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a late Pleistocene dataset of 
agulhas Current variability
Margit H. Simon  1,2 ✉, Martin Ziegler  3, Stephen Barker4, Marcel T. J. van der Meer5, 
Stefan Schouten3,5 & Ian R. Hall  4

the interocean transfer of thermocline water between the Indian and the atlantic Oceans known 
as ‘Agulhas leakage’ is of global significance as it influences the Atlantic Meridional Overturning 
Circulation (AMOC) on different time scales. Variability in the Agulhas Current regime is key in shaping 
hydroclimate on the adjacent coastal areas of the African continent today as well as during past 
climates. However, the lack of long, continuous records from the proximal Agulhas Current region 
dating beyond the last glacial cycle prevents elucidation of its role in regional and wider global climate 
changes. This is the first continuous record of hydrographic variability (SST; δ18Osw) from the agulhas 
Current core region spanning the past 270,000 years. The data set is analytical sound and provides 
a solid age model. As such, it can be used by paleoclimate scientists, archaeologists, and climate 
modelers to evaluate, for example, linkages between the Agulhas Current system and AMOC dynamics, 
as well as connections between ocean heat transport and Southern African climate change in the past 
and its impact on human evolution.

Background & Summary
The mass and salt transport through the Indian-Atlantic Ocean Gateway, via the Agulhas leakage, can be consid-
ered as a potential controlling factor in the Southern Hemisphere impacting on the North Atlantic salt budget1,2. 
Today Agulhas leakage of ~5–15 Sverdrup (Sv) is one of the dominant sources of the upper branch of the Atlantic 
Meridional Overturning Circulation (AMOC), connecting the warm route around the southern tip of Africa with 
the North Atlantic3,4. The advection of salt is communicated north within 2–4 decades5–7 suggesting a rather fast 
impact of Agulhas leakage on the AMOC.

The interest of the palaeoclimate community in Agulhas leakage arose from the finding that peak Agulhas 
leakage occurred during glacial terminations8 and plausibly aided the AMOC to shift to its full-strength inter-
glacial mode9,10. This hypothesis builds on a variety of records from within the Agulhas leakage pathway, which 
inferred fluctuations in the strength of Agulhas leakage over the late Pleistocene epoch based on a variety of faunal 
and geochemical proxy reconstructions8,11–18. These findings are further reinforced by a numerical model study19 
indicating that the strength of the Agulhas leakage varied by ~10 Sv between glacial and interglacial periods.

Fewer studies have concentrated on the Agulhas Current itself. The relationship between the current and the 
Agulhas leakage is not well understood. Various models have been put forward determining the modern con-
nection between the two. Early studies proposed that the magnitude of Agulhas leakage is thought to depend on 
the strength and variability of the upstream Agulhas Current and the location of the retroflection1. A decoupling 
of Agulhas Current variability from Agulhas leakage was proposed by Loveday, et al.20 whereas van Sebille, et 
al.21 concluded a weaker Agulhas Current would lead to more Agulhas leakage. On longer timescales a study by 
Franzese, et al.22 suggests, based on strontium isotopes in detrital sediments from core sites along the Agulhas 
Current system, that reduced glacial leakage must be explained by a weaker current. On orbital- to millennial 
timescales, Simon, et al.23 concluded, that changes in temperature and salinity in the Agulhas leakage is at least 
partly the result of variability in the composition in the current itself and can be a poor indicator of the strength 
of the leakage.

In addition to the importance for global climate dynamics of Agulhas leakage, its variability also significantly 
impacts the hydroclimate around the southern tip of Africa. Rainfall intensity today in coastal southeast Africa is 
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positively correlated to Sea Surface Temperature (SST) variability in the southwest Indian Ocean and the Agulhas 
Current regime24. Today the Agulhas Current shapes coastal climate25, particularly under ridging high-pressure 
conditions, when low-level onshore flow of moisture from the Agulhas Current region reaches the narrow coastal 
belt of the Eastern Cape and KwaZulu-Natal provinces where rain falls. How important is the role of the Agulhas 
Current heat transport in determining hydroclimate conditions in south-eastern Africa across regions and times-
cales? Increasing the spatio-temporal scales of records representing past variability in the Agulhas Current main 
flow path is of high importance to the community to attempt to answer these questions. Despite few existing 
datasets from locations either positioned to monitor changes of the Agulhas Current, where it originates MD96-
204826; or slightly outside its main trajectory MD96-207727; a record from the proximal Agulhas Currents main 
core flow path spanning mutable glacial cycles is still as of yet missing.

Here we present a new continuous 270-kyr data set consisting of Agulhas Current near-surface temperature 
and inferred salinity based on surface-dwelling foraminiferal Mg/Ca and δ18O records from site CD154 10-06 P 
(31°10.36’S, 32°08.91’E, 3076 m water depth, Fig. 1). Moreover, we make a multi-proxy compilation of temper-
ature proxies (Mg/Ca; TEX86 and UK’

37 based estimates) over the last deglaciation additionally available. This 
dataset can serve future users to, for example, compare the Agulhas Current SST patterns with South African 
terrestrial hydroclimate records over the last two glacial cycles to evaluate if the ocean heat transport was shaping 
coastal land-climate on various timescales. Moreover, the data set can be used to reconstruct the contribution of 
Agulhas Current water transports to the T-S variability in the Indian-Atlantic Ocean gateway and Agulhas leakage 
over the past 270 kyr. Additionally, the multi-proxy SST compilation over the last deglaciation can serve in future 
regional data compilations established around South Africa as well as in global temperature compilations.

Fig. 1 Location map of Site CD154 10-06 P (this study) and CD154 17-17 K23 with main surface currents 
(arrows) in the southwest Indian Ocean and atmospheric circulation over southern Africa during austral 
summer (December, January, February) with the approximate position of the Congo Air Boundary (CAB) 
(dashed lines; adapted from Reason et al., 200677). AC = Agulhas Current, AL = Agulhas Leakage; SEC = South 
Equatorial Current, SEMC = South East Madagascar Current, NEMC = North East Madagascar Current, 
EACC = East Africa Coastal Current, ARC = Agulhas Return Current. Purple shading = Zambezi River 
Catchment, green shading = Limpopo River Catchment, gray double-headed arrows = main pathways of 
moisture supply to the African continent from the northwest Atlantic (through Congo) and the northwest and 
the south-west Indian Ocean. Map Adapted from Hall, et al.78.

https://doi.org/10.1038/s41597-020-00689-7


3Scientific Data |           (2020) 7:385  | https://doi.org/10.1038/s41597-020-00689-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Methods
age model. Marine sediment core CD154 10-06 P recovered 969 cm of marine mud mainly composed of 
foraminiferal ooze (Fig. 2). The core was sampled at 1 cm intervals, the wet sediment was weighed, disaggregated 
on a rotating wheel for approximately 24 hours, washed over a 63 μm sieve using fine water spray and dried in the 
oven at 40 °C.

A turbidite was detected during sampling of core CD154 10-06 P through visual inspection and an evident 
rapid increase in the coarse fraction weight % as well as a sharp drop in the L* record. As such, the identified 
turbidite interval (50 cm) was removed from the depth scale and the material was not used for the palaeoceano-
graphic records. The age model construction was performed on the new depth adapted scale (for reference please 
see details in Simon28).

The age model for the upper two core sections (upper 100 cm in the core) was developed using ten 14C accel-
erator mass spectrometer (AMS) dates measured from samples containing approximately 1000 tests of the plank-
tonic foraminiferal species Globigerinoides ruber (250–315 μm) and has been previously presented in Simon, 
et al.29. The age model for the remaining lower core sections was published in detail in Simon, et al.30. Here we 
update the radiocarbon ages using the Marine13 calibration curve31 with the global mean reservoir correction of 
(R) 405 years32.

Radiocarbon measurements were made at the Natural Environment Research Council (NERC) Radiocarbon 
Laboratory (Table 1). The core chronology was constructed using the Bayesian model Bchron33,34 from which 
we derive 95% (2σ) uncertainty on the calibrated ages (Table 1) as well as a 95% probability envelope for each 
estimated time point (Fig. 3). In the range of the 14C dates (1.98–27.38 ka), average sedimentation rates of ~4.0 cm 
ka−1 (1.9–4.8 cm ka−1, min and max sedimentation rates, accordingly) and a sample integration of ~300 years for 
every 1 cm sample is implied. Beyond that, average sedimentation rates are ~4.27 cm ka−1 (0.45–6.0 cm ka−1, min 

Fig. 2 Initial Age model for core CD154 10-06 P. (a) Age control points for CD154-10-06P, including 
radiocarbon dates (black) tuning of the foraminiferal δ18O record to LR04 (black) (b) Benthic foraminiferal 
(Cibicidoides spp.) δ18O record from CD154-10-06P (blue), reflecting global ice volume variability and local 
deep-water conditions, in comparison with global benthic stack LR04 (black). Marine isotope stages (MIS) are 
indicated, Underlying grey bars indicate glacial-interglacial Terminations (T) (c) Sedimentation rate in cm kyr-1 
(d) Fe/K of CD 154 10-06 P (black, 5 point running mean) with 23-kyr Gaussian filter on top (red) (e) Power 
spectra calculated with the REDFIT-sofware for Fe/K record of core CD154 10-06 P (black) and (f) Chinese 
speleothems δ18O record (green), red noise boundaries were estimated as upper 99% chi-squared limits of a 
fitted AR1 process. Bandwidth is 0.0186. Precession band (23-kyr) is highlighted.
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and max sedimentation rates, accordingly) and an average sample integration of ~1.3 kyr for every 4 cm sample 
and of ~2.3 kyr for every 8 cm sample is inferred.

Beyond the limits of the radiocarbon method, the visual correlation of the benthic δ18O record to the global 
benthic stack LR0435, was used to establish the initial age model (Fig. 2) (Table 2). To further fine-tune the age 
model, we visually matched common transitions within the Fe/K ratio of core CD154 10–06 P and the δ18O splice 
from Chinese speleothems36–38, as presented in Barker, et al.39 on the precession band (Fig. 2d–f) (Table 2). Ages 
between each age control point were estimated by linear interpolation. However, it was not possible to establish a 
continuous age model on the turbidite adapted depth scale (Fig. 2) of the core as the event caused sediment ero-
sion in that interval, which is evident through the absence of half a precession cycle in the Fe/K record during MIS 
5 c/d (Fig. 2) (Simon, et al.30). To adapt for the time gap (~7 kyr), two additional tuning points were used (Fig. 2).

Planktonic foraminiferal δ18O. Paired stable oxygen isotope (δ18O) and Mg/Ca measurements were per-
formed on planktonic foraminiferal species G. ruber. Around 60–70 individuals were picked from the 250–315 
μm size fraction in core CD154-10-06P for combined analysis. About ¼ of the material was used for stable isotope 
analysis and ¾ for Mg/Ca measurements after the crushing of shells.

Stable isotopes were measured at Cardiff University, School of Earth and Environmental Sciences using a 
ThermoFinnigan MAT 253 mass spectrometer linked online to a Carbo Kiel-II carbonate preparation device 
(long-term external precision is 0.06‰ for δ18O and 0.02‰ for δ13C). The stable isotope measurements were 

Depth (cm) 
CD154 
10-06 P Species

14C age 
BP (yr)

Error +/− 1σ 
(radiocarbon 
yrs BP)

2σ credible age 
interval Lower 
limit (ka BP)

2σ credible age 
interval Mid-
point (ka BP)

2σ credible age 
interval Upper 
limit (ka BP)

Laboratory 
Code

0–1 cm G.ruber 2359 35 1.895 1.979 2.078 SUERC-45072

14–15 cm G.ruber 4774 35 4.910 5.027 5.195 SUERC-45075

26–27 cm G.ruber 7681 40 8.037 8.141 8.247 SUERC-45076

40–41 cm G.ruber 10409 49 11.296 11.494 11.740 SUERC-45077

51–52 cm G.ruber 12403 63 13.748 13.881 14.020 SUERC-45078

64–65 cm G.ruber 15082 89 17.649 17.865 18.049 SUERC-45079

78–79 cm G.ruber 17863 132 20.735 21.087 21.453 SUERC-45080

83–84 cm G.ruber 18786 148 21.907 22.241 22.484 SUERC-45081

92–93 cm G.ruber 20682 191 23.965 24.380 24.960 SUERC-45082

99–100 cm G.ruber 23498 273 26.758 27.375 27.716 SUERC-45085

Table 1. 14C dates for sediment core CD154-10-06P.

Fig. 3 The Bayesian age model obtained by Bchron (black) for the top 100 cm of CD154 10-06 P incorporating 
a reservoir uncertainty of 405 years (ΔR = 0). Each date is represented by the probability distribution of the 
intersection between the radiocarbon ages at those depths and the Marine13 calibration curve. The grey shaded 
area indicates the credible interval (CI) of the 95% probability based on the calibrated dates using the Bayesian 
statistical package Bchron34.
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expressed relative to the Vienna Pee Dee Belemnite scale (VPDB) through calibration with the NBS-19 carbonate 
standard.

Planktonic foraminifera stable isotopes were analysed every 1 cm in the upper part of the record 
(Holocene-LGM) and the data set is published in Simon, et al.29. Further down core samples from 76.5 cm to 
152.5 cm yield a 4-cm resolution. From 152.5 cm until the end of the core (918.5 cm) every 8th cm was analysed.

Mg/Ca Measurements in core CD154-10-06P. Mg/Ca ratios were run every 1 cm in the upper part of 
the record (Holocene-LGM) and the data set is published in Simon, et al.29. Further down core from 76.5 cm to 
152.5 cm core depth, every 4th cm was analysed. From there on until the end of the core (918.5 cm) every 8th cm 
was measured.

Magnesium-to-calcium ratio (Mg/Ca) measurements in the planktonic foraminifera G. ruber have been used 
to reconstruct changes in the surface water temperature of the Agulhas Current (Fig. 4). G. ruber is a warm water 
species, highly abundant in the tropical-subtropical waters of the Indian Ocean, and makes up to 40–60% of the 
planktonic foraminiferal assemblage of the Agulhas Current today23. A study of calcification depths of planktonic 
foraminifera in the tropical Indian Ocean showed that G. ruber calcifies within the mixed layer, between 20 and 
50 m40.

Samples for Mg/Ca analysis were prepared and cleaned following the protocol outlined by Barker, et al.41. The 
samples were analyzed using a Thermo Element XR High inductively coupled plasma-mass spectrometry with 
a long-term precision of element ratios, determined by replicate analyses of standard solutions containing Mg/
Ca = 1.15 mmol mol−1 and Mg/Ca = 6.9 mmol mol−1 of ±1.25% relative standard deviation (RSD) and ±0.52% 
RSD, respectively. The Mg/Ca ratios of G. ruber were converted to calcification temperature using a new Mg/
Ca-SST-SSS calibration equation (Mg/Ca = exp (0.084*T + 0.051*S - 2.54)) based on a compilation of cultured 
data42.

Seawater Oxygen Isotope Reconstruction (δ18Osw). We used the computational toolkit Paleo-Seawater 
Uncertainty Solver (PSU Solver) to derive δ18Osw estimates43. The Mg/Ca-derived G. ruber calcification temper-
atures were used to determine the oxygen isotopic composition of seawater (δ18Osw) by extracting the tempera-
ture component from the δ18O of the calcite using the paleotemperature equation of Bemis, et al.44 (T = 14.9-4.8 
(δ18O-δ18Osw)), with a VPDB to Standard Mean Ocean Water δ18O correction of 0.27‰45. The δ18Osw was cor-
rected for changes in global ice volume to produce ice-volume-corrected local δ18Osw-ivc estimates using Spratt 
and Lisiecki46 for global ice volume estimates.

Organic Proxies
Sample preparation. Forty sediment samples were freeze-dried and homogenized with a mortar and pes-
tle. The homogenized material was then extracted using an accelerated solvent extractor with dichloromethane 
(DCM):methanol 9:1 (v/v) and a pressure of 1000 psi in 3 extraction cycles. The total lipid extract was separated 
over an Al2O3 column into an apolar, ketone and polar fraction using hexane:DCM 9:1, hexane:DCM 1:1 and 
DCM:methanol 1:1 (v/v), respectively. The ketone fractions were analysed for the alkenone unsaturation index 
(UK’

37) using a gas chromatograph (GC). The polar fractions were redissolved in hexane/isopropanol (99:1) to a 
concentration of 2 mg/ml and filtered over a 0.45 PTFE filter and analyzed for the Glycerol dialkyl glycerol tetrae-
ther (GDGT) lipid-based TEX86 using high-performance liquid chromatography mass spectrometry (HPLC/MS).

UK’
37 analysis. Ketone fractions were analysed by GC using an Agilent 6890 gas chromatograph with a FID 

and an Agilent CP Sil-5 fused silica capillary column (50 m × 0.32 mm, film thickness = 0.12 μm) with helium 
as the carrier gas. The GC-oven was programmed to subsequently increase the temperature from 70 to 130 °C 
with 20 °C min−1 steps, and then with 4 °C min−1 steps to 320 °C, at which it was held isothermal for 10 min. The 
analytical error associated with this method is ±0.2 °C (standard error), UK’

37 values were calculated according to 
Prahl and Wakeham47. Subsequently, SST was calculated using the core top calibration (SST = UK’

37 - 0.044/0.033) 
established by Müller, et al.48. The error associated with this calibration is ±1.5 °C on the SST estimates.

Radiocarbon dates
Tuning of benthic δ18O of 
CD154-10-06P to LR0435

Additional tuning of Fe/K of 
CD154-10-06P to Chinese 
speleothem δ18O splice

Depth (cm) Age (kyr) Depth (cm) Age (kyr) Depth (cm) Age (kyr)

0.5 1.98 281 63 459 113

14.5 5.03 439* 99 567 153

27.5 8.14 440* 106 602 166

40.5 11.49 463 121 631 178

51.5 13.88 513 130 702 199.5

64.5 17.86 518 141 755 223.5

78.5 21.09 658 190 911 268

83.5 22.41 736 214

92.5 24.38 795 234

99.5 27.38

Table 2. Age control points for the age model of sediment record CD154-10-06P (*turbidite adaptation).
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GDGt analysis. Analyses for GDGTs were performed as described by Schouten et al.49. In summary, an 
Agilent 1100 series HPLC/MS equipped with an auto-injector and Agilent Chemstation chromatography man-
ager software was used. The separation was achieved on an Alltech Prevail Cyano column (2.1 mm × 150 mm, 3 
μm), maintained at 30 °C. GDGTs were eluted with 99% hexane and 1% propanol for 5 min, followed by a linear 
gradient to 1.8% propanol in 45 min. Flow rate was 0.2 mL min−1 by back-flushing hexane/propanol (90:10, v/v) 
at 0.2 mL min−1 for 10 min. Detection was achieved using atmospheric pressure positive ion chemical ioniza-
tion mass spectrometry (APCI-MS) of the eluent. Conditions for the Agilent 1100 APCI-MS 5 were as follows: 
nebulizer pressure of 60 psi, vaporizer temperature of 400 °C, drying gas (N2) flow of 6 L min−1 and temperature 
200 °C, capillary voltage of −3 kV and a corona of 5 μA (~3.2 kV). GDGTs were detected by Single Ion Monitoring 
(SIM) of their [M + H]+ ions (dwell time = 234 ms)49, and quantified by integration of the peak areas. TEX86 was 
calculated as described by Schouten, et al.50. The TEXH

86 SST calibration model by Kim et al.51 (SSTH = 68.4*LOG 
(TEXH

86) + 38.6) was used to transfer TEX86 values to absolute SST. This calibration model is recommended for 
temperature reconstruction above 15 °C51 and therefore appears to be the most suitable model for reconstructing 
subtropical temperatures, as found in the Agulhas Current area. The analytical error associated with this method 
is ±0.3 °C (standard error)52. The error associated with the calibration is ±2.5 °C on the SST estimates51.

Data Records
The here presented data set of marine sediment core CD154 10-06 P was archived using the Linked Paleo Data 
(LiPD) format53. The LiPD framework enables quick querying and extraction, and software in R and Python can 
help to analyse and visualize paleoclimate data in LiPD format.

Our collection includes data represented in previous publications, but are updated herein, and new data 
(Table 3). The following table provides an overview:

The presented file in the LiPD data format: Agulhas Current_CD154_10-06P.Simon.2020.lpd or in the excel 
template (Agulhas Current_CD154_10-06P.Simon.2020.xlsx) that can be converted into a LiPD file using the 

Fig. 4 The palaeocenanographic records of core CD154 10-06 P in the main flow path of the Agulhas Current 
system. (a) Comparison of the planktic δ18O record (black) of core CD154 10-06 P (black) and upstream site 
CD154 17-17 K (orange) with the Antarctic European Project for Ice Coring in Antarctica (EPICA) ice-core 
δD79 Antarctica (EPICA) temperature variability as inferred from δD ice record δ18O record (b) Mg/Ca-based  
SSTs record of CD154 10-06 P (black) in comparison with upstream site CD154 17-17 K (orange) using 
PSU Solver output of Mg/Ca-SST-SSS calibration equation based on a compilation of cultured data42 with 
corresponding 2σ confidence intervals (c) PSU Solver δ18Osw-ivc record indicating inferred relative salinity 
changes (black) in comparison with upstream site CD154 17-17 K (orange) with corresponding 2σ confidence 
intervals. Thick black and orange lines are the mean values of the PSU Solver output. Black dashed lines indicate 
Marine Isotope Stage boundaries.
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Python LiPD utilities contains a metadata tab that presents the essential marine sediment core information and 
those of the investigators. Further, the file encloses a tab named paleomeasurement table, which presents all proxy 
analysis of the data set conducted such as δ18O, Mg/Ca ratios, derived δ18Osw-ivc, calibrated temperatures following 
a classic approach using a species-specific calibration of Anand, et al.54, a pH corrected one following Gray and 
Evans55 and the Mg/Ca-temperature-salinity equation after Tierney, et al.42. Moreover, we present previously 
unpublished biomarker derived data (Tex86 and UK’37) over the last deglaciation of the same sediment samples.

Radiocarbon dates from the upper part of the core along with calibrated dates, as well as their Bayesian age 
credible intervals (95%) and downcore age model tie points are provided in the tab: chron measurement tab file.

Notably, the fact that the 14C raw data are provided makes the present data set easy to update using a future 
14C calibration curve. This is also the case for the provided proxy-raw data that can be used to be calibrated and/
or corrected in different manners if desired by the user compliant with the recommendations of the Paleoclimate 
Community reporTing Standard (PaCTS) 1.056

Moreover, we show a published, but updated, dataset upstream in the Agulhas Current (marine sediment 
core CD154 17-17 K, Figs. 1, 4),23 in comparison. The strong correspondence between these two Agulhas Current 
records testifies that over the last glacial cycle the generated data is reproducible concerning SST and δ18Osw-ivc 
inferred salinity variability, hence, regionally consistent.

All the data sets presented in this study are made available on the SEANOE57 database and PANGAEA58.

Technical Validation
age model. The age model making use of the alignment of the Fe/K ratio of core CD 154 10-06 P to the δ18O 
splice from Chinese speleothems36–38 has been validated by comparing the radiocarbon-dated upper portion of 
the marine core with the U-Th dated speleothem signal (Fig. 2 in Simon, et al.30). This validation was the ini-
tial step that led to the use of speleothem isotopic records to complement the lower part of the record (Fig. 2). 
Transferring the speleo-chronology of core CD 154 10-06 P to the record of benthic δ18O enables an evaluation of 
the discrepancies between a 230Th-derived chronology and the LR04 isotopic stack which is widely used as tun-
ing target for marine records. The comparison shows that, despite the different tuning approach, a high level of 
synchronicity between the benthic δ18O record of core CD154 10-06 P and the LR04 record is achieved (Pearson 
T = 0.919; CL 95% (0.86; 0.95)). The average absolute age difference between the initial and the resulting fine-
tuned age model is only ~400 years (1σ = 1.47 kyr) verifying our age model approach.

Quality control and error estimates for Mg/Ca measurements and δ18Osw for core CD154 
10-06 P. To validate the analytical robustness of the data set, a screening step consisting to compare Mg/
Ca ratios with Fe/Mg, Al/Mg, and Mn/Mg ratios has been undertaken to monitor possible contamination by 
clays and metal-oxide coatings along the down core results41,59,60. Moreover, protocol blanks were routinely run 
between samples as well. Fe/Mg and Al/ Mg can be used to monitor the potential influence of silicate contam-
ination in foraminiferal Mg/Ca whereas Mn/Mg can determine potential contamination through Mn-Fe oxide 
coatings41. Values above 0.1 mol mol−1 for those elemental ratios suggest contamination may be significant. 
Elevated Fe/Mg ratios (>0.1 mol mol−1) are occurring in the core interval 20–27 cm of core CD154 10-06 P but 
do not seem to co-vary with higher Mg/Ca ratios (Fig. 5.). For that reason, no samples in this core interval have 
been rejected. One sample (35.5 cm) with particularly low Mg/Ca ratios was rejected as its value falls out of the 
two-sigma standard deviation range of the entire dataset. In the depth interval 76.5–918.5 cm which is the focus 
of this study, 3 more samples have been identified and were removed. Those samples were at 148.5 cm displaying 
higher than average Fe/Mg and Al/Mg ratios; 256.5 cm displaying slightly elevated Al/Mg (0.2 mol mol−1) and 
694.5 cm that has high Fe/Mg values. Some other intervals display elevated contaminate ratios (>0.1) but do not 
seem to co-vary with higher Mg/Ca ratios (Fig. 5a).

In order to validate our analytical approach, error estimates are based on the average standard deviation of 
0.365 mmol/mol (2σ) accounting for artifacts associated with replication, cleaning procedure, analytical devi-
ations and natural variability of the G. ruber populations, which was derived from duplicate measurements of 
34 Mg/Ca samples of core CD154 17-17 K23. Trace element analyses on material from core CD154 10-06 P were 
performed in the same manner, on the same species G. ruber and analytical facilities as for core CD154 17-17 K. 
To examine how the influence of salinity on Mg/Ca affect the paleoclimatic reconstructions, we chose a Mg/
Ca-temperature-salinity equation42. The surface of the modern-day southern Agulhas Current experiences 

Marine 
sediment core Proxy/Age model Timeframe Publication

CD154-10-06P δ18O, δ18Osw, Mg/Ca 1.9-20.3 kyr BP Simon, et al.29

CD154-10-06P TEX86, UK’
37; Mg/Ca-based SST 

calib. updated 1.9–20.3 kyr BP this study

CD154-10-06P δ18O, δ18Osw, Mg/Ca 20.3–270 kyr BP this study

CD154-10-06P Age model 1.9–20.3; 1.9–270 
kyr BP Simon, et al.29,30

CD154 17-17 K δ18O, δ18Osw, Mg/Ca 1.8–98 kyr BP Simon, et al.23

CD154 17-17 K Age model 1.8–98 kyr BP Ziegler, et al.80

CD154 17-17 K Mg/Ca-based SST calib. 
updated; δ18Osw updated 1.8–98 kyr BP this study

Table 3. Overview of existing datasets and here newly presented proxy records.
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annual temperature variations averaging around 21 °C during winter months and 26 °C during summer months 
with a mean annual temperature (MAT) of 23 °C (NASA Worldview, 2018, https://worldview.earthdata.nasa.gov). 
Comparing our derived core top values from the PSU Solver output for SST (23.7 °C; 2σ: 22.70–24.73 °C) with 
instrumental observations, we find the best match, within error, with MAT with a slight bias towards summer 
months temperatures.

Overall, to better constrain the various sources of uncertainty that arise from calculating temperature and 
δ18Osw-ivc for our data set (Fig. 4) we use the PSU Solver MATLAB® code that performs bootstrap Monte Carlo 
simulations to constrain the respective confidence intervals using an iterative approach with user-defined errors, 
calibrations, and sea-level curves43.

Additionally, we demonstrate in Fig. 6 how the choice of different SST calibration curves, as well as proxy 
choice from the same core material, can influence the final derived SST estimate in a time series spanning 
from the LGM to the Holocene. Mg/Ca ratios of G. ruber converted to calcification temperature using the sed-
iment trap calibration of Anand, et al.54 (previously published29) are shown in comparison with applying a Mg/
Ca-temperature-salinity equation42 to the same data set. The offsets between both calibrations suggest a sig-
nificant influence of salinity on Mg/Ca, which alters the structure, and amplitude of change in the resulting 
reconstruction.

Mg/Ca decreases as pH (and [CO3
2−]) increases, with a sensitivity of ∼5–10% per 0.1 pH unit61,62. To validate 

our data, we used the protocol to correct Mg/Ca for pH down‐core using atmospheric CO2 in a new software 
package “MgCaRB by Gray and Evans55, (Fig. 6). The results suggest an only minor influence of pH on our 
Mg/Ca data set, as the results are almost identical (with a slight cold bias) to the uncorrected results using a 
species-specific temperature calibration (Fig. 6b). Overall, it should be noted that all outputs for the different Mg/
Ca-calibrations agree with each other within error.

However, post-depositional dissolution impacts should also be considered in the future use of the Mg/Ca 
data. Based on the estimates from Regenberg, et al.63 water depths below 2 km in the Agulhas Current System 
are already effected by partial dissolution effects. At the core site CD154 17-17 K, the Δ[CO3

−2] is 0 μmol kg−1 
and hence below a critical threshold for dissolution of 21.3 ± 6.6 μmol kg−1 as suggested by the authors. Taken 
together, we hence recommend that future users apply calibration equations that include a correction for the 
dissolution effect on Mg/Ca in foraminiferal calcite such as presented in Dekens, et al.64 and Regenberg, et al.65 in 
addition to the standard calibrations for SST referred to above.

Additionally, UK’
37 and TEX86 derived temperature estimates from the same sediment samples are displayed 

over the last deglaciation (Fig. 6). It can be noted that absolute SST biomarker-based estimates are higher and the 
pattern over the deglaciation differs from the inorganic based values. The alkenone record yield slightly higher 

Fig. 5 Quality control for Mg/Ca measurements (a) G. ruber Mg/Ca ratios (mmol mol−1) (black circle) (b) Fe/
Mg (mol mol−1) (brown), Al/Mg (mol mol−1) (green) and Mn/Mg (mol mol−1) (blue) ratios; (c) Fe/Mg (mol 
mol−1) (brown) versus Mg/Ca ratios (mmol mol−1) and their coefficient of determination R2(d) Al/Mg (mol 
mol−1) (green) versus Mg/Ca ratios (mmol mol−1) and their coefficient of determination R2 (e) Mn/Mg (mol 
mol−1) (blue) versus Mg/Ca ratios (mmol mol−1) and their coefficient of determination R2; red circled samples 
have been removed from the data set.

https://doi.org/10.1038/s41597-020-00689-7
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temperatures with larger‐amplitude variations than the archaeal lipid record and both are 2–3 °C higher than 
the Mg/Ca-based SSTs. The reason for these discordant results among the different paleothermometers might be 
manifold.

The Uk′
37 ratio can be influenced by the ecology of the taxa that produce alkenones66. Additionally, alkenones 

associated with fine‐grained sediment are susceptible to lateral advection in regions of strong currents67. The 
occasionally above the modern seasonal range occurring Uk′

37 -based temperatures (>28 °C) in this record might 
point towards surface drift of material in the Agulhas Current that might originate in the Mozambique Channel 
where temperature recorded are warmer than at the core site68.

We use the global Müller, et al.48 calibration for Uk′
37. Because our site is located in the subtropics, we advise 

the user to also explore additional estimates produced by e.g. the Bayesian BAYSPLINE approach Tierney and 
Tingley69, which addresses the attenuation of the Uk′

37 response to temperature as the Uk′
37 ratio approaches one, 

that is, in locations with SSTs > 24 °C.
There are multiple calibrations for TEX86, both global and regional. Empirically, TEX86 correlates best to SST 

or temperatures between 0 and 100 m51,70, yet Thaumarchaeota typically reside deeper within the water column. 
Hence, TEX86 may always record subsurface temperatures, and the observed empirical statistical correlation to 
SST is merely a reflection of the fact that temperatures at ~100 m are highly and significantly correlated with SSTs, 
at least spatially71.

Ho and Laepple72 proposed that TEX86 reflects purely subsurface ocean conditions and recalibration to deeper 
depths rather than the surface is required.

Here, we use the global calibrations of Kim, et al.51 and Kim, et al.70 and we advise the user to also explore 
additional estimates produced by e.g. the Bayesian BAYSPAR calibration by Tierney and Tingley73 and Ho and 
Laepple72.

Seawater oxygen isotope reconstruction (δ18Osw). To validate the δ18Osw reconstructions, a full error 
propagation performing bootstrap Monte Carlo simulations was conducted accounting for the uncertainty in 
these reconstructions, which includes age, analytical, calibration, and sampling errors in a framework where the 
effects of salinity on Mg/Ca, and the effect of ice volume on δ18Osw was also incorporated (Fig. 4). The conversion 
from δ18Osw to salinity is generally accompanied by large uncertainties74. Therefore, all data is shown here as ice 
volume corrected δ18Osw (δ18Osw-ivc) values only.

Fig. 6 (a) Planktic δ18O record (black) with the Antarctic European Project for Ice Coring in Antarctica 
(EPICA) ice-core δD79 Antarctica (EPICA) temperature variability as inferred from δD ice record δ18O record 
(b) Tex86-derived SST record CD 154 10-06 P (grey triangles) reflecting ocean temperature changes in the 
Agulhas Current, UK’

37-derived SST record (orange crosses) from CD 154 10-06 P; G. ruber Mg/Ca ratios 
(mmol mol−1) and derived SST record using54, (black circle), derived SST record calculated from Mg/Ca and 
pH derived from atmospheric pCO2 following the species‐specific equation given Gray and Evans55; (blue). The 
error envelopes show the combined 2σ; uncertainty from calibration uncertainty and a salinity uncertainty of 
±1 PSU (2σ), derived SST record using Mg/Ca-temperature-salinity equation from Tierney, et al.42 in black, 
error envelopes show the combined 2σ range.
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PSU Solver requires the user to specify a set of input conditions which include (1) the number of total Monte 
Carlo simulations to be performed, (2) a choice of sea‐level curve (or the option to not correct for ice volume), 
and (3) the desired set of climate‐geochemistry relationships. Below the transfer functions and error inputs used 
for the datasets in this study (CD154 10-06 P/ CD154 17-17 K) are listed:

Number of Monte Carlo Simulations mc = 1000:

 (a) δ18Osw-salinity relationship for the regional southern tropical Indian Ocean (24°S-44°S) of Tiwari, et al.75: 
δ18O–SSS slope of 0.44 ± 0.03; r2 = 0.69; n = 115; significant at p = 0.99

 (b) δ18Oc paleotemperature equation of Bemis, et al.44: T = 14.9-4.8(δ18O-δ18Osw)
 (c) Mg/Ca-temperature-salinity equation of Tierney, et al.42: Mg/Ca = exp (0.084*T + 0.051*S - 2.54)
 (d) sea level estimates: Spratt & Lisiecki et al. (2016): 0–798 kyr curve
 (e) analytical uncertainty: δ18Ocalcite and Mg/Ca analysis of G. ruber, respectively: 0.06 permil, 0.365 mmol/mol
 (f) age uncertainty: distributions for radiocarbon ages based on a Bayesian methodology (see Fig. 3 and Ta-

ble 1 for reference), average age model uncertainty downcore: 1 kyr

Transfer functions and error inputs used in the CD154 17-17 K data set (Fig. 4, orange) were identical, despite 
that the record of Grant, et al.76 was used for sea level estimates and an average age model uncertainty of 2.5 kyr 
was applied downcore.
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