(6)

Application year 1 2 3 4 5 6 7

# Nominations (upper bound) 57 66 81 101 134 164 375

Percentage of applying students 95.0 83.5 90.0 86.3 88.7 72.6 72.0

Percentage of rank 1 universities 42.1 40.9 28.4 31.7 41.8 29.3 29.1

Percentage of rank 2 universities 38.6 24.2 42.0 37.6 32.1 33.5 30.1

Percentage of rank 3 universities 19.3 34.8 29.6 30.7 26.1 37.2 40.8

Violations of semester-based pairwise fairness 0 0 0 7 0 44 178

Violations of pairwise fairness a 31 31 75 85 91 171 337

Violations of pairwise fairness b 46 57 74 75 95 196 321

Violations of pairwise fairness c 0 0 0 0 0 1 16

Violations of pairwise fairness d 0 1 0 0 0 0 11

Violations of weak pairwise fairness 3 17 14 29 9 63 143

Violations of strong pairwise fairness 9 32 23 37 33 90 216

On average, more than 4 out of 5 students can be nominated using this approach. A major drawback

however is the substantially large number of fairness violations. For example, there are 75 violations

of the rank- and aptitude-based pairwise fairness (case b) in the year 4.

6.6 Evaluation of the nomination-, rank- and aptitude-based objective

We compare the results of the nomination heuristic with the MIP solution of setups 3, 6 and

9 which enforce strong pairwise fairness when optimizing the nomination-, rank- and aptitude-

oriented objective, respectively. The results are given in Tables 10–12. We also show the results of

setup 1 in Table 13 in the Appendix in which the nomination-oriented objective is pursued without

weak or strong pairwise fairness.

Table 10: Results of the MIP applied to setup 3 (nomination-oriented objective, strong pairwise
fairness constraints)

Application year 1 2 3 4 5 6 7

# Nominations 53 61 71 93 121 149 339

Percentage of applying students 88.3 77.2 78.9 79.5 80.1 65.9 65.1

Percentage of nominations compared to setup 1 100.0 100.0 100.0 98.9 99.2 98.7 99.7

Percentage of nominations compared to the upper bound 93.0 92.4 87.7 92.1 90.3 90.9 90.4

Percentage of rank 1 universities 58.5 54.1 63.4 61.3 65.3 50.3 52.8

Percentage of rank 2 universities 22.6 27.9 25.4 24.7 23.1 32.9 23.6

Percentage of rank 3 universities 18.9 18.0 11.3 14.0 11.6 16.8 23.6

Average aptitude of nominated students 0.44 0.56 0.53 0.51 0.77 0.58 0.49

Violations of strong pairwise fairness 0 0 0 0 0 0 0

The tables show a substantial drop-off in nominations as compared to the upper bound on nomina-

20



tions that can be achieved by relaxing all pairwise fairness constraints, see Table 9 in Section 6.5.

Table 11: Results for setup 6 (rank-oriented objective, strong pairwise fairness constraints)

Application round 1 2 3 4 5 6 7

# Nominations 53 61 71 93 121 149 337

Percentage of applying students 88.3 77.2 78.9 79.5 80.1 65.9 64.7

Percentage of nominations compared to setup 4 100.0 98.3 98.5 99.9 100.0 99.3 97.6

Percentage of nominations compared to the upper bound 93.0 92.4 87.7 92.1 90.3 90.9 89.9

Percentage of rank 1 universities 62.3 59.0 66.2 63.4 68.6 53.7 54.0

Percentage of rank 2 universities 20.8 24.6 26.8 25.8 22.3 32.9 26.7

Percentage of rank 3 universities 17.0 16.4 7.0 10.8 9.1 13.4 19.3

Average aptitude of nominated students 0.44 0.56 0.53 0.51 0.77 0.58 0.49

Violations of pairwise fairness 0 0 0 0 0 0 0

When maximizing the rank-based objective zR which is considered in setup 6 and Table 11, we

observe a higher nomination rate to rank 1 universities as compared to the rate observed in setup 3.

For example, when using setup 6 in application year 2, 59.0% of the nominated students are sent

to the highest ranked university as compared to 50.8% using setup 3 for the same application year.

Another observation is that in four of six application years, more nominations occur as compared

to setup 4 with rank-oriented objective but no pairwise fairness in place. One explanation of this

phenomenon is that the strong pairwise fairness ensures that excellent students are nominated

rather than nominating students who rank universities higher but have not as good aptitudes.

Table 12: Results for setup 9 (aptitude-oriented objective, strong pairwise fairness)

Application year 1 2 3 4 5 6 7

# Nominations 53 61 71 93 121 149 297

Percentage of applying students 88.3 77.2 78.9 79.5 80.1 65.9 57.0

Percentage of nominations compared to setup 7 100.0 100.0 100.0 98.9 99.2 98.7 99.3

Percentage of nominations compared to the upper bound 93.0 92.4 87.7 92.1 90.3 90.9 79.2

Percentage of rank 1 universities 58.5 52.5 62.0 59.1 64.5 51.7 52.2

Percentage of rank 2 universities 22.6 29.5 26.8 25.8 24.0 31.5 25.3

Percentage of rank 3 universities 18.9 18.0 11.3 15.1 11.6 16.8 22.5

Average aptitude of nominated students 0.45 0.57 0.54 0.52 0.77 0.58 0.67

Violations of pairwise fairness 0 0 0 0 0 0 0

Table 12 gives the results when maximizing aptitude-weighted nominations in setup 9 under

strong pairwise fairness constraints. We observe only a slight improvement of the average of apti-

tudes of nominated students. However, the scores of nominated students are, on average, strictly

equal or lower than the ones of setups 3 and 6.
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6.7 On the impact of relaxing weak or strong pairwise fairness

Table 13 gives the results of Setup 1 which pursues the nomination-based objective without enforc-

ing weak or strong pairwise fairness. Remarkably, for all years, more students can be nominated as

compared to the nomination heuristic. We also observe that a consistent pattern exists in a sense

that more students are nominated for rank 1 universities as compared to rank 2 universities. The

same holds true when comparing the percentage of rank 2 university nominations as compared to

rank 3 university nomination. In the heuristic approach, this pattern cannot be observed for year

1 where more students are nominated for rank 3 universities as compared to rank 2 universities.

Another observation is that in 4 of the 6 application years, less rank 3 nominations occurred in

Setup 4 as compared to the nomination heuristic. However, the rank 1 nomination percentage is

in Setup 4 lower as compared to the nomination heuristic. Finally, the number of weak and strong

pairwise fairness violations are in 10 of 12 cases lower when comparing Setup 4 with the violations

of the nomination heuristic.

Table 13: Results for setup 1 (nomination-oriented objective without weak or strong pairwise
fairness)

Application year 1 2 3 4 5 6 7

# Nominations 53 61 71 94 122 151 340
Percentage of applying students 88.3 77.2 78.9 80.3 80.8 66.8 65.3

Nominations for rank 1 universities 33 34 45 58 81 86 192
Percentage of nominations 62.3 55.7 63.4 61.7 66.4 57.0 56.5
Nominations for rank 2 universities 11 16 17 23 27 40 75
Percentage of nominations 20.8 26.2 23.9 24.5 22.1 26.5 22.1
Nominations for rank 3 universities 9 11 9 13 14 25 73
Percentage of nominations 17.0 18.0 12.7 13.8 11.5 16.6 21.5
Average aptitude of nominated students 0.43 0.56 0.52 0.50 0.77 0.57 0.46

Violations of weak pairwise fairness 2 0 2 6 1 22 49
Violations of strong pairwise fairness 2 3 2 11 3 29 53

6.8 Graphical evaluation of the results

Figure 1 graphically compares setups 1, 2 and 3 with the nomination heuristic for application

year 6. We chose setups 1–3 because each of the corresponding models maximizes the number of

nominations.
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Figure 1: Kiviat diagram representing the solution characteristics for setup 1, 2 and 3 as compared
to the approach currently employed in practice with maximum values in brackets

The diagram shows that the nomination heuristic considerably violates the weak and strong pairwise

fairness. Moreover, the number of pairwise fairness violations employing setup 1 is still quite

substantial. However, as the computational results show, we observe less than half of the fairness

violations as compared to the nomination heuristic. A more detailed analysis of setup 2 reveals that,

naturally, no weak pairwise fairness violations occur anymore and that the strong pairwise fairness

violation drop to only 6 (see Table 15 in the Appendix). Another interesting observation is that the

number of rejected applicants is one less when comparing setup 3 with the nomination heuristic.

This means that our mathematical program has two major benefits and policy implications: More

nominations and more fairness.

7 Managerial relevance and conclusions

7.1 Managerial relevance

This work has been originated by a major European business school. When starting the student

exchange, a team member of the international office of the school undertook the nomination man-

ually spending a considerable time for assigning the applications of up to 100 students to about

the same number of partner schools (see the first three years in Table 5). However, as the number

of applications and the number of partner schools grew, the time it took for processing physical
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applications and manually assigning applications to exchange places of partner schools was not

bearable anymore. The school then decided to implement a web-based digital application system

including a nomination heuristic mimicking the manual assignment undertaken so far. The logic

of the heuristic is depicted in Section 5.3. Due to the digitization of the process, assignments were

now derived within hours instead of days and the school was able to handle an increasing number

of students and partner universities (see years 4–7 in Table 5). However, with the increase of nom-

inations a growing number of students complained about violation of the strong pairwise fairness

constraints. Complaints were in particular undertaken by very good students who competed for

the limited places at highly ranked international business schools. The assignments to these schools

were scrutinized in particular by the very good students. While in the early years of the student

exchange, the main goal of the school was to increase the number of nominations in order to become

an internationally visible business school, the school now had to manage the complaints of students

about the violations of the strong pairwise fairness constraints. Since the complaints are from

the best students, it is important for the school to minimize complaints and thus strong pairwise

fairness violations. Hence, the demand for an advanced assignment system became apparent. Cur-

rently, the MIPs proposed in this paper have been embedded into a decision support system (DSS)

and introduced to the school for deriving information about the optimum number of nominations,

the total rank of assigned students, and the total aptitude of assigned students as expressed in the

objective functions (1)–(3) when considering different fairness constraints. The main criteria for

the school are the maximization of the number of nominations and the minimization of the strong

pairwise fairness violations. At a strategic level, the DSS is judged as helpful in order to assess

the value of partner schools, in particular potential new partner schools, as well as assessing the

impact of changes of the number of exchange places of existing partner schools.

7.2 Conclusions

In this paper, we addressed the problem of fairly nominating students to exchange places at foreign

universities. We first provided formal definitions of three objectives which are related to the three

stakeholders of the nomination process. Afterwards, we introduced the concepts of weak and

strong pairwise fairness and proved that weak pairwise fairness ensures Pareto efficient solutions.

Next, we developed mathematical models with fairness constraints which we embedded in a full

factorial experiment design varying different nomination objectives and fairness perspectives. We

employed a nomination algorithm currently in use as a baseline and measured the computational

performance of each approach based on real-world data. Finally, we analyzed the results based on

overall performance measures and broke down the results by different evaluation metrics such as
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violation of fairness.

We have shown that real-world problems can be solved within less than a second time by using

our mathematical programs. Our experiments confirm that maximizing the number of nominations

while ensuring fairness are conflicting goals. Another result of this study is that the nomination

heuristic used by the school does not guarantee fairness.

Future work could consider a strategic model that helps evaluating in which regions and for

which universities a school should consider developing new partnerships. Also, the effect of bound-

ing the maximum allowed number of applications per student on the number of nominations could

be addressed.
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Sönmez, T. and Ünver, M. U. (2010), ‘Course bidding at business schools’, International Economic

Review 51(51), 99–123.

Toroslu, I. H. and Arslanoglu, Y. (2007), ‘Genetic algorithm for the personnel assignment problem

with multiple objectives’, Information Sciences 177, 787 – 803.

Wang, F., Jagadeesan, R. and Kominers, S. D. (2019), ‘Optimizing reserves in school choice: A

dynamic programming approach’, Operations Research Letters 47(5), 438–446.

Weitz, R. R. and Jelassi, T. M. (1992), ‘Assigning students to groups: A multi-criteria decision

support system approach’, Decis. Sci. 23, 746–757.
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Supplementary Materials to “Fair Nomination of Exchange Students”

1 Notation and abbreviations

Notation

A Set of applications with application (s, u) ∈ A
X Set of solutions with solution x ∈ X
Xf Subset of solutions for fairness f ∈ {w, s}
S Set of students with student s ∈ S
Tu Ordered list of students nominated for university u ∈ U
U Set of universities with university u ∈ U
as,u ∈ [1; 5] Aptitude strength of application (s, u) ∈ A
ās,u Normalized aptitude of application (s, u)

cu Capacity of university u ∈ U
es Number of exchange semesters student s ∈ S has spent abroad prior to the

application process

f Fairness, e.g. f = W refers to the weak pairwise fairness

gs Grade point average of student s ∈ S
m Objective, e.g. m = N refers to the nomination-based objective

nSPF Maximum numbers of nominations under SPF

nWPF Maximum numbers of nominations under WPF

n̄ Normalization constant for the number of applicants

rs,u Ranks corresponding to application (s, u) ∈ A
r̄s,u Normalized rank of application (s, u)

xs,u 1 if application (s,u) becomes a nomination, 0 otherwise

zm(x) Objective function value for objective m given solution x

zA Aptitude-oriented objective

zN Nomination-oriented objective

zR Rank-oriented objective

Abbreviations

GPA Grade point average

MIP Mixed-integer program

MKP Multiple Knapsack Problem

PF Pairwise fairness

SPF Strong pairwise fairness

WPF Weak pairwise fairness

2 Recalculation and normalization of the objective function weights

Let n̄ = 1
|S| and rmax = max

(s,u)∈A
rs,u. Each application’s normalized rank r̄s,u ∀(s, u) ∈ A is

determined by:

1



r̄s,u =
1 + rmax − rs,u

rmax · |S|
. (11)

Similarly, let amax = max
(s,u)∈A

as,u. Then, each application’s score ās,u ∀(s, u) ∈ A is determined by:

ās,u =
1 + amax − as,u

amax · |S|
. (12)

This ensures that each objective function zN , zR or zA’s values are within interval [0, 1].

3 Results for setups 2, 4, 5, 7 and 8

The computational results for setups 2, 4, 5, 7 and 8 are provided by Tables 15, 16, 17, 18, and 19,

respectively.

Table 15: Results of the MIP applied to setup 2 (nomination-oriented objective with weak and
without strong pairwise fairness constraints)

Application year 1 2 3 4 5 6 7

# Nominations 53 61 71 93 122 151 340
Percentage of applying students 88.3 77.2 78.9 79.5 80.8 66.8 65.3

Nominations for rank 1 universities 31 32 44 56 78 79 182
Percentage of nominations 58.5 52.5 62.0 60.2 63.9 52.3 53.5
Nominations for rank 2 universities 12 18 18 22 28 44 79
Percentage of nominations 22.6 29.5 25.4 23.7 23.0 29.1 23.2
Nominations for rank 3 universities 10 11 9 15 16 28 79
Percentage of nominations 18.9 18.0 12.7 16.1 13.1 18.5 23.2
Average aptitude of nominated students 0.44 0.56 0.53 0.51 0.77 0.58 0.48

Violations of exchange semester- and
rank-/aptitude-based pairwise fairness

0 0 0 0 0 0 0

Violations of weak pairwise fairness 0 0 0 0 0 0 0
Violations of strong pairwise fairness 0 1 0 6 1 6 7
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Table 16: Results of the MIP applied to setup 4 (rank-oriented objective without weak or strong
pairwise fairness constraints)

Application year 1 2 3 4 5 6 7

# Nominations 53 60 70 92 121 148 329

Percentage of applying students 88.3 75.9 77.8 78.6 80.1 65.5 63.1

Percentage of nominations compared to

the heuristic

103.9 101.7 101.4 102.2 100.8 101.4 103.5

Percentage of rank 1 universities 67.9 70.0 71.4 72.8 76.9 66.9 69.0

Percentage of rank 2 universities 17.0 20.0 22.9 20.7 17.4 24.3 19.1

Percentage of rank 3 universities 15.1 10.0 5.7 6.5 5.8 8.8 11.9

Average aptitude of nominated students 2.87 2.30 2.28 2.19 2.30 2.19 2.31

Violations of exchange semester- and

rank-/aptitude-based pairwise fairness

0 0 0 0 0 0 0

Violations of weak pairwise fairness 4 13 8 15 16 64 128

Violations of strong pairwise fairness 5 16 8 21 19 64 144

Table 17: Results of the MIP applied to setup 5 (rank-oriented objective with weak and without
strong pairwise fairness constraints)

Application year 1 2 3 4 5 6 7

# Nominations 53 61 71 93 122 150 335
Percentage of applying students 88.3 77.2 78.9 79.5 80.8 66.4 64.3

Nominations for rank 1 universities 33 37 47 60 85 84 191
Percentage of nominations 62.3 60.7 66.2 64.5 69.7 56.0 57.0
Nominations for rank 2 universities 11 14 19 22 25 44 84
Percentage of nominations 20.8 23.0 26.8 23.7 20.5 29.3 25.1
Nominations for rank 3 universities 9 10 5 11 12 22 60
Percentage of nominations 17.0 16.4 7.0 11.8 9.8 14.7 17.9

Violations of exchange semester- and
rank-/aptitude-based pairwise fairness

0 0 0 0 0 0 0

Average aptitude of nominated students 0.44 0.56 0.53 0.51 0.77 0.58 0.48
Violations of weak pairwise fairness 0 0 0 0 0 0 0
Violations of strong pairwise fairness 0 2 0 2 3 3 6
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Table 18: Results of the MIP applied to setup 7 (aptitude-oriented objective without weak or strong
pairwise fairness constraints)

Application year 1 2 3 4 5 6 7

# Nominations 52 60 70 92 122 151 299
Percentage of applying students 86.7 75.9 77.8 78.6 80.8 66.8 57.4

Nominations for rank 1 universities 29 34 45 55 79 80 161
Percentage of nominations 55.8 56.7 64.3 59.8 64.8 53.0 53.8
Nominations for rank 2 universities 12 15 15 23 28 42 70
Percentage of nominations 23.1 25.0 21.4 25.0 23.0 27.8 23.4
Nominations for rank 3 universities 11 11 10 14 15 29 68
Percentage of nominations 21.2 18.3 14.3 15.2 12.3 19.2 22.7
Average aptitude of nominated students 0.45 0.57 0.54 0.52 0.77 0.58 0.67

Violations of exchange semester- and
rank-/aptitude-based pairwise fairness

0 0 0 0 0 0 0

Violations of weak pairwise fairness 0 0 0 0 0 0 2
Violations of strong pairwise fairness 2 1 2 2 2 6 10

Table 19: Results of the MIP applied to setup 8 (aptitude-oriented objective with weak and without
strong pairwise fairness constraints)

Application year 1 2 3 4 5 6 7

# Nominations 52 60 70 92 122 151 299
Percentage of applying students 86.7 75.9 77.8 78.6 80.8 66.8 57.4

Nominations for rank 1 universities 29 33 45 56 78 80 163
Percentage of nominations 55.8 55.0 64.3 60.9 63.9 53.0 54.5
Nominations for rank 2 universities 12 16 15 21 29 42 71
Percentage of nominations 23.1 26.7 21.4 22.8 23.8 27.8 23.7
Nominations for rank 3 universities 11 11 10 15 15 29 65
Percentage of nominations 21.2 18.3 14.3 16.3 12.3 19.2 21.7
Average aptitude of nominated students 0.45 0.57 0.54 0.52 0.77 0.58 0.67

Violations of weak pairwise fairness 0 0 0 0 0 0 0
Violations of strong pairwise fairness 2 1 1 6 2 6 6
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