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Summary

For non-negative integers r we examine four families of alternating and non-alternating sign

closed form binomial sums, Fs;ab(r, t, q), in a generalised congruence modulo q. We explore

sums of squares and divisibility properties such as those determined by Weisman (and Fleck).

Extending r to all integers we express the sequences in terms of closed form roots of unity

and subsequently cosines.

By a renumbering of these sequences we build eight new “diagonalised” sequences,

Ls;abc(r, t, q), and construct equivalent closed forms and sums of squares relations.

We modify Fibonacci type polynomials to construct order m recurrence polynomials that

satisfy these diagonalised sequences. These recurrence polynomial sequences are shown to

satisfy second order differential equations and exhibit orthogonal relations. From these latter

relations we establish three term recurrence relations both between and within sequences.

By the application of the reciprocal recurrence polynomial and hypergeometric functions,

generating functions for these renumbered sequences are determined. Then employing these

latter functions, we establish theorems that enable us to express each of the new sequences

in terms of a Minor Corner Layered (MCL) determinant.

When r is a negative integer and q = 2m+b is unspecified, the MCL determinants produce

sequences of polynomials in m. For particular sequences we truncate these polynomials to

contain only the leading coefficient and find that the truncated polynomial is equal to that

of a Dirichlet series of the form zeta, lambda, beta or eta. From this relationship, recurrence

polynomials for these latter functions are established

Finally we develop a congruence for the denominator of the uncancelled modified Bernoulli

numbers of the first kind, Bn/n!, and consequently a similar congruence for the zeta function

at positive even valued integers. Furthermore we determine that these congruences obey the

Fleck congruence.
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Notation

Table 1: A list of standard notation used in the thesis
Symbol Notation See Section:

bxc lower floor function 2.2(
r
q

)
binomial coefficient 2.2

|x| absolute value function 3.2
Z integers 1.1.2

N≥0 0,1,2,3,. . . 1.1.2
N 1,2,3,4. . . 1.1.2
<x real part of x 4.3
=x imaginary part of x 4.3

ordp(x) order of p in x 4.5
(a, b) highest common factor (of a and b) 4.5.1∏∗

d product over d relatively prime to modulus (q) 4.5.1
Q(ζq) cyclotomic field 4.5.1
FQ(x) Q-th Fibonacci polynomial 5.1.1
LQ(x) Q-th Lucas polynomial 5.1.2
TQ(x) Q-th Chebyshev polynomial of the first kind 5.3
UQ(x) Q-th Chebyshev polynomial of the second kind 5.3
CQ(x) Q-th monic Chebyshev polynomial of the first kind 5.3.1
SQ(x) Q-th monic Chebyshev polynomial of the second kind 5.3.1
δm,n Kronecker delta function 7.1

mFn(ai; bj ;x) generalised hypergeometric function 8.3
xm rising factorial 8.3
xm falling factorial 8.3

Γ(x) Gamma function 8.3
ζ(s) Riemann zeta function 9.5.3
η(s) Dirichlet eta function 9.5.3
β(s) Dirichlet beta function 9.5.3
λ(s) Dirichlet lambda function 9.5.3
Bn n-th Bernoulli number: first kind 10.1
bn n-th Bernoulli number: second kind 10.2
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Table 2: Specialized notation used
Symbol Notation See Section:

γ sign oscillator 2.1
λ sign type alternator 2.1
tq the smallest residue of t mod q 2.1

Fs;ab(r, t, q) generalized Fleck sum 2.2
fab(r, t, q) generalized Fleck sum s = 0 case 2.2
Fab(r, t, q) generalized Fleck sum s = 1 case 2.2
Ls;abc(r, t, q) renumbered Fleck sum 3.1
labc(r, t, q) renumbered Fleck sum s = 0 case 3.1
Labc(r, t, q) renumbered Fleck sum s = 1 case 3.1
Ls shift operator 3.1
ζQ, ζ primitive Q-th root of unity 4.1
ω primitive 4q-th root of unity 4.3

ordp(F ) highest exponent of p in F 4.5
A2M+e(x) generalized Fibonacci polynomial 5
Ar2M+e(x) amended (“square rooted”) form of A2M+e(x) 5
As;ab(x,Q) generalised Fibonacci polynomial 5.4
Ars;ab(x,Q) amended (“square rooted”) form of As;ab(x,Q) 5.4

JQ(x) Q-th Jacobsthal polynomial 5.2.1

J
(2)
Q (x) Q-th Jacobsthal polynomial (Horadam) 5.2.1

jQ(x) Q-th Jacobsthal-Lucas polynomial 5.2.2

j
(2)
Q (x) Q-th Jacobsthal-Lucas polynomial (Horadam) 5.2.2

Rs;ab(x,m) linear recurrence polynomial of function Ls;abc 5.5
G generating function of following function 8.2

∆r(~h) MCL determinant (Lettington) 9.1

Ψr(~h, ~H) half-weighted MCL determinant (Lettington) 9.1
∆ρ
r(~an) signed MCL determinant 9.1

Ψρ
r(~an, ~AN,0) signed half-weighted MCL determinant 9.1

P ρ(r, T,N, n) 9.2
L−s;abc(r, t, q) Ls;abc(−r, t, q) 9.4.1

LT−s;abc(r, t, q) leading (truncated) coefficient of Ls;abc(−r, t, q) 9.4.2

B+
n n-th Bernoulli number: first kind with B1 = 1/2 10.1
Bn n-th “modified” Bernoulli number: first kind 10.1
B+n n-th “modified” Bernoulli number: first kind 10.1
b−n n-th Bernoulli number: second kind 10.2



Chapter 1

Introduction

1.1 A brief history of the Fleck Congruence and associated
sums

1.1.1 The Fleck congruence

The Fleck numbers are attributed to A. Fleck in 1913 [17], who showed (by utilising a

primitive p-th root of unity, ε,) that for non-negative integer variables r (the term number of

the sequence), t (the specific sequence or residue class), p ≥ 2 (the prime modulus) and some

integers a and b such that a+ b ≡ 0 (mod p), we have the congruence notation

r∑
k=0

k≡t (mod p)

(
r

k

)
ar−kbk =

1

p

∑
ε

(a+ bε)rεp−t ≡ 0 (mod pα), where α =

⌊
r − 1

p− 1

⌋
.

(1.1.1)

This generalised a special case brought to his attention that for a = −b = 1, (1.1.1) simplifies

to (what we denote as)

F (r, t, p) =
∑

k≡t (mod p)

(−1)k
(
r

k

)
≡ 0 (mod pα), where α =

⌊
r − 1

p− 1

⌋
, (1.1.2)

the so called Fleck congruence.

In 1977 Weisman [44], independently derived (1.1.2) and extended the congruence relation

to

F (r, t, pe) =
∑

k≡t (mod pe)

(−1)k
(
r

k

)
≡ 0 (mod pα), where α =

⌊
r − pe−1

φ(pe)

⌋
, (1.1.3)

where φ is Euler’s totient function.

1
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1.1.2 Fleck type sums

In 1992 Z.H. Sun [38] considered the nonalternating form of (1.1.2) to obtain the sum

T rt(q) =
r∑

k=0
k≡t (mod q)

(
r

k

)
=

2r

q

q−1∑
d=0

cosr
πd

q
cos

πd(r − 2t)

q

=
2r

q

(
1 +

q−1∑
d=1

cosr
πd

q
cos

πd(r − 2t)

q

)
. (1.1.4)

A decade later Z.W. Sun [39] considered both the nonalternating and an alternating sum of

(1.1.2), notating them as[
r
t

]
q

=

r∑
k=0

k≡t (mod q)

(
r

k

)
, and

{
r
t

}
q

=

r∑
k=0

k≡t (mod q)

(−1)
k−t
q

(
r

k

)
(1.1.5)

respectively, and related by the identity[
r
t

]
q

+

{
r
t

}
q

= 2

[
r
t

]
2q

.

The two forms of (1.1.5) can also be expressed by∑
0≤k≤r

k≡t (mod q)

(
r

k

)
ak =

r∑
k=0

(
r

k

)
ak

q

∑
ζq=1

ζk−t =
1

q

∑
ζq=1

ζ−t(1 + aζ)r, (1.1.6)

where a = 1 or a = −1 respectively, and ζ = e2πı/q is a primitive q-th root of unity. However,

we note that the second form needs to be multiplied by (−1)bt/qc to achieve this.

1.1.3 The renumbered Fleck sums.

Also considered in [38] was the amended sum

∆q(t, R) =

{
qTRR/2+t (q) − 2R if 2 - q
qTR[R/2]+t (q) − 2R if 2 | q.

(1.1.7)

The function ∆q eliminates the denominator q and the single term 2R at d = 0; moreover, it

realigns the residue class t.

If we let q = 2m+ b and R = 2r + c, where b ∈ {0, 1} and c ∈ {0, 1} represent the parity

of q and R respectively, then (1.1.7) can be alternatively expressed as

∆q(t, R) = qT 2r+c
r+bc(m+1)+t (q) − 22r+c

=
∑

0≤k≤2r+c
k≡r+bc(m+1)+t (mod q)

q

(
2r + c

k

)
− 22r+c

= (−1)bc22r+c+1

b(q−1)/2c∑
d=1

cos
π(2bd− b)(2t− (1− b)c)

q

(
cos

π(2bd− b)
q

)2r+c

.

(1.1.8)
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The cosine form given in (1.1.8) summarizes the three separate forms provided by Z.H. Sun.

In developing the roots of unity identity (1.1.6), Z.W. Sun [39] employed (in our own

notation) the expression 2 + ζ + ζ−1, that acts as a shift (or renumbering) of the Fleck sums,

such that the two forms of (1.1.5) become transformed to[
2r
t+ r

]
q

=
1

q

∑
ζq=1

ζt(2 + ζ + ζ−1)r, and

{
2r
t+ r

}
q

=
1

q

∑
ζq=−1

ζt(2 + ζ + ζ−1)r (1.1.9)

respectively. Also of relevance is an oscillation of the sign of the sum. This does not affect the

absolute value of the sum, but if we consider the sequence of terms generated by either form

of (1.1.9), we find that on varying r, (but fixing q and t), consecutive terms will oscillate in

sign. The author details this as

∑
ζq=ε

ζt(2− ζ − ζ−1)r =
∑

ζq=(−1)qε

(−ζ)t(2 + ζ + ζ−1)r = (−1)t+rq ×



[
2r

t+ r

]
q

if ε = (−1)q{
2r

t+ r

}
q

otherwise.

A different way of perceiving the oscillation is by consideration of both forms of (1.1.5). If

we vary t (and fix r and q), one notes that all the terms of the residue class t are multiplied

by (−1)t.

1.1.4 Recurrence relations satisfying the renumbered Fleck sums

Z.H. Sun [38] studying the even modulus q = 2m, established a recurrence polynomial, termed

Qm−1(x), that recursively produce the values, ∆q(k, 2r + c). This was expressed in the form

m∑
k=0

(−1)m−k
(
m+ 1 + k

m− k

)
∆2m+2(t, 2r + c+ 2k) = 0, r ∈ N≥0, c ∈ {0, 1}, (1.1.10)

and illustrates the fact that there exist two separate recurrence sequences, determined by the

parity of the term R = 2r + c. The roots of (1.1.10) were identified as

x = 2 + 2 cos (2πd/q), 1 ≤ d ≤ m− 1,

making it apparent that the signed (binomial) coefficients of Qn correspond to those of the

monic Chebyshev polynomial of the second kind, S2n+1(x).

Also considered was the polynomial Gm(x) defined as

Gm(x) =

m∏
d=1

(
x+ 2 cos

(2d− 1)π

2m+ 1

)
,

that satisfies the linear m+ 1 term recurrence relation

m∑
k=0

(−1)[
m−k

2
]

(
[m+k

2 ]

k

)
∆2m+1(k, r + k) = 0, (r = 0, 1, 2, . . .).
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We observe that the function ∆2m+1 is being considered as a single sequence (without con-

sideration to the parity of r).

Z.W. Sun [39] employed the function, notated by DR, and defined such that D0 = 2, and

thereafter

DR(x) =

bR/2c∑
i=0

(−1)i
R

R− i

(
R− i
i

)
xbR/2c−i, R ∈ N.

For R ≥ 0, the polynomial DR(x) is related to the Chebyshev polynomial of the first kind,

TR(x), by the identity

2TR(x) = (2x)εDR(4x2), where ε =

{
0 if 2 | R
1 if 2 - R,

and it forms a recurrence polynomial for the sums (1.1.9).

1.1.5 Connections between the Fleck sums and the Riemann zeta function

The types of binomial sum sequences detailed above, considered by Fleck, Weisman, Z.H. Sun

and Z.W. Sun, are contained in more generality by the family of eight binomial sum sequences

obtained from (1.1.1) by putting a = 1, b = ±1; r is either odd or even and the sum is taken

over the congruence modulo n, where n is either odd or even.

The fundamental categorisations of these eight sequences are not immediately obvious

and only become apparent when each sequence is renumbered using a diagonal approach

similar to that of Z.H. Sun and Z.W. Sun. For example, the renumbered Fleck sequences, as

considered by Lettington in [30] split into two binomial sum sequence categories:

F1(r, t, 2m+ 1) = (2m+ 1)
∑

k≡r+t (mod 2m+1)

(−1)k
(

2r + 1

k

)
, (1.1.11)

and

F2(r, t, 2m+ 1) = (2m+ 1)
∑

k≡r+t+1 (mod 2m+1)

(−1)k
(

2r + 2

k

)
. (1.1.12)

These two integer sequences each satisfy an (m + 1)-th term recurrence relation and by

construction satisfy Fleck’s congruence when p = 2m+ 1 is a prime number.

Lettington went on to show that if the two sequences are run in reverse by using the same

initial values but the reciprocal recurrence relation, then one has in effect two bi-infinite

sequences where the negative term sequence values are rational numbers whose denomina-

tor prior to cancellation are powers of (2m + 1). These negative index sequence terms can

be generated by determinants yielding polynomial expressions (see Chapter 6 of [30]) and

Lettington demonstrated that the leading terms of the polynomial expressions yield the re-

currence relation for the special values of the Riemann zeta function (i.e. at positive even

integer arguments)

ζ(2j) = (−1)j+1

(
jπ2j

(2j + 1)!
+

j−1∑
k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k)

)
, where ζ(s) =

∞∑
n=1

1

ns
for<s > 1.
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Variations of ζ(s) are given by

λ(s) =

∞∑
n=0

1

(2n+ 1)s
, β(s) =

∞∑
n=0

(−1)n

(2n+ 1)s
, η(s) =

∞∑
n=1

(−1)n−1

ns
, and φ(s) =

∞∑
n=1

1

(2n)s
,

and these are respectively known as Dirichlet’s lambda, beta, eta and phi function. In Let-

tington (2013) [31], recurrence relations for these functions were also given without reference

to binomial sum sequences, where links to Toeplitz determinants were established. Such re-

currence relations for the special values of these Riemann zeta type functions have recently

been of considerable interest as illustrated in publications by Merca (2017) [33], Coffey (2018)

[13], and Hu and Kim (2019) [25].

1.2 Overview of main results

Our main results are centred around a comprehensive classification of four families of bino-

mial sum sequences and eight families of renumbered binomial sum sequences. The former

sequences are considered in terms of various closed form expressions and divisibility proper-

ties; whereas the latter are expressed, in addition to equivalent closed form expressions, in

terms of recurrence relations, generating functions, Toeplitz determinants, and recurrences

for the Riemann zeta function at positive even integer arguments.

In Definition 2.2.1 we generalise the sum F (r, t, p) given in (1.1.2) to that of

Fs;ab(r, t, q) = (−1)st
r∑

k=0
k≡t (mod q)

(−1)
a(k−t)
q

(
r

k

)
. (1.2.1)

Here we introduce three parameters s, a, b ∈ {0, 1}, that respectively represent the sign

“oscillator”, the alternation and the base of the modulus. (We note that these parameters are

not related to the integers a and b employed in (1.1.1)). The parameters a and b produce four

different sequence families and the parameter s determines whether, for each family, the odd

residue classes t are multiplied by −1 (or not). We also replace the prime p with a general

positive integer q = 2m + b ≥ 1, and we find it fruitful to consider each sequence term as a

sum with modulus 2q. Then from Theorem 2.2.5 we write (1.2.1) as

Fs;ab(r, t, q) =
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)
. (1.2.2)

In Section 2.3 we examine three term recurrence relations satisfied by Fs;ab. Commencing

with Lemma 2.3.1 that states

Fs;ab(r + 1, t, q) = Fs;ab(r, t, q) + γFs;ab(r, t− 1, q),

where γ = (−1)s, we establish in Lemma 2.3.2 a sum of products rule

Fs;ab(r + k, t, q) =

q−1∑
j=0

Fs;ab(k, j, q)Fs;ab(r, t− j, q),
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that then yields in Lemma 2.3.3 the sums of squares relation

Fs;ab(2r, r, q) = γr
q−1∑
j=0

Fs;ab(r, j, q)2. (1.2.3)

Using the notation Ls;abc, where the additional parameter c ∈ {0, 1} represents the corre-

sponding row parity, we extend the forms (1.1.11) and (1.1.12) considered by Coffey et al. [9].

By a renumbering of (1.2.1) we obtain

Ls;abc(r, t, q) = Fs;ab(2r + 2− c, t+ r + 1− c, q)

=
∑

k≡T (mod 2q)

(−1)sk
(

2r + 2− c
k

)
+ (−1)a+sb

∑
k≡T+q (mod 2q)

(−1)sk
(

2r + 2− c
k

)
, (1.2.4)

where r ≥ 0, q = 2m + b ≥ 1, c ≤ t ≤ m and T = t + r + 1 − c. The parameters a, b and

c represent each of the eight family sequences and, following the renumbering of the terms

Fs;ab(r, t, q) in (1.2.4), the parameter s, now determines whether for each residue class t,

the sequence of numbers generated oscillate in sign (or not). In Theorem 3.2.1 we apply the

relation (1.2.4) to equation (1.2.3) to obtain the sums of squares identity

Ls;ab1(2r, 1, q) =
γ

2

q−1∑
j=0

Ls;ab1(r, j, q)2.

In Chapter 4, using the binomial sum forms (1.2.1) and (1.2.4), we develop, in terms of

primitive 2q-th roots of unity, alternative closed form expressions that are given respectively

in Theorem 4.1.3 stating

Fs;ab(r, t, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−t (
1 + γζ2d−ε

)r
, (1.2.5)

and Theorem 4.2.2 that states

Ls;abc(r, t, q) = Fs;ab(2r + 2− c, t+ r + 1− c, q)

=
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−(t+r+1−c) (
1 + γζ2d−ε

)2r+2−c
, (1.2.6)

where ε ≡ a + sb (mod 2). Furthermore, by appropriate consideration of either the real or

imaginary parts, we transform (1.2.5) and (1.2.6) into expressions involving cosines (or shifted

cosines). These are given respectively by Theorem 4.3.3 that states

Fs;ab(r, t, q) =
γbr/2c2r

q

q+ε−1∑
d=ε

cos

(
π(r − 2t)(2d− ε− scq)

2q

)(
cos

π (2d− ε− sq)
2q

)r
,

and Theorem 4.4.2 stating

Ls;abc(r, t, q) =
γr+1−c22r+3−c

q
×(a− 1)st

2
+

b(q+a−1)/2c∑
d=1

cos

(
π(c− 2t)(2d− ε− scq)

2q

)(
cos

(
π (2d− ε− sq)

2q

))2r+2−c
 .
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Using the closed forms developed in Theorems 2.2.5 and 4.1.3 we also establish

Theorem 4.5.10 which states that the only expected divisibility properties of the sums Fs;ab(r, t, q)
are:

1.

ordp(Fs;11(r, t, pe)) ≥
⌊

r − pe−1

pe−1(p− 1)

⌋
,

and when r = j2e + l, where j ≥ 1 and 0 ≤ l < 2e,

2.

ord2(Fs;00(r, t, 2e)) ≥
⌊
r − 2e−1

2e−1

⌋
=

{
2j − 1 if l = 0

2j if 1 ≤ l ≤ 2e − 1,

and

3.

ord2(Fs;10(r, t, 2e)) ≥ j.

As indicated in Section 2.3 the Fibonacci type polynomials, (that also include the monic

Chebyshev polynomials), are intimately connected to the recurrence polynomials of the func-

tions Ls;abc. Denoting these recurrence polynomials as Rs;ab(x, q), in the Corollary to

Theorem 5.6.1 we demonstrate that

Rs;ab(x,m) =



(
√
x)b−1(x− 4)Sq−1(

√
x) if s = 0, a = 0

(
√
x)−bCq(

√
x) if s = 0, a = 1

(
√
x)b−1(x+ 4)Fq(

√
x) if s = 1, a = 0

(
√
x)−bLq(

√
x) if s = 1, a = 1.

Exploiting known properties of the Fibonacci type polynomials we develop theorems involving

second order differential equations and orthogonality relations. More specifically, from

Theorem 6.2.2 we have that the polynomials Rs;1b(u,m) satisfy the second order differential

equation

4(u− 4γ)uR′′s;1b(u,m) + 4 ((b+ 1)u− 2γ(2b+ 1))R′s1b(u,m)− (q2 − b)Rs;1b(u,m) = 0,

and Theorem 6.3.5, that the polynomials Rs;0b(u,m) satisfy the second order differential

equation

4u(u− 4γ)2R′′s;0b(u,m) + 4(u− 4γ) ((1− b)u− 2γ(3− 2b))R′s0b(u,m)

−
(
(q2 − b)u− 4γ(q2 + 2− b)

)
Rs;0b(u,m) = 0.

Next Theorem 7.1.7 states that the polynomials Rs;ab(u,m) form an orthogonal polynomial

sequence, with respect to the weight factor,

ws;ab(u) =
(
√
γu)λ(1−2b)

(u− 4γ)2+λ
, where λ = (−1)a,
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that satisfies the integral equation

∫ 4γ

0
Rs;ab(u,m)Rs;ab(u, k)ws;ab(u)du =


0 if m 6= k

−4πaı1−s if m = k and q = 0

2πλı1+λs if m = k and q ≥ 1.

Furthermore, we are able to utilise these orthogonality relations to develop in Theorem 7.2.4

a three term intra sequence recurrence that takes the form

Rs;ab(u,m+ 2) = (u− 2γ)Rs;ab(u,m+ 1)−Rs;ab(u,m),

and in Theorem 7.2.5 a three term inter sequence recurrence of the form

Rs;ab(u,m+ 1) = ub−aRs;ab′(u,m+ b)− γRs;ab(u,m).

In Definitions 5.2.2 and 5.2.6 we introduce the Jacobsthal polynomial, JN (x), and the

Jacobsthal-Lucas polynomial, jn(x) respectively. Employing these polynomials in conjunction

with the use of hypergeometric functions, we present in Theorems 8.3.7 and 8.5.6 that, for

r ≥ 0, the generating functions for the renumbered sequences are given respectively as

GLs;1bc(x, t, q) =


2γJ2(m−1)+1+b(−γx)

j2m+b(−γx) if c = t = 0
xt−1J2(m−1−t)+2(−γx)

j2m(−γx) if b = c = 0 and t ≥ 1
γcxt−1J2(m−t)+b+c(−γx)

j2m+b(−γx) otherwise,

and

GLs;0bc(x, t, q) =


2γj2M+1−b(−γx)

(1−4γx)J2M+2−b(−γx) if c = t = 0
γcxt−1j2(m+bc−t)+b+c−2bc(−γx)

(1−4γx)J2M+2−b(−γx) otherwise,

where c ≤ t ≤M and M = m− 1 + b. Subsequently in Theorems 9.4.3 and 9.4.4, we develop

equivalent generating functions for the sequences L−s;abc(r, t, q), where

L−s;abc(r, t, q) = Ls;abc(−r, t, q) and r ≥ 0.

Utilising the generating function, we develop Theorems 9.3.1 and 9.3.2, which express the

terms Ls;abc(r, t, q) as Toeplitz determinants. When we consider the sequences L−s;abc(r, t, q)
and q = 2m+ b is unspecified, these determinants produce sequences of polynomials in m. In

Theorem 9.4.8 and Theorem 9.4.9, for the particular sequences t = 1 and t = m, we trun-

cate these polynomials, such that only the leading term remains. We denote these trun-

cated sequences of polynomials by LT−s;abc(r, t, q). We then demonstrate that the sequences of

LT−s;abc(r, t, q) are equal to (a fixed multiple of) a Dirichlet series of the form η(2r), ζ(2r), λ(2r)

or β(2r + 1).

From this relationship, with η(0) = 1/2, ζ(0) = −1/2, we are able in Theorem 9.5.15 to

demonstrate the linear recurrence relations

η(2r) = −
r−1∑
k=0

(−1)r−kπ2(r−k)

(2r − 2k + 1)!
η(2k),



9

ζ(2r) = −
r∑

k=0

(−1)r−kπ2(r−k)

(2r − 2k)!
η(2k) = −2

r−1∑
k=0

(−1)r−kπ2(r−k)(r − k)

(2r − 2k + 1)!
η(2k),

and

ζ(2r) =
(−1)r+1π2r

2(2r)!
−

r−1∑
k=0

(−1)r−kπ2(r−k)

(2r − 2k + 1)!
ζ(2k).

Similarly with β(1) = π/4, λ(0) = 0, in Theorem 9.5.16 we demonstrate the linear recurrence

relations

β(2r + 1) = −
r−1∑
k=0

(−1)r−kπ2(r−k)

4r−k(2r − 2k)!
β(2k + 1),

λ(2r) =
π

2

r∑
k=0

(−1)r−kπ2(r−k)

4r−k(2r − 2k + 1)!
β(2k + 1) = − 1

π

r−1∑
k=0

(−1)r−k(r − k)π2(r−k)

4r−k−1(2r − 2k)!
β(2k + 1),

and

λ(2r) =
(−1)r−1π2r

2.4r(2r − 1)!
−

r−1∑
k=1

(−1)r−kπ2(r−k)

4r−k(2r − 2k)!
λ(2k).

In the final chapter we apply our established methods to derive uncancelled denominator

theorems for the Bernoulli numbers of the “modified” first (Bn = Bn/n!) and second (bn)

kinds as detailed in Theorems 10.3.9 and 10.3.3 respectively. These both state (with one minor

modification) that the exponent of each prime p occurring in the product of the denominator

of the n-th Bernoulli number is that of the Fleck quotient, given as:∏
p≤n+1

p
b n
p−1
c
. (1.2.7)

The minor modification concerns the exponent of the prime p = 2 occurring in the uncancelled

denominator of the modified Bernoulli numbers of the first kind so that (1.2.7) becomes

21−D
∏

p≤n+1

p
b n
p−1
c
, (1.2.8)

where D is the sum of the digits of n = 2r, (when n ≥ 2), expressed in the scale of 2.

Furthermore, due to the established result [26]

ζ(2r) =
(2π)2r

2(2r)!
|B2r| (1.2.9)

an immediate corollary of (1.2.8) concerns the uncancelled denominator of (1.2.9) that we

express as

22−D
∏

3≤p≤2r+1

p
b 2r
p−1
c
.

This gives some understanding of the connection that exists between the Fleck quotient and

the Riemann zeta function at integer arguments.
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1.3 Organisation of the thesis

In Chapter 2 we consider the function Fs;ab that expresses eight variations of the closed form

binomial sums under investigation. We also develop sum of squares relations satisfied by these

functions.

This then enables us in Chapter 3 to create the “renumbering” function Ls;abc (with

sixteen different forms) in terms of closed form binomial sums. Sums of squares relations that

satisfy these functions are similarly established.

In Chapter 4 we express the sums Fs;ab(r, t, q) and Ls;abc(r, t, q) in terms of closed form

primitive 2q-th roots of unity and cosine forms. Expected divisibility properties for the sums

Fs;ab(r, t, q) are also established.

Chapter 5 opens with a discussion of the Fibonacci type (that is Fibonacci, Lucas and

monic Chebyshev of the first and second kind) polynomials. From these polynomials we de-

velop recurrence relation polynomials, notated Rs;ab(x, q), for the respective functions Ls;abc.
These polynomials are expressed both in sum and product form.

Chapters 6 and 7 explore properties of the recurrence polynomials, Rs;ab(x, q). The former

determines second order differential equations satisified by the sequences of these polynomials;

whilst the latter examines orthogonal relations of the sequences. From the orthogonality

properties we establish two types of three term recurrence relations.

In Chapters 8 and 9 we return to examining methods of producing the terms Ls;abc(r, t, q).
The former chapter determines the generating function for each of these terms, whilst the

latter employs Toeplitz determinants that (as in [30] and [31]) will be referred to as minor cor-

ner layered (MCL) determinants. We determine the sequences L−s;abc(r, t, q) = Ls;abc(−r, t, q)
and subsequently those of LT−s;abc(r, t, q). Methods are established that connect these latter

sequences to Dirichlet functions and consequently to the development of linear recurrence

relations involving η(2r), ζ(2r), β(2r + 1) and λ(2r).

Finally in Chapter 10 we study the (modified) Bernoulli numbers of the first and sec-

ond kind, and in addition to examining various ways of producing these numbers, we also

investigate their uncancelled denominators.



Chapter 2

Types of sums

We now introduce some notation that will be employed throughout this thesis. This is followed

in Section 2.2 by the definition of a function Fs;ab to encompass eight types of sums derived

from (1.1.2). Also in this section, (Subsection 2.2.5), we demonstrate the equivalence of the

functions Fs;ab and Hs;ab. This latter function offers an alternative way of presenting the

binomial sums that will be of great value in subsequent chapters. Finally in Section 2.3

we develop various recursive relations including in Lemma 2.3.3 an elegant sums of squares

relation.

2.1 Notation.

To aid us in our deliberation we are motivated to develop some notation. We consider a

general function Ds;ab or Ds;abc according to the parameters s, a, b, c ∈ {0, 1}.
1. The oscillation of the sign.

γ = (−1)s.

2(i). The alternation (sum type).

λ = (−1)a.

2(ii). The base of the modulus q (modulo 2).

q ≡ b (mod 2).

2(iii). The corresponding row of Pascal’s triangle (row parity).

row parity ≡ c (mod 2) (2.1.1)

Moreover, we denote the specific cases s = 0 and s = 1, by

Ds;ab =

{
dab if s = 0

Dab if s = 1.
(2.1.2)

For non-negative integer t, we employ the following definition.

11
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Definition 2.1.1. Let tq be the standard residue of t (mod q), with 0 ≤ tq ≤ q − 1, and

t ≡ tq (mod q).

tq will be employed throughout this work when it is required to distinguish between the in-

teger t and its residue, tq modulo q.

2.2 The generalised Fleck function.

We wish to generalise the Fleck function according to the parameters s, a, b ∈ {0, 1}.

Definition 2.2.1. We define the generalised Fleck function, Fs;ab, with non-negative integer

variables r (the term number of the sequence), t (the specific sequence or residue class) and

q ≥ 1 (the modulus) as

Fs;ab(r, t, q) = γt
r∑

k=0
k≡t (mod q)

λ
k−t
q

(
r

k

)
= γtλbt/qc

b(r−tq)/qc∑
d=0

λd
(

r

tq + dq

)

where γ = (−1)s and λ = (−1)a.

It will be shown in Section 2.2.4 that fixing q provides us with 2q sequences (residue

classes); then if we fix the residue class t, we find that for each r ≥ 0, the sum Fs;ab(r, t, q)
provides us with a term of that particular sequence. For fixed variables r, t and q we can

affect this sum by changing either the parameter s or a. We also find that b, the parity of q,

has an impact on the nature of the sum.

2.2.1 The sign parameter, s.

In (2.2.2) the influence of the parameter s is exercised by the term γ and determines whether

the sums (terms) comprising a sequence are negated (for odd t) or not. Denoting the specific

cases of the function Fs;ab as

Fs;ab =

{
fab if s = 0

Fab if s = 1,

we then have

fab(r, t, q) =
r∑

k=0
k≡t (mod q)

λ
k−t
q

(
r

k

)
= λbt/qc

b(r−tq)/qc∑
d=0

λd
(

r

tq + dq

)
, (2.2.1)

and

Fab(r, t, q) = (−1)t
r∑

k=0
k≡t (mod q)

λ
k−t
q

(
r

k

)
= (−1)tλbt/qc

b(r−tq)/qc∑
d=0

λd
(

r

tq + dq

)
. (2.2.2)
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2.2.2 The alternating parameter, a

In (2.2.1) this parameter is controlled by the term λ and determines whether consecutive

terms of the sum alternate in sign or not.

Nonalternating sums, Fs;0b(r, t, q).

Definition 2.2.2. We define the nonalternating sum, Fs;0b(r, t, q), with integers r ≥ 0 and

q ≥ 1 as

Fs;0b(r, t, q) = γt
r∑

k=0
k≡t (mod q)

(
r

k

)
= γt

b(r−tq)/qc∑
d=0

(
r

tq + dq

)
. (2.2.3)

Alternating sums, Fs;1b(r, t, q).

Definition 2.2.3. We define the alternating sum, Fs;1b(r, t, q), with integers r ≥ 0 and

q ≥ 1 as

Fs;1b(r, t, q) = γt
r∑

k=0
k≡t (mod q)

(−1)
k−t
q

(
r

k

)
= γt(−1)bt/qc

b(r−tq)/qc∑
d=0

(−1)d
(

r

tq + dq

)
. (2.2.4)

2.2.3 The effect of the parity of the modulus, q

This will become more apparent in Subsection 2.2.5. Presently we will limit ourselves to an

illustration of the effect of the parity of the modulus, q = 2m+ b on the sum Fs;ab(r, t, q) by

consideration of the Fleck sum that we recall from (1.1.2) is

F (r, t, 2m+ b) =
∑

k≡t (mod q)

(−1)k
(
r

k

)
.

It is straight forward to verify that for q even we have

F (r, t, 2m) =
∑

k≡t (mod q)

(−1)k
(
r

k

)
=

∑
k≡t (mod q)

(−1)t
(
r

k

)
= (−1)t

∑
k≡t (mod q)

(
r

k

)
= F1;00(r, t, 2m) = F1;00(r, tq, q), (2.2.5)

and for q odd,

F (r, t, 2m+ 1) =
∑

k≡t (mod 2m+1)

(−1)k
(
r

k

)
=

∑
k≡t (mod q)

(−1)
t+ k−t

q

(
r

k

)

= (−1)t
∑

k≡t (mod q)

(−1)
k−t
q

(
r

k

)
= F1;11(r, t, 2m+ 1). (2.2.6)
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In other words, for sign parameter s = 1, the Fleck function yields a non-alternating sum

with an even modulus and an alternating sum with an odd modulus. To verify (2.2.6) we first

require a lemma.

LEMMA 2.2.1 (alternating sign for odd modulus). For positive integers k and t, with k ≡ t
(mod q), and q some positive odd integer, we have

k ≡ k − t
q

+ t (mod 2). (2.2.7)

Proof. We note firstly that (k − t)/q is an integer.

Then we observe that for q ≡ 1 (mod 2) we have

k ≡

{
k−t
q (mod 2) if t ≡ 0 (mod 2)
k−t
q + 1 (mod 2) if t ≡ 1 (mod 2),

and so conclude that the equivalence of (2.2.7) holds.

2.2.4 The requirement of 2q residue classes

It is not immediately obvious that the generalised Fleck function Fs;ab possesses 2q residue

classses. However, we note that the exponent bt/qc in (2.2.4) is the correction between t and

tq and this alternates between 0 (mod 2) and 1 (mod 2) with period 2q. Therefore, we have

Fs;1b(r, t, q) =

{
Fs;1b(r, tq, q) if bt/qc ≡ 0 (mod 2)

−Fs;1b(r, tq, q) if bt/qc ≡ 1 (mod 2).
(2.2.8)

2.2.5 Use of a modulus function of 2q to determine the sums Fs;ab(r, t, q).

Prompted by a suggestion of M.N. Huxley, the author appreciated that a more elegant way

of presenting the function Fs;ab, so that the effects of each of three parameters and the

requirement of 2q residue classes are clearer, is by the development of a function operating

over a modulus of 2q. For parameters s, a and b defined as previously, and for non-negative

integers r, t and q ≥ 1, let us consider the sum

Hs;ab(r, t, q) =
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)
(2.2.9)

that can also be written as

Hs;ab(r, t, q) =
∑

k≡t (mod 2q)

γk
(
r

k

)
+ λγb

∑
k≡t+q (mod 2q)

γk
(
r

k

)
, (2.2.10)

where γ = (−1)s and λ = (−1)a. Furthermore, we also write

Hs;ab(r, t, q) =

{
hab(r, t, q) if s = 0

Hab(r, t, q) if s = 1.

We claim that Fs;ab(r, t, q) = Hs;ab(r, t, q). Let us employ some lemmas.
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LEMMA 2.2.2 (case a = 0). With s = a = 0 in (2.2.9) we have that

f0b(r, t, q) = h0b(r, t, q) =
∑

k≡t (mod 2q)

(
r

k

)
+

∑
k≡t+q (mod 2q)

(
r

k

)
.

Proof. From (2.2.3) we have

f0b(r, t, q) =
r∑

k=0
k≡t (mod q)

(
r

k

)
=

r∑
k=0

k≡t (mod 2q)

(
r

k

)
+

(
r

k + q

)
=

r∑
k=0

k≡t (mod 2q)

(
r

k

)
+

r∑
k=0

k≡t+q (mod 2q)

(
r

k

)
.

LEMMA 2.2.3 (case a = 1). With s = 0 and a = 1 in (2.2.9), we have that

f1b(r, t, q) = h1b(r, t, q) =
∑

k≡t (mod 2q)

(
r

k

)
−

∑
k≡t+q (mod 2q)

(
r

k

)
.

Proof. From (2.2.8) we have

f1b(r, t, q) =
r∑

k=0
k≡t (mod q)

(−1)
k−t
q

(
r

k

)
=

r∑
k=0

k≡t (mod 2q)

(
r

k

)
−
(

r

k + q

)

=
r∑

k=0
k≡t (mod 2q)

(
r

k

)
−

r∑
k=0

k≡t+q (mod 2q)

(
r

k

)
.

LEMMA 2.2.4 (case s = 1). With s = 1 in (2.2.9) we have that

Fab(r, t, q) = Hab(r, t, q)

=
∑

k≡t (mod 2q)

(−1)k
(
r

k

)
+ (−1)a+b

∑
k≡t+q (mod 2q)

(−1)k
(
r

k

)
.

Proof. Using Lemmata 2.2.2 and 2.2.3 we have

Fab(r, t, q) = (−1)tfab = (−1)thab

= (−1)t

 r∑
k=0

k≡t (mod 2q)

(
r

k

)
+ (−1)a

r∑
k=0

k≡t+q (mod 2q)

(
r

k

)
=

r∑
k=0

k≡t (mod 2q)

(−1)t
(
r

k

)
+ (−1)a

r∑
k=0

k≡t+q (mod 2q)

(−1)t
(
r

k

)

=
r∑

k=0
k≡t (mod 2q)

(−1)k
(
r

k

)
+ (−1)a+b

r∑
k=0

k≡t+q (mod 2q)

(−1)k
(
r

k

)
= Hab(r, t, q).
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We are now in a position to fulfil our claim on the equivalence of these two functions.

THEOREM 2.2.5 (equivalence of Fs;ab and Hs;ab). With Fs;ab and Hs;ab defined as in

(2.1.2) and (2.2.9) respectively, we have that

Fs;ab(r, t, q) = Hs;ab(r, t, q) =
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)
.

Proof. We have from Lemmata 2.2.2 and 2.2.3 that

fab(r, t, q) = hab(r, t, q) =
∑

k≡t (mod 2q)

(
r

k

)
+ (−1)a

∑
k≡t+q (mod 2q)

(
r

k

)
, (2.2.11)

and from Lemma 2.2.4 that

Fab(r, t, q) = Hab(r, t, q) =
∑

k≡t (mod 2q)

(−1)k
(
r

k

)
+ (−1)a+b

∑
k≡t+q (mod 2q)

(−1)k
(
r

k

)
,

(2.2.12)

and so on combining (2.2.11) and (2.2.12) the result is established.

For clarity we will maintain the use of the form Fs;ab.

Remark 1. We note in (2.2.11) that when k = t the binomial term is positive and further-

more, since the modulus is 2q every k congruent to t is an even multiple of t. Conversely

when k = t+ q is negative then similarly every k congruent to t+ q will also be negative.

Remark 2. The difference between equations (2.2.11) and (2.2.12) is the inclusion of the

(−1)k terms. However, there is a second more subtle difference and that is the requirement

of the (−1)b term to neutralise an added (−1)q term in the second sum term of (2.2.12).

Therefore, when expressing the function Fab (relative to the function fab) this sign creation

will have no effect when the modulus is even but will impact on the function when the

modulus is odd.

For examples of the values generated by each of the different functions, fab and Fab, with

6 ≤ q ≤ 7, the reader is referred to Appendix E.1.

2.3 Recurrence relations

2.3.1 Three term recurrence relation

From the above definition we obtain the following three term binomial recurrence relation.

LEMMA 2.3.1 (three term relation). With Fs;ab defined as in Definition 2.2.1, we have

Fs;ab(r + 1, t, q) = Fs;ab(r, t, q) + γFs;ab(r, t− 1, q),
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Proof. From Theorem 2.2.5 we have

Fs;ab(r, t, q) =
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)
.

Using the three term binomial relation, known as Pascal’s identity,(
r + 1

t

)
=

(
r

t

)
+

(
r

t− 1

)
we have ∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)

+(−1)s

 ∑
k≡t−1 (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t−1+q (mod 2q)

(−1)sk
(
r

k

)
=

∑
k≡t (mod 2q)

(−1)sk
((

r

k

)
+

(
r

k − 1

))
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
((

r

k

)
+

(
r

k − 1

))

=
∑

k≡t (mod 2q)

(−1)sk
(
r + 1

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r + 1

k

)

=
∑

k≡t (mod 2q)

γk
(
r + 1

k

)
+ λγb

∑
k≡t+q (mod 2q)

γk
(
r + 1

k

)
=Fs;ab(r + 1, t, q).

We illustrate the function Fs;ab and Lemma 2.3.1 with two examples. Example 2 also demon-

strates a divisibility property that will be explained in Section 4.5.

Example 1.

f01(25, 9, 5) =

[(
25

4

)
+

(
25

9

)
+

(
25

14

)
+

(
25

19

)
+

(
25

24

)]
= 6690150,

f01(24, 9, 5) =

[(
24

4

)
+

(
24

9

)
+

(
24

14

)
+

(
24

19

)
+

(
24

24

)]
= 3321891,

f01(24, 8, 5) =

[(
24

3

)
+

(
24

8

)
+

(
24

13

)
+

(
24

18

)
+

(
24

23

)]
= 3368259.

Example 2.

F11(25, 9, 5) = (−1)9
[
−
(

25

4

)
+

(
25

9

)
−
(

25

14

)
+

(
25

19

)
−
(

25

24

)]
= 2250000 = 56 × 144,

F11(24, 9, 5) = (−1)9
[
−
(

24

4

)
+

(
24

9

)
−
(

24

14

)
+

(
24

19

)
−
(

24

24

)]
= 621875 = 55 × 199,

F11(24, 8, 5) = (−1)8
[
−
(

24

3

)
+

(
24

8

)
−
(

24

13

)
+

(
24

18

)
−
(

24

23

)]
= −1628125 = −55 × 521.
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If we are given the rth term of each of the sequences Fs;ab(r, t, q) with 0 ≤ t ≤ q− 1, then we

are not limited to establishing the term Fs;ab(r+ 1, t, q), as in Lemma 2.3.1. We show this by

the next lemma.

LEMMA 2.3.2 (sums of products relation). We have

Fs;ab(r + k, t, q) =

q−1∑
j=0

Fs;ab(k, j, q)Fs;ab(r, t− j, q).

Proof. From (repeated application of) Lemma 2.3.1 we can write

Fs;ab(r + k, t, q) =

k∑
i=0

γi
(
k

i

)
Fs;ab(r, t− i, q). (2.3.1)

Expanding the second member of (2.3.1) we have

Fs;ab(r + k, t, q) =

Fs;ab(r, t, q)
[
γ0
(
k

0

)
+ γ2q

(
k

2q

)
+ γ4q

(
k

4q

)
+ . . .+ γ2ql0

(
k

2ql0

)]
+ Fs;ab(r, t− 1, q)

[
γ1
(
k

1

)
+ γ2q+1

(
k

2q + 1

)
+ γ4q+1

(
k

4q + 1

)
+ . . .+ γ2ql1+1

(
k

2ql1 + 1

)]
+ Fs;ab(r, t− 2, q)

[
γ2
(
k

2

)
+ γ2q+2

(
k

2q + 2

)
+ γ4q+2

(
k

4q + 2

)
+ . . .+ γ2ql2+2

(
k

2ql2 + 2

)]
...

+ Fs;ab(r, t− q, q)
[
γq
(
k

q

)
+ γ3q

(
k

3q

)
+ γ5q

(
k

5q

)
+ . . .+ γ2qlq+q

(
k

2qlq + q

)]
...

+ Fs;ab(r, t− 2q + 1, q)

[
γ2q−1

(
k

2q − 1

)
+ . . .+ γ2q(l2q−1+1)−1

(
k

2q(l2q−1 + 1)− 1

)]
,

(2.3.2)

where 2qlj + j ≤ k, 0 ≤ j ≤ 2q − 1 and lj ∈ N≥0.
Now pairing the terms Fs;ab(r, t − j, q) and Fs;ab(r, t − j − q, q), where 0 ≤ j ≤ q − 1, and

using Theorem 2.2.5 that demonstrates that Fs;ab(r, t, q) = (−1)a+sbFs;ab(r, t− q, q), we can
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express (2.3.2) as

Fs;ab(r + k, t, q) =

Fs;ab(r, t, q)

 ∑
i≡0 (mod 2q)

γi
(
k

i

)
+ (−1)a+sb

∑
i≡q (mod 2q)

γi
(
k

i

)
+ Fs;ab(r, t− 1, q)

 ∑
i≡1 (mod 2q)

γi
(
k

i

)
+ (−1)a+sb

∑
i≡1+q (mod 2q)

γi
(
k

i

)
+ Fs;ab(r, t− 2, q)

 ∑
i≡2 (mod 2q)

γi
(
k

i

)
+ (−1)a+sb

∑
i≡2+q (mod 2q)

γi
(
k

i

)
...

+ Fs;ab(r, t− q + 1, q)

 ∑
i≡q−1 (mod 2q)

γi
(
k

i

)
+ (−1)a+sb

∑
i≡2q−1 (mod 2q)

γi
(
k

i

) (2.3.3)

In turn we can now simplify (2.3.3) to

Fs;ab(r + k, t, q) =

q−1∑
j=0

Fs;ab(r, t− j, q)

 ∑
i≡j (mod 2q)

γi
(
k

i

)
+ (−1)a+sb

∑
i≡j+q (mod 2q)

γi
(
k

i

)
=

q−1∑
j=0

Fs;ab(k, j, q)Fs;ab(r, t− j, q).

Using the symmetry of the binomial coefficients of Pascal’s triangle and more generally that

fab(N,N − t, q) = fab(N, t, q), an application to Lemma 2.3.2 is a sums of squares relation

given by the next two lemmas.

LEMMA 2.3.3 (duplication of squares). When k = r and t2q = r, we have

Fs;ab(2r, r, q) = γr
q−1∑
j=0

Fs;ab(r, j, q)2.

Proof. Considering the two cases of the parameter s separately, we substitute k = r and

t2q = r into Lemma 2.3.2. Then when s = 0, we obtain

fab(2r, r, q) =

q−1∑
j=0

fab(r, j, q)fab(r, r − j, q) =

q−1∑
j=0

fab(r, j, q)fab(r, j, q) =

q−1∑
j=0

fab(r, j, q)
2,

and when s = 1, we have

Fab(2r, r, q) =

q−1∑
j=0

Fab(r, j, q)Fab(r, r − j, q) =

q−1∑
j=0

Fab(r, j, q)(−1)r−2jFab(r, j, q)

= (−1)r
q−1∑
j=0

Fab(r, j, q)
2 = γr

q−1∑
j=0

Fab(r, j, q)
2.



20

Example. When the parameters s = a = b = 1, and the variables r = 8 and q = 5, we have

F1;11(16, 8, 5) = (−1)8
4∑
j=0

F1;11(8, j, 5)2

= F11(8, 0, 5)2 + F11(8, 1, 5)2 + F11(8, 2, 5)2 + F11(8, 3, 5)2 + F11(8, 4, 5)2

= 3025 + 400 + 400 + 3025 + 4900 = 11, 750.

A slight variation of Lemma 2.3.3 occurs on replacing the residue class r with r− q. We state

this as a corollary.

COROLLARY. We have

Fs;ab(2r, r − q, q) = γrλ

q−1∑
j=0

Fs;ab(r, j, q)2.

Proof. On replacing the residue class r with r − q in Lemma 2.3.3, we obtain

fab(r, r − q − j, q) = fab(r, j − q, q) = fab(r, j + q, q) = (−1)afab(r, j2q, q) = λfab(r, j2q, q).

Example. When the parameters s = b = 0 and a = 1, and the variables r = 9 and q = 6,

we have

F0;10(18, 3, 6) = (−1)
5∑
j=0

F0;10(9, j, 6)2

=−
(
f10(9, 0, 6)2 + f10(9, 1, 6)2 + f10(9, 2, 6)2 + f10(9, 3, 6)2 + f10(9, 3, 6)2 + f10(9, 5, 6)2

)
=− (6889 + 729 + 729 + 6889 + 15876 + 15876) = −46, 988.



Chapter 3

The function Ls;abc

The works of [30], [9] and [39] examined sequences created by a diagonal renumbering of

particular cases of the sequences Fs;ab. This chapter considers all possible cases, and these

sequences are notated as Ls;abc. In Section 3.1, we define (in Definition 3.1.2) the function

Ls;abc in terms of a shift of Fs;ab and with Equation (3.1.5) provide a generalised binomial

representation of the sum Ls;abc(r, t, q); (whilst Appendix A.1 gives individual representations

for the parameters a, b and c). Then in Section 3.2, with Theorem 3.2.1 and Theorem 3.2.2,

we create sums of squares relations for the sums Ls;abc(r, t, q) that utilise the relations of the

sums Fs;ab(r, t, q) developed in Lemmata 2.3.3 and 2.3.1.

3.1 Introduction

In this introductory section we state our main results, deferring proofs until the next chapter

which employs primitive 2q-th roots of unity.

We take the two families (determined by parameter s) of four types of sequences (deter-

mined by parameters a and b), whose values are denoted by Fs;ab(r, t, q), each one generating

either q or 2q unique sequences of integers. Then by a shift of these functions we create

two new families of eight types of sequences (determined by parameters a, b and c), written

Ls;abc(r, t, q), where due to the repetition of sequences, we generally consider the restriction

c ≤ t ≤ m + bc. Here a third parameter c ∈ {0, 1}, defined as in (2.1.1), is introduced to

indicate the parity of the sequence number r of the term Fs;ab(r, t, q), from which the new

sequences are derived, so that r ≡ c (mod 2).

Then similar to (2.1.2) we write

Ls;abc =

{
labc if s = 0

Labc if s = 1.
(3.1.1)

Now to relate the sequences Ls;abc(r, t, q) to those of Fs;ab(r′, t, q) we introduce a shift operator

Lrs whose action on Fs;ab(r′, t, q) is given in the following way.
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Definition 3.1.1. For integer r and non-negative integer r′, we define the shift operator Lrs
by its action on Fs;ab(r′, t, q) as

LrsFs;ab(r′, t, q) = Fs;ab(r′ + 2r, t+ r, q). (3.1.2)

Now putting r′ = 1 in (3.1.2) we obtain

LrsFs;ab(1, t, q) = Fs;ab(2r + 1, t+ r, q) = Ls;ab1(r, t, q), (3.1.3)

and putting r′ = 2 and replacing t with t+ 1 in (3.1.2) we have

LrsFs;ab(2, t+ 1, q) = Fs;ab(2r + 2, t+ r + 1, q) = Ls;ab0(r, t, q). (3.1.4)

Then using (3.1.2) and (the reversed forms of) (3.1.3) and (3.1.4) we obtain the following

definition.

Definition 3.1.2. For integers r ≥ 0, q = 2m+ b ≥ 1 and c ≤ t ≤ m, where b, c ∈ {0, 1}, we

have

Ls;abc(r, t, q) = LrsFs;ab(2− c, t+ 1− c, q) = Fs;ab(2r + 2− c, t+ r + 1− c, q).

In words, starting with the (2 − c)-th term (corresponding row) and the t-th sequence of

Fs;ab(r, t, q), we obtain the r-th term of the sequence Ls;abc(r, t, q) by the r-th application of

the shift operator Ls.
Now employing Definitions 2.2.1 and 3.1.2, and Theorem 1.2.1, we put R = 2r+ 2− c and

T = r + t+ 1− c, and then we obtain

Ls;abc(r, t, q) = Fs;ab(R, T, q) =
∑

k≡T (mod 2q)

γk
(
R

k

)
+ λγb

∑
k≡T+q (mod 2q)

γk
(
R

k

)

=γTλbT/qc
b(R−Tq)/qc∑

d=0

λd
(

R

Tq + dq

)
. (3.1.5)

Remark. For the first q = 2m + b residue classes of the alternating sum f1b(r
′, t, q), the

sequence starts with q + 2t non-negative values. It then alternates between negative and

positive integers with period 4q. For the second q residue classes the absolute values are

identical to the first q, but the signs are reversed. On application of the shift operator Lrs to

f1b(r
′, t, q), the result is a new sequence generated by moving diagonally along the 2q residue

classes of (2.2.11) and so producing values that are all positive. See Appendix E.1, Tables

E.3 and E.4.

3.2 Sum of squares relation

We can apply the identities involving the sums of squares relations developed in Section 2.3

to also create similar relations for our functions Ls;abc.
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THEOREM 3.2.1. For r ≥ 0 we have

Ls;ab1(2r, 1, q) =
γ

2

q−1∑
j=0

Ls;ab1(r, j, q)2 (3.2.1)

Proof. From Lemma 2.3.3, we recall that

Fs;ab(2R,R, q) = γR
q−1∑
j=0

Fs;ab(R, j, q)2. (3.2.2)

We put R = 2r + 1 to obtain

Fs;ab(4r + 2, 2r + 1, q) = γ

q−1∑
j=0

Fs;ab(2r + 1, j, q)2. (3.2.3)

From Lemma 2.3.1 we have the three term relation

Fs;ab(4r + 2, 2r + 1, q) = Fs;ab(4r + 1, 2r + 1, q) + γFs;ab(4r + 1, 2r, q),

but from the symmetry of Pascal’s triangle and (due to their formation as repeated steps of

the modulus) the generalised Fleck numbers, we have

Fs;ab(R, t, q) = γFs;ab(R,R− t, q), or with R = 4r + 1,

Fs;ab(4r + 1, 2r + 1, q) = γFs;ab(4r + 1, 2r, q),

and so

Fs;ab(4r + 2, 2r + 1, q) = 2Fs;ab(4r + 1, 2r + 1, q) = 2γFs;ab(4r + 1, 2r, q).

Therefore, (3.2.3) becomes

2Fs;ab(4r + 1, 2r + 1, q) = γ

q−1∑
j=0

Fs;ab(2r + 1, j, q)2,

and so we have

Ls;ab1(2r, 1, q) =
γ

2

q−1∑
j=0

Ls;ab1(r, j − r, q)2 =
γ

2

q−1∑
j=0

Ls;ab1(r, j, q)2.

The squares of the terms Ls;abc(r, j, q) in (3.2.1) are not all unique, and we find that when

c = 1 and either a = 1 or a = b = 0, there are exactly m pairs of non-zero terms. we state

this as a corollary to Theorem 3.2.1.

COROLLARY. When c = 1, and either a = 1, or a = b = 0, we have

Ls;ab1(2r, 1, 2m+ b) = γ

m∑
j=1

Ls;ab1(r, j, 2m+ b)2. (3.2.4)
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Proof. We will see in the Corollary of Lemma 4.5.3 that when R = (2n+ 1)q+ 2t, (n ∈ N≥0),
that Fs;1b(R, t, q) = 0. This implies that Fs;10(R, t, 2m) = 0, when R is even, and

Fs;11(R, t, 2m+ 1) = 0, when R is odd.

Let R = 2nq + k, where 0 ≤ k ≤ 2q − 1, and, without loss of generality, let 0 ≤ t ≤ q − 1.

We then have

Fs;ab(R, t, q) = γRFs;ab(R,R−t, q) = γkFs;ab(R, 2nq+k−t, q) = γkFs;ab(R, k−t, q) = γkFs;ab(R, v, q),

where −q + 1 ≤ v ≤ 2q − 1. Moreover,

Fs;ab(R, v, q) =

{
Fs;ab(R, vq, q) if 0 ≤ v ≤ q − 1

(−1)aFs;ab(R, vq, q) if v < 0, or v ≥ q.

We are interested in the squares of the terms, and so we require |Fs;ab(R, tq, q)| = |Fs;ab(R, vq, q)|.
If we consider the transformation of Fs;ab(R, tq, q) to Fs;ab(R, vq, q) as a mapping, then since

R (or k) is fixed, the mapping is bijective.

Now when c = 1, we are employing the odd rows, and we consider two cases.

Case 1. When the parameters a = b = 1, q = 2m+1, and tq = vq only when R = 2nq+q+2t,

and then Fs;11(R, t, 2m+ 1) = 0. Otherwise we have

|Fs;ab(R, tq, q)| = |Fs;ab(R, vq, q)|, where tq 6= vq, (3.2.5)

and (3.2.5) holds for precisely m different values and when we put R = 2r + 1 then (3.2.4)

follows.

Case 2. When the parameter b = 0, the argument is independent of the parameter a, and

since q = 2m is even, tq = vq has no solutions, and we only have (3.2.5), for exactly m different

values. So with R = 2r + 1 we obtain (3.2.4) and, therefore, we establish the result.

Example. When the parameters s = a = c = 1 and b = 0, and the variables r = 7 and

q = 6, we have

L1;101(14, 1, 6) = (−1)7
3∑
j=1

L1;101(7, j, 6)2 = −
(
L101(7, 1, 6)2 + L101(7, 2, 6)2 + L101(7, 3, 6)2

)
= −(39, 879, 225 + 20, 693, 401 + 2, 683, 044) = −63, 255, 670.

In [31] the result of this corollary is applied in the particular cases of the function L1;11c,
with c ∈ {0, 1}.
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THEOREM 3.2.2. We have

Ls;ab0(2r + 1, 0, q) =

q−1∑
j=0

Ls;ab1(r, j, q)2 (3.2.6)

Proof. Once more we take as our starting point, Lemma 2.3.3,

Fs;ab(2R,R, q) = γR
q−1∑
j=0

Fs;ab(R, j, q)2.

Now we put R = 2r + 2 to obtain

Fs;ab(4r + 4, 2r + 2, q) = γ2
q−1∑
j=0

Fs;ab(2r + 2, j, q)2. (3.2.7)

We can then write (3.2.7) as

Ls;ab0(2r + 1, 0, q) =

q−1∑
j=0

Ls;ab0(r, j − r − 1, q)2 =

q−1∑
j=0

Ls;ab0(r, j, q)2,

The equations (3.2.1) and (3.2.6) is equivalently stated using binomial coefficients as

γλb(2r+1)/qc
b(4r+1−Vq)/qc∑

d=0

λd
(

4r + 1

Vq + dq

)
=
γ

2

q−1∑
j=0

b(2r+1−Wq)/qc∑
d=0

λd
(

2r + 1

Wq + dq

)2

,

where Vq ≡ 2r + 1 (mod q), Wq ≡ r + j (mod q), and

λb(2r+2)/qc
b(4r+4−Vq)/qc∑

d=0

λd
(

4r + 4

Vq + dq

)
=

q−1∑
j=0

b(2r+2−Wq)/qc∑
d=0

λd
(

2r + 2

Wq + dq

)2

,

where Vq ≡ 2r + 2 (mod q) and Wq ≡ r + 1 + j (mod q), and we recall that γ = (−1)s and

λ = (−1)a.



Chapter 4

Roots of unity closed forms

This chapter is primarily concerned with the expression of the sums Fs;ab(r, t, q) and Ls;abc(r, t, q)
in terms of their primitive 2q-th roots of unity, and then secondly in terms of cosines. We

commence in Section 4.1 with Theorem 4.1.3 with an expression for the sums Fs;ab(r, t, q)
in terms of their primitive 2q-th roots of unity, and then in Section 4.2 with Theorem 4.2.2

giving an expression for the sums Ls;abc(r, t, q). These two theorems are then developed in

Sections 4.3 and 4.4 to obtain respectively, Theorems 4.3.3 and 4.4.2, that express each of the

two sets of sums in terms of cosines. Finally in Section 4.5 we examine expected divisibility

properties of the sequences Fs;ab(r, t, q). These are summarised in Theorem 4.5.10.

4.1 Expressing Fs;ab in terms of the primitive 2q-th roots of
unity

We commence by defining a primitive Q-th root of unity.

Definition 4.1.1 (primitive Q-th root of unity). For a given positive integer Q we define a

primitive Q-th root of unity as a primitive solution x = ζQ to the equation

xQ − 1 = 0, (4.1.1)

when we map the (complex) number ζQ to e2πı/Q. To enhance the readability of the work, the

subscript Q is omitted when there is no ambiguity as to its value.

In Chapter 2 we introduced the function Fs;ab where we recall that the parameter s is

a sign indicator, and that the parameters a and b represent the sum type and the modulus

respectively. Here we express Fs;ab(r, t, q) in terms of ζ = e2πı/2q.

To enable us to achieve this we first require some lemmas.

LEMMA 4.1.1. For r ≥ 0 and ζ a primitive 2q-th root of unity, we have

F0;ab(r, t, q) = fab(r, t, q) =
1

2q

2q−1∑
d=0

(
ζd
)−t (

1 + ζd
)r (

1 + (−1)a+d
)
. (4.1.2)
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Proof. Using (2.2.9) with s = 0, we have

fab(r, t, q) =
∑

k≡t (mod 2q)

(
r

k

)
+ (−1)a

∑
k≡t+q (mod 2q)

(
r

k

)

=
1

2q

 r∑
k=0

∑
d (mod 2q)

ζ−tdζdk
(
r

k

)
+ (−1)a

r∑
k=0

∑
d (mod 2q)

ζ−(t+q)dζdk
(
r

k

)
=

1

2q

 ∑
d (mod 2q)

ζ−td(1 + ζd)r + (−1)a
∑

d (mod 2q)

ζ−(t+q)d(1 + ζd)r


=

1

2q

(
2q−1∑
d=0

ζ−td(1 + ζd)r + (−1)aζ−(t+q)d(1 + ζd)r

)

=
1

2q

2q−1∑
d=0

ζ−td(1 + ζd)r
(

1 + (−1)a (ζq)−d
)
. (4.1.3)

For a primitive 2q-th root of unity, we note that ζq = −1, and that −d ≡ d (mod 2), so we

obtain

fab(r, t, q) =
1

2q

2q−1∑
d=0

ζ−td(1 + ζd)r
(

1 + (−1)a(−1)d
)

=
1

2q

2q−1∑
d=0

(
ζd
)−t

(1 + ζd)r
(

1 + (−1)a+d
)
.

LEMMA 4.1.2. For r ≥ 0 and ζ a primitive 2q-th root of unity, we have

F1;ab(r, t, q) = Fab(r, t, q) =
1

2q

2q−1∑
d=0

(
ζd
)−t (

1− ζd
)r (

1 + (−1)a+b+d
)
. (4.1.4)

Proof. Using (2.2.9) with s = 1 and developing as in Lemma 4.1.1 we have

Fab(r, t, q) = (−1)tfab(r, t, q)

=
∑

k≡t (mod 2q)

(−1)k
(
r

k

)
+ (−1)a+b

∑
k≡t+q (mod 2q)

(−1)k
(
r

k

)

=
1

2q

 r∑
k=0

∑
d (mod 2q)

ζ−tdζdk(−1)k
(
r

k

)
+ (−1)a+b

r∑
k=0

∑
d (mod 2q)

ζ−(t+q)dζdk(−1)k
(
r

k

)
=

1

2q

 ∑
d (mod 2q)

ζ−td(1− ζd)r + (−1)a+b
∑

d (mod 2q)

ζ−(t+q)d(1− ζd)r


=
1

2q

2q−1∑
d=0

(
ζd
)−t

(1− ζd)r
(

1 + (−1)a+b+d
)
.
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THEOREM 4.1.3 (roots of unity expression of the functions Fs;ab). For r ≥ 0 and

ζ a primitive 2q-th root of unity, we have

Fs;ab(r, t, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−t (
1 + γζ2d−ε

)r
, (4.1.5)

where ε ≡ a+ sb (mod 2).

Proof. Combining Lemmata 4.1.1 and 4.1.2 we obtain

Fs;ab(r, t, q) =
1

2q

2q−1∑
d=0

(
ζd
)−t (

1 + γζd
)r (

1 + (−1)a+sb+d
)
. (4.1.6)

We consider the even case ε = 0 and the odd case ε = 1 separately. When ε = 0, then a = sb,

and we have

Fs;ab(r, t, q) =
2

2q

2q−1∑
d=0
d even

(
ζd
)−t (

1 + γζd
)r

=
1

q

q−1∑
g=0

(
ζ2g
)−t (

1 + γζ2g
)r
. (4.1.7)

Secondly when ε = 1, then a+ sb is odd and we have

Fs;ab(r, t, q) =
2

2q

2q−1∑
d=0
d odd

(
ζd
)−t (

1 + γζd
)r

=
1

q

q∑
g=1

(
ζ2g−1

)−t (
1 + γζ2g−1

)r
. (4.1.8)

Combining (4.1.7) and (4.1.8) produces the result.

Isolating the individual cases we have the following corollary.

COROLLARY. For ζ a primitive 2q-th root of unity, and ζq a primitive q-th root of unity,

the sequences Fs;ab(r, t, q) simplify to

f00(r, t, q) = f01(r, t, q) =
1

q

(
q−1∑
d=0

(ζdq )−t(1 + ζdq )r

)
,

f10(r, t, q) = f11(r, t, q) =
1

q

q∑
d=1

ζ−(2d−1)t(1 + ζ2d−1)r,

F00(r, t, q) = F11(r, t, q) =
1

q

q−1∑
d=0

(ζdq )−t(1− ζdq )r,

and

F01(r, t, q) = F10(r, t, q) =
1

q

q∑
d=1

(ζ2d−1)−t(1− ζ2d−1)r.

Proof. From Theorem 4.1.3, we observe that ε = 0, either when s = a = 0, or when s = 1

and a = b; otherwise ε = 1. We substitute into (4.1.5) according to the parameter s, and the

value of ε ≡ a+ sb (mod 2).
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Remark. We note that Fs;01(r, 0, 1) = 2r and Fs;11(r, 0, 1) = 0; Fs;00(r, 0, 2) = 2r−1 and

Fs;10(r, 0, 2) =


(−4)r/4 if r ≡ 0 (mod 4)

(−4)(r−1)/4 if r ≡ 1 (mod 4)

0 if r ≡ 2 (mod 4)

ı(−4)(r−1)/4 if r ≡ 3 (mod 4).

4.2 The function Ls;abc expressed in terms of ζ2q

Recalling the notation employed in (3.1.1), we have

Ls;abc(r, t, q) =

{
labc(r, t, q) if s = 0

Labc(r, t, q) if s = 1,

and from Definition 3.1.2, that

Ls;abc(r, t, q) = LrsFs;ab(2− c, t+ 1− c, q) = Fs;ab(2r + 2− c, t+ r + 1− c, q). (4.2.1)

Here the shift operator, Lrs, is given by Definition 3.1.1 as

LrsFs;ab(r′, t, q) = Fs;ab(r′ + 2r, t+ r, q).

Moreoever, by Theorem 4.1.3, Fs;ab expressed in terms of ζ a primitive 2q-th root of unity, is

Fs;ab(r, t, q) =
1

2q

2q−1∑
d=0

(
ζd
)−t (

1 + γζd
)r (

1 + γb(−1)a+d
)

=
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−t (
1 + γζ2d−ε

)r
,

(4.2.2)

where ε ≡ a+ sb (mod 2). If we make the substitution 2r+ 2− c for r, and t+ 1− c for t in

(4.2.2), we obtain the corresponding expression

Ls;abc(r, t, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−(t+r+1−c) (
1 + γζ2d−ε

)2r+2−c
. (4.2.3)

However, this simple substitution gives no justification of the shift operator Lrs. To fulfil this

objective we introduce the function, zrs , given as follows.

Definition 4.2.1. For sign s, integers r and d with 0 ≤ d ≤ 2q − 1, and ζ a primitive 2q-th

root of unity, we have

zrs(d, 2q) =
(
ζd + ζ−d + 2γ

)r
. (4.2.4)

This then leads us to the following more informative definition of the shift operator, Lrs.

Definition 4.2.2 (shift of Fs;ab). For zrs(d, 2q) given by Definition 4.2.1, and ζ a primitive

2q-th root of unity, we have

LrsFs;ab(r′, t, q) =
1

2q

2q−1∑
d=0

(
1 + (−1)a+sb+d

)(
ζd
)−t (

1 + γζd
)r′

zrs(d, 2q). (4.2.5)
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When incorporated into the function Fs;ab(r′, t, q) in this manner, zrs(d, 2q) produces a “shift”

demonstrated by Lemma 4.2.1.

LEMMA 4.2.1 (term shift). For ζ a primitive 2q-th root of unity, we have

LrsFs;ab(r′, t, q) =
1

2q

2q−1∑
d=0

(
1 + (−1)a+sb+d

)(
ζd
)−(t+r) (

1 + γζd
)r′+2r

. (4.2.6)

Proof. From Definitions 4.2.1 and 4.2.2 we have

LrsFs;ab(r′, t, q) =
1

2q

2q−1∑
d=0

(
1 + γb(−1)a+d

)(
ζd
)−t (

1 + γζd
)r′ (

ζd + ζ−d + 2γ
)r

=
1

2q

2q−1∑
d=0

(
1 + (−1)a+sb+d

)(
ζd
)−t−r (

1 + γζd
)r′

(ζ2d + 1 + 2γζd)r

=
1

2q

2q−1∑
d=0

(
1 + (−1)a+sb+d

)(
ζd
)−(t+r) (

1 + γζd
)r′+2r

. (4.2.7)

We now state (4.2.3) as a theorem.

THEOREM 4.2.2 (roots of unity expression of the functions Ls;abc). For ζ a primitive

2q-th root of unity, we have

Ls;abc(r, t, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−(t+r+1−c) (
1 + γζ2d−ε

)2r+2−c
, (4.2.8)

where ε ≡ a+ sb (mod 2).

Proof. From Lemma 4.2.1 and then Theorem 4.1.3 we have

LrsFs;ab(r′, t, q) = Fs;ab(r′ + 2r, t+ r, q) =
1

2q

2q−1∑
d=0

(
ζd
)−(t+r) (

1 + γζd
)r′+2r (

1 + γb(−1)a+d
)

=
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−(t+r) (
1 + γζ2d−ε

)r′+2r
. (4.2.9)

Now we recall from Definition 3.1.2 that

Ls;ab0(r, t, q) = Fs;ab(2r+2, t+r+1, q), and Ls;ab1(r, t, q) = Fs;ab(2r+1, t+r, q). (4.2.10)

Combining both forms of (4.2.10), we let r′ = 2 − c, and replace t with t + 1 − c, in (4.2.9)

to obtain

LrsFs;ab(2− c, t+ 1− c, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−(t+r+1−c) (
1 + γζ2d−ε

)2r+2−c

= Fs;ab(2r + 2− c, t+ r + 1− c, q)

= Ls;abc(r, t, q).
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To express each sign case of Ls;abc explicitly we have the following corollary.

COROLLARY. For ζ a primitive 2q-th root of unity, and ζq a primitive q-th root of unity,

the sequences Ls;abc(r, t, q) simplify to

l000(r, t, q) = l010(r, t, q) =
1

q

q−1∑
d=0

(
ζdq

)−(t+r+1) (
1 + ζdq

)2r+2
,

l001(r, t, q) = l011(r, t, q) =
1

q

q−1∑
d=0

(
ζdq

)−(t+r) (
1 + ζdq

)2r+1
,

l100(r, t, q) = l110(r, t, q) =
1

q

q∑
d=1

(
ζ2d−1

)−(t+r+1) (
1 + ζ2d−1

)2r+2
,

l101(r, t, q) = l111(r, t, q) =
1

q

q∑
d=1

(
ζ2d−1

)−(t+r) (
1 + ζ2d−1

)2r+1
,

L000(r, t, q) = L110(r, t, q) =
1

q

q−1∑
d=0

(
ζdq

)−(t+r+1) (
1− ζdq

)2r+2
,

L001(r, t, q) = L111(r, t, q) =
1

q

q−1∑
d=0

(
ζdq

)−(t+r) (
1− ζdq

)2r+1
,

L010(r, t, q) = L100(r, t, q) =
1

q

q∑
d=1

(
ζ2d−1

)−(t+r+1) (
1− ζ2d−1

)2r+2
,

and

L011(r, t, q) = L101(r, t, q) =
1

q

q∑
d=1

(
ζ2d−1

)−(t+r) (
1− ζ2d−1

)2r+1
.

Proof. The result follows on substitution of the paramers s, a, b and c into (4.2.8), according

to ε ≡ a+ sb (mod 2).

Remark. We note that Ls;01c(r, 0, 1) = γr+1−c22r+2−c and Ls;11c(r, 0, 1) = 0;

Ls;00c(r, c, 2) = γr+122r+1−c and Ls;10c(r, c, 2) = γr+12r+1−c.

4.3 Expressing the sums Fs;ab(r, t, q) in terms of cosines

To obtain the sums Fs;ab(r, t, q) in terms of cosines we utilize the expressions developed in the

previous section but also introduce Lemmata 4.3.1 and 4.3.2. The first involves the expression

of zrs in terms of a cosine.

LEMMA 4.3.1 (cosine form of zrs). We have

zrs(d, 2q) = γr
(

2 cos

(
π (d− sq)

2q

))2r

. (4.3.1)
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Proof. We show that when s = 0, (4.3.1) is equivalent to

zr0(d, 2q) =

(
2 cos

(
πd

2q

))2r

,

and that when s = 1, we have

zr1(d, 2q) = (−1)r
(

2 cos

(
π (d− q)

2q

))2r

.

We first note that

ζd + ζ−d = 2 cos

(
πd

q

)
.

Then separating the s = 0 and s = 1 cases of the function zrs , we have respectively

zr0(d, 2q) =
(
ζd + ζ−d + 2

)r
=

(
2

(
cos

πd

q
+ 1

))r
=

(
2

(
2 cos2

πd

2q
− 1 + 1

))r
=

(
2 cos

πd

2q

)2r

,

and

zr1(d, 2q) =
(
ζd + ζ−d − 2

)r
=

(
2

(
cos

πd

q
− 1

))r
=

(
2

(
1− 2 sin2 πd

2q
− 1

))r
=

(
4

(
− sin2 πd

2q

))r
= (−1)r

(
2 sin

πd

2q

)2r

= (−1)r
(

2 cos

(
π (d− q)

2q

))2r

.

Secondly we derive a cosine form of the expression 1 + γζd. To achieve this we introduce a

primitive 4q-th root of unity ω so that ω2 = ζ.

LEMMA 4.3.2 (cosine form of 1 + γζd). With ω2 = ζ, we have

1 + γζd = 2ωd+3qs

(
cos

(
π (d− sq)

2q

))
.

Proof. We have

1 + γζd = 1 + γω2d = ωd
(
ω−d + γωd

)
. (4.3.2)

Let us consider each case of s in (4.3.2) separately. Then when s = 0, we write

ωd × 2<ωd = 2ωd cos

(
2πd

4q

)
= 2ωd cos

(
πd

2q

)
. (4.3.3)

When s = 1, (4.3.2) becomes

ωd × (−2ı)=ωd = −2ıωd sin

(
2πd

4q

)
= 2ω2qωqωd sin

(
πd

2q

)
= 2ωd+3q sin

(
πd

2q

)
. (4.3.4)

On combining expressions (4.3.3) and (4.3.4) we obtain the result.
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We are now in a position to state the following theorem.

THEOREM 4.3.3. With r′ = 2n+ c ∈ Z, we have

Fs;ab(r′, t, q) =
γbr
′/2c2r

′

q

q+ε−1∑
d=ε

cos

(
π(r′ − 2t)(2d− ε− scq)

2q

)(
cos

π (2d− ε− sq)
2q

)r′
,

where ε ≡ a+ sb (mod 2).

Proof. Recalling from Theorem 4.1.3 the expression for Fs;ab(r′, t, q), in terms of ζ a primitive

2q-th root of unity, we have

Fs;ab(r′, t, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−t (
1 + γζ2d−ε

)r′
. (4.3.5)

We use Lemma 4.2.1, and (putting r = n) the function zns , given by Definition 4.2.1, to

express
(
1 + γζ2d−ε

)r′
in terms of a cosine. Then to similarly express the other ζ term in

(4.3.5) as a cosine we consider its real or imaginary part as appropriate.

From Definition 4.2.1 and, with d replaced by 2d− ε, then Lemma 4.3.1, the function zns ,

expressed in terms of a cosine is

zns (2d− ε, 2q) =
(
ζ2d−ε + ζε−2d + 2γ

)n
= γn

(
2 cos

(
π (2d− ε− sq)

2q

))2n

.

So with r′ = 2n+ c, if c = 0, Lemma 4.3.1 is sufficient to express the term
(
1 + γζ2d−ε

)n
as

a cosine. However, if c = 1, a single
(
1 + γζ2d−ε

)
term remains. From Lemma 4.2.1 we write

(4.3.5) as

Fs;ab(2n+ c, t, q) =
1

q

q+ε−1∑
d=ε

(
ζ2d−ε

)−(t−n) (
1 + γζ2d−ε

)c (
ζ2d−ε + ζε−2d + 2γ

)n
. (4.3.6)

Then from Lemmata 4.3.1 and 4.3.2, equation (4.3.6) becomes

γnω3qsc22n+c

q

q+ε−1∑
d=ε

ω(2d−ε)(2n+c−2t) cos

(
πc (2d− ε− sq)

2q

)(
cos

(
π (2d− ε− sq)

2q

))2n

.

(4.3.7)

By consideration of the imaginary part of the ω term when s = c = 1, (and then we have

ısc = ωqsc - a fourth root of unity), and the real part otherwise, we obtain

γnω4qsc22n+c

q

q+ε−1∑
d=ε

cos

(
π(2n+ c− 2t)(2d− ε− scq)

2q

)(
cos

(
π (2d− ε− sq)

2q

))2n+c

=
γbr
′/2c2r

′

q

q+ε−1∑
d=ε

cos

(
π(r′ − 2t)(2d− ε− scq)

2q

)(
cos

(
π (2d− ε− sq)

2q

))r′
.
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COROLLARY. In terms of cosines the sequences Fs;ab(r, t, q) can be expressed as

f00(r, t, q) = f01(r, t, q) =
2r

q

q−1∑
d=0

cos

(
π(r − 2t)d

q

)(
cos

πd

q

)r
,

f10(r, t, q) = f11(r, t, q) =
2r

q

q∑
d=1

cos

(
π(r − 2t)(2d− 1)

2q

)(
cos

(
π(2d− 1)

2q

))r
,

F00(r, t, q) = F11(r, t, q) =
(−1)

(r−c)
2 2r

′

q

q−1∑
d=0

cos

(
π(r − 2t)(2d− cq)

2q

)(
sin

πd

q

)r
,

and

F01(r, t, q) = F10(r, t, q) =
(−1)

(r−c)
2 2r

q

q∑
d=1

cos

(
π(r − 2t)(2d− 1− cq)

2q

)(
sin

π (2d− 1)

2q

)r
.

Proof. The result follows on substitution of each set of parameters into Theorem 4.3.3, and

expressing shifted cosines as sines when applicable.

4.4 Expressing the sums Ls;abc(r, t, q) in terms of cosines

To express Ls;abc(r, t, q) in terms of cosines we employ Theorem 4.3.3 and the following lemma.

LEMMA 4.4.1. We have that

cos

(
π(c− 2t)(D − scq)

2q

)(
cos

(
π (D − sq)

2q

))2−c

= cos

(
π(c− 2t)(2q −D − scq)

2q

)(
cos

(
π (2q −D − sq)

2q

))2−c
.

Proof. We consider the four cases arising from the two parameters s and c. Employing stan-

dard trigonometric identities and when applicable, writing shifted cosines as sines, and putting

T = 1− 2t, we have (commencing with the case s = c = 0)

cos
2πt(2q −D)

2q
cos2

π (2q −D)

2q
= cos

2πtD

2q
(−1)2 cos2

πD

2q
= cos

2πtD

2q
cos2

πD

2q
,

cos
πT (2q −D)

2q
cos

π (2q −D)

2q
= (−1) cos

TD

2q
(−1) cos

πD

2q
= cos

πTD

2q
cos

πD

2q
,

cos
2πt(2q −D)

2q
sin2 π (2q −D)

2q
= cos

2πtD

2q
(−1)2 sin2 πD

2q
= cos

2πtD

2q
sin2 πD

2q
,

and

sin
πT (2q −D)

2q
sin

π (2q −D)

2q
= (−1) sin

2πtD

2q
(−1) sin

πD

2q
= cos

2πtD

2q
sin

πD

2q
.
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We now state Theorem 4.4.2.

THEOREM 4.4.2. We have for q ≥ 2

Ls;abc(r, t, q) =
γr+1−c22r+3−c

q
×(a− 1)st

2
+

b(q+ε−1)/2c∑
d=1

cos

(
π(c− 2t)(2d− ε− scq)

2q

)(
cos

(
π (2d− ε− sq)

2q

))2r+2−c
 ,

where ε ≡ a+ sb (mod 2).

Proof. From Theorem 4.3.3 we have

Fs;ab(r, t, q) =
γbr/2c2r

q

q+ε−1∑
d=ε

cos

(
π(r − 2t)(2d− ε− scq)

2q

)(
cos

π (2d− ε− sq)
2q

)r
.

Replacing r with 2r + 2− c and t with t+ r + 1− c and simplifying we obtain

Fs;ab(2r + 2− c, t+ r + 1− c, q)

=
γr+1−c22r+2−c

q

q+ε−1∑
d=ε

cos

(
π(c− 2t)(2d− ε− scq)

2q

)(
cos

π (2d− ε− sq)
2q

)2r+2−c
. (4.4.1)

From the Corollary to Theorem 4.1.3, it is observed that the sequences F0:0b(r, t, q) (when

ε = 0), has a single term (with value 1) at d = 0. The corresponding term, (with value (−1)t),

in the sequences F1:ab(r, t, q), occurs at d = q/2 when a = b = ε = 0, and at d = (q + 1)/2

when a = 0 and b = ε = 1. Then from Lemma 4.4.1, for either value of ε, each of terms

for 1 ≤ d ≤ b(q − 1)/2c, can be paired to another equal in value, in the upper half of

the summation interval. Hence, following separation of the single term, we halve the upper

summation limit in (4.4.1), and consequently scale the expression by a factor of 2, therefore,

producing the result.

COROLLARY. In terms of cosines the sequences Ls;abc(r, t, q), where q ≥ 2, can be ex-

pressed as

l0b0(r, t, q) =
22r+3

q

1

2
+

b(q−1)/2c∑
d=1

cos

(
2πdt

q

)(
cos

πd

q

)2r+2
 ,

l0b1(r, t, q) =
22r+2

q

1

2
+

b(q−1)/2c∑
d=1

cos

(
πd(1− 2t)

q

)(
cos

πd

q

)2r+1
 ,

l1b0(r, t, q) =
22r+3

q

bq/2c∑
d=1

cos

(
π(2d− 1)t

q

)(
cos

(
π(2d− 1)

2q

))2r+2

,

l1b1(r, t, q) =
22r+2

q

bq/2c∑
d=1

cos

(
π(2d− 1)(1− 2t)

2q

)(
cos

(
π(2d− 1)

2q

))2r+1

,
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L000(r, t, q) =
(−1)r+122r+3

q

(−1)t

2
+

(q−2)/2∑
d=1

cos

(
2πdt

q

)(
sin

πd

q

)2r+2
 ,

L001(r, t, q) =
(−1)r22r+2

q

(−1)t

2
+

(q−2)/2∑
d=1

sin

(
πd(1− 2t)

q

)(
sin

πd

q

)2r+1
 ,

L010(r, t, q) =
(−1)r+122r+3

q

(−1)t

2
+

(q−1)/2∑
d=1

cos

(
π(2d− 1)t

q

)(
sin

(
π(2d− 1)

2q

))2r+2
 ,

L011(r, t, q) =
(−1)r22r+2

q

(−1)t

2
+

(q−1)/2∑
d=1

sin

(
π(2d− 1)(1− 2t)

2q

)(
sin

(
π(2d− 1)

2q

))2r+1
 ,

L100(r, t, q) =
(−1)r+122r+3

q

q/2∑
d=1

cos

(
π(2d− 1)t

q

)(
sin

(
π(2d− 1)

2q

))2r+2

,

L101(r, t, q) =
(−1)r22r+2

q

q/2∑
d=1

sin

(
π(2d− 1)(1− 2t)

2q

)(
sin

(
π(2d− 1)

2q

))2r+1

,

L110(r, t, q) =
(−1)r+122r+3

q

(q−1)/2∑
d=1

cos

(
2πdt

q

)(
sin

πd

q

)2r+2

,

and

L111(r, t, q) =
(−1)r22r+2

q

(q−1)/2∑
d=1

sin

(
πd(1− 2t)

q

)(
sin

πd

q

)2r+1

.

Proof. The result follows on substitution of each set of parameters into Theorem 4.4.2, and

expressing shifted cosines as sines when applicable.

Remark. When the parameter c = 1 and the variable t = 1, that is for the sequences

Ls;ab1(r, 1, q), we find that the sums conveniently simplify and can, therefore, be expressed

concisely as the sum of (r + 1)-th powers of 4γcos2(πX/2q), where X is a sum involving d,

a, b, s and q. This is elaborated on with some examples in Appendix A.2.

4.5 Divisibility properties of the sequences Fs;ab(r, t, q)

We seek to determine to what extent the known divisibility properties established by Fleck

[17] and Weisman [44] can be extended to the generalised Fleck sums Fs;ab(r, t, q).

Definition 4.5.1. We denote the highest exponent of the prime p in the nonzero integer F

by ordp(F ). This is referred to as the p-adic valuation of F. If F = 0 we write ordp(F ) =∞.

We state Weisman’s result [44] as our Lemma 4.5.1.
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LEMMA 4.5.1. When q = pe, where p is an odd prime and e is a positive integer, the

following conditions hold:

ordp(Fs;11(r, t, pe)) ≥
⌊

r − pe−1

pe−1(p− 1)

⌋
, and ord2(Fs;00(r, t, 2e)) ≥

⌊
r − 2e−1

2e−1

⌋
. (4.5.1)

Proof. We recall the result (1.1.3) of Weisman.

∑
k≡t (mod pe)

(−1)k
(
r

k

)
≡ 0 (mod pα), where α =

⌊
r − pe−1

φ(pe)

⌋
. (4.5.2)

From (2.2.6) and (2.2.5) we are able to apply (4.5.2) directly to the sums Fs;11(r, t, pe) and

Fs;00(r, t, 2e) respectively.

The second inequality of (4.5.1) can take the succinct form as given in Corollary 1 below.

COROLLARY 1. When q = 2e and r = j2e + l, where j ≥ 1 and 0 ≤ l < 2e, we have

ord2(Fs;00(r, t, 2e)) ≥

{
2j − 1 if l = 0

2j if 1 ≤ l ≤ 2e − 1.
(4.5.3)

Proof. The result follows upon substitution and simplification of the second inequality of

(4.5.1).

When e = 1, then q = p and Lemma 4.5.1 simplifies to (1.1.2), that is, the result of Fleck

[17], producing Corollary 2 (below).

COROLLARY 2. For q = p, an odd prime, we have the following inequalities

ordp(Fs;11(r, t, p)) ≥
⌊
r − 1

p− 1

⌋
and ord2(Fs;00(r, t, 2)) ≥ r − 1.

Proof. This is how the result of Lemma 4.5.1 simplifies when e = 1.

Remark. In actual fact ord2(Fs;00(r, t, 2)) = r − 1.

Lemma 4.5.1 establishes divisibility properties for certain types of Fleck sums when q = pe

is a power of a prime p. We next employ some further lemmas to examine relations between

the various types of sums Fs;ab(r, t, q).

LEMMA 4.5.2. When r = 2nq + q + 2t, where n ≥ 0, we have

Fs;0b(r, t, q) = 2Fs;00(r, t, 2q).

Proof. When r = 2nq + q + 2t and the modulus is 2q by symmetry we can manipulate the

residue class t of the sum Fs;00(r, t, 2q) as

Fs;00(r, t, 2q) = γrFs;00(r, r − t, 2q) = γqFs;00(r, 2nq + q + t, 2q) = γqFs;00(r, t+ q, 2q)
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and so

Fs;00(2nq + q + 2t, t, 2q) = γqFs;00(2nq + q + 2t, t+ q, 2q).

However, from Theorem 2.2.5 we also have

Fs;0b(2nq + q + 2t, t, q) = Fs;00(2nq + q + 2t, t, 2q) + γqFs;00(2nq + q + 2t, t+ q, 2q)

= 2Fs;00(2nq + q + 2t, t, 2q)

as required.

LEMMA 4.5.3. We have the following relations:

Fs;11(r, t, q) + Fs;01(r, t, q) = 2Fs;00(r, t, 2q), (4.5.4)

and

Fs;00(r, t, q) + Fs;10(r, t, q) = 2Fs;00(r, t, 2q). (4.5.5)

Proof. From Theorem 2.2.5 we have

Fs;ab(r, t, q) =
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)a+sb

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)
, (4.5.6)

and so from (2.2.6),

Fs;11(r, t, q) + Fs;01(r, t, q)

=
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)1+s

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)

+
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+ (−1)s

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)

= 2
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
= 2Fs;00(r, t, 2q),

and from (2.2.5),

Fs;00(r, t, q) + Fs;10(r, t, q)

=
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
+

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)

+
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
−

∑
k≡t+q (mod 2q)

(−1)sk
(
r

k

)

= 2
∑

k≡t (mod 2q)

(−1)sk
(
r

k

)
= 2Fs;00(r, t, 2q).
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COROLLARY. When r = 2nq + q + 2t, where n is a nonnegative integer we have

Fs;1b(2nq + q + 2t, t, q) = 0.

Proof. We substitute the result of Lemma 4.5.2 into (4.5.4) and (4.5.5) of Lemma 4.5.3.

Equation (4.5.5) indicates a divisibility property of the sum Fs;10(r, t, 2e) that we explore in

Lemma 4.5.4.

LEMMA 4.5.4. With q = 2e and r = j2e + l, where j ≥ 1 and 0 ≤ l < 2e, we have

ord2(Fs;10(r, t, 2e)) = ord2(Fs;00(r, t, 2e+1)) ≥ j.

Proof. Rearranging (4.5.5), we have

Fs;10(r, t, q) = 2Fs;00(r, t, 2q)−Fs;00(r, t, q) (4.5.7)

and so

ord2(Fs;10(r, t, 2e)) = min
(
ord2(2Fs;00(r, t, 2e+1)), ord2(Fs;00(r, t, 2e))

)
≥min

(
ord2

(
2

⌊
r−2e
2e

⌋
+ 1
)
, ord2

(
2

⌊
r−2e−1

2e−1

⌋))

≥min

(
ord2

(
2

⌊
j2e+l−2e

2e

⌋
+ 1
)
, ord2

(
2

⌊
j2e+1+2l−2e

2e

⌋))
≥min(j, 2j − 1) ≥ j

since l ≤ 2e − 1 and j ≥ 1.

When r = m2e+1 + 2e + 2t, (m ≥ 0), then from the Corollary of Lemma 4.5.3, we have that

Fs;10(r, t, q) = 0. However, by definition ord2(0) =∞ > j as required.

4.5.1 The primality of the term 1− ζq

At this point we are yet to state any divisibility properties of the sum Fs;01(r, t, q), or to

the more general case of each of the functions Fs;ab when the modulus q has more than one

distinct prime factor. We next seek to address these questions, but this first requires a brief

examination of prime ideal factors in the cyclotomic field Q(ζq) that comprise the terms

Fs;ab(r, t, pe).

LEMMA 4.5.5. When q is a prime power pe and ζq is a primitive q-th root of unity, the

term 1− ζq is prime in Q(ζq).

Proof. Since q = pe and ζq is a primitive q-th root of unity, we have ζqq = 1, but ζ
q/p
q 6= 1,

and so ζq is a root of the equation

0 =
xq − 1

xq/p − 1
= 1 + xq/p + x2q/p + . . .+ x(p−1)q/p, (4.5.8)
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and the degree of the field Q(ζq) is f = φ(q) = pe−1(p− 1).

Now let λ = 1 − ζq, so that on rearrangement ζq = 1 − λ. With y = 1 − x, the minimal

polynomial of ζq on the right hand side of (4.5.8) becomes

f(y) = 1 + (1− y)q/p + (1− y)2q/p + . . .+ (1− y)(p−1)q/p. (4.5.9)

On expansion of (4.5.9) with f = (p−1)q/p, (since there are p terms) we obtain the simplified

minimal polynomial of λ:

f(y) = yf + af−1y
f−1 + . . .+ a1y + p. (4.5.10)

In Q(ζp), (4.5.10) then factorises as

f(y) = (y − λ1)(y − λ2) . . . (y − λf ), (4.5.11)

where λi = (1− ζqki) for 1 ≤ i ≤ f and (ki, q) = 1.

From (4.5.10) and (4.5.11) we now have 1

Norm(λi) =

f∏
i=1

λi =

∗∏
ki

(1− ζqki) = p, (4.5.12)

and since p is a rational prime integer, we see from (4.5.12) that each of the (field) integers

λi are also prime.

LEMMA 4.5.6. Each of the numbers λi = (1−ζkiq ) with 1 ≤ i ≤ f and (ki, p
e) = 1 generates

the same principal degree 1 prime ideal in Q(ζq). Furthermore p is a totally ramified prime

in Q(ζq).

Proof. From (4.5.12) of Lemma 4.5.5 we have that as (field) integers in Q(ζq), 1 − ζqki is

prime when (ki, q) = 1. So that as ideals we have

〈1− ζqki〉 | 〈p〉.

However,

1− ζkiq = (1− ζq)(1 + ζq + ζ2q + . . .+ ζki−1q )

and so similarly as ideals

〈1− ζkiq 〉 = 〈1− ζq〉〈1 + ζq + ζ2q + . . .+ ζki−1q 〉. (4.5.13)

We denote N(〈λ〉) as the norm of the ideal 〈λ〉. Now since it is a totally multiplicative

function, we take the norm of both sides of (4.5.13) and using (4.5.12) we have

p = N(〈1− ζkiq 〉) = N(〈1− ζq〉)N(〈1 + ζq + ζ2q + . . .+ ζki−1q 〉)

= pN(〈1 + ζq + ζ2q + . . .+ ζki−1q 〉)

= p.1.

1∗ indicates that the product is taken over the set of values, where ki is relatively prime to and less than q.
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That is, the ideal 〈1 + ζq + ζ2q + . . .+ ζki−1q 〉 is a unit and each of the ideals 〈λi〉 = 〈1− ζkiq 〉
is the same prime ideal 〈λ〉. Therefore, in Q(ζq) the prime 〈λ〉 is a principal ideal number, so

that we have as ideals

〈
f∏
i=1

λi〉 =

f∏
i=1

〈λi〉 = 〈λi〉f = 〈p〉, (4.5.14)

demonstrating that p is a totally ramified prime in Q(ζq).

In the sums F0;ab(r, t, p
e), we consider the terms 1 + ζ2q instead of those of 1− ζq, so its

seems pertinent in the next two lemmas to demonstrate the equivalence of the term 1 + ζg2q,

where (g, 2q) = 1, to that of a corresponding term 1− ζdq , where (d, q) = 1.

LEMMA 4.5.7. With modulus q = pe, where p > 2 is prime and ζq a primitive q-th root of

unity we have
∗∏
d

(1− ζdq ) =
∗∏
g

(1 + ζg2q). (4.5.15)

Proof. When (d, p) = 1, then

−ζdq = −e
2πıd
q = e

2πıq
2q e

2πı2d
2q = e

2πı(2d+q)
2q = e

2πıg
2q = ζg2q.

Therefore,

1− ζdq = 1 + ζg2q,

and with g = 2d + q (reduced mod 2q if necessary), since (2d, q) = 1, we have (g, 2q) = 1

so that the mapping is injective. Moreover, φ(q) = φ(2q) = pe−1(p − 1) and so it is also

surjective. Consequently we obtain (4.5.15) as required.

LEMMA 4.5.8. With modulus q = 2e and ζq a primitive q-th root of unity we have

∗∏
d

(1− ζdq ) =
∗∏
d

(1 + ζdq ). (4.5.16)

Proof. Let q = 2e and (d, 2) = 1, then

−ζdq = −e
2πıd
q = e

2πıq
2q e

2πı2d
2q = e

2πı(2d+2e)
2e+1 = e

2πı(d+2e−1)
2e = e

2πıg
q = ζgq .

Therefore,

1− ζdq = 1 + ζgq ,

and with g = d+ q/2 (reduced mod q if necessary), since (d, 2e−1) = 1, we have (g, q) = 1 so

that the mapping is injective. Moreover, it is clearly also surjective. Consequently each value

of g corresponds to one value of d and so we obtain (4.5.16) as required.

Now in Lemma 4.5.9 and its Corollary, we are in a position to examine the more general

case: when the modulus q has more than one distinct prime factor.
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LEMMA 4.5.9 (Huxley’s Disappointing Lemma). When q has two distinct prime factors p

and p′, then 1− ζq is a unit.

Proof. Let q = pp′r, ω = ζp
′r
q , ω′ = ζprq . Then ω is a primitive p-th root of unity, and ω′ is a

primitive p′-th root of unity, so that

〈1− ζq〉 | 〈1− ω〉 | 〈p〉, and 〈1− ζq〉 | 〈1− ω′〉 | 〈p′〉

and, therefore,

〈1− ζq〉 | 〈p, p′〉.

However, 〈p, p′〉 = 〈1〉, and therefore, 〈1− ζq〉 is a unit.

COROLLARY. When q = pp′r, where p and p′ are two distinct prime factors, then the

term Fs;ab(r, t, q) possesses no divisibility properties.

Proof. From Lemma 4.5.9 when the modulus q has more than one distinct prime factor, the

ideal 〈1− ζq〉 is a unit. Therefore, from (4.5.14) of Lemma 4.5.6 we will have

〈1− ζq〉f = 〈1〉,

and we cannot expect to observe regular powers of the prime factors, comprising the modulus

q, to appear in the sums Fs;ab(r, t, q).

Finally we summarise the divisibility properties contained in the above Lemmas with

Theorem 4.5.10.

THEOREM 4.5.10. The only expected divisibility properties of the sums Fs;ab(r, t, q) are:

1.

ordp(Fs;11(r, t, pe)) ≥
⌊

r − pe−1

pe−1(p− 1)

⌋
,

and when r = j2e + l, where j ≥ 1 and 0 ≤ l < 2e,

2.

ord2(Fs;00(r, t, 2e)) ≥
⌊
r − 2e−1

2e−1

⌋
=

{
2j − 1 if l = 0

2j if 1 ≤ l ≤ 2e − 1,

and

3.

ord2(Fs;10(r, t, 2e)) ≥ j.

Proof. Divisibility property 1 follows from Lemma 4.5.1; inequality 2 from Lemma 4.5.1 and

Corollary 1 of this lemma and finally inequality 3 from Lemma 4.5.4. The fact that these

particular sums are the only ones to be expected to possess these divisibility properties follow

from Lemma 4.5.9 and its Corollary, that prevents the sums Fs;ab(r, t, q) with moduli q of

more than one distinct prime factor from containing a regular power of these prime factors

p1, p2, . . . , pn.



Chapter 5

Recurrences

In this chapter our primary interest lies in the establishment of an order n linear recurrence

relation involving n+ 1 consecutive terms for each sequence t of the sums Ls;abc(r, t, 2m+ b).

We denote this linear recurrence polynomial by Rs;ab(x,m) and unless a = 0 and b = 1,

we find that n = m. In this individual case we have that n = m + 1. Previous studies ([9],

[38] and [39]) have determined that the Fibonacci (FQ(x)) and Lucas (LQ(x)) polynomials

and the (monic) Chebyshev polynomials of the first (CQ(x)) and second (SQ(x)) kind are

central to these recurrence relation polynomials and consequently we devote a section to the

development of each of the four types. In Theorem 5.4.1 and the Corollary to it, we combine

these four types into a single polynomial that we denote as Arab(x,Q). Finally in Theorem

5.6.1 we then express Rab(x,m) in terms of Arab(x,Q).

The Jacobsthal and Jacobsthal-Lucas polynomials are employed in Chapter 8 to express the

generating function of the functions Ls;abc, but due to their close respective relations to the

Fibonacci and Lucas polynomials they are also discussed alongside these latter poynomials.

We start by considering a polynomial AQ(x) that encompasses the four polynomials FQ(x),

LQ(x), CQ(x) and SQ(x), which we refer to collectively as “Fibonacci type” polynomials.

Definition 5.0.1. With Q = 2M + e, where M ≥ 0 and 0 ≤ e ≤ 2 are integers, we denote

by A2M+e(x) a polynomial that represents the Qth Fibonacci, Lucas or (monic) Chebyshev

polynomial of the first or second kind. Accordingly we write

A2M+e(x) =
M∑
k=0

(−γ)M−kB(k,M)x2k+e−f

as the generalised sum form of the polynomial. Here f is determined by

f =

{
0 if AQ(x) 6= FQ(x)

1 if AQ(x) = FQ(x),

where FQ(x) is the Qth Fibonacci polynomial; γ is given by

γ is

{
−1 if AQ(x) is a Fibonacci or Lucas polynomial

1 if AQ(x) is a (monic) Chebyshev polynomial,

43



44

and finally B(k,M) is a function of one or binomial coefficients.

Remark. Defining Q in this manner puts emphasis on the fact that the function summed

up to M .

Definition 5.0.2. For function A2M+e defined as in Definition 5.0.1 and parameter r ∈ {0, 1}
we also have the modified polynomial Ar2M+e(x) such that

Ar2M+e(x) = (
√
x)f−eA2M+e(

√
x) =

M∑
k=0

(−γ)M−kB(k,M)xk.

Remark. Here the parameter r represents a “(square) rooting” of the variable x of the

original function, AQ.

The notation employed in Definitions 5.0.1 and 5.0.2 have been selected to mirror as closely

as possible the current formats of each of the two aforementioned groups of polynomials.

5.1 Fibonacci, Lucas and Jacobsthal polynomials

The Fibonacci and Lucas ploynomials are well documented and for a detailed exposition

of these polynomials the reader is directed to [29]. The main purpose of their inclusion is

to examine their polynomial representation as binomial sums that will be pertinent to our

current work in terms of the recurrence polynomials and the generating functions. To this

end the Jacobsthal polynomials are also important to us. However, on researching these latter

polynomials in the literature this author feels that there is some ambuigity as to the precise

definition of these polynomials (and numbers) and so a little work has been done to hopefully

help clarify this matter.

5.1.1 The Fibonacci polynomials, Fn(x)

With F0(x) = 0 and F1(x) = 1, the Fibonacci polynomials are defined by the recurrence

formula

Fn(x) = xFn−1(x) + Fn−2(x). (5.1.1)

With x = 1, we have that Fn(1) = Fn, the n-th Fibonacci number. These polynomials are

generated more efficiently, either (for n ≥ 2) by a product formula, or (for n ≥ 1) by a

binomial sum, given as

Fn(x) =
n−1∏
k=1

(
x− 2ı cos

kπ

n

)
=

b(n−1)/2c∑
k=0

(
n− k − 1

k

)
xn−2k−1.

Of particular interest to us in this present study are considering separately the specific

cases of n = 2m+ b, being either an even (n = 2m = 2(m− 1) + 2), or an odd (n = 2m+ 1)

number. These even and odd forms make reference to the fact that the upper limit of the
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sum is M = m− (1− b).
Therefore, replacing n with 2M + 2 − b, according as to the parity of n, we write the nth

Fibonacci polynomial as

F2M+2−b(x) =

M∑
k=0

(
2M + 1− b− k

k

)
x2M+1−b−2k, (5.1.2)

or on reversing the summation

M∑
k=0

(
M + k + (1− b)

2k + (1− b)

)
x2k+(1−b).

From our current perspective, it is of value to us to express (5.1.2) as a polynomial where

the power of each term decreases uniformly by 1. We achieve this quite simply by making the

substitution
√
x for x, and multiplying through by (

√
x)b−1. Now employing the notation of

Definition 5.0.2 we have

F r2M+2−b(x) = (
√
x)b−1F2M+2−b(

√
x) =

M∑
k=0

(
2M + 1− b− k

k

)
xM−k =

M∑
k=0

(
M + k + 1− b

2k + 1− b

)
xk.

(5.1.3)

When b = 0, (5.1.3) becomes

F r2M+2(x) = (
√
x)−1F2M+2(

√
x) =

M∑
k=0

(
2M + 1− k

k

)
xM−k =

M∑
k=0

(
M + k + 1

2k + 1

)
xk, (5.1.4)

and when b = 1,

F r2M+1(x) = F2M+1(
√
x) =

M∑
k=0

(
2M − k

k

)
xM−k =

M∑
k=0

(
M + k

2k

)
xk. (5.1.5)

Table 5.1: The Fibonacci polynomials Fn(x) and the modified Fibonacci polynomials F rn(x),
for 1 ≤ n ≤ 8, with n = 2m+ b = 2M + 2− b, where M = m− (1− b) and b is the parity of
n.

n m M b Fn(x) F rn(x)

1 0 0 1 1 1

2 1 0 0 x 1

3 1 1 1 x2 + 1 x+ 1

4 2 1 0 x3 + 2x x+ 2

5 2 2 1 x4 + 3x2 + 1 x2 + 3x+ 1

6 3 2 0 x5 + 4x3 + 3x x2 + 4x+ 3

7 3 3 1 x6 + 5x4 + 6x2 + 1 x3 + 5x2 + 6x+ 1

8 4 3 0 x7 + 6x5 + 10x3 + 4x x3 + 6x2 + 10x+ 4
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5.1.2 The Lucas polynomials, Ln(x)

Employing the standard convention, we denote by Ln(x), the n-th Lucas polynomial. With

the initial values L0(x) = 2 and L1(x) = x, these polynomials obey the same recurrence

relation as (5.1.1), so that

Ln(x) = xLn−1(x) + Ln−2(x).

The product formula is, with n ≥ 1, given by (see [29])

Ln(x) =

n−1∏
k=0

(
x− 2ı cos

(2k + 1)π

2n

)
.

However, the simple amendment of L0(x) = 2, as opposed to F0(x) = 0, has implications for

the (binomial) sum. For now two binomial terms generate the n-th polynomial, given by

Ln(x) =

bn/2c∑
k=0

[(
n− k
k

)
+

(
n− k − 1

k − 1

)]
xn−2k =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
xn−2k. (5.1.6)

On putting n = 2m+ b, (5.1.6) becomes

L2m+b(x) =

m∑
k=0

2m+ b

2m+ b− k

(
2m+ b− k

k

)
x2m+b−2k =

m∑
k=0

2m+ b

m+ b+ k

(
m+ k + b

2k + b

)
x2k+b.

Remark. Since M = m, for the purpose of clarity it is preferable to use m rather than M .

Once more, we replace x with
√
x, and multiply through by (

√
x)−b, and using the notation

of Definition 5.0.2, we have

Lr2m+b(x) = (
√
x)−bL2m+b(

√
x) =

m∑
k=0

2m+ b

2m+ b− k

(
2m+ b− k

k

)
xm−k

=

m∑
k=0

2m+ b

m+ k + b

(
m+ k + b

2k + b

)
xk. (5.1.7)

Then when b = 0, (5.1.7) becomes

Lr2m(x) = L2m(
√
x) =

m∑
k=0

2m

2m− k

(
2m− k
k

)
xm−k =

m∑
k=0

2m

m+ k

(
m+ k

2k

)
xk, (5.1.8)

and when b = 1, we have

Lr2m+1(x) = (
√
x)−1L2m+1(

√
x) =

m∑
k=0

2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
xm−k

=
m∑
k=0

2m+ 1

m+ k + 1

(
m+ k + 1

2k + 1

)
xk. (5.1.9)

Remark. An important point is that the substitution of −x for x shifts the zeroes of the

polynomial from the imaginary axis to the real axis.
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Table 5.2: The Lucas polynomials, Ln(x), and the modified Lucas polynomials, Lrn(x), for
1 ≤ n ≤ 8 with n = 2m+ b where b is the parity of n.

n m b Ln(x) Lrn(x)

1 0 1 x 1

2 1 0 x2 + 2 x+ 2

3 1 1 x3 + 3x x+ 3

4 2 0 x4 + 4x2 + 2 x2 + 4x+ 2

5 2 1 x5 + 5x3 + 5x x2 + 5x+ 5

6 3 0 x6 + 6x4 + 9x2 + 2 x3 + 6x2 + 9x+ 2

7 3 1 x7 + 7x5 + 14x3 + 7x x3 + 7x2 + 14x+ 7

8 4 0 x8 + 8x6 + 20x4 + 16x2 + 2 x4 + 8x3 + 20x2 + 16x+ 2

5.2 The Jacobsthal and Jacobsthal-Lucas Polynomials

5.2.1 The Jacobsthal Polynomials

In 1919, Jacobsthal [27] defined (using later notation) the Jacobsthal polynomials (for n ≥ 2)

by the recurrence relation

Jn(x) = Jn−1(x) + xJn−2(x). (5.2.1)

As in the case of the Fibonacci polynomials we have initial conditions J0 = 0 and J1 = 1.

From this relation we establish the Jacobsthal polynomial, Jn(x), written as a sum is

Jn(x) =

b(n−1)/2c∑
k=0

(
n− k − 1

k

)
xk. (5.2.2)

With n = 2M + 2− b, where M = m− (1− b), (5.2.2) becomes either

J2(m−1)+2(x) =

m−1∑
k=0

(
2(m− 1)− k + 1

k

)
xk or J2m+1(x) =

m∑
k=0

(
2m− k
k

)
xk. (5.2.3)

Remark. On examination one sees that the Jacobsthal polynomials have identical binomial

coefficients to the Fibonacci polynomials but differ in the exponent of the variable x. On

reversing the order of these polynomial coefficients we thus obtain our modified Fibonacci

functions F r2M+2−b.

Setting x = 1, we have Jn(1) = Fn(1) = Fn, the nth Fibonacci number. For application

of these polynomials as defined in (5.2.2) we refer the reader to such works as Bergram and

associates [6], Hoggatt Jr. and Bicknell-Johnson [21] and Koshy [29].

In a series of three papers commencing in 1988, [22], [23] and [24], Horadam introduced

an additional factor of 2 into the recurrence (5.2.1) producing the altered relation (using, to

avoid confusion, our own notation)

J (2)
n (x) = J

(2)
n−1(x) + 2xJ

(2)
n−2(x), (5.2.4)
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with corresponding sum

J (2)
n (x) =

b(n−1)/2c∑
k=0

(
n− k − 1

k

)
(2x)k. (5.2.5)

His rational reflected a desire to mirror the Pell polynomials that he was also working on

at the time. A point that he alluded to in the latter of these papers. However, subsequent

authors such as Swamy (1999) [43] and Djordjevic (2000) [16] have taken (5.2.4) as the

standard definition of a Jacobsthal polynomial (also using the notation Jn(x)) and as a

consequence this now appears as the definition on sites such OEIS, Wikipedia and Wolfram

Mathworld.

Of course, as is evident by comparing (5.2.2) and (5.2.5), we can easily relate the polyno-

mials J
(2)
n (x) and Jn(x) by

Jn(x) = J (2)
n (x/2).

Table 5.3: The Jacobsthal polynomials J
(2)
n (x) and the polynomials Jn(x) and Jn(−x), for

1 ≤ n ≤ 8 with n = 2m+ b = 2M + 2− b, where b is the parity of n.

n m M b J
(2)
n (x) Jn(x) Jn(−x)

1 0 0 1 1 1 1

2 1 0 0 1 1 1

3 1 1 1 1 + 2x 1 + x 1− x
4 2 1 0 1 + 4x 1 + 2x 1− 2x

5 2 2 1 1 + 6x+ 4x2 1 + 3x+ x2 1− 3x+ x2

6 3 2 0 1 + 8x+ 12x2 1 + 4x+ 3x2 1− 4x+ 3x2

7 3 3 1 1 + 10x+ 24x2 + 8x3 1 + 5x+ 6x2 + x3 1− 5x+ 6x2 − x3
8 4 3 0 1 + 12x+ 40x2 + 32x3 1 + 6x+ 10x2 + 4x3 1− 6x+ 10x2 − 4x3

5.2.2 The Jacobsthal-Lucas polynomials

As the Lucas ploynomials are a sister sequence to the Fibonacci polynomials, it would seem

only natural to have a parallel companion to the Jacobsthal polynomials. Surprisingly it ap-

pears that this does not seem to have been documented until Horadam (1997) [24]. Horadam

used the notation jn(x) for the nth Jacobsthal-Lucas polynomial.

It seems apt to employ the notation of Horadam, but with the caveat that

jn(x) = jn−1(x) + xjn−2(x),
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with the initial values j0(x) = 2 and j1(x) = 1 This produces for the nth polynomial

jn(x) =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
xk. (5.2.6)

Then with n = 2m, and n = 2m+ 1 respectively, we have

j2m(x) =
m∑
k=0

2m

2m− k

(
2m− k
k

)
xk, and j2m+1(x) =

m∑
k=0

2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
xk.

(5.2.7)

Again if we employ the notation j
(2)
n (x) for Horadam’s Jacobsthal-Lucas polynomials we have

the relation

jn(x) = j(2)n (x/2).

Table 5.4: The Jacobsthal-Lucas polynomials j
(2)
n (x) and the polynomials jn(x) and jn(−x),

for 1 ≤ n ≤ 8, with n = 2m+ b, where b is the parity of n.

n m b j
(2)
n (x) jn(x) jn(−x)

1 0 1 1 1 1

2 1 0 1 + 4x 1 + 2x 1− 2x

3 1 1 1 + 6x 1 + 3x 1− 3x

4 2 0 1 + 8x+ 8x2 1 + 4x+ 2x2 1− 4x+ 2x2

5 2 1 1 + 10x+ 20x2 1 + 5x+ 5x2 1− 5x+ 5x2

6 3 0 1 + 12x+ 36x2 + 16x3 1 + 6x+ 9x2 + 2x3 1− 6x+ 9x2 − 2x3

7 3 1 1 + 14x+ 56x2 + 56x3 1 + 7x+ 14x2 + 7x3 1− 7x+ 14x2 − 7x3

To complete this section we will complete two lemmas that illustrate the inter-relationship

between the Fibonacci and Jacobsthal polynomials and then the Lucas and Jacobsthal-Lucas

polynomials.

LEMMA 5.2.1 (Jacobsthal reciprocal).

xMF r2M+2−b(1/x) = J2M+2−b(x).

Proof. We multiply either (5.1.4) or (5.1.5) by xM and replace x with 1/x to give

xMF r2M+2−b(1/x) = xM
M∑
k=0

(
2M + 1− b− k

k

)
(x−1)M−k

=
M∑
k=0

(
2M + 1− b− k

k

)
xk = J2M+2−b(x).

LEMMA 5.2.2 (Jacobsthal-Lucas reciprocal). We have

xmLr2m+b(1/x) = j2m+b(x).
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Proof. We multiply either (5.1.8) or (5.1.9) by xm and replace x with 1/x to obtain

xmLr2m+b(1/x) = xm
m∑
k=0

2m+ b

2m+ b− k

(
2m+ b− k

k

)
(x−1)m−k

=
m∑
k=0

2m+ b

2m+ b− k

(
2m+ b− k

k

)
xk = j2m+b(x).

These lemmas will be employed later in Chapter 8 concerning our work on establishing

forms for the generating functions of our functions Ls;abc.

5.3 The Chebyshev Polynomials Tn(x), Un(x) Cn(x), Sn(x)

Starting with the substitution x = cos θ, so that x is defined on the interval [−1, 1], we define

Tn(cos θ) = cosnθ,

or putting x = cos θ,

Tn(x) = cos (n cos−1 x),

as the n-th Chebyshev polynomial of the first kind. It is a well establised result (see for

example [5], [35] and [36]) that all n roots of this polynomial are real. By differentiation of

Tn(x) we obtain n− 1 local extrema points. These points are given by

Un−1(x) =
1

n

d

dx
Tn(x) =

sin
(
n cos−1 x

)
sin (cos−1 x)

, (5.3.1)

where Un(x) is defined as the n-th Chebyshev polynomial of the second kind.

Three term recurrence relation

The polynomials themselves can be produced by a variety of methods. Perhaps the simplest

being a three term recurrence relation that in terms of Tn(x) is

Tn+1(x) = 2xTn(x)− Tn−1(x), (5.3.2)

where we have T0(x) = 1 and T1(x) = x.

We note that (5.3.2) follows immediately from the trigonometric relation

2 cosnθ cosmθ = cos (n+m)θ + cos (n−m)θ (5.3.3)

on putting m = 1.

The recurrence relation (5.3.2) holds equally for Un(x) with the minor modification that

U0(x) = 1 and U1(x) = 2x.
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5.3.1 Product of the roots

Given that the location of the roots of both Tn(x) and Un(x) are known, (see for example,

[18], [35] or [36]) their corresponding polynomials can be easily expressed as a product of

linear factors. We find that

Tn(x) = 2n−1
n∏
k=1

(
x− cos

(2k − 1)π

2n

)
, (5.3.4)

and

Un(x) = 2n
n∏
k=1

(
x− cos

kπ

n+ 1

)
. (5.3.5)

It is often desirable when working with these polynomials to express them in monic form.

With n ≥ 1, we then write (5.3.4) and (5.3.5) respectively as

Cn(x) = 2Tn(x/2) =
n∏
k=1

(
x− 2 cos

(2k − 1)π

2n

)
,

and

Sn(x) = Un(x/2) =

n∏
k=1

(
x− 2 cos

kπ

n+ 1

)
.

It is these monic polynomials, Cn(x) and Sn(x), that have most relevance to us in this study.

5.3.2 Expression of the polynomial as a (binomial) sum

The expressions for these polynomials as sums of terms in the literature are written in different

ways. We will start with a form given by Snyder [36] as

Tn(x) =
1

2

bn/2c∑
k=0

(−1)k2n−2k
n

n− k

(
n− k
k

)
xn−2k,

or in terms of the monic polynomial, and writing n = 2m+ b we obtain

C2m+b(x) =

m∑
k=0

(−1)k
2m+ b

2m+ b− k

(
2m+ b− k

k

)
x2m+b−2k.

Then following the notation of Definition 5.0.2, and considering seperately the cases b = 0

and b = 1, we have

Cr2m(x) = C2m(
√
x) =

m∑
k=0

(−1)k
2m

2m− k

(
2m− k
k

)
xm−k,

and

Cr2m+1(x) = (
√
x)−1C2m+1(

√
x) =

m∑
k=0

(−1)k
2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
xm−k.
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Remark. We note that whereas each of the Fibonacci-type polnomials are composed natu-

rally of same sign terms, the Chebyshev polynomials are naturally of an alternating sign.

LEMMA 5.3.1 (Ln − Cn association). For Lr2m+b(x) and Cr2m+b(x) given as in Defini-

tion 5.0.2, where Ln(x) represents the n-th Lucas polynomial and Cn(x) the n-th monic

Chebyshev polynomial of the first kind, we have

Lr2m+b(−x) = (−1)mCr2m+b(x).

Proof. We replace x with −x in (5.1.7) to obtain

Lr2m+b(−x) =

m∑
k=0

2m+ b

2m+ b− k

(
2m+ b− k

k

)
(−x)m−k

= (−1)m
m∑
k=0

(−1)k
2m+ b

2m+ b− k

(
2m+ b− k

k

)
(x)m−k = (−1)mCr2m+b(x).

Remark. We associate the polynomials in [30] to our own polynomials as follows:

Pm(x) = Lr2m(x) = (−1)mCr2m(−x), and Qm(x) = Lr2m+1(x) = (−1)mCr2m+1(−x).

Since for the purpose of our current investigation we wish to associate the (monic) Cheby-

shev polynomials of the second kind to the Fibonacci Polynomials, with n = 2m + b, it is

preferable to consider the polynomials, Un−1(x) and Sn−1(x).

Using (5.3.1) we obtain the polynomials Un−1(x), by differentiation of Tn(x).

With n = 2m+ b = 2M + (2− b), where M = m− (1− b) we have

U2m+b−1(x) = U2M+1−b(x) =
M∑
k=0

(−1)k
(

2M + 1− b− k
k

)
(2x)2M+1−b−2k,

or in terms of the monic polynomials S2M+1−b(x),

S2M+1−b(x) =
M∑
k=0

(−1)k
(

2M + 1− b− k
k

)
x2M+1−b−2k. (5.3.6)

Remark. We note that as with the Fibonacci polynomials using M = m−(1−b) as opposed

to m in this manner preserves the upper summation value M .

The modified monic Chebyshev polynomials (of the second kind), Sr2M+1−b(x), for the

particular cases b = 0 and b = 1, are given respectively as

Sr2m−1(x) = Sr2M+1(x) = (
√
x)−1S2M+1(

√
x) =

M∑
k=0

(−1)k
(

2M + 1− k
k

)
xM−k, (5.3.7)

and

Sr2m(x) = Sr2M (x) = S2M (
√
x) =

M∑
k=0

(−1)k
(

2M − k
k

)
xM−k. (5.3.8)
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LEMMA 5.3.2 (F rn − Srn−1 association). For F r2M+2−b(x) and Sr2M+b(x) defined as in

Definition 5.0.2, where Fn(x) represents the Fibonacci polynomials and Sn−1(x) the monic

form of the Chebyshev polynomials of the second kind, we have that

F r2M+2−b(−x) = (−1)MSr2M+1−b(x).

Proof. We replace x with −x in (5.1.3) to obtain

F r2M+2−b(−x) =

M∑
k=0

(
2M + 1− b− k

k

)
(−x)M−k

= (−1)M
M∑
k=0

(−1)k
(

2M + 1− b− k
k

)
xM−k = (−1)MSr2M+1−b(x).

Remark. We associate the polynomials in [30] to our own polynomials as follows:

Pm(x) = F r2m+1(x) = (−1)mSr2m(−x), and Qm(x) = F r2m(x) = (−1)mSr2m−1(−x).

Table 5.5: The monic Chebyshev polynomials, Sn−1(x), and the modified monic Chebyshev
polynomial, Srn−1(x), for 1 ≤ n ≤ 9, with n− 1 = 2m+ b− 1 = 2M + 1− b, where
M = m− (1− b) and b is the parity of n.

n M b Sn−1(x) Srn−1(x)

1 0 1 1 1

2 0 0 x 1

3 1 1 x2 − 1 x− 1

4 1 0 x3 − 2x x− 2

5 2 1 x4 − 3x2 + 1 x2 − 3x+ 1

6 2 0 x5 − 4x3 + 3x x2 − 4x+ 3

7 3 1 x6 − 5x4 + 6x2 − 1 x3 − 5x2 + 6x− 1

8 3 0 x7 − 6x5 + 10x3 − 4x x3 − 6x2 + 10x− 4

9 4 1 x8 − 7x6 + 15x4 − 10x2 + 1 x4 − 7x3 + 15x2 − 10x1 + 1

5.4 Classification of the Fibonacci-type polynomials

To facilitate the expression of the linear recurrence polynomial Rs;ab(x,m) for the sum

Ls;abc(r, t, q) we redefine Definitions 5.0.1 and 5.0.2 in terms of the parameters s, a and b

and the variable m.
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Table 5.6: The Chebyshev polynomials Cn(x) and the modified Chebyshev polynomial, Crn(x),
for 0 ≤ n ≤ 8, with n = 2m+ b where b is the parity of n.

n m b Cn(x) Crn(x)

0 0 0 2 2

1 0 1 x 1

2 1 0 x2 − 2 x− 2

3 1 1 x3 − 3x x− 3

4 2 0 x4 − 4x2 + 2 x2 − 4x+ 2

5 2 1 x5 − 5x3 + 5x x2 − 5x+ 5

6 3 0 x6 − 6x4 + 9x2 − 2 x3 − 6x2 + 9x− 2

7 3 1 x7 − 7x5 + 14x3 − 7x x3 − 7x2 + 14x− 7

8 4 0 x8 − 8x6 + 20x4 − 16x2 + 2 x4 − 8x3 + 20x2 − 16x+ 2

Definition 5.4.1. For (positive) integers s ∈ {0, 1}; a ∈ {0, 1}, b ∈ {0, 1}, q = 2m + b and

Q = q − (1− a)(1− s), we define the associated function As;ab as

As;ab(x,Q) =
2m+b+a−1∏

d=1

(
x− 2ıs cos

(2d− a)π

2(2m+ b)

)

=

M∑
k=0

(−γ)k
(

2M +B

2M +B − k

)a(2M +B − k
k

)
x2M+B−2k,

and the modified associated function Ars;ab as

Ars;ab(x,Q) = (
√
x)−ε

2m+b+a−1∏
d=1

(√
x− 2ıs cos

(2d− a)π

2(2m+ b)

)

=

M∑
k=0

(−γ)k
(

2M +B

2M +B − k

)a(2M +B − k
k

)
xM−k,

where γ = (−1)s, ε = a(2b− 1) + 1− b, M = m− (1− a)(1− b) and B = (1− a) + b(2a− 1).

Connecting Definitions 5.0.2 and 5.4.1 we have

e = (1 + s)(1− a) + b(2a− 1), f = s(1− a),

and

ε = e− f = a(2b− 1) + 1− b =

{
0 if a 6= b

1 if a = b.
(5.4.1)

Applying ε to the specific polynomials we obtain the relations given in Table 5.7.

Remark. For As;ab and Ars;ab defined as in Definition 5.4.1, we find that when s = 0, all the

roots lie on the real axis and we are able to identify them as the roots of a monic Chebyshev

polynomial of either the first or second kind, whereas when s = 1, these roots are spaced along

the imaginary axis and are identified as the roots of either a Fibonacci or a Lucas polynomial.
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Table 5.7: Relationship between ε and the Fibonacci type polynomials.

a polynomial type ε

0 F rq (x), Srq−1(x) 1− b
1 Lrq(x), Crq (x) b

We demonstrate the above remark with Theorem 5.4.1.

THEOREM 5.4.1 (expression of As;ab(x,Q) as a Fibonacci type polynomial). The poly-

nomial As;ab(x,Q) defined in Definition 5.4.1 is equated to a Fibonacci, Lucas or (monic)

Chebyshev polynomial such that

As;ab(x,Q) =



S2(m−1+b)+1−b(x) if s = 0, a = 0

C2m+b(x) if s = 0, a = 1

F2(m−1+b)+2−b(x) if s = 1, a = 0

L2m+b(x) if s = 1, a = 1,

where Q = q − (1− a)(1− s), and q = 2m+ b.

Proof. This follows on substitution of each value of each of the parameters s, a and b into the

product and binomial and forms of As;ab(x,Q) as given in Definition 5.4.1, and then compared

with the corresponding (monic) Chebyshev, Fibonacci and Lucas polynomial forms. We detail

the first case below and provide the full proof in Appendix B.1.

A0;00(x, 2m− 1) = A0;00(x, 2(m− 1) + 1)

=

2m−1∏
d=1

(
x− 2 cos

πd

2m

)
=

m−1∑
k=0

(−1)k
(

2(m− 1) + 1− k
k

)
x2(m−1)+1−2k

= S2(m−1)+1(x).

From this theorem we similarly express the modified polynomials, Ars;ab(x,Q), using the

following corollary.

COROLLARY. The modified polynomials Ars;ab(x,Q) are related to a modified Chebyshev,

Fibonacci or Lucas polynomial in the following manner:

Ars;ab(x,Q) =



Sr2(m−1+b)+1−b(x) if s = 0, a = 0

Cr2m+b(x) if s = 0, a = 1

F r2(m−1+b)+2−b(x) if s = 1, a = 0

Lr2m+b(x) if s = 1, a = 1.
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Proof. From Definition 5.4.1 we have Ars;ab(x,Q) = (
√
x)−εAs;ab(

√
x,Q), where ε is given as

in (5.4.1). Therefore, the result follows from Theorem 5.4.1, when we replace x with
√
x and

multiply by (
√
x)−ε.

We similarly provide the first case here to illustrate the polynomials and detail all cases

in Appendix B.2.

Ar0;00(x, 2m− 1) = Ar0;00(x, 2(m− 1) + 1) = Sr2(m−1)+1(x)

=
m−1∑
k=0

(−1)k
(

2(m− 1) + 1− k
k

)
xm−1−k = (

√
x)−1

2m−1∏
d=1

(√
x− 2 cos

(
πd

2m

))
.

Except for the root at x = 0, (when it occurs), the roots of the polynomials As;ab(x,Q) and

Ars;ab(x,Q) are symmetrically distributed about the origin. This enables a simplification of

the product form given in Theorem 5.4.1 and the Corollary to it.

THEOREM 5.4.2 (simplification of the product form of As;ab(x,Q)). For As;ab(x,Q) de-

fined as in Definition 5.4.1 we have

As;ab(x,Q) = xε
m−(1−a)(1−b)∏

d=1

(
x2 − 4γ cos2

(2d− a)π

2(2m+ b)

)
,

where Q = q − (1− a)(1− s) and ε = a(2b− 1) + 1− b.

Proof. From Theorem 5.4.1, we make a suitable “pairing” of terms. We illustrate with two

cases and provide the full proof in Appendix B.3. Let us consider the cases for s. When

s = a = b = 0, we have

A0;00(x, 2m− 1) =
2m−1∏
d=1

(
x− 2 cos

dπ

2m

)

=
(
x− 2 cos

mπ

2m

)m−1∏
d=1

(
x− 2 cos

dπ

2m

)(
x− 2 cos

(2m− k)π

2m

)

= x
m−1∏
d=1

(
x− 2 cos

dπ

2m

)(
x+ 2 cos

dπ

2m

)

= x
m−1∏
d=1

(
x2 − 4 cos2

dπ

2m

)
,
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and when s = 1, a = 0, b = 0,

A1;00(x, 2m) =

2m−1∏
d=1

(
x− 2ı cos

dπ

2m

)

=
(
x− 2ı cos

mπ

2m

)m−1∏
d=1

(
x− 2ı cos

dπ

2m

)(
x− 2ı cos

(2m− d)π

2m

)

= x
m−1∏
d=1

(
x− 2ı cos

dπ

2m

)(
x+ 2ı cos

dπ

2m

)

= x

m−1∏
d=1

(
x2 + 4 cos2

dπ

2m

)
.

Using Theorem 5.4.2 we make a similar simplification of the modified polynomials, Ars;ab(x,Q).

COROLLARY (simplified product form of Ars;ab(x,Q)).

Ars;ab(x,Q) =

m−(1−a)(1−b)∏
d=1

(
x− 4γ cos2

(2d− a)π

2(2m+ b)

)
.

Proof. We have from Definition 5.4.1 that Ars;ab(x,Q) = (
√
x)−εAs;ab(

√
x,Q)), where

ε = a(2b− 1) + 1− b. Therefore, if in each form of As;ab(x,Q), derived in Theorem 5.4.2, we

replace x with
√
x and multiply by (

√
x)−ε, we obtain the result.

We illustrate with two cases and provide all cases in Appendix B.4.

Ar0;00(x, 2(m− 1) + 1) = Sr2m−1(x) =

m−1∏
d=1

(
x− 4 cos2

dπ

2m

)
,

and

Ar0;11(x, 2m+ 1) = Cr2m+1(x) =
m∏
d=1

(
x− 4 cos2

(2d− 1)π

2(2m+ 1)

)
.

For the polynomials As;ab(x,Q) or Ars;ab(x,Q), the variable M = m − (1 − a)(1 − b) was

employed to indicate the order of the polynomial. In the forthcoming section we examine the

linear recurrence polynomial, Rs;ab(x,m), satisfying the function Ls;abc, and we denote the

order of the polynomial by M ′ = m+ b(1− a).

5.5 Recurrence polynomials for the family of functions Ls;abc

To facilatate the development of a recurrence polynomial for each of the sequences Ls;abc(r, t, q),
we wish to connect the roots of the polynomial to those of a corresponding power sum, as

established in the Corollary of Theorem 4.4.2. We use Lemma 5.5.1 to provide this link.
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LEMMA 5.5.1. If the sequence u0, u1, u2, . . . satisfies an order m linear recurrence of the

form

un+m + a1un+m−1 + · · ·+ amun = 0 (5.5.1)

so that the characteristic polynomial is

P (x) = xm + a1x
m−1 + · · ·+ am, (5.5.2)

with distinct roots µ1, . . . , µm, then every solution of (5.5.1) can be written as a power-sum

with coefficients:

un = b1µ
n
1 + · · ·+ bmµ

n
m. (5.5.3)

Proof. The sequence u0, u1, u2, . . . satisfies a linear recurrence when (5.5.1) holds for all n.
The values u0, . . . , um−1 determine all numbers in the sequence. If we fix coefficients a1, . . . , am,
then the sequences satisfying (5.5.1) form a vector space of dimension m. A shift operator S
acts on the space of sequences that satisfy (5.5.1) by

S


u0
u1
. . .
um−2

um−1

 =


u1
u2
. . .
um−1

um

 =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . .
0 0 0 . . . 1
−am −am−1 −am−2 . . . −a1




u0
u1
. . .
um−2

um−1

 = Am×m


u0
u1
. . .
um−2

um−1

 .

If the column operation k′1 = k1 + µk2 + · · · + µm−1km, followed by the consecutive row
operations r′i = ri +µri−1 (2 ≤ i ≤ m), is applied to the characteristic polynomial, we obtain

|µI −A|m×m =

∣∣∣∣∣∣∣∣∣∣
µ −1 0 . . . 0
0 µ −1 . . . 0

. . . . . .
0 0 0 . . . −1
am am−1 am−2 . . . a1 + µ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 −1 0 . . . 0
0 0 −1 . . . 0

. . . . . .
0 0 0 . . . −1

f(µ) am−1 am−2 . . . a1

∣∣∣∣∣∣∣∣∣∣
,

(5.5.4)
where f(x) = xm + a1x

m−1 + a2x
m−2 + · · ·+ am, whose determinant is f(µ).

When the eigenvalues µ1, . . . , µm are all distinct then the Vandemonde determinant is non-
zero, and the m sequences un = µni are linearly independent (see Theorem 9.3 of [?]). These
sequences form a basis for the vector space of sequences that satisfy (5.5.1). Therefore, every
solution of (5.5.1) can be written as a power-sum with coefficients given by (5.5.3).

Remark. A similar proof to Lemma 5.5.1 is found in Lemma 3.5 of [9]. The above proof is

provided due to its significance (for this work) and its brevity.

In the Corollary of Theorem 4.4.2 each of the sequence terms Ls;abc(r, t, q) are expressed

as a power sum of the form given in (5.5.3), where for the cases s = 0 and s = 1, we have

xd = 4 cos2
(
π(2d− a)

2q

)
, and xd = −4 sin2

(
π(2d− ε)

2q

)
. (5.5.5)

Here we recall a, b and ε take the value 0 or 1; ε ≡ a+ sb (mod 2), and

a ≤ d ≤ m+ b(1− a) + a− 1.
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We denote byRs;ab(x,m), the recurrence polynomial that satisfy the sequences Ls;abc(r, t, q).
From Lemma 5.5.1, the values, (5.5.5), comprise the roots of Rs;ab(x,m), and the order of

the polynomial is m in all cases except when the parameters a = 0 and b = 1, (that is for the

positive sum with odd modulus). In this latter case the order is m+ 1.

In the next theorem we simplify the two forms of (5.5.5) into the single form

xD = −4 cos2
(
π(2D − a)

2q

)
,

where the set of the roots, xD, are the same as those of xd.

THEOREM 5.5.2 (product form of the recurrence polynomials, Rs;ab(x,m)). The recur-

rence polynomials Rs;ab(x,m) are, expressed as a product of their roots, given by

Rs;ab(x,m) =

m−(1−a)(1−b)∏
d=a

(
x− 4γ cos2

(
π(2d− a)

2q

))
, (5.5.6)

where γ = (−1)s.

Proof. We consider each of the four cases for the parameters a and b, for both the cases s = 0

and s = 1. Here we detail the first case and give the proof in full in Appendix B.5.

Case 1: a = 0, b = 0.

From (5.5.5) the roots of the recurrence polynomial R0;00(x,m) are 4 cos2 dπ/q, where

0 ≤ d ≤ m−1. On the other hand, the roots ofR1;00(x,m) are −4 sin2 dπ/q, where 1 ≤ d ≤ m.

Since m/q = 1/2 we have that

sin
(m− d)π

q
= cos

dπ

q
, (5.5.7)

so that

m∏
d=1

(
x+ 4 sin2 dπ

q

)
=

m−1∏
d=0

(
x+ 4 sin2 (m− d)π

q

)
=

m−1∏
d=0

(
x+ 4 cos2

dπ

q

)
.

5.6 Association of the polynomials Rs;ab(x,m) to the modified
polynomials Ars;ab(x,Q)

We now associate the polynomials Rs;ab(x,m) to those of Ars;ab(x,Q) and consequently to

those of either a monic Chebyshev, Fibonacci or Lucas polynomial.

THEOREM 5.6.1 (expression of Rs;ab(x,m) in terms of Ars;ab(x,Q)). For q = 2m+ b and

Q = q − (1− a)(1− s), we have

Rs;ab(x,m) = (x− 4γ)1−aArs;ab(x,Q). (5.6.1)
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Proof. From the Corollary of Theorem 5.4.2 we have

Ars;ab(x,Q) =

m−(1−a)(1−b)∏
d=1

(
x− 4γ cos2

(2d− a)π

2(2m+ b)

)
. (5.6.2)

Multiplication of both sides of (5.6.2) by (1− 4γx)1−a produces

(x− 4γ)1−a
m−(1−a)(1−b)∏

d=1

(
x− 4γ cos2

(2d− a)π

2(2m+ b)

)
=

m+b(1−a)+a−1∏
d=a

(
x− 4γ cos2

(2d− a)π

2(2m+ b)

)

=

M ′+a−1∏
d=a

(
x− 4γ cos2

(2d− a)π

2(2m+ b)

)
= Rs;ab(x,m)

by Theorem 5.5.2.

COROLLARY. The linear recurrence polynomial Rs;ab(x,m) satisfied by the function Ls;abc,
can be expressed in terms of (modified) Fibonacci, Lucas or Chebyshev polynomial in the fol-

lowing manner:

Rs;ab(x,m) =



(x− 4)Sr2(m−1+b)+1−b(x) if s = 0, a = 0

Cr2m+b(x) if s = 0, a = 1

(x+ 4)F r2(m−1+b)+2−b(x) if s = 1, a = 0

Lr2m+b(x) if s = 1, a = 1.

(5.6.3)

Alternatively, with q = 2m+ b we can express (5.6.3) as

Rs;ab(x,m) =



(x− 4)Srq−1(x) if s = 0, a = 0

Crq (x) if s = 0, a = 1

(x+ 4)F rq (x) if s = 1, a = 0

Lrq(x) if s = 1, a = 1.

(5.6.4)

Proof. The result follows from Theorem 5.6.1 and the Corollary to Theorem 5.4.1.

5.7 Evaluation of the recurrence polynomials Rs;ab(x, q)

A direct method of determining the coefficients of the polynomial,Rs;ab(x,m), is by expansion

of (5.5.6) of Theorem 5.5.2.

For demonstrative purposes let us consider the case s = 1, so that γ = −1, and perform this

expansion for either m = 2 or m = 3.

We have

xd = 4 cos2
(
π(2d− a)

2q

)
,
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where q = 2m+ b and, a ≤ d ≤ m+ b− a− 1.

So for a = 0, b = 0, and m = 3, then d = 0, 1, 2 and

x0 = 4 cos2 (0π/6) = 4(1) = 4,

x1 = 4 cos2 (1π/6) = 4(
√

3/2)2 = 3,

x2 = 4 cos2 (2π/6) = 4(1/2)2 = 1,

R0;00(x, 3) = (x+ 4)(x+ 3)(x+ 1) = x3 + 8x2 + 19x+ 12.

For the case a = 0, b = 1, and m = 2, then d = 0, 1, 2 and

x0 = 4 cos2 (0π/5) = 4(1)2 = 4,

x1 = 4 cos2 (1π/5) = 4(
√

5 + 1)2/16 = (6 + 2
√

5)/4,

x2 = 4 cos2 (2π/5) = 4(
√

5− 1)2/16 = (6− 2
√

5)/4,

R0;01(x, 2) = (x+ 4)(x+ (6 + 2
√

5)/4)(x+ (6− 2
√

5)/4) = x3 + 7x2 + 13x+ 4.

If a = 1, b = 0 and m = 3, then d = 1, 2, 3 and

x1 = 4 cos2 (1π/12) = 4
((√

2 +
√

3
)
/2
)2

= 2 +
√

3,

x2 = 4 cos2 (3π/12) = 4(
√

2/2)2 = 2,

x3 = 4 cos2 (5π/12) = 4
((√

2−
√

3
)
/2
)2

= 2−
√

3,

R0;10(x, 3) =
(
x+ (2 +

√
3)
) (
x+ (2−

√
3)
)

(x− 2) = x3 + 6x2 + 9x+ 2.

Finally when a = 1, b = 1, and m = 2, then d = 1, 2 and

x1 = 4 cos2 (1π/10) = 4

(√
(5 +

√
5)/8

)2

= (5 +
√

5)/2,

x2 = 4 cos2 (3π/10) = 4

(√
(5−

√
5)/8

)2

= (5−
√

5)/2,

R0;11(x, 2) = (x+ (5 +
√

5)/2)(x+ (5−
√

5)/2) = x2 + 5x+ 5.

Remark. An immediate limitation of this method arises, the difficulty of obtaining explicit

expressions for the roots when q has a prime factor ≥ 7.

In general a more practical approach is to employ Theorem 5.6.1. In the case of the parameter

a = 1, we simply have

Rs;1b(x,m) = Ars;1b(x, q) =

m∑
k=0

(−γ)m−k
2m+ b

m+ k + b

(
m+ k + b

2k + b

)
xk,
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and when a = 0, we have

Rs;0b(x,m) =(x− 4γ)Ars;0b(x, q − s)

=(x− 4γ)

m−1+b∑
k=0

(−γ)m−1+b−k
(

m+ k

2k + 1− b

)
xk

=

m+b∑
k=0

(−γ)m+b−k
((

m+ k − 1

2k − 1− b

)
+ 4

(
m+ k

2k + 1− b

))
xk.

Here we just give one example of each type for the case when s = 0 and provide additional

examples in Appendix C.2. We have

R0;00(x, 3) = (x− 4)
2∑

k=0

(−1)2−k
(

3 + k

2k + 1

)
xk = x3 − 8x2 + 19x− 12,

R0;01(x, 3) = (x− 4)

3∑
k=0

(−1)3−k
(

3 + k

2k

)
xk = x4 − 9x3 + 26x2 − 25x+ 4,

R0;10(x, 3) =

3∑
k=0

(−1)3−k
6

3 + k

(
3 + k

2k

)
xk = x3 − 6x2 + 9x− 2,

R0;11(x, 3) =
3∑

k=0

(−1)3−k
7

4 + k

(
4 + k

2k + 1

)
xk = x3 − 7x2 + 14x− 7.



Chapter 6

Differential Equations

This chapter examines the creation of a second order differential equation, a solution of which

is one of the eight recurrence relation polynomials Rs;ab(x,m). With respect to this type of

equation, we start in Section 6.1 by introducing the Jacobi polynomials, and a subclass of

them, the Chebyshev polynomials of the first and second class. In Section 6.2 (with Theorem

6.2.2) and Section 6.3 (with Theorem 6.3.5), we establish a set of four second order differ-

ential equations, each one satisfied by one of the polynomials Rs;1b(x,m) and Rs;0b(x,m)

respectively.

6.1 Jacobi poynomials

We begin with the generalised group of polynomials, the Jacobi polynomials P
(α,β)
q (x), sat-

isfying the equation

(1− x2)y′′ + {β − α− (α+ β + 2)x}y′ + q(q + α+ β + 1)y = 0. (6.1.1)

From our current perspective, particular cases of these polynomials are the Chebyshev poly-

nomials of the first and second kind. For those of the first kind, Tq(x), we have α = β = −1/2,

and for those of the second kind, Uq(x), we have α = β = 1/2. Substituting these values into

(6.1.1), we obtain the respective second order differential equations

(1− x2)T ′′q (x)− xT ′q(x) + q2Tq(x) = 0, (6.1.2)

and

(1− x2)U ′′q (x)− 3xU ′q(x) + q(q + 2)Uq(x) = 0. (6.1.3)

In Theorem 5.6.1 we established, via the transformation x =
√
γu/2 the close relationship

between the polynomials Rs;ab(u,m) and those, when the parameter s = 0, of the Chebyshev

Tq(x) and Uq−1(x) types, and those when s = 1, of the Fibonacci Fq(x) and Lucas Lq(x)

types. Moreover, in Lemmas 5.3.1 and 5.3.2 we demonstrated a route between the interchange

of the polynomials Lq(x) and Tq(x) and of Fq(x) and Uq(x) respectively. Given, therefore, the
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well established (second order) equations for both the Chebyshev polynomials, (6.1.2) and

(6.1.3), we can limit ourselves to these two equations for deriving the differential equations

for each of the eight sequences {Rs;ab(u,m)}∞m=1.

6.2 The recurrence polynomials Rs;1b(u,m)

We first consider the sequences with the alternating parameter a = 1, and start with a lemma.

LEMMA 6.2.1. With x =
√
γu/2 we have

d

dx
Tq(x) = γmısbu

b
2

(
2u

1
2R′s;1b(u,m) + bu−

1
2Rs;1b(u,m)

)
,

and
d2

dx2
Tq(x) = γmısbu

b
2
(
8γuR′′s;1b(u,m) + 4γ(2b+ 1)R′s;1b(u,m)

)
.

Proof. We have from Theorem 5.6.1 that

Tq(x) = Tq(
√
γu/2) =

1

2
Cq(
√
γu) =

(
√
γu)b

2
Crq (γu) =

γm(
√
γu)b

2
Rs;1b(u,m). (6.2.1)

On differentiating both sides of (6.2.1) with respect to x we obtain

T ′q(x) =
γm+b/2

2

d

dx

(
u
b
2Rs;1b(u,m)

)
,

the right hand side of which, via the chain rule, becomes

=
γmısb

2

d

du

(
u
b
2Rs;1b(u,m)

) du

dx
=
γmısb

2

(
u
b
2R′s;1b(u,m) +

1

2
bu

b−2
2 Rs;1b(u,m)

)
4u

1
2

ıs

=γmıs(b−1)
(

2u
b+1
2 R′s;1b(u,m) + bu

b−1
2 Rs;1b(u,m)

)
=γmıs(b−1)u

b
2

(
2u

1
2R′s;1b(u,m) + bu−

1
2Rs;1b(u,m)

)
.

Then on differentiating (6.2.1) a second time we have

T ′′q (x) =
γmıs(b−1)

2

d2

dx2

(
u
b
2Rs;1b(u,m)

)
= γmıs(b−1)

d

dx

(
2u

b+1
2 R′s;1b(u,m) + bu

b−1
2 Rs;1b(u,m)

)
=γmıs(b−1)

d

du

(
2u

b+1
2 R′s;1b(u,m) + bu

b−1
2 Rs;1b(u,m)

) 4u
1
2

ıs
,

and following the second application of the chain rule we continue as

=γmıs(b−2)
(

2u
b+1
2 R′′s;1b(u,m) + (b+ 1)u

b−1
2 R′s;1b(u,m) + bu

b−1
2 R′s;1b(u,m)

+
1

2
b(b− 1)u

b−3
2 Rs;1b(u,m)

)
4u

1
2

=γm+1ısb
(

8u
3b
2 R′′s;1b(u,m) + 4(b+ 1)u

b
2R′s;1b(u,m) + bu

b
2R′s;1b(u,m) + 0

)
=γmısbu

b
2
(
8γuR′′s;1b(u,m) + 4γ(2b+ 1)R′s;1b(u,m)

)
.

Thus the necessary results are obtained.
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We are now in a position to state the following theorem.

THEOREM 6.2.2. The polynomials Rs;1b(u,m) satisfy the second order differential equa-

tion

4(u−4γ)uR′′s;1b(u,m)+4 ((b+ 1)u− 2γ(2b+ 1))R′s1b(u,m)−(q2−b)Rs;1b(u,m) = 0, (6.2.2)

where γ = (−1)s.

Proof. From (6.1.2) we have

(1− x2) d2

dx2
Tq(x)− x d

dx
Tq(x) + q2Tq(x) = 0,

Let x =
√
γu/2 = ıs

√
u/2 and so,

dx =
ısdu

4
√
u
, or

du

dx
=

4
√
u

ıs
.

Substituting these forms into (6.1.2) we have

(1− γu/4)
d2

dx2
Tq(
√
γu/2) +

ıs
√
u

2

d

dx
Tq(
√
γu/2) + q2Tq(

√
γu/2) = 0, (6.2.3)

and from Lemma 6.2.1 and equation (6.2.1) the left hand side can then be written as

γmısbu
b
2 (1− γu/4)

(
8γuR′′s;ab(u,m) + 4γ(2b+ 1)R′s;ab(u,m)

)
− 1

2
γmısbu

b
2
(
2uR′s;1b(u,m) + bRs;1b(u,m)

)
+

1

2
q2γmısbu

b
2Rs;1b(u,m).

Now after factoring out −1
2γ

mısbu
b
2 we are left with

−γ 2

4
(4− γu)

(
8uR′′s;1b(u,m) + 4(2b+ 1)R′s;1b(u,m)

)
+
(
2uR′s;1b(u,m) + bRs;1b(u,m)

)
− q2Rs;1b(u,m).

Whilst noting that γ2 = 1, we further simplify as follows:

1

2
(u− 4γ)

(
8uR′′s;1b(u,m) + 4(2b+ 1)R′s;1b(u,m)

)
+ 2uR′s;1b(u,m) + (q2 − b)Rs;1b(u, q)

=4(u− 4γ)uR′′s;1b(u,m)− (8γ(2b+ 1) + 2(2b+ 2)u)R′s;1b(u,m) + (q2 − b)Rs;1b(u,m)

=4(u− 4γ)uR′′s;1b(u,m) + 4(2(2b+ 1)− γ(b+ 1)u)R′s;1b(u,m) + (q2 − b)Rs;1b(u,m).

(6.2.4)

Therefore, the left hand side of (6.2.3) is (6.2.4) multiplied by the factor −1
2γ

mısbu
b
2 producing

the equation

−1

2
γmısbu

b
2
(
4(u− 4γ)uR′′s;1b(u,m) + 4(2(2b+ 1)− γ(b+ 1)u)R′s;1b(u,m)

+(q2 − b)Rs;1b(u,m)
)

= 0, (6.2.5)

and this satisfies (6.2.2) as required.
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Remark. (6.2.5) also has the solution u = 0 corresponding to the solution x = 0 in (6.1.2).

COROLLARY. With consideration to each of the two parameters s and b we have on

writing the polynomial Rs;1b(u,m) as Rs;1b the solutions

(u− 4)uR′′0;10 + (u− 2)R′0;10 −m2R0;10 = 0,

(u− 4)uR′′0;11 + 2(u− 3)R′0;11 −m(m+ 1)R0;11 = 0,

(u+ 4)uR′′1;10 + (u+ 2)R′1;10 −m2R1;10 = 0,

and

(u+ 4)uR′′1;11 + 2(u+ 3)R′1;11 −m(m+ 1)R1;11 = 0.

Proof. The validity of each follows immediately from Theorem 6.2.2 on the appropriate sub-

stitution of each of the parameters s and b, replacing q with 2m+ b and finally dividing out

a common factor of 4.

6.3 The recurrence polynomials Rs;0b(u,m)

We next turn to the non-alternating parameter a = 0. Again we first require some lemmas.

LEMMA 6.3.1 (sin θ sin qθ solution). The second order differential equation

sin2 θ
d2y

dθ2
− 2 sin θ cos θ

dy

dθ
+
(
(q2 + 1) sin2 θ + 2 cos2 θ

)
y = 0, (6.3.1)

has for a solution

y = sin θ sin qθ. (6.3.2)

Proof. The first and second derivatives of y (with respect to θ are),

dy

dθ
= q sin θ cos qθ + cos θ sin qθ, (6.3.3)

and
d2y

dθ2
= −q2 sin θ sin qθ + 2q cos θ cos qθ − sin θ sin qθ. (6.3.4)

The necessary result is then obtained by multiplying (6.3.3) by −2 sin θ cos θ, (6.3.4) by sin2 θ,

(6.3.2) by (q2 + 1) sin2 θ + 2 cos2 θ and then adding separately the left and right hand sides

of each these scaled equations.

LEMMA 6.3.2. The function Y = sin2 θUq−1(cos θ) is a solution of (6.3.1).

Proof. With x = cos θ, we have from (5.3.1) that

Uq−1(cos θ) =
sin qθ

sin θ
.
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Multiplication by sin2 θ gives us

sin2 θUq−1(cos θ) = sin2 θ
sin qθ

sin θ
= sin θ sin qθ.

Hence it follows from Lemma 6.3.1 that Y is a solution of (6.3.1).

LEMMA 6.3.3. The function Y = sin2 θUq−1(cos θ) is a solution of the differential equation

(1− x2)2d2Y

dx2
+ x(1− x2)dY

dx
+
(
(q2 + 1) + (1− q)x2

)
Y = 0. (6.3.5)

Proof. Since we know Y is a solution to (6.3.1), we show that (6.3.1) is equivalent to (6.3.5)

with the change of variable from θ to x. We make the appropriate changes using the substi-

tution x = cos θ, and so dx = − sin θdθ. It is preferable to keep the variable θ for as long as

possible, and so we initially express our derivatives with respect to x in the variable θ. Let

us denote the derivative of Y with respect to x and θ as Y ′x and Y ′θ respectively. We have

Y ′x = Y ′θ
dθ

dx
− sin θY ′x = Y ′θ , (6.3.6)

and similarly for the second derivative

Y ′′x =
d

dx
Y ′x = − d

dθ

(
Y ′θ

sin θ

)
dθ

dx
= −

(
sin θY ′′θ − cos θY ′θ

sin2 θ

)
−1

sin θ
=

(
sin θY ′′θ − cos θY ′θ

sin3 θ

)
.

Rearranging for Y ′′θ in terms of Y ′x and Y ′′x using (6.3.6), gives

Y ′′θ = sin2 θY ′′x − cos θY ′x. (6.3.7)

Substituting (6.3.6) and (6.3.7) into the left hand side of (6.3.1) we obtain

sin2 θ
(
sin2 θY ′′x − cos θY ′x

)
− 2 sin θ cos θ

(
− sin θY ′x

)
+
(
(q2 + 1) sin2 θ + 2 cos2 θ

)
Y, (6.3.8)

and on simplification this becomes

sin4 θY ′′x + cos θ sin2 θY ′x +
(
(q2 + 1) sin2 θ + 2 cos2 θ

)
Y. (6.3.9)

With x = cos θ and so sin θ = (1− x2)
1
2 , (6.3.9) transforms to

(1− x2)2d2Y

dx2
+ x(1− x2)dY

dx
+
(
(q2 + 1)(1− x2) + 2x2

)
Y

which on manipulation of the Y coefficient yields the left hand side of (6.3.5) as desired.

LEMMA 6.3.4. With x =
√
γu/2 we have

d

dx
{(1− x2)Uq−1(x)} = −γM ′ı−bs

(
u

2−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 Rs;0b(u,m)

)
, (6.3.10)

and

d2

dx2
{(1−x2)Uq−1(x)} = −4γM

′+1ıs(1−b)u
1−b
2

(
uR′′s;0b(u,m) +

3− 2b

2
R′s;0b(u,m)

)
. (6.3.11)
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Proof. We have from Theorem 5.6.1 and Lemma 5.3.2 with q = 2m+ b, M = m− 1 + b and

M ′ = m+ b that

(1− x2)Uq−1(x) =(1− γu/4)Uq−1(
√
γu/2) = −γ

4
(u− 4γ)Sq−1(

√
γu)

=−
γ(
√
γu)1−b

4
(u− 4γ)Srq−1(γu) = −

γM
′
(
√
γu)1−b

4
Rs;0b(u,m). (6.3.12)

On differentiating both sides of (6.3.12) with respect to x we obtain

Y ′x = −γ
M ′+(1−b)/2

4

d

dx

(
u

1−b
2 Rs;0b(u,m)

)
, (6.3.13)

the right hand side of which, via the chain rule, becomes

= −γ
M ′ıs(1−b)

4

d

du

(
u

1−b
2 Rs;0b(u,m)

) du

dx

= −γ
M ′ıs(1−b)

4

(
u

1−b
2 R′s;0b(u,m) +

1− b
2

u
−1−b

2 Rs;0b(u,m)

)
4u

1
2

ıs

= −γM ′ı−sb
(
u

2−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 Rs;0b(u,m)

)
.

(6.3.14)

Then on differentiating (6.3.12) a second time we have

Y ′′x =− γM
′+(1−b)/2

4

d2

dx2

(
u

1−b
2 Rs;0b(u,m)

)
=− γM ′ı−sb d

dx

(
u

2−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 Rs;0b(u,m)

)
=− γM ′ı−sb d

du

(
u

2−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 Rs;0b(u,m)

)
4u

1
2

ıs
,

and following the second application of the chain rule we continue as

=− 4γM
′
ıs(1−b)ı−2su

1
2

(
u

2−b
2 R′′s;0b(u,m) +

2− b
2

u
−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 R′s;0b(u,m)

+
1− b

2

(
−b
2

)
u
−2−b

2 Rs;0b(u,m)

)
=− 4γM

′
γıs(1−b)

(
u

3−b
2 R′′s;0b(u,m) +

3− 2b

2
u

1−b
2 R′s;0b(u,m)

)
=− 4γM

′+1ıs(1−b)u
1−b
2

(
uR′′s;0b(u,m) +

3− 2b

2
R′s;0b(u,m)

)
.

(6.3.15)

THEOREM 6.3.5. The polynomials Rs;0b(u,m) satisfy the second order differential equa-

tion

4u(u− 4γ)2R′′s;0b(u,m) + 4(u− 4γ) ((1− b)u− 2γ(3− 2b))R′s0b(u,m)

−
(
(q2 − b)u− 4γ(q2 + 2− b)

)
Rs;0b(u,m) = 0. (6.3.16)
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Proof. From Lemma 6.3.3 we have that the function Y = sin2 θUq−1(cos θ) is a solution of

(1− x2)2Y ′′x + x(1− x2)Y ′x +
(
(q2 + 1) + (1− q2)x2

)
Y = 0, (6.3.17)

and from Lemma 6.3.4 we have the relations

Y = (1− x2)Uq−1(x) = −γ
M ′ı

s(1−b)
2 u

1−b
2

4
Rs;0b(u,m),

Y ′x = −γM ′ı−bs
(
u

2−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 Rs;0b(u,m)

)
,

and

Y ′′x = −4γM
′
ı−s(b+1)u

1−b
2

(
uR′′s;0b(u,m) +

3− 2b

2
R′s;0b(u,m)

)
.

Let x =
√
γu/2 = ıs

√
u/2, and so dx = ısdu/4

√
u, or du/dx = 4u

1
2 /ıs.

Multiplying Y by
(
(q2 + 1) + (1− q2)x2

)
, Y ′x by x(1 − x2) and Y ′′x by (1 − x2)2, then using

the substitution x = ısu
1
2 /2 and factorising produces the expressions

− 1

16
γM

′
ı
s(1−b)

2 u
1−b
2
(
4(q2 + 1) + γ(1− q2)u

)
Rs;0b(u,m),

1

8
γM

′+1ıs(1−b)u
1
2 (u− 4γ)

(
u

2−b
2 R′s;0b(u,m) +

1− b
2

u
−b
2 Rs;0b(u,m)

)
,

and

−1

4
γM

′+1ı−s(b+1)u
1−b
2 (u− 4γ)2

(
uR′′s;0b(u,m) +

3− 2b

2
R′s;0b(u,m)

)
.

Adding each of these expressions and then factorising by the term −γM ′+1ı
s(1−b)

2 u
1−b
2 /16

leaves the expression

4u(u− 4γ)2R′′s;0b(u,m) + 2(u− 4γ) ((u− 4γ)(3− 2b)− u)R′s;0b(u,m)

+
(
4γ(q2 + 1) + (1− q2)u− (u− 4γ)(1− b)

)
Rs;0b(u,m),

which on simplification produces the required result.

COROLLARY. With consideration to each of the two parameters s and b, we have on

writing the polynomial Rs;0b(u,m) as Rs;0b the solutions

u(u− 4)2R′′0;00 + (u− 4)(u− 6)R′0;00 − (m2u− 2(2m2 + 1))R0;00 = 0,

u(u− 4)2R′′0;01 − 2(u− 4)R′0;01 − ((m(m+ 1))u− 2(2m2 + 2m+ 1))R0;01 = 0,

u(u+ 4)2R′′1;00 + (u+ 4)(u+ 6)R′1;00 − (m2u+ 2(2m2 + 1))R1;00 = 0,

and

u(u+ 4)2R′′1;01 + 2(u+ 4)R′1;01 − ((m(m+ 1))u+ 2(2m2 + 2m+ 1))R1;01 = 0.

Proof. The validity of each follows immediately from Theorem 6.2.2 on the appropriate sub-

stitution of each of the parameters s and b, replacing q with 2m+ b and finally dividing out

a common factor of 4.



Chapter 7

Orthogonality

In Section 7.1, using the known orthogonality relations of the Chebyshev polynomials, we

determine in Theorems 7.1.4 and 7.1.6, similar orthogonal relations for the polynomials

Rs;1b(u,m) and Rs;0b(u,m) respectively. Then in Section 7.2 we exploit their orthogonality

relations to establish some three term recurrence relations: in Theorem 7.2.4 we determine

an intra sequence relation between consecutive values of the variable m and in Theorem 7.2.5

an inter sequence relation between consecutive values of the modulus q = 2m+ b.

7.1 Orthogonal polynomial sequences

Let us begin this Section by introducing a definition adapted from Chihara [7].

Definition 7.1.1. A polynomial sequence {Pn(x)}∞n=0 is an orthogonal polynomial sequence

with respect to a weight factor w(x) on an interval (a, b) if Pn(x) is a polynomial of degree n

and ∫ b

a
Pn(x)Pm(x)w(x) dx = δn,mKn,

where δn,m is the Kronecker delta symbol and Kn is some nonzero constant. If additionally

we have Kn = 1 then the polynomials Pn(x) form an orthonormal polynomial sequence.

We now consider the recurrence polynomials, Rs;ab(u,m) as forming (relative to each of three

parameters) eight separate sequences of orthogonal polynomials of order M ′ = m+ b(1− a).

These polynomials have been defined for q ≥ 1, but to satisfy the properties of an orthogonal

sequence we amend each sequence to m ≥ 1 + ab − (a + b), (or q ≥ 2(1 − a) − (−1)ab). We

summarise these conditions in Table 7.1.

As in Section 5 on recurrences we exploit the relationship between the polynomials,Rs;ab(u,m),

and their associated Fibonacci, Lucas or Chebyshev polynomial representation. Since the or-

thogonality properties of the Chebyshev polynomials are well documented, (see for example

[18]), we aim to establish the orthogonality of our polynomials in terms of them.
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Table 7.1: Effect of the parameters a and b on the initial orthogonal sequence number m (and
q).

a b m q

0 0 1 2
0 1 0 1
1 0 0 0
1 1 0 1

7.1.1 The Chebyshev Polynomials

The orthogonality relations for Chebyshev polynomials (see for example [18] and [19]) follow

easily from

Tn(x) = cosnθ = cos (n cos−1 x).

With the weight factor csc θ = 1/
√

(1− x2), and the substitution dx = − sin θ dθ, we have

for n 6= q∫ 1

−1

Tn(x)Tq(x)√
1− x2

dx =

∫ π

0
cosnθ cos qθ dθ =

1

2

∫ π

0
cos (n+ q)θ + cos (n− q)θ dθ (7.1.1)

=
1

2

[
1

n+ q
sin (n+ q)θ +

1

n− q
sin (n− q)θ

]π
0

= 0,

If n = q 6= 0, (7.1.1) becomes∫ 1

−1

T 2
n(x)√

1− x2
dx =

∫ π

0
cos2 nθ dθ =

1

2

∫ π

0
cos 2nθ + 1 dθ =

1

2

[
1

2n
sin 2nθ + θ

]π
0

=
π

2
.

Finally when n = q = 0, (7.1.1) becomes simply∫ 1

−1

1√
1− x2

dx =

∫ π

0
dθ = π.

We shall deduce relations for the polynomialsRs;ab(u,m). Let us put n = 0, so that expression

(7.1.1) reduces to ∫ 1

−1

Tq(x)√
1− x2

dx =

∫ π

0
cos qθ dθ = 0. (7.1.2)

In the generation of the polynomials Rs;ab(u,m), we have examined separately the cases

of Tq(x), when q = 2m and q = 2m + 1. Moreover, with the change of variable x =
√
γu/2,

we find that we are only considering half of the interval [−1, 1]. If we start with (7.1.2),

separate the integral into two halves and consider the particular cases of q = 2m ≥ 2 and

q = 2m+ 1 ≥ 1, we obtain∫ 0

−1

T2m(x)√
1− x2

dx =

∫ π

π/2
cos 2mθ dθ = 0,

∫ 1

0

T2m(x)√
1− x2

dx =

∫ π/2

0
cos 2mθ dθ = 0,
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and ∫ 0

−1

T2m+1(x)√
1− x2

dx =

∫ π

π/2
cos (2m+ 1)θ dθ =

(−1)m+1

2m+ 1
, (7.1.3)

∫ 1

0

T2m+1(x)√
1− x2

dx =

∫ π/2

0
cos (2m+ 1)θ dθ =

(−1)m

2m+ 1
. (7.1.4)

So for n = 0, the even-numbered polynomials T2m(x) are orthogonal to constants on the half

intervals [−1, 0] and [0, 1], whilst the odd-numbered T2m+1(x) are not so. However, for n ≥ 1

and n 6= q, (7.1.3) and (7.1.4) are replaced by

−
∫ 0

−1

T2m+1(x)T2k+1(x)√
1− x2

dx =

∫ 1

0

T2m+1(x)T2k+1(x)√
1− x2

dx

=
1

2

∫ π/2

0
cos 2(m+ k + 1)θ + cos 2(m− k)θ dθ

=
1

2

[
1

2(m+ k + 1)
sin (2(m+ k + 1)θ +

1

2(m− k)
sin 2(m− k)θ

]π/2
0

= 0,

and this leads us to our next lemmas.

LEMMA 7.1.1 (different parity on half intervals). For q odd and n even, we have∫ γ1

0

Tq(x)Tn(x)√
1− x2

dx =
(−1)m+kq

(q + n)(q − n)
.

Proof. We consider separately the cases of the parameter s. When s = 0 we have∫ 1

0

T2m+1(x)T2k(x)√
1− x2

dx =
(−1)2

2

∫ π/2

0
(cos (2(m+ k) + 1)θ + cos (2(m− k) + 1)θ) dθ

=
1

2

[
(−1)m+k

2(m+ k) + 1
+

(−1)m−k

2(m− k) + 1

]
=

1

2

[
(−1)m+k2(2m+ 1)

(2(m+ k) + 1)(2(m− k) + 1)

]
=

(−1)m+kq

(q + n)(q − n)
.

When s = 1 we have∫ −1
0

T2m+1(x)T2k(x)√
1− x2

dx = −1

2

∫ π

π/2
(cos(2(m+ k) + 1)θ + cos (2(m− k) + 1)θ) dθ

=
(−1)2

2

[
(−1)m+k

2(m+ k) + 1
+

(−1)m−k

2(m− k) + 1

]
=

1

2

[
(−1)m+k2(2m+ 1)

(2(m+ k) + 1)(2(m− k) + 1)

]
=

(−1)m+kq

(q + n)(q − n)
,

and on combining the two cases the result is obtained.

LEMMA 7.1.2 (same parity on half intervals). For q and n of the same parity, we have

∫ γ1

0

T2m+b(x)T2k+b(x)√
1− x2

dx =


0 if q 6= n

γπ/2 if q = n = 0

γπ/4 if q = n and q ≥ 1,

where γ = (−1)s.
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Proof. We consider separately the cases of the parameter s. When s = 0 we have∫ 1

0

T2m+b(x)T2k+b(x)√
1− x2

dx =
(−1)2

2

∫ π/2

0
(cos 2(m+ k + b)θ + cos 2(m− k)θ) dθ

=
1

2
[εδm,kθ + δm,kθ]

π/2
0 =

(ε+ 1)δm,k
2

[θ]
π/2
0

=
(ε+ 1)πδm,k

4
=


0 if q 6= n

π/2 if q = n = 0

π/4 if q = n and q ≥ 1,

where

ε =

{
1 if q = 0

0 if q ≥ 1,

and we note that ε takes on a different notation to that employed in Chapter 4.

When s = 1 we have∫ −1
0

T2m+b(x)T2k+b(x)√
1− x2

dx =− 1

2

∫ π

π/2
(cos 2(m+ k + b)θ + cos 2(m− k)θ) dθ

=− 1

2
[εδm,kθ + δm,kθ]

π
π/2 = −

(ε+ 1)δm,k
2

[θ]ππ/2

=−
(ε+ 1)πδm,k

4
=


0 if q 6= n

−π/2 if q = n = 0

−π/4 if q = n and q ≥ 1,

and so on combining the two cases the result is obtained.

Remark. Lemma 7.1.1 informs us that halving the integral length destroys the orthogonality

relation between the sequence of polynomials {Tn(x)}∞n=0. More specifically it demonstrates

a destruction between the polynomials of different parity. On the other hand, Lemma 7.1.2

informs us that for the sequence {T2k(x)}∞k=0 the orthogonality property is preserved, whereas

for the sequence {T2m+1(x)}∞m=0, not all of this property survives, (i.e. there is no constant

term).

7.1.2 The recurrence polynomials Rs;1b(u,m)

We observe that the polynomials Rs;11(u,m) have a “correction factor” of u−1/2, so that

T1(x) = x is mapped to Rs;11(u, 0) = 1, thus establishing the orthogonality of the polynomial

sequences {Rs;11(u,m)}∞m=0, provided that the correction factor of both polynomials, u, is

accounted for in the weight factor w(u). After first introducing a lemma to help clarify one

of the steps, we formulate these ideas as a theorem.

LEMMA 7.1.3. We have

γı1+s = ı1−s =

{
ı if s = 0

1 if s = 1.
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Proof. Recalling that γ = (−1)s, the result follows on substitution of s = 0 and s = 1 into

each of the terms.

THEOREM 7.1.4. The polynomials Rs;1b(u,m) form a family of orthogonal polynomials

with respect to the weight factor (γu)b/
√
γu(u− 4γ) on the interval [0, 4γ], expressed by the

integral

∫ 4γ

0

(γu)bRs;1b(u,m)Rs;1b(u, k)
√
γu
√
u− 4γ

du =


0 if m 6= k

−4πı1−s if m = k and q = 0

−2πı1−s if m = k and q ≥ 1.

.

Proof. From Theorem 5.6.1 for the parameter a = 1,

Rs;1b(u,m) = Ars;1b(u, 2m+ b),

then from the Corollary to Theorem 5.4.1 and Lemma 5.3.1, the function Ars;1b can be asso-

ciated to the modified monic Chebyshev function Crq by the relations

Ar0;1b(u, q) = Crq (u),

and

Ar1;1b(u, q) = Lrq(u) = (−1)mLrq(−u) = (−1)mCrq (−u).

Using these forms, the substitution x =
√
γu/2 and Theorem 5.6.1 we can write, (for

q = 2m+ b ≥ 1),

Rs;1b(u,m) = Ars;1b(u, q) = γmCrq (γu) = γm
Cq(
√
γu)

(
√
γu)b

= γm
2Tq(
√
γu/2)

(
√
γu)b

,

and when q = 0 we have Rs;10(u, 0) = 2T0(x) = 2. From (7.1.3) we find that on making the

substitution x =
√
u/2 it is necessary to consider only half the original integral, let us select

the interval [0, 4γ]. We have∫ 4γ

0

(γu)bR0;1b(u,m)R0;1b(u, k)
√
γu
√
u− 4γ

du

=γm+k

∫ 4γ

0

(γu)b2T2m+b(
√
γu/2)2T2k+b(

√
γu/2)

(
√
γu)2b

√
γu
√
u− 4γ

du

=4γm+k

∫ 4γ

0

T2m+b(
√
γu/2)T2k+b(

√
γu/2)

√
u− 4γ

du
√
γu

=16γm+k+1

∫ 4γ

0

T2m+b(
√
γu/2)T2k+b(

√
γu/2)

√
−4γ

√
1− γu/4

γ du

4
√
γu

=− 8γm+kıs+1

∫ γ1

0

T2m+b(x)T2k+b(x)√
1− x2

dx.

The required result then follows from the application of Lemma 7.1.2 to the integral.
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For demonstration we illustrate the case for m = k with q ≥ 1. So using Lemma 7.1.3 we

have

−8γm+kı1+s
γπ

4
= −2γπı1+s = −2πı1−s.

7.1.3 The recurrence polynomials Rs;0b(u,m)

In a similar manner we now examine and utilise the Chebyshev polynomials of the second

kind, Un(x) that we recall from (5.3.1) are defined by

Un−1(x) =
sinnθ

sin θ
,

to enable us to extract the orthogonality of the sequences of polynomials Rs;0b(u,m). We

find in these latter polynomials that the omnipresent u − 4γ factor excludes the possibility

in each sequence of the polynomial P0(u) = c, (c a constant). Hence the creation of an

orthogonal sequence for these polynomials requires the absorption of u− 4γ into the weight

factor. Alternatively, we select a weight factor that realigns the sequences {Rs;0b(u,m)}∞m=1−b

to those of {U2M+B}∞M=0, where M = m− 1 + b and B = 1− b. We start with a lemma.

LEMMA 7.1.5 (half interval integral). For positive Q = 2M + B and N = 2K + B and

constant B ∈ {0, 1}, we have∫ γ1

0
U2M+B(x)U2K+B(x)(

√
1− x2) dx =

{
0 if Q 6= N

γπ/4 if Q = N and Q ≥ 1,

where γ = (−1)s.

Proof. We consider separately the cases of the parameter s. When s = 0 we have∫ 1

0
U2M+B(x)U2K+B(x)

√
1− x2 dx

=(−1)2
∫ π/2

0
sin (2m+ b)θ sin (2k + b)θ dθ

=
1

2

∫ π/2

0
cos 2(m− k)θ − cos 2(m+ k + b)θ dθ

=
1

2
[δm,kθ]

π/2
0 =

δm,kπ

4
=

{
0 if Q 6= N

π/4 if Q = N and Q ≥ 1.

When s = 1 we have∫ −1
0

U2M+B(x)U2K+B(x)
√

1− x2 dx

=− 1

2

∫ π

π/2
cos 2(m− k)θ − cos 2(m+ k + b)θ dθ

=− 1

2
[δm,kθ]

π
π/2 = −

δm,kπ

4
=

{
0 if Q 6= N

−π/4 if Q = N and Q ≥ 1,

and so on combining the two cases the result is obtained.
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Now since we are using only using the Chebyshev UQ(x) polynomials, M = m− (1− b) and

B = 1− b.

THEOREM 7.1.6. The polynomials Rs;0b(u,m) form an orthogonal polynomial sequence

with respect to the weight factor
√
γu/((γu)b

√
(u− 4γ)3) on the interval [0, 4γ], satisfying

the integral ∫ 4γ

0

√
γuRs;0b(u,m)Rs;0b(u, k)

(γu)b(
√
u− 4γ)3

du =

{
0 if m 6= k

2πıs+1 if m = k and q ≥ 1.

Proof. From Theorem 5.6.1 with the parameter a = 0 we have

Rs;0b(u,m) = (u− 4γ)Ars;0b(u, q),

then from the Corollary to Theorem 5.4.1 and Lemma 5.3.2 we rcall that the function Ars;0b
can be associated to the modified monic Chebyshev function Srq−1 by the relation

Ar0;0b(u, q − 1) = Srq−1(u), and Ar1;0b(u, q) = F rq (u) = (−1)mF rq (−u) = (−1)mSrq−1(−u).

Using these forms, the substitution x =
√
γu/2 and Theorem 5.6.1 we can write for q ≥ 1,

(Q ≥ 0),

Rs;0b(u,m) = (u− 4γ)Ars;0b(u, q) = γM (u− 4γ)Srq−1(γu)

= γM
(u− 4γ)Sq−1(

√
γu)

(
√
γu)1−b

= γM
(u− 4γ)Uq−1(

√
γu/2)

(
√
γu)1−b

.

When q = 1 we have Rs;01(u, 1) = (u− 4γ), and when q = 2, we also find that

Rs;00(u, 2) = (u− 4γ). From (7.1.3) we find that on making the substitution x =
√
u/2 it is

necessary to consider only half the original integral, let us select the interval [0, γ1]. We have∫ 4γ

0

(γu)1−bR0;1b(u,m)R0;1b(u, k)
√
γu(
√
u− 4γ)3

du

=γM+K

∫ 4γ

0

(γu)1−b(u− 4γ)Uq−1(
√
γu/2)(u− 4γ)Un−1(

√
γu/2)

(
√
γu)2(1−b)

√
γu(
√
u− 4γ)3

du

=γM+K

∫ 4γ

0
U2M+1−b(

√
γu/2)U2K+1−b(

√
γu/2)(

√
u− 4γ)

du
√
γu

=4γM+K+1

∫ 4γ

0
U2M+1−b(

√
γu/2)U2K+1−b(

√
γu/2)(

√
−4γ)(

√
1− γu/4)

γdu

4
√
γu

=8γM+K+1ıs+1

∫ γ1

0
U2M+1−b(x)U2K+1−b(x)(

√
1− x2)dx.

The desired from result then follows from application of Lemma 7.1.5 to the integral.

We illustrate this for the case m = k (and q ≥ 1) and we obtain

8γı1+s
γπ

4
= 2πγ2ı1+s = 2πı1+s.

We now combine Theorems 7.1.4 and 7.1.6.
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THEOREM 7.1.7. The polynomials Rs;ab(u,m) form an orthogonal polynomial sequence,

with respect to the weight factor ws;ab(u) defined as

ws;ab(u) =
(
√
γu)λ(1−2b)

(u− 4γ)2+λ
where λ = (−1)a,

on the interval [0, 4γ] that satisfies the integral equation

∫ 4γ

0
Rs;ab(u,m)Rs;ab(u, k)ws;ab(u) du =


0 if m 6= k

−4aπı1−s if m = k and q = 0

2πλı1+λs if m = k and q ≥ 1.

(7.1.5)

Proof. We consider the two cases of the parameter a. When a = 1, the weight factor becomes

ws;1b(u) =
(
√
γu)2b−1

(u− 4γ)
,

and from Theorem 7.1.4, equation (7.1.5) is

∫ 4γ

0

(
√
γu)2b−1Rs;1b(u,m)Rs;1b(u, k)

(u− 4γ)
du =


0 if m 6= k

−4πı1−s if m = k and q = 0

−2πı1−s if m = k and q ≥ 1.

Then when a = 0, the weight factor becomes

ws;0b(u) =
(
√
γu)1−2b

(u− 4γ)3
,

and from Theorem 7.1.6, equation (7.1.5) is

∫ 4γ

0

(
√
γu)1−2bRs;0b(u,m)Rs;0b(u, k)

(u− 4γ)3
du =


0 if m 6= k

0 if m = k and q = 0

2πıs+1 if m = k and q ≥ 1,

therefore, establishing the result.

In isolating the individual sequences we obtain the following corollary.

COROLLARY. For the (non)alternating parameter case a = 0, we have the orthogonal

relations ∫ 4

0

√
uR0;00(u,m)R0;00(u, k)(√

u− 4
)3 du =

{
0 if m 6= k

2πı if m = k and m ≥ 1,∫ 4

0

R0;01(u,m)R0;01(u, k)
√
u
(√
u− 4

)3 du =

{
0 if m 6= k

2πı if m = k,∫ 0

−4

√
−uR1;00(u,m)R1;00(u, k)(√

u+ 4
)3 du =

{
0 if m 6= k

2π if m = k and m ≥ 1,
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and ∫ 0

−4

R1;01(u,m)R1;01(u, k)
√
−u
(√
u+ 4

)3 du =

{
0 if m 6= k

2π if m = k.

Also for the alternating parameter case a = 1, we have the orthogonal relations

∫ 4

0

R0;10(u,m)R0;10(u, k)
√
u
√
u− 4

du =


0 if m 6= k

−4πı if m = k and m = 0

−2πı if m = k and m ≥ 1,

∫ 4

0

√
uR0;11(u,m)R0;11(u, k)√

u− 4
du =

{
0 if m 6= k

−2πı if m = k,

∫ 0

−4

R1;10(u,m)R1;10(u, k)√
−u
√
u+ 4

du =


0 if m 6= k

4π if m = k and m = 0

2π if m = k and m ≥ 1,

and ∫ 0

−4

√
−uR1;11(u,m)R1;11(u, k)√

u+ 4
du =

{
0 if m 6= k

2π if m = k.

Proof. Each of these results follows directly upon substitution of each of the parameters s, a

and b into (7.1.5) of Theorem 7.1.7 and reversing the order of integration, (and therefore

changing the sign), when necessary.

7.2 Three term order recurrences

In Section 5 we described an order M ′ = m+ b(1− a) linear recurrence relation polynomial

Rs;ab(u,m), that for fixed q and t, facilitates the calculation of the rth term, (for r ≥M ′), of

the sequence Ls;abc(r, t, q).
Alternatively, the word recurrence often refers to a relation between polynomials of consec-

utive orders. We will consider two types of such recurrences, those from the same sequence

(that we refer to as an intra sequence) and those separated by the parameter b (that we refer

to as an inter sequence).

7.2.1 Intra sequence recurrences

For fixed parameters s, a and b we consider the relation between the polynomialRs;ab(u,m+2)

in terms of the polynomials Rs;ab(u,m + 1) and Rs;ab(u,m). To elucidate this relation we

exploit the orthogonality of these polynomials shown in Section 7.1. We use a theorem to

demonstrate a method described in [18].
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THEOREM 7.2.1. The orthogonal polynomial sequence {φr(x)}∞r=0 satisfies the three term

relation

φr+1(x) = (αrx+ βr)φr(x) + γr−1φr−1(x). (7.2.1)

Here the coefficients αr, βr and γr−1 are given by

αr =
Ar+1

Ar
, (7.2.2)

where Ai is the leading coefficient of the polynomial φi(x).

βr =
−αr
kr

∫ 1

−1
w(x)xφ2r(x) dx (7.2.3)

where ki 6= 0 is defined by

ki =

∫ 1

−1
w(x)φ2i (x) dx =

∫ 1

−1
w(x)[Aix

i + φi−1(x)]φi(x) dx = Ai

∫ 1

−1
w(x)xiφi(x) dx,

(7.2.4)

and

γr−1 = −αr
(
Ar−1
Ar

)(
kr
kr−1

)
. (7.2.5)

Proof. We choose αr such that

φr+1(x)− αrxφr(x) (7.2.6)

is a polynomial of degree r. Now due to the orthogonality of the sequence of polynomials

{φi(x)}ri=0, they are linearly independent and so span the space of the polynomials of degree

r. We, therefore, select this sequence as a basis for the polynomials of degree r and write

(7.2.6) as a linear combination of these polynomials. We have

φr+1(x)− αrxφr(x) = βrφr(x) + γr−1φr−1(x) + γr−2φr−2(x) + . . .+ γ0φ0(x). (7.2.7)

Multiplying (7.2.7) by w(x)φi(x), where w(x) is the weight factor, and integrating (between

−1 and 1), we find that for 0 ≤ i ≤ r − 1,∫ 1

−1
w(x)φi(x){φr+1(x)− αrxφr(x)} dx = γi

∫ 1

−1
w(x)φ2i (x) dx = γiki, (7.2.8)

and when i = r we have∫ 1

−1
w(x)φr(x){φr+1(x)− αrxφr(x)} dx = βrkr. (7.2.9)

Now since, for 0 ≤ i ≤ r−2, φr+1(x) is orthogonal to φi(x) and φr(x) is orthogonal to xφi(x),

the left hand side of (7.2.8) disappears and so γr−2 = γr−3 = . . . = γ0 = 0.

However, when i = r−1, the terms φr(x) and xφr−1(x), both of degree r are no longer orthog-

onal, and similarly when i = r, the term αrxφr(x) is not orthogonal to φr(x)). Consequently
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in each case the left hand side of (7.2.8) and (7.2.9) respectively is nonzero. Therefore, (7.2.7)

simplifies to

φr+1(x)− αrxφr(x) = βrφr(x) + γr−1φr−1(x) (7.2.10)

and on rearrangement of (7.2.10) we obtain (7.2.1).

To derive the coefficient αr, we observe that its selection in (7.2.6) is such that on taking the

coefficient of xr+1 we obtain

Ar+1 − αrAr = 0,

which on rearrangement gives (7.2.2).

For the coefficient βr, we find that on simplifying (7.2.9) we obtain

−αr
∫ 1

−1
w(x)xφ2r(x) dx = βrkr,

which on rearrangement produces (7.2.3). Finally for γr−1, we put i = r − 1 into (7.2.8) so

that on simplification (and use of 7.2.4) we have

−αr
∫ 1

−1
w(x)xφr−1(x)φr(x)dx = γr−1

∫ 1

−1
w(x)φ2r−1(x) dx

−αr
∫ 1

−1
w(x)[Ar−1x

r + xφr−2(x)]φr(x) dx = γr−1kr−1

−αrAr−1
∫ 1

−1
w(x)xrφr(x) dx = γr−1kr−1

−αrAr−1
kr
Ar

= γr−1kr−1

−αr
Ar−1
Ar

kr
kr−1

= γr−1.

COROLLARY. If {φr(x)}∞r=0 is a monic orthogonal polynomial sequence and there exists

some i, such that for all j ≥ i we have kj = ki, where ki is defined as in (7.2.4), then (7.2.1)

simplifies to

φj+2(x) = (x+ βj+1)φj+1(x)− φj(x), (7.2.11)

where

βj+1 =
−1

ki

∫ 1

−1
w(x)xφ2j+1(x) dx.

Proof. If φj(x) is monic, then we have that Aj+2 = Aj+1 = 1, therefore, αj+1 = 1, and then

since ki = ki+1 . . . = kj+1, it follows from (7.2.5) that γj = −1. Then replacing r with j + 1

in (7.2.3) and using the fact that αj+1 = 1 and kj+1 = ki, we obtain (7.2.11).

LEMMA 7.2.2. For q ≥ 0, we have∫ 4γ

0
(Rs;ab(u,m))2ws;ab(u) du = λ4ı1+λs

∫ π/2

0
1− λ cos 2(2m+ b)θ dθ, (7.2.12)

where λ = (−1)a and γ = (−1)s.
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Proof. When a = 1, we have from Theorem 7.1.4 with m = k and then Lemma 7.1.2 (that

demonstrates the need for the additional factor γ when the variable changes from x to θ),∫ 4γ

0

(
√
γu)2b−1 (Rs;1b(u,m))2

√
u− 4γ

du

=− 8ı1+s
∫ γ1

0

(T2m+b(x))2√
1− x2

dx

=− 8γı1+s
∫ π/2

0
(cos (2m+ b)θ)2 dθ

=− 4ı1−s
∫ π/2

0
(1 + cos 2(2m+ b)θ) dθ.

and when a = 0, we have from Theorem 7.1.6 with m = k and then Lemma 7.1.2 (also

highlighting the additional γ factor when changing variable),∫ 4γ

0

(
√
γu)1−2b (Rs;0b(u,m))2

(
√
u− 4γ)3

du

=8γı1+s
∫ γ1

0
(U2m+b−1(x))2

√
1− x2 dx

=8γ2ı1+s
∫ π/2

0
(sin (2m+ b)θ)2 dθ

=4ı1+s
∫ π/2

0
(1− cos 2(2m+ b)θ) dθ.

Combining these two results we obtain (7.2.12).

LEMMA 7.2.3 (first moment functional). For q ≥ 0, we have

∫ 4γ

0
u (Rs;ab(u,m))2ws;ab(u) du =


−8aπı1+s if q = 0

6
31−aπλı

1−λs if q = 1

4πλı1−λs if q ≥ 2,

(7.2.13)

where λ = (−1)a.

Proof. From Lemma 7.2.2 and recalling that u = 4γx2 = 4γ cos2 θ, the left hand side of

(7.2.13) can be written as

λ4ı1+λs
∫ π/2

0
4γ cos2 θ (1− λ cos 2(2m+ b)θ) dθ. (7.2.14)

If q = 0 then (7.2.14) becomes

4λı1+λs
∫ π/2

0
γ(2a)4 cos2 θ dθ = 16λγaı1+λs

∫ π/2

0
1 + cos 2θ dθ = −6γaı1−s

[π
2

]
= −8aπı1+s.

If q ≥ 1 then on applying the identity 2 cos2 θ = cos 2θ + 1 and multiplication, (7.2.14)

becomes



82

4λγı1+λs
∫ π/2

0
(2 + 2 cos 2θ − λ cos 2(2m+ b+ 1)θ − λ cos 2(2m+ b− 1)θ

−2λ cos 2(2m+ b)θ) dθ. (7.2.15)

Then if q = 1, (7.2.15) simplifies to

4λγı1+λs
∫ π/2

0
(2 + 2 cos 2θ − λ cos 4θ − λ− 2λ cos 2θ) dθ

=4λı1−λs [(2− λ)θ]
π/2
0 = 2λ(2− λ)πı1−λs =

{
2πλı1−λs if a = 0

6πλı1−λs if a = 1,
(7.2.16)

both cases being equivalent to the q = 1 case in (7.2.13).

Finally, if q ≥ 2, (7.2.15) becomes 4λγı1+λs [2θ]
π/2
0 = 2λπı1−λs.

THEOREM 7.2.4 (intra sequence recurrence). For fixed parameters s, a and b and

m ≥ 1 + ab− a− b, with initial values given by

Rs;00(u, 1) = u− 4γ, and Rs;00(u, 2) = u2 − 6γu+ 8,

Rs;01(u, 0) = u− 4γ, and Rs;01(u, 1) = u2 − 5γu+ 4,

Rs;10(u, 0) = 2, and Rs;10(u, 1) = u− 2γ,

Rs;11(u, 0) = 1, and Rs;11(u, 1) = u− 3γ,

we have

Rs;ab(u,m+ 2) = (u− 2γ)Rs;ab(u,m+ 1)−Rs;ab(u,m), (7.2.17)

where γ = (−1)s.

Proof. From Section 7.1 each of the polynomials Rs;ab(u,m) form an orthogonal monic poly-

nomial sequence with respect to the weight factor ws;ab(u).

For m ≥ 1 we have from Theorem 7.2.1 and Corollary 7.2.1, with i = 1 and putting j = m,

Rs;ab(u,m+ 2) = (u+ gm+1)Rs;ab(u,m+ 1)−Rs;ab(u,m), (7.2.18)

where

gm+1 =
−1

km+1

∫ 4γ

0
u (Rs;ab(u,m+ 1))2ws;ab(u) du.

Here km+1 = k1 and as defined in (7.2.4) is from Theorem 7.1.7 found to be

km+1 = 2λπı1+λs,

and from Lemma 7.2.3 we have∫ 4γ

0
u (Rs;ab(u,m))2ws;ab(u)du = 4λπı1−λs,
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and so we find that

gm+1 = −4λπı1−λs

2λπı1+λs
= −2ı−2λs = −2((−1)s)−λ = −2γ,

and so (7.2.18) is obtained.

When m = 0 and q = 0, Rs;00(u, 0) = 0, but Rs;10(u, 0) = 2, (which is not monic) and

we need to consider the implications to the corollary of Theorem 7.2.1. Inspection of the

corollary with j = 0 reveals that α1 = A2/A1 is unaffected; then from Theorem 7.1.7 and

Lemma 7.2.3,

β1 =
−1

k1

∫ 4γ

0
u (Rs;ab(u, 1))2ws;10(u) du = −(−8)πı1−λs

(−4)πı1+λs
= −2γ,

and the evaluation for γ0 is

γ0 = −α1
A0

A1

k1
k0

= −2

1

(−4)πı1+λs

(−8)πı1+λs
= −1,

showing that (7.2.18) remains valid.

When m = 0 and q = 1, Rs;01(u, 0) = u − 4γ, but is equivalent to 1 after recalibration due

to the amended weight factor. We also find (from Theorem 7.1.7 and Lemma 7.2.3) that

β1 = −2γ, (and since k0 = k1), γ0 = −1, where we note the different notations of γ

and γm.

Finally for Rs;11(u, 0) = 1, applying the same theorem and lemma we also have β1 = −2γ,

and γ0 = −1, and so we find that (7.2.18) holds for all q ≥ 1− a as asserted.

7.2.2 Inter sequence recurrences

Consideration of the production of the polynomialRs;ab(u,m+1) from those ofRs;ab′(u,m+b)

and Rs;ab(u,m), where b′ = 1− b.

THEOREM 7.2.5 (inter sequence recurrence). With q = 2m + b ≥ 1 − a, such that the

initial conditions are, if

a =

{
0 then Rs;00(u, 1) = u− 4γ, and Rs;01(u, 0) = u− 4γ

1 then Rs;10(u, 0) = 2, and Rs;11(u, 0) = 1,

and γ = (−1)s, then we have

Rs;ab(u,m+ 1) = ub−aRs;ab′(u,m+ b)− γRs;ab(u,m), (7.2.19)

where d is the absolute value of d.

Proof. We need to consider the cases of the parameters a, b and s. Starting with case when

a = 1 we have from (5.3.2)

Tq+2(x) = 2xTq+1(x)− Tq(x),
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and so with x =
√
u/2 we have,

Tq+2(
√
u/2) =

√
uTq+1(

√
u/2)− Tq(

√
u/2). (7.2.20)

From Theorem 5.6.1,

Rs;1b(u,m) =
γm2Tq(

√
γu/2)

(
√
γu)b

,

and when q = 2m (7.2.20) becomes

γ−m−12−1Rs;10(u,m+ 1) =γ−m2−1
√
γu (
√
γuRs;11(u,m))− γ−m2−1Rs;10(u,m)

γ−1Rs;10(u,m+ 1) =γuRs;11(u,m)−Rs;10(u,m)

Rs;10(u,m+ 1) =uRs;11(u,m)− γRs;10(u,m),

where we have first divided through by γ−m2−1 and then multiplied by γ.

Conversely when q = 2m+ 1, (7.2.20) becomes

γ−m−12−1
√
γuRs;11(u,m+ 1) = γ−m−12−1

√
γuRs;10(u,m+ 1)− γ−m2−1

√
γuRs;11(u,m),

which on division by γ−m−12−1
√
γu (taking u 6= 0 as fixed) gives

Rs;11(u,m+ 1) = Rs;10(u,m+ 1)− γRs;11(u,m). (7.2.21)

When a = 0 we have the additional factor of (u− 4γ) to consider.

Once more starting with (5.3.2),

Uq+1(x) = 2xUq(x)− Uq−1(x),

we put x =
√
γu/2, before multiplying through by u− 4γ to obtain

(u− 4γ)Uq+1(
√
γu/2) =

√
γu(u− 4γ)Uq(

√
γu/2)− (u− 4γ)Uq−1(

√
γu/2), (7.2.22)

where the variable u is not to be confused with the polynomial Un(x), the Chebyshev poly-

nomial of the second kind. Now from Theorem 5.6.1,

Rs;0b(u,m) =
γm−1+b(u− 4γ)Uq−1(

√
γu/2)

(
√
γu)1−b

,

and with q = 2m+ 1, equation (7.2.22) is equivalent to

γ−m−1Rs;01(u,m+ 1) = γ−m
√
γu (
√
γuRs;00(u,m+ 1))− γ−mRs;01(u,m)

γ−mRs;01(u,m+ 1) = γ1−muRs;00(u,m+ 1)− γ−mRs;01(u,m)

Rs;01(u,m+ 1) = uRs;00(u,m+ 1)− γRs;01(u,m).

For q = 2m the case mirrors (7.2.21) and so division by γ−m
√
γu (with u 6= 0) gives

γ−m
√
γuRs;00(u,m+ 1) = γ−m

√
γuRs;01(u,m)− γ1−m√γuRs;00(u,m)

Rs;00(u,m+ 1) = Rs;01(u,m)− γRs;00(u,m).

and so we obtain (7.2.19) as required.



Chapter 8

Generating functions

We commence, in Section 8.1, with an overview of the generalised hypergeometric function,

that play an important role in the establishment of key results in this chapter. In Section 8.2,

we establish, in Lemma 8.2.1, a generalised generating function developed from the recurrence

polynomial. Then in Section 8.3, we utilise this lemma and hypergeometric functions, to

determine in Theorem 8.3.7 the generating function of the alternating sequences Ls;1bc(r, t, q).
The non-alternating case a = 0, first requires some other prelimanary work, that we examine

in Section 8.4, prior to Section 8.5, in which we culminate with Theorem 8.5.6, that determines

the generating function of the sequences Ls;0bc(r, t, q).

8.1 The Generalised Hypergeometric Function (GHF)

For positive integers α and k, we denote the rising and falling factorials by

αk = α(α+ 1) . . . (α+ k − 1) =
Γ(α+ k)

Γ(α)
, and αk = α(α− 1) . . . (α− k + 1) =

Γ(α)

Γ(α− k)
.

(8.1.1)

Using the notation of (8.1.1) for the rising factorial, and citing [3] and [45], we have the

following definition.

Definition 8.1.1 (generalised hypergeometric function). A generalised hypergeometric series

of the form ∑
k≥0

Tkz
k = T0 + T1z + T2z

2 + . . .

is a power series in which the ratio of successive coefficients

Tk+1

Tk
=

(k + α1) . . . (k + αm)

(k + β1) . . . (k + βn)(k + 1)
, (8.1.2)

indexed by k, is a rational function of k. The series, if convergent, defines a generalised

hypergeometric function, denoted by

mFn

(
α1, α2, . . . αm
β1, β2, . . . βn

; z

)
=

∞∑
k=0

αk1α
k
2 . . . α

k
mx

k

βk1β
k
2 . . . β

k
nk!

. (8.1.3)
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where the parameters α1, . . . , αm, β1, . . . , βn are obtained directly from (8.1.2). When the

series is not finite, its radius of convergence is given by

ρ =


∞ if m < n+ 1

1 if m = n+ 1

0 if m > n+ 1.

8.1.1 Overview to the application of generalised hypergeometric functions

The application of the generalised hypergeometric function (GHF) in this thesis involves the

reduction of a sum of the product of two binomial coefficients to a single binomial coefficient.

The general approach to achieve this is as follows:

1. Obtain the ratio Tk+1/Tk.

2. Identify the GHF by reading off the parameters from the ratio.

3. Multiply by the term T0.

4. Associate the GHF to an established result.

5. Convert this result to a binomial coefficient (as the given result is usually expressed in

terms of rising factorials.)

6. Check whether the GHF has the same number of terms as the given sum (and add /

subtract terms if necessary).

8.1.2 Overview of applied properties and stated results

� If one (or more) of the parameters in the numerator is negative then the series is finite.

Eg. the rising factorial of (−n)n+1 = 0, so the series will vanish after n terms.

� Particularly for finite series we can replace z by a value, (such as 1 or −1), and the

polynomial becomes a sum. To prevent a zero in the denominator of one of the terms,

this statement may carry the caveat that the parameters satisfy some given criteria.

� There are many such GHFs whose sum has an established closed form. For example, if

(8.1.3) satisfies (i) m = n+ 1 and (ii) α1 + . . .+αm + 1 = β1 + . . .+ βn, and z = 1, the

GHF is described as Saalchützian (or balanced).

Two such results employed in this thesis relating to Saalchützian GHFs given in [37]

are:

3F2

(
α1, α2,−m

β1, α1 + α2 −m− β1 + 1
; 1

)
=

(β1 − α1)
m(β1 − α2)

m

βm1 (β1 − α1 − α2)m
.
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and (using the symbolism of Slater [37])

Γ(g)Γ(g − f − d)

Γ(g − f)Γ(g − d)
× 4F3

(
d, 1 + f − g, f/2, f/2 + 1/2

a, f/2 + d/2− g/2, 1 + f/2 + d/2− g/2 ; 1

)
= 3F2

(
f, 1 + f − a, d

a, g
;−1

)
.

In Appendix D.1 we provide a simple example to illustrate how hypergeometric functions

are applied in this chapter.

8.2 Development of the generating function from the recur-
rence relation polynomial

Definition 8.2.1. We have Ls(0),Ls(1),Ls(2), . . . are two sequences of integers, where the

parameter s ∈ {0, 1}, and are such that

L1(r) = (−1)rsL0(r) = γrL0(r),

where γ = (−1)s.

Suppose a sequence Ls(0),Ls(1),Ls(2), . . . satisfies a linear recurrence of order m, then

recalling Lemma 5.5.1 we have

Ls(r +m) + (−γ)a1Ls(r +m− 1) + . . .+ (−γ)mamLs(r) = 0. (8.2.1)

Definition 8.2.2. We denote the generating function of the sequence of terms Ls(r) by

GLs(x) =

∞∑
r=0

Ls(r)xr. (8.2.2)

A method of determining the generating function equation from a three term linear recurrence

relation is given by Koshy [29]. This is easily extended to an m+ 1 term relation. We express

this method as a lemma.

LEMMA 8.2.1. If the sequence of terms Ls(0),Ls(1),Ls(2), . . . satisfy the m + 1 term

recurrence (8.2.1), then the generating function will have the form

GLs(x) =

∑m−1
k=0

∑k
j=0(−γ)jajLs(k − j)xk∑m
k=0(−γ)kakxk

. (8.2.3)

Proof. From (8.2.2) we have

GLs(x) =
∞∑
r=0

Ls(r)xr = Ls(0) + Ls(1)x+ Ls(2)x2 . . .+ Ls(n)xn + . . . . (8.2.4)
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Multiplication of both sides of (8.2.4) by (−γ)kakx
k for 1 ≤ k ≤ m, then produces the system

of m additional equations

−γa1xGLs(x) = −γa1Ls(0)x− γa1Ls(1)x2 − γa1Ls(2)x3 + . . .

a2x
2GLs(x) = a2Ls(0)x2 + a2Ls(1)x3 + a2Ls(2)x4 + . . .

...

(−γ)m−1am−1x
m−1GLs(x) = (−γ)m−1am−1Ls(0)xm−1 + (−γ)m−1am−1Ls(1)xm

+ (−γ)m−1am−1Ls(2)xm+1 + . . .

(−γ)mamx
mGLs(x) = (−γ)mamLs(0)xm + (−γ)mamLs(1)xm+1 + (−γ)mamLs(2)xm+2 + . . . .

(8.2.5)

Summing the left and right hand sides of the m + 1 equations, collecting the terms for

successive powers of x and then using the fact that
∑m

k=0(−γ)m−kam−kLs(n + k) = 0, we

obtain

m∑
k=0

(−γ)kakx
kGLs(x)

=a0Ls(0) + (a0Ls(1) + (−γ)a1Ls(0))x+ (a0Ls(2) + (−γ)a1Ls(1) + a2Ls(0))x2

+ . . .+

m−1∑
j=0

(−γ)jajLs(m− 1− j)

xm−1 +

 m∑
j=0

(−γ)jajLs(m− j)

xm

+ . . .+

 m∑
j=0

(−γ)jajLs(n− j)

xn + . . .

=Ls(0) + (a0Ls(1)− γa1Ls(0))x+ (a0Ls(2)− γa1Ls(1) + a2Ls(0))x2

+ . . .+

m−1∑
j=0

(−γ)jajLs(m− 1− j)

xm−1 + 0 + . . .+ 0 + . . .

=
m−1∑
k=0

 k∑
j=0

(−γ)jajLs(k − j)

xk. (8.2.6)

Division of both sides by
∑m

k=0(−γ)kakx
k gives the result.

Remark. The generating function has “inverted” the coefficients of xk in the sense that

the coefficient ak has been replaced by am−k, so that the recurrence polynomial in both the

numerator and denominator of the generating functions are reciprocal polynomials.

The summation in (8.2.6) is not unique as we demonstrate in the Corollary.

COROLLARY. For the sequence of terms Ls(0),Ls(1),Ls(2), . . ., we have

GLs(x) =

∑m−1
k=0

∑m−k−1
j=0 (−γ)jajLs(k)xj+k∑m
k=0(−γ)kakxk

. (8.2.7)
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Proof. If, in Lemma 8.2.1, the remaining terms in (8.2.6) are collected for successive values

of Ls(k)xk, then the result follows.

Remark. The terms aj and Ls(k) in (8.2.7) are no longer inter-dependent in the summation,

and this fact will be exploited in the generating function of the sequences Ls;0bc(r, t, q). A

very similar equation to (8.2.7) is stated by Jordan (p.27, [28]).

We now wish to apply the result of Lemma 8.2.1 to determine the generating function

of the sequences Ls;abc(r, t, q). The alternating case a = 1 is an easier proposition than the

a = 0 case, so we shall consider this first.

8.3 The generating function of the sequences Ls;1bc(r, t, q)

From the work in Section 8.2 we have Lemma 8.3.1.

LEMMA 8.3.1. The generating function for the sequences Ls;1bc(r, t, q) has the form

GLs;1bc(x, t, q) =
γt+1−c∑m−1

k=T

∑k−T
j=0 (−1)j 2m+b

2m+b−j
(
2m+b−j

j

)(
2k+2−c−2j
k+t+1−c−j

)
(γx)k∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk

, (8.3.1)

where 0 ≤ t ≤ m, and

T =

{
t if t = 0

t− 1 if t ≥ 1.
(8.3.2)

When b = c = 0 and t = m, we have

GLs;100(x,m, 2m) = 0. (8.3.3)

Proof. From Lemma 8.2.1 we have

GLs;1bc(x, t, q) =

∑m−1
k=0

∑k
j=0(−γ)jajLs;1bc(k − j, t, q)xk∑m

k=0(−γ)kakxk
, (8.3.4)

where we recall that the terms ak are those of the corresponding recurrence polynomials,

Rs;1b(x,m) (of order m), such that ak is the coefficient of the term xm−k. From Theorem 5.6.1

these are given by

Rs;1b(x,m) =

m∑
k=0

(−γ)m−k
2m+ b

2m+ b− k

(
2m+ b− k

k

)
xm−k, (8.3.5)

and we have

ak =
2m+ b

2m+ b− k

(
2m+ b− k

k

)
. (8.3.6)

The terms Ls;1bc(r, t, q) for 0 ≤ r ≤ m − 1, in the numerator of (8.3.4) are, with one

exception, determined by the single binomial coefficients

Ls;1bc(r, t, q) = γr+t+1−c
(

2r + 2− c
r + t+ 1− c

)
. (8.3.7)
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This single exception occurs when the parameters b = c = 0 and the variables r = m− 1 and

t = m. In this case (8.3.7) becomes

Ls;100(m− 1,m, 2m) = γ2m
((

2m

0

)
−
(

2m

2m

))
= 0. (8.3.8)

Moreover, we also observe that when t ≥ 1 and r = t− 1, the binomial coefficient in (8.3.7)

is given by (
2t− c
2t− c

)
,

and so if t ≥ 2 and 0 ≤ r ≤ t − 2, then (if we define the binomial coefficient nCr = 0 when

r > n), Ls;abc(r, t, q) = 0. Consequently this reduces the number of non-zero terms in the

numerator of (8.3.4), and the upper limit of inner sum is reduced by T , as is the lower limit

of outer sum raised to T , where T is given in (8.3.2).

Accordingly, substitution of each of the terms (8.3.6), (8.3.7) and (the discussed) place-

ment of the variable T into (8.3.4) gives (8.3.1). Furthermore, in conjuction with (8.3.8), we

have for 0 ≤ r ≤ m− 1, that Ls;100(r,m, 2m) = 0, and so we obtain (8.3.3).

Although we have established a form for the generating function of the sequences Ls;1bc(r, t, q),
the numerator of each is a double sum and consequently rather unwieldy. We turn to gen-

eralised hypergeometric functions (introduced in Section 8.1) to reduce the inner (binomial)

sum to a single term.

Let us first consider the particular case t = 0 (and c = 0) and denote the (inner sum) of

the numerator of (8.3.1) as

k∑
j=0

Tj =

k∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
. (8.3.9)

We require the following lemmas.

LEMMA 8.3.2. For non-negative integers m, k and b with 0 ≤ k ≤ m − 1 and b ∈ {0, 1}
we have

m∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)

=

(
2k + 2

k + 1

)
3F2

(
−k − 1, 1/2− b−m,−m
−k − 1/2, 1− b− 2m

; 1

)
.

Proof. Denote the left hand sum as

m∑
j=0

Tj =

m∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
, (8.3.10)
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then expressing it in terms of a hypergeometric function with

Tj+1 = (−1)j+1 2m+ b

2m+ b− j − 1

(
2m+ b− j − 1

j + 1

)(
2k − 2j

k − j

)
=

(−1)j+1(2m+ b)(2m+ b− j − 1)!(2k − 2j)!

(2m+ b− j − 1)(j + 1)!(2m+ b− 2− 2j)!(k − j)!(k − j)!
,

and

Tj =(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
=

(−1)j(2m+ b)(2m+ b− j)!(2k + 2− 2j)!

(2m+ b− j)j!(2m+ b− 2j)!(k + 1− j)!(k + 1− j)!
,

the ratio Tj+1/Tj is

=
(−1)(2m+ b)(2m+ b− j − 1)!(2k − 2j)!(2m+ b− j)j!

(2m+ b− j − 1)(j + 1)!(2m+ b− 2j − 2)!(k − j)!(k − j)!

× (2m+ b− 2j)!(k + 1− j)!(k + 1− j)!
(2m+ b)(2m+ b− j)!(2k + 2− 2j)!

=
(−1)(2m+ b− 2j)(2m+ b− 2j − 1)(k + 1− j)(k + 1− j)

(2m+ b− j − 1)(j + 1)(2k + 2− 2j)(2k + 1− 2j)

=
4(−1)5(j −m− b/2)(j −m+ (1− b)/2)(j − k − 1)(j − k − 1)

4(−1)3(j + 1− b− 2m)(j − k − 1)(j − k − 1/2)(j + 1)

=
(j − k − 1)(j −m− b/2)(j −m+ (1− b)/2)

(j − k − 1/2)(j + 1− b− 2m)(j + 1)
. (8.3.11)

We recall that b either takes the value 0 or 1, and so (8.3.11) can be equivalently written as

(j − k − 1)(j + 1/2− b−m)(j −m)

(j − k − 1/2)(j + 1− b− 2m)(j + 1)
.

Also we have that

T0 =

(
2k + 2

k + 1

)
,

so that we can write

m∑
j=0

Tj =

(
2k + 2

k + 1

)
3F2

(
−k − 1, 1/2− b−m,−m
−k − 1/2, 1− b− 2m

; 1

)

as required.

LEMMA 8.3.3. For non-negative integers m, k and b with 0 ≤ k ≤ m − 1 and b ∈ {0, 1}
we have

3F2

(
−k − 1, 1/2− b−m,−m
−k − 1/2, 1− b− 2m

; 1

)
= (−1)k+1

(
2m− k − 2 + b

k + 1

)
. (8.3.12)
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Proof. We observe that the sum of the numerator parameters is −k − 1/2 − 2m and that

this is one less than that of the denominator parameters. This fact enables us to employ

Saalschütz’s theorem given by

3F2

(
A,B,−m

C,A+B −m− C + 1
; 1

)
=

(C −A)m(C −B)m

Cm(C −A−B)m
. (8.3.13)

We putA = −k−1,B = 1/2−b−m and C = −k−1/2 (and so A+B −m− C + 1 = 1− b− 2m),

then using (8.3.13) and multiplying by T0 we obtain(
2k + 2

k + 1

)
3F2

(
−k − 1, 1/2− b−m,−m
−k − 1/2, 1− b− 2m

; 1

)
=

(
2k + 2

k + 1

)
(1/2)m(m− k − 1 + b)m

(−k − 1/2)m(m+ b)m
.

(8.3.14)

Each of the rising factorials of (8.3.14) can be expressed in the following manner.

(1/2)m = (1/2)(3/2) . . . ((2m− 1)/2) =
1× 2× . . . (2m− 1)(2m)

22m1× 2 . . .m
=

(2m)!

22mm!
,

(m− k − 1 + b)m = (m− k − 1 + b)(m− k + b) . . . (m− k +m− 2 + b)

= (2m− k − 2 + b) . . . (m− k − 1 + b)

=
(2m− k − 2 + b)!

(m− k − 2 + b)!
,

(−k − 1/2)m = (−k − 1/2)(−k + 1/2) . . . (−k + (2m− 3)/2)

=
(−2k − 1)(−2k + 1) . . . (−2k + 2m− 3)

22m

=
(2m− 2k − 2)(2m− 2k − 3) . . . 2.1.(−1).2.(−2k − 1)(2k + 2)

22m(m− k − 1) . . . 2.1.1.2.(k + 1)

=
(−1)k+1(2m− 2k − 2)!(2k + 2)!

22m(m− k − 1)!(k + 1)!
,

and

(m+ b)m = (m+ b)(m+ 1 + b) . . . (m+m+ b− 1) = (2m+ b− 1) . . . (m+ b) =
(2m+ b− 1)!

(m+ b− 1)!
.

So we can write (8.3.14) as

(2k + 2)!

(k + 1)!(k + 1)!
× (−1)k+1(2m)!(2m− k − 2 + b)!22m(m− k − 1)!(k + 1)!(m− 1 + b)!

22mm!(m− k − 2 + b)!(2m− 2− 2k)!(2k + 2)!(2m− 1 + b)!
,

(8.3.15)

and on recalling that b takes only the values 0 or 1 we can simplify (8.3.15) to

(−1)k+1

(k + 1)!

(2m)1−b

m1−b
(m− k − 1)1−b(2m− k − 2 + b)!

(2m− 2− 2k)!

=
(−1)k+1(2m− k − 2 + b)!

(k + 1)!(2m− 2k − 3 + b)!

=(−1)k+1

(
2m− 2 + b− k

k + 1

)
.
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Remark. We observe that the summation in Lemma 8.3.2 has m + 1 terms. However, in

actual fact from either inspection of the product terms, or the hypergeometric numerator

parameter −(k + 1), only the first k + 2 terms are possibly non-zero.

We now demonstrate the following theorem.

THEOREM 8.3.4 (Lucas product closed form for t = 0 case). For non-negative integers

m, k and b with 0 ≤ k ≤ m− 1 and b ∈ {0, 1} we have

k∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
= 2(−1)k

(
2m+ b− 2− k

k

)
.

Proof. Let

Tj = (−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
. (8.3.16)

We write the left hand side of Lemma 8.3.2 as

m∑
j=0

Tj =
k∑
j=0

Tj +
m∑

j=k+1

Tj , (8.3.17)

and it is clear from (8.3.16) that Tj = 0 when k+ 2 ≤ j ≤ m. Therefore, (8.3.17) simplifies to

m∑
j=0

Tj =

k∑
j=0

Tj + Tk+1. (8.3.18)

Now from Lemma 8.3.3, we have that

m∑
j=0

Tj = (−1)k+1 (2m− 2 + b− k)!

(k + 1)!(2m− 3 + b− 2k)!

and the term Tk+1 is given by

(−1)k+1 2m+ b

2m− 1 + b− k

(
2m− 1 + b− k

k + 1

)
= (−1)k+1 (2m+ b)(2m− 2 + b− k)!

(k + 1)!(2m− 2 + b− 2k)!
.

So on rearranging (8.3.18) we have

k∑
j=0

Tj =

M∑
j=0

Tj − Tk+1

=(−1)k+1 (2m− 2 + b− k)!

(k + 1)!(2m− 3 + b− 2k)!
− (−1)k+1 (2m+ b)(2m− 2 + b− k)!

(k + 1)!(2m− 2 + b− 2k)!

=(−1)k+1 (2m− 2 + b− k)!

(k + 1)!(2m− 2 + b− 2k)!
((2m− 2 + b− 2k)− (2m+ b))

=2(−1)k
(2m− 2 + b− k)!

(k + 1)!(2m− 2 + b− 2k)!
(k + 1)

=2(−1)k
(2m− 2 + b− k)!

k!(2m− 2 + b− 2k)!
= 2(−1)k

(
2m− 2 + b− k

k

)
.
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We now turn to the other cases of (8.3.1) (i.e. when t 6= 0) and denote the (inner) sum of the

numerator by

k−t+1∑
j=0

Tj =

k−t+1∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− c− 2j

k + 1− c+ t− j

)
, (8.3.19)

and again we wish to reduce (8.3.19) to a single term. Before we embark on this, we use a

lemma that will help clarify a piece of this task.

LEMMA 8.3.5 (negative gamma function). For positve integers L, N and K such that

N − L ≥ 1, we have

Γ(L+ 1−N)

Γ(K + 1)Γ(L+ 1−K −N)
= (−1)K

(
N +K − 1− L

K

)
.

Proof. Let a = N − L, then

Γ(L+ 1−N)

Γ(L+ 1−K −N)
=

(−a)(−(a+ 1))(−(a+ 2)) . . .

(−(a+K))(−(a+K + 1))(−(a+K + 2)) . . .

=(−a)(−(a+ 1))(−(a+ 2) . . . (−(a+K − 1)) = (−1)K(a+K − 1)K

=(−1)KK!

(
a+K − 1

K

)
= (−1)KK!

(
N +K − 1− L

K

)
. (8.3.20)

The result then follows on dividing (8.3.20) by Γ(K + 1).

We now extend the results of Theorem 8.3.4 to incorporate the cases when 1 ≤ t ≤ m, and

consequently we also have b, c ∈ {0, 1}.

THEOREM 8.3.6 (Lucas product closed form generalised case). For non-negative integers

m, k, b, c and t, with 0 ≤ k ≤ m− 1, b, c ∈ {0, 1} and 1 ≤ t ≤ m, we have

γt+1−c
m−1∑
k=t−1

k+1−t∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− c− 2j

k + 1− c+ t− j

)
(γx)k

=

m−t∑
k=0

(−γ)k
(

2(m− t) + b+ c− 1− k
k

)
xk+t−1.

Proof. We first consider the inner sum and establish that

k+1−t∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− c− 2j

k + 1− c+ t− j

)

(−1)k+1−t
(

2(m− t) + b+ c− 1− (k + 1− t)
k + 1− t

)
,

and then we determine that

γt+1−c
m−1∑
k=t−1

(−1)k+1−t
(

2(m− t) + b+ c− 1− (k + 1− t)
k + 1− t

)
(γx)k

=
m−t∑
k=0

(−γ)k
(

2(m− t) + b+ c− 1− k
k

)
xk+t−1.
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Let

Tj = (−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− c− 2j

k + t+ 1− c− j

)
=

(−1)j !(2m+ b)(2m+ b− j)!(2k + 2− c− 2j)

(2m+ b− j)j!(2m+ b+ 2− 2j)!(k + t+ 1− c− j)!(k − t+ 1− j)!
,

and

Tj+1 = (−1)j+1 2m+ b

2m+ b− j − 1

(
2m+ b− j − 1

j + 1

)(
2k − c− 2j

k + t− c− j

)
=

(−1)j+1(2m+ b)(2m+ b− j − 1)!(2k − c− 2j)!

(2m+ b− j − 1)j!(2m+ b+ 2− 2j)!(k + t− c− j)!(k − t− j)!
.

Then the ratio Tj+1/Tj is

=
(−1)(2k − c− 2j)!(2m+ b)(2m+ b− j − 1)!(k + t+ 1− c− j)!

(k + t− c− j)!(k − t− j)!(2m+ b− j − 1)(j + 1)!(2m+ b− 2j − 2)!

× (k − t+ 1− j)!(2m+ b− j)j!(2m+ b− 2j)!

(2k + 2− c− 2j)!(2m+ b)(2m+ b− j)!

=
(−1)(k + t+ 1− c− j)(k − t+ 1− j)(2m+ b− 2j)(2m+ b− 1− 2j)

(2k + 2− c− 2j)(2k + 1− c− 2j)(2m+ b− 1− j)(j + 1)

=
4(−1)5(j − k − t− 1 + c)(j − k + t− 1)(j −m− b/2)(j −m+ (1− b)/2

4(−1)3(j − k − 1 + c/2)(j − k − 1/2 + c/2)(j + 1− b− 2m)(j + 1)

=
(j − k − t− 1 + c)(j − k + t− 1)(j −m− b/2)(j −m+ (1− b)/2)

(j − k − 1 + c/2)(j − k − 1/2 + c/2)(j + 1− b− 2m)
.

Therefore, with T0 =
(
2k+2−c
k+1−c+t

)
, we have

k−t+1∑
j=0

Tj =

(
2k + 2− c
k + 1− c+ t

)
× 4F3

(
t− k − 1, c− t− k − 1,−b/2−m, 1/2− b/2−m

1− b− 2m,−k − 1 + c/2,−k + c/2− 1/2
; 1

)
.

(8.3.21)

We note that in the hypergeometric function, (8.3.21), the sum of the denominator parameters

is c− 2m− b− 2k− 1/2 and that this is one greater than that of the numerator parameters.

Hence the function is Saalschützian.

As demonstrated in [37], (see p.65), Vandermonde’s theorem can be employed to yield

Γ(g)Γ(g − f − d)

Γ(g − f)Γ(g − d)
× 4F3

(
d, 1 + f − g, f/2, f/2 + 1/2

a, f/2 + d/2− g/2, 1 + f/2 + d/2− g/2 ; 1

)
= 3F2

(
f, 1 + f − a, d

a, g
;−1

)
. (8.3.22)

We put f = −b− 2m, d = t− k − 1, g = 2 + t+ k − c− b− 2m and a = 1− b− 2m and we

note that this gives a = 1 + f . Therefore, the right hand side of (8.3.22) simplifies to

3F2 (f, 0, d; a, g;−1) = 1.
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Then on rearrangement of (8.3.22) with the given substitutions of f , d, g and a we obtain

4F3

(
t− k − 1, c− t− k − 1,−b/2−m, 1/2− b/2−m

1− b− 2m,−k − 1 + c/2,−k + c/2− 1/2
; 1

)
=

Γ(k + t+ 2− c)Γ(2k + 3− c− b− 2m)

Γ(2k + 3− c)Γ(k + t+ 2− c− b− 2m)
.

Therefore, we conclude that (8.3.21) simplifies to

k∑
j=0

Tj =

(
2k + 2− c
k + 1− c+ t

)
Γ(k + t+ 2− c)Γ(2k + 3− c− b− 2m)

Γ(2k + 3− c)Γ(k + t+ 2− c− b− 2m)
.

We now use Lemma 8.3.5 with L+ 1 = 2k+ 3− c− b− 2m, K = k+ 1− t and N = 2m and

proceed as

= (−1)k+1−t (2k + 2− c)!(k + t+ 1− c)!(2m− 2− t+ b+ c− 2k)k+1−t

(k + 1− c+ t)!(k + 1− t)!(2k + 2− c)!

= (−1)k+1−t
(

2(m− 1)− t+ b+ c− k
k + 1− t

)
= (−1)k+1−t

(
2(m− t) + b+ c− 1− (k + 1− t)

k + 1− t

)
,

thus establishing the first part of the theorem. We now have

γt+1−c
m−1∑
k=t−1

(−1)k+1−t
(

2(m− t) + b+ c− 1− (k + 1− t)
k + 1− t

)
(γx)k,

and this can be written

γc
m−1∑
k=t−1

(−γ)k+1−t
(

2(m− t) + b+ c− 1− (k + 1− t)
k + 1− t

)
xk.

The result follows on the rescaling of k + 1− t with k.

We now in a position to determine the generalised generating function for the function Ls;1bc,
that is the case when the alternating parameter a = 1.

THEOREM 8.3.7 (generating function of Ls;1bc). For Ls;abc(r, t, q) as given in 3.1.2 with

c ≤ t ≤ m, we have when a = 1,

GLs;1bc(x, t, q) =


2γJ2(m−1)+1+b(−γx)

j2m+b(−γx) if c = t = 0
xt−1J2(m−1−t)+2(−γx)

j2m(−γx) if b = c = 0 and t ≥ 1
γcxt−1J2(m−t)+b+c(−γx)

j2m+b(−γx) otherwise.

Here, JN (x) is the Jacobsthal polynomial as defined in (5.2.2), jn(x) the Jacobsthal-Lucas

polynomial as defined in (5.2.6) and γ = (−1)s.
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Proof. From Lemma 8.3.1 we have

GLs;1bc(x, t, q) =
γt+1−c∑m−1

k=T

(∑k−T
j=0 (−1)j 2m+b

2m+b−j
(
2m+b−j

j

)(
2k+2−c−2j
k+t+1−c−j

))
(γx)k∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk

,

where

T =

{
t if t = 0

t− 1 if t ≥ 1.

When t = 0 (and c = 0) we have on substitution of the result of Theorem 8.3.4 into (8.3.1)

that

GLs;1b0(x, 0, q) =
2γ
∑m−1

k=0 (−γ)k
(
2m−2+b−k

k

)
xk∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk
, (8.3.23)

and when t 6= 0 we have from Theorem 8.3.6,

GLs;1bc(x, t, q) =
γt+1−c∑m−1

k=t−1(−1)k+1−t(2(m−t)+b+c−1−(k−t+1)
k+1−t

)
(γx)k∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk

=
γc
∑m−t−b′c′

k=0 (−γ)k
(2(m−t)+b+c−1−k

k

)
xk+t−1∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk

, (8.3.24)

where b′ = 1− b and c′ = 1− c.
So when b = c = 0, the numerator of (8.3.24) is

m−1−t∑
k=0

(−γ)k
(

2(m− 1− t) + 1− k
k

)
xk+t−1,

and for each of the other cases of b and c we have

γc
m−t∑
k=0

(−γ)k
(

2(m− t) + b+ c− 1− k
k

)
xk+t−1.

Now on applying (5.2.3) and (5.2.7) to express (8.3.23) and (8.3.24) in terms of Jacobsthal

and Jacobsthal-Lucas polynomials the theorem follows.

Remark. When b = c = 0 the summation of (8.3.24) only runs up to k = m− 1− t (as the

term k = m− t yields a negative binomial coefficient).

In the Corollary to Theorem 8.3.7 we now identify the generating function for each sequence

when the parameter a = 1.

COROLLARY. We have for t = 0,

GL0;11c(x, 0, 1) =
21−cJ0(−x)

j1(−x)
= 0,

GL1;11c(x, 0, 1) =
(−2)1−cJ0(x)

j1(x)
= 0,
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GL0;100(x, 0, 2m) =
2J2(m−1)+1(−x)

j2m(−x)
=

2
∑m−1

k=0 (−1)k
(2(m−1)−k

k

)
xk∑m

k=0(−1)k 2m
2m−k

(
2m−k
k

)
xk
,

GL0;110(x, 0, 2m+ 1) =
2J2(m−1)+2(−x)

j2m+1(−x)
=

2
∑m−1

k=0 (−1)k
(2(m−1)+1−k

k

)
xk∑m

k=0(−1)k 2m+1
2m+1−k

(
2m+1−k

k

)
xk
,

GL1;100(x, 0, 2m) =
−2J2(m−1)+1(x)

j2m(x)
=
−2
∑m−1

k=0

(2(m−1)−k
k

)
xk∑m

k=0
2m

2m−k
(
2m−k
k

)
xk

,

and

GL1;110(x, 0, 2m+ 1) =
−2J2(m−1)+2(x)

j2m+1(x)
=
−2
∑m−1

k=0

(2(m−1)+1−k
k

)
xk∑m

k=0
2m+1

2m+1−k
(
2m+1−k

k

)
xk
.

We have for 1 ≤ t ≤ m,*

GL0;100(x, t, 2m) =
xt−1J2(m−1−t)+2(−x)

j2m(−x)
=

∑m−1−t
k=0 (−1)k

(2(m−1−t)+1−k
k

)
xk+t−1∑m

k=0(−1)k 2m
2m−k

(
2m−k
k

)
xk

,

GL0;101(x, t, 2m) =
xt−1J2(m−t)+1(−x)

j2m(−x)
=

∑m−t
k=0 (−1)k

(2(m−t)−k
k

)
xk+t−1∑m

k=0(−1)k 2m
2m−k

(
2m−k
k

)
xk

,

GL0;110(x, t, 2m+ 1) =
xt−1J2(m−t)+1(−x)

j2m+1(−x)
=

∑m−t
k=0 (−1)k

(2(m−t)−k
k

)
xk+t−1∑m

k=0(−1)k 2m+1
2m+1−k

(
2m+1−k

k

)
xk
,

GL0;111(x, t, 2m+ 1) =
xt−1J2(m−t)+2(−x)

j2m+1(−x)
=

∑m−t
k=0 (−1)k

(2(m−t)+1−k
k

)
xk+t−1∑m

k=0(−1)k 2m+1
2m+1−k

(
2m+1−k

k

)
xk
,

GL1;100(x, t, 2m)xr =
xt−1J2(m−1−t)+2(x)

j2m(x)
=

∑m−1−t
k=0

(2(m−1−t)+1−k
k

)
xk+t−1∑m

k=0
2m

2m−k
(
2m−k
k

)
xk

,

GL1;101(x, t, 2m) =
−xt−1J2(m−t)+1(x)

j2m(x)
=

(−1)
∑m−t

k=0

(2(m−t)−k
k

)
xk+t−1∑m

k=0
2m

2m−k
(
2m−k
k

)
xk

,

GL1;110(x, t, 2m+ 1) =
xt−1J2(m−t)+1(x)

j2m+1(x)
=

∑m−t
k=0

(2(m−t)−k
k

)
xk+t−1∑m

k=0
2m+1

2m+1−k
(
2m+1−k

k

)
xk
,

and

GL1;111(x, t, 2m+ 1) =
−xt−1J2(m−t)+2(x)

j2m+1(x)
=

(−1)
∑m−t

k=0

(2(m−t)+1−k
k

)
xk+t−1∑m

k=0
2m+1

2m+1−k
(
2m+1−k

k

)
xk

.

*When b = c = 0 and t = m, we have GLs;100(x,m, 2m) = 0.

Proof. Each of the sequences follows immediately from Theorem 8.3.7 on substituting the

appropriate values for each of the parameters s, b and c. For the case q = 1, we simplify

the generating function of the sums Ls;110(r, 0, q) and Ls;111(r, 0, q) = −Ls;111(r, 1, q), and

then we note that J0(x) = 0 and j1(x) = 1. The result for the sequences Ls;100(r,m, 2m) is

demonstrated in Lemma 8.3.1.
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8.4 Separation of the Lucas polynomial

The case a = 0, is complicated by the additional x− 4γ factor in the recurrence polynomials,

Rs;0b(x,m), so that coefficients, aj , of these polynomials are no longer single binomial coef-

ficients. Before examining this case, we consider an alternative way of considering the sums

that we have been analysing in Lemmas 8.3.2 and 8.3.3. This work will then help overcome

this difficulty. Let us employ some lemmas.

LEMMA 8.4.1 (Lucas product separation). For non-negative integers m, k, b, c and t with

0 ≤ k ≤ m, 0 ≤ t ≤ m and b, c ∈ {0, 1} we have

k∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)
−
k−1∑
j=0

(−1)j
(

2m− 2 + b− j
j

)(
2k − c− 2j

k + t− c− j

)
.

(8.4.1)

Proof. From the identity

X

X − J

(
X

J

)
=

(
X

J

)
+

(
X − 1

J − 1

)
,

with X = 2m+ b and J = j we can write the left hand side of (8.4.1) as

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)
+

k∑
j=1

(−1)j
(

2m− 1 + b− j
j − 1

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=
k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)
−
k−1∑
j=0

(−1)j
(

2m− 2 + b− j
j

)(
2k − c− 2j

k + t− c− j

)
.

In Theorem 8.3.4 using hypergeometric functions (with t = c = 0), we have derived a closed

form expression for the left hand side of (8.4.1). We recall that this is

k∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
= 2(−1)k

(
2m− 2 + b− k

k

)
.

We observe from Lemma 8.4.1 that this summation can also be considered as the sum of two

separate summations and it would be equally desirable to express these individual summations

in closed form. Written in hypergeometric form (with t = c = 0), we have

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− 2j

k + 1− j

)

=

(
2k + 2

k + 1

)
3F2

(
−k − 1,−m+ 1/2− b,−m
−k − 1/2,−2m− b ; 1

)
− (−1)k+1

(
2m− 1 + b− k

k + 1

)
, (8.4.2)
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and

k−1∑
j=0

(−1)j
(

2m− 2 + b− j
j

)(
2k − 2j

k − j

)

=

(
2k

k

)
3F2

(
−k,−m+ 3/2− b, 1−m

1/2− k, 2− 2m− b ; 1

)
− (−1)k

(
2m− 2 + b− k

k

)
. (8.4.3)

Remark. Here we have subtracted the last term of the hypergeometric function as our re-

quired sum is one less than this series produces.

However, if we denote the numerator parameters of the hypergeometric functions by a, b and

c, the denominator parameters by d and e and then consider the sum σ = d+ e− a− b− c,
we find that in both cases σ = 0. Therefore, we are unable to employ Saalschütz’s theorem

to derive a closed form as in our previous result.

Nevertheless, using Theorem 8.3.4 we will show that (8.4.2) and (8.4.3) respectively have the

simpler forms

2(−1)k
(

2m− 2 + b− k
k

)
2F1

(
−k, 1

k + 2− b− 2m
;−1

)
, (8.4.4)

and

2(−1)k−1
(

2m− 4 + b− (k − 1)

k − 1

)
2F1

(
−(k − 1), 1

k + 3− b− 2m
;−1

)
. (8.4.5)

In order to obtain these forms we first introduce a lemma.

LEMMA 8.4.2 (alternating binomial hypergeometric form). For non-negative integers N

and k with 0 ≤ k ≤ bN/2c we have

k∑
j=0

(−1)k+j
(
N − k − j
k − j

)
= (−1)k

(
N − k
k

)
2F1

(
−k, 1
k −N ;−1

)
.

Proof. Let
k∑
j=0

Tj =

k∑
j=0

(−1)k+j
(
N − k − j
k − j

)
.

We find that the ratio Tj+1/Tj is

(−1)k+j+1
(
N−k−j−1
k−j−1

)
(−1)k+j

(
N−k−j
k−j

) =
(−1)(k − j)(j + 1)

(N − k − j)(j + 1)
=

(−1)2(j − k)(j + 1)

(−1)(j + k −N)(j + 1)
,

which gives the hypergeometric function

2F 1

(
−k, 1
k −N ;−1

)
.

Now on multiplication of the hypergeometric function by T0 = (−1)k
(
N−k
k

)
we obtain the

result.
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The simpler forms stated in (8.4.4) and (8.4.5) are now established using the following theo-

rem.

THEOREM 8.4.3 (simplified Fibonacci product). For non-negative integers m and k, with

0 ≤ k ≤ m, we have

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− 2j

k + 1− j

)
= 2

k∑
j=0

(−1)k+j
(

2m− 2 + b− k − j
k − j

)

=2(−1)k
(

2m− 2 + b− k
k

)
2F1

(
−k, 1

k + 2− b− 2m
;−1

)
. (8.4.6)

Proof. We recall from Lemma 8.4.1 that

k∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)

=
k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− 2j

k + 1− j

)
−
k−1∑
j=0

(−1)j
(

2m− 2 + b− j
j

)(
2k − 2j

k − j

)
. (8.4.7)

Also from Theorem 8.3.4 we have that

k∑
j=0

(−1)j
2m+ b

2m+ b− j

(
2m+ b− j

j

)(
2k + 2− 2j

k + 1− j

)
= 2(−1)k

(
2m− 2 + b− k

k

)
,

and so (8.4.7) becomes

2(−1)k
(

2m− 2 + b− k
k

)
=

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− 2j

k + 1− j

)
−
k−1∑
j=0

(−1)j
(

2m− 2 + b− j
j

)(
2k − 2j

k − j

)
.

To demonstrate the first part of (8.4.6), we use induction on k. When k = 0 we have

(−1)0
(

2m+ b

0

)(
2

1

)
= 2(−1)0

(
2m− 2 + b

0

)(
2

1

)
= 2. (8.4.8)

Assuming the relation holds for all values up-to and including k − 1, we find that for the

value k we have

2(−1)k
(

2m− 2 + b− k
k

)
=

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− 2j

k + 1− j

)

− 2

k−1∑
j=0

(−1)k−1+j
(

2(m− 1) + b− 2− (k − 1)− j
k − 1− j

)
. (8.4.9)

On rearranging (8.4.9) we have

k∑
j=0

(−1)j
(

2m+ b− j
j

)(
2k + 2− 2j

k + 1− j

)
= 2

k∑
j=0

(−1)k+j
(

2m− 2 + b− k − j
k − j

)
.

Hence the simplified binomial form follows by induction. The hypergeometric form of (8.4.6)

follows immediately from Lemma 8.4.2 with N = 2m+ b− 2.
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As was illustrated in Theorem 8.3.4 on replacing k with k−1, and m with m−1, we similarly

obtain

k−1∑
j=0

(−1)j
(

2(m− 1) + b− j
j

)(
2(k − 1) + 2− 2j

(k − 1) + 1− j

)

= 2
k−1∑
j=0

(−1)k−1+j
(

2(m− 1) + b− 2− (k − 1)− j
k − 1− j

)

= 2(−1)k−1
(

2m− 3 + b− k
k − 1

)
2F1

(
−(k − 1), 1

k + 3− b− 2m
;−1

)
.

Remark. We see that the sum on the left hand side of (8.4.6) is equivalent to (twice) the

alternating sign sum of a binomial coefficient that forms a diagonal on Pascal’s triangle.

Moreover, when the Lucas polynomial is split up we obtain the equivalent of two sums

containing identical binomial coefficients except that the second sum commences with the

second term (of the first sum). Since the sum is an alternating sign series, this has the

consequence that all the terms will cancel except the first, thus obtaining the given result. This

latter approach provides us with an additional insight not evident from the hypergeometric

approach alone. However, predominantly it will provide us with a means of approaching the

non-alternating case a = 0 that now follows.

8.5 The generating function of the sequences Ls;0bc(r, t, q)

Our overall approach is similar to that of the case a = 1, and we begin with Lemma 8.5.1.

LEMMA 8.5.1. The generating function for the sequences Ls;0bc(r, t, q) has the form

GLs;0bc(x, t, q) =
γt+1−c(1− 4γx)

∑M
k=T

∑k−T
j=0 (−1)j

(
2M+1−b−j

j

)(
2k+2−c−2j
k+t+1−c−j

)
(γx)k −DxM+1

(1− 4γx)
∑M

k=0(−γ)k
(
2M+1−b−k

k

)
xk

,

(8.5.1)

where D ∈ Z, M = m+ b− 1, 0 ≤ t ≤ m, and

T =

{
t if t = 0

t− 1 if t ≥ 1.
(8.5.2)

When b = c = 0 and t = m, we have

GLs;000(x,m, 2m) =
2

(1− 4γx)
∑M

k=0(−γ)k
(
2M+1−b−k

k

)
xk
. (8.5.3)

Proof. From Lemma 8.2.1 we have

GLs;0bc(x, t, q) =

∑m+b−1
k=0

∑k
j=0(−γ)jajLs;0bc(k − j, t, q)xk∑m+b

k=0 (−γ)kakxk
, (8.5.4)
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where we recall that the terms ak are those of the corresponding recurrence polynomials,

Rs;0b(x,m) (of order m+ b), such that ak is the coefficient of the term xm+b−k. From

Theorem 5.6.1 with M = m+ b− 1 these are given by

Rs;0b(x,m) = (x− 4γ)
M∑
k=0

(−γ)M−k
(

2M + 1− b− k
k

)
xM−k, (8.5.5)

We recall that Rs;0b(x,m) is also composed of a Fibonacci polynomial of order M = m+b−1.

Incorporating our notation from Definition 5.4.1, we have

Ars;0b(x) =
M∑
k=0

(−γ)M−kbkx
M−k, (8.5.6)

where

bk =

(
2M + 1− b− k

k

)
. (8.5.7)

Therefore, by comparing coefficients of xi in (8.2.1) and (8.5.5), we have

ai = bi + 4bi−1. (8.5.8)

and from the Corollary of Lemma 8.2.1 we can express the numerator of (8.5.4) as

γt+1−c
M∑
k=0

M−k∑
j=0

(−γ)jajLs(k)xj+k = γt+1−c
M∑
k=0

M−k∑
j=0

(−γ)j(bj + 4bj−1)Ls(k)xj+k,

where b−1 = 0. Recombining the terms bj in an alternative way we obtain

γt+1−c
M∑
k=0

M−k∑
j=0

(−γ)j(bjx
j + 4xbj−1x

j−1)Ls(k)xk

=γt+1−c(1− 4γx)
M∑
k=0

M−k∑
j=0

(−γ)jbjLs(k)xj+k − 4γt+1−c
M∑
j=0

(−γ)j+1bjLs(M − j)xM+1

=γt+1−c(1− 4γx)
M∑
k=0

k∑
j=0

(−γ)jbjLs(k − j)xk −DxM+1, (8.5.9)

where

D = 4γt+1−c
M∑
j=0

(−γ)j+1bjLs(M − j). (8.5.10)

As in Lemma 8.3.1 the terms Ls;0bc(r, t, q) for 0 ≤ r ≤ m− 1, in the numerator of (8.5.4), are

determined by the single binomial coefficients

Ls;0bc(r, t, q) = γr+t+1−c
(

2r + 2− c
r + t+ 1− c

)
. (8.5.11)

However, when the parameters b = c = 0 and the variables r = m− 1 and t = m, (8.5.11) is

replaced by

Ls;000(m− 1,m, 2m) = γ2m
((

2m

0

)
+

(
2m

2m

))
= 2. (8.5.12)
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Also as in Lemma 8.3.1 we have that Ls;0bc(r, t, q) = 0 when t ≥ 2 and 0 ≤ r ≤ t− 2, and we

similarly adjust the limits of (8.5.9) by T given in (8.5.2).

On substitution of each of the terms (8.5.7), (8.5.11) and (the discussed) placement of the

variable T into (8.5.9) gives (8.5.1). Furthermore, as in (8.3.8), we have for 0 ≤ r ≤ m − 2,

that Ls;000(r,m, 2m) = 0; and from (8.5.12) that Ls;000(m − 1,m, 2m) = 2, so we obtain

(8.5.3).

Remark. It will be observed that the “factor” 1 − 4γx is not a complete factor of the

numerator, due the remainder term DxM+1 (required to cancel the additional term created

when the 1− 4γx is ”taken outside” of the summation). However, we consider the generating

function of (8.5.1) as a transitional form as opposed to a practical one.

We now examine a means of simplifying the numerator of the generating function de-

termined in Lemma 8.5.1. We start with the simpler case t = 0, with the aid of Lemma

8.5.2.

LEMMA 8.5.2 (binomial sum rearrangement). For non-negative integers N and K, we

have (
N − 2

K

)
+ 4

(
N − 1

K − 1

)
=

(
N

K

)
+ 2

(
N − 1

K − 1

)
+

(
N − 2

K − 2

)
.

We start with the expression on left hand side and manipulate as follows:

Proof.(
N − 2

K

)
+ 4

(
N − 1

K − 1

)
=

(
N − 2

K

)
+

(
N − 1

K − 1

)
+

(
N − 1

K − 1

)
+ 2

(
N − 1

K − 1

)
=

(
N − 2

K

)
+

(
N − 2

K − 1

)
+

(
N − 2

K − 2

)
+

(
N − 1

K − 1

)
+ 2

(
N − 1

K − 1

)
=

(
N − 1

K

)
+

(
N − 1

K − 1

)
+ 2

(
N − 1

K − 1

)
+

(
N − 2

K − 2

)
=

(
N

K

)
+ 2

(
N − 1

K − 1

)
+

(
N − 2

K − 2

)
.

THEOREM 8.5.3. For non-negative integers M , k and B, M = m− (1−b) and B = 1−b,
we have

(1− 4γx)

M∑
k=0

k∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− 2j

k + 1− j

)
(γx)k −DxM+1

=2
M∑
k=0

(−γ)k
2M +B

2M +B − k

(
2M +B − k

k

)
xk. (8.5.13)
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Proof. With 0 ≤ k ≤M , we consider the coefficient of (γx)k on the left hand side of (8.5.13).

This gives

k∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− 2j

k + 1− j

)
− 4

k−1∑
j=0

(−1)j
(

2M +B − j
j

)(
2(k − 1) + 2− 2j

(k − 1) + 1− j

)

=
k∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− 2j

k + 1− j

)
− 4

k−1∑
j=0

(−1)j
(

2M +B − j
j

)(
2k − 2j

k − j

)
.

From Theorem 8.4.3 this simplifies to

2

 k∑
j=0

(−1)k+j
(

2M +B − 2− k − j
k − j

)
+ 4

k−1∑
j=0

(−1)k+j
(

2M +B − 1− k − j
k − 1− j

) . (8.5.14)

We now use Lemma 8.5.2 with N = 2M +B−k− j and K = k− j to write the inner bracket

of (8.5.14) as

k∑
j=0

(−1)k+j
(

2M +B − k − j
k − j

)
+ 2

k−1∑
j=0

(−1)k+j
(

2M +B − 1− k − j
k − 1− j

)

+
k−2∑
j=0

(−1)k+j
(

2M +B − 2− k − j
k − 2− j

)
,

or alternatively,

k∑
j=0

(−1)k+j
(

2M +B − k − j
k − j

)
+
k−1∑
j=0

(−1)k+j
(

2M +B − 1− k − j
k − 1− j

)

+
k−1∑
j=0

(−1)k+j
(

2M +B − 1− k − j
k − 1− j

)
+
k−2∑
j=0

(−1)k+j
(

2M +B − 2− k − j
k − 2− j

)
. (8.5.15)

However, due to the cancellation of terms, (8.5.15) simplifies to

(−1)k
((

2M +B − k
k

)
+

(
2M +B − 1− k

k − 1

))
= (−1)k

2M +B

2M +B − k

(
2M +B − k

k

)
.

(8.5.16)

Substituting (8.5.16) into (8.5.14) obtains (8.5.13). Finally we choose D such that it cancels

the coefficient of the term xM+1. This is determined in (8.5.10) of Lemma 8.5.1.

We take a similar approach as in Theorem 8.5.3 to evaluate the general case when t 6= 0.

THEOREM 8.5.4 (simplified Fibonacci product sum general case). For non-negative in-

tegers M ≥ 1, 0 ≤ k ≤ M and 1 ≤ t ≤ M , where M = m − (1 − b) and B = 1 − b, we
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have

k+1−t∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=
k+1−t∑
j=0

(−1)k+1−t+j
(

2(M − t) +B + c− 1− k − j
k + 1− t− j

)

=(−1)k+1−t
(

2(M − t) +B + c− 1− k
k + 1− t

)
2F1

(
−k − 1 + t, 1

k + 1− 2(M − t)−B − c ;−1

)
. (8.5.17)

Proof. We recall from Lemma 8.4.1 that we have

k+1−t∑
j=0

(−1)j
2M +B

2M +B − j

(
2M +B − j

j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=

k+1−t∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

−
k−t∑
j=0

(−1)j
(

2M +B − 2− j
j

)(
2k − c− 2j

k + t− c− j

)
. (8.5.18)

Also from Theorem 8.3.6 we have that

k+1−t∑
j=0

(−1)j
2M +B

2M +B − j

(
2M +B − j

j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=(−1)k+1−t
(

2(M − t) +B + c− 1− (k + 1− t)
k + 1− t

)
,

and so (8.5.18) becomes

(−1)k+1−t
(

2(M − t) +B + c− 1− (k + 1− t)
k + 1− t

)
=

k+1−t∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)
−

k−t∑
j=0

(−1)j
(

2M +B − 2− j
j

)(
2k − c− 2j

k + t− c− j

)
.

(8.5.19)

As in Theorem 8.4.3, we use induction on the variable K = k+ 1− t, where 0 ≤ K ≤M − t.
K = k + 1− t = 0 implies k + 1 = t and this gives

(−1)0
(

2M +B

0

)(
2t− c
2t− c

)
=

(
2(M − t) +B + c− 1

0

)
= 1.

Assuming the relation holds for all values up-to and including K − 1 we have
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−
k−t∑
j=0

(−1)j
(

2(M − 1) +B − 2− j
j

)(
2(k − 1) + 2− c− 2j

k + t− c− j

)

=−
k−t∑
j=0

(−1)k−t+j
(

2(M − 1− t) +B + c− 1− (k − t)− j
k − t− j

)

=−
k−t∑
j=0

(−1)k−t+j
(

2(M − t) +B + c− 2− (k + 1− t)− j
k − t− j

)

=−
k+1−t∑
j=1

(−1)k+1−t+j
(

2(M − t) +B + c− 1− (k + 1− t)− j
k + 1− t− j

)
. (8.5.20)

Putting (8.5.20) into (8.5.19) and rearranging the latter equation we have

k+1−t∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=
k+1−t∑
j=0

(−1)k+1−t+j
(

2(M − t) +B + c− 1− (k + 1− t)− j
k + 1− t− j

)
.

Hence the simplified binomial form then follows by induction. The hypergeometric form of

(8.5.17) follows immediately from Lemma 8.4.2 with N = 2M − 3t + B + c and replacing k

with k + 1− t.

THEOREM 8.5.5. For non-negative integers M = m+ b− 1, 0 ≤ k ≤ M , B = 1− b and

D as given in (8.5.10) of Lemma 8.5.1, we have

γt+1−c(1− 4γx)

M∑
k=t−1

k−t+1∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

) (γx)k −DxM+1

=γc
m+bc−t∑
k=0

(−1)k
2(m− t) + b+ c

2(m− t) + b+ c− k

(
2(m− t) + b+ c− k)

k

)
(γx)k+t−1. (8.5.21)

Proof. From Theorem 8.5.4 we have

k+1−t∑
j=0

(−1)j
(

2M +B − j
j

)(
2k + 2− c− 2j

k + 1 + t− c− j

)

=
k+1−t∑
j=0

(−1)k+1−t+j
(

2(M − t) +B + c− 1− (k + 1− t)− j
k + 1− t− j

)
,

and the left hand side of (8.5.21) becomes

(1− 4γx)

M∑
k=t−1

k+1−t∑
j=0

(−1)k+1−t+j
(

2(M − t) +B + c− 1− (k + 1− t)− j
k + 1− t− j

) (γx)k.

(8.5.22)
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For 0 ≤ k ≤M we consider the coefficient of (γx)k in (8.5.22) to obtain

k+1−t∑
j=0

(−1)k+1−t+j
(

2(M − t) +B + c− 1− (k + 1− t)− j
k + 1− t− j

)

− 4
k−t∑
j=0

(−1)k−t+j
(

2(M − t) +B + c− 1− (k − t)− j
k − t− j

)
. (8.5.23)

Now we use Lemma 8.5.2 with N = 2(M − t) +B+ c+ 1− (k+ 1− t) and K = k+ 1− t (and

also using this notation in order to condense the binomial coefficients) we write (8.5.23) as

K∑
j=0

(−1)K+j

(
N − j
K − j

)
+ 2

K−1∑
j=0

(−1)K+j

(
N − 1− j
K − 1− j

)
+
K−2∑
j=0

(−1)K+j

(
N − 2− j
K − 2− j

)
,

or alternatively,

K∑
j=0

(−1)K+j

(
N − j
K − j

)
+
K−1∑
j=0

(−1)K+j

(
N − 1− j
K − 1− j

)

+
K−1∑
j=0

(−1)K+j

(
N − 1− j
K − j

)
+
K−2∑
j=0

(−1)K+j

(
N − 2− j
K − 2− j

)
. (8.5.24)

However, (8.5.24) simplifies to

(−1)K
((

N

K

)
+

(
N − 1

K − 1

))
= (−1)K

N +K

N

(
N

K

)
,

so that on replacingN andK with their original values and on recalling that M = m− (1− b)
and B = 1− b we continue as

=(−1)k+1−t 2(M − t) +B + c+ 1

2(M − t) +B + c+ 1− (k + 1− t)

(
2(M − t) +B + c+ 1− (k + 1− t)

k + 1− t

)
=(−1)k+1−t 2(m− t) + b+ c

2(m− t) + b+ c− (k + 1− t)

(
2(m− t) + b+ c− (k + 1− t)

k + 1− t

)
.

We now have

γt+1−c
M=m+b−1∑
k=t−1

(−1)k+1−t 2(m− t) + b+ c

2(m− t) + b+ c− (k + 1− t)

(
2(m− t) + b+ c− (k + 1− t)

k + 1− t

)
(γx)k

and this is equivalent to

γc
m+b−1∑
k=t−1

(−γ)k+1−t 2(m− t) + b+ c

2(m− t) + b+ c− (k + 1− t)

(
2(m− t) + b+ c− (k + 1− t)

k + 1− t

)
xk

and on the rescaling of k + 1− t with k we obtain

γc
m+b−t∑
k=0

(−γ)k
2(m− t) + b+ c

2(m− t) + b+ c− k

(
2(m− t) + b+ c− k

k

)
xk+t−1. (8.5.25)
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However, we observe that the binomial coefficient in (8.5.25) when k = m + b − t and the

parameters b = 1 and c = 0 becomes
(
m−t
m+1−t

)
= 0. Consequently we can write (8.5.25) as

(8.5.21). Finally as in Theorem 8.5.3 we choose D such that it cancels the coefficient of the

term xM+1, and we recall that this value is determined in (8.5.10) of Lemma 8.5.1.

This then motivates the following theorem.

THEOREM 8.5.6 (generating function of Ls;0bc). For Ls;abc(r, t, q) as given in Defini-

tion 3.1.2 with c ≤ t ≤M and M = m− 1 + b, we have with a = 0,

GLs;0bc(x, t, q) =


2γj2M+1−b(−γx)

(1−4γx)J2M+2−b(−γx) if c = t = 0
γcxt−1j2(m+bc−t)+b+c−2bc(−γx)

(1−4γx)J2M+2−b(−γx) otherwise.

Here, JN (x) is the Jacobsthal polynomial as defined in (5.2.2), jn(x) the Jacobsthal-Lucas

polynomial as defined in (5.2.6) and γ = (−1)s.

Proof. From Lemma 8.5.1 we have

GLs;0bc(x, t, q) =
γt+1−c(1− 4γx)

∑M
k=T

∑k−T
j=0 (−1)j

(
2M+1−b−j

j

)(
2k+2−c−2j
k+t+1−c−j

)
(γx)k −DxM+1

(1− 4γx)
∑M

k=0(−γ)k
(
2M+1−b−k

k

)
xk

,

(8.5.26)

where

T =

{
t if t = 0

t− 1 if t ≥ 1.

Then when t = 0 (and c = 0) we have from Theorem 8.5.3 that (8.5.26) simplifies to,

GLs;0b0(x, 0, q) =
2γ
∑m−1+b

k=0 (−γ)k 2m−1+b
2m−1+b−k

(2(m−1+b)+1−b−k
k

)
xk

(1− 4γx)
∑m−1+b

k=0 (−γ)k
(2(m−1+b)+1−b−k

k

)
xk

, (8.5.27)

and when t ≥ 1 we have from Theorem 8.5.5 that

GLs;0bc(x, t, q) =
γc
∑m−t+bc

k=0 (−γ)k 2(m−t+bc)+b+c−2bc
2(m−t+bc)+b+c−2bc−k

(2(m−t+bc)+b+c−2bc−k
k

)
xk+t−1

(1− 4γx)
∑m−1+b

k=0 (−γ)k
(2(m−1+b)+1−b−k

k

)
xk

.

(8.5.28)

Now on applying (5.2.3) and (5.2.7) to express (8.3.23) and (8.3.24) in terms of Jacobsthal

and Jacobsthal-Lucas polynomials the theorem follows.

From Theorem 8.5.6 we identify the generating function for each of the sequences when a = 0.

COROLLARY. We have for t = 0,

GL0;01c(x, 0, 1) =
21−cj0(−x)

(1− 4x)J1(−x)
=

4

2c(1− 4x)
,

GL1;01c(x, 0, 1) =
(−2)1−cj0(x)

(1 + 4x)J1(x)
=

(−2)1−c2

(1 + 4x)
,
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GL0;000(x, 0, 2m) =
2j2(m−1)+1(−x)

(1− 4x)J2(m−1)+2(−x)
=

2
∑m−1

k=0 (−1)k 2m−1
2m−1−k

(2(m−1)+1−k
k

)
xk

(1− 4x)
∑m−1

k=0 (−1)k
(2(m−1)+1−k

k

)
xk
,

GL0;010(x, 0, 2m+ 1) =
2j2m(−x)

(1− 4x)J2m+1(−x)
=

2
∑m

k=0(−1)k 2m
2m−k

(
2m−k
k

)
xk

(1− 4x)
∑m

k=0(−1)k
(
2m−k
k

)
xk
,

GL1;000(x, 0, 2m) =
−2j2(m−1)+1(x)

(1 + 4x)J2(m−1)+2(x)
=
−2
∑m−1

k=0
2m−1

2m−1−k
(2(m−1)+1−k

k

)
xk

(1 + 4x)
∑m−1

k=0

(2(m−1)+1−k
k

)
xk

,

and

GL1;010(x, 0, 2m+ 1) =
−2j2m(x)

(1 + 4x)J2m+1(x)
=
−2
∑m

k=0
2m

2m−k
(
2m−k
k

)
xk

(1 + 4x)
∑m

k=0

(
2m−k
k

)
xk
.

We have for 1 ≤ t ≤ m,

GL0;000(x, t, 2m) =
xt−1j2(m−t)(−x)

(1− 4x)J2(m−1)+2(−x)
=

∑m−t
k=0 (−1)k 2(m−t)

2(m−t)−k
(2(m−t)−k

k

)
xk+t−1

(1− 4x)
∑m−1

k=0 (−1)k
(2(m−1)+1−k

k

)
xk

,

(when we define the limit of the numerator when t = m as 2),

GL0;001(x, t, 2m) =
xt−1j2(m−t)+1(−x)

(1− 4x)J2(m−1)+2(−x)
=

∑m−t
k=0 (−1)k 2(m−t)+1

2(m−t)+1−k
(2(m−t)+1−k

k

)
xk+t−1

(1− 4x)
∑m−1

k=0 (−1)k
(2(m−1)+1−k

k

)
xk

,

GL0;010(x, t, 2m+ 1) =
xt−1j2(m−t)+1(−x)

(1− 4x)J2m+1(−x)
=

∑m−t
k=0 (−1)k 2(m−t)+1

2(m−t)+1−k
(2(m−t)+1−k

k

)
xk+t−1

(1− 4x)
∑m

k=0(−1)k
(
2m−k
k

)
xk

,

GL0;011(x, t, 2m+ 1) =
xt−1j2(m+1−t)(−x)

(1− 4x)J2m+1(−x)
=

∑m+1−t
k=0 (−1)k 2(m+1−t)

2(m+1−t)−k
(2(m+1−t)−k

k

)
xk+t−1

(1− 4x)
∑m

k=0(−1)k
(
2m−k
k

)
xk

,

GL1;000(x, t, 2m) =
xt−1j2(m−t)(x)

(1 + 4x)J2(m−1)+2(x)
=

∑m−t
k=0

2(m−t)
2(m−t)−k

(2(m−t)−k
k

)
xk+t−1

(1 + 4x)
∑m−1

k=0

(2(m−1)+1−k
k

)
xk

,

GL1;001(x, t, 2m) =
−xt−1j2(m−t)+1(x)

(1 + 4x)J2(m−1)+2(x)
=

(−1)
∑m−t

k=0
2(m−t)+1

2(m−t)+1−k
(2(m−t)+1−k

k

)
xk+t−1

(1 + 4x)
∑m−1

k=0

(2(m−1)+1−k
k

)
xk

,

GL1;010(x, t, 2m+ 1) =
xt−1j2(m−t)+1(x)

(1 + 4x)J2m+1(x)
=

∑m−t
k=0

2(m−t)+1
2(m−t)+1−k

(2(m−t)+1−k
k

)
xk+t−1

(1 + 4x)
∑m

k=0

(
2m−k
k

)
xk

,

and

GL1;011(x, t, 2m+ 1) =
−xt−1j2(m+1−t)(x)

(1 + 4x)J2m+1(x)
=

(−1)
∑m+1−t

k=0
2(m+1−t)

2(m+1−t)−k
(2(m+1−t)−k

k

)
xk+t−1

(1 + 4x)
∑m

k=0

(
2m−k
k

)
xk

.

Proof. Each of the sequences follows immediately from Theorem 8.5.6 on substituting the

appropriate values for each of the parameters s, b and c. For the case q = 1, we simplify

the generating function of the sums Ls;010(r, 0, q) and Ls;011(r, 0, q) = −Ls;011(r, 1, q), and

then we note that j0(x) = 2 and J1(x) = 1. The result for the sequences Ls;000(r,m, 2m) is

demonstrated in Lemma 8.5.1 which introduces an additional factor of 2 that is not displayed

in the equation.



Chapter 9

Minor Corner Layered (MCL)
Determinants

In this chapter we wish to establish the relationship between the generating function, the

recurrence relation polynomial and MCL determinants of type 1 and 2 (as defined in [31]).

9.1 Minor Corner Layered (MCL) Determinants

In the works of Lettington [30], [31] and Coffey, Hindmarsh, Lettington and Pryce [9], three

types of determinants were described, two of which defined below are necessary for our cal-

culations.

Definition 9.1.1 (MCL (and half-weighted) Determinant). Let ∆r(~h) be an r × r minor

corner layered (MCL) determinant, where ~α means entry index i in αi increasing left to

right, be defined such that ∆0(~h) = 1, and for r ≥ 1 we have

∆r(~h) = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 1 0 0 . . . 0
h2 h1 1 0 . . . 0
h3 h2 h1 1 . . . 0
...

...
...

...
. . .

...
hr−1 hr−2 hr−3 hr−4 . . . 1
hr hr−1 hr−2 hr−3 . . . h1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (9.1.1)

where the vector ~h = (h1, h2, h3, . . .) is an infinite dimensional vector.

Similarly, let Ψr(~h, ~H) be a half-weighted r × r MCL determinant defined such that we

have

Ψr(~h, ~H) = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣

H1 1 0 0 . . . 0
H2 h1 1 0 . . . 0
H3 h2 h1 1 . . . 0
...

...
...

...
. . .

...
Hr−1 hr−2 hr−3 hr−4 . . . 1
Hr hr−1 hr−2 hr−3 . . . h1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (9.1.2)

111
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where ~h = (h1, h2, h3, . . .) and ~H = (H1, H2, H3, . . .) correspond to two infinite dimensional

vectors.

Furthermore, the works of [30] and [31] have established the following lemmas associating

an MCL determinant with a recurrence relation polynomial.

LEMMA 9.1.1. Let gr be a function satisfying an (r + 1) term recurrence relation (or

r-th order relation) such that

gr = −
r−1∑
k=0

hr−kgk.

Then for r ≥ 1 we have

gr = ∆r(~h),

where ∆r(~h) is defined as in Definition 9.1.1.

Proof. See the Corollary of Lemma 6.1 of [30].

LEMMA 9.1.2. We have for r ≥ 1 that

Ψr(~h, ~H) = −
r−1∑
k=0

Hr−k∆k(~h), (9.1.3)

where ∆r(~h) and Ψr(~h, ~H) are defined as in Definition 9.1.1.

Proof. See display (3.2) of Lemma 3.1 in [31].

COROLLARY. If the vector ~H = (1, 0, 0, 0, . . .), then we have

Ψr(~h, ~H) = −∆r−1(~h).

Proof. We put H1 = 1, and for r ≥ 2 we put Hr = 0, into (9.1.3).

In preparation of the work that we introduce in Section 9.2 it is necessary to elaborate on

Definition 9.1.1 in the following manner.

Definition 9.1.2 (signed MCL (and half-weighted) Determinant). Let ∆ρ
r(~an) be an r × r

MCL determinant with ρ ∈ {0, 1} and defined such that we have 1

∆ρ
r(~an) = (−1)r ×

∣∣∣∣∣∣∣∣∣∣∣∣∣

aρn,1 1 0 0 . . . 0

an,2 aρn,1 1 0 . . . 0

aρn,3 an,2 aρn,1 1 . . . 0
...

...
...

...
. . .

...
aρn,r−1 aρn,r−2 aρn,r−3 aρn,r−4 . . . 1

aρn,r aρn,r−1 aρn,r−2 aρn,r−3 . . . aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

1Throughout, we use aρn,k = (−1)ρkan,k and AρN,k = (−1)ρkAN,k for layout considerations.



113

where the vector ~an = ((−1)ρan,1, an,2, (−1)ρan,3, . . . , and ak = 0 when k > n.

Similarly, let Ψρ
r(~an, ~AN,T) be a half-weighted (r+1)×(r+1) MCL determinant defined such

that (when T = 0),

Ψρ
r(~an, ~AN,0) = (−1)r ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AN,0 1 0 0 . . . 0
AρN,1 aρn,1 1 0 . . . 0

AN,2 an,2 aρn,1 1 . . . 0
...

...
...

...
. . .

...
AρN,r−1 aρn,r−1 aρn,r−2 aρn,r−3 . . . 1

AρN,r aρn,r aρn,r−1 aρn,r−2 . . . aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the vectors ~an = ((−1)ρan,1, an,2, (−1)ρan,3, . . .,

and ~AN,0 = ((−1)ρAN,1, AN,2, (−1)ρAN,3, . . .); ak = 0 when k > n and Ak = 0 when k > N .

The positive integer T corresponds to a downwards displacement from the top of each of the

elements AN,k, (0 ≤ k ≤ N), such that the element AN,k is shifted downwards from row k+ 1

to row k+ T + 1. (When T = 0 in the set of determinants under consideration, the subscript

T may be dropped for clarity, so that ~AN,0 = ~AN.)

Altering the labelling of Hk to AN,k−1 has an impact on Lemma 9.1.2 that we observe in

Lemma 9.1.3.

LEMMA 9.1.3. We have for r ≥ 0 that

Ψ0
r(~an, ~AN) =

r∑
k=0

AN,r−k∆
0
k(~an), (9.1.4)

where ∆0
r(~an) and Ψ0

r( ~an, ~AN) are defined as in Definition 9.1.2.

Proof. Using Lemma 9.1.2 we replace Hk with AN,k−1 and define

Ψρ
0(~an, ~AN) = AN,0 (as opposed to Ψ1(~h, ~H) = −H1).

COROLLARY 1. If the vector ~AN = (1, 0, 0, 0, . . .), then we have

Ψ0
r(~an, ~AN) = ∆0

r(~an).

Proof. We put AN,0 = 1, and for r ≥ 2 we put AN,r = 0, into (9.1.4).

Remark. We note that in the particular case ρ = 0, n = N = r and T = 0, we have

Ψ0
r(~ar, ~Ar) = −Ψr+1(~h, ~H).

9.2 Relationship between the generating function and the re-
currence polynomial.

We start by examining the relationship between the generating function of a function P ρ (as

defined in Definition 9.2.1) and its recurrence relation polynomial.
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Definition 9.2.1. We denote by P ρ, a function that takes the values P ρ(r, T,N, n), where

r, T , N and n are non-negative integers, and it has generating function GP ρ given by

GP ρ(x, T,N, n) =

∑N
k=0(−1)ρkAN,kx

k+T∑n
k=0(−1)ρkan,kxk

=
∞∑
k=0

P ρ(k, T,N, n)xk.

Here the parameter ρ ∈ {0, 1} is a sign indicator, whilst the variable r is the term number,

T is the “shift” value, n is the order of the denominator polynomial and N the order of the

numerator. Moreover, the coefficients an,k 6= 0 (0 ≤ k ≤ n) and AN,k 6= 0 (0 ≤ k ≤ N) are

determined by n and N respectively.

From this generating function, we now associate the function P ρ to a recurrence relation

polynomial using Theorems 9.2.1 and 9.2.2.

THEOREM 9.2.1. If P ρ is a function given as in Definition 9.2.1 with P ρ(0, 0, 0, n) = 1

and

GP ρ(x, 0, 0, n) =
1∑n

k=0(−1)ρkan,kxk
, (9.2.1)

then for r ≥ 1, P ρ obeys the recurrence relation

P ρ(r, 0, 0, n) = −
r−1∑
k=0

(−1)ρ(r−k)an,r−kP
ρ(k, 0, 0, n), (9.2.2)

where for r > n we have an,r = 0.

Conversely, if P ρ satisfies the recurrence relation given in (9.2.2), then the generating function

is given by (9.2.1).

Proof. Since for the theorem we have that N , n and T are constants, for clarity we write

P ρ(r) = P ρ(r, 0, 0, n). Then

GP ρ(x, 0, 0, n) =
1∑n

k=0(−1)ρkan,kxk
= P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . . ,

and on multiplication of both sides by
∑n

k=0(−1)ρkan,kx
k, and comparing the coefficients of

xr we obtain the system of equations

1 = an,0P
ρ(0)

0 = (−1)ρan,1P
ρ(0) + an,0P

ρ(1)

0 = an,2P
ρ(0) + (−1)ρan,1P

ρ(1) + an,0P
ρ(2)

...

0 = (−1)ρran,rP
ρ(0) + (−1)ρ(r−1)an,r−1P

ρ(1) + . . .+ an,0P
ρ(r). (9.2.3)

On rearrangement of (9.2.3) and putting an,0 = 1 we have for 1 ≤ r ≤ n,

P ρ(r) = −
r−1∑
k=0

(−1)ρ(r−k)an,r−kP
ρ(k). (9.2.4)



115

If r > n, on letting r = n+ h, (9.2.3) becomes

0 =0P ρ(0) + 0P ρ(1) + . . .+ (−1)ρnan,nP
ρ(h) + (−1)ρ(n−1)an,n−1P

ρ(h+ 1)

+ . . .+ an,0P
ρ(h+ n), (9.2.5)

and on rearrangement of (9.2.5) we once more obtain (9.2.4), where an,r−k = 0 when r−k > n.

Conversely, suppose that the function P ρ satisfies (9.2.2) for all r ≥ 1. Then on rear-

rangement of (9.2.4) we obtain the system of r + 1 equations (where r → ∞) as in (9.2.3).

Multiplication of the first equation by x0, the second by x1 and the (r + 1)-th equation by

xr produces

1 =an,0P
ρ(0)

0 =(−1)ρan,1P
ρ(0)x+ an,0P

ρ(1)x

0 =an,2P
ρ(0)x2 + (−1)ρan,1P

ρ(1)x2 + an,0P
ρ(2)x2

...

0 =(−1)ρnan,nP
ρ(0)xn + (−1)ρ(n−1)an,n−1P

ρ(1)xn + . . .+ an,0P
ρ(n)xn

...

0 =(−1)ρran,rP
ρ(0)xr + (−1)ρ(r−1)an,r−1P

ρ(1)xr + . . .+ (−1)ρnan,nP
ρ(r − n)xr

+ . . .+ an,0P
ρ(r)xr.

Then summing both sides with the right hand side being summed with respect to the

second parameter of the constant an,k for 0 ≤ k ≤ n across the (top left to bottom right)

diagonals we have

1 =an,0
(
P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . .

)
+ (−1)ρan,1x

(
P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . .

)
+ an,2x

2
(
P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . .

)
...

+ (−1)ρnan,nx
n
(
P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . .

)
,

(9.2.6)

and on factorising this gives us

1 =
(
an,0 + (−1)ρan,1x+ an,2x

2 + . . .+ (−1)ρnan,nx
n
)
×(

P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . .
)
, (9.2.7)

so that on division by
∑n

k=0(−1)ρkan,kx
k on both sides of (9.2.7) we obtain

1∑n
k=0(−1)ρkan,kxk

= P ρ(0) + P ρ(1)x+ P ρ(2)x2 + . . . .

This forces each coefficient of xr, (r ≥ 1) in the numerator to be 0, and hence the result.
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COROLLARY 1. Let P ρ be a function defined as in Definition 9.2.1 with P ρ(j, j, 0, n) = 1

and P ρ(i, j, 0, n) = 0 if i < j, and so A0,0 = 1. Then if

GP ρ(x, j, 0, n) =
xj∑n

k=0(−1)ρkan,kxk
, (9.2.8)

then for r ≥ j + 1, P ρ obeys the recurrence relation

P ρ(r, j, 0, n) = −
r−1∑
k=j

(−1)r−kan,r−kP
ρ(k, j, 0, n), (9.2.9)

where an,R = 0 when R > n. Conversely, if P ρ satisfies the recurrence relation given in

(9.2.9), then the generating function is given by (9.2.8).

Proof. We have

xj
1∑n

k=0(−1)ρkan,kxk
=xjGP ρ(x, 0, 0, n)

=xj
(
P ρ(0, 0, 0, n) + P ρ(1, 0, 0, n)x1 + P ρ(2, 0, 0, n)x2 + . . .

)
=P ρ(j, j, 0, n)xj + P ρ(j + 1, j, 0, n)xj+1 + P ρ(j + 2, j, 0, n)xj+2 + . . . .

The recurrence relation (9.2.9) then follows from Theorem 9.2.1 on comparsion of the co-

efficient of xr+j (as opposed to xr). Similarly the converse follows from Theorem 9.2.1 on

respectively replacing “multiplication by x0, x1, x2, . . .” by “multiplication by xj , xj+1, xj+2,

. . .”.

Remark. We could still begin with r = 1, 2, 3, . . . , rather than j and obtain the same result,

as the extra terms simply correspond to coefficients 0 in the recurrence.

COROLLARY 2. We have for r ≥ N + 1,

P ρ(r, 0, N, n) = −
r−1∑
k=0

(−1)ρ(r−k)an,r−kP
ρ(k, 0, N, n), (9.2.10)

where an,r−k = 0 if r − k > n.

Proof. For brevity we write P ρN (r) = P ρ(r, 0, N, n), (using the subscript N to avoid confusion

with P ρ(r) = P ρ(r, 0, 0, n) used in Theorem 9.2.1.

When N ≥ 1, (9.2.3) becomes

AN,0 = an,0P
ρ
N (0)

(−1)ρAN,1 = (−1)ρan,1P
ρ
N (0) + an,0P

ρ
N (1)

...

(−1)ρNAN,N = (−1)ρNan,NP
ρ
N (0) + (−1)ρ(N−1)an,N−1P

ρ
N (1) + . . .+ an,0P

ρ
N (N)

0 = (−1)ρ(N+1)an,N+1P
ρ
N (0) + (−1)ρNan,NP

ρ
N (1) + . . .+ an,0P

ρ
N (N + 1)

...

0 = (−1)ρran,rP
ρ
N (0) + (−1)ρ(r−1)an,r−1P

ρ
N (1) + . . .+ an,0P

ρ
N (r).
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And so we have that

P ρN (0) = A0

P ρN (1) = (−1)ρAN,1 − (−1)ρan,1P
ρ
N (0)

P ρN (2) = AN,2 − an,2P ρN (0)− (−1)ρan,1P
ρ
N (1)

...

P ρN (r) = (−1)ρrAN,r −
r−1∑
k=0

(−1)ρ(r−k)an,r−kP
ρ
N (k). (9.2.11)

That is (9.2.10) will only be satisfied when r ≥ N + 1 (when AN,r = 0).

Remark. Corollary 2 could be alternatively stated as:

The function P ρ with P ρ(0, 0, N, n) = AN,0, (and so an,0 = 1) will satisfy (9.2.10) only when

r ≥ N + 1.

COROLLARY 3. We have for r ≤ N ,

P ρN (r, 0, N, n) = (−1)ρrAN,r −
r−1∑
k=0

(−1)ρ(r−k)an,r−kP
ρ
N (k, 0, N, n).

Proof. This follows from Corollary 2, in which P ρN (r, 0, N, n) is given by (9.2.11).

THEOREM 9.2.2. We have

P ρ(r, 0, N, n) =
r∑

k=0

(−1)ρ(r−k)AN,r−kP
ρ(k, 0, 0, n).

Here P ρ is given as in Definition 9.2.1 via the generating function

GP ρ(x, 0, N, n) =

∑N
k=0(−1)ρkAN,kx

k∑n
k=0(−1)ρkan,kxk

, (n ≥ N),

where n is the order of the denominator and N is the order of the numerator.

Proof. From the generating function of P ρ when N ≥ 1 we have that

GP ρ(x, 0, N, n) =

∑N
k=0(−1)ρkAN,kx

k∑n
k=0(−1)ρkan,kxk

=

N∑
k=0

(−1)ρkAN,kx
kGP ρ(x, 0, 0, n)

=
N∑
k=0

(−1)ρkAN,kx
k
(
P ρ(0, 0, 0, n) + P ρ(1, 0, 0, n)x+ P ρ(2, 0, 0, n)x2 + . . .

)
.
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If r ≤ N ≤ n, then we find that on equating the coefficient of xr we have

P ρ(r, 0, N, n) = AN,0P
ρ(r, 0, 0, n) + (−1)ρAN,1P

ρ(r − 1, 0, 0, n) + . . .+ (−1)ρrAN,rP
ρ(0, 0, 0, n)

=

r∑
k=0

(−1)ρ(r−k)AN,r−kP
ρ(k, 0, 0, n).

Furthermore, if r > N , then the equation becomes

P ρ(r, 0, N, n) =AN,0P
ρ(r, 0, 0, n) + (−1)ρAN,1P

ρ(r − 1, 0, 0, n) + . . .

+ (−1)ρNAN,NP
ρ(r −N, 0, 0, n) + 0P ρ(r −N − 1, 0, 0, n) + . . .+ 0P ρ(0, 0, 0, n)

=

r∑
k=0

(−1)ρ(r−k)AN,r−kP
ρ(k, 0, 0, n). (9.2.12)

where we recall that AN,r−k = 0 when r − k > N .

Remark. We note that (9.2.12) can be expressed more succinctly as

P ρ(r, 0, N, n) =

N∑
k=0

(−1)ρkAN,kP
ρ(r − k, 0, 0, n),

and if we put N = 0, we observe that the sum P ρ(r, 0, N, n) simplifies to P ρ(r, 0, 0, n).

9.2.1 Relationship between ρ = 0 and ρ = 1 cases.

We relate the sum P 1(r, 0, 0, n) to P 0(r, 0, 0, n), (as given by Definition 9.2.1) by Lemma 9.2.3.

LEMMA 9.2.3. With P 1(0, 0, 0, n) = P 0(0, 0, 0, n) = 1, and thereafter for all r ≥ 1, we

have

P 1(r, 0, 0, n) = (−1)rP 0(r, 0, 0, n).

Proof. The identity is true for k = 0, Then assuming the relationship holds true for k ≤ r,

we use Theorem 9.2.1 to obtain

P 1(r + 1, 0, 0, n) =−
r∑

k=0

(−1)r+1−kan,r+1−kP
1(k, 0, 0, n)

=−
r∑

k=0

(−1)r+1−kan,r+1−k(−1)kP 0(k, 0, 0, n)

=(−1)r+1

(
−

r∑
k=0

an,r+1−kP
0(k, 0, 0, n)

)
=(−1)r+1P 0(r + 1, 0, 0, n).

Similarly we relate the sum P 1(r, 0, N, n) to P 0(r, 0, N, n), (as given by Definition 9.2.1).
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LEMMA 9.2.4. For r ≥ 0 we have

P 1(r, 0, N, n) = (−1)rP 0(r, 0, N, n).

Proof. From Theorem 9.2.2 and Lemma 9.2.3, for all non-negative r we have

P 1(r, 0, N, n) =
r∑

k=0

(−1)r−kAN,r−kP
1(k, 0, 0, n)

=
r∑

k=0

(−1)r−kAN,r−k(−1)kP 0(k, 0, 0, n)

=(−1)r
r∑

k=0

AN,r−kP
0(k, 0, 0, n)

=(−1)rP 0(r, 0, N, n).

COROLLARY (to Lemmas 9.2.3 and 9.2.4). These lemmas demontrate that by alternating

the sign of the terms as in Definition 9.1.2, the absolute value of the sequence term r is

unaffected, but when the parity of r is 1, the value of the term is multiplied by −1.

9.2.2 Association of a generating function with an MCL determinant

THEOREM 9.2.5. We have P ρ(0, 0, 0, n) = ∆ρ
0(~an) = 1 and for r ≥ 1 that

P ρ(r, 0, 0, n) = ∆ρ
r(~an).

Here P ρ is given as in Definition 9.2.1 via the generating function

GP ρ(x, 0, 0, n) =
1∑n

k=0(−1)ρkan,kxk
, (n ≥ N),

so that for r ≤ n,

∆ρ
r(~an) = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣

aρn,1 1 0 0 . . . 0

an,2 aρn,1 1 0 . . . 0

aρn,3 an,2 aρn,1 1 . . . 0
...

...
...

...
. . .

...
aρn,r−1 aρn,r−2 aρn,r−3 aρn,r−4 . . . 1

aρn,r aρn,r−1 aρn,r−2 aρn,r−3 . . . aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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and for r > n,

∆ρ
r(~an) = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aρn,1 1 . . . 0 0 . . . 0 0 0

an,2 aρn,1 . . . 0 0 . . . 0 0 0

aρn,3 an,2 . . . 0 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

aρn,n−1 aρn,n−2 . . . 1 0 . . . 0 0 0

aρn,n aρn,n−1 . . . aρn,1 1 . . . 0 0 0

0 0 . . . an,2 aρn,1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

0 . . . aρn,n aρn,n−1 aρn,n−2 . . . aρn,1 1 0

0 . . . 0 aρn,n aρn,n−1 . . . an,2 aρn,1 1

0 . . . 0 0 aρn,n . . . aρn,3 an,2 aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where (~an = ((−1)ρan,1, an,2, . . . , (−1)ρnan,n, 0, 0, 0, . . .).

Proof. From Theorem 9.2.1 we have

P ρ(r, 0, 0, n) = −
r−1∑
k=0

(−1)ρ(r−k)an,r−kP
ρ(k, 0, 0, n),

and from Lemma 9.1.1,

gr = −
r−1∑
k=0

hr−kgk = ∆r(~h).

The theorem is then obtained (from also using Lemma 9.2.3) on putting gk = P ρ(k, 0, 0, n),

hk = (−1)ρkak and ∆r(~h) = ∆ρ
r(~an).

THEOREM 9.2.6. We have P ρ(0, 0, N, n) = Ψρ
0(~an, ~AN,0) = A0, and for r ≥ 1 that

P ρ(r, 0, N, n) = Ψρ
r(~an, ~AN,0).

Here P ρ is given as in Definition 9.2.1 via the generating function

GP ρ(x, 0, N, n) =

∑N
k=0(−1)ρkAN,kx

k∑n
k=0(−1)ρkan,kxk

, (n ≥ N), (9.2.13)

so that for r ≤ N ≤ n,

Ψρ
r(~an, ~AN,0) = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AN,0 1 0 0 . . . 0
AρN,1 aρn,1 1 0 . . . 0

AN,2 an,2 aρn,1 1 . . . 0
...

...
...

...
. . .

...
AρN,r−1 aρn,r−1 aρn,r−2 aρn,r−3 . . . 1

AρN,r aρn,r aρn,r−1 aρn,r−2 . . . aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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for N < r ≤ n,

Ψρ
r(~an, ~AN,0) = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AN,0 1 0 0 . . . 0
AρN,1 aρn,1 1 0 . . . 0

AN,2 an,2 aρn,1 1 . . . 0
...

...
...

...
. . .

...
AρN,N aρn,N aρn,N−1 aρn,N−2 . . . 0

0 aρn,N+1 aρn,N aρn,N−1 . . . 0
...

...
...

...
. . .

...
0 aρn,r aρn,r−1 aρn,r−2 . . . aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and for r > n, Ψρ
r(~an, ~AN,0) =

(−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AN,0 1 0 . . . 0 0 0 . . . 0 0 0
AρN,1 aρn,1 1 . . . 0 0 0 . . . 0 0 0

AN,2 an,2 aρn,1 . . . 0 0 0 . . . 0 0 0

AρN,3 aρn,3 an,2 . . . 0 0 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
AρN,N aρn,N aρn,N−1 . . . 0 0 0 . . . 0 0 0

0 aρn,N+1 aρn,N . . . 0 0 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 aρn,n aρn,n−1 . . . aρn,1 1 0 . . . 0 0 0

0 0 0 . . . an,2 aρn,1 1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
0 0 . . . aρn,n aρn,n−1 aρn,n−2 . . . . . . aρn,1 1 0

0 0 . . . 0 aρn,n aρn,n−1 . . . . . . an,2 aρn,1 1

0 0 . . . 0 0 aρn,n . . . . . . aρn,3 an,2 aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. From Theorem 9.2.2 we have

P ρ(r, 0, N, n) =

r∑
k=0

(−1)ρ(r−k)AN,r−kP
ρ(k, 0, 0, n),

and from Theorem 9.2.5 that

P ρ(r, 0, 0, n) = ∆ρ
r(~an), (r ≥ 0). (9.2.14)

Then using Lemmas 9.1.3 and 9.2.4 we obtain

Ψρ
r(~an, ~AN) =

r∑
k=0

(−1)ρ(r−k)AN,r−k∆
ρ
k(~an). (9.2.15)

On substitution of (9.2.14) into (9.2.15) we conclude that P ρ(r, 0, N, n) = Ψρ
r(~an, ~AN).

An important corollary to Theorem 9.2.6 concerns the effect of the “shift” variable T on the

half weighted MCL determinant.
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COROLLARY 1. We have

P ρ(r, T,N − T, n) = Ψρ
r(~an, ~AN−T,T),

with P ρ defined as in Definition 9.2.1 via the generating function

GP ρ(x, T,N − T, n) =

∑N−T
k=0 (−1)ρkAN−T,kx

k+T∑n
k=0(−1)ρkan,kxk

, (n ≥ N),

and the half weighted (r + 1)× (r + 1) MCL determinant

Ψρ
r(~an, ~AN−T,T) = (−1)r×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0 0 0 . . . 0 0 0
0 aρn,1 1 . . . 0 0 0 . . . 0 0 0
...

...
... . . . 0 0 0 . . . 0 0 0

AρN−T,0 aρn,T aρn,T−1 . . . 0 0 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
AρN−T,N−T aρn,N aρn,N−1 . . . 0 0 0 . . . 0 0 0

0 aρn,N+1 aρn,N . . . 0 0 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 aρn,n aρn,n−1 . . . aρn,1 1 0 . . . 0 0 0

0 0 0 . . . an,2 aρn,1 1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
0 0 . . . aρn,n aρn,n−1 aρn,n−2 . . . . . . aρn,1 1 0

0 0 . . . 0 aρn,n aρn,n−1 . . . . . . an,2 aρn,1 1

0 0 . . . 0 0 aρn,n . . . . . . aρn,3 an,2 aρn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where ~an = ((−1)ρan,1, an,2, . . . , (−1)ρnan,n, 0, 0, . . .),

and ~AN−T,T = (0, 0, . . . , 0︸ ︷︷ ︸
T times

, AN−T,0, (−1)ρAN−T,1, . . . , (−1)ρ(N−T )AN−T,N−T , 0, . . .).

Proof. Using (9.2.13) of Theorem 9.2.6 we put AN,k = 0 for k ≤ T − 1. The numerator then

becomes

N∑
k=T

(−1)ρkAN,kx
k =

N−T∑
k=0

(−1)ρkAN,k+Tx
k+T . (9.2.16)

So on renumbering the coefficients AN,k+T of (9.2.16) we then obtain∑N−T
k=0 (−1)ρkAN−T,kx

k+T∑n
k=0(−1)ρkan,kxk

= GP ρ(x, T,N − T, n).

The result then follows from Theorem 9.2.6.

Of particular interest to Corollary 1 is the case T = N . We then have

P ρ(r, T, 0, n) = Ψρ
r(~an, ~A0,T)
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= (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0
0 aρn,1 1 0 . . . 0

0 an,2 aρn,1 1 . . . 0

0 aρn,3 an,2 aρn,1 . . . 0
...

...
...

...
. . .

...
1 aρn,T aρn,T−1 aρn,T−2 aρn,T−3 . . .

0 aρn,T+1 aρn,T aρn,T−1 aρn,T−2 . . .
...

...
...

...
. . .

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where ~an = ((−1)ρan,1, an,2, . . . , (−1)ρnan,n, 0, 0, 0, . . .), and ~A0,T = (0, 0, . . . , 0︸ ︷︷ ︸
T times

, 1, 0, 0, 0, . . .).

9.3 Ls;abc(r, t, q) as a half weighted MCL determinant

Lemmas 9.1.1 and 9.1.3 were employed in [30] to express, as a type 2 MCL determinant, the

specific functions (that we denote as) L1;11c, (where c ∈ {0, 1}).
From the results obtained in this chapter, we now express each of the sixteen forms of the

function Ls;abc as a type 2 MCL determinant.

In Chapter 5 we determined an order M ′ = m+ b(1− a) recurrence relation for the function

Ls;abc of the form

xM
′ − γa1xM

′−1 + . . .+ (−γ)M
′−1aM ′−1x+ (−γ)M

′
aM ′ = 0,

where we recall γ = (−1)s or equivalently −γ = (−1)1−s.

Let us put an,k = ak and AN,k = Ak. In Chapter 8 on application of Theorem 8.3.7 and

Theorem 8.5.6, we were able to express the generating function of Ls;abc in the form

GLs;ab0(x, 0, q) =
2γ
∑N

k=0(−γ)kAN,kx
k∑n

k=0(−γ)kan,kxk
, t = 0, N = M ′ − 1, (9.3.1)

or

GLs;abc(x, t, q) =
xt−1

∑N
k=0(−γ)kAN,kx

k∑n
k=0(−γ)kan,kxk

, t ≥ 1, N = M ′ − t. (9.3.2)

We recall that the polynomials in both numerator and denominator are reciprocal polynomials

so that the coefficient of xk (0 ≤ k ≤ n) becomes an,k.

Now we associate the function Ls;abc with a function Lρabc as given in Definition 9.3.1, (see

also Definition 9.2.1), where the parameters a, b and c determine the coefficients an,k and

AN,k.

On separation of the cases for the parameter a = 1 and a = 0, we then express each of the

functions Ls;abc as a type 2 MCL determinant via the corresponding function L1−s
abc using

Theorems 9.3.1 and 9.3.2 respectively.
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Definition 9.3.1. Let Lρabc be a function taking the values Lρabc(r, T,N−T, n) with generating

function

GLρabc(x, T,N − T, n) =

∑N−T
k=0 (−1)ρkAN−T,kx

k+T∑n
k=0(−1)ρkan,kxk

=
∞∑
k=0

Lρabc(k, T,N − T, n)xk.

where the coefficients an,k and AN−T,k are determined by the parameter a according to the

criteria:

When a = 0, let an,k = Jn−1,k + 4Jn−1,k−1, and AN−T,k = jN−T,k,

(Jn−1,k−1 = 0, if k = 0), and

when a = 1, let an,k = jn,k, and AN−T,k = JN−T,k.

Here jn,k is the k-th coefficient of the Jacobsthal-Lucas polynomial of order n and JN−T,k is the

k-th coefficient of the Jacobsthal polynomial of order N − T , (see Section 5.2). Furthermore,

the variables n and N are determined in part by the parameters b and c.

THEOREM 9.3.1. We have that

Ls;1bc(r, t, q) = L1−s
1bc (r, T,M1 − T,m) = KΨ1−s

r (~am, ~AM1−T,T).

Here, Ψ1−s
r (~am, ~AM1−T,T) = (−1)r×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0 0 . . . 0 0
0 a1−s

m,1 1 . . . 0 0 . . . 0 0
...

...
... . . . 0 0 . . . 0 0

A1−s
M1−T,0 a1−s

m,T a1−s
m,T−1 . . . 0 0 . . . 0 0

...
...

...
...

...
. . .

...
...

A1−s
M1−T,M1−T a1−s

m,M1
a1−s
m,M1−1 . . . 0 0 . . . 0 0

0 a1−s
m,M1+1 a1−s

m,M1
. . . 1 0 . . . 0 0

0 a1−s
m,m a1−s

m,m−1 . . . a1−s
m,1 1 . . . 0 0

0 0 0 . . . am,2 a1−s
m,1 . . . 0 0

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 . . . . . . a1−s
m,m−1 a1−s

m,m−2 . . . 1 0

0 0 . . . . . . a1−s
m,m a1−s

m,m−1 . . . a1−s
m,1 1

0 0 . . . . . . 0 a1−s
m,m . . . am,2 a1−s

m,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where ~am = (−γam,1, am,2, . . . , (−γ)mam,m, 0, 0, 0, . . .),

and ~AM1−T,T = (0, 0, . . . , 0︸ ︷︷ ︸
T times

, AM−1,0,−γAM1−T,1, . . . , (−γ)M1−TAM1−T,M1−T , 0, 0, 0, . . .).

Furthermore,

K =

{
2γ if t = 0

γc if t ≥ 1;
T =

{
t if t = 0

t− 1 if t ≥ 1,
and M1 =

{
m− 1 if t = 0

m− 1− b′c′ if t ≥ 1,

where b′ = 1− b and c′ = 1− c.
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Moreover, the term am,k represents the coefficient of the term xk of the (2m+b)-th Jacobsthal-
Lucas polynomial, and similarly the term AM1−T,k, represents the coefficient of the term xk

of a Jacobsthal polynomial according to

M1−T∑
k=0

(−γ)kAM1−T,k =


2γJ2(m−1)+1+b(−γx) if c = t = 0

J2(m−1−t)+2(−γx) if b = c = 0 and t ≥ 1

γcJ2(m−t)+b+c(−γx) otherwise.

Proof. We first isolate the particular sum Ls;1b0(r, 0, q) before considering the other cases
(when t ≥ 1).
For the sum Ls;1b0(r, 0, q) we recall from Theorem 8.3.7 that

GLs;1b0(r, 0, q) =
2γJ2m+b−1(−γx)

j2m+b(−γx)

=
2γ
∑m−1

k=0 (−γ)k
(2(m−1)+b−k

k

)
xk∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk

=
2γ
∑m−1

k=0 (−γ)kAm−1,kx
k∑m

k=0(−γ)kam,kxk
.

For each of the other sums, we have from Theorem 8.3.7 that

GLs;1bc(r, t, q) =
γcxt−1J2(m−t)+b+c(−γx)

j2m+b(−γx)

=
γc
∑m−t−b′c′

k=0 (−γ)k
(2(m−t)+b+c−1−k

k

)
xk+t−1∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk

=
γc
∑m−t−b′c′

k=0 (−γ)kAm−t−b′c′,kx
k+t−1∑m

k=0(−γ)kam,kxk
.

From Definition 9.3.1 we have

am,k =
2m+ b

2m+ b− k

(
2m+ b− k

k

)
, and Am−1,k =

{(2(m−1)+b−k
k

)
if t = 0(2(m−t)+b+c−1−k

k

)
if t ≥ 1.

So with t = 0, we have T = 0, and M1 − T = m− 1, and from Theorem 9.2.6

Ls;1b0(r, 0, q) = 2γL1−s
1bc (r, 0,m− 1,m) = 2γΨ1−s

k (~am, ~Am−1,0).

On putting K = 2γ the identity (for t = 0) is established.

When t ≥ 1, we have T = t− 1, and M1 − T = m− 1− b′c′ − (t− 1) = m− t− b′c′.
So that from Theorem 9.2.6 and Corollary 1 to this theorem we have when b = c = 0,

Ls;100(r, t, q) = L1−s
1bc (r, t− 1,m− t− 1,m) = Ψ1−s

r (~am, ~Am−t−1,t−1),

and otherwise,

Ls;1bc(r, t, q) = γcL1−s
1bc (r, t− 1,m− t,m) = γcΨ1−s

r (~am, ~Am−t,t−1).

On putting K = γc the identity (for t ≥ 1) is established.
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THEOREM 9.3.2. We have that

Ls;0bc(r, t, q) = L1−s
0bc (r, T,M0 − T,m+ b) = KΨ1−s

r (~am+b, ~AM0−T,T ).

Here, Ψ1−s
r (~am+b, ~AM0−T,T ) = (−1)r×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0 . . . 0 0

0 a1−sm+b,1 1 . . . 0 . . . 0 0
...

...
... . . . 0 . . . 0 0

AM0−T,0 a1−sm+b,T a1−sm+b,T−1 . . . 0 . . . 0 0
...

...
...

...
...

. . .
...

...

A1−s
M0−T,M0−T a1−sm+b,M0

a1−sm+b,M0−1 . . . 0 . . . 0 0

0 a1−sm+b,M0+1 a1−sm+b,M0
. . . 0 . . . 0 0

0 a1−sm+b,m+b a1−sm+b,m+b−1 . . . 1 . . . 0 0

0 0 a1−sm+b,m+b . . . a1−sm+b,1 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 . . . . . . a1−sm+b,m+b−2 . . . 1 0

0 0 . . . . . . a1−sm+b,m+b−1 . . . a1−sm+b,1 1

0 0 . . . . . . a1−sm+b,m+b . . . am+b,2 a1−sm+b,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where ~am+b = (−γam+b,1, am+b,2, . . . , (−γ)m+bam+b,m+b, 0, 0, 0, . . .),

and ~AM0−T,T = (0, 0, . . . , 0︸ ︷︷ ︸
T times

, AM0−1,0,−γAM0−T,1, . . . , (−γ)M0−TAM0−T,M0−T , 0, 0, 0, . . .).

Furthermore,

K =

{
2γ if t = 0

γc if t ≥ 1;
T =

{
t if t = 0

t− 1 if t ≥ 1,
and M0 =

{
m− 1 + b if t = 0

m− 1 + bc if t ≥ 1.

Moreover, the term am+b,k represents the coefficient of the term xk created from the product of
the (2m+ b)-th Jacobsthal polynomial with the factor (1− 4γx). Similarly the term AM0−T,k,
represents the coefficient of the term xk of a Jacobsthal-Lucas polynomial according to

M0−T∑
k=0

(−γ)kAM0−T,k =


2γj2(m−1+b)+1−b(−γx) if c = t = 0

γj2(m−t+1)(−γx) if b = c = 1 and t ≥ 1

γcj2(m−t)+b+c(−γx) otherwise.

Proof. We first isolate the particular sum Ls;0b0(r, 0, q) before considering the other cases
(when t ≥ 1).
For the sum Ls;0b0(r, 0, q) we recall from Theorem 8.5.6 that

GLs;0b0(r, 0, q) =
2γj2(m−1+b)+1−b(−γx)

(1− 4γx)J2(m−1+b)+2−b(−γx)

=
2γ
∑m−1+b

k=0 (−γ)k 2m−1+b
2m−1+b−k

(2(m−1+b)+1−b−k
k

)
xk

(1− 4γx)
∑m−1+b

k=0 (−γ)k
(2(m−1+b)+1−b−k

k

)
xk

=
2γ
∑m−1+b

k=0 (−γ)kAm−1+b,kx
k∑m+b

k=0 (−γ)kam+b,kxk
.
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For each of the other sums, we have from Theorem 8.5.6 that

GLs;0bc(r, t, q) =
γcj2(m−t+bc)+b+c−2bc(−γx)

(1− 4γx)J2(m−1+b)+2−b(−γx)

=
γc
∑m−t+bc

k=0 (−γ)k 2(m−t)+b+c
2(m−t)+b+c−k

(2(m−t+bc)+b+c−2bc−k
k

)
xk

(1− 4γx)
∑m−1+b

k=0 (−γ)k
(2(m−1+b)+1−b−k

k

)
xk

=
γc
∑m−t+bc

k=0 (−γ)kAm−t+bc,kx
k∑m+b

k=0 (−γ)kam+b,kxk
.

From Definition 9.3.1 we have

am+b,k =

(
2m+ b− 1− k

k

)
+ 4

(
2m+ b− k
k − 1

)
, (9.3.3)

and

Am−1,k =

{
2m−1+b

2m−1+b−k
(
2m−1+b−k

k

)
if t = 0

2(m−t)+b+c
2(m−t)+b+c−k

(2(m−t)+b+c−k
k

)
if t ≥ 1.

So with t = 0, we have T = 0, and M0 − T = m − 1 + b. and from Theorem 9.2.6 we have
that

Ls;0b0(r, 0, q) = 2γL1−s
abc (r, 0,m− 1 + b,m+ b) = 2γΨ1−s

r (~am+b, ~Am−1+b,0).

On putting K = 2γ (when t = 0) the identity is established.

When t ≥ 1, we have T = t− 1, and M0 − T = m− 1 + bc− (t− 1) = m− t+ bc.

So that from Theorem 9.2.6 and Corollary 1 to this theorem we have when b = c = 1,

Ls;011(r, t, q) = γL1−s
abc (r, t− 1,m− t+ 1,m+ 1) = γΨ1−s

r (~am+1, ~Am−t+1,t−1),

and otherwise,

Ls;0bc(r, t, q) = γcL1−s
abc (r, t− 1,m− t,m+ b) = γcΨ1−s

r (~am+b, ~Am−t,t−1).

On putting K = γc (when t ≥ 1) the identity is established.

We illustrate Theorem 9.3.1 and Theorem 9.3.2 with two examples.

Example 1.

L1;110(6, 0, 7) = (−1)6+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 0 0 0
8 7 1 0 0 0 0
6 14 7 1 0 0 0
0 7 14 7 1 0 0
0 0 7 14 7 1 0
0 0 0 7 14 7 1
0 0 0 0 7 14 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −3430,
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L1;110(6, 1, 7) = (−1)6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 0
3 7 1 0 0 0 0
1 14 7 1 0 0 0
0 7 14 7 1 0 0
0 0 7 14 7 1 0
0 0 0 7 14 7 1
0 0 0 0 7 14 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2989,

L1;110(6, 2, 7) = (−1)6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0
1 7 1 0 0 0 0
1 14 7 1 0 0 0
0 7 14 7 1 0 0
0 0 7 14 7 1 0
0 0 0 7 14 7 1
0 0 0 0 7 14 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −1911,

L1;110(6, 3, 7) = (−1)6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0
0 7 1 0 0 0 0
1 14 7 1 0 0 0
0 7 14 7 1 0 0
0 0 7 14 7 1 0
0 0 0 7 14 7 1
0 0 0 0 7 14 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 637.

Example 2.

L0;001(6, 1, 6) = (−1)6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 0
−5 −8 1 0 0 0 0
5 19 −8 1 0 0 0
0 −12 19 −8 1 0 0
0 0 −12 19 −8 1 0
0 0 0 −12 19 7 1
0 0 0 0 −12 19 −8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1730,

L0;001(6, 2, 6) = (−1)6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0
1 −8 1 0 0 0 0
−3 19 −8 1 0 0 0
0 −12 19 −8 1 0 0
0 0 −12 19 −8 1 0
0 0 0 −12 19 7 1
0 0 0 0 −12 19 −8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1365,

L0;001(6, 3, 6) = (−1)6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0
0 −8 1 0 0 0 0
1 19 −8 1 0 0 0
0 −12 19 −8 1 0 0
0 0 −12 19 −8 1 0
0 0 0 −12 19 7 1
0 0 0 0 −12 19 −8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1001.
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9.4 Expression of the sums Ls;abc(r, t, 2m+ b) for generalised m

In Section 3.1, (and also see Appendix A), each of the sums Ls;abc(r, t, q) were expressed in

terms of sums of binomial coefficients. When

r + t+ 1− c < q = 2m+ b, (9.4.1)

the sum is composed of the single binomial coefficient(
2r + 2− c
r + t+ 1− c

)
, (9.4.2)

and is, therefore, independent of the modulus q (and the parameters a and b).

In Theorems 9.3.2 and 9.3.2 we expressed the values of Ls;abc(r, t, q) using an MCL determi-

nant. If the value of m remains unspecified, then each of the nonzero entries (6= 1) becomes

a polynomial in m, and we might expect that the determinant also yields a polynomial in m.

However, we have the following lemma.

LEMMA 9.4.1. The MCL determinant of the terms Ls;abc(r, t, q) when the variable m

remains unspecified is an integer value.

Proof. When m is not specified we find that the condition is equivalent to (9.4.1) and so

(9.4.2) is also obtained. Consequently the result of determining the MCL determinant in

m is the numerical value (9.4.2): all terms of the final polynomial cancelling except for the

constant terms.

We demonstrate Lemma 9.4.1 with the following example.

Example.

L1;110(4, 1, q) =

(−1)4×

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0
2m− 3 2m+ 1 1 0 0

1
2!(2m− 4)2 (2m+1)

2! (2m− 2) 2m+ 1 1 0
1
3!(2m− 5)3 (2m+1)

3! (2m− 3)2 (2m+1)
2! (2m− 2) 2m+ 1 1

1
4!(2m− 6)4 (2m+1)

4! (2m− 4)3 (2m+1)
3! (2m− 3)2 (2m+1)

2! (2m− 2) 2m+ 1

∣∣∣∣∣∣∣∣∣∣∣
=

(
2× 4 + 2

4 + 1 + 1

)
=

(
10

6

)
= 210.

9.4.1 The functions Ls;abc for negative r

Contrariwise, if we consider the sums Ls;abc(−r, t, q), that is if we run the sequences back-

wards, their evaluations using sums of binomial coefficients no longer make sense and a term

independent of m such as (9.4.2) does not exist. Instead we turn to methods such as the roots
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of unity and trigonometric sums employed in Chapter 4. In consequence to this dependence

on the variable m, we find that when determining the values of Ls;abc(−r, t, q) for unspecified

m, there is no wholesale cancellation of the polynomial in m.

In a study by Lettington [30] these polynomials were investigated for each of the sequences

of the sums L1;11c(−r, t, 2m+1), (c ∈ {0, 1}). Interesting results were discovered for the leading

coefficient of the particular cases of the variable t = 1 and t = m. More specifically when

t = 1 (and with m replaced with π) this leading coefficient of the term xk was identified to

be equal to the even zeta function, ζ(2k), when c = 1, and ζ(2k)/2 when c = 0.

We now broaden these findings to include the sixteen cases produced by varying the

parameters a, b, c and s, when t = m and t = 1. We determine the generating function

of the terms Ls;abc(−r, t, q) and from them obtain the required polynomial from the MCL

determinant. Since it is the leading coefficient of this polynomial that is of particular interest,

we construct an amended function that produces precisely this, and in doing so immensely

simplifies each of the individual polynomial entries of this determinant.

Let us introduce some definitions.

Definition 9.4.1. We denote by L−s;abc the function such that for integer r ≥ 0 it produces

the values

L−s;abc(r, t, q) = Ls;abc(−r, t, q).

Definition 9.4.2. We denote by LT−s;abc the function such that

LT−s;abc(r, t, q) = leading coefficient of L−s;abc(r, t, q).

Definition 9.4.3. Let the polynomial

pn(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0,

and

xT pn(x) = anx
n+T + an−1x

n+T−1 + an−2x
n+T−2 + . . .+ a1x

T+1 + a0x
T . (9.4.3)

Then let N = n+ T and relabel the coefficients such that

AN =

{
an if n ≥ 0

0 if N ≤ T − 1,

so that (9.4.3) becomes

PN (x) = xT pn(x) = ANx
N +AN−1x

N−1 + . . .+AT+1x
T+1 +ATx

T + 0xT−1 + . . .+ 0x+ 0.

LEMMA 9.4.2. The reciprocal polynomial p∗n(x) of the polynomial xT pn(x) as defined in

Definition 9.4.3 is given by

p∗n(x) = xnpn(x−1) = an + an−1x+ an−2x
2 + . . .+ a1x

n−1 + a0x
n.
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Proof. From Definition 9.4.3 we have

PN (x) = xT pn(x) = ANx
N +AN−1x

N−1 + . . .+AT+1x
T+1 +ATx

T + 0xT−1 + . . .+ 0x+ 0.

The reciprocal polynomial P ∗N (x) of the polynomial PN (x) is given by

P ∗N (x) =xNPN (x−1)

=AN +AN−1x+ . . .+ATx
N−T + 0xN−T+1 + . . .+ 0xN−1 + 0xN

=an + an−1x+ an−2x
2 + . . .+ a1x

n−1 + a0x
n

=p∗n(x)

as required.

Remark. When the reciprocal of a polynomial xT pn(x) is determined the power of xT is

effectively removed.

We now consider separately the generating functions of the terms L−s;1bc and L−s;0bc .

THEOREM 9.4.3. The generating function of the function L−s;1bc, as defined in Definition

9.4.1, is given by

GL−s;1bc(x, t, q) =


−2F2(m−1)+1+b(

√
−γx)

L2m+b(
√
−γx) if t = 0

(−γ)t+1F2(m−1−t)+2(
√
−γx)√

−γxL2m
√
−γx) if b = c = 0 and t ≥ 1

γc(−γ)t(
√
−γx)bcF2(m−t)+b+c(

√
−γx)

L2m+b(
√
−γx) otherwise

=



−2
∑m−1
k=0 ((m−1)+b+k

2k+b )(−γx)k∑m
k=0

2m
m+b+k (m+b+k

2k+b )(−γx)k
if t = 0

(−γ)t+1
∑m−1−t
k=0 ((m−1−t)+1+k

2k+1 )(−γx)k∑m
k=0

2m
m+k (m+k

2k )(−γx)k
if b = c = 0 and t ≥ 1

γc(−γ)t
∑m−t
k=0 ((m−t)+b+c−1+k

2k+bc )(−γx)k∑m
k=0

2m+b
m+b+k (m+b+k

2k+b )(−γx)k
otherwise.

(9.4.4)

Proof. From Theorem 8.3.7 we have

GLs;1bc(x, t, q) =


2γJ2(m−1)+1+b(−γx)

j2m+b(−γx) if t = 0
xt−1J2(m−1−t)+2(−γx)

j2m(−γx) if b = c = 0 and t ≥ 1
γcxt−1J2(m−t)+b+c(−γx)

j2m+b(−γx) otherwise.

(9.4.5)

Let us generalise the generating function of (9.4.5) as

GLs;1bc(x, t, q) =
KxTJ2n+e(−γx)

j2m+b(−γx)

=
KxT

∑n
k=0(−γ)k

(
2n+e−1−k

k

)
xk∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xk
,
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where K is a constant and the parameter e ∈ {1, 2}.
Now since

L−s;abc(r, t, q) = Ls;abc(−r, t, q), (r ≥ 0),

we determine the reciprocal polynomial of the numerator and denominator of (9.4.5).

From Lemma 9.4.2 we recall that the reciprocal polynomial p∗n(x) of xT pn(x) is

p∗n(x) = npn(x−1) = an + an−1x+ an−2x
2 + . . .+ a1x

n−1 + a0x
n.

We then have that GL−s;1bc is given as

GL−s;1bc(x, t, q) =
K
∑n

k=0(−γ)k
(
2n+e−1−k
k+e−1

)
xn−k∑m

k=0(−γ)k 2m+b
2m+b−k

(
2m+b−k

k

)
xm−k

=
K
∑n

k=0(−γ)n−k
(
n+e−1+k
2k+e−1

)
xk∑m

k=0(−γ)m−k 2m+b
m+b+k

(
m+b+k
2k+b

)
xk

=
(−γ)nK

∑n
k=0(−γ)k

(
n+e−1+k
2k+e−1

)
xk

(−γ)m
∑m

k=0(−γ)m−k 2m+b
m+b+k

(
m+b+k
2k+b

)
xk

= (−γ)n−m
K(
√
−γx)dF2n+e

√
−γx

L2m+b
√
−γx

, d ∈ {−1, 0, 1}.

So if t = 0, we put K = 2γ, n = m− 1, e = 1 + b and d = 0;

whilst if t ≥ 1, and b = c = 0, we put K = 1, n = m− 1− t, e = 2 and d = −1,

and in all other cases we put K = γc, n = m− t, e = b+ c and d = bc, we then obtain (9.4.4)

and the theorem follows.

Finally, we have two corollaries to give the explicit forms for each of the parameters b and c,

when a = 1 and the variables t = m and t = 1.

COROLLARY 1. When the variable t = m, we have

GL−s;100(x,m, q) =
F0(
√
−γx)√

−γxL2m(
√
−γx)

= 0,

GL−s;101(x,m, q) =
γ(−γ)mF1(

√
−γx)

L2m(
√
−γx)

=
γ(−γ)m∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

,

GL−s;110(x,m, q) =
(−γ)m

√
−γxF1(

√
−γx)

L2m+1(
√
−γx)

=
(−γ)m∑m

k=0
2m+1
m+k+1

(
m+k+1
2k+1

)
(−γx)k

,

and

GL−s;111(x,m, q) =
γ(−γ)mF2(

√
−γx)

L2m+1(
√
−γx)

=
γ(−γ)m∑m

k=0
2m+1
m+k+1

(
m+k+1
2k+1

)
(−γx)k

.

Proof. Each of the results follow from substitution of the parameters b and c and the variable

t = m into Theorem 9.4.3.
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COROLLARY 2. When the variable t = 1, we have

GL−s;100(x, 1, q) =
F2(m−2)+2(

√
−γx)

√
−γxL2m(

√
−γx)

=

∑m−2
k=0

((m−2)+1+k
2k+1

)
(−γx)k∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

,

GL−s;101(x, 1, q) =
−F2(m−1)+1(

√
−γx)

L2m(
√
−γx)

=
−
∑m−1

k=0

(
m−1+k

2k

)
(−γx)k∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

,

GL−s;110(x, 1, q) =
−γ
√
−γxF2(m−1)+1(

√
−γx)

L2m+1(
√
−γx)

=
−γ
∑m−1

k=0

(
m−1+k

2k

)
(−γx)k∑m

k=0
2m+1
m+k+1

(
m+k+1
2k+1

)
(−γx)k

,

and

GL−s;111(x, 1, q) =
−F2(m−1)+2(

√
−γx)

L2m+1(
√
−γx)

=
−
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k∑m

k=0
2m+1
m+k+1

(
m+k+1
2k+1

)
(−γx)k

.

Proof. Each of the results follow from substitution of the parameters b and c and the variable

t = 1 into Theorem 9.4.3.

THEOREM 9.4.4. The generating function of the function L−s;0bc as defined as in Definition

9.4.1 is given by

GL−s;0bc(x, t, q) =


2γL2(m−1+b)+1−b(

√
−γx)

(x−4γ)F2(m−1+b)+2−b(
√
−γx) if t = 0

γ(−γ)t−1L2(m+1−t)(
√
−γx)

(x−4γ)F2m+1
√
−γx) if b = c = 1 and t ≥ 1

γc(−γ)t+1−b(
√
−γx)1−2b−cL2(m−t)+b+c(

√
−γx)

(x−4γ)F2(m−1+b)+2−b(
√
−γx) otherwise

=



2γ
∑m−1+b
k=0

2(m−1+b)+1−b
(m−1+b)+1−b+k ((m−1+b)+1−b+k

2k+1−b )(−γx)k

(x−4γ)
∑m−1+b
k=0 ((m−1+b)+1−b+k

2k+1−b )(−γx)k
if t = 0

γ(−γ)t−1
∑m+1−t
k=0

2(m+1−t)
(m+1−t)+k ((m+1−t)+k

2k )(−γx)k

(x−4γ)
∑m
k=0 ((m+k

2k )(−γx)k
if b = c = 1 and t ≥ 1

γc(−γ)t+1−b∑m−t
k=0

2(m−t)+b+c
(m−t)+b+c+k ((m−t)+b+c+k2k+b+c )(−γx)k

(x−4γ)
∑m−1+b
k=0 ((m−1+b)+1−b+k

2k+1−b )(−γx)k
otherwise.

(9.4.6)

Proof. From Theorem 8.3.7 we have

GLs;0bc(x, t, q) =


2γj2(m−1+b)+1−b(−γx)

(1−4γx)J2(m−1+b)+2−b(−γx)
if t = 0

γxt−1j2(m+1−t)(−γx)
(1−4γx)J2m+1(−γx) if t ≥ 1 and b = c = 1
γcxt−1j2(m−t)+b+c(−γx)

(1−4γx)J2(m−1+b)+2−b(−γx)
otherwise.

(9.4.7)

Let us generalise the generating function of (9.4.7) as

GLs;0bc(x, t, q) =
KxT j2n+f (−γx)

(1− 4γx)J2M+2−b(−γx)

=
KxT

∑N
k=0(−γ)k 2n+f

2n+f−k
(
2n+f−k

k

)
xk

(1− 4γx)
∑M

k=0(−γ)k
(
2M+1−b−k

k

)
xk
,
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where K is a constant and the parameter f ∈ {0, 1}.
Now since

L−s;abc(r, t, q) = Ls;abc(−r, t, q), (r ≥ 0),

we determine the reciprocal polynomial of the numerator and denominator of (9.4.7).

From Lemma 9.4.2 we recall that the reciprocal polynomial p∗n(x) of xT pn(x) is

p∗n(x) = xnpn(x−1) = an + an−1x+ an−2x
2 + . . .+ a1x

n−1 + a0x
n.

We then have that GL−s;0bc is given as

GL−s;0bc(x, t, q) =
K
∑n

k=0(−γ)k 2n+f
2n+f−k

(
2n+f−k

k

)
xn−k

(x− 4γ)
∑M

k=0(−γ)k
(
2M+1−b−k

k

)
xM−k

=
K
∑n

k=0(−γ)n−k 2n+f
n+f+k

(
n+f+k
2k+f

)
xk

(x− 4γ)
∑M

k=0(−γ)M−k
(
M+1−b+k
2k+1−b

)
xk

=
(−γ)nK

∑n
k=0(−γ)k 2n+f

n+f+k

(
n+f+k
2k+f

)
xk

(−γ)M (x− 4γ)
∑M

k=0(−γ)k
(
M+1−b+k
2k+1−b

)
xk

= (−γ)n−M
K(
√
−γx)dL2n+f (

√
−γx)

(x− 4γ)F2M+2−b(
√
−γx)

, d ∈ {−1, 0, 1}.

So with M = m− 1 + b and if t = 0, we put K = 2γ, n = m− 1, f = 1− b and d = 0;

whilst if t ≥ 1, and b = c = 1, we put K = γ, n = m− 1− t, f = 0 and d = 0,

and in all other cases we put K = γc, n = m− t, f = b+ c and d = 1− 2b− c, we then obtain

(9.4.6) and the result follows.

Finally, we have two corollaries to give the explicit forms for each of the parameters b and c

when a = 0 and the variables t = m+ bc and t = 1.

COROLLARY 1. When the variable t = m, we have

GL−s;000(x,m, q) =
(−γ)m−1

√
−γxL0(

√
−γx)

((x− 4γ)F2(m−1)+2(
√
−γx)

=
2(−γ)m−1

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

,

GL−s;001(x,m, q) =
γ(−γ)m−1L1(

√
−γx)

(x− 4γ)F2(m−1)+2(
√
−γx)

=
γ(−γ)m−1

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

,

GL−s;010(x,m, q) =
(−γ)mL1(

√
−γx)√

−γx(x− 4γ)F2m+1(
√
−γx)

=
(−γ)m

(x− 4γ)
∑m

k=0

(
m+k
2k

)
(−γx)k

,

and

GL−s;011(x,m+ 1, q) =
γ(−γ)mL0(

√
−γx)

(x− 4γ)F2m+1(
√
−γx)

=
2γ(−γ)m

(x− 4γ)
∑m

k=0

(
m+k
2k

)
(−γx)k

.

Proof. Each of the results follow from substitutiom of the parameters b and c and the variable

t = m+ bc into Theorem 9.4.4.
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COROLLARY 2. When the variable t = 1, we have

GL−s;000(x, 1, q) =

√
−γxL2(m−1)(

√
−γx)

(x− 4γ)F2(m−1)+2(
√
−γx)

=

∑m−1
k=0

2(m−1)
m−1+k

(
m−1+k

2k

)
(−γx)k

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

,

GL−s;001(x, 1, q) =
γL2(m−1)+1(

√
−γx)

(x− 4γ)F2(m−1)+2(
√
−γx)

=
γ
∑m−1

k=0
2(m−1)+1
(m−1)+1+k

((m−1)+1+k
2k+1

)
(−γx)k

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

,

GL−s;010(x, 1, q) =
−γL2(m−1)+1(

√
−γx)

√
−γx(x− 4γ)F2m+1(

√
−γx)

=
−γ
∑m−1

k=0
2(m−1)+1
(m−1)+1+k

((m−1)+1+k
2k+1

)
(−γx)k

(x− 4γ)
∑m

k=0

(
m+k
2k

)
(−γx)k

,

and

GL−s;011(x, 1, q) =
γL2m(

√
−γx)

(x− 4γ)F2m+1(
√
−γx)

=
γ
∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

(x− 4γ)
∑m

k=0

(
m+k
2k

)
(−γx)k

.

Proof. Each of the results follow from substitutiom of the parameters b and c and the variable

t = 1 into Theorem 9.4.4.

9.4.2 Determination of the leading coefficient of the polynomial L−s;abc(x, 1, q)

We now truncate the polynomials created in the Corollary to Theorems 9.4.3 and 9.4.4 to

obtain the function LT−s;abc as defined in Definition 9.4.2. To achieve this we identify the leading

coefficient(s) of the polynomial in m obtained from the term xk of both the numerator and

denominator of the generating function of L−s;abc. These polynomials derive from the binomial

coefficients, in the variables m and k, of either the Fibonacci or Lucas polynomials. We first

look at the binomial coefficients from the Fibonacci polynomial and consider the sum

n∑
k=0

(
N + k

2k + b

)
xk.

We have the following lemmas.

LEMMA 9.4.5 (leading coefficients 1). We have

n∑
k=0

(
N + k

2k

)
xk =

n∑
k=0

N2k + kN2k−1 + lower degree terms

(2k)!
xk,

and
n∑
k=0

(
N + k

2k + 1

)
xk =

n∑
k=0

N2k+1 + 0N2k + lower degree terms

(2k + 1)!
xk.
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Proof. For the case b = 0,

n∑
k=0

(
N + k

2k

)
xk =1 +

(N + 1)2

2!
x+

(N + 2)4

4!
x2 +

(N + 3)6

6!
x3 + . . .

=1 +
(N + 1)N

2!
x+

(N + 2)(N + 1)N(N − 1)

4!
x2

+
(N + 3)(N + 2)(N + 1)N(N − 1)(N − 2)

6!
x3 + . . . . (9.4.8)

Truncating (9.4.8) to the first two coefficients we have

1 +
N2 +N

2!
x+

N4 + 2N3

4!
x2 + . . .+

N2n + nN2n−1

(2n)!
xn =

n∑
k=0

N2k + kN2k−1

(2k)!
xk.

Then for b = 1,

n∑
k=0

(
N + k

2k + 1

)
xk =N +

(N + 1)3

3!
x+

(N + 2)5

5!
x2 +

(N + 3)7

7!
x3 + . . .

=N +
(N + 1)N(N − 1)

3!
x+

(N + 2)(N + 1)N(N − 1)(N − 2)

5!
x2

+
(N + 3)(N + 2)(N + 1)N(N − 1)(N − 2)(N − 3)

7!
x3 + . . . . (9.4.9)

Truncating (9.4.9) to the first two coefficients we have

N +
N3 + 0N2

3!
x+

N5 + 0N4

5!
x2 + . . .+

N2n+1 + 0N2n

(2n+ 1)!
xn + . . . =

n∑
k=0

N2k+1

(2k + 1)!
xk.

LEMMA 9.4.6 (leading coefficients 2). We have

(x+ 4)

n∑
k=0

(
N + k

2k

)
xk = 4

n∑
k=0

N2k + kN2k−1 + lower degree terms

(2k)!
xk, (9.4.10)

and

(x+ 4)
n∑
k=0

(
N + k

2k + 1

)
xk = 4

n∑
k=0

N2k+1 + 0N2k + lower degree terms

(2k + 1)!
xk. (9.4.11)

Proof. The coefficient of xk on the left hand side of (9.4.10) and (9.4.11) is given by(
N + k − 1

2(k − 1) + b

)
+ 4

(
N + k

2k + b

)
. (9.4.12)

The leading two coefficients comes solely from the second term of (9.4.12) and so on applica-

tion of Lemma 9.4.5 we obtain desired result.
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We also require the leading coefficents for the Lucas polynomial and consider the sum

n∑
k=0

2M + b

M + b+ k

(
M + b+ k

2k + b

)
xk,

and use the following lemma.

LEMMA 9.4.7 (leading coefficients 3). We have

n∑
k=0

2M

M + k

(
M + k

2k

)
xk = 2

n∑
k=0

M2k + 0M2k−1

(2k)!
xk,

and
n∑
k=0

2M + 1

M + 1 + k

(
M + 1 + k

2k + 1

)
xk = (2M + 1)

n∑
k=0

M2k + kM2k−1

(2k + 1)!
xk.

Proof. When b = 0,

2M

M + k

n∑
k=0

(
M + k

2k

)
xk = 2 + 2M

M

2!
x+ 2M

(M + 1)3

4!
x2 + 2M

(M + 2)5

6!
x3 + . . .

=2 + 2M
M

2!
x+ 2M

(M + 1)M(M − 1)

4!
x2 + 2M

(M + 2)(M + 1)M(M − 1)(M − 2)

6!
x3 + . . .

=2

(
1 +

M2

2!
x+

(M + 1)M2(M − 1)

4!
x2 +

(M + 2)(M + 1)M2(M − 1)(M − 2)

6!
x3 + . . .

)
.

(9.4.13)

Truncating (9.4.13) to the first two coefficients we have

2

(
1 +

M2

2!
x+

M4 + 0M3

4!
x2 + . . .+

M2n + 0M2n−1

(2n)!
xn
)

= 2
n∑
k=0

M2kxk

(2k)!
.

Then when b = 1,

n∑
k=0

2M + 1

M + k + 1

(
M + k + 1

2k + 1

)
=(2M + 1)

(
1 +

(M + 1)2

3!
x+

(M + 2)4

5!
x2 +

(M + 3)6

7!
x3 + . . .

)
=(2M + 1)

(
1 +

(M + 1)M

3!
x+

(M + 2)(M + 1)M(M − 1)

5!
x2

+
(M + 3)(M + 2)(M + 1)M(M − 1)(M − 2)

7!
x3 + . . .

)
. (9.4.14)

Truncating (9.4.14) to the first two coefficients we have

(2M + 1)

(
1 +

M2 +M

3!
x+

M4 + 2M3

5!
x2 +

M6 + 3M6

7!
x3 + . . .+

M2n + nM2n−1

(2n+ 1)!
xn
)

=(2M + 1)

n∑
k=0

M2k + kM2k−1

(2k + 1)!
xk.
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We now employ lemmas 9.4.5 and 9.4.7 (in Theorem 9.4.8) to determine the leading coefficient

of the polynomial in the variable m of the r-th term of the alternating sequences a = 1.

THEOREM 9.4.8 (leading coefficient of the alternating a = 1 sequences). The generating

function of the sequences, LT−s;1bc(r, t,m), derived from the leading coefficient of the polynomial

sequences, L−s;1bc(r, t,m), when t = m, and r ≥ 0, are given by

GLT−s;100(x,m, q) = 0, GLT−s;101(x,m, q) =
γ(−γ)m

2
∑r

k=0
(−γ)km2k

(2k)! xk
,

GLT−s;11c(x,m+ c, q) =
γc(−γ)m

(2m+ 1)
∑r

k=0
(−γ)km2k

(2k+1)! x
k
,

and when t = 1, by

GLT−s;100(x, 1, q) =

∑r
k=0

(−γ)km2k+1

(2k+1)! xk

2
∑r

k=0
(−γ)km2k

(2k)! xk
, (9.4.15)

GLT−s;101(x, 1, q) =
−1

2

1−
∑r

k=1
(−γ)kkm2k−1

(2k)! xk∑r
k=0

(−γ)km2k

(2k)! xk

 , (9.4.16)

GLT−s;110(x, 1, q) =
−γ

2m+ 1

∑r
k=0

(−γ)km2k

(2k)! xk∑r
k=0

(−γ)km2k

(2k+1)! x
k
, (9.4.17)

and

GLT−s;111(x, 1, q) =
−m

2m+ 1

1−
∑r

k=1
(−γ)kkm2k−1

(2k+1)! xk∑r
k=0

(−γ)km2k

(2k+1)! x
k

 . (9.4.18)

Proof. We employ the generating function of the function L−s;1bc and choose r ≤ m− ε, where

ε ∈ {0, 1, 2}. Then in the case t = m, we use Lemma 9.4.7 to identify the leading coeffi-

cient, whilst in the case t = 1, we use Lemmas 9.4.5 and 9.4.7, to identify the coefficients of

the leading two terms of both numerator and denominator. When the factorials of top and

bottom are of different parity there is no cancellation of terms and consequently the leading

coefficient of both is sufficient to determine LT−s;1bc. Conversely when they are of the same

parity, consideration will required to be given to a second coefficient.

For the polynomial sequences of the type L−s;1bc(r,m, q), (r ≥ 0), we have

GL−s;100(x,m, q) = 0, GL−s;101(x,m, q) =
γc(−γ)m∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

,

and

GL−s;11c(x,m, q) =
γc(−γ)m∑m

k=0
2m

m+k+1

(
m+k+1
2k+1

)
(−γx)k

.
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The first result is complete, and the other two follow from application of Lemma 9.4.7 and

replacing x with −γx.

For the polynomial sequence, L−s;100(r, 1, q) we have

GL−s;100(x, 1, q) =

∑m−2
k=0

((m−1+k
2k+1

)
(−γx)k∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

.

With 0 ≤ r ≤ m − 2, and N = m − 1, by applying Lemmas 9.4.5 and 9.4.7, we select the

leading coefficient of both numerator and denominator. The result is (9.4.15).

For L−s;101(r, 1, q) we have

GL−s;101(x, 1, q) =
γ
∑m−1

k=0

(
m−1+k

2k

)
(−γx)k∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

. (9.4.19)

With r ≤ m− 1, and N = m− 1, we have from Lemma 9.4.5, that the numerator of (9.4.19)

is

r∑
k=0

(m− 1)2k + k(m− 1)2k−1 + lower degree terms

(2k)!
(−γx)k

=

r∑
k=0

m2k − 2km2k−1 + km2k−1 + lower degree terms

(2k)!
(−γx)k

=
r∑

k=0

m2k − km2k−1 + lower degree terms

(2k)!
(−γx)k. (9.4.20)

From (9.4.20) and Lemma 9.4.7 we then obtain

GLT−s;101(x, 1, q) =
γ
∑r

k=0

(−γ)k(m2k−km2k−1)
(2k)! xk

2
∑r

k=0
(−γ)km2k

(2k)! xk
=
γ

2

1−
∑r

k=1
(−γ)kkm2k−1

(2k)! xk∑r
k=0

(−γ)km2k

(2k)! xk


as required.

For L−s;110(r, 1, q) we have

GL−s;110(x, 1, q) =

∑m−1
k=0

(
m−1+k

2k

)
(−γx)k∑m

k=0
2m+1
m+k+1

(
m+k+1
2k+1

)
(−γx)k

.

With r ≤ m−1, and N = m−1, on application of Lemmas 9.4.5 and 9.4.7 we obtain (9.4.17).

Finally, for L−s;111(r, 1, q) we have

GL−s;111(x, 1, q) =
γ
∑m−1

k=0

(
m−k
2k+1

)
(−γx)k∑m

k=0
2m+1
m+k+1

(
m+k+1
2k+1

)
(−γx)k

.
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With r ≤ m− 1, we have from Lemmas 9.4.5 and 9.4.7,

γ
∑r

k=0
m2k+1

(2k+1)!(−γx)k

2m+ 1
∑r

k=0
m2k+km2k−1

(2k+1)! (−γx)k

=
γm

2m+ 1

∑r
k=0

m2k+km2k−1−km2k−1

(2k+1)! (−γx)k∑r
k=0

m2k+km2k−1

(2k+1)! (−γx)k

=
γm

2m+ 1

1−
∑r

k=0
km2k−1

(2k+1)! (−γx)k∑r
k=0

m2k+km2k−1

(2k+1)! (−γx)k


=

γm

2m+ 1

1−
∑r

k=0
km2k−1

(2k+1)! (−γx)k∑r
k=0

m2k

(2k+1)!(−γx)k


as required.

Next we utilise Lemmas 9.4.6 and 9.4.7 in Theorem 9.4.9 to determine the leading coefficient

of the polynomial (in the variable m) of the r-th term of the sequences of the parameter

a = 0.

THEOREM 9.4.9 (leading coefficient of the nonalternating a = 0 sequences). The gen-

erating function of the sequences, LT−s;0bc(r, t,m), derived from the leading coefficient of the

polynomial sequences, L−s;0bc(r, t, q), when t = m+ bc, are given by

GLT−s;00c(x,m, q) =
21−cγc(−γ)m

4m
∑r

k=0
(−γ)km2k

(2k+1)! x
k
, and GLT−s;01c(x,m+ c, q) =

2cγc(−γ)m+1

4
∑r

k=0
(−γ)km2k

(2k)! xk
,

and when t = 1, by

GLT−s;000(x, 1, q) =
−γ
2m

∑r
k=0

(−γ)km2k

(2k)! xk∑r
k=0

(−γ)km2k

(2k+1)! x
k
,

GLT−s;001(x, 1, q) =
−(2m− 1)

4m

1−
∑r

k=1
(−γ)kkm2k−1

(2k+1)! xk∑r
k=0

(−γ)km2k

(2k+1)! x
k

 ,

GLT−s;010(x, 1, q) =
(2m− 1)

4

∑r
k=0

(−γ)km2k

(2k+1)! x
k∑r

k=0
(−γ)km2k

(2k)! xk
,

and

GLT−s;011(x, 1, q) =
γ

2

1−
∑r

k=1
(−γ)kkm2k−1

(2k)! xk∑r
k=0

(−γ)km2k

(2k)! xk

 .

Proof. We use the same approach as in Theorem 9.4.8, but also require Lemma 9.4.6.

For the polynomial sequences of the type L−s;0bc(r,m+ bc, q) we have

GL−s;00c(x,m, q) =
21−cγc(−γ)m−1

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

,
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and

GL−s;01c(x,m, q) =
2cγc(−γ)m

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

.

Both results follow from application of Lemma 9.4.6 on replacing 4 with −4γ, and within the

summation replacing x with −γx.

For the polynomial sequences type L−s;000(r, 1, q) we have

GL−s;000(x, 1, q) =

∑m−1
k=0

2(m−1)
m−1+k

(
m−1+k

2k

)
(−γx)k

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

.

With 0 ≤ r ≤ m− 1 and M = m− 1, on application of Lemmas 9.4.6 and 9.4.7 we obtain

GLT−s;000(x, 1, q) =
2
∑r

k=0
(−γ)k(m−1)2k

(2k)! xk

−4γ
∑r

k=0
(−γ)km2k+1

(2k+1)! xk
=
−γ
∑r

k=0
(−γ)km2k

(2k)! xk

2
∑r

k=0
(−γ)km2k+1

(2k+1)! xk
.

For L−s;001(r, 1, q) we have

GL−s;001(x, 1, q) =
γ
∑m−1

k=0
2(m−1)+1
(m−1)+1+k

((m−1)+1+k
2k+1

)
(−γx)k

(x− 4γ)
∑m−1

k=0

((m−1)+1+k
2k+1

)
(−γx)k

,

and so

GLT−s;001(x, 1, q) =
γ(2m− 1)

∑r
k=0

(m−1)2k+k(m−1)2k−1

(2k+1)! (−γx)k

−4γ
∑r

k=0
m2k+1

(2k+1)!(−γx)k

=
γ(2m− 1)

∑r
k=0

m2k−km2k−1

(2k+1)! (−γx)k

−4γm
∑r

k=0
m2k

(2k+1)!(−γx)k

=
−(2m− 1)

4m

1−
∑r

k=0
(−γ)kkm2k−1

(2k+1)! xk∑r
k=0

(−γ)km2k

(2k+1)! x
k

 . (9.4.21)

For L−s;010(r, 1, q) we have

GL−s;010(x, 1, q) =
−γ
∑m−1

k=0
2(m−1)+1
(m−1)+1+k

((m−1)+1+k
2k+1

)
(−γx)k

(x− 4γ)
∑m

k=0

(
m+k
2k

)
(−γx)k

,

and so

GLT−s;010(x, 1, q) =
−γ(2m− 1)

∑r
k=0

(−γ)k(m−1)2k
(2k+1)! xk

−4γ
∑r

k=0
(−γ)km2k

(2k)! xk
=

(2m− 1)

4

∑r
k=0

(−γ)km2k

(2k+1)! x
k∑r

k=0
(−γ)km2k

(2k)! xk
.

Finally for L−s;011(r, 1, q) we have

GL−s;011(x, 1, q) =
γ
∑m

k=0
2m
m+k

(
m+k
2k

)
(−γx)k

(x− 4γ)
∑m

k=0

(
m+k
2k

)
(−γx)k

,
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and then

GLT−s;011(x, 1, q) =
2γ
∑r

k=1
(−γ)km2k

(2k)! xk

−4γ
∑r

k=0
m2k+km2k−1

(2k)! (−γx)k
=

2γ
∑r

k=1
(−γ)km2k

(2k)! xk

−4γ
∑r

k=0
m2k+km2k−1

(2k)! (−γx)k

=
−1

2

1−
∑r

k=1
(−γ)kkm2k−1

(2k)! xk∑r
k=0

m2k+km2k−1

(2k)! (−γx)k

 =
−1

2

1−
∑r

k=1
(−γ)kkm2k−1

(2k)! xk∑r
k=0

m2k

(2k)!(−γx)k

 .

The result follows on applying the same manipulation as employed in (9.4.21).

9.5 The polynomials Dρ
e(r, 0, 0, n) and Dρ

de(r, T,N, n)

In the previous section we established the generating function GLT−s;abc(x, t, q) that we employed

to determine, (when q is not specified), the leading coefficient of the terms L−s;abc(r, 1, q) and

L−s;abc(r,m, q). Extending the work of [30] we now wish to relate these coefficients to a known

Dirichlet series. We find this easier to achieve by first relating them to an “intermediary

polynomial” and then relating the latter to the Dirichlet series. In this manner and replicating

the format of Definition 9.2.1 we employ the following definitions.

Definition 9.5.1. Let us denote by Dρ
e a function, that for non-negative integers r and n,

takes the values Dρ
e(r, 0, 0, n), and has generating function

GDρ
e(x, 0, 0, n) =

1∑n
k=0

(−1)ρkπ2k

(2k+e)! x
k
.

Here we have an,k = π2k/(2k + e)! and the parameter e represents the parity of the factorial

in the denominator.

Similarly, we denote by Dρ
de, a function that for non-negative integers r, T , N and n takes

the values Dρ
de(r, T,N, n), and as has generating function

GDρ
de(x, δ, n− δ, n) = (−1)δ

∑n−δ
k=0

(−1)ρkkδπ2k

(2k+d)! xk∑n
k=0

(−1)ρkπ2k

(2k+e)! x
k
. (9.5.1)

Here we have an,k = π2k/(2k + e)! and AN,k = kδπ2k/(2k + d)!; the parameters d and e

represents the parity of the factorial in the numerator and denominator respectively; δ = δd,e,

is the Kronecker delta function and ρ ∈ {0, 1}.

9.5.1 Expression of the function Dρ
e

We first turn our attention to the function Dρ
e , and employ two lemmas.

LEMMA 9.5.1 (even parity). We have

lim
n→∞

GDρ
0(x, 0, 0, n) =

{
sech (π

√
x) if ρ = 0

sec (π
√
x) if ρ = 1.

(9.5.2)
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Proof. We have when ρ = 0,

lim
n→∞

GD0
0(x, 0, 0, n) = lim

n→∞

1∑n
k=0

π2k

(2k)!x
k

=
1∑∞

k=0
π2k

(2k)!x
k

=
1

cosh (π
√
x)

= sech
(
π
√
x
)
,

and ρ = 1,

lim
n→∞

GD1
0(x, 0, 0, n) = lim

n→∞

1∑n
k=0

(−1)kπ2k

(2k)! xk
=

1∑∞
k=0

(−1)kπ2k

(2k)! xk
=

1

cos (π
√
x)

= sec
(
π
√
x
)
.

We note that when ρ = 0, the expansion of (9.5.2) gives(
1− π2

2
x+

5π4

24
x2 − 61π6

720
x3 +

277π8

8064
x4 − 50521π10

3628800
x5 + . . .

)
,

and when ρ = 1, we have(
1 +

π2

2
x+

5π4

24
x2 +

61π6

720
x3 +

277π8

8064
x4 +

50521π10

3628800
x5 + . . .

)
.

LEMMA 9.5.2 (odd parity). We have

lim
n→∞

GDρ
1(x, 0, 0, n) =

{
π
√
x csch (π

√
x) if ρ = 0

π
√
x csc (π

√
x) if ρ = 1.

(9.5.3)

Proof. We have

lim
n→∞

GDρ
1(x, 0, 0, n) = lim

n→∞

1∑n
k=0

(−1)ρkπ2k

(2k+1)! x
k

=
1∑∞

k=0
(−1)ρkπ2k

(2k+1)! x
k
.

On expansion of the denominator when ρ = 0, we have

1 +
π2

3!
x+

π4

5!
x2 +

π6

7!
x3 +

π8

9!
x4 +

π10

11!
x5 + . . .

=
1

π
√
x

(
π
√
x+

π3

3!
x3/2 +

π5

5!
x5/2 +

π7

7!
x7/2 +

π9

9!
x9/2 + . . .

)
=

1

π
√
x

sinh (π
√
x), (9.5.4)

and when ρ = 1, we have

1

π
√
x

(
π
√
x− π3

3!
x3/2 +

π5

5!
x5/2 − π7

7!
x7/2 +

π9

9!
x9/2 − . . .

)
=

1

π
√
x

sin (π
√
x). (9.5.5)

Therefore, on taking separately the reciprocal of (9.5.4) and (9.5.5) we obtain the result.

We note that when ρ = 0, the expansion of (9.5.3) produces the terms

1− π2

6
x+

7π4

360
x2 − 31π6

15120
x3 +

127π8

604, 800
x4 − 73π10

3421440
x5 + . . . ,

and when ρ = 1,

1 +
π2

6
x+

7π4

360
x2 +

31π6

15120
x3 +

127π8

604, 800
x4 +

73π10

3421440
x5 + . . . .

Employing these two lemmas we now state Theorem 9.5.3.
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THEOREM 9.5.3. The terms Dρ
e(r, 0, 0, n) as defined in Definition 9.5.1 and with r ≤ n

are determined by:

(1) The generating function.

We have

GDρ
0(x, 0, 0, n) =

1∑n
k=0

(−1)ρkπ2k

(2k)! xk
=

{
sech(π

√
x) if ρ = 0

sec (π
√
x) if ρ = 1,

and

GDρ
1(x, 0, 0, n) =

1∑n
k=0

(−1)ρkπ2k

(2k+1)! x
k

=

{
π
√
x csch(π

√
x) if ρ = 0

π
√
x csc (π

√
x) if ρ = 1.

(2) The recurrence polynomial.

With Dρ
e(0, 0, 0, n) = 1, we have

Dρ
0(r, 0, 0, n) =


−
∑r−1

k=0
π2(r−k)

(2(r−k))!D
0
0(k, 0, 0, n) if ρ = 0

−
∑r−1

k=0
(−1)r−kπ2(r−k)

(2(r−k))! D1
0(k, 0, 0, n) if ρ = 1,

(9.5.6)

and

Dρ
1(r, 0, 0, n) =


−
∑r−1

k=0
π2(r−k)

(2(r−k)+1)!D
0
1(k, 0, 0, n) if ρ = 0

−
∑r−1

k=0
(−1)r−kπ2(r−k)

(2(r−k)+1)! D1
1(k, 0, 0, n) if ρ = 1.

(9.5.7)

(3) The MCL (type 1) determinant.

We have Dρ
0(r, 0, 0, n) = ∆r(~a

(0)
n ) =

(−1)r ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)ρπ2

2! 1 0 0 . . . 0
π4

4!
(−1)ρπ2

2! 1 0 . . . 0
(−1)ρπ6

6!
π4

4!
(−1)ρπ2

2! 1 . . . 0
...

...
...

...
. . .

...
(−1)ρ(r−1)π2r−2

(2r−2)!
(−1)ρ(r−2)π2r−4

(2r−4)!
(−1)ρ(r−3)π2r−6

(2r−6)!
(−1)ρ(r−4)π2r−8

(2r−8)! . . . 1
(−1)ρrπ2r

(2r)!
(−1)ρ(r−1)π2r−2

(2r−2)!
(−1)ρ(r−2)π2r−4

(2r−4)!
(−1)ρ(r−3)π2r−6

(2r−6)! . . . (−1)ρπ2

2!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and Dρ
1(r, 0, 0, n) = ∆r(~a

(1)
n ) =

(−1)r ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)ρπ2

3! 1 0 0 . . . 0
π4

5!
(−1)ρπ2

3! 1 0 . . . 0
(−1)ρπ6

7!
π4

5!
(−1)ρπ2

3! 1 . . . 0
...

...
...

...
. . .

...
(−1)ρ(r−1)π2r−2

(2r−1)!
(−1)ρ(r−2)π2r−4

(2r−3)!
(−1)ρ(r−3)π2r−6

(2r−5)!
(−1)ρ(r−4)π2r−8

(2r−7)! . . . 1
(−1)ρrπ2r

(2r+1)!
(−1)ρ(r−1)π2r−2

(2r−1)!
(−1)ρ(r−2)π2r−4

(2r−3)!
(−1)ρ(r−3)π2r−6

(2r−5)! . . . (−1)ρπ2

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



145

Proof. We have that

(1) follows from Lemmata 9.5.1 and 9.5.2 respectively,

(2) follows from Theorem 9.2.1, and

(3) follows from Theorem 9.2.5.

We now relate the terms LT−s,abc(r,m+ a′bc, q) to those of Dρ
e(r, 0, 0, n).

COROLLARY. We have for all positive integers r ≤ n,

LT−s,00c(r,m, 2π) =
(−γ)mγc21−c

4π
D1−s

1 (r, 0, 0, n),

LT−s,01c(r,m+ c, 2π + 1) =
(−γ)m+1γc2c

4
D1−s

0 (r, 0, 0, n),

LT−s,101(r,m, 2π) =
(−γ)mγ

2
D1−s

0 (r, 0, 0, n),

and

LT−s,11c(r,m, 2π + 1) =
(−γ)mγc

(2π + 1)
D1−s

1 (r, 0, 0, n).

Proof. The creation of the terms LT−s,abc(r,m, 2π + b) by the truncation of the polynomials

L−s,abc(r,m, 2π + b) removes the dependence of r on m (i.e. r ≤ m), therefore, we are at

liberty to make the substitution m = π. We also put ρ = 1−s and the result now follows from

comparison of the expressions in Theorems 9.4.8 and 9.4.9 with that of Theorem 9.5.3.

9.5.2 Expression of the function Dρ
de

When the order of the numerator of the generating function of Dρ
de is non-zero, we observe

from (9.5.1) of Definition 9.5.1 that there are four types, which we consider in pairs, depen-

dent upon the parity of the factorials in the denominator.

We first address the pair of the form, Dρ
d1, and require a few lemmas to associate their

generating function with a trigonometric expression.

LEMMA 9.5.4. We have

lim
n→∞

GDρ
01(x, 0, n, n) =

∑∞
k=0

(−1)ρkπ2kxk

(2k)!∑∞
k=0

(−1)ρkπ2kxk

(2k+1)!

=

{
π
√
x coth (π

√
x) if ρ = 0

π
√
x cot (π

√
x) if ρ = 1.

(9.5.8)

Proof. For the case ρ = 1, we have on expanding sin (π
√
x) and cos (π

√
x) about x = 0,

sin
(
π
√
x
)

= π
√
x− π3x3/2

3!
+
π5x5/2

5!
− π7x7/2

7!
+
π9x9/2

9!
− . . . , (9.5.9)

and

cos
(
π
√
x
)

= 1− π2x

2!
+
π4x2

4!
− π6x3

6!
+
π8x4

8!
− . . . . (9.5.10)
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From (9.5.9) and (9.5.10) we write the second member of (9.5.8) as

cos (π
√
x)

1
π
√
x

sin (π
√
x)

= π
√
x cot (π

√
x)

as required.

When ρ = 0, we simply replace the expansions (9.5.9) and (9.5.10) with sinh (π
√
x) and

cosh (π
√
x) respectively.

LEMMA 9.5.5. We have

−
∞∑
k=0

(−1)ρkπ2kkxk

(2k + 1)!
=

{
1

2π
√
x

(sinh (π
√
x)− π

√
x cosh (π

√
x)) if ρ = 0

1
2π
√
x

(sin (π
√
x)− π

√
x cos (π

√
x)) if ρ = 1.

Proof. We demonstate the case when ρ = 1. For the case ρ = 0, we replace sin with sinh and

cos with cosh.

From the expansion of sin (π
√
x) in (9.5.9), and cos (π

√
x) in (9.5.10), we multiply (9.5.10)

by π
√
x and subtract the result from (9.5.9). We then obtain

sin
(
π
√
x
)
− π
√
x cos

(
π
√
x
)

=π
√
x− π3x3/2

3!
+
π5x5/2

5!
− π7x7/2

7!
+
π9x9/2

9!
− . . .

−π
√
x+

π3x3/2

2!
− π5x5/2

4!
+
π7x7/2

6!
− π9x9/2

8!
− . . .

= +
3− 1

3!
π3x3/2 − 5− 1

5!
π5x5/2 +

7− 1

7!
π7x7/2 − 9− 1

9!
π9x9/2 − . . .

= +
2

3!
π3x3/2 − 4

5!
π5x5/2 +

6

7!
π7x7/2 − 8

9!
π9x9/2 + . . .

=2π
√
x

(
π2x

3!
− 2π4x2

5!
+

3π6x3

7!
− 4π8x4

9!
+ . . .

)
=2π
√
x
∞∑
k=0

(−1)k+1π2kkxk

(2k + 1)!
.

Division by 2π
√
x then produces the result.

LEMMA 9.5.6. We have

lim
n→∞

GD1
11(x, 1, n− 1, n) = −

∑∞
k=0

(−1)ρkπ2kkxk

(2k+1)!∑∞
k=0

(−1)ρkπ2kxk

(2k+1)!

=


1−π
√
x coth (π

√
x)

2 if ρ = 0
1−π
√
x cot (π

√
x)

2 if ρ = 1.
(9.5.11)

Proof. For the case ρ = 1, we have from Lemma 9.5.5, that the numerator of the expression

in (9.5.11) is given as

−
∞∑
k=0

(−1)kπ2kkxk

(2k + 1)!
=

1

2π
√
x

(
sin
(
π
√
x
)
− π
√
x cos

(
π
√
x
))

(9.5.12)
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and for the denominator we have
∞∑
k=0

(−1)kπ2kxk

(2k + 1)!
= 1− π2x

3!
+
π4x2

5!
− π6x3

7!
+
π8x4

9!
− . . .

=
1

π
√
x

(
π
√
x− π3x3/2

3!
+
π5x5/2

5!
− π7x7/2

7!
+
π9x9/2

9!
− . . .

)
=

1

π
√
x

sin
(
π
√
x
)
. (9.5.13)

Then on division of (9.5.12) by (9.5.13) we obtain the result.

When ρ = 0, for the numerator we replace (9.5.12) with

−
∞∑
k=0

π2kkxk

(2k + 1)!
=

1

2π
√
x

(
sinh

(
π
√
x
)
− π
√
x cosh

(
π
√
x
))
, (9.5.14)

and for denominator we have
∞∑
k=0

π2kxk

(2k + 1)!
= 1 +

π2x

3!
+
π4x2

5!
+
π6x3

7!
+
π8x4

9!
+ . . .

=
1

π
√
x

(
π
√
x+

π3x3/2

3!
+
π5x5/2

5!
+
π7x7/2

7!
+
π9x9/2

9!
+ . . .

)
=

1

π
√
x

sinh
(
π
√
x
)
. (9.5.15)

Then on division of (9.5.14) by (9.5.15) we obtain the lemma.

Employing these lemmas, we now state Theorem 9.5.7.

THEOREM 9.5.7. The terms Dρ
d1(r, δ, n− δ, n) with r ≤ n, are given by:

(1) The generating function.

GDρ
01(x, 0, n, n) =

∑n
k=0

(−1)ρkπ2k

(2k)! xk∑n
k=0

(−1)ρkπ2k

(2k+1)! x
k

=

{
π
√
x coth (π

√
x) if ρ = 0

π
√
x cot (π

√
x) if ρ = 1,

and

GDρ
11(x, 1, n− 1, n) = −

∑n
k=0

(−1)ρkkπ2k

(2k+1)! xk∑n
k=0

(−1)ρkπ2k

(2k+1)! x
k

=


1−π
√
x coth (π

√
x)

2 if ρ = 0
1−π
√
x cot (π

√
x)

2 if ρ = 1.

(2) The recurrence polynomial.

(i) In terms of the function Dρ
1.

Dρ
01(r, 0, n, n) =

r∑
k=0

(−1)ρ(r−k)π2(r−k)

(2r − 2k)!
Dρ

1(k, 0, 0, n), (9.5.16)

and

Dρ
11(r, 1, n− 1, n) = −

r−1∑
k=0

(−1)ρ(r−k)π2(r−k)(r − k)

(2r − 2k + 1)!
Dρ

1(k, 0, 0, n). (9.5.17)
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(ii) In terms of themselves.

Dρ
01(r, 0, n, n) =

(−1)ρrπ2r

(2r)!
−

r−1∑
k=0

(−1)ρ(r−k)π2(r−k)

(2r − 2k + 1)!
Dρ

01(k, 0, n, n), (9.5.18)

and

Dρ
11(r, 1, n− 1, n) =

(−1)ρ(r+1)rπ2r

(2r + 1)!
−

r−1∑
k=1

(−1)ρ(r−k)π2(r−k)

(2r − 2k + 1)!
Dρ

11(k, 1, n− 1, n). (9.5.19)

(3) The MCL (type 2) determinant.

Dρ
01(r, 0, n, n) = Ψr(~a

(1)
n , ~A

(0)
n ) =

(−1)r ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 . . . 0
(−1)ρπ2

2!
(−1)ρπ2

3! 1 0 . . . 0
π4

4!
π4

5!
(−1)ρπ2

3! 1 . . . 0
(−1)ρπ6

6!
(−1)ρπ6

7!
π4

5!
(−1)ρπ2

3! . . . 0
...

...
...

...
. . .

...
(−1)ρ(r−1)π2r−2

(2r−2)!
(−1)ρ(r−1)π2r−2

(2r−1)!
(−1)ρ(r−2)π2r−4

(2r−3)!
(−1)ρ(r−3)π2r−6

(2r−5)! . . . 1
(−1)ρrπ2r

(2r)!
(−1)ρrπ2r

(2r+1)!
(−1)ρ(r−1)π2r−2

(2r−1)!
(−1)ρ(r−2)π2r−4

(2r−3)! . . . (−1)ρπ2

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and Dρ
11(r, 1, n− 1, n) = Ψr(~a

(1)
n , ~A

(11)
n−1) =

(−1)r×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0
π2

3!
(−1)ρπ2

3! 1 0 . . . 0
(−1)ρ2π4

5!
π4

5!
(−1)ρπ2

3! 1 . . . 0
3π6

7!
(−1)ρπ6

7!
π4

5!
(−1)ρπ2

3! . . . 0
...

...
...

...
. . .

...
(−1)ρ(r−2)(r−1)π2r−2

(2r−1)!
(−1)ρ(r−1)π2r−2

(2r−1)!
(−1)ρ(r−2)π2r−4

(2r−3)!
(−1)ρ(r−3)π2r−6

(2r−5)! . . . 1
(−1)ρ(r−1)rπ2r

(2r+1)!
(−1)ρrπ2r

(2r+1)!
(−1)ρ(r−1)π2r−2

(2r−1)!
(−1)ρ(r−2)π2r−4

(2r−3)! . . . (−1)ρπ2

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. We have that

(1) follows from Lemmas 9.5.4 and 9.5.6;

(2) follows from Theorem 9.2.2, and (2ii) from Corollary 3 of Theorem 9.2.1, and

(3) from Theorem 9.2.6.

COROLLARY. We have for positive integer r ≤ n,

LT−s;000(r, 1, 2π) =
−γ
2π

D1−s
01 (r, 0, n, n), LT−s;001(r, 1, 2π) =

−(2π − 1)

4π2
D1−s

11 (r, 1, n− 1, n),

LT−s;110(r, 1, 2π + 1) =
−γ

(2π + 1)
D1−s

01 (r, 0, n, n),

and

LT−s;111(r, 1, 2π + 1) =
−1

(2π + 1)
D1−s

11 (r, 1, n− 1, n).
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Proof. As (reasoned) in the Corollary to Theorem 9.5.3, we put m = π, and also put ρ = 1−s.
The Corollary then similarly follows from comparison of the expressions in Theorems 9.4.8

and 9.4.9 with that of Theorem 9.5.7.

We now consider the pair of functions of the form Dρ
d0, and simiarly commence with some

lemmas that associate each of the generating functions with a trigonometric function.

LEMMA 9.5.8. We have

lim
n→∞

GDρ
00(x, 0, n, n) =

−
∑∞

k=0
(−1)ρkπ2kkxk

(2k)!∑∞
k=0

(−1)ρkπ2kxk

(2k)!

=

{
π
√
x tanh (π

√
x)

2 if ρ = 0
π
√
x tan (π

√
x)

2 if ρ = 1.

Proof. When ρ = 1, we first observe that

π
√
x

2
sin
(
π
√
x
)

=
π2x

2
− π4x2

2.3!
+
π6x3

2.5!
− π8x4

2.7!
+
π10x5

2.9!
− . . .

=
π2x

2!
− 2π4x2

4!
+

3π6x3

6!
− 4π8x4

8!
+

5π10x5

10!
− . . .

−
∞∑
k=0

(−1)kπ2kkxk

(2k)!
.

So we have that

−
∑∞

k=0
(−1)kπ2kkxk

(2k)!∑∞
k=0

(−1)kπ2kxk

(2k)!

=
π
√
x sin (π

√
x)

2 cos (π
√
x)

=
π
√
x tan (π

√
x)

2
.

For the case ρ = 0 the proof is identical, except that we replace each of the trigonometric

functions with their hyperbolic equivalent.

Finally for the expression (9.5.21) of Type (10) we use Lemma 9.5.9.

LEMMA 9.5.9. We have

lim
n→∞

GDρ
10(x, 0, n, n) =

∑∞
k=0

(−1)ρkπ2kxk

(2k+1)!∑∞
k=0

(−1)ρkπ2kxk

(2k)!

=

{
tanh (π

√
x)

π
√
x

if ρ = 0
tan (π

√
x)

π
√
x

if ρ = 1.

Proof. For the case ρ = 1 we have from (9.5.9) and (9.5.10),

∑∞
k=0

(−1)kπ2kxk

(2k+1)!∑∞
k=0

(−1)kπ2kxk

(2k)!

=

1
π
√
x

sin (π
√
x)

cos (π
√
x)

=
tan (π

√
x)

π
√
x

.

Similarly for ρ = 0, we replace the trigonometric function with its hyperbolic equivalent.

Using Lemmas 9.5.8 and 9.5.9 we have Theorem 9.5.10.
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THEOREM 9.5.10. The terms Dρ
d0(r, 0, 0, n) as defined in Definition 9.5.1, and with r ≤ n,

are determined by:

(1) The generating function.

We have

GDρ
00(x, 1, n− 1, n) = −

∑n
k=1

(−1)ρkkπ2k

(2k)! xk∑n
k=0

(−1)ρkπ2k

(2k)! xk
=

{
π
√
x tanh (π

√
x)

2 if ρ = 0
π
√
x tan (π

√
x)

2 if ρ = 1,
(9.5.20)

and

GDρ
10(x, 0, n, n) =

∑n
k=0

(−1)ρkπ2k

(2k+1)! x
k∑n

k=0
(−1)ρkπ2k

(2k)! xk
=

{
tanh (π

√
x)

π
√
x

if ρ = 0
tan (π

√
x)

π
√
x

if ρ = 1.
(9.5.21)

(2) The recurrence polynomial.

(i) In terms of the function Dρ
0.

Dρ
10(r, 0, n, n) =

r∑
k=0

(−1)ρ(r−k)π2(r−k)

(2r − 2k + 1)!
Dρ

0(k, 0, 0, n),

and

Dρ
00(r, 1, n− 1, n) = −

r−1∑
k=0

(−1)ρ(r−k)π2(r−k)(r − k)

(2r − 2k)!
Dρ

0(k, 0, 0, n).

(ii) In terms of themselves.

Dρ
10(r, 0, n, n) =

(−1)ρrπ2r

(2r + 1)!
−

r−1∑
k=0

(−1)ρ(r−k)π2(r−k)

(2r − 2k)!
Dρ

10(k, 0, n, n), (9.5.22)

and

Dρ
00(r, 1, n− 1, n) =

(−1)ρ(r+1)rπ2r

(2r)!
−

r−1∑
k=0

(−1)ρ(r−k)π2(r−k)

(2r − 2k)!
Dρ

00(k, 1, n− 1, n). (9.5.23)

(3) The MCL (type 2) determinant.

Dρ
00(r, 1, n− 1, n) = Ψr(~a

(0)
n , ~A

(00)
n−1) =

(−1)r×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0
π2

2!
(−1)ρπ2

2! 1 0 . . . 0
(−1)ρ2π4

4!
π4

4!
(−1)ρπ2

2! 1 . . . 0
3π6

6!
−π6

6!
π4

4!
(−1)ρπ2

2! . . . 0
...

...
...

...
. . .

...
(−1)ρ(r−2)(r−1)π2r−2

(2r−2)!
(−1)ρ(r−1)π2r−2

(2r−2)!
(−1)ρ(r−2)π2r−4

(2r−4)!
(−1)ρ(r−3)π2r−6

(2r−6)! . . . 1
(−1)ρ(r−1)rπ2r

(2r)!
(−1)ρrπ2r

(2r)!
(−1)ρ(r−1)π2r−2

(2r−2)!
(−1)ρ(r−2)π2r−4

(2r−4)! . . . (−1)ρπ2

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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and

Dρ
10(r, 0, n, n) = Ψr(~a

(0)
n , ~A

(1)
n ) =

(−1)r×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 . . . 0
(−1)ρπ2

3!
(−1)ρπ2

2! 1 0 . . . 0
π4

5!
π4

4!
(−1)ρπ2

2! 1 . . . 0
(−1)ρπ6

7!
(−1)ρπ6

6!
π4

4!
(−1)ρπ2

2! . . . 0
...

...
...

...
. . .

...
(−1)ρ(r−1)π2(r−1)

(2r−1)!
(−1)ρ(r−1)π2(r−1)

(2r−2)!
(−1)ρ(r−2)π2(r−2)

(2r−4)!
(−1)ρ(r−3)π2(r−3)

(2r−6)! . . . 1
(−1)ρrπ2r
(2r+1)!

(−1)ρrπ2r
(2r)!

(−1)ρ(r−1)π2(r−1)
(2r−2)!

(−1)ρ(r−2)π2(r−2)
(2r−4)! . . . (−1)ρπ2

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. We have that

(1) follows from Lemmas 9.5.8 and 9.5.9;

(2i) follows from Theorem 9.2.2 and (2ii) from Corollary 3 of Theorem 9.2.1, and

(3) from Theorem 9.2.6.

COROLLARY. We have

LT−s;010(r, 1, 2π + 1) =
2π − 1

4
D1−s

10 (r, 0, n, n), LT−s;011(r, 1, 2π + 1) =
γ

2
D1−s

00 (r, 1, n− 1, n),

LT−s;100(r, 1, 2π) =
1

2
D1−s

10 (r, 0, n, n), and LT−s;101(r, 1, 2π) =
−1

2
D1−s

00 (r, 1, n− 1, n).

Proof. As reasoned in the Corollary to Theorem 9.5.3, we put m = π, and also put ρ = 1− s,
and then the corollary similarly follows from comparison of the expressions in Theorem 9.4.8

and Theorem 9.4.9 with that of Theorem 9.5.7.

9.5.3 Connecting the functions D1
e and D1

de to Dirichlet functions

We now connect the functions D1
e and D1

de to familiar Dirichlet functions, and to the Bernoulli

numbers, Bn, (which we shall discuss in a subsequent chapter), and Euler numbers, En.

Definition 9.5.2. convenient notation. We write

ζ(s) =
∞∑
n=1

1

ns
so that ζ(2r) =

(−1)r+1(2π)2rB2r

2(2r)!
,

η(s) =

∞∑
n=1

(−1)n−1

ns
so that η(2r) =

(−1)r+1(22r−1 − 1)π2rB2r

(2r)!
,

λ(s) =
∞∑
n=0

1

(2n+ 1)s
so that λ(2r) =

(−1)r+1(22r − 1)π2rB2r

2(2r)!
,

and with χ(n) denoting the non-trivial Dirichlet character modulo 4, and En denoting Euler

numbers

β(s) =

∞∑
n=0

(−1)n

(2n+ 1)s
so that β(2r + 1) =

(−1)rπ2r+1E2r

4r+1(2r)!
;
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the explicit values are at odd, not even, integers since χ(n) is an odd Dirichlet character with

χ(−1) = −1.

We also have the following lemmas.

LEMMA 9.5.11 (even eta relation). We have for positive integers r ≤ n,

D1
1(r, 0, 0, n)

2
= η(2r).

Proof. From Theorem 9.5.3 we have, for r ≤ n, that

GD1
1(x, 0, 0, n) =

1∑n
k=0

(−1)kπ2k

(2k+1)! x
k

= π
√
x csc (π

√
x).

For 0 ≤ r ≤ n, we consider the coefficient of xr in the expansion of z csc z/2 with z = π
√
x,

that is

(−1)r+12
(
22r−1 − 1

)
π2rB2r

2(2r)!
=

(−1)r+1
(
22r−1 − 1

)
π2rB2r

(2r)!
= η(2r).

LEMMA 9.5.12 (even zeta relation). We have for positive integers r ≤ n,

D1
11(r, 1, n− 1, n) = −1

2
D1

01(r, 0, n, n) = ζ(2r). (9.5.24)

Proof. From Theorem 9.5.7 we have, for 1 ≤ r ≤ n, that

GD1
11(x, 1, n− 1, n) = −1

2
GD1

01(x, 0, n, n) =
−π
√
x cot (π

√
x)

2
.

For 1 ≤ r ≤ n, we consider the coefficient of xr in the expansion of −z cot z/2, with z = π
√
x,

that gives

−(−1)r22rπ2rB2r

2(2r)!
=

(−1)r+1(2π)2rB2r

2(2r)!
= ζ(2r).

LEMMA 9.5.13 (even lambda relation). We have for positive integers r ≤ n,

1

22r
D1

00(r, 1, n− 1, n) =
1

22r+1
D1

10(r − 1, 0, n, n) = λ(2r).

Proof. From Theorem 9.5.10 we have, for 1 ≤ r ≤ n, that

GD1
00(x, 1, n− 1, n) =

π2x

2
GD1

10(x, 0, n, n) =
π
√
x tan (π

√
x)

2
.

For 1 ≤ r ≤ n we consider the coefficient of xr in the expansion of z tan z/2, with z = π
√
x.

We then have

(−1)r+122r
(
22r − 1

)
π2rB2r

2(2r)!
= 22r

(−1)r+1
(
22r − 1

)
π2rB2r

2(2r)!
= 22rλ(2r).
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Consequently we have

D1
00(r, 1, n− 1, n) =

π2

2
D1

10(r − 1, 0, n, n) = 22rλ(2r),

and on division by 22r we obtain the lemma.

LEMMA 9.5.14 (odd beta relation). We have for non-negative integers r ≤ n,

πD1
0(r, 0, 0, n)

4r+1
= β(2r + 1).

Proof. From Theorem 9.5.3 we have, for r ≤ n, that

GD1
0(x, 0, 0, n) =

1∑n
k=0

(−1)kπ2k

(2k)! xk
= sec (π

√
x).

For, 0 ≤ r ≤ n, we consider the coefficient of xr in the expansion of π sec z/4r+1, with

z = π
√
x. We then proceed as

(−1)rπ2r+1E2r

4r+1(2r)!
= β(2r + 1).

From the results of the Corollaries to Theorem 9.5.7 and to Theorem 9.5.10 and

Lemmas 9.5.11 - 9.5.14, we can associate each of the sequences LT−0;abc(r,m, 2m + b) and

LT−0;abc(r, 1, 2m + b) to a particular Dirichlet function. We summarise these connections in

Tables 9.1 and 9.2.

Table 9.1: Relationship between the terms of the sequences LT−0;abc(r,m, 2m+ b), D1
e(r, 0, 0, n)

and a Dirichlet series.

LT−0;abc D1
e Dirichlet series

a+b e type

even 1 η(2r)
odd 0 β(2r + 1)

Table 9.2: Relationship between the terms of the sequences LT−0;abc(r, 1, 2m+ b), D1
de(r, δd,e, n−

δd,e, n) and a Dirichlet series.

LT−0;abc D1
de Dirichlet series

a+b e type

even 1 ζ(2r)
odd 0 λ(2r)
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In the final part of this chapter we consider (in Theorem 9.5.15) a collection of linear

recurrence relations involving the Dirichlet η and ζ functions, that occur naturally from The-

orem 9.5.3 and Theorem 9.5.7 and Lemmas 9.5.11 and 9.5.12. Similarly (in Theorem 9.5.16)

we have a set of recurrence relations involving the Dirichlet β and λ functions, that occur

naturally from Theorem 9.5.3 and Theorem 9.5.10, and Lemmas 9.5.13 and 9.5.14.

THEOREM 9.5.15. With η(0) = 1/2, ζ(0) = −1/2 and r a positive integer, we have the

following linear recurrence relations:

η(2r) = −
r−1∑
k=0

(−1)r−kπ2(r−k)

(2r − 2k + 1)!
η(2k), (9.5.25)

ζ(2r) = −
r∑

k=0

(−1)r−kπ2(r−k)

(2r − 2k)!
η(2k), (9.5.26)

ζ(2r) = −2
r−1∑
k=0

(−1)r−kπ2(r−k)(r − k)

(2r − 2k + 1)!
η(2k), (9.5.27)

and

ζ(2r) =
(−1)r+1π2r

2(2r)!
−

r−1∑
k=0

(−1)r−kπ2(r−k)

(2r − 2k + 1)!
ζ(2k). (9.5.28)

Proof. For the first relation we have from Lemma 9.5.11, that for 0 ≤ r ≤ n,

D1
1(k, 0, 0, n) = 2η(2k). (9.5.29)

We substitute (9.5.29) into (9.5.7) (of Theorem 9.5.3), and (9.5.25) follows on cancellation of

the factor of 2.

For (9.5.26) and (9.5.27), we have from Lemma 9.5.12, that for 1 ≤ r ≤ n,

D1
11(r, 1, n− 1, n) = −1

2
D1

01(r, 0, n, n) = ζ(2r). (9.5.30)

We then substitute (9.5.30) and (9.5.29) into (9.5.16) and (9.5.17) of (2i) of Theorem 9.5.7

and results follow (on cancellation).

For the last relation we use either (9.5.18) or (9.5.19) of (2ii) of Theorem 9.5.7, and (as in

the previous two relations) use (9.5.30) to convert to a relation involving ζ(2r).

THEOREM 9.5.16. With β(1) = π/4, λ(0) = 0 and r a positive integer, we have the

following linear recurrence relations:

β(2r + 1) = −
r−1∑
k=0

(−1)r−kπ2(r−k)

4r−k(2r − 2k)!
β(2k + 1), (9.5.31)

λ(2r) =
π

2

r∑
k=0

(−1)r−kπ2(r−k)

4r−k(2r − 2k + 1)!
β(2k + 1), (9.5.32)
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λ(2r) = − 1

π

r−1∑
k=0

(−1)r−k(r − k)π2(r−k)

4r−k−1(2r − 2k)!
β(2k + 1), (9.5.33)

and

λ(2r) =
(−1)r+1π2rr

4r(2r)!
−

r−1∑
k=1

(−1)r−kπ2(r−k)

4r−k(2r − 2k)!
λ(2k). (9.5.34)

Proof. For the first relation we have from Lemma 9.5.14, that for 0 ≤ r ≤ n,

πD1
0(r, 0, 0, n)

4r+1
= β(2r + 1). (9.5.35)

We substitute (9.5.35) into (9.5.6) of Theorem 9.5.3, and (9.5.31) follows on division of the

factor 4r+1. For (9.5.32) and (9.5.33), we have from Lemma 9.5.13, that for 1 ≤ r ≤ n,

1

22r
D1

00(r, 1, n− 1, n) =
1

22r+1
D1

10(r − 1, 0, n, n) = λ(2r). (9.5.36)

We then substitute (9.5.36) and (9.5.35) into (9.5.16) and (9.5.17) of (2i) of Theorem 9.5.10

and results follow on cancellation.

For the last relation we use either (9.5.22) or (9.5.23) of (2ii) of Theorem 9.5.10, and (as in

the previous two relations) use (9.5.36) to convert to a relation involving λ(2r).

These relations establish that the recurrences for the η, ζ and λ functions at even integer

arguments, and the β function at odd integer arguments are embedded in the negative con-

tinuation of the sequences L0;abc(r, t, q).



Chapter 10

Bernoulli numbers of the first and
second kind

In Section 10.1 we introduce modified Bernoulli numbers of the first kind and the Bernoulli

numbers of the second kind, outlining their determination from the generating function and

recurrence polynomial. This is followed in Section 10.2 by their construction as a MCL deter-

minant, and then finally in Section 10.3, with Theorems 10.3.3 and 10.3.9, we investigate the

uncancelled denonominator of these two kinds of numbers, that culminates in a corollary on

the uncancelled denominator of the even zeta function. Here we establish that the exponent

of each prime p occurring in the product of the n-th uncancelled Bernoulli number (of the

first kind) is that of the Fleck quotient.

10.1 Modified Bernoulli numbers of the first kind

Let Br represent the r-th Bernoulli number of the first kind and Br = Br/r! represent the

r-th “modified” Bernoulli number. The generating function of these numbers is [28]

x

ex − 1
=

1

1 + x
2! + x2

3! + x3

4! + . . .

= 1− 1

2
x+

1

12
x2 − 1

720
x4 +

1

30, 240
x6 − 1

1, 209, 600
x8 + . . .

= 1 +
−1

2
x+

1

6

x2

2!
+
−1

30

x4

4!
+

1

42

x6

6!
+
−1

30

x8

8!
+ . . .

=
∞∑
k=0

Bk
xk

k!
=
∞∑
k=0

Bkxk, (10.1.1)
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where Br denotes the (usual) sequence of modified Bernoulli numbers that has B1 = −1/2.

Alternatively, with an alteration to the denominator we obtain

x

1− e−x
=

1

1− x
2! + x2

3! −
x3

4! + . . .

= 1 +
1

2
x+

1

12
x2 − 1

720
x4 +

1

30, 240
x6 − 1

1, 209, 600
x8 + . . .

=

∞∑
k=0

B+k x
k, (10.1.2)

where we let B+r denote the sequence of (modified) Bernoulli numbers that has B+1 = B+
1 = 1/2.

To express the Bernoulli numbers, Br, in terms of a recurrence polynomial we have [28],(
r + 1

0

)
B0 +

(
r + 1

1

)
B1 +

(
r + 1

2

)
B2 + . . .+

(
r + 1

r

)
Br = 0,

which on rearrangement and division by (r + 1)! gives us a corresponding recurrence for the

modified Bernoulli numbers of the form

Br = − 1

(r + 1)!
B0 −

1

r!
B1 −

1

(r − 1)!
B2 − . . .−

1

2!
Br−1. (10.1.3)

10.1.1 Expression of the modified Bernoulli numbers in terms of Bρ

Definition 10.1.1. Let us denote by Bρ, a function that for non-negative integers, r and n

takes the values Bρ(r, 0, 0, n), and as in Definition 9.2.1 has generating function GBρ given

by

GBρ(x, 0, 0, n) =
1∑n

k=0
(−1)ρk
(k+1)! x

k
=

∞∑
k=0

Bρ(k, 0, 0, n)xk. (10.1.4)

LEMMA 10.1.1. We have

lim
n→∞

Bρ(r, 0, 0, n) =

{
Br if ρ = 0

B+r if ρ = 1.

Proof. We have on comparison of the generating function (10.1.4) with (10.1.1) and (10.1.2),

lim
n→∞

GB0(x, 0, 0, n) =
1∑∞

k=0
1

(k+1)!x
k

=
x

ex − 1
= GBr,

and

lim
n→∞

GB1(x, 0, 0, n) =
1∑∞

k=0
(−1)k
(k+1)!x

k
=

x

1− e−x
= GB+r .
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THEOREM 10.1.2. The terms Bρ(r, 0, 0, n), for r ≤ n, are given by:

(1) The generating function.

Bρ(r, 0, 0, n) =

{
x

ex−1 = GBr if ρ = 0
x

1−e−x = GB+r if ρ = 1.

(2) The recurrence polynomial. With Bρ(0, 0, 0, n) = 1, we have

Bρ(r, 0, 0, n) = −
r−1∑
k=0

(−1)ρ(r−k)

(r + 1− k)!
Bρ(k, 0, 0, n).

(3) The MCL (type 1) determinant. We have for 1 ≤ r ≤ n,

Bρ(r, 0, 0, n) = ∆ρ
r(~ar)

= (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)ρ
2! 1 0 0 . . . 0
1
3!

(−1)ρ
2! 1 0 . . . 0

(−1)ρ
4!

1
3!

(−1)ρ
2! 1 . . . 0

...
...

...
...

. . .
...

(−1)ρ(r−1)

r!
(−1)ρ(r−2)

(r−1)!
(−1)ρ(r−3)

(r−2)!
(−1)ρ(r−4)

(r−3)! . . . 1
(−1)ρr
(r+1)!

(−1)r−1

r!
(−1)r−2

(r−1)!
(−1)r−3

(r−2)! . . . (−1)ρ
2!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ∆ρ
r(~ar) is a MCL determinant with ~ar = ( (−1)

ρ

2! , 1
3! , . . . ,

(−1)ρ(r−1)

r! , (−1)
ρr

(r+1)! ).

Proof. We have that:

(1) follows from Lemma 10.1.1;

(2) follows from Theorem 9.2.1, and

(3) follows from Theorem 9.2.5.

COROLLARY. We have

r!∆0
r(~ar) = Br.

Proof. This follows directly from Theorem 10.1.2 on recalling that

B0(r, 0, 0, n) = Br = Br/r!.

Remark. To generate any Br value, we can truncate the infinite summation of the denomi-

nator of (10.1.1) to the finite summation, and then consider a function B0.

10.2 Bernoulli numbers of the second kind

The Bernoulli numbers of the second kind, br, are determined by the generating function [28],

(p259),

Gbr =
x

log 1 + x
=

1

1− x
2 + x2

3 −
x3

4 + . . .

= 1 +
1

2
x− 1

12
x2 +

1

24
x3 − 19

720
x4 + . . . =

∞∑
k=0

bkx
k. (10.2.1)
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If we replace x with −x we obtain

Gb−r =
−x

log 1− x
=

1

1 + x
2 + x2

3 + x3

4 + . . .

= 1− 1

2
x− 1

12
x2 − 1

24
x3 − 19

720
x4 − . . . =

∞∑
k=0

b−k x
k, (10.2.2)

where we let b−r denote an alternative sequence of Bernoulli numbers of the second kind such

that for r ≥ 1, we have br < 0.

10.2.1 Expression of the Bernoulli number in terms of a function bρ

Definition 10.2.1. Let us denote by bρ, a function that for non-negative integers, r and n

takes the values bρ(r, 0, 0, n), and as in Definition 9.2.1 has generating function Gbρ given by

Gbρ(x, 0, 0, n) =
1∑n

k=0
(−1)ρk
k+1 xk

=
∞∑
k=0

bρ(k, 0, 0, n)xk.

LEMMA 10.2.1. We have

lim
n→∞

bρ(r, 0, 0, n) =

{
b−r if ρ = 0

br if ρ = 1.

Proof. We have from the generating functions (10.2.1) and (10.2.2),

lim
n→∞

Gb0(x, 0, 0, n) =
1∑∞

k=0
1

k+1x
k

=
−x

log 1− x
= Gb−r ,

and

lim
n→∞

Gb1(x, 0, 0, n) =
1∑∞

k=0
(−1)k
k+1 x

k
=

x

log 1 + x
= Gbr.

THEOREM 10.2.2. The terms bρ(r, 0, 0, n), for r ≤ n, are given by:

(1) The generating function.

We have

Gbρ(r, 0, 0, n) =

{
−x

log 1−x = Gb−r if ρ = 0
x

log 1+x = Gbr if ρ = 1.

(2) The recurrence polynomial.

With bρ(0, 0, 0, n) = 1, we have

bρ(r, 0, 0, n) = −
r−1∑
k=0

(−1)ρ(r−k)

r + 1− k
bρ(k, 0, 0, n).

(3) The MCL (type 1) determinant.

We have for 1 ≤ r ≤ n,

bρ(r, 0, 0, n) = ∆ρ
r(~ar)
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= (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)ρ
2 1 0 0 . . . 0
1
3

(−1)ρ
2 1 0 . . . 0

(−1)ρ
4

1
3

(−1)ρ
2 1 . . . 0

...
...

...
...

. . .
...

(−1)ρ(r−1)

r
(−1)ρ(r−2)

r−1
(−1)ρ(r−3)

r−2
(−1)ρ(r−4)

r−3 . . . 1
(−1)ρr
r+1

(−1)r−1

r
(−1)r−2

r−1
(−1)r−3

r−2 . . . (−1)ρ
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ∆ρ
r(~ar) is a MCL determinant with ~ar = ( (−1)

ρ

2 , 13 , . . . ,
(−1)ρ(r−1)

r , (−1)
ρr

r+1 ).

Proof. We have that:

(1) follows from Lemma 10.2.1;

(2) follows from Theorem 9.2.1, and

(3) follows from Theorem 9.2.5.

10.3 Bernoulli numbers and their (uncancelled) denonimators

We examine the natural (uncancelled) denominator of the Bernoulli numbers of the second

kind and the (modified) Bernoulli numbers of the first kind, and find that for both, the power

of each prime p, (p− 1 ≤ n), satisfy the Fleck congruence bn/(p− 1)c.
We begin by examining the Bernoulli Numbers of the second kind.

10.3.1 Denominator theorem: Bernoulli numbers of the second Kind

Definition 10.3.1. We have b0 = 1, and

bn =
1

2
bn−1 −

1

3
bn−2 + . . .+ (−1)m

1

m
bn−m+1 + . . .+ (−1)n

1

n
b1 + (−1)n+1 1

n+ 1
b0. (10.3.1)

We denote by en the lowest common multiple of the denominators in (10.3.1) before any

cancellation has occured, so that

en = LCM [(n+ 1)e0, ne1, (n− 1)e2, . . . ,men−m+1, . . . , 2en−1] , (10.3.2)

and

en =
∏

p≤n+1

pγ(n,p).

Then let bn = fn/en, where fn ∈ Z and b0 = e0 = 1. Furthermore, let

En =
∏

p≤n+1

pδ(n,p), where δ(n, p) =

⌊
n

p− 1

⌋
. (10.3.3)

It is observed that for each prime p ≤ n+ 1 its first occurence in the term eM is when

M = n−m+ 1 = p− 1 and thereafter, the exponent of the prime p increases by 1 after each

interval of p− 1 terms. We propose that γ(n, p) = δ(n, p).

However, in order to prove this result it will be helpful to introduce some lemmas.
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LEMMA 10.3.1. For δ(n, p) defined as in (10.3.3) we have

δ(n, p) = δ(n− p+ 1, p) + 1

Proof. From (10.3.3) we have

δ(n− p+ 1, p) + 1 =

⌊
n− p+ 1

p− 1

⌋
+
p− 1

p− 1
=

⌊
n

p− 1

⌋
= δ(n, p).

LEMMA 10.3.2. With 2 ≤ m ≤ n+ 1 and r an integer we have

δ(n, p) ≥ δ(n−m+ 1, p) + r,

whenever pr divides m.

Proof. We use buc+ bvc ≤ bu+ vc.

Take u = (n+ 1−m)/(p− 1), and, v = (m− 1)/(p− 1), to obtain⌊
n+ 1−m
p− 1

⌋
+

⌊
m− 1

p− 1

⌋
≤
⌊

n

p− 1

⌋
,

which implies

δ(n−m+ 1, p) + δ(m− 1, p) ≤ δ(n, p).

Then rearranging and putting m = jpr, where j - p, we have

δ(n, p)− δ(n−m+ 1, p) ≥
⌊
m− 1

p− 1

⌋
≥
⌊
jpr − 1

p− 1

⌋
≥
⌊
pr − 1

p− 1

⌋
,

and ⌊
pr − 1

p− 1

⌋
=
⌊
1 + p+ p2 + . . .+ pr−1

⌋
≥ r,

so that δ(n, p) ≥ δ(n−m+ 1, p) + r as required.

Remark. If p - m, then r = 0 and m = j, and Lemma 10.3.2 still holds.

We are now in a position to state

THEOREM 10.3.3 (denominator theorem: Bernoulli numbers second kind). With en, En,

γ(n, p) and δ(n, p) given as in Definition 10.3.1 we have

γ(n, p) = δ(n, p). (10.3.4)
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Proof. We show the equality of (10.3.4) using induction on N , (N ≥ 0), and for p ≥ 2.

For N = 0, we have δ(0, p) = b0/(p− 1)c = 0, and also γ(0, p) = 0 follows from e0 = 1. So it

is true for N = 0.

When N = M , let us assume γ(M,p) = δ(M,p), for M = n− 1, n− 2, . . . (as many as

required). We wish to demonstrate the case N = n.

Let us put M = n− p+ 1 (and m = p). Now from (10.3.2),

pen−p+1 | en

and from the induction hypothesis

γ(n− p+ 1, p) = δ(n− p+ 1, p) =

⌊
n− p
n− 1

⌋
so that from Lemma 10.3.1 the exponent of p in the term pen−p+1 is

γ(n− p+ 1, p) + 1 = δ(n− p+ 1) + 1 = δ(n, p).

Therefore, when N = n, we have that δ(n, p) is a factor of γ(n, p). Is it the greatest factor?

Any such term of (10.3.2) with a greater exponent of p will require m = pr. We have

pren−pr+1 = γ(n− pr + 1, p) + r = δ(n− pr + 1, p) + r ≤ δ(n, p)

from Lemma 10.3.2. That is no there is no term men−m+1 with a greater exponent than

pen−p+1. Therefore, we conclude that

γ(n, p) = δ(n, p) =

⌊
n

p− 1

⌋
for each p ≤ n+ 1, and the theorem follows.

10.3.2 Denominator theorem: (Modified) Bernoulli numbers

We consider the numbers Bn = Bn/n!, where Bn is a Bernoulli number of the first kind, so

that, for example, we have B0 = 1, B1 = 1/2, B2 = 1/12, B3 = 0, B4 = −1/720, . . .. Then

since for r ≥ 1, B2r+1 = 0, for n ≥ 2 we write n = 2r. Analogous to Definition 10.3.1 we

define

Definition 10.3.2. Let B0 = 1, and (from (10.1.3)) we have

Bn =
(−1)n+1

(n+ 1)!
B0 +

(−1)n

n!
B1 +

(−1)n−1

(n− 1)!
B2 + . . .+

1

2!
Bn−1. (10.3.5)

Denote by en the lowest common multiple of the denominators in (10.3.5) before any cancel-

lation has occurred, so that

en = LCM [(n+ 1)!e0, n!e1, (n− 1)!e2, . . . ,m!en−m+1, . . . , 2!en−1] ,
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whilst for n = 2r ≥ 2,

e2r = LCM
[
(2r + 1)!e0, (2r)!e1, (2r − 1)!e2, . . . , (2s+ 1)!e2(r−s), . . . , 3!e2r−2

]
, (10.3.6)

and

en =
∏

p≤n+1

pγ(n,p).

Then let Bn = fn/en, where fn ∈ Z and B0 = e0 = 1. We also write m = 2s + b, where

b ∈ {0, 1} is the parity of m.

Furthermore, let

En =
1

2D−1

∏
p≤n+1

pδ(n,p), (10.3.7)

where δ(n, p) = bn/(p− 1)c and D is the sum of the digits of n expressed in binary form.

By definition (of the lowest common multiple) it is evident that for each such p, its (greatest)

exponent in en must equal its (greatest) exponent in at least one of the terms m!en−m+1. As

in Theorem 10.3.3 we put m = p and note that for p = 2s+ 1 ≥ 3,

n− p+ 1 = 2r − (2s+ 1) + 1 = 2(r − s),

so that en−p+1 6= 0. Conversely when p = 2 and n ≥ 4, we have en−2+1 = 0.

It is observed that for each prime p ≤ n+1, its first occurence in the term en is when n = p−1,

and thereafter, (for p ≥ 3), the exponent of the prime p increases by 1 after each interval of

(p− 1) terms. For p = 2, this pattern is affected by the fact that for n ≥ 1, B2r+1 = 0.

Once again, (perhaps surprisingly), we are motivated to conjecture that for n ≥ 1,

γ(n, 2) = δ(n, 2) + 1−D, and that for p ≥ 3, γ(n, p) = δ(n, p). (10.3.8)

The demonstration of (10.3.8) requires accounting for the fact that each of the terms com-

prising the lowest common multiple now has the form m!en−m+1 (as opposed to men−m+1),

and in the case of the prime p = 2, the determination of the offset, 1−D. The following set

of lemmas enable us to establish these amendments.

First we require a definition.

Definition 10.3.3. Let k be a positive integer expressed in the scale of b ≥ 2, whose digits

are dj(k), dj−1(k), . . ., d2(k), d1(k), d0(k), where for 0 ≤ i ≤ j, 0 ≤ di(k) ≤ b − 1. We

express the sum of the digits of k in the scale of (base) b by

D(k) =

j∑
i=0

di(k). (10.3.9)

Also let

R(k) =

j∑
i=0

(bi − 1)di(k), (10.3.10)
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then we have

k = D(k) +R(k).

If k is evident, then we simplify (10.3.9) and (10.3.10) to

D =

j∑
i=0

di, and R =

j∑
i=0

(bi − 1)di

respectively.

LEMMA 10.3.4 (factorial factor). With En defined as in (10.3.7) for some integer k we

have

En = k(n+ 1)!.

Proof. The power of p in (n+ 1)! is given by

t = b(n+ 1)/pc+ b(n+ 1)/p2c+ b(n+ 1)/p3c+ . . .

< (n+ 1)/p+ (n+ 1)/p2 + (n+ 1)/p3 + . . . . (10.3.11)

This gives t < (n+1)/(p−1) which (since t is a positive integer) implies that t ≤ bn/(p−1)c.
Therefore, we have ∏

p≤n+1

p

⌊
n
p−1

⌋
= k(n+ 1)!

for some integer k ≥ 1.

Remark. There cannot be equality in (10.3.11), because [(n+ 1)/pr] is 0 when r is large.

LEMMA 10.3.5 (power of prime p in factorial n). We have that the power, e, of a prime

p in factorial n is given by

e =
∞∑
k=1

[
n

pk

]
.

Proof. There are [n/p] multiples of p in 1, 2, 3, . . . , n. Each of these contributes at least one

factor p to n!.

The multiples of p2 contribute an extra power of p. There are [n/p2] of them in 1, 2, 3, . . . , n.

The multples of p3 contribute an extra power of p. There are [n/p3] of them in 1, 2, 3, . . . , n.

And so on. This sequence of steps stops after [log n/ log p] steps.

So the prime p is raised to the power

e =

∞∑
k=1

[
n

pk

]
.

We improve on the result of Lemma 10.3.5 by presenting a more applicable formula for e.



165

LEMMA 10.3.6 (power of prime p in factorial n: Exact Formula). We have that the power,

e, of a prime p in factorial n is given by

1

p− 1

(
n−

∑
ds

)
.

Proof. The positive integer n can be written in the scale of p (with digits 0, 1, . . . , p − 1) as

drdr−1 . . . d1d0.

This is formally
∞∑
s=1

dsp
s,

where ds = 0 for s > r. So we have the double sum

e =

∞∑
k=1

[
n

pk

]
=

∞∑
k=1

(
n

pk
− dk−1p

k−1 + · · ·+ d1p+ d0
pk

)
=

∞∑
k=1

(
n

pk
−
k−1∑
s=0

ds
pk−s

)

=

∞∑
k=1

n

pk
−
∞∑
s=0

ds

∞∑
k=s+1

1

pk−s
=

∞∑
`=1

1

p`

(
n−

∞∑
s=0

ds

)
=

1

p− 1

(
n−

∑
ds

)
.

LEMMA 10.3.7. Let D(n) and R(n) be defined as in Definition 10.3.3. Then for a positive

integer n expressed in the scale of b ≥ 2, whose sum of digits is given by D(n), we have that

for 0 ≤ m ≤ n,

D(n) + (b− 1)c = D(m) +D(n−m), (10.3.12)

or equivalently

R(n)− (R(m) +R(n−m)) = (b− 1)c. (10.3.13)

Here c ≥ 0 denotes the number of times b is carried over in the sum D(m) +D(n−m).

Proof. Let us consider the sum of the right hand side of (10.3.12). From Definition 10.3.3 we

have

D(k) =

j∑
i=0

di(k),

so that

D(m) +D(n−m) =

j∑
i=0

di(m) +

j∑
i=0

di(n−m)

=

j∑
i=0

di(m) + di(n−m). (10.3.14)

When i = 0, we have one of the conditions

d0(m) + d0(n−m) = d0(n), (1)

d0(m) + d0(n−m) = d0(n) + b. (2)



166

When 1 ≤ i ≤ j − 1, one of the conditions

di(m) + di(n−m) = di(n), (1)

di(m) + di(n−m) = di(n) + b, (2)

1 + di(m) + di(n−m) = di(n), (3)

1 + di(m) + di(n−m) = di(n) + b. (4)

Finally when i = j, it is one of the conditions

dj(m) + dj(n−m) = dj(n), (1)

1 + di(m) + di(n−m) = di(n). (3)

If for every i, (0 ≤ i ≤ j), condition (1) is satisfied then the number of carries c = 0, and we

have

D(m) +D(n−m) = D(n).

If the number of carries c ≥ 1, then each time condition (2) or (4) is satisfied in the i-th sum,

(0 ≤ i ≤ j − 1), i.e., having b on the right hand side, we obtain a 1 on the left hand side of

the (i+ 1)-th sum. To the total sum (10.3.14), the former adds b whilst the latter subtracts

1. Let c denote the number of times condition (2) or (4) occurs in this sum, then (10.3.14)

becomes

D(m) +D(n−m) =

j∑
i=0

di(m) + di(n−m) =

j∑
i=0

di(n) + (b− 1)c = D(n) + (b− 1)c,

and so we obtain (10.3.12).

Also from Definition 10.3.3 we have

n = m+ n−m

D(n) +R(n) = D(m) +R(m) +D(n−m) +R(n−m)

D(n) +R(n)− (R(m) +R(n−m)) = D(m) +D(n−m),

and so we obtain (10.3.13).

COROLLARY. For a positive integer n expressed in the scale of b ≥ 2, whose sum of digits

is D(n), we have that for 0 ≤ m ≤ n,

D(n) ≤ D(m) +D(n−m).

Proof. This follows directly from (10.3.12) of Lemma 10.3.7 on noting that since b ≥ 2 and

c ≥ 0, then (b− 1)c ≥ 0.
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LEMMA 10.3.8. The exponent of the prime factor 2 in the uncancelled denominator of B0
is 0, that of B1 is 1 and thereafter, for n = 2r, is given by

γ(2r, 2) = 2r + 1−D(2r), (10.3.15)

where D(2r) is the sum of the digits of 2r expressed in the scale of 2.

Proof. We have B0 = 1 and so γ(0, 2) = 0. Then for n ≥ 1, we use induction on n. When

n = 1, we have γ(1, 2) = 1 = 1 + 1 − 1. Let us assume that (10.3.15) holds for N ≤ 2r − 2,

then for N = n = 2r we have from (10.3.6)

e2r = LCM
[
(2r + 1)!e0, (2r)!e1, (2r − 1)!e2, . . . , (2s+ 1)!e2(r−s), . . . , 3!e2r−2

]
. (10.3.16)

From Lemma 10.3.6, and the induction hypothesis, the power of the prime factor 2 in (10.3.16)

is

γ(2r, 2) = max[2r + 1−D(2r + 1), 2r −D(2r) + γ(1, 2), 2r − 1−D(2r − 1) + γ(2, 2),

. . . , 2s+ 1−D(2s+ 1) + γ(2(r − s), 2), . . . , 3−D(3) + γ(2r − 2, 2)]

= max[2r + 1−D(2r + 1), 2r −D(2r) + 2−D(1), 2r − 1−D(2r − 1) + 3−D(2),

. . . , 2s+ 1−D(2s+ 1) + 2(r − s) + 1−D(2r − 2s), . . . , 3−D(3) + 2r − 1−D(2r − 2)]

= max[2r + 1−D(2r + 1), 2r + 2− (D(2r) +D(1)), 2r + 2− (D(2r − 1) +D(2)),

. . . , 2r + 2− (D(2s+ 1) +D(2r − 2s)), . . . , 2r + 2− (D(3) +D(2r − 2))]. (10.3.17)

Now since γ(1, 2) = 1, the second term can be written

2r + 1−D(2r) > 2r + 1−D(2r + 1),

therefore, demonstrating that its exponent of 2 exceeds (by 1) that of the first term. Then

from the Corollary of Lemma 10.3.7 we have

D(2r + 1) = D(2r) +D(1) ≤ D(2r + 1−m) +D(m),

and so from (10.3.17) no other term can have an exponent of 2 that exceeds the term (2r)!e1

and this exponent is indeed given by

γ(2r, 2) = 2r + 1−D(2r).

This now leads us to state

THEOREM 10.3.9 (denominator theorem). With en, En, γ(n, p), δ(n, p) and D given as

in Definition 10.3.2, we have for n = 0,

γ(0, p) = δ(0, p) = 0,

and for n = 1, and thereafter, for n = 2r, that

γ(n, 2) = δ(n, 2) + 1−D, and for p ≥ 3, γ(n, p) = δ(n, p). (10.3.18)
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Proof. Our method of determination is similar in approach to that of Theorem 10.3.3. We

show the equality of (10.3.18) using induction on N , for all non-negative values of N and

for all prime p ≤ n+ 1. We consider separately the cases p = 2 and p ≥ 3.

For the case p = 2, we have from Lemma 10.3.8 that for n = 0,

γ(0, 2) = δ(0, 2) = 0,

and for n ≥ 1,

γ(n, 2) = n+ 1−D =

⌊
n

2− 1

⌋
+ 1−D = δ(n, 2) + 1−D,

where since n, and p = 2, are constant we write D for D(n).

We now proceed with the case p ≥ 3. For N = 0, we have δ(0, p) = b0/(p− 1)c = 0, and

also γ(0, p) = 0 follows from e0 = 1. So it is true for N = 0.

When N = M , let us assume γ(M,p) = δ(M,p), for M = n− 1, n− 2, . . . (as many as

required). We wish to demonstrate the case N = n. Let us put M = n− p+ 1 (and m = p),

and first note that in consideration of the LCM of the term an = a2r, the term p!en−p+1 6= 0.

Now from (10.3.2),

p!en−p+1 | en

and from the induction hypothesis

γ(n− p+ 1, p) = δ(n− p+ 1, p) =

⌊
n− p+ 1

p− 1

⌋
so that from Lemma 10.3.1 the exponent of prime p in the term p!en−p+1 is

γ(n− p+ 1, p) + 1 = δ(n− p+ 1, p) + 1 = δ(n, p).

Therefore, when N = n, δ(n, p) is a factor of γ(n, p). Is it the greatest factor?

We need to determine the exponent of p in m!. Now from Lemma 10.3.4 this exponent is

bounded by δ(m−1, p) and so (assuming the induction hypothesis) we have that the exponent

of p in the term m!en−m+1 is bounded by

δ(m− 1, p) + γ(n−m+ 1, p)

=δ(m− 1, p) + δ(n−m+ 1, p)

=

⌊
m− 1

p− 1

⌋
+

⌊
n−m+ 1

p− 1

⌋
≤
⌊

n

p− 1

⌋
= δ(n, p).

That is, no term m!en−m+1 has a greater exponent of p than p!en−p+1. Therefore, we conclude

that

γ(n, p) = δ(n, p) =

⌊
n

p− 1

⌋
for each p ≤ n+ 1 and the theorem follows.
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Table 10.1: Bernoulli values of the first kind for 0 ≤ n ≤ 16, in its usual (cancelled) form Bn;
its modified (and uncancelled) form Bn = Bn/n!, and the uncancelled denonimator En of Bn.

n 0 1 2 4 6 8 10

Bn 1 1
2

1
6 − 1

30
1
42 − 1

30
5
66

Bn 1 1
2

1
12 − 1

720
1

30240 − 3
3628800

5
239500800

= 1
E0

= 1
E1

= 1
E2

= − 1
E4

= 1
E6

= − 3
E8

= 5
E10

En 1 2 22.3 24.32.5 25.33.5.7 28.34.52.7 29.35.52.7.11

n 12 14 16

Bn − 691
2730

7
6 −3617

510

Bn − 691
1307674368000

105
7846046208000 − 10851

32011868528640000
= − 691

E12
= 3.5.7

E14
= −3.3617

E16

En 211.36.53.72.11.13 212.37.53.72.11.13 216.38.54.72.11.13.17

COROLLARY. We have

ζ(2r) =
(2π)2r

2(2r)!
|B2r|, (10.3.19)

and the natural denominator (before cancelling) of the value of (10.3.19) is given by

F2r = 22−D
∏

3≤p≤2r+1

p

⌊
2r
p−1

⌋
,

where D is the sum of the digits of 2r expressed in the scale of 2.

Proof. We have ([28]) that

ζ(2r) =
(2π)2r

2
|B2r|,

where we recall Bn = Bn/n!, and Bn is a Bernoulli number of the first kind, so that on

application of Theorem 10.3.9 and cancellation of the factor 22r−1 the result is obtained.

Table 10.2: Positive Zeta values in its cancelled, ζ(2r), and uncancelled, ζ(2r)∗, form; and its
uncancelled denominator F2r.

r 1 2 3 4 5 6 7

ζ(2r) π2

6
π4

90
π6

945
π8

9450
π10

93555
691π12

638512875
2π14

18243225

ζ(2r)∗ π2

6
π4

90
π6

945
3π8

28350
5π10

467775
691π12

638512875
2.105π14

1915538625

= π2

F2
= π4

F4
= π6

F6
= 3π8

F8
= 5π10

F10
= 691π12

F12
= 3.5.7π14

F14

F2r 2.3 2.32.5 33.5.7 2.34.52.7 35.52.7.11 36.53.72.11.13 2−1.37.53.72.11.13
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Appendix A

Some expressions for Ls;abc(r, t, q)

A.1 Closed binomial forms for Ls;abc(r, t, q)

Ls;abc(r, t, q) =Fs;ab(R, T, q)

=
∑

k≡T (mod 2)q

γk
(
R

k

)
+ λγb

∑
k≡T+q (mod 2)q

γk
(
R

k

)

=γTλbT/qc
b(R−Tq)/qc∑

d=0

λd
(

R

Tq + dq

)
.

When a = c = 0 we have

Ls;0b0(r, t, 2m+ b) =γr+t+1Fs;0b(2r + 2, r + t+ 1, 2m+ b)

=
∑

k≡T (mod 2)q

γk
(

2r + 2

k

)
+

∑
k≡T+q (mod 2)q

γk
(

2r + 2

k

)

=γr+t+1

b(R−Tq)/qc∑
d=0

(
2r + 2

Tq + dq

)
.

When a = 0 and c = 1 we have

Ls;0b0(r, t, 2m+ b) =γr+tFs;0b(2r + 1, r + t, 2m+ b)

=
∑

k≡T (mod 2)q

γk
(

2r + 1

k

)
+

∑
k≡T+q (mod 2)q

γk
(

2r + 1

k

)

=γr+t
b(R−Tq)/qc∑

d=0

(
2r + 1

Tq + dq

)
.
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When a = 1, b = 0 and c = 0 we have

Ls;100(r, t, 2m) =Fs;10(R, T, 2m)

=
∑

k≡T (mod 2)q

γk
(

2r + 2

k

)
−

∑
k≡T+q (mod 2)q

γk
(

2r + 2

k

)

=γr+t+1(−1)b(r+t+1)/qc
b(R−Tq)/qc∑

d=0

(−1)d
(

2r + 2

Tq + dq

)
.

When a = 1, b = 0 and c = 1 we have

Ls;101(r, t, 2m) =Fs;10(R, T, 2m)

=
∑

k≡T (mod 2)q

γk
(

2r + 1

k

)
−

∑
k≡T+q (mod 2)q

γk
(

2r + 1

k

)

=γr+t(−1)b(r+t)/qc
b(R−Tq)/qc∑

d=0

(−1)d
(

2r + 1

Tq + dq

)
.

When a = b = 1 and c = 0 we have

Ls;110(r, t, 2m+ 1) =Fs;11(R, T, 2m+ 1)

=
∑

k≡T (mod 2)q

γk
(

2r + 2

k

)
− γ

∑
k≡T+q (mod 2)q

γk
(

2r + 2

k

)

=γr+t+1(−1)b(r+t+1)/qc
b(R−Tq)/qc∑

d=0

(−1)d
(

2r + 2

Tq + dq

)
.

When a = b = c = 1 we have

Ls;111(r, t, 2m+ 1) =Fs;11(R, T, 2m+ 1)

=
∑

k≡T (mod 2)q

γk
(

2r + 1

k

)
− γ

∑
k≡T+q (mod 2)q

γk
(

2r + 1

k

)

=γr+t(−1)b(r+t)/qc
b(R−Tq)/qc∑

d=0

(−1)d
(

2r + 1

Tq + dq

)
.

A.2 Expression as a sum of (r + 1)-th powers

To express the term Ls;abc(r, t, q) as a sum of r-th powers we recall Theorem 4.4 that states

Ls;abc(r, t, q) =
γr+1−c22r+3−c

q
×(a− 1)st

2
+

b(q+a−1)/2c∑
d=1

cos

(
π(c− 2t)(2d− ε− scq)

2q

)(
cos

(
π (2d− ε− sq)

2q

))2r+2−c
 ,
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where

ε is

{
0 if a = sb,

1 if a 6= sb.

If we let xm,0 = 4γ, and for d ≥ 1,

xm,d = 4γ cos2
(
π(2(d− s(m+ a′b))− a)

2q

)
= 4γ cos2

(
π(2D − a)

2q

)
,

where D = d − s(m − a′b), a′ = 1 − a and q = 2m + b, then for all non-negative integers r,

the function Ls;abc takes the form

qLs;abc(r, t, q) = αm,t,0x
r
m,0 + αm,t,1x

r
m,1 + αm,t,2x

r
m,2 + . . .+ αm,t,Mx

r
m,M .

Here we define

αm,t,0 =

{
4
2cγ

t+1−c if a = 0

0 if a = 1,

and more generally for 1 ≤ d ≤M = m+ (b− 1)(1− a),

αm,t,d =
γ8

2c
cos

π(c− 2t)(2D − a)

2q
cos2−c

π(2D − a)

2q
.

We also note that each αm,t,d is real.

Remark. We note that upon fixing the parameters a, b and c, the variables affecting the x

terms are m and d and that of the α terms are m, t and d. Furthermore, whereas the sums

produced (for positive r) are integers, the scalars αm,t,d, are in general not integers.

However, in respect to the above remark it is apparent that certain values of t produce “nice”

values for αm,t,d. In particular, we find that for the function Ls;ab1, with t = 1, that (for

d ≥ 1) αm,t,d = xm,d, and so we obtain

qLs;ab1(r, 1, q) = γr+122r+2−c + xr+1
m,1 + xr+1

m,2 + . . .+ xr+1
m,M .

So for example, when t = 1, q = 6, (b = 0), a = 1 and s = 0, with 1 ≤ d ≤ 3 we have

6l101(r, 1, 6) = 2r+1

(1 +

√
3

2

)r+1

+ 1 +

(
1−
√

3

2

)r+1
 ,

and when t = 1, q = 6, (b = 0), a = 0 and s = 1, with 0 ≤ d ≤ 2 the expression becomes

6L001(r, 1, 6) = (−1)r+1

(
4r+1

2
+ 1r+1 + 3r+1

)
.

Moreover, it is evident that when the parameter c = 1, we have that αm,0,d = αm,1,d, so that

the sequences for t = 0 and t = 1 are identical.



Appendix B

The polynomials As;ab(x,Q)

B.1 Expression as Fibonacci type polynomials

THEOREM B.1.1 (Theorem 5.4.1). The polynomial As;ab(x,Q) defined in Definition 5.4.1

is equated to a Fibonacci, Lucas or (monic) Chebyshev polynomial such that

As;ab(x,Q) =



S2(m−1+b)+1−b(x) if s = 0, a = 0

C2m+b(x) if s = 0, a = 1

F2(m−1+b)+2−b(x) if s = 1, a = 0

L2m+b(x) if s = 1, a = 1,

where Q = q − (1− a)(1− s) and q = 2m+ b.

Proof. This follows on substitution of each value of each of the parameters s, a and b into the

product and binomial and forms of As;ab(x,Q) as given in Definition 5.4.1, and then compared

with the corresponding (monic) Chebyshev, Fibonacci and Lucas polynomial forms.

A0;00(x, 2m− 1) =A0;00(x, 2(m− 1) + 1)

=
2m−1∏
d=1

(
x− 2 cos

πd

2m

)
=

m−1∑
k=0

(−1)k
(

2(m− 1) + 1− k
k

)
x2(m−1)+1−2k

=S2(m−1)+1(x),

A0;01(x, 2m) =
2m∏
d=1

(
x− 2 cos

πd

2m+ 1

)
=

m∑
k=0

(−1)k
(

2m− k
k

)
x2m−2k = S2m(x),

A1;00(x, 2m) = A2(m−1)+2(x)

=
2m−1∏
d=1

(
x− 2ı cos

πd

2m

)
=

m−1∑
k=0

(
2(m− 1) + 1− k

k

)
x2(m−1)+1−2k

= F2(m−1)+2(x),
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A1;01(x, 2m+ 1) =
2m∏
d=1

(
x− 2ı cos

πd

2m+ 1

)
=

m∑
k=0

(
2m− k
k

)
x2m−2k = F2m+1(x),

A0;10(x, 2m) =
2m∏
d=1

(
x− 2 cos

(2d− 1)π

4m

)
=

m∑
k=0

(−1)k
2m

2m− k

(
2m− k
k

)
x2m−2k = C2m(x),

A0;11(x, 2m+ 1) =
2m+1∏
d=1

(
x− 2 cos

(2d− 1)π

2(2m+ 1)

)
=

m∑
k=0

(−1)k
2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
x2m+1−2k

= C2m+1(x),

A1;10(x, 2m) =

2m∏
d=1

(
x− 2ı cos

(2d− 1)π

4m

)
=

m∑
k=0

2m

2m− k

(
2m− k
k

)
x2m−2k = L2m(x),

and

A1;11(x, 2m+ 1) =
2m+1∏
d=1

(
x− 2ı cos

(2d− 1)π

2(2m+ 1)

)
=

m∑
k=0

2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
x2m+1−2k

= L2m+1(x).

B.2 Expression as modified Fibonacci type polynomials

Expressing each of the modified polynomials that follows from the Corollary to Theorem

5.4.1.

Ar0;00(x, 2m− 1) = Sr2(m−1)+1(x)

= (
√
x)−1

2m−1∏
d=1

(√
x− 2 cos

πd

2m

)
=

m−1∑
k=0

(−1)k
(

2(m− 1) + 1− k
k

)
xm−1−k,

Ar0;01(x, 2m) = Sr2m(x)

=
2m∏
d=1

(√
x− 2 cos

πd

2m+ 1

)
=

m∑
k=0

(−1)k
(

2m− k
k

)
xm−k,

Ar1;00(x, 2m) = F r2(m−1)+2(x)

= (
√
x)−1

2m−1∏
d=1

(√
x− 2ı cos

πd

2m

)
=

m−1∑
k=0

(
2(m− 1) + 1− k

k

)
xm−1−k,
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Ar1;01(x, 2m+ 1) = F r2m+1(x)

=

2m∏
d=1

(√
x− 2ı cos

πd

2m+ 1

)
=

m∑
k=0

(
2m− k
k

)
xm−k,

Ar0;10(x, 2m) = Cr2m(x)

=
2m∏
d=1

(√
x− 2 cos

(2d− 1)π

4m

)
=

m∑
k=0

(−1)k
2m

2m− k

(
2m− k
k

)
xm−k,

Ar0;11(x, 2m+ 1) = Cr2m+1(x)

= (
√
x)−1

2m+1∏
d=1

(√
x− 2 cos

(2d− 1)π

2(2m+ 1)

)
=

m∑
k=0

(−1)k
2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
xm−k,

Ar1;10(x, 2m) = Lr2m(x)

=
2m∏
d=1

(√
x− 2ı cos

(2d− 1)π

4m

)
=

m∑
k=0

2m

2m− k

(
2m− k
k

)
xm−k,

and

Ar1;11(x, 2m+ 1) = Lr2m+1(x)

= (
√
x)−1

2m+1∏
d=1

(√
x− 2ı cos

(2d− 1)π

2(2m+ 1)

)
=

m∑
k=0

2m+ 1

2m+ 1− k

(
2m+ 1− k

k

)
xm−k.

B.3 Simplification of expression as Fibonacci type polynomi-
als

THEOREM B.3.1 (Theorem 5.4.2). For As;ab(x,Q) defined as in Definition 5.4.1 we have

As;ab(x,Q) = xε
m−(1−a)(1−b)∏

d=1

(
x2 − 4γ cos2

(2d− a)π

2(2m+ b)

)
,

where Q = q − (1− a)(1− s) and ε = a(2b− 1) + 1− b.

Proof. The proof is a demonstration by subsitution of each value of each of the parameters

s, a and b into Definition 5.4.1 and suitable “pairing” of terms. Let us first consider the cases

for s.

When s = 0, we have

A0;ab(x, 2m+ b− (1− a)) =

2m+b+a−1∏
d=1

(
x− 2 cos

(2d− a)π

2(2m+ b)

)
,
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on the other hand when s = 1,

A1;ab(x, 2m+ b) =
2m+b+a−1∏

d=1

(
x− 2ı cos

(2d− a)π

2(2m+ b)

)
.

Now with a = 0 we obtain

As;0b(x, 2m+ b− (1− s)) =

q−1∏
d=1

(
x− 2ıs cos

2dπ

2q

)
=

2m+b−1∏
d=1

(
x− 2ıs cos

dπ

(2m+ b)

)
.

More specifically, when a = b = 0, we have

A0;00(x, 2m− 1) =
2m−1∏
d=1

(
x− 2 cos

dπ

2m

)

=
(
x− 2 cos

mπ

2m

)m−1∏
d=1

(
x− 2 cos

dπ

2m

)(
x− 2 cos

(2m− k)π

2m

)

= x

m−1∏
d=1

(
x− 2 cos

dπ

2m

)(
x+ 2 cos

dπ

2m

)

= x
m−1∏
d=1

(
x2 − 4 cos2

dπ

2m

)
,

and

A1;00(x, 2m) =
2m−1∏
d=1

(
x− 2ı cos

dπ

2m

)

=
(
x− 2ı cos

mπ

2m

)m−1∏
d=1

(
x− 2ı cos

dπ

2m

)(
x− 2ı cos

(2m− d)π

2m

)

= x

m−1∏
d=1

(
x− 2ı cos

dπ

2m

)(
x+ 2ı cos

dπ

2m

)

= x
m−1∏
d=1

(
x2 + 4 cos2

dπ

2m

)
.

Now with a = 0 and b = 1, we have

A0;01(x, 2m) =
2m∏
d=1

(
x− 2 cos

dπ

2m+ 1

)

=
m∏
d=1

(
x− 2 cos

dπ

2m+ 1

)(
x− 2 cos

(2m+ 1− d)π

2m+ 1

)

=
m∏
d=1

(
x− 2 cos

dπ

2m+ 1

)(
x+ 2 cos

dπ

2m+ 1

)

=
m∏
d=1

(
x2 − 4 cos2

dπ

2m+ 1

)
,
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and

A1;01(x, 2m+ 1) =
2m∏
d=1

(
x− 2ı cos

kπ

2m+ 1

)

=
m∏
d=1

(
x− 2ı cos

dπ

2m+ 1

)(
x− 2ı cos

(2m+ 1− d)π

2m+ 1

)

=
m∏
d=1

(
x− 2ı cos

dπ

2m+ 1

)(
x+ 2ı cos

dπ

2m+ 1

)

=
m∏
d=1

(
x2 + 4 cos2

dπ

2m+ 1

)
.

Next we look at the cases when a = 1 and in general obtain

As;1b(x, 2m+ b) =

2m+b∏
d=1

(
x− 2ıs cos

(2d− 1)π

2(2m+ b)

)

=

q∏
d=1

(
x− 2ıs cos

(2d− 1)π

2q

)
.

Repeating the first four cases for a = 1, we have

A0;10(x, 2m) =

2m∏
d=1

(
x− 2 cos

(2d− 1)π

4m

)

=

m∏
d=1

(
x− 2 cos

(2d− 1)π

4m

)(
x+ 2 cos

(2d− 1)π

4m

)

=
m∏
d=1

(
x2 − 4 cos2

(2d− 1)π

4m

)
,

and

A1;10(x, 2m) =
2m∏
d=1

(
x− 2ı cos

(2d− 1)π

4m

)

=
m∏
d=1

(
x− 2ı cos

(2d− 1)π

4m

)(
x− 2ı cos

(2m− (2d− 1)))π

4m

)

=
m∏
d=1

(
x− 2ı cos

(2d− 1)π

4m

)(
x+ 2ı cos

(2d− 1)π

4m

)

=
m∏
d=1

(
x2 + 4 cos2

(2d− 1)π

4m

)
.
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Finally when a = b = 1, we have

A0;11(x, 2m+ 1) =
2m+1∏
d=1

(
x− 2 cos

(2d− 1)π

2(2m+ 1)

)

=

(
x− 2 cos

(2m+ 1)π

2(2m+ 1)

) m∏
d=1

(
x− 2 cos

(2d− 1)π

2(2m+ 1)

)(
x− 2 cos

(2m+ 1− (2d− 1)))π

2(2m+ 1)

)

=x

m∏
d=1

(
x− 2 cos

(2d− 1)π

2(2m+ 1)

)(
x+ 2 cos

(2d− 1)π

2(2m+ 1)

)

=x

m∏
d=1

(
x2 − 4 cos2

(2d− 1)π

2(2m+ 1)

)
,

and

A1;11(x, 2m+ 1) =
2m+1∏
d=1

(
x− 2ı cos

(2d− 1)π

2(2m+ 1)

)

=
(
x− 2ı cos

π

2

) m∏
d=1

(
x− 2ı cos

(2d− 1)π

2(2m+ 1)

)(
x− 2ı cos

(2m+ 1− (2d− 1)))π

2(2m+ 1)

)

=x
m∏
d=1

(
x− 2ı cos

(2d− 1)π

2(2m+ 1)

)(
x+ 2ı cos

(2d− 1)π

2(2m+ 1)

)

=x
m∏
d=1

(
x2 + 4 cos2

(2d− 1)π

2(2m+ 1)

)

=x
m∏
d=1

(
x2 − 4γ cos2

(2d− 1)π

2(2m+ 1)

)
.

B.4 Simplification of expression as modified Fibonacci type
polynomials

Simplifying the product form of Ars;ab(x,Q) that follows from the Corollary to Theorem 5.4.2

we have

Ar0;00(x, 2(m− 1) + 1) = Sr2m−1(x) =
m−1∏
d=1

(
x− 4 cos2

dπ

2m

)
,

Ar0;01(x, 2m) = Sr2m(x) =

m∏
d=1

(
x− 4 cos2

dπ

2m+ 1

)
,

Ar1;00(x, 2(m− 1) + 2) = F r2m(x) =

m−1∏
d=1

(
x+ 4 cos2

dπ

2m

)
,

Ar1;01(x, 2m+ 1) = F r2m+1(x) =
m∏
d=1

(
x+ 4 cos2

dπ

2m+ 1

)
,
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Ar0;10(x, 2m) = Cr2m(x) =
m∏
d=1

(
x− 4 cos2

(2d− 1)π

4m

)
,

Ar0;11(x, 2m+ 1) = Cr2m+1(x) =
m∏
d=1

(
x− 4 cos2

(2d− 1)π

2(2m+ 1)

)
,

Ar1;10(x, 2m) = Lr2m(x) =

m∏
d=1

(
x+ 4 cos2

(2d− 1)π

4m

)
,

and

Ar1;11(x, 2m+ 1) = Lr2m+1(x) =
m∏
d=1

(
x+ 4 cos2

(2d− 1)π

2(2m+ 1)

)
.

B.5 The recurrence polynomial, Rs;ab(x,m)

THEOREM B.5.1 (Theorem 5.5.2). The recurrence polynomials Rs;ab(x,m) are, expressed

as a product of their roots, given by

Rs;ab(x,m) =

m−(1−a)(1−b)∏
d=a

(
x− 4γ cos2

(
π(2d− a)

2q

))
,

where γ = (−1)s.

Proof. We consider each of the four cases for the parameters a and b for both the cases s = 0

and s = 1.

Case 1: a = 0, b = 0.

From (5.5.5) the roots of the recurrence polynomial R0;00(x,m) are 4 cos2 dπ/q, where

0 ≤ d ≤ m−1. On the other hand, the roots ofR1;00(x,m) are −4 sin2 dπ/q, where 1 ≤ d ≤ m.

Since m/q = 1/2 we have that

sin
(m− d)π

q
= cos

dπ

q
,

so that

m∏
d=1

(
x+ 4 sin2 dπ

q

)
=

m−1∏
d=0

(
x+ 4 sin2 (m− d)π

q

)
=

m−1∏
d=0

(
x+ 4 cos2

dπ

q

)
.

Case 2: a = 0, b = 1.

From (5.5.5) the roots of the recurrence polynomialR0;01(x,m) are still of the form 4 cos2 dπ/q,

but now 0 ≤ d ≤ m. However, we see that those ofR1;01(x,m) are given by−4 sin2 (2d− 1)π/2q,

where 1 ≤ d ≤ m+ 1.

Noting that

sin
(q − 2d)π

2q
= cos

(
−2dπ

2q

)
= cos

dπ

q
,
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we then have

m+1∏
d=1

(
x+ 4 sin2 (2d− 1)π

2q

)
=

m∏
d=0

(
x+ 4 sin2 (2m+ 1− 2d)π

2q

)

=
m∏
d=0

(
x+ 4 sin2 (q − 2d)π

2q

)
=

m∏
d=0

(
x+ 4 cos2

dπ

q

)
.

Case 3: a = 1, b = 0.

When the sum alternates in sign, we observe from (5.5.5), that the roots of R0;10(x,m) and

R1;10(x,m) are respectively 4 cos2 (2d− 1)π/2q and −4 sin2 (2d− 1)π/2q, both with

1 ≤ d ≤ m. We have

sin
(q − (2d− 1))π

2q
= cos

(
−(2d− 1)π

2q

)
= cos

(2d− 1)π

2q
,

so that

m∏
d=1

(
x+ 4 sin2 (2d− 1)π

2q

)
=

m∏
d=1

(
x+ 4 sin2 (2m+ 1− 2d)π

2q

)

=
m∏
d=1

(
x+ 4 sin2 (q − (2d− 1))π

2q

)
=

m∏
d=1

(
x+ 4 cos2

(2d− 1)π

2q

)
.

Case 4: a = 1, b = 1.

From (5.5.5) the parameter b has no effect on the recurrence polynomial R0;11(x,m) and so

we have that

R0;10(x,m) = R0;11(x,m) =
m∏
d=1

(
x− 4 cos2

(2d− 1)π

2q

)
.

Conversely, for R1;11(x,m), we note that ε ≡ 0 (mod 2), and consequently we have

m∏
d=1

(
x+ 4 sin2 dπ

q

)
=

m∏
d=1

(
x+ 4 sin2 (m+ 1− d)π

q

)

=

m∏
d=1

(
x+ 4 sin2 (2m+ 2− 2d)π

2q

)
=

m∏
d=1

(
x+ 4 sin2 (2m+ 1− (2d− 1))π

2q

)

=

m∏
d=1

(
x+ 4 sin2 (q − (2d− 1))π

2q

)
=

m∏
d=1

(
x+ 4 cos2

(2d− 1)π

2q

)
.
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Some calculations of the recurrence
polynomial Rs;ab(x,m)

C.1 Evaluation of the coefficients from the roots

We commence with the (non)alternating parameter case a = 0. From (5.5.5), the dth root of

the function l0bc(r, t, q) is given by

xd = 4 cos2
(

πd

2m+ b

)
,

where 0 ≤ d ≤ m+ b− 1.

So for the even base parameter case b = 0, when q = 2m = 2, d = 0 and

x0 = 4 cos2 (0π/2) = 4(1)2 = 4,

R0;00(x, 1) = (x− 4).

When q = 4, then d = 0, 1 and

x0 = 4 cos2 (0π/4) = 4(1)2 = 4,

x1 = 4 cos2 (π/4) = 4(
√

2/2)2 = 2,

R0;00(x, 2) = (x− 4)(x− 2) = x2 − 6x+ 8.

When q = 6, then d = 0, 1, 2

x0 = 4 cos2 (0π/6) = 4(1) = 4,

x1 = 4 cos2 (π/6) = 4(
√

3/2)2 = 3,

x2 = 4 cos2 (2π/6) = 4(1/2)2 = 1,

R0;00(x, 3) = (x− 4)(x− 3)(x− 1) = x3 − 8x2 + 19x− 12.

When q = 8, then d = 0, 1, 2, 3 and

x0 = 4 cos2 (0π/8) = 4(1)2 = 4,

x1 = 4 cos2 (π/8) = 4(
√

2 +
√

2/2)2 = 2 +
√

2,
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x2 = 4 cos2 (2π/8) = 4(
√

2/2)2 = 2,

x3 = 4 cos2 (3π/8) = 4(
√

2−
√

2/2)2 = 2−
√

2,

R0;00(x, 4) = (x− 4)(x− 2)(x− 2−
√

2)(x− 2 +
√

2) = x4 − 10x3 + 34x2 − 44x+ 16.

For the case a = 0 with odd base b = 1, the form (5.5.5) remains unaltered but from

Theorem 4.4.2 there are now m + 1 roots. So when q = 2m + 1 = 3, then d = 0, 1 and we

have

x0 = 4 cos2 (0π/3) = 4(1)2 = 4,

x1 = 4 cos2 (π/3) = 4(1/2)2 = 1,

R0;01(x, 1) = (x− 4)(x− 1) = x2 − 5x+ 4.

And when q = 5, then d = 0, 1, 2 and

x0 = 4 cos2 (0π/5) = 4(1)2 = 4,

x1 = 4 cos2 (π/5) = 4(
√

5 + 1)2/16 = (6 + 2
√

5)/4,

x2 = 4 cos2 (2π/5) = 4(
√

5− 1)2/16 = (6− 2
√

5)/4,

R0;01(x, 2) = (x− 4)(x− (6 + 2
√

5)/4)(x− (6− 2
√

5)/4) = x3 − 7x2 + 13x− 4.

If, on the other hand, the alternating parameter case is a = 1, we simplify (5.5.5) to

xd = 4 cos2 (π(2d− 1)/2(2m+ b)), where 1 ≤ d ≤ m.

So for even base we have q = 2m = 2, d = 1 and

x1 = 4 cos2 (π/4) = 4(1/2) = 2,

R0;10(x, 1) = (x− 2).

When q = 4, then d = 1, 2 and

x1 = 4 cos2 (π/8) = 4(
√

2 +
√

2/2)2 = 2 +
√

2,

x2 = 4 cos2 (3π/8) = 4(
√

2−
√

2/2)2 = 2−
√

2,

R0;10(x, 2) = x2 − 4x+ 2.

When q = 6, then d = 1, 2, 3 and

x1 = 4 cos2 (π/12) = 4(
√

2 +
√

3/2)2 = 2 +
√

3,

x2 = 4 cos2 (3π/12) = 4(
√

2/2)2 = 2,

x3 = 4 cos2 (5π/12) = 4(
√

2−
√

3/2)2 = 2−
√

3,

R0;10(x, 3) =
(
x− (2 +

√
3)
) (
x− (2−

√
3)
)

(x− 2) = x3 − 6x2 + 9x− 2.

When q = 8, then d = 1, 2, 3, 4 and

x1 = 4 cos2 (π/16) = 4(

√
2 +

√
2 +
√

2/2)2 = 2 +
√

2 +
√

2,

x2 = 4 cos2 (3π/16) = 4(

√
2 +

√
2−
√

2/2)2 = 2 +
√

2−
√

2,
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x3 = 4 cos2 (5π/16) = 4(

√
2−

√
2−
√

2/2)2 = 2−
√

2−
√

2,

x4 = 4 cos2 (7π/16) = 4(

√
2−

√
2 +
√

2/2)2 = 2−
√

2 +
√

2,

R0;10(x, 4) =

(
x− (2 +

√
2 +
√

2)

)(
x− (2−

√
2 +
√

2)

)
×
(
x− (2−

√
2−
√

2)

)(
x− (2−

√
2 +
√

2)

)
=x4 − 8x3 + 20x2 − 16x+ 2.

Finally for the case a = 1 with odd base b = 1, when q = 3, d = 1 and

x1 = 4 cos2 (π/6) = 4(
√

3/2)2 = 3,

R0;11(x, 1) = (x− 3).

When q = 2m+ 1 = 5, d = 1, 2 and

x1 = 4 cos2 (π/10) = 4

(√
(5 +

√
5)/8

)2

= (5 +
√

5)/2,

x2 = 4 cos2 (3π/10) = 4

(√
(5−

√
5)/8

)2

= (5−
√

5)/2,

R0;11(x, 2) = (x− (5 +
√

5)/2)(x− (5−
√

5)/2) = x2 − 5x+ 5.

C.2 Evaluation of the coefficients using Theorem 5.6.1

When a = 0 we have

R0;0b(x,m) = (x− 4)(
√
x)b−1S2m+b−1(

√
x) = (x− 4)S1

2m+b−1(x).

In the case b = 0, the roots are given by (
√
x)−1S2m−1(

√
x) and so we have

R0;00(x,m) = (x− 4)(
√
x)−1S2m−1(

√
x) = (x− 4)S1

2m+b−1(x).
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The first few polynomials are given by

R0;00(x, 1) = (x− 4)(
√
x)−1S1(

√
x) = (x− 4)(

√
x)−1(

√
x)

= x− 4,

R0;00(x, 2) = (x− 4)(
√
x)−1S3(

√
x) = (x− 4)(

√
x)−1

(
(
√
x)3 − 2

√
x
)

= (x− 4)(x− 2)

= x2 − 6x+ 8,

R0;00(x, 3) = (x− 4)(
√
x)−1S5(

√
x) = (x− 4)(

√
x)−1

(
(
√
x)5 − 4(

√
x)3 + 3

√
x
)

= (x− 4)(x2 − 4x+ 3)

= x3 − 8x2 + 19x− 12,

R0;00(x, 4) = (x− 4)(
√
x)−1S7(

√
x) = (x− 4)(

√
x)−1

(
(
√
x)7 − 6(

√
x)5 + 10(

√
x)3 − 4

√
x
)

= (x− 4)(x3 − 6x2 + 10x− 4)

= x4 − 10x3 + 34x2 − 44x+ 16,

R0;00(x, 5) = (x− 4)(
√
x)−1S9(

√
x) = (x− 4)(

√
x)−1

(
(
√
x)9 − 8(

√
x)7 + 21(

√
x)5 − 20(

√
x)3 + 5

√
x
)

= (x− 4)(x4 − 8x3 + 21x2 − 20x+ 5

= x5 − 12x4 + 53x3 − 104x2 + 85x− 20).

In the case b = 1 the roots are determined by

R0;01(x,m) = (x− 4)S2m(
√
x) of order m+ 1,

so that,

R0;01(x, 1) = (x− 4)S2(
√
x) = (x− 4)

(
(
√
x)2 − 1

)
= (x− 4)(x− 1)

= x2 − 5x+ 4,

R0;01(x, 2) = (x− 4)S4(
√
x) = (x− 4)

(
(
√
x)4 − 3(

√
x)2 + 1

)
= (x− 4)(x2 − 3x+ 1)

= x3 − 7x2 + 13x− 4,

R0;01(x, 3) = (x− 4)S6(
√
x) = (x− 4)

(
(
√
x)6 − 5(

√
x)4 + 6(

√
x)4 − 1

)
= (x− 4)(x3 − 5x2 + 6x− 1)

= x4 − 9x3 + 26x2 − 25x+ 4,

R0;01(x, 4) = (x− 4)S8(
√
x) = (x− 4)

(
(
√
x)8 − 7(

√
x)6 + 15(

√
x)4 − 10(

√
x)2 + 1

)
= (x− 4)(x4 − 7x3 + 15x2 − 10x+ 1)

= x5 − 11x4 + 43x3 − 70x2 + 41x− 4.
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When a = 1 with b = 0 we identify with the polynomial C2m(
√
x) so that the first few

polynomials are given by

R0;10(x, 1) = C2(
√
x) = (

√
x)2 − 2

= x− 2,

R0;10(x, 2) = C4(
√
x) = (

√
x)4 − 4(

√
x)2 + 2

= x2 − 4x+ 2,

R0;10(x, 3) = C6(
√
x) = (

√
x)6 − 6(

√
x)4 + 9(

√
x)4 − 2

= x3 − 6x2 + 9x− 2,

R0;10(x, 4) = C8(
√
x) = (

√
x)8 − 8(

√
x)6 + 20(

√
x)4 − 16(

√
x)2 + 2

= x4 − 8x3 + 20x2 − 16x+ 2.

and when b = 1 we have R0;11(x, 2m+ 1) so that

R0;11(x, 1) = (
√
x)−1C3(

√
x) = (

√
x)−1

(
(
√
x)3 − 3

√
x
)

= x− 3,

R0;11(x, 2) = (
√
x)−1C5(

√
x) = (

√
x)−1

(
(
√
x)5 − 5(

√
x)3 + 5

√
x
)

= x2 − 5x+ 5,

R0;11(x, 3) = (
√
x)−1C7(

√
x) = (

√
x)−1

(
(
√
x)7 − 7(

√
x)5 + 14(

√
x)3 − 7

√
x
)

= x3 − 7x2 + 14x− 7,

R0;11(x, 4) = (
√
x)−1C9(

√
x) = (

√
x)−1

(
(
√
x)9 − 9(

√
x)7 + 27(

√
x)5 − 30(

√
x)3 + 9

√
x
)

= x4 − 9x3 + 27x2 − 30x+ 9.
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The hypergeometric function

For demonstration purposes, we simplify the generalised hypergeometric function given in

Definition 8.1.1 to the Gauss hypergeometric function

2F1

(
α1, α2

β
; 1

)
=

∞∑
k=0

αk1α
k
2

βk
1

k!
.

Here, if all the parameters are positive, we require <[β − α1 − α2] > 0.

Now to help illustrate how we have applied the hypergeometric function in Chapter 8, let us

consider the following example which involves the simplificaton of a sum product to a single

binomial coefficent.

D.1 A worked example

Example. For positive integers n, x and r we have

n∑
k=0

(−1)k
(
n

k

)(
x+ k

r

)
= (−1)n

(
x

r − n

)
, (D.1.1)

where we define the binomial coefficient
(
x
m

)
= 0, if either m < 0 or m > x.

Proof. We denote the sum of the first member of (D.1.1) as

n∑
k=0

Tk

and find the ratio Tk+1/Tk.

Tk+1 =
(−1)k+1n!(x+ k + 1)!

(k + 1)!(n− k − 1)!r!(x+ k + 1− r)!
, and Tk =

(−1)kn!(x+ k)!

k!(n− k)!r!(x+ k − r)!
,

so that

Tk+1

Tk
=

(−1)k+1n!(x+ k + 1)!k!(n− k)!r!(x+ k − r)!
(−1)kn!(x+ k)!(k + 1)!(n− k − 1)!r!(x+ k + 1− r)!

=
(−1)(x+ k + 1)(n− k)

(x+ k + 1− r)(k + 1)
=

(−1)2(k − n)(k + x+ 1)

(k + x+ 1− r)(k + 1)
.
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We will then have

n∑
k=0

Tk = T0 × 2F1

(
−n, x+ 1
x+ 1− r ; 1

)
=

(
x

r

)
2F1

(
−n, x+ 1
x+ 1− r ; 1

)
, (D.1.2)

where we observe that in consequence of the parameter −n, this hypergeometric function

sum will be finite and terminate after the term that includes (−n)n. This also removes the

restriction <[β − (−n)− α] = n− r > 0.

Therefore, to evaluate the second member of (D.1.2), we apply the result of Vandermonde’s

summation formula

2F1

(
−n, α
β

; 1

)
=

(β − α)n

βn
.

We then evaluate

(β−α)n = (−r)n = (−r)(−r+1) . . . (−r−1+n) = (−1)nr(r−1) . . . (r+1−n) = (−1)n
r!

(r − n)!
,

(D.1.3)

and

βn = (x+ 1− r)n = (x+ 1− r)(x+ 2− r) . . . (x+ n− r) =
(x+ n− r)!

(x− r)!
. (D.1.4)

Then substituting (D.1.3) and (D.1.4) into the second member of (D.1.2) we have(
x

r

)
2F1

(
−n, x+ 1
x+ 1− r ; 1

)
= (−1)n

x!

r!(x− r)!
r!

(r − n)!

(x− r)!
(x+ n− r)!

= (−1)n
(

x

r − n

)
.



Appendix E

E.1 Tables of values of Fs;ab(r, t, q) for q = 6 and q = 7

Table E.1: f00(r, t, 6), 0 ≤ r ≤ 14, 0 ≤ t ≤ 11.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 1 1 1 1 1 2 8 29 85 211 463 926 1730 3095
1 0 1 2 3 4 5 6 8 16 45 130 341 804 1730 3460
2 0 0 1 3 6 10 15 21 29 45 90 220 561 1365 3095
3 0 0 0 1 4 10 20 35 56 85 130 220 440 1001 2366
4 0 0 0 0 1 5 15 35 70 126 211 341 561 1001 2002
5 0 0 0 0 0 1 6 21 56 126 252 463 804 1365 2366

6 1 1 1 1 1 1 2 8 29 85 211 463 926 1730 3095
7 0 1 2 3 4 5 6 8 16 45 130 341 804 1730 3460
8 0 0 1 3 6 10 15 21 29 45 90 220 561 1365 3095
9 0 0 0 1 4 10 20 35 56 85 130 220 440 1001 2366
10 0 0 0 0 1 5 15 35 70 126 211 341 561 1001 2002
11 0 0 0 0 0 1 6 21 56 126 252 463 804 1365 2366
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Table E.2: f01(r, t, 7), 0 ≤ r ≤ 14, 0 ≤ t ≤ 13.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 1 1 1 1 1 1 2 9 37 121 331 793 1717 3434
1 0 1 2 3 4 5 6 7 9 18 55 176 507 1300 3017
2 0 0 1 3 6 10 15 21 28 37 55 110 286 793 2093
3 0 0 0 1 4 10 20 35 56 84 121 176 286 572 1365
4 0 0 0 0 1 5 15 35 70 126 210 331 507 793 1365
5 0 0 0 0 0 1 6 21 56 126 252 462 793 1300 2093
6 0 0 0 0 0 0 1 7 28 84 210 462 924 1717 3017

7 1 1 1 1 1 1 1 2 9 37 121 331 793 1717 3434
8 0 1 2 3 4 5 6 7 9 18 55 176 507 1300 3017
9 0 0 1 3 6 10 15 21 28 37 55 110 286 793 2093
10 0 0 0 1 4 10 20 35 56 84 121 176 286 572 1365
11 0 0 0 0 1 5 15 35 70 126 210 331 507 793 1365
12 0 0 0 0 0 1 6 21 56 126 252 462 793 1300 2093
13 0 0 0 0 0 0 1 7 28 84 210 462 924 1717 3017

Table E.3: f10(r, t, 6), 0 ≤ r ≤ 13, 0 ≤ t ≤ 11.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 0 −6 −27 −83 −209 −461 −922 −1702
1 0 1 2 3 4 5 6 6 0 −27 −110 −319 −780 −1702
2 0 0 1 3 6 10 15 21 27 27 0 −110 −429 −1209
3 0 0 0 1 4 10 20 35 56 83 110 110 0 −429
4 0 0 0 0 1 5 15 35 70 126 209 319 429 429
5 0 0 0 0 0 1 6 21 56 126 252 461 780 1209

6 −1 −1 −1 −1 −1 −1 0 6 27 83 209 461 922 1702
7 0 −1 −2 −3 −4 −5 −6 −6 0 27 110 319 780 1702
8 0 0 −1 −3 −6 −10 −15 −21 −27 −27 0 110 429 1209
9 0 0 0 −1 −4 −10 −20 −35 −56 −83 −110 −110 0 429
10 0 0 0 0 −1 −5 −15 −35 −70 −126 −209 −319 −429 −429
11 0 0 0 0 0 −1 −6 −21 −56 −126 −252 −461 −780 −1209
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Table E.4: f11(r, t, 7), 0 ≤ r ≤ 13, 0 ≤ t ≤ 13.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 1 0 −7 −35 −119 −329 −791 −1715
1 0 1 2 3 4 5 6 7 7 0 −35 −154 −483 −1274
2 0 0 1 3 6 10 15 21 28 35 35 0 −154 −637
3 0 0 0 1 4 10 20 35 56 84 119 154 154 0
4 0 0 0 0 1 5 15 35 70 126 210 329 483 637
5 0 0 0 0 0 1 6 21 56 126 252 462 791 1274
6 0 0 0 0 0 0 1 7 28 84 210 462 924 1715

7 −1 −1 −1 −1 −1 −1 −1 0 7 35 119 329 791 1715
8 0 −1 −2 −3 −4 −5 −6 −7 −7 0 35 154 483 1274
9 0 0 −1 −3 −6 −10 −15 −21 −28 −35 −35 0 154 637
10 0 0 0 −1 −4 −10 −20 −35 −56 −84 −119 −154 −154 0
11 0 0 0 0 −1 −5 −15 −35 −70 −126 −210 −329 −483 −637
12 0 0 0 0 0 −1 −6 −21 −56 −126 −252 −462 −791 −1274
13 0 0 0 0 0 0 −1 −7 −28 −84 −210 −462 −924 −1715

Table E.5: F00(r, t6, 6), 0 ≤ r ≤ 13, 0 ≤ t ≤ 5.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 2 8 29 85 211 463 926 1730
1 0 −1 −2 −3 −4 −5 −6 −8 −16 −45 −130 −341 −804 −1730
2 0 0 1 3 6 10 15 21 29 45 90 220 561 1365
3 0 0 0 −1 −4 −10 −20 −35 −56 −85 −130 −220 −440 −1001
4 0 0 0 0 1 5 15 35 70 126 211 341 561 1001
5 0 0 0 0 0 −1 −6 −21 −56 −126 −252 −463 −804 −1365

Table E.6: F01(r, t7, 7), 0 ≤ r ≤ 13, 0 ≤ t ≤ 6.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 1 −2 −9 −37 −121 −331 −793 −1717
1 0 −1 −2 −3 −4 −5 −6 −7 −9 18 55 176 507 1300
2 0 0 1 3 6 10 15 21 28 37 55 −110 −286 −793
3 0 0 0 −1 −4 −10 −20 −35 −56 −84 −121 −176 −286 572
4 0 0 0 0 1 5 15 35 70 126 210 331 507 793
5 0 0 0 0 0 −1 −6 −21 −56 −126 −252 −462 −793 −1300
6 0 0 0 0 0 0 1 7 28 84 210 462 924 1717
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Table E.7: F10(r, t6, 6), 0 ≤ r ≤ 13, 0 ≤ t ≤ 5.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 0 −6 −27 −83 −209 −461 −922 −1702
1 0 −1 −2 −3 −4 −5 −6 −6 0 27 110 319 780 1702
2 0 0 1 3 6 10 15 21 27 27 0 −110 −429 −1209
3 0 0 0 −1 −4 −10 −20 −35 −56 −83 −110 −110 0 429
4 0 0 0 0 1 5 15 35 70 126 209 319 429 429
5 0 0 0 0 0 −1 −6 −21 −56 −126 −252 −461 −780 −1209

Table E.8: F11(r, t7, 7), 0 ≤ r ≤ 13, 0 ≤ t ≤ 6.

t\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 1 0 −7 −35 −119 −329 −791 −1715
1 0 −1 −2 −3 −4 −5 −6 −7 −7 0 35 154 483 1274
2 0 0 1 3 6 10 15 21 28 35 35 0 −154 −637
3 0 0 0 −1 −4 −10 −20 −35 −56 −84 −119 −154 −154 0
4 0 0 0 0 1 5 15 35 70 126 210 329 483 637
5 0 0 0 0 0 −1 −6 −21 −56 −126 −252 −462 −791 −1274
6 0 0 0 0 0 0 1 7 28 84 210 462 924 1715



Appendix F

F.1 Tables of values of L1;abc(r, t, q) for q = 6 and q = 7

Table F.1: L000(r, t, 6), 0 ≤ r ≤ 10, 0 ≤ t ≤ 3, (and L000 = (−1)r+t+1l000).

t\r 0 1 2 3 4 5 6 7 8 9 10

0 −2 6 −20 70 −252 926 −3460 13110 −50252 194446 −758100
1 1 −4 15 −56 211 −804 3095 −12016 46971 −184604 728575
2 0 1 −6 29 −130 561 −2366 9829 −40410 164921 −669526
3 0 0 2 −16 90 −440 2002 −8736 37130 −155080 640002

Table F.2: L001(r, t, 6), 0 ≤ r ≤ 10, 1 ≤ t ≤ 3, (and L001 = (−1)r+tl001).

t\r 0 1 2 3 4 5 6 7 8 9 10

1 −1 3 −10 35 −126 463 −1730 6555 −25126 97223 −379050
2 0 −1 5 −21 85 −341 1365 −5461 21845 −87381 349525
3 0 0 −1 8 −45 220 −1001 4368 −18565 77540 −320001

Table F.3: L010(r, t, 7), 0 ≤ r ≤ 10, 0 ≤ t ≤ 3, (and L010 = (−1)r+t+1l010).

t\r 0 1 2 3 4 5 6 7 8 9 10

0 −2 6 −20 70 −252 924 −3434 12902 −48926 187036 −720062
1 1 −4 15 −56 210 −793 3017 −11561 44592 −172995 674520
2 0 1 −6 28 −121 507 −2093 8568 −34885 141494 −572264
3 0 0 1 −9 55 −286 1365 −6188 27132 −116281 490337
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Table F.4: L011(r, t, 7), 0 ≤ r ≤ 10, 1 ≤ t ≤ 4, (and L011 = (−1)r+tl011).

t\r 0 1 2 3 4 5 6 7 8 9 10

1 −1 3 −10 35 −126 462 −1717 6451 −24463 93518 −360031
2 0 −1 5 −21 84 −331 1300 −5110 20129 −79477 314489
3 0 0 −1 7 −37 176 −793 3458 −14756 62017 −257775
4 0 0 0 −2 18 −110 572 −2730 12376 −54264 232562

Table F.5: L100(r, t, 6), 0 ≤ r ≤ 10, 0 ≤ t ≤ 3, (and L100 = (−1)r+t+1l100).

t\r 0 1 2 3 4 5 6 7 8 9 10

0 −2 6 −20 70 −252 922 −3404 12630 −46988 175066 −652764
1 1 −4 15 −56 209 −780 2911 −10864 40545 −151316 564719
2 0 1 −6 27 −110 429 −1638 6187 −23238 87021 −325358
3 0 0 0 0 0 0 0 0 0 0 0

Table F.6: L101(r, t, 6), 0 ≤ r ≤ 10, 1 ≤ t ≤ 3, (and L101 = (−1)r+tl101).

t\r 0 1 2 3 4 5 6 7 8 9 10

1 −1 3 −10 35 −126 461 −1702 6315 −23494 87533 −326382
2 0 −1 5 −21 83 −319 1209 −4549 17051 −63783 238337
3 0 0 −1 6 −27 110 −429 1638 −6187 23238 −87021

Table F.7: L110(r, t, 7), 0 ≤ r ≤ 10, 0 ≤ t ≤ 3, (and L110 = (−1)r+t+1l110).

t\r 0 1 2 3 4 5 6 7 8 9 10

0 −2 6 −20 70 −252 924 −3430 12838 −48314 182476 −690802
1 1 −4 15 −56 210 −791 2989 −11319 42924 −162925 618772
2 0 1 −6 28 −119 483 −1911 7448 −28763 110446 −422576
3 0 0 1 −7 35 −154 637 −2548 9996 −38759 149205

Table F.8: L111(r, t, 7), 0 ≤ r ≤ 10, 1 ≤ t ≤ 3, (and L111 = (−1)r+tl111).

t\r 0 1 2 3 4 5 6 7 8 9 10

1 −1 3 −10 35 −126 462 −1715 6419 −24157 91238 −345401
2 0 −1 5 −21 84 −329 1274 −4900 18767 −71687 273371
3 0 0 −1 7 −35 154 −637 2548 −9996 38759 −149205


