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Summary

For non-negative integers r we examine four families of alternating and non-alternating sign
closed form binomial sums, Fy.q.(7,t,¢q), in a generalised congruence modulo q. We explore
sums of squares and divisibility properties such as those determined by Weisman (and Fleck).
Extending r to all integers we express the sequences in terms of closed form roots of unity
and subsequently cosines.

By a renumbering of these sequences we build eight new “diagonalised” sequences,
Ls.abe(1,t,q), and construct equivalent closed forms and sums of squares relations.

We modify Fibonacci type polynomials to construct order m recurrence polynomials that
satisfy these diagonalised sequences. These recurrence polynomial sequences are shown to
satisfy second order differential equations and exhibit orthogonal relations. From these latter
relations we establish three term recurrence relations both between and within sequences.

By the application of the reciprocal recurrence polynomial and hypergeometric functions,
generating functions for these renumbered sequences are determined. Then employing these
latter functions, we establish theorems that enable us to express each of the new sequences

in terms of a Minor Corner Layered (MCL) determinant.

When r is a negative integer and ¢ = 2m+¥b is unspecified, the MCL determinants produce
sequences of polynomials in m. For particular sequences we truncate these polynomials to
contain only the leading coefficient and find that the truncated polynomial is equal to that
of a Dirichlet series of the form zeta, lambda, beta or eta. From this relationship, recurrence

polynomials for these latter functions are established

Finally we develop a congruence for the denominator of the uncancelled modified Bernoulli
numbers of the first kind, B, /n!, and consequently a similar congruence for the zeta function
at positive even valued integers. Furthermore we determine that these congruences obey the

Fleck congruence.



Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Matthew Lettington, for his en-
couragement, continuous guidance and motivation throughout the course of my PhD study.
Many thanks also go to my second supervisor Prof. Martin Huxley for his perceptive, con-
structive and invaluable comments, (that with some degree of inevitability would also seem
to lead to the production of a limerick).

Finally I would not have been in a position to undertake this work had it not been for the
support of my parents. I would not have been able to complete this thesis if it were not for
the support of my family. In particular I would like thank my wife, Aimee, and my sons,

Llewellyn and Rhydian, for their patience over the course of this study.

ii



Contents

Introduction

1.1 A brief history of the Fleck Congruence and associated sums . . . ... ...

1.11
1.1.2
1.1.3
1.1.4
1.1.5

The Fleck congruence . . . . . . . . . . ... ... .. ... ......
Fleck typesums . . . . . . . . ...
The renumbered Fleck sums. . . . . .. .. .. ... ... ... ..
Recurrence relations satisfying the renumbered Fleck sums . . . . . .

Connections between the Fleck sums and the Riemann zeta function .

1.2 Overview of main results . . . . . . . . . . ...

1.3 Organisation of the thesis . . . . . .. .. .. ... ... ... ... ...,

Types of sums

2.1 Notation. . . . . . . . . e

2.2 The generalised Fleck function. . . . . . .. ... ... ... .. ........

221
2.2.2
2.2.3
224
2.2.5

The sign parameter, s. . . . . . . . . . . ..
The alternating parameter, a . . . . . . . . . . .. ... ... .....
The effect of the parity of the modulus, ¢ . . ... ... ... ... ..
The requirement of 2¢ residue classes. . . . . . . . ... ... ... ..

Use of a modulus function of 2¢ to determine the sums F.q4(7, ¢, q).

2.3 Recurrence relations . . . . . . . .. e

2.3.1

Three term recurrence relation . . . . . . . . . . . ... ... ...

The function L. g

3.1 Introduction . . . . . . . . . e

3.2 Sum of squares relation . . . . . ... ..

Roots of unity closed forms

4.1 Expressing Fj.qp in terms of the primitive 2¢-th roots of unity . . . . . . . ..

4.2 The function Ly, expressed in terms of (o . . . . . . . . ..o

4.3 Expressing the sums Fy.q5(r,t,q) in terms of cosines . . . . ... ... .. ..

4.4  Expressing the sums Lg.qpc(7,t,q) in terms of cosines . . . . ... ... .. ..

4.5 Divisibility properties of the sequences Fg.qp(r,t,q) . . . . . . . .. ...

iii

T W NN ==

—_
o

11
11
12
12
13
13
14
14
16
16

21
21
22



iv

4.5.1 The primality of the term 1 —¢, . . ... ... ... ... ... ... .. 39

5 Recurrences 43
5.1 Fibonacci, Lucas and Jacobsthal polynomials . . . . . . ... ... ... ... 44
5.1.1 The Fibonacci polynomials, Fy,(z) . . . . . ... ... ... ... ... 44

5.1.2  The Lucas polynomials, L,(z) . .. ... ... ... ... ....... 46

5.2 The Jacobsthal and Jacobsthal-Lucas Polynomials . . . . ... .. ... ... 47
5.2.1 The Jacobsthal Polynomials . . . . . ... .. .. ... ... .. .... 47

5.2.2  The Jacobsthal-Lucas polynomials . . . . . ... .. ... ... .... 48

5.3 The Chebyshev Polynomials T),(z), U,(z) Cp(z), Sp(x) . . . . .. . ... .. 50
5.3.1 Product of theroots . . . . . . ... .. ... ... ... .. ... 51

5.3.2 Expression of the polynomial as a (binomial) sum . . . ... ... .. 51

5.4 Classification of the Fibonacci-type polynomials . . . . . . .. ... ... ... 53
5.5 Recurrence polynomials for the family of functions Leape . - - . . . . . . . .. 57
5.6 Association of the polynomials R4 (2, m) to the modified polynomials A;ab(aﬁ, Q) 59
5.7 Evaluation of the recurrence polynomials Rs.qp(z,q) . . . . . . ... ... .. 60

6 Differential Equations 63
6.1 Jacobi poynomials . . . ... L Lo Lo 63
6.2 The recurrence polynomials Rg.qp(u,m) . . . . . . ... ... L. 64
6.3 The recurrence polynomials Rg.op(u,m) . . . . . ... ... ... ... 66

7 Orthogonality 70
7.1 Orthogonal polynomial sequences . . . . . . . . . .. .. ... ... ... . 70
7.1.1 The Chebyshev Polynomials . . . . . . .. ... ... .......... 71

7.1.2  The recurrence polynomials Rg.1p(u,m) . . . . .. .. ... ... ... 73

7.1.3 The recurrence polynomials Rg.op(u,m) . . . . .. .. ... ... ... 75

7.2 Three term order recurrences . . . . . . . . . . ... e 78
7.2.1 Intra sequence reCurrences . . . . . . . . . . . o b et e e, 78

7.2.2 Inter sequence reCUITENCES . . . . . . « . v v v v v v v vt e 83

8 Generating functions 85
8.1 The Generalised Hypergeometric Function (GHF) . . . . . . .. ... ... .. 85
8.1.1 Overview to the application of generalised hypergeometric functions . 86

8.1.2 Overview of applied properties and stated results . . . . .. ... ... 86

8.2 Development of the generating function from the recurrence relation polynomial 87
8.3 The generating function of the sequences Lgpe(r,t,q) . . . . . . . . ... .. 89
8.4 Separation of the Lucas polynomial . . . . . . . .. ... ... .. ... .... 99
8.5 The generating function of the sequences Lgope(r,t,q) . . . . . . . .. .. .. 102



9 Minor Corner Layered (MCL) Determinants 111
9.1 Minor Corner Layered (MCL) Determinants . . . . . .. ... ... ...... 111
9.2 Relationship between the generating function and the recurrence polynomial. 113

9.2.1 Relationship between p=0and p=1cases.. . . . . .. ... ... .. 118
9.2.2  Association of a generating function with an MCL determinant . . . . 119
9.3 Lgabe(r,t,q) as a half weighted MCL determinant . . . . .. ... .. ... .. 123
9.4 Expression of the sums Lg.4pc(7,t,2m + b) for generalised m . . . . . ... .. 129
9.4.1 The functions L.qpc for negative r . . . . . ... .00 129
9.4.2 Determination of the leading coefficient of the polynomial E;abc(:c, 1,q) 135
9.5 The polynomials D(r,0,0,n) and D (r,T,N,n) . . . .. ... ... ..... 142
9.5.1 Expression of the function DY . . . . . ... ... ... ... ...... 142
9.5.2 Expression of the function Ds e e e 145
9.5.3 Connecting the functions D! and D}, to Dirichlet functions . . . . . . 151
10 Bernoulli numbers of the first and second kind 156
10.1 Modified Bernoulli numbers of the first kind . . . . . . ... ... ....... 156
10.1.1 Expression of the modified Bernoulli numbers in terms of B” . . . . . 157
10.2 Bernoulli numbers of the second kind . . . . . . ... ... ... 158
10.2.1 Expression of the Bernoulli number in terms of a function ” . . . . . 159
10.3 Bernoulli numbers and their (uncancelled) denonimators . . . . . .. ... .. 160
10.3.1 Denominator theorem: Bernoulli numbers of the second Kind . . . . . 160
10.3.2 Denominator theorem: (Modified) Bernoulli numbers . . . . . . . . .. 162

A Some expressions for Ly ..(7,1,q) 173
A.1 Closed binomial forms for Lgape(r,t,q) . . . . . . . ..o oo 173
A.2 Expression as a sum of (r+1)-thpowers. . . . . ... ... ... ... .... 174

B The polynomials Aj..(z, Q) 176
B.1 Expression as Fibonacci type polynomials . . . . . .. ... ... ... .... 176
B.2 Expression as modified Fibonacci type polynomials . . . . . . ... ... ... 177
B.3 Simplification of expression as Fibonacci type polynomials . . . . . .. .. .. 178
B.4 Simplification of expression as modified Fibonacci type polynomials . . . . . 181
B.5 The recurrence polynomial, Rg.qp(z,m) . . . . . .. ... L. 182

C Some calculations of the recurrence polynomial R.q(z,m) 184
C.1 Evaluation of the coefficients from the roots . . . . . . . ... ... ... ... 184
C.2 Evaluation of the coefficients using Theorem 5.6.1. . . . . . . ... ... ... 186

D The hypergeometric function 189
D.1 A worked example . . . . . . ... 189



vi

E 191
E.1 Tables of values of Fgqp(r,t,q) forg=6and¢g=7 . ... ... ... ..... 191
F 195

F.1 Tables of values of Ly.gpc(r,t,q) forg=6andg=7. .. ... .. ... .. .. 195



Notation

Table 1: A list of standard notation used in the thesis

Symbol Notation See Section:
|x] lower floor function 2.2
(;) binomial coefficient 2.2
|| absolute value function 3.2
Z integers 1.1.2

Nxg 0,1,2,3,... 1.1.2
N 1,2,34... 1.1.2
Rz real part of x 4.3
S imaginary part of z 4.3
ordy(x) order of p in x 4.5
(a,b) highest common factor (of a and b) 4.5.1
p product over d relatively prime to modulus (q) 4.5.1
Q(¢y) cyclotomic field 4.5.1
Fo(x) @Q-th Fibonacci polynomial 5.1.1
Lo(x) @-th Lucas polynomial 5.1.2
To(x) @-th Chebyshev polynomial of the first kind 5.3
Ug(z) @-th Chebyshev polynomial of the second kind 5.3
Co(x) @Q-th monic Chebyshev polynomial of the first kind 5.3.1
So(x) @-th monic Chebyshev polynomial of the second kind 5.3.1
Om.n Kronecker delta function 7.1
mFn(a;;bj; ) generalised hypergeometric function 8.3
™ rising factorial 8.3
™ falling factorial 8.3
I'(z) Gamma function 8.3
¢(s) Riemann zeta function 9.5.3
n(s) Dirichlet eta function 9.5.3
B(s) Dirichlet beta function 9.5.3
A(s) Dirichlet lambda function 9.5.3
B, n-th Bernoulli number: first kind 10.1
b, n-th Bernoulli number: second kind 10.2
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Table 2: Specialized notation used

Symbol Notation See Section:

ol sign oscillator 2.1

A sign type alternator 2.1

tq the smallest residue of ¢ mod ¢ 2.1
Foab(r,t,q) generalized Fleck sum 2.2
fan(r,t,q) generalized Fleck sum s = 0 case 2.2
Fup(r,t,q) generalized Fleck sum s = 1 case 2.2
Ls:ape(1,t,q) renumbered Fleck sum 3.1
Labe(T, t, q) renumbered Fleck sum s = 0 case 3.1
Lape(r,t,q) renumbered Fleck sum s = 1 case 3.1
L shift operator 3.1

¢, ¢ primitive ()-th root of unity 4.1

w primitive 4¢-th root of unity 4.3
ordy,(F) highest exponent of p in F 4.5
Aoprye() generalized Fibonacci polynomial 5
Ag Mae(T) amended (“square rooted”) form of Aaprye(7) 5
As.ap(z, Q) generalised Fibonacci polynomial 5.4
wan(@: Q) amended (“square rooted”) form of Ag.q(z, Q) 5.4

JQ(a:) Q-th Jacobsthal polynomial 5.2.1

Jg) (x) Q-th Jacobsthal polynomial (Horadam) 5.2.1

Jjo(x) Q-th Jacobsthal-Lucas polynomial 5.2.2

jg ) (x) Q-th Jacobsthal-Lucas polynomial (Horadam) 5.2.2
Rsap(x, m) linear recurrence polynomial of function L. qpc 5.9
g generating function of following function 8.2
A,(h) MCL determinant (Lettington) 9.1
U, (h, H) half-weighted MCL determinant (Lettington) 9.1
Af(&p) signed MCL determinant 9.1
Uh(ay, AN70> signed half-weighted MCL determinant 9.1
PP(r,T,N,n) 9.2

L pe(r:t,q) Ls.abe(—7,t,q) 9.4.1

E?;bc(r t,q) | leading (truncated) coefficient of Lg..pc(—7,1,q) 9.4.2

B n-th Bernoulli number: first kind with B; = 1/2 10.1

B, n-th “modified” Bernoulli number: first kind 10.1

Bt n-th “modified” Bernoulli number: first kind 10.1

b, n-th Bernoulli number: second kind 10.2




Chapter 1

Introduction

1.1 A brief history of the Fleck Congruence and associated
sums

1.1.1 The Fleck congruence

The Fleck numbers are attributed to A. Fleck in 1913 [17], who showed (by utilising a
primitive p-th root of unity, €,) that for non-negative integer variables r (the term number of
the sequence), t (the specific sequence or residue class), p > 2 (the prime modulus) and some

integers a and b such that a +b =0 (mod p), we have the congruence notation

- T\ r—k k_l r_p—t — o _ r—1
Z <k>a b —fZ(a—f—be) el =0 (mod p%), Wherea—{ J

Pt p p—1
k=t (mod p)

€

(1.1.1)
This generalised a special case brought to his attention that for a = —b = 1, (1.1.1) simplifies

to (what we denote as)

r—1
p—1

F(ritp)= Y (-1)’*6(2) =0 (mod p®), Wherea:{ J (1.1.2)

k=t (mod p)

the so called Fleck congruence.

In 1977 Weisman [44], independently derived (1.1.2) and extended the congruence relation

to
e—1

F(r,t,p°) - (ZmOd pe)(—l)k<£> =0 (modp®), where o= {%J . (1.1.3)

where ¢ is Euler’s totient function.



1.1.2 Fleck type sums

In 1992 Z.H. Sun [38] considered the nonalternating form of (1.1.2) to obtain the sum

. : r or T4 ,md  wd(r—2t)
Ho) = Z ( ) =— ) cos" —cos ———=
k=0 k 7 5= 9 q
k=t (mod q)
~1
27 X d  md(r—2t
=— 1+ZCOSTLCOSL) . (1.1.4)

q —~ q q

A decade later Z.W. Sun [39] considered both the nonalternating and an alternating sum of

(1.1.2), notating them as

r : T r . k=t (1
[t] -y <k> and {t} - Y (s (k> (1.1.5)
q k=0 q k=0
k=t (mod q) k=t (mod q)

respectively, and related by the identity

el

The two forms of (1.1.5) can also be expressed by

2 (;)ak N Z <l:> C;k > = Z M1+ aQ)” (1.1.6)

0<k<r k=0 ca=1 1=
k=t (mod q)

where a = 1 or a = —1 respectively, and ¢ = e2™/4 is a primitive ¢-th root of unity. However,

we note that the second form needs to be multiplied by (—1)l%/4) to achieve this.

1.1.3 The renumbered Fleck sums.

Also considered in [38] was the amended sum

A,(t,R) = {q Tis2t() _QRR if2fq (1.1.7)
Tiryoreq — 2" 210
The function A, eliminates the denominator ¢ and the single term 2% at d = 0; moreover, it
realigns the residue class t.

If we let ¢ =2m + b and R = 2r 4 ¢, where b € {0,1} and ¢ € {0, 1} represent the parity

of ¢ and R respectively, then (1.1.7) can be alternatively expressed as

_ 2r+c 2r4-c
Aq(t, R) = 4T iyt () — 2

2r+c ot
— _ 92rtc
> )

0<k<2r+c
k=r+bc(m+1)+t (mod q)
L(¢—1)/2] by o B by 2r+c
Sl o LTI EUE WL TR )
=1 q q

(1.1.8)



The cosine form given in (1.1.8) summarizes the three separate forms provided by Z.H. Sun.

In developing the roots of unity identity (1.1.6), Z.W. Sun [39] employed (in our own
notation) the expression 2+ ¢ 4 ¢!, that acts as a shift (or renumbering) of the Fleck sums,

such that the two forms of (1.1.5) become transformed to

[tirr] =12Ct(2+c+¢1)’“, and { 2r } _1 > d@+¢+HChH (1L9)
q qga:l q q(q:fl

respectively. Also of relevance is an oscillation of the sign of the sum. This does not affect the
absolute value of the sum, but if we consider the sequence of terms generated by either form
of (1.1.9), we find that on varying r, (but fixing ¢ and t), consecutive terms will oscillate in

sign. The author details this as

2r if e = (—1)4
t+
Y- ¢=¢r = Y (O = (kg
(9=e ¢I=(—1)4¢ {t—: } otherwise.
T

A different way of perceiving the oscillation is by consideration of both forms of (1.1.5). If

we vary ¢ (and fix r and ¢), one notes that all the terms of the residue class ¢ are multiplied
by (—1)%.

1.1.4 Recurrence relations satisfying the renumbered Fleck sums

Z.H. Sun [38] studying the even modulus ¢ = 2m, established a recurrence polynomial, termed
Qm—1(x), that recursively produce the values, Ay (k,2r + ¢). This was expressed in the form

m

1+ k
) j(—1)m—k<mg_z >A2m+2(t,2r+c+2k)20, reNsg, cef{0,1}, (1110
k=0

and illustrates the fact that there exist two separate recurrence sequences, determined by the
parity of the term R = 2r + ¢. The roots of (1.1.10) were identified as

x =2+ 2cos (2nd/q), 1<d<m-—1,

making it apparent that the signed (binomial) coefficients of Q,, correspond to those of the
monic Chebyshev polynomial of the second kind, So,,+1(x).

Also considered was the polynomial G, (z) defined as

a“ (2d — 1)7r> |

G () :}:[1 <x—|—2cos o T 1

that satisfies the linear m + 1 term recurrence relation

s (1) _ _
> (-l b Dok H k) =0, (r=0,1,2,...).



We observe that the function Asg,,11 is being considered as a single sequence (without con-
sideration to the parity of 7).
Z.W. Sun [39] employed the function, notated by Dp, and defined such that Dy = 2, and

thereafter
LR/2]

. R (R—i <
Dg(z) = ~1)! LR/2] = ReN.
)= 3 0 ()
For R > 0, the polynomial Dg(x) is related to the Chebyshev polynomial of the first kind,
Tr(z), by the identity

0 if2|R
2Tr(z) = (22)¢Dg(42?), where €=
() = (20)°Di(4s?) {1 foin
and it forms a recurrence polynomial for the sums (1.1.9).

1.1.5 Connections between the Fleck sums and the Riemann zeta function

The types of binomial sum sequences detailed above, considered by Fleck, Weisman, Z.H. Sun
and Z.W. Sun, are contained in more generality by the family of eight binomial sum sequences
obtained from (1.1.1) by putting a = 1, b = £1; r is either odd or even and the sum is taken
over the congruence modulo n, where n is either odd or even.

The fundamental categorisations of these eight sequences are not immediately obvious
and only become apparent when each sequence is renumbered using a diagonal approach
similar to that of Z.H. Sun and Z.W. Sun. For example, the renumbered Fleck sequences, as

considered by Lettington in [30] split into two binomial sum sequence categories:

Fi(r,t,2m+1) = (2m + 1) 3 (_1),{(27’;1)’ (1.1.11)
k=r+t (mod 2m+1)

and
Fy(r,t,2m+1) = (2m + 1) 3 (—1)k<2T;2>. (1.1.12)
k=r+t+1 (mod 2m+1)
These two integer sequences each satisfy an (m + 1)-th term recurrence relation and by
construction satisfy Fleck’s congruence when p = 2m + 1 is a prime number.

Lettington went on to show that if the two sequences are run in reverse by using the same
initial values but the reciprocal recurrence relation, then one has in effect two bi-infinite
sequences where the negative term sequence values are rational numbers whose denomina-
tor prior to cancellation are powers of (2m + 1). These negative index sequence terms can
be generated by determinants yielding polynomial expressions (see Chapter 6 of [30]) and
Lettington demonstrated that the leading terms of the polynomial expressions yield the re-
currence relation for the special values of the Riemann zeta function (i.e. at positive even

integer arguments)

TN B e A W o ) e e N L
(25) = (1) ((%H)! > (Qj_2k+1)!§(2k) , where g(s)_;ns for Rs > 1.



ot

Variations of {(s) are given by

oy ! D TGV i v !
A(S)_,;)(Q”Jrl)s7 6(8)_7;)(2n+1)5’ 77(8)—;:1 e , and </5(8)—n§:1(2n)5,

and these are respectively known as Dirichlet’s lambda, beta, eta and phi function. In Let-
tington (2013) [31], recurrence relations for these functions were also given without reference
to binomial sum sequences, where links to Toeplitz determinants were established. Such re-
currence relations for the special values of these Riemann zeta type functions have recently
been of considerable interest as illustrated in publications by Merca (2017) [33], Coffey (2018)
[13], and Hu and Kim (2019) [25].

1.2 Overview of main results

Our main results are centred around a comprehensive classification of four families of bino-
mial sum sequences and eight families of renumbered binomial sum sequences. The former
sequences are considered in terms of various closed form expressions and divisibility proper-
ties; whereas the latter are expressed, in addition to equivalent closed form expressions, in
terms of recurrence relations, generating functions, Toeplitz determinants, and recurrences
for the Riemann zeta function at positive even integer arguments.

In Definition 2.2.1 we generalise the sum F(r,t,p) given in (1.1.2) to that of

Feav(r;t,q) = (=1)* > (—1)6“]3_”(]:). (1.2.1)

k=0
k=t (mod q)

Here we introduce three parameters s, a, b € {0,1}, that respectively represent the sign
“oscillator”, the alternation and the base of the modulus. (We note that these parameters are
not related to the integers a and b employed in (1.1.1)). The parameters a and b produce four
different sequence families and the parameter s determines whether, for each family, the odd
residue classes ¢ are multiplied by —1 (or not). We also replace the prime p with a general
positive integer ¢ = 2m + b > 1, and we find it fruitful to consider each sequence term as a

sum with modulus 2¢. Then from Theorem 2.2.5 we write (1.2.1) as
_ k(T +sb k(T
RN DI 1A () T TD DRN I (4 B CE S
k=t (mod 2q) k=t+q (mod 2q)

In Section 2.3 we examine three term recurrence relations satisfied by Fi.,;. Commencing
with Lemma 2.3.1 that states

fs;ab(r + 17t7Q) = fs;ab(r7t7 Q) + ’st;ab(rvt - 17 Q)y

where v = (—1)*, we establish in Lemma 2.3.2 a sum of products rule

Fs;ab(r + k7t7Q) = fs;ab(kyjy Q)Fs;ab(rat -7 Q)a

=)
[y

<.
Il
=)



that then yields in Lemma 2.3.3 the sums of squares relation

q—1
fS;ab(QT, T, Q) = /77‘ Z ‘Fs;ab(r7 j7 Q)2 (123)
7=0

Using the notation L5, where the additional parameter ¢ € {0, 1} represents the corre-
sponding row parity, we extend the forms (1.1.11) and (1.1.12) considered by Coffey et al. [9].

By a renumbering of (1.2.1) we obtain

Ls.ape(r,t,q) = Foap(2r+2—c,t+r+1—c,q)
_ sk 2r+2—c> L \asb B Sk<2r+2—c>7 5
k=T %od Qq)( !V < K ey kET-i—qZ(mod 2q)( Y K .
where r > 0, ¢g=2m+b>1,c<t<mandT =t+r+1—c The parameters a, b and
c represent each of the eight family sequences and, following the renumbering of the terms
Foab(r,t,q) in (1.2.4), the parameter s, now determines whether for each residue class ¢,
the sequence of numbers generated oscillate in sign (or not). In Theorem 3.2.1 we apply the

relation (1.2.4) to equation (1.2.3) to obtain the sums of squares identity

—_

=}

Ls;abl (2T7 1, Q) = Ls;abl (T7 Js Q)2'

o2

Il
=)

J
In Chapter 4, using the binomial sum forms (1.2.1) and (1.2.4), we develop, in terms of
primitive 2¢-th roots of unity, alternative closed form expressions that are given respectively
in Theorem 4.1.3 stating
qt+e—1

Fav(rst,q) = ; > (CQd‘e)_t (1 + VCQd*)T, (1.2.5)

d=e¢
and Theorem 4.2.2 that states

Es;abc(ry t7 Q) = fs;ab(2r + 2 — C, t+r+ 1-— C, q)

bl () R (1+ vcw‘e)w*c’ 20

1
_q;

where € = a + sb (mod 2). Furthermore, by appropriate consideration of either the real or
imaginary parts, we transform (1.2.5) and (1.2.6) into expressions involving cosines (or shifted

cosines). These are given respectively by Theorem 4.3.3 that states

Lr/2)gr Tt — - —e—sq)\"
/212 Z cos m(r —2t)(2d — € — scq) COSW(Qd € — 5q) 7
q 2q 2q

Fs;ab(Ta t, Q) =
d=¢
and Theorem 4.4.2 stating

7r+1—c22r+3—c

'Cs;abc(ra t, Q) = f X

(a—1)" . L(q+az—:1)/2j s <7T(c —2t)(2d — € — scq)) <COS <ﬂ-(2d€5q)>>2r+2c

2 = 2q 2q




Using the closed forms developed in Theorems 2.2.5 and 4.1.3 we also establish
Theorem 4.5.10 which states that the only expected divisibility properties of the sums Fj.q (7, ¢, q)

are:
1. e—1
r—p
dp(Fs: L) 2 |
ordy(Fsa(r, t,p%)) > Ll?e_l(p— 1)J )
and when r = j2¢ 4+ [, where j > 1 and 0 <1 < 2¢,
2.
rooel) [25-1 if1=0
ordy(Fes00(r,t,2°) > | ——| =
2(Fs;00( ) { o1 J {gj if1<1<2 -1,
and
3.

OTdQ(fS;lo(T, t, 26)) 2 j

As indicated in Section 2.3 the Fibonacci type polynomials, (that also include the monic
Chebyshev polynomials), are intimately connected to the recurrence polynomials of the func-
tions Lg.qpe. Denoting these recurrence polynomials as R.qp(, ¢), in the Corollary to

Theorem 5.6.1 we demonstrate that
(Vo) Yz —4)S;1(vE) ifs=0,a=0
(V&) P Cy (V) if s=0, a=1

Rsap(z,m) =
(Vo) Yz + )F(Vz)  ifs=1,a=0
(vVx)°Ly(V/) ifs=1, a=1.

Exploiting known properties of the Fibonacci type polynomials we develop theorems involving

second order differential equations and orthogonality relations. More specifically, from
Theorem 6.2.2 we have that the polynomials R.1(u, m) satisfy the second order differential

equation
4 — 4y YRy (uy m) + 4 (b + 1w — 25(2b + 1)) Rl (u,m) — (¢ — B)Ro1p(u, m) = 0,

and Theorem 6.3.5, that the polynomials R.o,(u, m) satisfy the second order differential

equation
du(u — 47)* R gy (u, m) + 4(u — 47) (1 = b)u — 2¢(3 — 2b)) Rigp(u, m)
— ((¢% = b)yu— 49(¢* + 2 — b)) Rygp(u, m) = 0.

Next Theorem 7.1.7 states that the polynomials R.qp(u, m) form an orthogonal polynomial

sequence, with respect to the weight factor,

—\A\(1—2b)
(oD where A= (-1)%,

Wisah(U) = (u — dy)2HA 7



that satisfies the integral equation
0 ifm=#£k

Resiab(w, m)Rsap(u, k)ws.qp(u)du = ¢ —4rar! = if m =k and ¢ =0
2r !t if m =k and ¢ > 1.

4y

0

Furthermore, we are able to utilise these orthogonality relations to develop in Theorem 7.2.4

a three term intra sequence recurrence that takes the form
Roap(u,m +2) = (u —27)Rgap(u,m + 1) = Reap(u, m),
and in Theorem 7.2.5 a three term inter sequence recurrence of the form
Rsap(u,m+1) = u‘bfa‘RS;ab/(u, m + b) — YRg.ap(u, m).

In Definitions 5.2.2 and 5.2.6 we introduce the Jacobsthal polynomial, Jy(x), and the
Jacobsthal-Lucas polynomial, j,(z) respectively. Employing these polynomials in conjunction
with the use of hypergeometric functions, we present in Theorems 8.3.7 and 8.5.6 that, for

r > 0, the generating functions for the renumbered sequences are given respectively as

27J2(m—1)4146(=7%) ife=t=0

B .?‘]2m+b(_’7'77)
GLs1pe(x,t,q) = ? 2;;”’(1:2;)2(_W) ifb=c=0andt>1

c tflJ _ .

R j;(i;(t)_t;’;f( 1) otherwise,

and o)
29jom+1-b(—7T : 4
GL (z,t,q) = (1—t‘¥"/f)J2M+2—b(—’Y$) ife=t=0
S;ObC ’ 7q ,ycx B ‘72(7n+bcft)+b+<:72bc(_’Yx)

(A—472)Janr12—p(—7@) otherwise,

where ¢ <t < M and M = m — 1+ b. Subsequently in Theorems 9.4.3 and 9.4.4, we develop
equivalent generating functions for the sequences L, (r,t,q), where
L. abc(r t,q) = Ls.ape(—7,t,q) and 7 > 0.

Utilising the generating function, we develop Theorems 9.3.1 and 9.3.2, which express the
terms Lg.qpe(7,t,q) as Toeplitz determinants. When we consider the sequences £ siab (7 t,q)
and ¢ = 2m + b is unspecified, these determinants produce sequences of polynomials in m. In
Theorem 9.4.8 and Theorem 9.4.9, for the particular sequences t = 1 and ¢t = m, we trun-
cate these polynomials, such that only the leading term remains. We denote these trun-
cated sequences of polynomials by £ o abc(r, t,q). We then demonstrate that the sequences of
EsTabc(r, t,q) are equal to (a fixed multiple of) a Dirichlet series of the form n(2r), ((2r), A\(2r)
or f(2r +1).

From this relationship, with n(0) = 1/2, {(0) = —1/2, we are able in Theorem 9.5.15 to

demonstrate the linear recurrence relations

<

1 er(k)

e 1(2k),
“ 27» — 2k +1)!



7‘ k 2(r k)( k)

2r) = — —_— =2 2k
¢(2r) 2 (2 — 2h)! 2% 2r—2k—|—1). n(2k),
and
—1)rtHiger r—1 —1 r—kﬂ_Q(r—k)
o) = -y o,
2(2r)! — (2r —2k+1)!
Similarly with §(1) = 7/4, A(0) = 0, in Theorem 9.5.16 we demonstrate the linear recurrence
relations
Tﬁl 1 r—k 2( —k)
2k+1
2T+1 Z ’f‘ 2’]"—2]{;) B( + )7
k=0
T~ (=1)r—kp2r=h) 1 r—l — k)r2r=h)
A(2r)=— 2k +1) — 2k +1
(2r) 2~ 47“*’“(27“—2]4:—1—1)!5( + 71';0 4T k= 1 (2r — 2k)! B2k +1),
and

(_1)T—17T27‘ r—1 (_1)1”—](37.(.2(7‘—]6)

A@r) = 247(2r — 1)l &= 4K (2r — 2k)

A(2K).

In the final chapter we apply our established methods to derive uncancelled denominator
theorems for the Bernoulli numbers of the “modified” first (B, = By/n!) and second (by,)
kinds as detailed in Theorems 10.3.9 and 10.3.3 respectively. These both state (with one minor
modification) that the exponent of each prime p occurring in the product of the denominator

of the n-th Bernoulli number is that of the Fleck quotient, given as:

IT »+ . (1.2.7)

p<n+l

The minor modification concerns the exponent of the prime p = 2 occurring in the uncancelled

denominator of the modified Bernoulli numbers of the first kind so that (1.2.7) becomes

o1=P T »l (1.2.8)

p<n+1

where D is the sum of the digits of n = 2r, (when n > 2), expressed in the scale of 2.
Furthermore, due to the established result [26]

(27T)2T
2(2r)!

¢@2r) = )| Byl (1.2.9)

an immediate corollary of (1.2.8) concerns the uncancelled denominator of (1.2.9) that we

92-D H pr =il

3<p<L2r+1

express as

This gives some understanding of the connection that exists between the Fleck quotient and

the Riemann zeta function at integer arguments.
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1.3 Organisation of the thesis

In Chapter 2 we consider the function Fj.4, that expresses eight variations of the closed form
binomial sums under investigation. We also develop sum of squares relations satisfied by these
functions.

This then enables us in Chapter 3 to create the “renumbering” function Lg.qp. (with
sixteen different forms) in terms of closed form binomial sums. Sums of squares relations that
satisfy these functions are similarly established.

In Chapter 4 we express the sums Fg.qp(7,t,q) and Lg.qpe(r,t,q) in terms of closed form
primitive 2¢-th roots of unity and cosine forms. Expected divisibility properties for the sums
Fs.ap(r,t,q) are also established.

Chapter 5 opens with a discussion of the Fibonacci type (that is Fibonacci, Lucas and
monic Chebyshev of the first and second kind) polynomials. From these polynomials we de-
velop recurrence relation polynomials, notated Rs.qp(x, ¢), for the respective functions Lg.gpc.
These polynomials are expressed both in sum and product form.

Chapters 6 and 7 explore properties of the recurrence polynomials, Rs.qs(2, q). The former
determines second order differential equations satisified by the sequences of these polynomials;
whilst the latter examines orthogonal relations of the sequences. From the orthogonality
properties we establish two types of three term recurrence relations.

In Chapters 8 and 9 we return to examining methods of producing the terms Lg.qp.(7, ¢, ).
The former chapter determines the generating function for each of these terms, whilst the
latter employs Toeplitz determinants that (as in [30] and [31]) will be referred to as minor cor-
ner layered (MCL) determinants. We determine the sequences Lo rt,q) = Laape(—7,1,q)
and subsequently those of Lg;bc(r,t,q). Methods are established that connect these latter
sequences to Dirichlet functions and consequently to the development of linear recurrence
relations involving n(2r), ¢(2r), 5(2r 4+ 1) and A(2r).

Finally in Chapter 10 we study the (modified) Bernoulli numbers of the first and sec-
ond kind, and in addition to examining various ways of producing these numbers, we also

investigate their uncancelled denominators.



Chapter 2

Types of sums

We now introduce some notation that will be employed throughout this thesis. This is followed
in Section 2.2 by the definition of a function Fj.,; to encompass eight types of sums derived
from (1.1.2). Also in this section, (Subsection 2.2.5), we demonstrate the equivalence of the
functions Fy.qp and Hg.qp. This latter function offers an alternative way of presenting the
binomial sums that will be of great value in subsequent chapters. Finally in Section 2.3
we develop various recursive relations including in Lemma 2.3.3 an elegant sums of squares

relation.

2.1 Notation.

To aid us in our deliberation we are motivated to develop some notation. We consider a
general function Dg.qp or Dy qp according to the parameters s, a, b, ¢ € {0, 1}.
1. The oscillation of the sign.
7= (=17
2(i). The alternation (sum type).
A= (—1)~

2(ii). The base of the modulus ¢ (modulo 2).

g=b (mod 2).
2(iii). The corresponding row of Pascal’s triangle (row parity).

row parity = ¢ (mod 2) (2.1.1)

Moreover, we denote the specific cases s = 0 and s = 1, by

Dy = 4 10 15=0 (2.1.2)
' Dab if s =1.

For non-negative integer ¢, we employ the following definition.

11
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Definition 2.1.1. Let t; be the standard residue of t (mod q), with 0 < t, < ¢ — 1, and
t=t, (mod q).

tq will be employed throughout this work when it is required to distinguish between the in-

teger ¢ and its residue, ¢, modulo q.

2.2 The generalised Fleck function.

We wish to generalise the Fleck function according to the parameters s, a, b € {0,1}.

Definition 2.2.1. We define the generalised Fleck function, Fi.qp, with non-negative integer
variables r (the term number of the sequence), t (the specific sequence or residue class) and
q > 1 (the modulus) as

r et /7 L(r—tq)/a] ,
Foa(nt,g)=~" Y xe (k> =yial/al N (t N dq)
q

k=0 d=0
k=t (mod q)

where v = (=1)% and A = (—1)*.

It will be shown in Section 2.2.4 that fixing ¢ provides us with 2¢ sequences (residue
classes); then if we fix the residue class ¢, we find that for each r > 0, the sum Fj.q(r, ¢, q)
provides us with a term of that particular sequence. For fixed variables r, ¢ and ¢ we can
affect this sum by changing either the parameter s or a. We also find that b, the parity of ¢,

has an impact on the nature of the sum.

2.2.1 The sign parameter, s.

In (2.2.2) the influence of the parameter s is exercised by the term v and determines whether

the sums (terms) comprising a sequence are negated (for odd t) or not. Denoting the specific

Foab = fab lf 5=0
' F, ifs=1,

cases of the function Fg.q, as

we then have

r e L/JL(T_tQ)/qJ ; ,
= q — \Lt/4a 2.2.1
fan(r,t,0) A <k> A (tq+dq>, (22.1)

d=0

and
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2.2.2 The alternating parameter, a

In (2.2.1) this parameter is controlled by the term A and determines whether consecutive

terms of the sum alternate in sign or not.

Nonalternating sums, F.0(r,t,q).

Definition 2.2.2. We define the nonalternating sum, Fsop(r,t,q), with integers v > 0 and
q>1 as

r . e—t)/a)
Feop(rit,q) =7" Y <k> = <t N dq). (2.2.3)
d=0 a

k=0
k=t (mod q)

Alternating sums, F.15(7,t,q).

Definition 2.2.3. We define the alternating sum, Fg1p(r,t,q), with integers r > 0 and
q>1as

r ket [ L[(r—tq)/a] r
Faan(r,t,q) = (1)« = (-1l (—1)¢ . (2.2.4)
k=0 k —0 tq + dq

k=t (mod q)

2.2.3 The effect of the parity of the modulus, ¢

This will become more apparent in Subsection 2.2.5. Presently we will limit ourselves to an
illustration of the effect of the parity of the modulus, ¢ = 2m + b on the sum Fy.44(r, t, q) by

consideration of the Fleck sum that we recall from (1.1.2) is
r
F(r,t,2 = DR ).
rrzmin= ¥ 14(})
k=t (mod q)
It is straight forward to verify that for ¢ even we have

F(rit,2m)= > (—1)'“(2)_ > (_1)t(/:>_(_1)tkz <Z>

k=t (mod q) k=t (mod q) =t (mod q)
= ]:1§00(Ta ta 2m) = ]:1;00(T7 tqa Q)a (225)

and for ¢ odd,

F(rit2m+1)= Y (1)k<£> = 2 (T <’:'>

k=t (mod 2m+1)
k=t [
=(-1f > (-1 (k>
k=t (mod q)
= Fru(rt,2m +1). (2.2.6)
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In other words, for sign parameter s = 1, the Fleck function yields a non-alternating sum
with an even modulus and an alternating sum with an odd modulus. To verify (2.2.6) we first

require a lemma.

LEMMA 2.2.1 (alternating sign for odd modulus). For positive integers k and t, with k =t
(mod q), and q some positive odd integer, we have

k—t
q
Proof. We note firstly that (k —t)/q is an integer.

Then we observe that for ¢ =1 (mod 2) we have

k

+¢ (mod 2). (2.2.7)

q
%—1—1 (mod 2) ift=1 (mod 2),

{kt (mod 2) ift=0 (mod 2)

and so conclude that the equivalence of (2.2.7) holds. O

2.2.4 The requirement of 2¢ residue classes

It is not immediately obvious that the generalised Fleck function F.q; possesses 2q residue
classses. However, we note that the exponent [¢/q] in (2.2.4) is the correction between t and

t, and this alternates between 0 (mod 2) and 1 (mod 2) with period 2¢. Therefore, we have

Fsan(r,tq,q) if [t/¢] =0 (mod 2)

_ (2.2.8)
_fs;lb(ra tqa Q) if Lt/qJ =1 (HlOd 2)

]:s;lb(ratv(J) = {

2.2.5 Use of a modulus function of 2¢ to determine the sums F; (7, t, q).

Prompted by a suggestion of M.N. Huxley, the author appreciated that a more elegant way
of presenting the function Fg.q, so that the effects of each of three parameters and the
requirement of 2¢ residue classes are clearer, is by the development of a function operating
over a modulus of 2¢. For parameters s, a and b defined as previously, and for non-negative

integers r, t and g > 1, let us consider the sum
_ k(T +sb E(T
Hoalrt) = X Co*()rent Y cot(p) e
k=t (mod 2q) k=t+q (mod 2q)
that can also be written as
_ k(T b k(T
Hea(rt,0) = Y 7 <k> + Ay > oo <k) (2:2.10)
k=t (mod 2q) k=t+q (mod 2q)

where 7 = (—1)® and A\ = (—1)?. Furthermore, we also write

hap(r,t,q) ifs =10

Hsan(r,t,q) =
a(nt,q) {Hab(r,t, q) ifs=1.

We claim that Fy.qp(7,t,q) = Hs.ap(r,t,q). Let us employ some lemmas.
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LEMMA 2.2.2 (case a =0). With s =a =0 in (2.2.9) we have that

foo(r,t,a) = hoy(r t,q) = Y (;) + > <]:>

k=t (mod 2q) k=t+q (mod 2q)

Proof. From (2.2.3) we have

CURTEND I () D ol F (L) ED U (4 RS o 9]

k=0 k=0 k=0 k=0
k=t (mod q) k=t (mod 2q) k=t (mod 2q) k=t+q (mod 2q)
O
LEMMA 2.2.3 (case a = 1). With s =0 and a =1 in (2.2.9), we have that
T T
flb(ratvq) = hlb(T,t,q) = Z k - Z k .
k=t (mod 2q) k=t+q (mod 2q)
Proof. From (2.2.8) we have
o= Y 0] > (0)-(,
— — q — _
1\ 1,4 k k k4 q
k=0 k=0
k=t (mod q) k=t (mod 2q)
r , r -
- W O
k=0 k=0
k=t (mod 2q) k=t+q (mod 2q)
O

LEMMA 2.2.4 (case s = 1). With s =1 in (2.2.9) we have that

Fab('f’, ta CI) = Hab(rv t7 q)

= X () ().

k=t (mod 2q) k=t+q (mod 2q)

Proof. Using Lemmata 2.2.2 and 2.2.3 we have

Fab(ryta Q) - (_1)tfab = (_1)thab

k=0 k=0
k=t (mod 2q) k=t+q (mod 2q)
_ - T _1\a - T
- X (e X ()
k= k=0
k=t (mod 2q) k=t+q (mod 2q)
' r ' r
= X ()t S () = Halnra
k=0 k=0
k=t (mod 2q) k=t+q (mod 2q)
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We are now in a position to fulfil our claim on the equivalence of these two functions.

THEOREM 2.2.5 (equivalence of Fy.p and Hgqap). With Fyep and Hsap defined as in
(2.1.2) and (2.2.9) respectively, we have that

r r
Faan(rit, ) = Heap(rt,g) = > (=1)* <k> + (—1)7tsb > (—1)%k <k>
k=t (mod 2q) k=t+q (mod 2q)

Proof. We have from Lemmata 2.2.2 and 2.2.3 that

fan(ryt,q) = hap(r,t,q) = Z <Z> +(=1)*

k=t (mod 2q)

(;) (2.2.11)

k=t+q (mod 2q)

and from Lemma 2.2.4 that

Falrnt) = Ha(nta) = 5 CO(p)rcot S k()

k=t (mod 2q) k=t+q (mod 2q)
and so on combining (2.2.11) and (2.2.12) the result is established. O
For clarity we will maintain the use of the form Fj.,.

Remark 1. We note in (2.2.11) that when k = ¢ the binomial term is positive and further-
more, since the modulus is 2¢q every k congruent to ¢ is an even multiple of ¢. Conversely

when k£ =t 4 ¢ is negative then similarly every k congruent to t + ¢ will also be negative.

Remark 2. The difference between equations (2.2.11) and (2.2.12) is the inclusion of the
(—1)* terms. However, there is a second more subtle difference and that is the requirement
of the (—1)° term to neutralise an added (—1)? term in the second sum term of (2.2.12).
Therefore, when expressing the function Fy;, (relative to the function fg;) this sign creation
will have no effect when the modulus is even but will impact on the function when the

modulus is odd.

For examples of the values generated by each of the different functions, f,;, and F,;, with
6 < g <17, the reader is referred to Appendix F.1.

2.3 Recurrence relations
2.3.1 Three term recurrence relation

From the above definition we obtain the following three term binomial recurrence relation.

LEMMA 2.3.1 (three term relation). With F.q, defined as in Definition 2.2.1, we have

Fs;ab(r +1,¢, Q) = }—s;ab(rata Q) +’7~Fs;ab(rat - 1aQ)a
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Proof. From Theorem 2.2.5 we have
_ skT a+sb skT
Pl = X C0*(p) + -0 > ()
k=t (mod 2q) k=t+q (mod 2q)

Using the three term binomial relation, known as Pascal’s identity,
r+1\ (r L r
t )\t t—1

Z (_1)sk (;) 4 (_1)a+sb Z (_1)sk (;)

k=t (mod 2q) k=t+q (mod 2q)

H(—1)® Z (_1)sk: (;) + (_1)a+sb Z (_1)sk: <]:>

k=t—1 (mod 2q) k=t—14q (mod 2q)

xS ()

k=t+q (mod 2q)

— Z (—1)% (T -I: 1) +(—1)etsh Z (—1)%h (r —li; 1>

k=t+q (mod 2q)

oy (e w0

k=t+q (mod 2q)

we have

O]

We illustrate the function Fj.,; and Lemma 2.3.1 with two examples. Example 2 also demon-

strates a divisibility property that will be explained in Section 4.5.

Example 1.
[ /25 25 25 25 25\
fo1(25,9,5) = _<44> +’(s)) +—<14) +—<19) +—<24>_ = 6690150,
[ /24 24 24 24 24\ T
ﬁngagj)__(4)-%<9>4—C%>+<HJ-+<%>_ = 3321891,
[ /24 24 24 24 24\ T
24 = = 259.
f01(24,8,5) _<3>-%<8>-%<KJ—%<Q>4—QB>_ 3368259
Example 2.
[ /25 25 25 25 25\
Fiq(2 =(=1)? |- - - =22 =50 x 144
11(25,9,5) = (—1) _ <4>+(9> (14 +<19 (24>_ 50000 = 5° x ,

/24 24
F11(24,9,5) = (=1)° —<4>—+<9>-— = 621875 = 5° x 199,

89 = (1 :_ (234> " (284> B Gg

7N

N

EENETEN
N~ N

+

7\

= DN

NN
N~ —

|

N\

N DO

IS

~_

24\ T
_< ) — —1628125 = —5° x 521.
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If we are given the r*" term of each of the sequences Fsap(r,t,q) with 0 <t < g —1, then we
are not limited to establishing the term Fi.qp(r +1,%,¢), as in Lemma 2.3.1. We show this by

the next lemma.

LEMMA 2.3.2 (sums of products relation). We have

i
L

Fs;ab(r + k,t, Q) = Fs;ab(kv.jv Q)fs;ab(r7t - j7Q)'

<.
Il
o

Proof. From (repeated application of) Lemma 2.3.1 we can write

k
.Fs;ab(?" + k, t, q) — 271 <i)fs;ab(7“, t— 7, Q) (231)

=0

Expanding the second member of (2.3.1) we have

—Fs;ab(r + ka t> Q) =

k k k k
wa t 0 2q 4q L 2qlp
Fsiab(1,t,q) [7 <0> +v (2q> +v <4q) +.oty 2410
" (k k k k
(it —1 1 2¢+1 4g+1 o 2ql1+1
T Fsant =10 |7 (1)+7 2g+1) 77 ager) T 2ql; + 1

. —2 2 2q-+2 4q+2 co o PeaT2
+ Fran(rit = 2.0) |7 <2>+7 sg+2) T \ugao) Tt 2qly + 2

[k k k k
+ Foab(r,t = q,q) |77 )+ 3q< >+ 5q< >+...+ quﬁq( )]
ab(Tt —q,q) _7 (q) 7 3,) T s, y 24l + q

ya 2 k k
sab(Tt—2g+1,q q—1 + ..+ 2q(l2g—1+1)—1 < >] 7
; ( q ) |:7 <2 > y ([ 1 )

(2.3.2)

where 2¢l; +j <k, 0<j <2¢—1and [; € N>.
Now pairing the terms Fg.qp(r,t — j,q) and Fyqp(r,t — j — q,q), where 0 < j < ¢ — 1, and
using Theorem 2.2.5 that demonstrates that Fs.qp(r,t,q) = (—1)*T°Fy0p(r,t — ¢, q), we can
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express (2.3.2) as
fs;ab(r + k,t, q) =

Faap(r:t,q) > vi<lz>+(—1)a+s” > v(f)

=0 (mod 2q) i=q (mod 2q)

+ Faalrt =1 | Y 7i<l;)+(_1)a+8b 2 ’Y@

|i=1 (mod 2q) i=14q (mod 2q)

+ Foap(rit — 2,q) Z 7t <IZ> 4 (—1)tsP Z 0 (f)

|i=2 (mod 2q) i=24+q (mod 2q)

+ Foap(rt —q +1,9) > (f) SR G S A S S (f) (2.3.3)

i=g—1 (mod 2q) i=2¢g—1 (mod 2q)

In turn we can now simplify (2.3.3) to

q—1
i k a+s % k
fsabT+ktq Z-Fsab Q) Z 7<Z~>+(_1)+b Z ry<2>
j=0 i=j (mod 2q) i=j+q (mod 2q)

q—1
fs;ab(k7j7 Q)]:S;ab(rat -7 Q)‘

j=0
OJ

Using the symmetry of the binomial coefficients of Pascal’s triangle and more generally that
far(N, N —t,q) = fap(N,t,q), an application to Lemma 2.3.2 is a sums of squares relation

given by the next two lemmas.

LEMMA 2.3.3 (duplication of squares). When k =r and taq = r, we have

q—1

]:s;ab(Zra T, Q) = 7T Z ]:s;ab(r, Js Q)z'
=0

Proof. Considering the two cases of the parameter s separately, we substitute £k = r and

tog = r into Lemma 2.3.2. Then when s = 0, we obtain

q—1 q—1 q—1
fab(2ra r, Q) = fab(r)j)Q)fab(r7T_j7 Q) = fab(’r?j)Q)fab(raja Q) = fab(ruju Q)27
=0 =0 =0
and when s = 1, we have
Fu(2r,7,q) ZFab v, 4, q) Fap(r ZFab 7,5, 0)(=1)"" 2 F(r, j, q)

q—1
ZFab (r,4:0)* =" Y Fap(r,4,9)*.
7=0
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O]

Example. When the parameters s = a = b = 1, and the variables »r = 8 and ¢ = 5, we have

4
F11(16,8,5) = (—1)82]-“1;11(8,]', 5)?
=0
= F11(8,0,5)% + F11(8,1,5)% + F11(8,2,5)% + F11(8,3,5)% + F11(8,4,5)*

= 3025 + 400 + 400 + 3025 + 4900 = 11, 750.

A slight variation of Lemma 2.3.3 occurs on replacing the residue class r with r — q. We state

this as a corollary.

COROLLARY. We have
qg—1
fs;ab(2ra r—q, Q) = ’YTA Zfs;ab(raja Q)2~
§=0
Proof. On replacing the residue class r with r — ¢ in Lemma 2.3.3, we obtain
fab(ru r—q— jv C.I) = fab("",j - Q7q) = fab(rvj + q, C.I) = (_1)afab(T7j2qa Q) = )‘f(lb(ra j2q7 Q)
O

Example. When the parameters s = b = 0 and a = 1, and the variables »r = 9 and ¢ = 6,

we have

5
Fo0(18,3,6) = (=1) > Fo10(9,4,6)°
i=0

= — (f10(9,0,6)% + f10(9,1,6)* + f10(9,2,6)* + f10(9,3,6)* + f10(9,3,6)* + f10(9,5,6)?)
=— (6889 + 729 + 729 + 6889 + 15876 + 15876) = —46, 988.



Chapter 3

The function L. .

The works of [30], [9] and [39] examined sequences created by a diagonal renumbering of
particular cases of the sequences Fg.q;. This chapter considers all possible cases, and these
sequences are notated as Lg.qpe. In Section 3.1, we define (in Definition 3.1.2) the function
L. qpe in terms of a shift of Fy.,, and with Equation (3.1.5) provide a generalised binomial
representation of the sum Lg.qpc(7, ¢, ¢); (whilst Appendix A.1 gives individual representations
for the parameters a, b and ¢). Then in Section 3.2, with Theorem 3.2.1 and Theorem 3.2.2,
we create sums of squares relations for the sums Lg.qp.(7, ¢, ¢) that utilise the relations of the

sums F.qp(7, t, q) developed in Lemmata 2.3.3 and 2.3.1.

3.1 Introduction

In this introductory section we state our main results, deferring proofs until the next chapter
which employs primitive 2¢-th roots of unity.

We take the two families (determined by parameter s) of four types of sequences (deter-
mined by parameters a and b), whose values are denoted by Fj.q(7, ¢, q), each one generating
either ¢ or 2¢ unique sequences of integers. Then by a shift of these functions we create
two new families of eight types of sequences (determined by parameters a, b and c), written
Ls.ape(r,t,q), where due to the repetition of sequences, we generally consider the restriction
¢ <t < m+ be. Here a third parameter ¢ € {0,1}, defined as in (2.1.1), is introduced to
indicate the parity of the sequence number 7 of the term Fy. (7, t,q), from which the new
sequences are derived, so that r = ¢ (mod 2).

Then similar to (2.1.2) we write

lope  ifs=0
Esubc = b o (311)
' Ly if s=1.

Now to relate the sequences Lg.qpc (7, t, ) to those of Fy.qp(1', ¢, ¢) we introduce a shift operator

L7 whose action on Fy.q(r',t, q) is given in the following way.

21
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Definition 3.1.1. For integer r and non-negative integer r', we define the shift operator L

by its action on Fsa(r',t,q) as
Ll Fsap(r',t,q) = Foap(r' +2r,t +1,q). (3.1.2)
Now putting 7/ = 1 in (3.1.2) we obtain
LiFsan(1,t,q) = Fsap(2r + 1, t +71,q) = Lsap1 (1,1, ), (3.1.3)
and putting ' = 2 and replacing ¢ with ¢t + 1 in (3.1.2) we have
LiFsap(2,t+1,q9) = Faap(2r +2,t+ 7+ 1,q) = Laapo(r,t,q). (3.1.4)

Then using (3.1.2) and (the reversed forms of) (3.1.3) and (3.1.4) we obtain the following

definition.

Definition 3.1.2. For integersr >0, ¢g=2m+b>1 and ¢ <t < m, where b,c € {0,1}, we

have
Ls.ape(r,t,q) = LsFgap(2—c,t+1—c,q) = Fsap(2r +2 —c,t+r+1—c¢,q).

In words, starting with the (2 — ¢)-th term (corresponding row) and the ¢-th sequence of
Fs.ab(r,t,q), we obtain the r-th term of the sequence Lg.qpc(r, ¢, q) by the r-th application of
the shift operator L;.

Now employing Definitions 2.2.1 and 3.1.2, and Theorem 1.2.1, we put R = 2r 42 — ¢ and
T=r4+t+1-c, and then we obtain

R R
— _ k b k
Ls;abc(ruta Q) = fs;ab(R7 T, Q) = E v <k§> + Ay E Y (k‘)

k=T (mod 2q) k=T+q (mod 2q)

e L(R=Ty)/q] R
—~Iy\[T/q d
AT ;) A <Tq+dq>. (3.1.5)

Remark. For the first ¢ = 2m + b residue classes of the alternating sum f1,(r’, ¢, q), the
sequence starts with ¢ 4+ 2¢ non-negative values. It then alternates between negative and
positive integers with period 4q. For the second ¢ residue classes the absolute values are
identical to the first ¢, but the signs are reversed. On application of the shift operator £ to
fi(r',t,q), the result is a new sequence generated by moving diagonally along the 2¢ residue
classes of (2.2.11) and so producing values that are all positive. See Appendix E.1, Tables
E.3 and F 4.

3.2 Sum of squares relation

We can apply the identities involving the sums of squares relations developed in Section 2.3

to also create similar relations for our functions Lggpe.
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THEOREM 3.2.1. For r > 0 we have

q—1
£s;abl(2r, 1, Q) = % Es;abl (7’, Js Q)2 (321)
§=0
Proof. From Lemma 2.3.3, we recall that
qg—1
Faab(2R, R.q) =7 " Foan(R, 4, q). (3.2.2)
j=0
We put R = 2r 4+ 1 to obtain
q—1
Foap(dr+2,2r +1,9) =7 Faan(2r +1,4,9)° (3.2.3)
j=0

From Lemma 2.3.1 we have the three term relation
Fs;ab(47a + 27 2r + 17 Q) = ]:s;ab(47n + 17 2r + 17 Q) + st;ab(4r + 17 27., Q)y

but from the symmetry of Pascal’s triangle and (due to their formation as repeated steps of
the modulus) the generalised Fleck numbers, we have
Foab(R,t,q) = v Fsap(R, R —t,q), or with R =4r +1,

Feap(dr +1,2r +1,q) = vFea(4r +1,2r,q),
and so
]:s;ab(4r + 21 2r + 11 Q) = 2fs;ab(4r + 1) 2r + 17Q) = 2’7fs;ab(4r + 17 2T7 Q)'

Therefore, (3.2.3) becomes

q—1
2Fwab(dr +1,2r +1,9) =7 Fean(2r +1,5,0)°,
=0
and so we have
~ qg—1 ~ q—1
ﬁs;abl(er 17 q) = 5 ['s;abl (T’,j - Q)2 = 5 ﬁs;abl (T,j, Q)Z-
=0 =0

O]

The squares of the terms Lg.qp.(, j, ¢) in (3.2.1) are not all unique, and we find that when
¢ =1 and either a = 1 or a = b = 0, there are exactly m pairs of non-zero terms. we state

this as a corollary to Theorem 3.2.1.

COROLLARY. When ¢ =1, and either a =1, or a =b =0, we have

'Cs;abl(2ra 17 2m + b) =7 Z Es;abl (7", ja 2m + b)Q (324)
j=1
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Proof. We will see in the Corollary of Lemma 4.5.3 that when R = (2n+1)¢+2t, (n € N>g),
that Fs1p(R, t,q) = 0. This implies that Fs.10(R,t,2m) = 0, when R is even, and
Fs11(R,t,2m + 1) = 0, when R is odd.

Let R =2nqg+ k, where 0 < k < 2¢ — 1, and, without loss of generality, let 0 <t < g — 1.
We then have

fs;ab(Ra t, Q) = ’YRfs;ab(Rv R_t’ Q) = Vk‘/rs;ab(R’ 2”Q+k—ta Q) = ’kas;ab(Ra k‘—t, Q) = ’kas;ab(Ru v, Q)v
where —q + 1 < v < 2¢q — 1. Moreover,

Fab(R,vg, ) ifo<v<g-—1
(—1)*Fsap(R,vq,q) ifv <0, orv>gq.

fs;ab(R7U7Q) = {

We are interested in the squares of the terms, and so we require |Fy.q (R, tq, q)| = | Fe.ab (R, vg, @)|-
If we consider the transformation of Fj.qp(R, tq, q) to Fs.ap(R,vq,q) as a mapping, then since
R (or k) is fixed, the mapping is bijective.

Now when ¢ = 1, we are employing the odd rows, and we consider two cases.
Case 1. When the parameters a = b =1, ¢ = 2m+1, and ¢, = v, only when R = 2ng+q+2t,
and then Fg11(R,t,2m + 1) = 0. Otherwise we have

| Fsiab(Rotq, @) = | Fsab(R, vg, Q)| where t, # v, (3.2.5)

and (3.2.5) holds for precisely m different values and when we put R = 2r + 1 then (3.2.4)
follows.

Case 2. When the parameter b = 0, the argument is independent of the parameter a, and
since ¢ = 2m is even, t, = v, has no solutions, and we only have (3.2.5), for exactly m different
values. So with R = 2r 4+ 1 we obtain (3.2.4) and, therefore, we establish the result. O]

Example. When the parameters s = a = ¢ = 1 and b = 0, and the variables » = 7 and

q = 6, we have

3
L1;101(14,1,6) = (—1)7 251;101(773} 6)* = — (L101(7,1,6)* + L101(7, 2,6)* + L101(7, 3,6)?)
=1

= —(39,879, 225 + 20,693, 401 + 2,683, 044) = —63, 255, 670.

In [31] the result of this corollary is applied in the particular cases of the function Li,11e,
with ¢ € {0,1}.
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THEOREM 3.2.2. We have
q—1
Es;ab0(2r + 1707Q) = Zﬁs;abl(raja Q)Q (3.2.6)
=0

Proof. Once more we take as our starting point, Lemma 2.3.3,

q—1
fs;ab(zRa R, CI) = '7R Z ]:s;ab(Ra ja Q)Q-
§=0
Now we put R = 2r + 2 to obtain
q—1
Foap(dr +4,2r +2,9) = Fuap(2r +2,4,9)°. (3.2.7)
§=0

We can then write (3.2.7) as

q—1 q—1
‘Cs;abO(Qr + 17 07 q) = Z ‘CS;abO(Tuj - Tr— 17 Q)2 = Z ﬁs;ab()(rvjv Q)27
7=0 7=0

The equations (3.2.1) and (3.2.6) is equivalently stated using binomial coefficients as

2
4r + 1) _ 7% L(2T+§Vq)/qj >\d< 2r + 1 )
V, +dg 2 —~ — W, + dg ’

A ALEr+D/4) Z

L(4r+1-V4)/q)
d(
d=0

where V; =2r+1 (mod ¢), Wy =7+ j (mod g), and

2

dr+4-V, — 2r4+2—W,
)\L(gr_;'_g)/qj \.( +Zq)/QJ )\d( 4y + 4 > _ g I_( +Z q)/QJ )\d< 2o + 9 >
ot Vy +dq = = W, +dg

where V;, = 2r + 2 (mod ¢) and Wy, =7+ 1+ j (mod ¢), and we recall that v = (—1)° and
A= (1)~



Chapter 4

Roots of unity closed forms

This chapter is primarily concerned with the expression of the sums Fj.q4 (7, ¢, ¢) and Lg.qpe (7, t, q)
in terms of their primitive 2¢-th roots of unity, and then secondly in terms of cosines. We
commence in Section 4.1 with Theorem 4.1.3 with an expression for the sums Fg.q(7,t, q)
in terms of their primitive 2¢-th roots of unity, and then in Section 4.2 with Theorem 4.2.2
giving an expression for the sums Lg.qp(7,t,q). These two theorems are then developed in
Sections 4.3 and 4.4 to obtain respectively, Theorems 4.3.3 and 4.4.2, that express each of the
two sets of sums in terms of cosines. Finally in Section 4.5 we examine expected divisibility

properties of the sequences Fj.qy(7,t,q). These are summarised in Theorem 4.5.10.

4.1 Expressing F,, in terms of the primitive 2¢-th roots of
unity

We commence by defining a primitive Q-th root of unity.

Definition 4.1.1 (primitive Q-th root of unity). For a given positive integer QQ we define a

primitive Q-th root of unity as a primitive solution x = (g to the equation
29 —1=0, (4.1.1)

when we map the (complex) number (g to e2™/Q Ty enhance the readability of the work, the

subscript Q is omitted when there is no ambiguity as to its value.

In Chapter 2 we introduced the function Fj.,;, where we recall that the parameter s is
a sign indicator, and that the parameters a and b represent the sum type and the modulus
respectively. Here we express Fi.qp(7, ¢, q) in terms of ( = e2m/2q

To enable us to achieve this we first require some lemmas.

LEMMA 4.1.1. Forr >0 and  a primitive 2q-th root of unity, we have

Foan(r,t:0) = fan(r,t,q) = ;q%f (<) B (1+¢) (14 (1), (4.1.2)
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Proof. Using (2.2.9) with s = 0, we have

fa(rt,a) = ) <,:> SO (/Z)

k=t (mod 2q) k=t+q (mod 2q)
Z Z - tdCdk;< ) Z Z C—(t—l—q)dgdk <7“>
2(] k=0d (mod 2q) k=0d (mod 2q) K

QL ( Z C_td(l +<d)r + (_1>a Z <—(t+q)d<1 _'_Cd)r>
d (

mod 2q) d (mod 2q)

2q
21q (Z ¢ td 1+€d (_1)a<‘7(t+q)d(1 +Cd)r>

d=0
| 200
=55 2 U (1 D)), (4.13)
d=0
For a primitive 2¢-th root of unity, we note that (2 = —1, and that —d = d (mod 2), so we
obtain
1 2q—1 1 2q—1 4
Jartia) = 5= 30 ¢+ (14 (0=17) = 5o D (¢f) ety (14 (1),
2q 2q
d=0 d=0
O
LEMMA 4.1.2. Forr >0 and ¢ a primitive 2q-th root of unity, we have
1 2q-1 —t T
Fra(rt.q) = Fu(rtig) = 5- >~ (¢) 7 (1=¢7) (14 (0=). (414)
2(] d=0

Proof. Using (2.2.9) with s = 1 and developing as in Lemma 4.1.1 we have

Fab(T’, t, Q) = (_1)tfab(r7 t q)

- X () X ()

k=t (mod 2q) k=t+q (mod 2q)

;(Z 3 C—tdcdk(_l)k<7"> a+b2 3 <(t+q)dcdk(1)k<;>)

k=0d (mod 2q) k=0d (mod 2q)

e D DS (R N e S L (O
q d (mod 2q) d (mod 2q)

=12qi (Cd)_t(l—é) (14 (-1t
2q d=0
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THEOREM 4.1.3 (roots of unity expression of the functions F..). Forr >0 and

¢ a primitive 2q-th root of unity, we have

q+e—1

Feab(r,t,q) = 2 > (CZd*)_t (1+ ~y(2d*€>r, (4.1.5)

d=e

where € = a + sb (mod 2).

Proof. Combining Lemmata 4.1.1 and 4.1.2 we obtain

Feap(r,t,q) = 21q Qil (cd) - (1 + ycd)r (1 + (—1)“+8b+d) . (4.1.6)

We consider the even case ¢ = 0 and the odd case € = 1 separately. When € = 0, then a = sb,

and we have

2q—1 - q—1
Fisan(r,t,q) Z (¢) B (1+7¢?) = ;Z (€29) ™" (14 ~¢%)". (4.1.7)
g=0
deven

Secondly when € = 1, then a + sb is odd and we have

2q—1 q
2 —t 1 Ciar
Foan(r,t:0) = o (¢) (1+ vcd) - Z (€ ) (1 +AC ). (418)
7= )
dodd
Combining (4.1.7) and (4.1.8) produces the result. O

Isolating the individual cases we have the following corollary.

COROLLARY. For ¢ a primitive 2q-th root of unity, and (; a primitive q-th root of unity,
the sequences F.qp(7,t,q) simplify to

q—1
Joo(r;t,q) = for(r,t,q) (Z (CH+¢) )
d=0

flO(rataq) fll(r t q ZC (2d—1)¢ 1+C2d 1) )

1 9=
Foo(r,t,q) = Fua(r,t,q) Z fa-¢r,

and
q

Foi(r,t,q) = Fio(r,t,q) Z (¢ — ¢H=hyr,
d:

Proof. From Theorem 4.1.3, we observe that ¢ = 0, either when s = a = 0, or when s = 1
and a = b; otherwise e = 1. We substitute into (4.1.5) according to the parameter s, and the

value of € = a + sb (mod 2). O
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Remark. We note that Fy01(r,0,1) = 2" and Fs.11(r,0,1) = 0; Fs00(r,0,2) = 2"~ and

(—4)r/4 ifr=0 ( )
(—)r=D/A if =1 ( )
0 ifr=2 (mod 4)
1(—4) =D/ ifr =3 ( )

fs;lO(rvoa 2) =

4.2 The function L., expressed in terms of (y,

Recalling the notation employed in (3.1.1), we have

r (rt,q) lape(ryt,q)  ifs=0
s;abe\T5 Uy =
0 e Lape(r,t,q) if s=1,

and from Definition 3.1.2, that
Lgape(r,t,q) = LoFsap(2 —c,t+1—c¢,q) = Foa(2r +2 —c,t +r+1—c,q). (4.2.1)
Here the shift operator, L7, is given by Definition 3.1.1 as
Ll Fsap(r' t,q) = Feap(r' +2r,t+1,q).

Moreoever, by Theorem 4.1.3, Fy.,p expressed in terms of ¢ a primitive 2¢-th root of unity, is
1 2271 —t T 1q+5—1 —t T
Fear(rt,0) = 5= > <Cd) (1 +7Cd) (1 +7b(—1)“+d) ==Y <C2d76> (1 +7€2d’6) ,
2q d=0 q d=e
(4.2.2)
where € = a + sb (mod 2). If we make the substitution 2r +2 — ¢ for r, and t + 1 — ¢ for ¢ in
(4.2.2), we obtain the corresponding expression

q+e—1

L.ape(r,t,q) = (1] Z <C24_€>*(t+r+1fc) (1 +7<2d—e>2r+270‘ (4.23)
d=e

However, this simple substitution gives no justification of the shift operator L£}. To fulfil this

objective we introduce the function, 2!, given as follows.

Definition 4.2.1. For sign s, integers r and d with 0 < d < 2q — 1, and { a primitive 2q-th

root of unity, we have
-
21(d,2q) = (¢ ¢t 29) (4.2.4)
This then leads us to the following more informative definition of the shift operator, L.

Definition 4.2.2 (shift of Fy.43). For 2i(d,2q) given by Definition 4.2.1, and ¢ a primitive
2q-th root of unity, we have

2g—1 !

Ll Fsap(r t,q) = qu 3 (1 n (—1)“*8*’”) (gd) B (1 +’y(d> 2(d, 2q). (4.2.5)

d=0
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When incorporated into the function Fg.q5(7”, ¢, ¢) in this manner, 2% (d, 2¢) produces a “shift”

demonstrated by Lemma 4.2.1.

LEMMA 4.2.1 (term shift). For ¢ a primitive 2q-th root of unity, we have

7/ +2r

L Faan(r' t,q) = 21q qz (1 + (—1)“8””) (gd) ) (1 + 74‘1) . (4.2.6)
d=0

Proof. From Definitions 4.2.1 and 4.2.2 we have

L 1) =5 > (1220 ) (1) (1¢) (¢h 4 ¢ 429
d=
- (1 Caymt) ()™ (1 9¢t) (¢ 41+ 290y
:21(] 2:—01 (1 ) (_1)a+sb+d> (Cd>—(t+r) (1 N 7<d> v’ +2r . (4.2.7)

O

We now state (4.2.3) as a theorem.

THEOREM 4.2.2 (roots of unity expression of the functions Lg.qp.). For ¢ a primitive
2q-th root of unity, we have

q+e—1

Ls.ape(1,t,q) :; Z (de_E>—(t+r+1—8) (1+7g2d—e)2r+2—c’ (42.8)
d=c

where € = a + sb (mod 2).

Proof. From Lemma 4.2.1 and then Theorem 4.1.3 we have
2q—1

LiFsap(r'st,q) = Feap(r' +2r,t+1,q) = 21q Z (Cd> —(t+r) (1 +fycd>7“’+2r <1 +7b(_1)a+d)
d=0

1 —\ " (t+r) e ' +2r
= <<2d ) (1 g2 ) . (4.2.9)
Now we recall from Definition 3.1.2 that

Lsapo(r,t,q) = Feap(2r+2,t+7+1,q), and Lsap(r,t,q) = Feap(2r+1,t4+7,q). (4.2.10)

Combining both forms of (4.2.10), we let ' = 2 — ¢, and replace ¢ with ¢t + 1 — ¢, in (4.2.9)

to obtain
q+e—1

1 —(t+r+1-c) 2r+2—c
ﬁgfs;ab(Q —ct+ 1-— c, q) = & Z (CQd—e> (1 + 7C2d_6>
d=e

= Feab(2r +2—c,t +1r+1—c,q)
= Es;abc(rat7Q)~
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To express each sign case of L. explicitly we have the following corollary.

COROLLARY. For ¢ a primitive 2q-th root of unity, and (4 a primitive q-th root of unity,
the sequences Ls.qpe(r,t,q) simplify to

—1
12 (t+r+1) 2r+2
looo(r,t, ) = lowo(r, t,q) = — ( 5’) ( + g) ’
q
d=0
1t —(t+r) 2r+1
loor (7, t,q) = lonn (r; 8, ) = — (Cg) (1 * ff) ’
15%

q _ . i
loo(r, t,q) = liwo(r,t,q) = ;Z ( 2d—1> (t4r+1) ( 2d— 1)2 H’
d=1
q B , §
d=1

1
LOOO(Tvtv Q) = LllO(rata q) = - Z
q d=0
1 - —(t+r) 2r+1
Loo1(r,t,q) = Li11(r,t,q) = . ( 3) (1 —Céf) ;

q e )
Lo1o(r,t,q) = Lioo(r,t,q) = ;Z (Czd_1> (t+r+1) (1 - 1)2 +2’

and

(t+r) 2r+1
Loui(r,t,q) = Lioa(r,t,q) Z( (2= 1) (1 _ ng_l) .

=1

Proof. The result follows on substitution of the paramers s, a, b and ¢ into (4.2.8), according

to e = a+ sb (mod 2). O
Remark. We note that Lg010(r,0,1) = 4" 717¢2%+2¢ and L11.(r,0,1) = 0;

LS;OOC(T7 C, 2) = ’YT+122T+1_C and ES;lOC(T7 c, 2) = ,yr+12'r+1—c.

4.3 Expressing the sums F; (7, t,q) in terms of cosines

To obtain the sums Fj.qp(r, ¢, ¢) in terms of cosines we utilize the expressions developed in the
previous section but also introduce Lemmata 4.3.1 and 4.3.2. The first involves the expression

of 2z in terms of a cosine.

LEMMA 4.3.1 (cosine form of z). We have

2 (d, 2q) =" <2 cos (M»Qr. (4.3.1)

2q
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Proof. We show that when s = 0, (4.3.1) is equivalent to

7Td 2r
z0(d,2q) = <2 cos (2(]>> ,
and that when s = 1, we have

2(d, 2q) = (—1)" <2 cos <7T(d2;q)>>2

¢4+ ¢ =2cos <7qu>

Then separating the s = 0 and s = 1 cases of the function z}, we have respectively
r d r
2p(d, 2q) = (Cd+C7d+2) = <2 (COSW+1>)
q
d T d 2r
=2 2cos27r——1+1 = QCOSL ,
2q 2q

(d20) = (¢1+ ¢ -2) = (2 (cos”qd . 1>>
= (2 (1 — 2sin? ;TZ — 1>> = <4 <—sin2 g(‘j))
o (2 20) = (s (T 2))

Secondly we derive a cosine form of the expression 1 + v(?. To achieve this we introduce a

We first note that

and

O]

primitive 4¢-th root of unity w so that w? = (.

LEMMA 4.3.2 (cosine form of 1 + v¢%). With w? = ¢, we have

14 ~¢4 = 2udt3es (cos (7r(d—sq)>) .
2q

Proof. We have
14 7¢ =1 4 qw? = ol (w*d n wd) . (4.3.2)
Let us consider each case of s in (4.3.2) separately. Then when s = 0, we write
w? x 2R w? = 2w cos <27Td> = 2w? cos (Wd) (4.3.3)
4q 2q
When s = 1, (4.3.2) becomes

2 d d
w? x (=21) Sw? = —2uw?sin ) _ 202 sin | 2= ) = 2wt gin [ 22 ). (4.3.4)
4q 2q 29

On combining expressions (4.3.3) and (4.3.4) we obtain the result. O
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We are now in a position to state the following theorem.

THEOREM 4.3.3. With r' = 2n + c € Z, we have

2o IS (= 20)(2d — ¢ — seq) (2d ¢~ sq)\"
g m(r € — scq us € — sq
_— g Cos cos —————= ,
q < 2q > < 2q )

]:s;ab(rla t, Q) =
d=e

where € = a + sb (mod 2).

Proof. Recalling from Theorem 4.1.3 the expression for Fy.qp(1’, ¢, q), in terms of ¢ a primitive

2g-th root of unity, we have

q+e—1

Foap(r',t,q) = ; > () B (1 +7g2d—5>rl . (4.3.5)

d=e
We use Lemma 4.2.1, and (putting » = n) the function z!', given by Definition 4.2.1, to
express (1 +7C2d_€)w in terms of a cosine. Then to similarly express the other ¢ term in
(4.3.5) as a cosine we consider its real or imaginary part as appropriate.
From Definition 4.2.1 and, with d replaced by 2d — €, then Lemma 4.3.1, the function z7,
expressed in terms of a cosine is

" 2d — € — 2n
Z?(Qd -6 QQ) = (CQd_e + <€_2d + 2’7) = 'yn (2 cos (71_(2;SQ)>> .

So with ' = 2n + ¢, if ¢ = 0, Lemma 4.3.1 is sufficient to express the term (1 + ’yCQd*E)n as
a cosine. However, if ¢ = 1, a single (1 + 7{2‘1_5) term remains. From Lemma 4.2.1 we write

(4.3.5) as

1 7t ! —(t—n) c n
Faan+etig)= 30 () 7 (1490 ) (@ h e ) (436)

—€
Then from Lemmata 4.3.1 and 4.3.2, equation (4.3.6) becomes

,ynw3qsc22n+c qte-1

2n
3 0o o <7TC (2d —e - SQ)> <COS <7T (2d — e — SQ)>> '
q o 2q 2q

(4.3.7)

By consideration of the imaginary part of the w term when s = ¢ = 1, (and then we have

1°¢ = w?¢ - a fourth root of unity), and the real part otherwise, we obtain

rwAasegnate et m(2n + ¢ — 2t)(2d — € — s¢q) 7(2d — € — sq) |\ "
T Z cos % cos B PR

q d=e

/

s q*ilcos <7T(1"’ —2t)(2d — e — scq)> (COS <7r (2d — ¢ — sq)))r

q o 2q 2q
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COROLLARY. In terms of cosines the sequences Fs.qp(1,t,q) can be expressed as

r 4— r
foo(rst,q) = foi(r,t,q) Z ( T2t)d> <COS 7;d> ;

d=

fro(r,t,q) = fu(r,t,q) ZCOS <7T T_Qt)q@d_ 1)> (COS <7r(2§q—1)>>r,

Foo(r,t,q) = Fu(r,t,q) = (1)( 2r,qlc ( T_Qt)@d_cq)) <Sm7rd>r’

d=0 2q

and
(r—c)

r = r Zﬂ y cos m(r —2t)(2d — 1 — cq) sinw "
For(r,t,q) = Fio(rt,q) ; ( >< 2 >

q 2q

Proof. The result follows on substitution of each set of parameters into Theorem 4.3.3, and

expressing shifted cosines as sines when applicable. ]

4.4 Expressing the sums L;,.(7,t,¢) in terms of cosines

To express Lg.qpc(7, t, ¢) in terms of cosines we employ Theorem 4.3.3 and the following lemma.

LEMMA 4.4.1. We have that

cos (w(c - 2t)2(qD — ch)) (COS <7T(D2q_sq))>2_c

= cos <7T(C - Zt)@;lq— D - SCQ)) (COS (77 (2q —22? — 8q)>)2—c.

Proof. We consider the four cases arising from the two parameters s and ¢. Employing stan-

dard trigonometric identities and when applicable, writing shifted cosines as sines, and putting

T =1 — 2t, we have (commencing with the case s = ¢ = 0)

2nt(2¢ — D) 5, w(2q — D) 27TtD( 12 cos? ©D 2ntD 5 7wD
cos cos = cos —1)%cos® — = cos cos” —
2q 2q 2q 2q 2q 2q
T(2q — D 2¢q—D TD D TD D
cos (2 )cosw( a ) :(—1)0087(—1)cos7r—:cosw COSL,
2q 2q 2q 2q 2q 2q
27t(2g — D 2q—D 27tD D 27tD D
cos =2 (2 ) sin? ™ (24 ) = cos 2 (—1)%sin? T —cosZt 2 L,
2q 2q 2q 2q 2q 2q
and
T(2q — D) (2¢ — D) 2mwtD . 7wD 2ntD . wD
sin sin = (—1)sin (—1)sin — = cos sin —
2q 2q 2q 2 2q 2q
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We now state Theorem 4.4.2.

THEOREM 4.4.2. We have for ¢ > 2
,Yr+lfc227'+3fc

ﬁs;abc(ra t> Q) = T X

(a—21)st . “‘1“2”/ 2 . <7r(c —21)(2d — e — scq)) (COS (w (2d — e — sq))>2’“+2—c |

o 2q 2q

where € = a + sb (mod 2).

Proof. From Theorem 4.3.3 we have

Lr/2)gr ot — e e r
~Lr/212 Z cos (7‘((7" 2t)(2d — € scq)) (COSW(2d € sq)> .
2q 2q

]:s;ab(ra t, q) =
d=e¢

Replacing r with 2r +2 — c and ¢ with ¢t +r 4+ 1 — ¢ and simplifying we obtain
Feab(2r+2—c,t+r+1-c,q)

r+l—co2r+2—c gte—1 —98)(2d — € — 29 — € — 2r+2—c
S — Cos mle=24)(2d = € = scq) cos m(2d—c=sq) . (4.4.0)
q 2q 2q

d=e¢
From the Corollary to Theorem 4.1.3, it is observed that the sequences Fo.op(7,t,q) (when
¢ = 0), has a single term (with value 1) at d = 0. The corresponding term, (with value (—1)*),
in the sequences Fi.44(r,t,q), occurs at d = q/2 when a = b =€ =10, and at d = (¢ + 1)/2
when ¢ = 0 and b = € = 1. Then from Lemma 4.4.1, for either value of €, each of terms
for 1 < d < |(¢g —1)/2], can be paired to another equal in value, in the upper half of
the summation interval. Hence, following separation of the single term, we halve the upper
summation limit in (4.4.1), and consequently scale the expression by a factor of 2, therefore,

producing the result. O

COROLLARY. In terms of cosines the sequences Lsapc(7,t,q), where ¢ > 2, can be ex-

pressed as

227«+3 1 L(g—1)/2] 2 dt wd 2r4-2
lovo (T, t,q) = -+ cos () <cos ) ,
g \2 = q q
227~+2 1 L(q_l)/2J 7Td(]. o Qt) wd 2r+1
lop1(r,t,q) = -+ cos <> <cos > ,
ob1( ) . 5 dZ; . .
o2r 3 W2 rog 1yt x(2d — 1))\ 2
lipo(r, t,q) = cos () (cos <>> ,
worta) = == 3 ; 5

d=1

g2r+2 L4/ m(2d — 1)(1 — 2t) m(2d —1)\\*
llbl (T’ t7 C.I) - q dzg Ccos ( 2q > <COS < 2q >> )
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_1\r+192r43 1\t (¢-2)/2 2r+4-2
Looo(r,t,q) = (=2 ( 1) + g cos < > (sin 7Td> ,
q

L t =
001(7,t,q) . 5+

(22 [(—1yr U 2’/2sm <7rd(1—2t)> ( wd>27‘+1
q

d=1

Lo1o(r,t,q) = (_1)T+122T+3 = 1)t + 5 o8 <(2d_1)> (Sin <7r(2dq_1>>>2r+2 ’

9 d=1 2

(q=1)/2 2r+1
(=2 [ (—1)t 7(2d — 1)(1 — 2t) . (7(2d—1)
Loi1(rt,q) = + E > sin sin g ,

q 2q
_{)r+lg2r+3 92 1 N\ 22
Lioo(r,t,q) = ey Zcos <7T(2d)t> (sin (7T(2d)>> ,
q d=1 q 2q
/2 2r+1
(—1)razrt2 IS <7r(2d— 1)(1 - 2t)> ( _ (W(Zd— 1)>>
Ligi(r,t,q) = —— sin sin [ ——— ,
101( ) . ; 2 %
1 r+1227“+3 (g—1)/2 2 2r4-2
Liio(r,t, q) = (i i Z cos <7mlt> <sin 7Td> ,
q ot q q
and
_1)ro2r+2 (q—1)/2 d(1 — 2t d\ 2t
Liii(r,t,q) = =y Z sin <7T()> <sin W) .
9 d=1 q q

Proof. The result follows on substitution of each set of parameters into Theorem 4.4.2, and

expressing shifted cosines as sines when applicable. O

Remark. When the parameter ¢ = 1 and the variable ¢ = 1, that is for the sequences
Ls.ap1(r,1,q), we find that the sums conveniently simplify and can, therefore, be expressed
concisely as the sum of (r + 1)-th powers of 4ycos?(7X/2q), where X is a sum involving d,

a, b, s and ¢. This is elaborated on with some examples in Appendix A.2.

4.5 Divisibility properties of the sequences F;..(r,t,q)

We seek to determine to what extent the known divisibility properties established by Fleck
[17] and Weisman [44] can be extended to the generalised Fleck sums Fy..4(7, ¢, q).

Definition 4.5.1. We denote the highest exponent of the prime p in the nonzero integer F
by ordy,(F'). This is referred to as the p-adic valuation of F. If F = 0 we write ord,(F) = oco.

We state Weisman’s result [44] as our Lemma 4.5.1.
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LEMMA 4.5.1. When q = p®, where p is an odd prime and e is a positive integer, the

following conditions hold:

r— pe_1 r—2e1
ordy(Fs11(r,t,p ) > \‘pe_l(p%l)J , and 07’d2(.7:s;00(7“,t,2 ) > \‘26_1J . (4.5.1)
Proof. We recall the result (1.1.3) of Weisman.
e—1
-1 k<r> =0 (mod p*), where a = V_pJ . 4.5.2

k=t (mod p¢)

From (2.2.6) and (2.2.5) we are able to apply (4.5.2) directly to the sums Fg11(r,t,p¢) and
F s;00(7“ ,t, 2¢) respectively. o

The second inequality of (4.5.1) can take the succinct form as given in Corollary 1 below.
COROLLARY 1. When q =2° and r = j2° + 1, where 7 > 1 and 0 <[ < 2%, we have

2j—1 ifl=0

, . (4.5.3)
2] if 1 <1 <2¢—1.

Ord2(fs;00(rat7 26)) > {

Proof. The result follows upon substitution and simplification of the second inequality of
(4.5.1). O

When e = 1, then ¢ = p and Lemma 4.5.1 simplifies to (1.1.2), that is, the result of Fleck
[17], producing Corollary 2 (below).

COROLLARY 2. For g =p, an odd prime, we have the following inequalities

1

ordy(Fsa1(r,t,p)) > \‘rlJ and orda(Fs.0(r,t,2)) >r — 1.
p [e—

Proof. This is how the result of Lemma 4.5.1 simplifies when e = 1. O

Remark. In actual fact ordy(Fs,00(r,t,2)) =7 — 1.

Lemma 4.5.1 establishes divisibility properties for certain types of Fleck sums when ¢ = p°
is a power of a prime p. We next employ some further lemmas to examine relations between

the various types of sums Fi.qp(r, ¢, q).

LEMMA 4.5.2. When r = 2nq + q + 2t, where n > 0, we have
fs;Ob(ra ta Q) = 2.7:3;00(7’, t: 2(])'

Proof. When r = 2nq + q + 2t and the modulus is 2¢ by symmetry we can manipulate the

residue class ¢ of the sum F00(r,t,2¢q) as

fs;OO(r7 ta 2(]) = PYTIS;OO(’“ r— t? 2q) = ’}/qfs;OO(ra an +q+ ta 2(]) = '.qus;OO(nt +q, QQ)



38

and so

Fs00(2nq 4 q + 2t,t,2q) = I Fs00(2nq + q + 2t,t + q, 2q).

However, from Theorem 2.2.5 we also have

Foop(2ng + g+ 2t,t,q) = Fso0(2ng + g + 2t,t,2q) + v Fs00(2ng + g + 2t,t + ¢,2q)

=2Fs00(2ng + q + 2t,t,2q)
as required.
LEMMA 4.5.3. We have the following relations:
Fs11(r,t,q) + Fso1(r,t,q) = 2F00(r, 1, 2q),

and

fS;OO(ra tv Q) + fs;lO(rv tv Q) = 2;5;00(7’, t7 2Q)

Proof. From Theorem 2.2.5 we have
]:S'a, t — -1 sk r -1 a+sb -1 sk r
MR ENED SN (RS > o)),
k=t (mod 2q) k=t+q (mod 2q)

and so from (2.2.6),

Fs; 11(7” t,q) + Fs01(r,t,q

-y sk(£;+ s ()
)+

k=t (mod 2q k=t+q (mod 2q)

r o)

k=t+q (mod 2q)

r
k

sk;

k=t mod 2q

=2 ) (-D* <;> = 2Fs00(r,t,29),

k=t (mod 2q)

and from (2.2.5),

Fs; 00(7“7t, q) + Fso(r,t,q)

B
()-

+
|
[a—y
=
>
YR
03
N

k=t mod 2q) k=t+q (mod 2q)

r
k

sk

BM
~—~
|
[
N—
»
ES
> 3

k=t mod 2q) k=t+q

—9 Z (—1)%F <]:) = 2F00(r,t,2q).

k=t (mod 2q)

od 2q)

(4.5.4)

(4.5.5)

(4.5.6)
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COROLLARY. When r = 2nq + q + 2t, where n is a nonnegative integer we have
~Fs;lb(znq +q+ 2,1, Q) =0.
Proof. We substitute the result of Lemma 4.5.2 into (4.5.4) and (4.5.5) of Lemma 4.5.3. [

Equation (4.5.5) indicates a divisibility property of the sum Fg.10(r,¢,2¢) that we explore in
Lemma 4.5.4.

LEMMA 4.5.4. With q =2° and r = j2° + 1, where j > 1 and 0 <1 < 2°, we have
ordy(Fs;10(r,t,2°) = orda(Fsoo(r, t, 26+1)) > 7.
Proof. Rearranging (4.5.5), we have
Fsao(r,t,q) = 2Fs00(r, t,2q) — Fso0(r, 1, q) (4.5.7)
and so

Ordg (Fs;l(] (7“, t, 26)) = min (07"d2(2fs;00(7", t, 26+1)), OT’dQ (.7:5;00 (T, t, 26)))

r—2¢ r—2e—t

> i ( (21711 o, (zt J))
2 2t pa1-9¢

> min (07”612 (2L * J " ) ,ords <2L 2 J))

>min(j,2j —1) > j

since [ <2¢—1and j > 1.
When r = m2¢t! +2¢ 4 2t (m > 0), then from the Corollary of Lemma 4.5.3, we have that
Fs10(r,t,q) = 0. However, by definition ords(0) = oo > j as required. O

4.5.1 The primality of the term 1 — (,

At this point we are yet to state any divisibility properties of the sum Fs.01(r,t,q), or to
the more general case of each of the functions Fg.q; when the modulus ¢ has more than one
distinct prime factor. We next seek to address these questions, but this first requires a brief
examination of prime ideal factors in the cyclotomic field Q({,) that comprise the terms
Foab(r,t,0°).

LEMMA 4.5.5. When q is a prime power p° and (4 s a primitive q-th root of unity, the
term 1 — (g is prime in Q((y).

Proof. Since ¢ = p° and (, is a primitive g-th root of unity, we have ¢§ = 1, but Cg/p # 1,
and so (4 is a root of the equation
z?—1

0= =1+4a9/P 4 22/P 4 4 g-Da/p (4.5.8)
xd/p — 1 ’
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and the degree of the field Q((,) is f = ¢(q) = p*~1(p — 1).
Now let A = 1 — (4, so that on rearrangement (; = 1 — A\. With y = 1 — z, the minimal
polynomial of {; on the right hand side of (4.5.8) becomes

F@) =14 (L= g)7P 4 (L= ) 4 (1) (459
On expansion of (4.5.9) with f = (p—1)g/p, (since there are p terms) we obtain the simplified
minimal polynomial of A:

f@) =y +ary’ 7+t ay+p. (4.5.10)

In Q(¢p), (4.5.10) then factorises as

f)=w—= )y —A2)...(y — Ayp), (4.5.11)

where A\; = (1 — qui) for 1 <i < f and (k;j,q) = 1.
From (4.5.10) and (4.5.11) we now have !

*

f
Norm(X\;) = [ A = [J(1 - &%) =, (4.5.12)
=1

ki
and since p is a rational prime integer, we see from (4.5.12) that each of the (field) integers

A; are also prime. O

LEMMA 4.5.6. FEach of the numbers \; = (1—(51') with 1 <@ < f and (k;, p°) = 1 generates

the same principal degree 1 prime ideal in Q((,). Furthermore p is a totally ramified prime

n @(Cq)
Proof. From (4.5.12) of Lemma 4.5.5 we have that as (field) integers in Q(¢,), 1 — ¢, is
prime when (k;,q) = 1. So that as ideals we have
(1—=¢"™) [ (p)-
However,
L= ==+ G+ G+ 4T
a = q a7 5g T 5
and so similarly as ideals

(1= Ry = (1= )L+ G+ o+ iy, (4.5.13)

We denote N((\)) as the norm of the ideal (\). Now since it is a totally multiplicative
function, we take the norm of both sides of (4.5.13) and using (4.5.12) we have

p=N{1=C")) =N =N+ G+ G+ +¢h)
=pN({(L+ ¢+ C+...+¢)
=np.l.

'« indicates that the product is taken over the set of values, where k; is relatively prime to and less than q.
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That is, the ideal (14 ¢+ 2+ ...+ Cé“i*1> is a unit and each of the ideals (\;) = (1 — (C]fi)
is the same prime ideal (\). Therefore, in Q((,) the prime () is a principal ideal number, so

that we have as ideals

/ f
(ITr) =TI = 0 = o), (4.5.14)
i=1 i=1
demonstrating that p is a totally ramified prime in Q((,). O

In the sums Fo.q5(r, t, p°), we consider the terms 1 + (o, instead of those of 1 — (4, so its
seems pertinent in the next two lemmas to demonstrate the equivalence of the term 1 + ng,

where (g,2q) = 1, to that of a corresponding term 1 — Cg, where (d, q) = 1.

LEMMA 4.5.7. With modulus q = p°®, where p > 2 is prime and (; a primitive q-th root of

unity we have

[Ta-¢h=TIa+e). (4.5.15)
d g
Proof. When (d,p) = 1, then
2mid 2mg  2mi2d 271(2d+-q) 2mg
—Cg = —e q = e 2(] [ 2(] = e 2!1 = e 2q = ng

Therefore,
1-¢l =1+,

and with g = 2d + ¢ (reduced mod 2q if necessary), since (2d,q) = 1, we have (g,2q) = 1
so that the mapping is injective. Moreover, ¢(q) = ¢(2q) = p° '(p — 1) and so it is also

surjective. Consequently we obtain (4.5.15) as required. O

LEMMA 4.5.8. With modulus ¢ = 2° and (; a primitive q-th root of unity we have

[Ta-¢hH=T]a+chH. (4.5.16)
d d

Proof. Let ¢ = 2¢ and (d,2) = 1, then

J 2mad 2mq  2m2d 2me(2d+-2¢) 2ma(d+2¢1) 2mg
_ — _ — 2 2 — e+1 — e — — (9
Cq—eq—eqeq—eZ =e 2 —eq—Cq.
Therefore,
d _
1- Cq =1 + Cg7

and with g = d 4 ¢/2 (reduced mod q if necessary), since (d,2°"') = 1, we have (g,q) = 1 so
that the mapping is injective. Moreover, it is clearly also surjective. Consequently each value

of g corresponds to one value of d and so we obtain (4.5.16) as required. O

Now in Lemma 4.5.9 and its Corollary, we are in a position to examine the more general

case: when the modulus ¢ has more than one distinct prime factor.



42

LEMMA 4.5.9 (Huxley’s Disappointing Lemma). When q has two distinct prime factors p

and p', then 1 — (4 is a unit.
Proof. Let ¢ = pp'r, w = 5”“, W' = ¢}". Then w is a primitive p-th root of unity, and o’ is a

primitive p’-th root of unity, so that

(1=¢o) [ (1 =w) [(p), and (1= () [ (1 =) | {P)
and, therefore,
(1= Cq) | (p,1)-
However, (p,p’) = (1), and therefore, (1 — (;) is a unit. O

COROLLARY. When q = pp'r, where p and p' are two distinct prime factors, then the

term Fg.ab(r,t, q) possesses no divisibility properties.

Proof. From Lemma 4.5.9 when the modulus ¢ has more than one distinct prime factor, the
ideal (1 — () is a unit. Therefore, from (4.5.14) of Lemma 4.5.6 we will have

(1-¢) = (1),
and we cannot expect to observe regular powers of the prime factors, comprising the modulus

¢, to appear in the sums Fj.q(7, ¢, q). O

Finally we summarise the divisibility properties contained in the above Lemmas with
Theorem 4.5.10.

THEOREM 4.5.10. The only expected divisibility properties of the sums Fgqp(r,t,q) are:

1.

dy(Fa11(r, £, p°)) > 74_77)671
orap(Js;11\1, 1, P sl pe_1<p_1) )

and when r = j2°¢ + 1, where 7 > 1 and 0 <[ < 2¢,

OTdQ(fs;()o(?“, t, 2€>) > \\

7'—26_1J_ 2j—1 ifl=0
2¢=1 | 125 fl1<l1<2¢e—1,

and

Ord2(]:s;10(rv t, 26)) > ]

Proof. Divisibility property 1 follows from Lemma 4.5.1; inequality 2 from Lemma 4.5.1 and
Corollary 1 of this lemma and finally inequality 3 from Lemma 4.5.4. The fact that these
particular sums are the only ones to be expected to possess these divisibility properties follow
from Lemma 4.5.9 and its Corollary, that prevents the sums Fj.q(r, ¢, ¢) with moduli ¢ of

more than one distinct prime factor from containing a regular power of these prime factors

P1,P25---3Pn- ]



Chapter 5

Recurrences

In this chapter our primary interest lies in the establishment of an order n linear recurrence
relation involving n 4 1 consecutive terms for each sequence ¢ of the sums Lg.qpc(7, t, 2m +b).
We denote this linear recurrence polynomial by Rg.qy(z,m) and unless ¢ = 0 and b = 1,
we find that n = m. In this individual case we have that n = m + 1. Previous studies (][9],
[38] and [39]) have determined that the Fibonacci (Fg(z)) and Lucas (Lg(z)) polynomials
and the (monic) Chebyshev polynomials of the first (Cg(z)) and second (Sg(x)) kind are
central to these recurrence relation polynomials and consequently we devote a section to the
development of each of the four types. In Theorem 5.4.1 and the Corollary to it, we combine
these four types into a single polynomial that we denote as A’ (z, Q). Finally in Theorem
5.6.1 we then express Rqp(x,m) in terms of A7, (z, Q).

The Jacobsthal and Jacobsthal-Lucas polynomials are employed in Chapter 8 to express the
generating function of the functions Ls..p., but due to their close respective relations to the
Fibonacci and Lucas polynomials they are also discussed alongside these latter poynomials.
We start by considering a polynomial Ag(z) that encompasses the four polynomials Fg(x),
Lgo(z), Co(x) and Sg(z), which we refer to collectively as “Fibonacci type” polynomials.

Definition 5.0.1. With Q = 2M + e, where M > 0 and 0 < e < 2 are integers, we denote
by Aorrre(®) a polynomial that represents the Q™ Fibonacci, Lucas or (monic) Chebyshev
polynomial of the first or second kind. Accordingly we write

M
Aope(T) = Z(—’Y)M_kB(kv M)JTQHC_J[
k=0

as the gemeralised sum form of the polynomial. Here f is determined by

f:{O if Aq(x) # Fo(x)
L if Ag(x) = Fo(x),

where Fg(x) is the Q™" Fibonacci polynomial; ~y is given by

. | =1 if Ag(z) is a Fibonacci or Lucas polynomial
is
TP if Ag(x) tis a (monic) Chebyshev polynomial,

43
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and finally B(k, M) is a function of one or binomial coefficients.

Remark. Defining @ in this manner puts emphasis on the fact that the function summed
up to M.

Definition 5.0.2. For function Asprie defined as in Definition 5.0.1 and parameterr € {0,1}
we also have the modified polynomial A3y,  (x) such that

M
Apprye(T) = (V) " Aoprse(VE Z YM=EB(k, M)x*
k=0
Remark. Here the parameter r represents a “(square) rooting” of the variable x of the

original function, Ag.

The notation employed in Definitions 5.0.1 and 5.0.2 have been selected to mirror as closely

as possible the current formats of each of the two aforementioned groups of polynomials.

5.1 Fibonacci, Lucas and Jacobsthal polynomials

The Fibonacci and Lucas ploynomials are well documented and for a detailed exposition
of these polynomials the reader is directed to [29]. The main purpose of their inclusion is
to examine their polynomial representation as binomial sums that will be pertinent to our
current work in terms of the recurrence polynomials and the generating functions. To this
end the Jacobsthal polynomials are also important to us. However, on researching these latter
polynomials in the literature this author feels that there is some ambuigity as to the precise
definition of these polynomials (and numbers) and so a little work has been done to hopefully

help clarify this matter.

5.1.1 The Fibonacci polynomials, F),(z)

With Fy(x) = 0 and Fi(x) = 1, the Fibonacci polynomials are defined by the recurrence
formula
Fn(IL‘) = l’anl(fL‘) + Fn72(SL’). (5.1.1)

With x = 1, we have that F,,(1) = F},, the n-th Fibonacci number. These polynomials are
generated more efficiently, either (for n > 2) by a product formula, or (for n > 1) by a

binomial sum, given as

= km L D2 k1
Fo.(z) = H (m — 21cos n) = Z < ) )x”%l.

k=1 k=0
Of particular interest to us in this present study are considering separately the specific
cases of n = 2m + b, being either an even (n = 2m = 2(m — 1) + 2), or an odd (n =2m + 1)

number. These even and odd forms make reference to the fact that the upper limit of the
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(1—0).
Therefore, replacing n with 2M + 2 — b, according as to the parity of n, we write the nt*

sum is M = m —

Fibonacci polynomial as

WE

Forryop(z) =

<2M + 1k— b— k) x2M+17b72k7 (5.1.2)

>
Il

0
or on reversing the summation

M

Z M+k+(1-0) 2k+(1-b)
— 2k + (1 —b) ’

From our current perspective, it is of value to us to express (5.1.2) as a polynomial where
the power of each term decreases uniformly by 1. We achieve this quite simply by making the
substitution y/z for z, and multiplying through by (,/z)*~!. Now employing the notation of
Definition 5.0.2 we have

§:<M+k+1_b>x’f
£\ 2% +1-b

M
r 2M —l— 1-b—
Fyria—p(@) = (V)" Farrgo (Ve Z( )xM k=
k=0
(5.1.3)
When b = 0, (5.1.3) becomes
M M
r 2M+1 - M+Fk+1
Forgo(r) = (Vo) Fanga(Vr Z ( > = Z < ok 4+ 1 )xk, (5.1.4)
k=0 k=0
and when b =1,
M M
T 2M — k M+ k
Foyri(2) = Fonra (V) = Z < i )xM Z ( ) k (5.1.5)
k=0 k=0

Table 5.1: The Fibonacci polynomials F,(x) and the modified Fibonacci polynomials F (x),
for 1 <n <8, withn=2m+0b=2M + 2 — b, where M =m — (1 —b) and b is the parity of

n.
1{o]o]1 1 1
211]07]0 T 1
311111 2 +1 r+1
4121110 %+ 2z x+2
51 2 2 11 2+ 322+ 1 22 +3c+1
613210 x° + 4a3 + 3z 2+ 4z +3
713 3|1 20 + 52 + 622 +1 % + 522 + 6z + 1
81 4] 3]0 27+62"+102%+4z | 2% + 622+ 10z + 4
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5.1.2 The Lucas polynomials, L, (z)

Employing the standard convention, we denote by L, (z), the n-th Lucas polynomial. With
the initial values Lo(x) = 2 and Li(z) = z, these polynomials obey the same recurrence
relation as (5.1.1), so that

Ly(x) =xLy—1(x) + Ly—2(x).

The product formula is, with n > 1, given by (see [29])

— (2k+1
H <x — 2zcos+)ﬂ-> .
2n

However, the simple amendment of Lg(z) = 2, as opposed to Fy(x) = 0, has implications for

the (binomial) sum. For now two binomial terms generate the n-th polynomial, given by

b= 3 [0+ (e - (1 e e

k=0 k=0
On putting n = 2m + b, (5.1.6) becomes
SN 2mAb (2m A b =K\ omapok = 2m+b (mAk+b\ oy
2me+ () kz_:oszrb—k( k >‘” kZ:Oerb—Hc o%k+b )°

Remark. Since M = m, for the purpose of clarity it is preferable to use m rather than M.

Once more, we replace = with y/z, and multiply through by (,/z)~?, and using the notation
of Definition 5.0.2, we have

. _ o 2m+b [2m+b—K\ .
bmip(2) = (V) " Lomys (V) = Z mtb—k k:( 2 )55 g
k=0
o2m+b (mAk4b
= : 5.1.7
Zm—l—k—i—b( 2k +b >$ (5.1.7)

Then when b =0, (5.1.7) becomes

b (€) = Lam (V/x) = kio 272@ Z <2mk_ k) " i mzrk (m - k) a®,  (5.1.8)

=0

and when b = 1, we have

m

: B 2m+1 2m+1—-k\ ,,_
bmy1(7) = (V) 1L2m+1(ﬁ):ZMM€< k )x k
k=0
“2m4+1 (m+k+1 k
_ . 5.1.9
Zm+k+l< 2k + 1 )x (5.19)

Remark. An important point is that the substitution of —z for z shifts the zeroes of the

polynomial from the imaginary axis to the real axis.
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Table 5.2: The Lucas polynomials, L, (x), and the modified Lucas polynomials, L] (x), for

1 <n <8 with n =2m + b where b is the parity of n.

n|ml|b L, (x) L} (x)
101 x 1

21110 2+ 2 r+2
3111 3 + 3z z+3
41210 2t + 422 +2 22+ 4z + 2

512 |1 z° + 5x% 4 bx 2 +5x+5
61310 2% + 62t + 922 + 2 x> + 622 + 9z + 2
7131 '+ Tx° 4 1423 + Tz 23+ Tr? + e+ 7

8| 4 0] 2%+ 82% +202? + 1622+ 2 | 2?4+ 823 + 2022 + 162 + 2

5.2 The Jacobsthal and Jacobsthal-Lucas Polynomials
5.2.1 The Jacobsthal Polynomials

In 1919, Jacobsthal [27] defined (using later notation) the Jacobsthal polynomials (for n > 2)
by the recurrence relation

In(x) = Ip—1(x) + zJp—2(z). (5.2.1)

As in the case of the Fibonacci polynomials we have initial conditions Jy = 0 and J; = 1.

From this relation we establish the Jacobsthal polynomial, J,(z), written as a sum is

e B
Jn(x) = Z ( ) )xk

k=0

(5.2.2)

With n = 2M + 2 — b, where M = m — (1 —b), (5.2.2) becomes either

m—1 m
Ja(m-1)+2(2) = Z (2(m - 1]1_ i 1>33k or Jomy1(x) = Z <2mk— k) 2. (5.2.3)

k=0 k=0
Remark. On examination one sees that the Jacobsthal polynomials have identical binomial
coefficients to the Fibonacci polynomials but differ in the exponent of the variable z. On
reversing the order of these polynomial coefficients we thus obtain our modified Fibonacci

3 T
functions F3,, o 4.

Setting = 1, we have J,, (1) = F,,(1) = F,,, the n'* Fibonacci number. For application
of these polynomials as defined in (5.2.2) we refer the reader to such works as Bergram and
associates [6], Hoggatt Jr. and Bicknell-Johnson [21] and Koshy [29].

In a series of three papers commencing in 1988, [22], [23] and [24], Horadam introduced
an additional factor of 2 into the recurrence (5.2.1) producing the altered relation (using, to

avoid confusion, our own notation)

I (x) = I () + 227, (), (5.2.4)
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with corresponding sum

o N
I (z) = L )eo” (5.2.5)
k=0

His rational reflected a desire to mirror the Pell polynomials that he was also working on
at the time. A point that he alluded to in the latter of these papers. However, subsequent
authors such as Swamy (1999) [43] and Djordjevic (2000) [16] have taken (5.2.4) as the
standard definition of a Jacobsthal polynomial (also using the notation J,(x)) and as a
consequence this now appears as the definition on sites such OEIS, Wikipedia and Wolfram
Mathworld.

Of course, as is evident by comparing (5.2.2) and (5.2.5), we can easily relate the polyno-
mials J{? (z) and J,(z) by

Jn(@) = P (2/2).

Table 5.3: The Jacobsthal polynomials A () and the polynomials J,(x) and J,(—z), for
1<n<8withn=2m+b=2M 4+ 2 — b, where b is the parity of n.

nim|M/|b JéQ)(x) In(x) In(—x)
1/lo]o]1 1 1 1
2111010 1 1 1
3111 1+ 2x 1+ 1—x

4 1 2 1 ]0 1+ 4x 1+ 22 1-2x
50212 |1 1+ 6z + 422 1+ 3z + 22 1 — 3z + a2
613210 1+ 8z + 1222 1+ 4z + 322 1 —4x + 322
71313 |1 1+10x+242° + 823 1+ 5z + 622 + 23 1 — 5z + 622 — 23
814 3 [0 1+120+402°+3223 | 1+ 6+ 102? + 423 | 1 — 62 + 102” — 423

5.2.2 The Jacobsthal-Lucas polynomials

As the Lucas ploynomials are a sister sequence to the Fibonacci polynomials, it would seem
only natural to have a parallel companion to the Jacobsthal polynomials. Surprisingly it ap-
pears that this does not seem to have been documented until Horadam (1997) [24]. Horadam

used the notation j,(z) for the n'" Jacobsthal-Lucas polynomial.

It seems apt to employ the notation of Horadam, but with the caveat that

]n(x) = jnfl(iﬁ) + xjan(ZL')a
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with the initial values jo(z) = 2 and ji(z) = 1 This produces for the n‘* polynomial

[n/2] n In—k
. . k
Jn(z) = E — k:( f )x . (5.2.6)
k=0
Then with n = 2m, and n = 2m + 1 respectively, we have
, o2m [2m—k\ 4 “Lo2m4+1l 2m+ 11—k
= g d m E .
Jm () k:02m—k< k )x, o Jame1(@ 02m+1— ( k )x

(5.2.7)
Again if we employ the notation j,(f) (x) for Horadam’s Jacobsthal-Lucas polynomials we have

the relation

Jn(x) = 5P (2/2).

Table 5.4: The Jacobsthal-Lucas polynomials j,(f) (z) and the polynomials j,(z) and j,(—z),

for 1 <n < 8§, with n = 2m + b, where b is the parity of n.

n|m|b i) (@) jn(2) Jn(—)
1]0]1 1 1 1
21110 1+ 4z 142z 1—2z
31111 14 6z 143z 1—-3z
41210 1+ 8z + 82 1+ 4z + 222 1 — 4z + 222
5121 1+ 10z + 2022 1+ 5z + 5a? 1 — 5z + ba?

6| 3|0 1+120+362°+1623 | 14 6x+92%+22% | 1— 62+ 922 — 223
713 1] 14142 +5622+5623 | 1+ Te+ 1422 + 723 | 1 — 7o + 1422 — 723

To complete this section we will complete two lemmas that illustrate the inter-relationship
between the Fibonacci and Jacobsthal polynomials and then the Lucas and Jacobsthal-Lucas

polynomials.

LEMMA 5.2.1 (Jacobsthal reciprocal).
M Fyyria-y(1/2) = Jonrpo-p(@).

Proof. We multiply either (5.1.4) or (5.1.5) by 2™ and replace  with 1/z to give

2M+1-b—k\, {1 m_
€T F2M+2 p(1/2) _$M2< k )(95 l)M g
k=0

M
2M +1—-b—k
=2 ( & >$k = Jonr+2-5(2).
k=0

LEMMA 5.2.2 (Jacobsthal-Lucas reciprocal). We have

2" Ly (1/2) = Jomyn(x).
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Proof. We multiply either (5.1.8) or (5.1.9) by 2™ and replace x with 1/x to obtain

S m= 2m+b [(2mAb—k\, .
& Loy g (1/3) = 22m+b—k< L )(95 Y g
_f: 2m—|—b 2m+b—k ok (@)

O]

These lemmas will be employed later in Chapter 8 concerning our work on establishing

forms for the generating functions of our functions Lg.gp.

5.3 The Chebyshev Polynomials T, (z), U,(x) C,(z), S,(x)

Starting with the substitution = cos @, so that = is defined on the interval [—1, 1], we define
T, (cos ) = cosnb,

or putting z = cos 0,

-1

T, (z) = cos (ncos™  x),

as the n-th Chebyshev polynomial of the first kind. It is a well establised result (see for
example [5], [35] and [36]) that all n roots of this polynomial are real. By differentiation of

T, (x) we obtain n — 1 local extrema points. These points are given by

1d sin (n cos 1 x)

Un_1(z) = ——Tp(x) = (5.3.1)

sin (cos~tz) ’
where U, (x) is defined as the n-th Chebyshev polynomial of the second kind.

Three term recurrence relation

The polynomials themselves can be produced by a variety of methods. Perhaps the simplest

being a three term recurrence relation that in terms of T, (x) is
Tos1(z) = 22T (2) — T (), (5.3.2)

where we have Ty(z) = 1 and T3 (x) = .

We note that (5.3.2) follows immediately from the trigonometric relation
2 cosnf cosmb = cos (n + m)f + cos (n —m)6 (5.3.3)

on putting m = 1.
The recurrence relation (5.3.2) holds equally for U, (z) with the minor modification that
Uop(xz) =1 and Uy (x) = 2.
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5.3.1 Product of the roots

Given that the location of the roots of both T),(z) and U, (x) are known, (see for example,
[18], [35] or [36]) their corresponding polynomials can be easily expressed as a product of
linear factors. We find that

= li[ (x — cos %z_nl)ﬂ) : (5.3.4)

and

U (x) = 2° f[ (:1: ~ cos n’f 1) . (5.3.5)

k=1
It is often desirable when working with these polynomials to express them in monic form.
With n > 1, we then write (5.3.4) and (5.3.5) respectively as

n

o) =32~ T (20w 2210,

and

Su(z) = Un(2/2) = ﬁ <a:— 2 cos nﬁl) .

It is these monic polynomials, C,(x) and Sy, (z), that have most relevance to us in this study.

5.3.2 [Expression of the polynomial as a (binomial) sum

The expressions for these polynomials as sums of terms in the literature are written in different

ways. We will start with a form given by Snyder [36] as

1 Le/2] n (n—k
Tn(x) _ 5 Z (_1)k2n—2kn — < i >xn—2k’
k=0

or in terms of the monic polynomial, and writing n = 2m + b we obtain

in: k 2m —+ b (2m + b — ]{7) x2m+b—2k'

Comeo(x om+b—k k

=0

Then following the notation of Definition 5.0.2, and considering seperately the cases b = 0

and b = 1, we have

m 2m 2m — k _
Chule) = Can(v5) = 3_(1 e G B
=0
and
) m 2m+1 2m+1-k\ ,,_
Chpir(z) = (V) Comp1 (V Z k2m+1—l<:< k >$ -

k=0
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Remark. We note that whereas each of the Fibonacci-type polnomials are composed natu-

rally of same sign terms, the Chebyshev polynomials are naturally of an alternating sign.

LEMMA 5.3.1 (L, — C, association). For Ly . ,(x) and C3, . (v) given as in Defini-
tion 5.0.2, where Ly (x) represents the n-th Lucas polynomial and Cy(x) the n-th monic

Chebyshev polynomial of the first kind, we have

Lypip(—2) = (=1)"C5,, ().

Proof. We replace x with —z in (5.1.7) to obtain

, "o 2m4+b [2m+b—k m—
omb(—T) = Z om+b—k < k >(—~’U) g
k=0
= 2m+b  [(2m+b—k _
— (—1)™ _1]@7 mk:_lmr .
S Pt (T @ = )Gt

Remark. We associate the polynomials in [30] to our own polynomials as follows:

P(x) = Ly () = (=1)"Cop (=), and  Qu(z) = Loy (2) = (=1)"Copp iy (=)

Since for the purpose of our current investigation we wish to associate the (monic) Cheby-
shev polynomials of the second kind to the Fibonacci Polynomials, with n = 2m + b, it is
preferable to consider the polynomials, U,,—;(x) and S,,—;(x).

Using (5.3.1) we obtain the polynomials U,,_i(x), by differentiation of T,,(x).

With n =2m +b=2M + (2 —b), where M = m — (1 — b) we have

M
oM +1—b—k N
i) = Vg o) = (- (M 170 e
k=0

or in terms of the monic polynomials Sopsi1-p(2),

M

2M+1—-b—k —h—
Som+1-5(2) = Z(—l)k< 1 )332M+1 bRk (5.3.6)
k=0

Remark. We note that as with the Fibonacci polynomials using M = m — (1 —b) as opposed

to m in this manner preserves the upper summation value M.

The modified monic Chebyshev polynomials (of the second kind), S5,,.,_,(z), for the

particular cases b = 0 and b = 1, are given respectively as

M
S 1(2) = S (@) = (V&) Sanrir (VD) = 3 (~1)F (W - k) Mk (5.37)

k
k=0

and

M
S3n() = Sias(2) = Saar (V) = S (~1)F (W - ’“) Mk (5.3.5)

k
k=0
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LEMMA 5.3.2 (F) — S},_; association). For F3,, o ,(x) and Sy, ,(x) defined as in
Definition 5.0.2, where F,(x) represents the Fibonacci polynomials and S,_1(x) the monic

form of the Chebyshev polynomials of the second kind, we have that
Fingop(—) = (_1)M55M+1—b(x)'

Proof. We replace x with —z in (5.1.3) to obtain

<2M+ 1—b— k;>(_x)M,€

M
Fonryop(—2) = Z L
k=

0

M
=S (T T ) = Mt
k=0

Remark. We associate the polynomials in [30] to our own polynomials as follows:

P () = Foppia (1) = (=1)"S5,,(—2),  and = Qu(z) = F3,(z) = (=1)" 531 (=)

Table 5.5: The monic Chebyshev polynomials, S,,_;(x), and the modified monic Chebyshev
polynomial, S;_;(z), for 1 <n <9, with n—1=2m+b—1=2M + 1 — b, where
M =m — (1 —b) and b is the parity of n.

n|M|b Sp—1() no1(2)
1]0]1 1 1

21010 T 1

3111 22 —1 z—1
41110 3 — 2 x —2
51021 zt =322 +1 22 -3z +1

6| 2 1|0 x° — 4x3 + 3¢ 22 —4x +3
7131 2% — 52t + 622 — 1 3 —5x% + 6z — 1

81 310 7 — 6x° + 102° — 4z 3 — 62% 4+ 10z — 4

9 4 | 1] 2% —7254+152% —1022 +1 | 2* — 723 + 1522 — 102 + 1

5.4 Classification of the Fibonacci-type polynomials

To facilitate the expression of the linear recurrence polynomial Rg..p(x, m) for the sum
Ls.ape(r,t,q) we redefine Definitions 5.0.1 and 5.0.2 in terms of the parameters s, a and b

and the variable m.
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Table 5.6: The Chebyshev polynomials Cy,(x) and the modified Chebyshev polynomial, CJ (x),
for 0 < n <8, with n = 2m + b where b is the parity of n.

n|m|b Cr(z) Cr(z)
0[0]0 2 2

1]0]1 x 1

21110 2 —2 x —2
3111 3 — 3z x—3
41210 zt — 422 +2 xc —4x + 2
5121 x° — 525 + bx 22 —5x+5

6 31]0 28 — 6% + 922 — 2 3 — 622 + 9z — 2
7131 '’ —Tzd 4+ 142 — Tz x® —Tr? 4+ 14z — 7

81 4 [0/ 2%—825+202% — 1622 +2 | 2% — 823 + 2022 — 162 + 2

Definition 5.4.1. For
Q:q—(l—a)(l—s),

(positive) integers s € {0,1}; a € {0,1}, b € {0,1}, ¢ = 2m + b and
we define the associated function Ag.qy as

2m~+b+a—1

(2d — a)m
A, = — NS e
s,ab(l'a Q) };[1 <$ L Cos 2(2m + b)
M a
2M +B -k k ’
k=0
and the modified associated function Ag;ab as
2m—+b+a—1
r —e s (2d — a)m
hale @) = VD] (f 20 cos 2~ 0%
_i”:(_ jo _2M 4B T(2M Bk oy
- Vo \aM +B—k k ’

where vy = (=1)%, e=a(20—1)+1—-b, M =m—(1—a)(1—5) and B= (1—a)+b(2a —1).
Connecting Definitions 5.0.2 and 5.4.1 we have

e=(1+s)(1—a)+b(2a—1), f=s(1l-a),

and
0 ifa#b

5.4.1
1 ifa=0b. ( )

e:e—f:a(Qb—l)—l-l—b:{
Applying € to the specific polynomials we obtain the relations given in Table 5.7.

Remark. For Ag.q, and A7,

s;ab

defined as in Definition 5.4.1, we find that when s = 0, all the
roots lie on the real axis and we are able to identify them as the roots of a monic Chebyshev
polynomial of either the first or second kind, whereas when s = 1, these roots are spaced along

the imaginary axis and are identified as the roots of either a Fibonacci or a Lucas polynomial.
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Table 5.7: Relationship between € and the Fibonacci type polynomials.

a | polynomial type €
Fy (), 571(@ 1—-0
1] Ly(z),Cy(x) b

We demonstrate the above remark with Theorem 5.4.1.

THEOREM 5.4.1 (expression of Ag.(x,Q) as a Fibonacci type polynomial). The poly-
nomial As.qp(x, Q) defined in Definition 5.4.1 is equated to a Fibonacci, Lucas or (monic)

Chebyshev polynomial such that

Sam-11p)+1-6() ifs=0,a=0
Comb() ifs=0,a=1
Asiap(z, Q) =
Fytm—14p)42-5(7) ifs=1,a=0
( Lom+b(x) ifs=1,a=1,

where Q = q— (1 —a)(1 —s), and ¢ =2m +b.

Proof. This follows on substitution of each value of each of the parameters s, a and b into the
product and binomial and forms of Ag..(, Q) as given in Definition 5.4.1, and then compared
with the corresponding (monic) Chebyshev, Fibonacci and Lucas polynomial forms. We detail

the first case below and provide the full proof in Appendix B.1.

Ap.oo(z,2m — 1) = Ag.oo(z,2(m — 1) + 1)

2m—1 m—1

_ H (x 9eos ;,i) _ Z‘(_l)k<2(m - 1}1+ 1— k) e

=1 k=0

d
= Sz(m—1)+1(90)-
O

From this theorem we similarly express the modified polynomials, Ag;ab(z,Q), using the

following corollary.

COROLLARY. The modified polynomials Ag;ab(w, Q) are related to a modified Chebyshev,

Fibonacci or Lucas polynomial in the following manner:

Sg(m—1+b)+1fb(x) ifs=0,a=0
Clgp () ifs=0,a=1
g;ab(x7 Q) =
Fg(m—1+b)+27b($) ifs=1,a=0
Ly, () ifs=1,a=1
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Proof. From Definition 5.4.1 we have A7 (2, Q) = (V) “Asap(Vz, Q), where € is given as
in (5.4.1). Therefore, the result follows from Theorem 5.4.1, when we replace  with y/z and

multiply by (v/z)™¢. O

We similarly provide the first case here to illustrate the polynomials and detail all cases

in Appendix B.2.

Apsoo(@,2m — 1) = Ajgo(w,2(m — 1) +1) = S5, 1)1 (@)

m—1 2m—1

_ (_1>k<2(m—1])€+1—k>wm_1_k_(\/5)-1 dl;[l (\f_QCOS <;i>>

k=0

Except for the root at x = 0, (when it occurs), the roots of the polynomials A, (2, Q) and
Ag, (7, Q) are symmetrically distributed about the origin. This enables a simplification of

the product form given in Theorem 5.4.1 and the Corollary to it.

THEOREM 5.4.2 (simplification of the product form of Ag.qp(x,Q)). For Agqe(z, Q) de-
fined as in Definition 5.4.1 we have

m—(1—a)(1-b) (2d B a)7r
As. =z 2_ ¢y 2 ==
P e

where @ =q¢— (1 —a)(1—s) ande =a(2b—1) +1 —b.

Proof. From Theorem 5.4.1, we make a suitable “pairing” of terms. We illustrate with two
cases and provide the full proof in Appendix B.3. Let us consider the cases for s. When

s =a=>b=0, we have

2m—1
dm
Ap.o0(z,2m — 1) = H (m — 2cos 2>

m
d=1

-1
= (az— 2cosm> H (1: — 2cosd7T> <33 — 2cos(2m_k)7r>
2m e 2m 2m

ml dm dm
=z r — 2cos — T+ 2cos —
2m 2m

d=

_

m—

dm

2 2

= | | —4 —

T (x cos 2m)’

d=1
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and when s =1,a =0, b=0,

2m—1 dn
Aq0(x,2m) = H <az — 21c08 >

2m
d=1
m—1
mm dm (2m — d)m
—(z—2 —) [T (= 20cos o — 2ucos 2 DT
(:): 1COS 1 <x 1COS Qm) (x 108 = )

i dm dm
T H <3: — 21co8 2m> <az+2zcos 2m>

. d
T <x2 + 4 cos? W) .
2m
d=1

)_.

I
S&

O
Using Theorem 5.4.2 we make a similar simplification of the modified polynomials, A7, (T, Q).

COROLLARY (simplified product form of A’ ab(sc, Q))-

m—(1—a)(1-b)

Ha@@ = ] (:r ~ dycos? (zd‘)”) .

ey 2(2m +b)

Proof. We have from Definition 5.4.1 that AL (2, Q) = (V) “Asa(v/7,Q)), Where
e =a(2b — 1) + 1 — b. Therefore, if in each form of Agqp(x,Q), derived in Theorem 5.4.2, we
replace x with /z and multiply by (1/z)¢, we obtain the result. O

We illustrate with two cases and provide all cases in Appendix B.4.

m—

Ajoo(z,2(m —1) +1) = S5, ( H (x — 4 cos? d>
and
, a“ 5 (2d— 1)
Apa1(x,2m +1) = Cs,, 4 (2 H ( — 4cos? @m+1))

For the polynomials Agqp(z, Q) or AL ,(z,Q), the variable M = m — (1 — a)(1 — b) was
employed to indicate the order of the polynomial. In the forthcoming section we examine the
linear recurrence polynomial, Rg.qp(x, m), satisfying the function Lg.qp., and we denote the

order of the polynomial by M’ =m + b(1 — a).

5.5 Recurrence polynomials for the family of functions L;. g

To facilatate the development of a recurrence polynomial for each of the sequences L qpe(7, ¢, ),
we wish to connect the roots of the polynomial to those of a corresponding power sum, as
established in the Corollary of Theorem 4.4.2. We use Lemma 5.5.1 to provide this link.
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LEMMA 5.5.1. If the sequence ug,u1,uo, ... satisfies an order m linear recurrence of the
form

Untm + A1 Uptm—1 + ++ + Gty =0 (5.5.1)

so that the characteristic polynomial is
P(x) = 2™ +a1x™ 4+ apm, (5.5.2)

with distinct roots pi, ..., lim, then every solution of (5.5.1) can be written as a power-sum
with coefficients:

Up = b1} + -+ by fiy,. (5.5.3)
Proof. The sequence ug, u1,usg, ... satisfies a linear recurrence when (5.5.1) holds for all n.
The values ug, . . . , Uy —1 determine all numbers in the sequence. If we fix coefficients aq, . . . , am,

then the sequences satisfying (5.5.1) form a vector space of dimension m. A shift operator S
acts on the space of sequences that satisfy (5.5.1) by

Uo (U5} 0 1 0 ‘e 0 (') (%)
U7 ug 0 0 1 e 0 (V51 (51
S = = = Amxm
Um—2 Um—1 0 0 0 e 1 Um—2 Um—2
Um—1 Um —0p  —0m-1 —Om-2 ... —01 Um—1 Um—1

If the column operation kj = kj + puks + - -+ + ™ 'k, followed by the consecutive row
operations r; = r; + ur;_; (2 <14 <m), is applied to the characteristic polynomial, we obtain

p -1 0 ... 0 0o -1 0 ... 0
0 I e 0 0 0 -1 ... 0
il — Al m = = ,
0 0 0 —1 0 0 0 e |
Um  Gm-1 Qm— ... a1+ } f() am-1 am—2 ... @
(5.5.4)

where f(z) = 2™ + a12™ ! + aga™ 2 + -+ - + @y, whose determinant is f(u).

When the eigenvalues u1, ..., 4, are all distinct then the Vandemonde determinant is non-
zero, and the m sequences u,, = pu" are linearly independent (see Theorem 9.3 of [?]). These
sequences form a basis for the vector space of sequences that satisfy (5.5.1). Therefore, every
solution of (5.5.1) can be written as a power-sum with coefficients given by (5.5.3). O

Remark. A similar proof to Lemma 5.5.1 is found in Lemma 3.5 of [9]. The above proof is

provided due to its significance (for this work) and its brevity.

In the Corollary of Theorem 4.4.2 each of the sequence terms L. pc(7,t,q) are expressed
as a power sum of the form given in (5.5.3), where for the cases s =0 and s = 1, we have
2d — 2d —
Tq = 4cos? m(2d—a) , and x4 = —4sin’ m(2d =€) . (5.5.5)
2q 2q

Here we recall a, b and € take the value 0 or 1; ¢ = a + sb (mod 2), and

a<d<m+bl—a)+a-—1.
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We denote by Rs.qs(x, m), the recurrence polynomial that satisfy the sequences Ly.qpc(7, %, q).
From Lemma 5.5.1, the values, (5.5.5), comprise the roots of Rg.q(x, m), and the order of
the polynomial is m in all cases except when the parameters a = 0 and b = 1, (that is for the

positive sum with odd modulus). In this latter case the order is m + 1.

In the next theorem we simplify the two forms of (5.5.5) into the single form
2D —
zp = —4 cos? <7T(a)>,
2q

where the set of the roots, xp, are the same as those of 4.

THEOREM 5.5.2 (product form of the recurrence polynomials, Rs.q(x, m)). The recur-

rence polynomials Rs.qp(x,m) are, expressed as a product of their roots, given by

m—(1—a)(1-0)

Reaap(z,m) = 11 <x—4’ycos2 (7“261_“)» (5.5.6)

d=a 2q
where v = (—1)°.

Proof. We consider each of the four cases for the parameters a and b, for both the cases s = 0
and s = 1. Here we detail the first case and give the proof in full in Appendix B.5.

Case 1: a =0, b=0.

From (5.5.5) the roots of the recurrence polynomial Ro.o0(z,m) are 4 cos® dr/q, where

0 < d < m—1. On the other hand, the roots of Ry.00(x, m) are —4 sin? dr/q, where 1 < d < m.
Since m/q = 1/2 we have that

sin (m—djm = cos d—w, (5.5.7)

so that

u“ dm s (m—d)m ml dm
<x+4sin2> = H <:L'+4sin2 > = H <:1:—|—4c082 )
e q q q

O]

5.6 Association of the polynomials R, (z, m) to the modified
polynomials A’ ,(z,Q)

s;ab

We now associate the polynomials Rg.qp(z, m) to those of Az;ab(:n, Q@) and consequently to

those of either a monic Chebyshev, Fibonacci or Lucas polynomial.

THEOREM 5.6.1 (expression of R.qp(2, m) in terms of A’

s;ab(a:?Q))‘ For q= 2m + b and
Q=q—(1—a)(l—s), we have

Rap(z,m) = (x — 479) 7" AT, (z, Q). (5.6.1)

s;ab
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Proof. From the Corollary of Theorem 5.4.2 we have
m—(1—a)(1-b)

r T — T — 0082 (2d - a)ﬂ'
AL (2, Q) };[1 ( 4y 2(2m+b)> . (5.6.2)

Multiplication of both sides of (5.6.2) by (1 — 4yx)' ™ produces

m—(1—a)(1-Db) m+b(l—a)+a—1

d=1 d=a
M'+a—1
2d —a)m
= H <$ - 47 0082 ;(27/)1_'_)17)> = Rs;ab(x7 m)
d=a
by Theorem 5.5.2. 0

COROLLARY. The linear recurrence polynomial R.qp(x, m) satisfied by the function Ls.qpe,
can be expressed in terms of (modified) Fibonacci, Lucas or Chebyshev polynomial in the fol-

lowing manner:

(x — 4)S§(m—1+b)+1—b(x) ifs=0, a=
Clrip() ifs=0, a=1
Rsap(z,m) = (5.6.3)
(x + 4)F£(m—1+b)+2—b(x) ifs=1,a=0
Ly, () ifs=1,a=1

Alternatively, with ¢ = 2m + b we can ezxpress (5.6.3) as

(x—4)S;_1(x) ifs=0, a=0
Cy () ifs=0,a=1
Rsap(xz,m) = (5.6.4)
(z +4)F](x) ifs=1a=0
( Ly() ifs=1, a=1.
Proof. The result follows from Theorem 5.6.1 and the Corollary to Theorem 5.4.1. O

5.7 Evaluation of the recurrence polynomials R.q(z,q)

A direct method of determining the coefficients of the polynomial, Rs..s(x, m), is by expansion
of (5.5.6) of Theorem 5.5.2.
For demonstrative purposes let us consider the case s = 1, so that v = —1, and perform this

expansion for either m = 2 or m = 3.

We have
g — deos? (ﬂ@d—@)
2q
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where g =2m+band, a <d<m+b—a—1.

So fora=0,b=0, and m = 3, then d =0, 1,2 and

xo = 4cos? (0m/6) = 4(1) = 4

x1 = 4cos? (17/6) = 4(v/3/2)% =

19 = 4dcos? (27/6) = 4(1/2)? =

Ro.00(7,3) = (x +4)(x + 3)(x + 1) = 2% + 822 + 19z + 12.

For the case a =0, b =1, and m = 2, then d =0, 1,2 and

19 = 4cos? (0m/5) = 4(1)% = 4,

r1 = 4cos? (17/5) = 4(v/5 +1)2/16 = (6 + 2v/5) /4,

xy = 4cos? (27/5) = 4(V/5 — 1)2/16 = (6 — 2v/5) /4,

Ro01(z,2) = (x +4)(z + (6 + 2v5)/4)(x + (6 — 2/5)/4) = 2 + T2% + 13z + 4.

Ifa=1,b=0and m =3, then d =1,2,3 and

1‘1:4COS2(17T/12):4((\/m> /2)2:2+\/§,
T9 = 4cos? (3n/12) = 4(v/2/2)? =
w3 = 4cos? (57/12) —4((¢2—7>/2) =23,

Roao(z,3) = (2 4+ (2+V3)) (z+ (2= V3)) (z — 2) = 23 + 627 + 9z + 2.

SR

Finally when a =1, b =1, and m = 2, then d = 1,2 and
2
r1 = 4cos? (17/10) = 4< (5+ \/5)/8) = (5++/5)/2,

2
ry = 4cos? (31/10) = 4 ( (5 — \/5)/8> = (5 —-/5)/2,
Roa1(z,2) = (x + (5+V5)/2)(z + (5 — V5)/2) = 2® + 5z + 5.

Remark. An immediate limitation of this method arises, the difficulty of obtaining explicit

expressions for the roots when ¢ has a prime factor > 7.

In general a more practical approach is to employ Theorem 5.6.1. In the case of the parameter

a = 1, we simply have

= 2m+b (m+Ek+b\ 4
Raasloam) = Af(aa) = Y () + 2R ( ),
ot m+k+b\ 2k+b
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and when a = 0, we have

R5§Ob(‘r7 m) :((IZ - 4’7)142;01)(1.7 q— S)

m—1+b m+k
— _ _ \ym—14b—k k

k=0
m+b
mtbo—k (MR =1 m+k k
= — 4 .
;)( 7) <<2k1b T okr1-0))7

Here we just give one example of each type for the case when s = 0 and provide additional

examples in Appendix

Ro0(z,3) =

Ro01(z,3) =

Ro.10(z,3) =

Roai(z,3) =

C.2. We have

k
(x —4) (—1)2—”“<3 + >xk =% — 822 + 192 — 12,

2k+1

Eonl
w | V)
o

(x—4)) (=1)>F (3;;]“) o =zt — 927 4 2622 — 252 + 4,
k=0

(<13 6 (3 +k

k 3 2
T = —6 9 — 2
3k 2%k )x x x” + Yz ,

x>
w i w
(=]

4
(_1)3_k4—i7—k (2]4;—’:1-]{:1) b =% — 70?4 140 — 7.

bl

=0



Chapter 6

Differential Equations

This chapter examines the creation of a second order differential equation, a solution of which
is one of the eight recurrence relation polynomials Rs.q,(x, m). With respect to this type of
equation, we start in Section 6.1 by introducing the Jacobi polynomials, and a subclass of
them, the Chebyshev polynomials of the first and second class. In Section 6.2 (with Theorem
6.2.2) and Section 6.3 (with Theorem 6.3.5), we establish a set of four second order differ-
ential equations, each one satisfied by one of the polynomials Rs.1,(z,m) and Rgpp(x, m)

respectively.

6.1 Jacobi poynomials

We begin with the generalised group of polynomials, the Jacobi polynomials Pq(o"ﬁ ) (z), sat-

isfying the equation
(1—2?)y" +{B—a—(a+B+2)x}y +q(g+a+ B+ 1)y =0. (6.1.1)

From our current perspective, particular cases of these polynomials are the Chebyshev poly-
nomials of the first and second kind. For those of the first kind, T, (x), we have o = f = —1/2,
and for those of the second kind, Uy(x), we have o = 8 = 1/2. Substituting these values into

(6.1.1), we obtain the respective second order differential equations

(1-— $2)Tél($) — aTy(x) + ¢*Ty(x) =0, (6.1.2)
and
(1 -2 Uy (x) — 3aUj(x) + q(q + 2)Uy(z) = 0. (6.1.3)

In Theorem 5.6.1 we established, via the transformation z = ,/yu/2 the close relationship
between the polynomials Rs.q,(u, m) and those, when the parameter s = 0, of the Chebyshev
Ty(z) and Uy—1(x) types, and those when s = 1, of the Fibonacci F,(z) and Lucas Ly(x)
types. Moreover, in Lemmas 5.3.1 and 5.3.2 we demonstrated a route between the interchange

of the polynomials L,(z) and T,(z) and of F,(z) and U,(x) respectively. Given, therefore, the

63
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well established (second order) equations for both the Chebyshev polynomials, (6.1.2) and
(6.1.3), we can limit ourselves to these two equations for deriving the differential equations

for each of the eight sequences {Rg.qp(u, m)}o_;.

6.2 The recurrence polynomials R.,(u, m)

We first consider the sequences with the alternating parameter ¢ = 1, and start with a lemma.

LEMMA 6.2.1. With x = /yu/2 we have
d m,sb, L 15 _1
aTq(x) ="z (2u2RS;1b(u,m) +bu" 2R 1p(u, m)) ,

and 2

da?

Proof. We have from Theorem 5.6.1 that

Ty(z) = sz‘(”bu% (87uRY. 1 (u, m) + 4y(2b + 1)RY 1, (u, m)) .

m b m m b
7,(e) = T,(/75/2) = 5Co(vn) = YL crny = LW R m). (621)

On differentiating both sides of (6.2.1) with respect to x we obtain

m+b/2 d
/ 2 ]
Tq(ﬂf) = 9 a <u2Rs;lb(u’m)> ;
the right hand side of which, via the chain rule, becomes
A%t d b du ™ [ 1. b2 duz
== (uERS;lb(u,m)> o= 3 (u‘zR’S;lb(u,m) + ibuTRs;lb(U; m)) "
_m,s(b—1) b1y b—1
=7" 2u 2 Riqp(u,m) +bu 2 R1p(u, m)
:rymzs(b_l)u% <2u%7€;;1b(u,m) + bu_%RS;lb(u,m)) .
Then on differentiating (6.2.1) a second time we have
m,s(b—1) d2 d B
e L _ m,s(b—1 bl b1
T,;'(:U) =12 <u27€8;1b(u,m)) = 4yt )a <2u 2 R;;lb(u, m) +bu 2 Rgip(u, m))
b1 4u%

d _
:fymzs(b_l)@ (2u > Rip(u,m) + buleRs;lb(u,m)>

e
and following the second application of the chain rule we continue as

=y"5(0=2) (2ub§717€'5';1b(u, m) + (b+ l)ub;;R;;lb(u, m) + bu%R;;lb(u, m)
—l—%b(b - l)ub;;’Rs;lb(u, m)) du?

b <8u%ngﬂb(u, m) + 4(b + Dz R, (u, m) + buz Rl (u,m) + 0)

zmeSbug (8vuRY 1 (u, m) + 4v(20 + 1) R 1, (u, m)) .

Thus the necessary results are obtained. ]
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We are now in a position to state the following theorem.

THEOREM 6.2.2. The polynomials Rs.1p(u, m) satisfy the second order differential equa-

tion
A(u—47)uR Ly (u,m) +4 (0 + Du — 29(2b + 1)) Rigy(u, m) = (¢° =) Rz (u,m) = 0, (6.2.2)
where v = (—1)%.

Proof. From (6.1.2) we have

2
d
(1- x2)@Tq(x) - x@Tq(x) + Q2Tq(x) =0,
Let x = \/yu/2 =1%\/u/2 and so,
do = —2 du, or d—u:4\/a.
4\/u dz &
Substituting these forms into (6.1.2) we have
(1 /) o2y + YL + T ) = 0 (6.2.3)

and from Lemma 6.2.1 and equation (6.2.1) the left hand side can then be written as

’ymZSbu%(l — yu/4) (ByuRY, p(u, m) + 4y(2b + 1)R o (u, m))

1 1
- §fymz56u% (2uR 1 (u, m) + bRg1p(u, m)) + 2q27m18bu27€3;1b(u, m).

Now after factoring out —f'ym #Pus we are left with
2
—71(4 — yu) (8uRYyp(u,m) +4(2b + )R 1y (u, m)) + (2uR 1, (u, m) + bR 15(u, m))
- q2R5;1b(u7 m)
Whilst noting that v2 = 1, we further simplify as follows:
1
o (1 497) (B8Rl 1, ) + 4(2b -+ 1R 1501, ) + 2uRl 151t m) + (6 = bR (1, )

—4(u — 4Ry (1, m) — (87(2 + 1) + 2(2b + 2)u) Rl 3y (w,m) + (¢ — b Rog15(ut, m)

—4(u — 4Ry (1, m) + 4(2(2b + 1) — 7(b+ D)u)Rlyyy () + (6% — D) Rygup(uty m).
(6.2.4)

Therefore, the left hand side of (6.2.3) is (6.2.4) multiplied by the factor —77’” sby3 producing

the equation

1
=5 (4 — 4y)uR gy (u,m) + 4(2(20 + 1) = (b + Du)R gy (u,m)
+(¢? = b)Rsap(u,m)) =0, (6.2.5)

and this satisfies (6.2.2) as required. O
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Remark. (6.2.5) also has the solution u = 0 corresponding to the solution z = 0 in (6.1.2).

COROLLARY. With consideration to each of the two parameters s and b we have on

writing the polynomial Rg1p(u, m) as Re.1p the solutions
(u— 4 uRG10 + (u — 2)Rf.10 — m*Ros0 = 0,

(u—4)uRG11 + 2(u — 3)Ro.q1 — m(m + 1)Roa1 = 0,
(u+ 4)uRY. 10 + (u+ 2)Ri g — m*Ria0 = 0,

and

(u+4)uRY;yy + 2(u + 3)R;1; — m(m + 1)Ryjn = 0.

Proof. The validity of each follows immediately from Theorem 6.2.2 on the appropriate sub-
stitution of each of the parameters s and b, replacing ¢ with 2m + b and finally dividing out

a common factor of 4. O

6.3 The recurrence polynomials R (u,m)

We next turn to the non-alternating parameter ¢ = 0. Again we first require some lemmas.

LEMMA 6.3.1 (sinfsin gf solution). The second order differential equation

d*y dy
) . 2 22 2
sin 9@ — 2sinf cos 6’@ + ((¢° + 1) sin* 6 + 2cos” ) y = 0, (6.3.1)

has for a solution
y = sinfsin ¢f. (6.3.2)

Proof. The first and second derivatives of y (with respect to 6 are),

d
d—z = ¢sinf cos gf + cos fsin ¢, (6.3.3)

and
d?y
dg?
The necessary result is then obtained by multiplying (6.3.3) by —2sin @ cos 6, (6.3.4) by sin? 0,
(6.3.2) by (¢> + 1)sin? 0 + 2cos? § and then adding separately the left and right hand sides

of each these scaled equations. ]

= —¢%sin fsin ¢ + 2¢ cos O cos g — sin @ sin ¢f. (6.3.4)

LEMMA 6.3.2. The function Y = sin? U,_1(cos0) is a solution of (6.3.1).

Proof. With x = cos, we have from (5.3.1) that

sin g6

Ug—1(cosB) =

sinf -’
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Multiplication by sin? § gives us

sin? U, _1 (cos §) = sin’ s a6 = sin 6 sin ¢f.
sin
Hence it follows from Lemma 6.3.1 that Y is a solution of (6.3.1). O

LEMMA 6.3.3. The function Y = sin? 0Uq—1(cos ) is a solution of the differential equation

(1- x2)2ig + (1 — x2)% +(+1)+(1-qz*)Y =0. (6.3.5)
Proof. Since we know Y is a solution to (6.3.1), we show that (6.3.1) is equivalent to (6.3.5)
with the change of variable from 6 to x. We make the appropriate changes using the substi-
tution x = cos, and so dx = —sin 6df. It is preferable to keep the variable 6 for as long as
possible, and so we initially express our derivatives with respect to x in the variable 6. Let

us denote the derivative of Y with respect to « and 6 as Y, and Y} respectively. We have
! ! de : !/ !/
Y, = Y9£ —sinfY, =Y, (6.3.6)

and similarly for the second derivative

Y”:iy/— d (Y a4 sin Yy — cos0Yy\ —1 _ sin Yy" — cos 0Y,
‘ sinf / dx sin? @ sin 6 sin® 0 :

dr *~  do

Rearranging for Yy’ in terms of Y] and Y, using (6.3.6), gives
Yy = sin” 0Y; — cos Y. (6.3.7)
Substituting (6.3.6) and (6.3.7) into the left hand side of (6.3.1) we obtain
sin® 6 (sin? Y — cosY,) — 2sinfcos 6 (—sin0Y;) + ((¢° + 1)sin® 0 + 2cos*0) Y, (6.3.8)
and on simplification this becomes
sin® 0Y + cos @sin® 0Y, + ((¢* + 1) sin® 0 + 2 cos? ) Y. (6.3.9)

With z = cosf and so sinf = (1 — :BQ)%, (6.3.9) transforms to

d?y dy
2\2 2 2 2 2
(1—a*) gz ol —a%) + (P +1)(1-2%)+22%)Y

which on manipulation of the Y coefficient yields the left hand side of (6.3.5) as desired. [

LEMMA 6.3.4. With x = \/qu/2 we have

d / -
—a*)Uga(2)} = =07 (“?Ré;ozy(uvm) +

1—-b -
=

u27€3;0b(u,m)> ,  (6.3.10)

and

d? 2 M/ +1,s(1—b), 1=t " 3-2b_,
@{(1—56 Wy—1(x)} = —4v ? u 2 | uRgop(u,m) + —5 sop(u,m) | . (6.3.11)
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Proof. We have from Theorem 5.6.1 and Lemma 5.3.2 with ¢ =2m+b, M =m — 1+ b and
M' = m + b that

(1= 2%)Ug1(@) =(1 = /) Ug1 (V71/2) = = = 49)Sg-1(v70)
_ 7(\/7701"’(

M’ 1-b
S AL
1 u —4v)Sy_1(yu) = —fRS;Ob(u,m). (6.3.12)
On differentiating both sides of (6.3.12) with respect to x we obtain
M'+(1-b)/2 -
Y, = - 1 e (u%bRS;()b(u,m)) , (6.3.13)
the right hand side of which, via the chain rule, becomes
M’ s(1-b) d B d
_7 14 @ (ulTbRs;Ob(uam)) 7“
B ,YM’Zs(lfb)

dx
b 1—0 -—1-»
4 (uIQR;;Ob(ua m) + 1

4u
9 u 2 Rs;Ob(uvm)>
:77M’Z—sb <u2—b /

ZS
2-b 1-0 -
2 Rs;[)b(uv m) + 9 u 2 RS;‘Jb(uv m)

Then on differentiating (6.3.12) a second time we have

(6.3.14)
M'+(1-b)/2 32
Y/ = i

1 a2 (UlT_bRs;Ob(Ua m))

/ d 2-b 1-b =
=M L (0 R ) + 5 T Rl
1
;g d 2-b 1-b - quz
= — M, Sb@ (u 2 Riop(u,m) + U Rs;gb(u,m)>
and following the second application of the chain rule we continue as
=— 47M/z5(1_b)2_25u% (u2 .

N

A
% 7i 2 - b —b
5;0b

1-b -
(’U,, m) + TUTR;;Ob<u7 m) =+ TuTbR;;Ob(uv m)
. 1-0 ;b —2-p
2 \2 )"

2 Rs;Ob(u7m)
_ _ 4,YM’,YZs(lfb) <u3b "

3—2b 1-b
2 s;Ob(uam) +

9 UQRIS;Ob(u7m)>
— 47M/+1Zs(l—b)ulT7b <URg;0b(u,m) T 3—2b /

9 s;(]b(u7m)> .

(6.3.15)
O
THEOREM 6.3.5. The polynomials Rs.op(u, m) satisfy the second order differential equa-
tion

S — 42 R g )+ 4t — 47) (1 — B — 2(3 — 26)) Rl a1, m)
— ((¢* = b)u — 49(¢* + 2 — b)) Rysop(,m) = 0.

(6.3.16)
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Proof. From Lemma 6.3.3 we have that the function Y = sin? 0U,_;(cos ) is a solution of
(1-2*)Y) +2(1-2*)Y,+ ((¢*+ 1)+ (1 —¢*)2?) Y =0, (6.3.17)

and from Lemma 6.3.4 we have the relations

’YM,Zs(lgb)ulgb
YV =(1—-a2)U, () = — 5 Rso(u,m),

Y! = —’YM/z’bS <U22les;0b(u7m) + quRs;Ob(U’m)) )

and _—_—
Yﬂél = 7 78(b+1) 17 (URS Ob(u m) + ;Rs Ob(u m))

Let z = \/yu/2 =1°\/u/2, andso dz=1:du/4y/u, or du/dz= 4u%/25.
Multiplying Y by ((¢* + 1) 4+ (1 — ¢*)2?), Y] by (1 — z?) and Y} by (1 — 2%)?, then using
the substitution = = ¢*u? /2 and factorising produces the expressions

1 MY SO 1o

—o T wE (e ) (1= g)u) Ron(u,m),

1 . _ 1-b -
g,yM +lzs(1fb)u%(u — 4v) <u22b7g;;0b(u, m) + 5 u?bRs;ob(u, m)) 5

and

1 / 2b
ZJL,YM +1,-s(b+1),,15° (u — 4’y) < ;/;Ob(u,m) + TRS o (s m)> .

s(l b)) 1

u'z /16

M’+1

Adding each of these expressions and then factorising by the term —y

leaves the expression
du(u — 47)° R, (u, m) + 2(u — 47) ((u — 47)(3 — 2b) — u) Riygp(u, m)
+ (49(¢? + 1) + (1= ¢*)u — (u— 47)(1 — b)) Rysop(u, m),
which on simplification produces the required result. ]

COROLLARY. With consideration to each of the two parameters s and b, we have on

writing the polynomial R.op(u, m) as Rgop the solutions
w(u — 4)* R0 + (u— 4)(u — 6)Ri,00 — (m*u — 2(2m* + 1)) R0 = 0,
w(u — 4R — 2(u — 4)Ro 1 — ((m(m +1))u — 2(2m? + 2m + 1))Ro,01 = 0
u(u + 4)272’1';00 + (u+4)(u+6) ’1;00 — (m2u + 2(2m2 +1))R1,00 =0,
and
u(u +4)*Ri g1 + 2(u + 4R — ((m(m + 1))u + 2(2m* + 2m + 1)) Ry = 0.

Proof. The validity of each follows immediately from Theorem 6.2.2 on the appropriate sub-
stitution of each of the parameters s and b, replacing ¢ with 2m + b and finally dividing out

a common factor of 4. O



Chapter 7

Orthogonality

In Section 7.1, using the known orthogonality relations of the Chebyshev polynomials, we
determine in Theorems 7.1.4 and 7.1.6, similar orthogonal relations for the polynomials
Rs1b(u, m) and Rgop(u, m) respectively. Then in Section 7.2 we exploit their orthogonality
relations to establish some three term recurrence relations: in Theorem 7.2.4 we determine
an intra sequence relation between consecutive values of the variable m and in Theorem 7.2.5

an inter sequence relation between consecutive values of the modulus ¢ = 2m + b.

7.1 Orthogonal polynomial sequences
Let us begin this Section by introducing a definition adapted from Chihara [7].

Definition 7.1.1. A polynomial sequence {P,(x)}>% is an orthogonal polynomial sequence
with respect to a weight factor w(x) on an interval (a,b) if P,(x) is a polynomial of degree n

and

b
/ Py (x) Py (x)w(z) dz = 6y mKp,

where 0y, s the Kronecker delta symbol and K, is some nonzero constant. If additionally

we have K, =1 then the polynomials P,(x) form an orthonormal polynomial sequence.

We now consider the recurrence polynomials, R.qp(u, m) as forming (relative to each of three
parameters) eight separate sequences of orthogonal polynomials of order M’ = m + b(1 — a).
These polynomials have been defined for ¢ > 1, but to satisfy the properties of an orthogonal
sequence we amend each sequence to m > 1+ ab — (a+b), (or ¢ > 2(1 —a) — (—1)%b). We
summarise these conditions in Table 7.1.

As in Section 5 on recurrences we exploit the relationship between the polynomials, R.qp(u, m),
and their associated Fibonacci, Lucas or Chebyshev polynomial representation. Since the or-
thogonality properties of the Chebyshev polynomials are well documented, (see for example

[18]), we aim to establish the orthogonality of our polynomials in terms of them.

70
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Table 7.1: Effect of the parameters a and b on the initial orthogonal sequence number m (and
q)-

= O ol
= O = Ol

o o o3
—= O =N

7.1.1 The Chebyshev Polynomials

The orthogonality relations for Chebyshev polynomials (see for example [18] and [19]) follow

easily from

-1

T, (x) = cosnf = cos (ncos™ " x).

With the weight factor cscd = 1/4/(1 — 22), and the substitution dz = — sin 6 df, we have
for n # ¢

Ty(=) /7r 1/”
— ~dx = cosnb cosqgfddf = — cos(n—+q)f +cos(n—q)odo 7.1.1
1 1 1 i
=5 [n+qsin(n+q)9+ n_qsin(n—q)@]o =0,

If n=¢q#0, (7.1.1) becomes

1 s
[2 sin 2n6 + 9} = g

s 1 s
dx = cos®nf d = / cos2nf +1d0 =
0 2 Jo 0

1
2

/m

Finally when n = ¢ =0, (7.1.1) becomes simply

1 1 ™
——dx = df = .
/1\/1—3?2 /0

We shall deduce relations for the polynomials R.qp(u, m). Let us put n = 0, so that expression
(7.1.1) reduces to

1
Ty(z) " _

In the generation of the polynomials R.q,(u, m), we have examined separately the cases
of T,(x), when ¢ = 2m and ¢ = 2m + 1. Moreover, with the change of variable x = | /qu/2,
we find that we are only considering half of the interval [—1,1]. If we start with (7.1.2),
separate the integral into two halves and consider the particular cases of ¢ = 2m > 2 and

q=2m+1 > 1, we obtain

T ™ 1 w/2
o (7 = cos2mé df = 0, / M dz = cos2mé df = 0,
m w2 0 VI-a? 0
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and
0 T _1\ym+1
/ T2m+1($)dx:/ cos (2m + 1)0do — S (7.1.3)
1 /2 m
Tom1(x) / (=1)
Z2mdt\T) g 2m + 1) df = 1.4
/0 Voo =) cosmrd) om+ 1 (7-14)

So for n = 0, the even-numbered polynomials T5,,(x) are orthogonal to constants on the half
intervals [—1, 0] and [0, 1], whilst the odd-numbered T5;,+1(z) are not so. However, for n > 1
and n # ¢, (7.1.3) and (7.1.4) are replaced by

O Ty (x)Topir () do — /1 Tom41(x)Topt1(x) d
-1 \/1—.%'2 0 \/1—.%'2

1 /2
:2/ cos2(m + k+ 1)0 + cos2(m — k)0 do
0

b ama ka0t L sina(m— k]
2 2mtktD) 2(m — k) .

and this leads us to our next lemmas.

LEMMA 7.1.1 (different parity on half intervals). For ¢ odd and n even, we have

/”1 Ty(@)Tn(z) o _ (—1)m kg
0o V1-—2a? (g+n)(qg—mn)

Proof. We consider separately the cases of the parameter s. When s = 0 we have

V1—22 2
[ )m+k (_l)m—k ] B 1 (—1)m+k2(2m+ 1)
( =

2 [(2(m +k)+1)(2(m—k)+1)

/ Toms1 (@) Ton(e) - (Z1)° / ™ (cos (20m + K) + 100+ cos (2(m — k) + 1)8) o
0

1

=

m+k)+1+2(m—k:)+1
_ (=)™t
(g+n)(g—n)
When s = 1 we have

Ty (@) o) 1 [T
/0 2 Hk dz = —3 /ﬁ/2 (cos(2(m + k) + 1)8 + cos (2(m — k) + 1)0) db

_<—1>2[ (ko (aymh ]_1

(=1)™+k2(2m 4 1)
T2 [(2(m+k) +1)(2(m—k)+1)

2 2m+k)+1 2(m—k)+1
_ (=)™
(g+n)(g—n)’
and on combining the two cases the result is obtained. O

LEMMA 7.1.2 (same parity on half intervals). For g and n of the same parity, we have
0 ifq#n

r=<v7/2 ifg=n=0
vy /4 ifg=mn and ¢ > 1,

where v = (—1)%.
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Proof. We consider separately the cases of the parameter s. When s = 0 we have

1 T -1 2 /2
/0 T2m+f/(f)_72;+b(x) dx :( 2) /0 (cos2(m + k + b)0 + cos2(m — k)6) db

1 - e+ 1), .
:i [eém,kg + 5m,k'9]0/2 = (z),k [9]0/2
0 if
(e + D)o i 1q7én
:f =<7/2 ifg=n=0

w/4 ifg=mnand ¢ > 1,

1 ifg=0
€ =
0 ifqg>1,

and we note that e takes on a different notation to that employed in Chapter 4.

where

When s = 1 we have

-1
Lot () Tosn(x) 1/7T

de = — = cos2(m +k 4+ b)0 + cos2(m — k)0) do
[ NI F—

/2
1 - (€+1)bmk
== 5 [€0mpd + Ompblz o = ————— 0]z
0 ifqg#n

1)76,,
WZ —7m/2 ifg=n=0

—n/4 ifg=nandq>1,
and so on combining the two cases the result is obtained. O

Remark. Lemma 7.1.1 informs us that halving the integral length destroys the orthogonality
relation between the sequence of polynomials {T,(x)}22 . More specifically it demonstrates
a destruction between the polynomials of different parity. On the other hand, Lemma 7.1.2
informs us that for the sequence {T5; ()}, the orthogonality property is preserved, whereas
for the sequence {Top,+1(z)}50_, not all of this property survives, (i.e. there is no constant

term).

7.1.2 The recurrence polynomials R, (u, m)

We observe that the polynomials Rs.11(u, m) have a “correction factor” of w12, so that

T1(z) = x is mapped to Rs11(u,0) = 1, thus establishing the orthogonality of the polynomial

o0

~_p, provided that the correction factor of both polynomials, u, is

sequences {Rg.11(u,m)}
accounted for in the weight factor w(u). After first introducing a lemma to help clarify one

of the steps, we formulate these ideas as a theorem.

LEMMA 7.1.3. We have
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Proof. Recalling that v = (—1)%, the result follows on substitution of s = 0 and s = 1 into

each of the terms. O

THEOREM 7.1.4. The polynomials Rg.15(u,m) form a family of orthogonal polynomials
with respect to the weight factor (yu)®/\/yu(u — 4v) on the interval [0,47], expressed by the

integral
0 ifm#k
/47 (Y) " Res.n (u, m) R (u, ) du= q —4m!~™* ifm=4k and ¢ =0

—2mt ifm=k and q>1.

Proof. From Theorem 5.6.1 for the parameter a = 1,
Raap(u, m) = ALy, (u, 2m 4 b),

then from the Corollary to Theorem 5.4.1 and Lemma 5.3.1, the function A’ ;, can be asso-

ciated to the modified monic Chebyshev function Cy by the relations
A6;1b<u7 q) = C(g (U),
and
App(u, q) = Ly(u) = (=1)"Ly(—u) = (=1)"Cq(—uw).

Using these forms, the substitution = y/yu/2 and Theorem 5.6.1 we can write, (for
g=2m+b>1),
Cy(\/yu 2T, (\/yu/2
Rs;lb(u7 m) - A;;lb(u7 Q) - ,ymcv(?]“(,yu) = 'qu(ib) = qu(ib/)a
(v7u) (v7u)
and when ¢ = 0 we have R.10(u,0) = 2Tp(z) = 2. From (7.1.3) we find that on making the
substitution x = y/u/2 it is necessary to consider only half the original integral, let us select
the interval [0, 4v]. We have

/47 (vu)*Ro;16(u, m)Ro;16(u, k) du
0 Vyuu — 4y
et /47 ()" 2Tom+(v/7/2) 2T (v7/2)
0 (VYu)?/yuy/u — 4y
:4fym+k/47 Tomav(V70/2) Topo(y/7u/2) du
0 u— 4y Ve

— 16y R /47 Tomtb(\/70/2) Top s (y/7u/2) ~vdu
0 V—=A4v\/1 —yu/4 4y/vu
" Ty () Tog4b()
L gymtkystl / 2m+b(2) Tokro (@)
7 0 V1— 22

The required result then follows from the application of Lemma 7.1.2 to the integral. O
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For demonstration we illustrate the case for m = k with ¢ > 1. So using Lemma 7.1.3 we

have

’m—l—kzl—i—sﬁyiTr
4

—8y = —2ym!TS = —om!=s.

7.1.3 The recurrence polynomials R,.q(u, m)

In a similar manner we now examine and utilise the Chebyshev polynomials of the second
kind, Uy, (z) that we recall from (5.3.1) are defined by

sinnd
Up-1(z) = S
to enable us to extract the orthogonality of the sequences of polynomials Rs.op(u, m). We
find in these latter polynomials that the omnipresent u — 4 factor excludes the possibility
in each sequence of the polynomial Py(u) = ¢, (¢ a constant). Hence the creation of an
orthogonal sequence for these polynomials requires the absorption of u — 4+ into the weight
factor. Alternatively, we select a weight factor that realigns the sequences {R.op(u, m)}o0_;_,

to those of {Uanr4+B}37_o, where M =m —1+4b and B =1 — b. We start with a lemma.

LEMMA 7.1.5 (half interval integral). For positive Q = 2M + B and N = 2K + B and
constant B € {0,1}, we have

T o fQ#N
/0 UQMJ,-B(«T:)UZK-%B('%')(M) do = {77'(/4 ZfQ =N and Q > 1,

where v = (—1)°.
Proof. We consider separately the cases of the parameter s. When s = 0 we have

1
/ Usvi+B(2) Uk 4B(2)V1 — 22 dx
0

w/2
=(—1)? / sin (2m + b)@ sin (2k + b)0 do
0

1 w/2
:2/ cos2(m — k)8 — cos2(m + k + b)6 do
0

_1 7r/2

Smpm O HQ#N
4 \x/4 ifQ=NandQ>1.

When s = 1 we have

-1
/ Usvi+B(x)Usk4p(z)V1 — 2?2 de
0

1 ™
:_2/ cos2(m — k)8 — cos2(m + k + b)6 do
w/2
1 T 5m,kz7r o {0 if Q 7& N

2[ K Lr/z 4 —r/4 if Q=N and Q > 1,

and so on combining the two cases the result is obtained. ]
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Now since we are using only using the Chebyshev Ug(x) polynomials, M =m — (1 —b) and
B=1-b.

THEOREM 7.1.6. The polynomials Rson(u, m) form an orthogonal polynomial sequence
with respect to the weight factor /yu/((yu)?/(u — 47)3) on the interval [0,47], satisfying
the integral

/47 vV ’YURS;Ob(Ua m)Rs;Ob(U7 k) du — 0 if m 75 k
0 (yu)b(y/u — 47)3 2t ifm =k and g > 1.

Proof. From Theorem 5.6.1 with the parameter a = 0 we have

Rs;Ob(“) m) = (U - 47)14;;012(“7 Q)’

then from the Corollary to Theorem 5.4.1 and Lemma 5.3.2 we rcall that the function A7,

can be associated to the modified monic Chebyshev function S;_; by the relation

Apop(u,q = 1) = Sg_1(u), and  Afg(u,q) = Fy(u) = (=1)"Fg(—u) = (=1)"55_1(-u).

Using these forms, the substitution x = /~u/2 and Theorem 5.6.1 we can write for ¢ > 1,
(@ >0),

Resson(usm) = (u = 47) A g (u, q) = v (u — 47) Sy (yu)
_ 'YM (u — 47v)Sg-1(y/7u) _ 'YM (u —4v)Uq—1(y/7u/2)
(V7u) = (Vu) b
When g =1 we have Rg01(u, 1) = (u — 4v), and when ¢ = 2, we also find that
Rs:00(u,2) = (u— 4v). From (7.1.3) we find that on making the substitution x = \/u/2 it is

necessary to consider only half the original integral, let us select the interval [0,1]. We have

/47 (vu) P Ros1p(u, m)Ro,16(u, k)

0 VYU(u — )3

MK /47 (yu)' " (u — 47)Uq 1 (/70/2) (u — 47)Un—1(\/70/2)
0 (vu)20=0) yu(y/u —47)3

du

du

4 u
:,yM-l—K/O Uanr+1-6(v/7u/2) Uz 11-(v/ 71/ 2)( “_47)\;1@

4y du
M [ T2V )T /)
0 4. /vu
1
:8’}/M+K+IZS+1/ U2M+1—b($)U2K+1—b(fL')(V 1-— xz)da:.
0
The desired from result then follows from application of Lemma 7.1.5 to the integral. O

We illustrate this for the case m = k (and ¢ > 1) and we obtain

1+Sﬂ — 2
7 1 ™Y

We now combine Theorems 7.1.4 and 7.1.6.

8’}/ 2l1+8 — 27_”/14’8‘
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THEOREM 7.1.7. The polynomials Rs.q(u, m) form an orthogonal polynomial sequence,
with respect to the weight factor wg.qp(u) defined as

——\A\(1—2b)
(VA where A= (-1)%,

Wsap(u) = (u— 47)2HA

on the interval [0,4~] that satisfies the integral equation

0 ifm#£k
Resiab(u, m)Rsap (u, k)wsqp(vw) du = —dam'™* ifm=k and ¢=0 (7.1.5)
2Nt tA ifm =k and ¢ > 1.

4y

0

Proof. We consider the two cases of the parameter a. When a = 1, the weight factor becomes

( /f,yu)Qb—l
vl = Ty
and from Theorem 7.1.4, equation (7.1.5) is
_ 0 ifm#k
/47 (PO Ryt m R0, ) du= 4 —4m!™ ifm=kandqg=0
0 (u—4y) !

—2m!=® ifm=kandq>1.

Then when a = 0, the weight factor becomes

( /—,Yu)l—%
Wesop(U) = (=47
and from Theorem 7.1.6, equation (7.1.5) is
0 ifm#Ek
/47 G ’yu)l_QbRS;Ob(u’ WLEUCL) du=<0 ifm=kand ¢g=0
0 (U - 4/7)3 +1 .
2m® ifm=*kand qg>1,

therefore, establishing the result. O
In isolating the individual sequences we obtain the following corollary.

COROLLARY. For the (non)alternating parameter case a = 0, we have the orthogonal

relations
/4 \/aRo;()o(u, m)Ro;oo(u, k’) du = 0 z'fm 75 k
0 (‘/u74)3 2mr if m=k and m > 1,
Rgmungm(u k) du = 0 me#k
vV ( u—4) 21 if m =k,

/ \/TU'Rl 0() u m)Rl Qo(u k) du = {0 me 75 k

u+4) 2 ifm=k and m > 1,
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and

RlOluleol( k‘)du: 0 me#k
u+4) 21 ifm = k.

Also for the alternating parameter case a = 1, we have the orthogonal relations
0 ifm#k

du=<¢ —4m ifm==%k and m=0
—2m ifm=k and m > 1,

R(] 10 u, m R() 10(u k?)
Vu Vu—14

t VuRoq1 (u, m)Roa1 (u, k) du—d0 ifm#k
Vu—4 2me if m =k,

0 ifm#k
du=<¢4nr ifm=k andm=0
27 ifm=k and m > 1,

Rl 10 u, m Rl 10(u k)
vV—uvu+4

and

/ \/—uRlnum)Rln(u k‘) du = 0 me%k
Vu+4 21 if m=k.

Proof. Each of these results follows directly upon substitution of each of the parameters s, a
and b into (7.1.5) of Theorem 7.1.7 and reversing the order of integration, (and therefore

changing the sign), when necessary. O

7.2 Three term order recurrences

In Section 5 we described an order M’ = m + b(1 — a) linear recurrence relation polynomial
Rs.ab(u, m), that for fixed g and ¢, facilitates the calculation of the r** term, (for r > M’), of
the sequence Lg.qpc(r, 1, q).

Alternatively, the word recurrence often refers to a relation between polynomials of consec-
utive orders. We will consider two types of such recurrences, those from the same sequence
(that we refer to as an intra sequence) and those separated by the parameter b (that we refer

to as an inter sequence).

7.2.1 Intra sequence recurrences

For fixed parameters s, a and b we consider the relation between the polynomial R.qp(u, m+2)
in terms of the polynomials Rg.qy(u, m + 1) and Rg.qp(u, m). To elucidate this relation we
exploit the orthogonality of these polynomials shown in Section 7.1. We use a theorem to

demonstrate a method described in [18].



79

THEOREM 7.2.1. The orthogonal polynomial sequence {¢,(x)}°2,, satisfies the three term

relation

¢r+1($) = (arl' + ﬁ?‘)ﬁbr(x) + ’7r71¢r71(55)' (721)
Here the coefficients o, B, and ~v.—1 are given by

ArJrl

;= , 2.2
a A (7.2.2)
where A; is the leading coefficient of the polynomial ¢;(x).
_ar 1 2
By = p / w(z)xes(x) de (7.2.3)
roJ-1

where k; # 0 is defined by

1 1
b= [ @@= [ w@ae +o@let de = 4; [ o) dr,

1 -1

and

Ar—l kr
Yr—1 = —Qr < A, ) <kr—1> . (7.2.5)

Proof. We choose «,- such that
Ori1(x) — arzdy(z) (7.2.6)

is a polynomial of degree r. Now due to the orthogonality of the sequence of polynomials
{¢i(x)}7_,, they are linearly independent and so span the space of the polynomials of degree
r. We, therefore, select this sequence as a basis for the polynomials of degree r and write

(7.2.6) as a linear combination of these polynomials. We have

¢T+1(«T) - arx¢r(x) = ﬁr(z)r(x) + 7T—1¢T—1(x) + '77’—2(;57’—2(«%) +...+ ’)/O(Z)O(x)' (727)

Multiplying (7.2.7) by w(x)¢;(x), where w(z) is the weight factor, and integrating (between
—1 and 1), we find that for 0 <i <r —1,

1

1
/ w(@)9i(@){dr41(2) — g, (2)} de = 3, / w(@)¢? () da = ik, (7.2.8)

-1 -1
and when 7 = r we have

1
/_ () (2){ras () — 026y (2)} d = By (7.2.9)

1

Now since, for 0 < i < r—2, ¢11(x) is orthogonal to ¢;(x) and ¢, (x) is orthogonal to z¢;(z),
the left hand side of (7.2.8) disappears and S0 y,—2 = Yp—3 = ... =9 = 0.
However, when i = r—1, the terms ¢, (z) and x¢,_1(x), both of degree r are no longer orthog-

onal, and similarly when ¢ = r, the term «,z¢,(x) is not orthogonal to ¢,(x)). Consequently
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in each case the left hand side of (7.2.8) and (7.2.9) respectively is nonzero. Therefore, (7.2.7)

simplifies to

Prr1(z) — arxgr(z) = Bror(z) + Yr—16r—1(2) (7.2.10)
and on rearrangement of (7.2.10) we obtain (7.2.1).
To derive the coefficient ., we observe that its selection in (7.2.6) is such that on taking the

coefficient of z"t! we obtain
AT+1 — OdrAr = 0,

which on rearrangement gives (7.2.2).

For the coefficient 3,, we find that on simplifying (7.2.9) we obtain

o [ wl)egt@)dz = ok,

~1
which on rearrangement produces (7.2.3). Finally for ~,_1, we put i = r — 1 into (7.2.8) so

that on simplification (and use of 7.2.4) we have
1

1
~ar [ w@es,a@oa)ds =51 [ w@)id (@) do

-1 -1

1
—a, / 1 w(x)[Ar—12" + xdr_o(x)|dr(z) dz = yp_1kr—1
1
ardey [ @) (@) de =tk
-1

k
_arAr—lxr = Yr—1kr_1
Ar—l kr
—Qy

A’r‘ kr—l -t
O

COROLLARY. If {¢y(x)}2, is a monic orthogonal polynomial sequence and there exists
some i, such that for all j > i we have k; = k;, where k; is defined as in (7.2.4), then (7.2.1)
simplifies to

Pjr2(x) = (x + Bj41)dj+1(2) — ¢;5(2), (7.2.11)
where

—1
Bi+1 = T lw(x)xqﬁﬂ(x) d.

Proof. 1f ¢j(x) is monic, then we have that A; 0 = A1 = 1, therefore, oj 11 = 1, and then
since k; = kit1... = kj41, it follows from (7.2.5) that v; = —1. Then replacing r with j + 1
in (7.2.3) and using the fact that «j;1 = 1 and kj1 = k;, we obtain (7.2.11). O

LEMMA 7.2.2. For g > 0, we have
4~ w/2
/ (Res:ab (1, m))? Weap(u) du = Mgl A9 / 1 — Acos2(2m + b)6 do, (7.2.12)
0 0

where A = (—=1)% and v = (—1)°.
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Proof. When a = 1, we have from Theorem 7.1.4 with m = k and then Lemma 7.1.2 (that

demonstrates the need for the additional factor v when the variable changes from z to 6),

/47 (T Rl m)?
u— 4y
1+3 ’Yl (T2m+b($) de'
0 V1—a2
= — 8yl / (cos (2m + b)) d8
0

=" "> / (14 cos2(2m + b)6) db.
0

and when ¢ = 0, we have from Theorem 7.1.6 with m = k and then Lemma 7.1.2 (also

highlighting the additional 7 factor when changing variable),

/47 (\/%)1_217 (Rs;Ob(uv m))2 du
0 (Vu —4v)3

~y1
:8’721+8/ (Uamtp—1( \/ 1—22dx
0

w/2
=8y% s / (sin (2m + b)9)* do
0

w/2
=41+ / (1 —cos2(2m + b)0) de.
0

Combining these two results we obtain (7.2.12). O
LEMMA 7.2.3 (first moment functional). For ¢ > 0, we have

—8ami!ts ifq=0
4y
/ U (Resap (1, M) Werap(u) du = s mMI T if g =1 (7.2.13)
0 A\l s if g > 2,

where A = (—1)%.

Proof. From Lemma 7.2.2 and recalling that u = 4yx? = 4vycos? 6, the left hand side of
(7.2.13) can be written as

/2
Mgl HAs / 4y cos? 6 (1 — Xcos2(2m + b)#) d6. (7.2.14)
0
If ¢ = 0 then (7.2.14) becomes
/2 w/2 T
4)\7,1+/\S/ v(2a)4 cos? 0 dh = 16/\’yazl+)‘s/ 1+ cos20df = —6yar'™* [5} = —8am! ™.
0 0

If ¢ > 1 then on applying the identity 2cos?f = cos20 + 1 and multiplication, (7.2.14)

becomes
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w/2
Ay TS / (24+2cos20 — Acos2(2m +b+1)8 — Acos2(2m +b—1)8
0

—2\cos2(2m + b)6) d6. (7.2.15)

Then if ¢ = 1, (7.2.15) simplifies to

w/2
Ay A / (2+2cos20 — Acos40 — X — 2\ cos 20) do
0

2r Al if @ =0
a2 N5 = 202 — MmN = 7.2.16
Q= Nel5” =23 = ymi =3 T (72,16
both cases being equivalent to the ¢ = 1 case in (7.2.13).
Finally, if ¢ > 2, (7.2.15) becomes 4Ay21+s [20]7/% = 2Am1=s. O

THEOREM 7.2.4 (intra sequence recurrence). For fized parameters s, a and b and

m > 14 ab — a — b, with initial values given by

R oo(u, 1) =u—4v, and Rsoo(u,2) = u? — 6yu + 8,
5:01(4,0) =u — 4y, and R0 (u,1) = u? — 5yu + 4,
s:10(4,0) =2, and Rgi0(u, 1) =u— 27,
Rsi11(u,0) =1, and Rsa1(u,1) =u— 37,
we have
Rsap(u,m+2) = (v — 27)Rsap(u,m + 1) — Rg.ap(u, m), (7.2.17)

where v = (—1)%.

Proof. From Section 7.1 each of the polynomials R.qp(u, m) form an orthogonal monic poly-
nomial sequence with respect to the weight factor wg.qs(u).

For m > 1 we have from Theorem 7.2.1 and Corollary 7.2.1, with ¢ = 1 and putting j = m
Rsap(u,m +2) = (4 + gms1)Rssap(u,m + 1) — Rg.ap(u, m), (7.2.18)

where
-1 4y 5
/ U (Rsap(u, m + 1)) wsqp(u) du.
km—i—l

Here ky,+1 = k1 and as defined in (7.2.4) is from Theorem 7.1.7 found to be

Im+1 =

ka1 = 2\t TA8,

and from Lemma 7.2.3 we have

4y
/ U (Rsap(u, m))2 Wesab(u)du = 4)\71'217)‘3,
0
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and so we find that

AN A _ _
Im+1 = _2)\7T’L1+)‘8 =2 2 = _2((_1)8) A= _2’75

and so (7.2.18) is obtained.
When m = 0 and ¢ = 0, Rs00(u,0) = 0, but Rg10(u,0) = 2, (which is not monic) and
we need to consider the implications to the corollary of Theorem 7.2.1. Inspection of the
corollary with j = 0 reveals that o; = Ag/A; is unaffected; then from Theorem 7.1.7 and
Lemma 7.2.3,

—1
Tk

(—8)7’(217)‘8

4y
2
B /0 U(Rs;ab(ua 1)) ws;lo(u) du = —m = -2,

and the evaluation for g is

Ao k‘l 2 (—4)7T21+)‘S
’}/0:—0(17—:—771_"_)\8:—1’
A1 k‘o 1 (—8)7‘1’2

showing that (7.2.18) remains valid.

When m = 0 and ¢ = 1, Rg01(u,0) = u — 4y, but is equivalent to 1 after recalibration due
to the amended weight factor. We also find (from Theorem 7.1.7 and Lemma 7.2.3) that
B1 = —2v, (and since kg = k1), 70 = —1, where we note the different notations of ~
and ,,.

Finally for Rg11(u,0) = 1, applying the same theorem and lemma we also have 5 = —27,
and v9 = —1, and so we find that (7.2.18) holds for all ¢ > 1 — a as asserted. O

7.2.2 Inter sequence recurrences

Consideration of the production of the polynomial R .. (u, m+1) from those of R.qp (1, m+b)
and Rg.qp(u, m), where b/ =1 —b.

THEOREM 7.2.5 (inter sequence recurrence). With ¢ = 2m + b > 1 — a, such that the

initial conditions are, if

0 then Rso0(u,1) =u— 4y, and Rs01(u,0) = u — 4y
1 then Rsi0(u,0) =2, and Rsa1(u,0) =1,

and v = (—1)*%, then we have
Reap(u,m+1) = u‘bfa‘Rs;ab/(u, m+0b) — YRg.ap(u,m), (7.2.19)
where |d| is the absolute value of d.

Proof. We need to consider the cases of the parameters a, b and s. Starting with case when

a =1 we have from (5.3.2)

Tpia(x) = 22Ty (z) — Ty(),
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and so with x = \/u/2 we have,

Tyis(Vi/2) = ViTyss (Va/2) — Ty(Vu/2). (7.2.20)
From Theorem 5.6.1,
m2Ty, u/2
Rs;lb(u7m) = ! (\/%;?/ )a

and when ¢ = 2m (7.2.20) becomes
v R0 (u,m + 1) =y 27 A (VAuR san (u,m)) — 472 Rgao(u, m)
7_1R5;10(u, m+ 1) =yuRs11(u, m) — Rs10(u, m)
Rs10(u, m 4+ 1) =uRg11(u, m) — YRgi0(u, m),

where we have first divided through by 4v~™27! and then multiplied by ~.
Conversely when ¢ = 2m + 1, (7.2.20) becomes

’y*m*12*1,/’yu725;11(u, m+1) = ’y*m*12*1\/fyu738;10(u, m+1) — ’y*m2*1‘/fyu733;11(u, m),
which on division by y~™71271, /Au (taking u # 0 as fixed) gives
Rs;n(u, m + 1) = Rs;lo(u, m + 1) — ’)/RS;H(U, m) (7.2.21)

When a = 0 we have the additional factor of (u — 4) to consider.
Once more starting with (5.3.2),

Upir(z) = 220, (x) — Uy (2),
we put x = \/qu/2, before multiplying through by u — 4+ to obtain
(u = A7) U1 (Vu/2) = Vyu(u — 47)Uq(Vru/2) — (u — 47)Ug1(Vu/2),  (7.2.22)

where the variable u is not to be confused with the polynomial U, (z), the Chebyshev poly-

nomial of the second kind. Now from Theorem 5.6.1,

V0w — 4y)Ug-1 (VAu/2)
() |

and with ¢ = 2m + 1, equation (7.2.22) is equivalent to

Rs;Ob(u7 m) =

T R (u, m + 1) = /A0 (VAUR 00 (u, m + 1)) — 4 Regor (u, m)
'y_mRs;Ol (u,m+1) = 71_mURs;OO(Ua m+1)— V_mRs;Ol (u, m)
Rso1(u,m+1) = uRgo0(u, m+ 1) — yRs01(u, m).

For ¢ = 2m the case mirrors (7.2.21) and so division by v~ ,/qu (with u # 0) gives

77m\/ 7UR8;00 (u7 m+ 1) = ’77m\/ ’YURS;Ol(Uv m) - ’Ylim\/%,Rs;OO (Ua m)
RS;OO(U7 m+ 1) = Rs;Ol (u7 m) - VRS;OO(UJ m)

and so we obtain (7.2.19) as required. O



Chapter 8

Generating functions

We commence, in Section 8.1, with an overview of the generalised hypergeometric function,
that play an important role in the establishment of key results in this chapter. In Section 8.2,
we establish, in Lemma 8.2.1, a generalised generating function developed from the recurrence
polynomial. Then in Section 8.3, we utilise this lemma and hypergeometric functions, to
determine in Theorem 8.3.7 the generating function of the alternating sequences Lg.1p¢(7, ¢, q).
The non-alternating case a = 0, first requires some other prelimanary work, that we examine
in Section 8.4, prior to Section 8.5, in which we culminate with Theorem 8.5.6, that determines

the generating function of the sequences L ppe(r, ¢, q).

8.1 The Generalised Hypergeometric Function (GHF)

For positive integers a and k, we denote the rising and falling factorials by

% I+ k)

_ _ I'(a)
o =ala+1)...(a+k—1)= M)

Ta—k)
(8.1.1)

Using the notation of (8.1.1) for the rising factorial, and citing [3] and [45], we have the

and of=a(a—1)...(a—k+1) =

following definition.

Definition 8.1.1 (generalised hypergeometric function). A generalised hypergeometric series
of the form

ZTkzk =To+Tiz+Thz%+ ...
k>0

s a power series in which the ratio of successive coefficients

Tit1 _ (k+a1)...(k+anm) (8.1.2)

T, (k+pB1)...(k+Bu)(k+1)

indexed by k, is a rational function of k. The series, if convergent, defines a generalised

hypergeometric function, denoted by

o k. k k
al,aQ,...am Oélol2aml‘
mFn 12 = g —_—. 8.1.3
( B1, B2, Bn > = Bhpk ... BEE! (8.13)

85
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where the parameters oy, ..., am, B1, ..., Bn are obtained directly from (8.1.2). When the

series is not finite, its radius of convergence is given by

o ifm<n+1
p=<1 ifm=n+1
0 ifm>n—+1.

8.1.1 Overview to the application of generalised hypergeometric functions

The application of the generalised hypergeometric function (GHF) in this thesis involves the
reduction of a sum of the product of two binomial coefficients to a single binomial coefficient.

The general approach to achieve this is as follows:
1. Obtain the ratio Ty41/T}.
2. Identify the GHF by reading off the parameters from the ratio.
3. Multiply by the term Tj.
4. Associate the GHF to an established result.

5. Convert this result to a binomial coefficient (as the given result is usually expressed in

terms of rising factorials.)

6. Check whether the GHF has the same number of terms as the given sum (and add /

subtract terms if necessary).

8.1.2 Overview of applied properties and stated results

e If one (or more) of the parameters in the numerator is negative then the series is finite.

Eg. the rising factorial of (—n)"*1 = 0, so the series will vanish after n terms.

e Particularly for finite series we can replace z by a value, (such as 1 or —1), and the
polynomial becomes a sum. To prevent a zero in the denominator of one of the terms,

this statement may carry the caveat that the parameters satisfy some given criteria.

e There are many such GHF's whose sum has an established closed form. For example, if
(8.1.3) satisfies (i) m=n+1and (ii) a; +...+am+1=01+...4+ Oy, and z =1, the
GHF is described as Saalchiitzian (or balanced).

Two such results employed in this thesis relating to Saalchiitzian GHFs given in [37]

are:

o < ay, e, —m ,1> _ (B1—a1)™(B1 — o)™
2\ Bartag—m—pB 41" BT (B — a1 —ap)™



87

and (using the symbolism of Slater [37])

Pgllg=f=d) . < A1+ f =g, f/2,f/241/2 .1>
T(g—HT(g—d) =P\ a,f/2+d/2—-g/2,1+ f/2+d/2-g/2"

:3F2<f,1+f—a,d ;_1>‘
a, g

In Appendix D.1 we provide a simple example to illustrate how hypergeometric functions

are applied in this chapter.
8.2 Development of the generating function from the recur-
rence relation polynomial

Definition 8.2.1. We have L5(0), L5(1),Ls(2),... are two sequences of integers, where the

parameter s € {0,1}, and are such that
L1(r) = (=1)"Lo(r) =~"Lo(r),
where v = (—1)°.

Suppose a sequence L4(0), L5(1), L5(2),. .. satisfies a linear recurrence of order m, then

recalling Lemma 5.5.1 we have
Ls(r+m)+ (=y)arLs(r+m—1)+ ...+ (—=y)"anLs(r) = 0. (8.2.1)

Definition 8.2.2. We denote the generating function of the sequence of terms Ls(r) by
o
GLo(x) =) La(r)a’. (8.2.2)
r=0

A method of determining the generating function equation from a three term linear recurrence
relation is given by Koshy [29]. This is easily extended to an m + 1 term relation. We express

this method as a lemma.

LEMMA 8.2.1. If the sequence of terms Ls(0), Ls(1),Ls(2),... satisfy the m + 1 term

recurrence (8.2.1), then the generating function will have the form

e S o (=vYa Lok — j)at

~ 2k=0
GLs(x) = N (8.2.3)

Proof. From (8.2.2) we have

GLy(z) = i Lo(r)z" = Ls(0) + Lo(V)x + L4(2)22 ... + Lo(n)z™ + ... (8.2.4)
r=0
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Multiplication of both sides of (8.2.4) by (—v)*agz* for 1 < k < m, then produces the system

of m additional equations

—va12GLs (1) = —ya1Ls(0)z — yar1 Lg(1)a? — yar Lo(2)x3 + . ..
agngﬁs(x) = agﬁs(O)x2 + a2£s(1)$3 + a2£5(2)x4 + ...

(_V)milam—lxmilg»cs(x) = (_’Y)milam—l»cs(o)xmil + (_V)milam—l»cs(l)xm
+ (=) a1 Ls(2)z™ T

(=) ama™GLs(x) = (=) amLs(0)2™ + (=) " am Ls (D)™ + (=) amLs(2)2™ 2 + ...

(8.2.5)

Summing the left and right hand sides of the m 4 1 equations, collecting the terms for

successive powers of z and then using the fact that ZZLZO(—fy)m_kam_kﬁs(n + k) =0, we

obtain
Z(— ) aa*GLs(x)
—aoﬁ ) + (a0Ls(1) + (=7)a1Ls(0)) x + (a0Ls(2) + (=7)ar Ls(1) + a2 Ls(0)) 2
m— 1 m
.+ ( Ya; L —1—j) | a™ 1+ Z(—’y)jajﬁs(m —7) | z™
j= j=0
- (Zwmcs(ny) "
j=0
+ (a0 Ls(1) — ya1L5(0)) z + (aoLs(2) — va1 Ls(1) + azL4(0)) 22
m—1
o+ D aiLdm =1 =) | 2™ 0+ 0+
j=0
m—1
Z Lo(k—7) | 2" (8.2.6)
k=0 \j=0
Division of both sides by ZZ”ZO(—'y)kak:ck gives the result. O

Remark. The generating function has “inverted” the coefficients of z* in the sense that
the coefficient aj has been replaced by a,,_j, so that the recurrence polynomial in both the

numerator and denominator of the generating functions are reciprocal polynomials.
The summation in (8.2.6) is not unique as we demonstrate in the Corollary.
COROLLARY. For the sequence of terms Ls(0), Ls(1), Ls(2), ..., we have

m—1 m—k—1 i
_ 24k=0 Z; Yo (=1 aiL s(k)altr
Gt = ST o Farat

(8.2.7)
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Proof. If, in Lemma 8.2.1, the remaining terms in (8.2.6) are collected for successive values
of Ls(k)x*, then the result follows. O

Remark. The terms a; and L4(k) in (8.2.7) are no longer inter-dependent in the summation,
and this fact will be exploited in the generating function of the sequences Lopc(r,t,q). A

very similar equation to (8.2.7) is stated by Jordan (p.27, [28]).

We now wish to apply the result of Lemma 8.2.1 to determine the generating function
of the sequences Lg.qpc(7,t, q). The alternating case a = 1 is an easier proposition than the

a = 0 case, so we shall consider this first.

8.3 The generating function of the sequences L;.,.(r,¢,q)

From the work in Section 8.2 we have Lemma 8.3.1.

LEMMA 8.3.1. The generating function for the sequences Ls.1pc(r,t,q) has the form

11— 1 k=T i 2m4b  (2mAb—jy\ (2k+2—c—2j k
8 DY P (_1)J2myibfj(mj j)(k+t+1fcfj)(7‘f)

gﬁs;lbc(xatafn = m m Ymtb—k s (831)
Ek:o(—’Y)kzriJrﬁk( W)k
where 0 <t < m, and
t ift =0
T= if (8.3.2)
t—1 ft>1.
When b=c=0 and t = m, we have
gﬁs;loo(l', m, 2TTL) = 0. (833)
Proof. From Lemma 8.2.1 we have
Sk (Y aiLoane(k — 4.t q)zF
GL el t,q) = 22420 > imo(=v)a;Lsape(k — 4, t, q) ’ (8.3.4)

Zk o= v)kayz*

where we recall that the terms a; are those of the corresponding recurrence polynomials,
Rs:p(x,m) (of order m), such that ay, is the coefficient of the term z™*. From Theorem 5.6.1
these are given by

U 2m +b 2m+b—k
m—k m—k
Rs: E _— , 8.3.5

1(z,m) — 2m+b—k< k >x ( )

and we have

ap = (8.3.6)

2m+b—k k
The terms Lg1pc(r,t,q) for 0 < r < m — 1, in the numerator of (8.3.4) are, with one

2m + b <2m+b—k>

exception, determined by the single binomial coefficients

2r+2—c)

r+t+1l—c)’ (8:3.7)

ﬁs;lbc(ru t, Q) = ,yr+t+lfc (
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This single exception occurs when the parameters b = ¢ = 0 and the variables r = m — 1 and

t = m. In this case (8.3.7) becomes

Ls00(m — 1,m, 2m) = 7™ <<2Z)n> . @:)) — 0. (8.3.8)

Moreover, we also observe that when ¢ > 1 and r = ¢ — 1, the binomial coefficient in (8.3.7)

2t — ¢
2t —c)’

and so if t > 2 and 0 < r <t — 2, then (if we define the binomial coefficient "C, = 0 when

is given by

r > n), Leape(r,t,q) = 0. Consequently this reduces the number of non-zero terms in the
numerator of (8.3.4), and the upper limit of inner sum is reduced by T, as is the lower limit
of outer sum raised to T', where T is given in (8.3.2).

Accordingly, substitution of each of the terms (8.3.6), (8.3.7) and (the discussed) place-
ment of the variable T" into (8.3.4) gives (8.3.1). Furthermore, in conjuction with (8.3.8), we
have for 0 <r <m — 1, that Ls.100(r, m,2m) = 0, and so we obtain (8.3.3). O

Although we have established a form for the generating function of the sequences Lg.14¢(7, t, q),
the numerator of each is a double sum and consequently rather unwieldy. We turn to gen-
eralised hypergeometric functions (introduced in Section 8.1) to reduce the inner (binomial)
sum to a single term.

Let us first consider the particular case ¢ = 0 (and ¢ = 0) and denote the (inner sum) of

the numerator of (8.3.1) as
Z’“:T:z’“:(_l)j 2m + b <2m+b—j><2k+2—2j> 539)
= = 2m+b—j j k+1—j ) -
We require the following lemmas.

LEMMA 8.3.2. For non-negative integers m, k and b with 0 < k <m —1 and b € {0,1}

we have

m

= 2m+b—j J k+1—3
2k +2 7 —I{:—1,1/2—b—m,—m.1
k41 )32 —k—1/21-b—2m )"
Proof. Denote the left hand sum as

“ i . 2m+b (2m+b—j\ (2k+2—2j
§ T = § (-1 ——— 8.3.10
= J j:O< )Zm—i—b—j( j ><k+1—j ) ( )
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then expressing it in terms of a hypergeometric function with

Tt = (C1p* 2m + b o2m+b—j—1\ (2k —2j
i+ = 2m+b—j—1 j+1 k—j

(=17 2m 4+ b)(2m + b — j — 1)1(2k — 2)!
@m+b—j—1)G+DI2m+b—2—25)(k— )k — )

and

T (1) 2m4+b  [2m+b— 5\ [2k+2— 2§
I 2m+b—j j kE+1—j

(=1)7(2m + b)(2m + b — 5)!1(2k + 2 — 2j)!
S CmEb—)Cm b —2) (k+1—NI(k+1—5)

the ratio Tj41/T; is

(-DEm+b)2m+b—j — )2k — 25)1(2m + b — 5)5!
T @2mAb— -G+ D)2m+b—25 —2)(k— )k —j)!
2m+b—2j)(k+1—i)l(k+1—j)!
(2m +b)(2m + b — j)I(2k + 2 — 2j)!
C(-DEm+b—2)2m+b—2j — 1) (k+1—j)(k+1-j)
o 2mHb— -1+ )2k +2—25)(2k + 1 —2j)
A G —m—b/2)(j—m+(1-0)/2)(j -k -1)(j — k1)
A-1PG+1-b=2m)(j— k-1 —k—1/2)(j +1)
—k-1G—-—m—-b/2)(j —m+(1-b)/2)

T G—k—-12G+1—-b—2m)(+1) (8.3.11)

We recall that b either takes the value 0 or 1, and so (8.3.11) can be equivalently written as

(G-k-DG+1/2-b-—m)(i—m)
(G—k—1/2G+1-b—2m)(j+1)

2k + 2
Ty =
0 (k+1>7

Also we have that

so that we can write

= 2k + 2 —k—-1,1/2—b—m,—m
ZTJ':<1€+1>3F2< —k—1/2,1-b—2m ;1>

as required. O

LEMMA 8.3.3. For non-negative integers m, k and b with 0 <k <m —1 and b € {0,1}

we have

~k—1,1/2—=b—m,—m \ _ i 2m—k—2+b
3F2( —k—1/2,1-b—2m ’1>_( Y k+1 ’ (8.3.12)
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Proof. We observe that the sum of the numerator parameters is —k — 1/2 — 2m and that
this is one less than that of the denominator parameters. This fact enables us to employ
Saalschiitz’s theorem given by
2 A,B,—m 1) = (C—A)™C—-B)™
2\ C,LA+B-m—-C+1°" ) Cm(C—A-B)™
Weput A = —k—1,B=1/2—b—mand C = —k—1/2 (andso A+ B—m—-C+1=1-b—2m),
then using (8.3.13) and multiplying by 7 we obtain
2k + 2 7 —k—-1,1/2—b—m,—m 1) = 2k +2\ (1/2)™"(m —k —1+b)™
k1) —k=1/2,1—-b—2m ') \k+1) (=k—1/2)7(m+b)™
(8.3.14)

. (8.3.13)

Each of the rising factorials of (8.3.14) can be expressed in the following manner.

(1/2)™ = (1/2)(3/2) ... (2m — 1)/2) = - 2;77-1-1- f;% iﬂ?(?m) _ 2(227:2:'

m—k—14+0)"=m—-k—1+b)(m—k+b)...(m—k+m—2+0)

—@m—k—24b)...(m—k—1+0)
_ (2m—k—2+0D)

 (m—k—-2+0b)"’

(—k—1/2)" = (=k —1/2)(=k +1/2) ... (—k + (2m — 3)/2)
(—2k — 1)(=2k +1)...(—2k +2m — 3)
22m
(2m — 2k — 2)(2m — 2k — 3)...2.1.(—1).2.(=2k — 1)(2k + 2)
22m(m —k—1)...2.1.1.2.(k + 1)
(=D)L (2m — 2k — 2)!(2k 4 2)!
T (i —k— DIkt 1)

and
(m+b)m:(m+b)(m+1+b)...(m+m+b—1):(2m+b—1)...(m+b):m.

So we can write (8.3.14) as
(2k +2)! (=DFL2m)(2m — k — 2+ b)!122"(m — k — D)!(k + 1)!(m — 1 +b)!
(k+ D!k +1)! 22mml(m —k — 2+ b)!1(2m — 2 — 2k)!(2k + 2)!(2m — 1 +b)!
(8.3.15)

and on recalling that b takes only the values 0 or 1 we can simplify (8.3.15) to
(=R 2m)' =0 (m —k — 1)1 (2m — k — 24 b)!
k+1)! ml-? (2m — 2 — 2k)!
—1)*L2m —k — 2 +b)!
T (k+ D!(2m —2k— 3+ )]

R

E+1
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Remark. We observe that the summation in Lemma 8.3.2 has m + 1 terms. However, in
actual fact from either inspection of the product terms, or the hypergeometric numerator

parameter —(k 4+ 1), only the first k& + 2 terms are possibly non-zero.
We now demonstrate the following theorem.

THEOREM 8.3.4 (Lucas product closed form for ¢t = 0 case). For non-negative integers
m, k and b with 0 <k <m —1 and b € {0,1} we have

Z’“:(_l)j 2m + b <2m+b—j><2k+2—2j>_2(_1)k<2m+b—2—kz>
pard 2m+b—j j k+1—35 ) k '

Proof. Let
. 2m+b 2m+b— 35\ (2k+2—2j
T =(-1)Y —M— . 3.1
=g S () (G (310
We write the left hand side of Lemma 8.3.2 as
m k m
NT=>"T;+ > Ty, (8.3.17)

Jj=0 J=0 J=k+1

=
and it is clear from (8.3.16) that T; = 0 when k +2 < j < m. Therefore, (8.3.17) simplifies to

ZT ZT + Thop1.- (8.3.18)
7=0

Now from Lemma 8.3.3, we have that

iT [y (2m —2+0b— k)
= I (k+1)!(2m — 3+ b — 2k)!
and the term Ty is given by
) 2m +b 2m —14+b—k :(_1)k+1(2m+b)(2m—2—|—b—k)!
2m—1+b—k E+1 (k+1)!1(2m —2+b—2k)!"

(_

So on rearranging (8.3.18) we have

k M

YTy=> Tj—Tip

§=0 §=0

_(—1)k (2m—2+b—k)!
(k4 1)!/(2m — 3+ b — 2k)!

1 (2m—2+b—k)!

) (k4 1)!/(2m — 2+ b — 2k)!

2m —2+b—k)!

(k —I—(l)!(?m "ot b)—2k)! (k+1)

2m—-2+b—Fk)! _ (_1)k<2m—2+b—k>

kl(2m — 2+ b — 2k)! k ‘

) 2m+b)(2m —2+b—k)!

- (k+1)!(2m — 2+ b— 2k)!

=(-1 (2m—24+b—2k)— (2m+10))

—2(-1)*

—a(-1)*
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We now turn to the other cases of (8.3.1) (i.e. when ¢ # 0) and denote the (inner) sum of the

numerator by

ké%ir ké%l ULQ%Ziﬁf 2m+b—j\ [ 2%k+2—c—2j (83.19)
N = 2m+b—j j k+1—c+t—3j)’ e

and again we wish to reduce (8.3.19) to a single term. Before we embark on this, we use a

lemma that will help clarify a piece of this task.

LEMMA 8.3.5 (negative gamma function). For positve integers L, N and K such that
N — L > 1, we have

NK+35211§%—N):“4W(N+Kk1 L)
Proof. Let a = N — L, then
I(L+1-N) (—a)(—(a+1))(=(a+2))...
I'NL+1-K—-N) (—(a+K)(—(a+K+1)(—(a+K+2))...
=(—a)(~(a+1))(~(a+2)...(~(a+ K —-1) = (-1)f(a+ K - 1)&

a+ K -1 N+K-1-L
=(-1)FK! = (-1)FK! : 3.2
e e e I T (8.3.20)
The result then follows on dividing (8.3.20) by I'(K + 1). O

We now extend the results of Theorem 8.3.4 to incorporate the cases when 1 <t < m, and

consequently we also have b, c € {0,1}.

THEOREM 8.3.6 (Lucas product closed form generalised case). For non-negative integers
m, k, b, candt, with0<k<m-—1,bce{0,1} and 1 <t <m, we have

mlkJrlt

e Z j22m—£b,<2m+_b_j)<k2k_’1_2_022j_>(’yx)k
b1 =0 m-+0—) J +1l—-c+t—
= ( —ﬂ+b+c—1—k>kH1

x .
k
k:O
Proof. We first consider the inner sum and establish that
kif?nj Im+b [(2mAb— 5\ [ 2%k+2—c—2j
= 2m+b—j j k+1—c+t—3j
(_1)k+l—t 2(m_t) —|—b—|—C— 11— (k+1 _t)
E+1—t ’
and then we determine that
m—1
_ f2m—t)+b+tc—1—(k+1-1)
t+1—c kLt k
e 3 ke St (7a)
k=t—1
= < —t)+b+c—1—k>,€+t_1
= I x .

0
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Let
.2 2 N\ [/ 2k+2—c—2j
Tj:(—l)]Lb, m—i-‘b 7 k + c j‘
2m +b —j J k+t+1—c—3j
_ (=1)71(2m +b)(2m + b — §)(2k + 2 — ¢ — 2j)
C@2mAb—j)ilemAb+2 -2 (k+t+1—c—)(k—t+1—5)
and

T = (1) 2m + b om+b—j—1\ [ 2k—c—2j
= 2m+b—j—1 j+1 k+t—c—j

(1) (2m + b)(2m + b — j — 1)!(2k — ¢ — 2j)!
T @mAb— D CmAb+2—2)(k+t—c— ) (k—t—j)

Then the ratio Tj1/T} is

(=1)(2k —c—2)!12m +b)2m+b—j—D(k+t+1—c—j)
(k+t—c—)Wk—t—7N'Cm+b—7—-1)(G+D!(2m+b—2j—2)!
(k—t+1—7)'2m+b—7)5!(2m +b— 2j)!

(2k +2 —c—25)!1(2m + b)(2m + b — j)!
(-)(k+t+1—c—j5)k—t+1—35)2m+b—25)2m+b—1—2j)
2k +2—c—2§)2k+1—c—25)2m+b—1—35)(j+1)
APk —t—1+0)(j—k+t—1)(j —m—0b/2)(j —m+(1—b)/2
ARG k=14 ¢/2) -k —1/24¢/2)(j+1=b—2m)(j + 1)

J—k—t—1+)(—k+t-1)(G—-—m—b/2)(j —m+(1-10)/2)
(G—k—1+¢/2)(j—k—1/2+¢/2)(j +1—b—2m) '

Therefore, with T = (;fff;ft), we have

’“flT._ Zh+2-c\ o(t—k-le—t—k—1,-b2—m1/2-b2—m
T bt 1—ctt) T 1—b—2m,~k—1+¢/2,~k+c/2-1/2 )"
]:

(8.3.21)

We note that in the hypergeometric function, (8.3.21), the sum of the denominator parameters
is ¢ —2m — b — 2k — 1/2 and that this is one greater than that of the numerator parameters.
Hence the function is Saalschiitzian.

As demonstrated in [37], (see p.65), Vandermonde’s theorem can be employed to yield

L(g)L(g—f—4d) o F ( d,1+f—g,f/2,f/2+1)2 .1>

Tg—FAT(g—d) " P\ a f/2+d/2—g/2,1+ f/2+d/2—g/2"

:3F2<f’1+f_a’d;—1>. (8.3.22)
a,g

Weput f=—-b—-2m,d=t—k—-1,9g=24+t+k—c—b—2manda=1—->b—2m and we
note that this gives a = 1 4 f. Therefore, the right hand side of (8.3.22) simplifies to

3F2 (f?oad7avg,_1) =L
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Then on rearrangement of (8.3.22) with the given substitutions of f, d, g and a we obtain

p(t—k-le—t—k-1-b2-m1/2-b2-m
s 1—b—2m,—k—1+¢/2,~k+c¢/2-1/2

Tk+t+2—-c)l'(2k+3 —c—b—2m)
TTRk+3—o)l(k+t+2—c—b—2m)’

Therefore, we conclude that (8.3.21) simplifies to

z’“:Tl_ 2% +2—c \D(k+t+2—c)0(2k+3—c—b—2m)
= T \k+1—c+t)TRE+3—c)l'(k+t+2—c—b—2m)’

We now use Lemma 8.3.5 with L+1=2k+3—c—0—2m, K =k+1—tand N = 2m and

proceed as

:(_UH+%Qk+2—@Kk+t+1—@Kmn—z—t+b+c—2m&ﬁi
(k+1—c+t)(k+1—1)(2k+2—c)!
_(_1)k+1t<2(m—1)—t+b+c—k)
k41—t
:(_1)k+1_t<2(m—t)+b+c—1—(k—i—l—t))
E+1—t ’

thus establishing the first part of the theorem. We now have

m—1
e f2(m—=t)+b+c—1—(k+1—1t
’}/t+1 2 : (_1)k+1 t< ) b1t ( )>(’7$)k,
k=t—1

and this can be written

'YC mz_:l (_,y)k+1—t<2(m _t) +bot+c—1- (k+ 1 _t)>l‘k.

Pl E+1—-t

The result follows on the rescaling of k + 1 — t with k. O

We now in a position to determine the generalised generating function for the function Lg.1y.,

that is the case when the alternating parameter a = 1.

THEOREM 8.3.7 (generating function of Lg.1pc). For Lgape(r,t,q) as given in 3.1.2 with

c <t <m, we have when a =1,

27Jo(m—1)4146(—7T) ife=1=0
til?]Zm-&-b(_'yx) U
GLse(wt,q) = § om0 2lI0 ifp—c =0 and ¢ > 1
’chl?tfljz(mft)+b+c(—7x)
Jom+b(—7T)

otherwise.

Here, Jy(x) is the Jacobsthal polynomial as defined in (5.2.2), jn(z) the Jacobsthal-Lucas
polynomial as defined in (5.2.6) and v = (—1)%.
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Proof. From Lemma 8.3.1 we have

1— —1 (k=T i 2mtb  (2mAb—j (2k+2—c—2) k
e, (ijo (=1) zmTl;—j( mj ’) (k:-i—t—&-lfc—i’)) (yz)

2 b (2m+b—k ’
Z?:o(_V)kazg—k(mk )xk

T_ t ift=0
t—1 ift>1.
When ¢t = 0 (and ¢ = 0) we have on substitution of the result of Theorem 8.3.4 into (8.3.1)
that

gﬁs;lbc(xy t, Q) =

where

29 Yy ()P )

gﬁs;lbO(xa 0,q) = b /2mtb—Fk ) (8.3.23)

Z?:o(—v)kziﬁi_k( ””;; )wk

and when ¢ # 0 we have from Theorem 8.3.6,
_ — _ —t)4+bte—1—(k—
GLs1pc(2,1,q) —7t+1 szn:tlfl(_l)kﬂ t(Z(m t)+l€+4fljt ( tﬂ))('ﬂ")k
s;1bc\Ly by - b (2 b—k
Z?:o(_V)kQainiX—k( ")t
e~ m—t=b'c' Nk (2(m—t)+btc—1—k\ k+t—1

B i o) o Gl S (8.3.24)

b (2m+b—k ’
Z?:o(—v)’“Qi”l?f_k( "”;; )xk
where ¥ =1—band ¢ =1—c.
So when b = ¢ = 0, the numerator of (8.3.24) is

m—1—t

i:: - (2(m —1 —kt) +1- /<:> L

k=0

and for each of the other cases of b and ¢ we have

m—t
’YC ko(_,y)k (2(m - t) + Z+ c—1- k) xk—l—t—l.

Now on applying (5.2.3) and (5.2.7) to express (8.3.23) and (8.3.24) in terms of Jacobsthal

and Jacobsthal-Lucas polynomials the theorem follows. ]

Remark. When b = ¢ = 0 the summation of (8.3.24) only runs up to k =m — 1 —¢ (as the

term k = m — t yields a negative binomial coefficient).

In the Corollary to Theorem 8.3.7 we now identify the generating function for each sequence

when the parameter a = 1.

COROLLARY. We have fort =0,

. 21_CJ0(—$) .
gﬁo;llc(x707 1) = W =0,
_9\1l—c
GLinte(z,0,1) = =2 H@) _

Ji(z)
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2Jo(m-1y41(—x) 237 (—1)F (20m D=F)

gﬁO;lOO(xa 07 Qm) = . - m m— ’
Jom(—) Zk:o(—l)k%e k k)xk

2yea() _ 2ER DLt

gACO;llO(xa 07 2m + 1) = . - m m m+1— ’
Jom+1(—2) Zk:()(_l)kmi_:ik (2 -|]-€1 k)xk
GLi:100(2,0,2m) = Am-De - = %k_ozns 27?1—k )k ’
Jom(z) o 2 ()
and 1 (2(m—1)+1—k
—2J x) =23 b (AT DRk
GLia10(2,0,2m + 1) = = () = mZk_z(inSl 2:1-‘1-1—1@) kK
J2m+1() P o o A E

We have for 1 <t <m,*

mtilt]Q(m—l—t)-i-Q(_x) Ln:folft(_l)k(2(m—17€t)+1—k)xk+t_1
gﬁO;lOO(«Tat72m): . (—ZL‘) = m k 2m  (2m—k\ .k ’
Jo2m P O D G E
fUt_lJQ(m—t)-i-l(_x) sz—ot(_l)k(Z(m;t)—k)kart—l
gﬁO;lOl(fEat:Qm): . (_x) = m kL _2m (2m—Fk\ .k
J2m > keo(—1) 2m—kz( k )a:
() SR (DR ) et
gﬁo;no(:c,t,Qm—i- 1) = : — - m L 2m+1 (2m+1—k\ L’
Jom+1(—x) Zk:o(_l) 2m+1—k( k )55
o an-p2(=w) _ Tig (DRIt
GLoai(z,t,2m +1) = . (—2) = —=m o 2mil (2milk\ g
Jom+1{—% > keo(—1) 2m+1fk( k )x
;Et_lj L (l‘) m_—l—t 2(m—1—t)+1-k .,L,k+t71
G Lo (2,1, 2m)a” 2(.m 1—t)+2 _ 2.k=0 m( - k2m—k) . :
Jom(z) N A E
—2 Uy (®) (D) Spny (PR ak
gﬁl;lﬂl(x7t72m) = . (IL’) = m 2m  (2m—k\ .k ’
J2m e g E
2" Ty m—t)41 () i G i
gﬁl;llO(I) tu 2m + 1) = . (LII) = m 2m+1  (2m~41—-k\ .k’
J2m+1 > k0 2m+1—k( k )"E
and
—:Ut_lj - x 1 m_—t 2(m—t)+1—k xlﬁ»tfl
GLim (.t 2m + 1) = ‘ 2(m—t)+2() _ ( )%k_o%(Hl gm+1_)k -
Jom+1() P el G F

*When b =c=0 and t = m, we have GLg100(x, m,2m) = 0.

Proof. Each of the sequences follows immediately from Theorem 8.3.7 on substituting the
appropriate values for each of the parameters s, b and c. For the case ¢ = 1, we simplify
the generating function of the sums Lg.110(r,0,¢) and Lg111(r,0,q9) = —Ls111(r, 1,¢), and

then we note that Jo(z) = 0 and ji(z) = 1. The result for the sequences L. 100(r, m,2m) is
O

demonstrated in Lemma &8.3.1.
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8.4 Separation of the Lucas polynomial

The case a = 0, is complicated by the additional x — 4 factor in the recurrence polynomials,
Rs0p(x, m), so that coefficients, a;, of these polynomials are no longer single binomial coef-
ficients. Before examining this case, we consider an alternative way of considering the sums
that we have been analysing in Lemmas 8.3.2 and 8.3.3. This work will then help overcome

this difficulty. Let us employ some lemmas.

LEMMA 8.4.1 (Lucas product separation). For non-negative integers m, k, b, ¢ and t with
0<k<m,0<t<mandb,ce{0,1} we have

i(—l)j Im4+b (2mA+b— i\ [ 2%k+2—c—2j
2m+b—j J k+1+t—c—3j

SNy Im4+b—5\ [ 2%k+2—c—2j _kzl(_l)j 9 —2+b—75\ [ 2k —c—2j
_j:0 j k4+1+t—c—j j k4+t—c—j)

=0
(8.4.1)

.

Proof. From the identity

e(0)=(0)+ ()

with X =2m + b and J = j we can write the left hand side of (8.4.1) as

(—1y 2m+‘b—j 2k+2—c—2j‘ +Z(_1)j 2m—.1+b—j 2k+2—c—2j‘
j k+1+t—c—j ; j—1 k+1+t—c—j

Sl
> Mw
o

7=1
B (2mAb =\ (2 +2—c—2\ =, L (2m—2+4b—j\ [ 2k—c—2j
=2 (=1 , =)= . .
= j k+1+t—c—j = Jj k4+t—c—j

O]

In Theorem 8.3.4 using hypergeometric functions (with ¢t = ¢ = 0), we have derived a closed
form expression for the left hand side of (8.4.1). We recall that this is

z’“:( py_2mb (Gmkb g (2622 o (2me 24k
= 2m+b—j J k+1—35 ) k '
We observe from Lemma 8.4.1 that this summation can also be considered as the sum of two
separate summations and it would be equally desirable to express these individual summations

in closed form. Written in hypergeometric form (with ¢ = ¢ = 0), we have

() (1)

J=0

2k + 2 —k—1,-m+1/2—b,—m par (2m —1+b—k
= F 1) = (—1 4.2
<k+1)3 2< —k—1/2,-2m —b ) (=1) k41 , (842)
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and

()

j=0
(2K —k,—m+3/2—b,1—m p(2m—2+b—k
—<k>3Fg< 1/2 = k2 —2m—b ,1)—(—1) i . (8.4.3)
Remark. Here we have subtracted the last term of the hypergeometric function as our re-

quired sum is one less than this series produces.

However, if we denote the numerator parameters of the hypergeometric functions by a, b and
¢, the denominator parameters by d and e and then consider the sum c =d+e—a—b—c,
we find that in both cases ¢ = 0. Therefore, we are unable to employ Saalschiitz’s theorem
to derive a closed form as in our previous result.

Nevertheless, using Theorem 8.3.4 we will show that (8.4.2) and (8.4.3) respectively have the

simpler forms

2m —2+b—k -k, 1
— k ) [J—
2( 1)< f )2F1<k+2b2m, 1), (8.4.4)
and 2m —4+b—(k—1) (k—1)
k1 2m—4+0—(k— —(k-=1),1
2(-1) < k1 >2F1<k+3_b_2m, 1). (8.4.5)

In order to obtain these forms we first introduce a lemma.

LEMMA 8.4.2 (alternating binomial hypergeometric form). For non-negative integers N
and k with 0 < k < |N/2] we have

S (V) = (Y e ().

7=0
Proof. Let
N-—-k—j
1)F+
ZT > )
7=0
We find that the ratio TjH/Tj is
(— 1)k+j+1(N k—j— 1) Ny 9/ . .
kg1 ) (EDE=HE+Y) (DO -RG+T)

(o (NES) T (N=k=5)0+D) (CDG+E-N)G+D)]

which gives the hypergeometric function

k1
2F1(k:—N ;—1>-
N—k

Now on multiplication of the hypergeometric function by Ty = (—1)’“( K ) we obtain the
result. O
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The simpler forms stated in (8.4.4) and (8.4.5) are now established using the following theo-

rem.

THEOREM 8.4.3 (simplified Fibonacci product). For non-negative integers m and k, with
0 <k <m, we have

Z(_l)j<2m+bb—])<2k¢—|—2—2?> 23" (- k+]< —2+bfk_])
= J k+1-j = k=g

2m —-2+b—k k.1
—9(_1\k ’ .
—2(—1) ( . >2F1<k+2_b_2m, 1). (8.4.6)
Proof. We recall from Lemma 8.4.1 that
z’“: C 2m+b (2m+b—j><2k+2—2j>
= 2m+b J J E+1—j
k . k—1 . )
2m+b J 2k+2—2j) ~<2m—2+b—j>(2k‘—2j)
— —1)/ . (8.4.7
2 ()G 2 ) -y ) B4

Also from Theorem 8.3.4 we have that

Zk:<1)j 2m+b  [(2m+b— 3\ (2k+2—2j a1t om —2+b—k
= 2m+b—j J k+1—34 ) k v
and so (8.4.7) becomes

2(_1)k<2m—2k+b—k)

e [ ) B el G )

To demonstrate the first part of (8.4.6), we use induction on k. When k& = 0 we have

(—1)° <2m0+ b) G) - 2(—1)0<2m o b) G) =2, (84.8)

Assuming the relation holds for all values up-to and including k — 1, we find that for the

value k we have
k . .
2m —-2+b—k 2m4+b—7\ [(2k+2—2j
2(—1)* =) (—1)
() e () (R
m—1)+b—2—(k—1)—j
~2 1)kt : A.
Z ( 1o (8.4.9)
On rearranging (8.4.9) we have
(2 — i\ 2k +2-2 m—2+b—k—
Z(_l)]<m+~b ]><k+ ‘j> 22 k+;< —i—b. k ]>‘
= J k+1—3j = k—3j

Hence the simplified binomial form follows by induction. The hypergeometric form of (8.4.6)

follows immediately from Lemma 8.4.2 with N = 2m + b — 2. O
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As was illustrated in Theorem 8.3.4 on replacing k£ with k£ — 1, and m with m — 1, we similarly

obtain
S () ()
- :<—1>’f—1“ o)
s (O (1 )

Remark. We see that the sum on the left hand side of (8.4.6) is equivalent to (twice) the
alternating sign sum of a binomial coefficient that forms a diagonal on Pascal’s triangle.
Moreover, when the Lucas polynomial is split up we obtain the equivalent of two sums
containing identical binomial coefficients except that the second sum commences with the
second term (of the first sum). Since the sum is an alternating sign series, this has the
consequence that all the terms will cancel except the first, thus obtaining the given result. This
latter approach provides us with an additional insight not evident from the hypergeometric
approach alone. However, predominantly it will provide us with a means of approaching the

non-alternating case a = 0 that now follows.

8.5 The generating function of the sequences L, u.(7,t,q)

Our overall approach is similar to that of the case a = 1, and we begin with Lemma 8.5.1.
LEMMA 8.5.1. The generating function for the sequences Lsop(7,t,q) has the form

- M k—T j (2M+1-b—jY (2k+2—c—2;]
YT~ dyz) gy ijo (_l)j( +j ]) (k+t+1fc—§')(7x)k — Do

(1= 1) DI () (P )t |

gﬁs;ﬂbc(xa t, Q) =

(8.5.1)
where D € Z, M=m+b—1,0<t<m, and
=1 yt=0 (8.5.2)
t—1 ift>1.
When b =c=0 and t = m, we have
2
gES;OOO(xa m, 2m) == M —7 . (853)
(1= dya) Yl o (=) (M0 F) 2k
Proof. From Lemma 8.2.1 we have
m+b—1 k ] . k
kso 2j=o(—V)ajLsope(k — 4.t q)x
gﬁs;Obc(xyta q) = 0 J 0m+b JsEhe , (854)

k=0 (—’Y)kakafk
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where we recall that the terms a are those of the corresponding recurrence polynomials,
Rs.00(z, m) (of order m + b), such that ay, is the coefficient of the term 2™ tb=k From
Theorem 5.6.1 with M = m + b — 1 these are given by

M
RS;Ob(l‘am) — (ZC _ 4_7) Z(_’Y)M_k <2M + 1k— b— k) xM—k’ (855)
k=0

We recall that R.op(z, m) is also composed of a Fibonacci polynomial of order M = m+b—1.

Incorporating our notation from Definition 5.4.1, we have

M
Lop(@) =D (=M FopaME (8.5.6)
k=0
where 2M +1—-b—k
bk:< + k_ B > (8.5.7)

Therefore, by comparing coefficients of 2% in (8.2.1) and (8.5.5), we have
a; = b; +4b;_1. (8.5.8)

and from the Corollary of Lemma 8.2.1 we can express the numerator of (8.5.4) as

M M-k ' ‘ M M-k . .
iH1=e Z Z (=) a;Ly(k)aith = At+1e Z Z (=) (b; + 4bj_1) Lo (k)T T,
o =0 k=0 j=0

where b_1 = 0. Recombining the terms b; in an alternative way we obtain

M M-k
S0 S iy aty IR
k=0 j=0
M M-k ' ' M ,
=1 = dyz) 303 () by Lo (k) eI T — gt T ()i Ty L (M — )2
k=0 j=0 Jj=0
Mk ‘
=T =) Y Y (Y biLs(k — j)at — DaMH (8.5.9)
k=0 j=0
where
M .
D = 4oytH1=c Z(—V)]Hbjﬁs(M — ). (8.5.10)
=0

As in Lemma 8.3.1 the terms L.0pc(7, ¢, q) for 0 <r <m —1, in the numerator of (8.5.4), are

determined by the single binomial coeflicients

Ls.obe(r,t,q) = 7T+t+1—c< r+2—¢c )

8.5.11
r+t+1—c ( )

However, when the parameters b = ¢ = 0 and the variables r = m — 1 and ¢ = m, (8.5.11) is

Lao00(m — 1,m, 2m) = ™ <<28"> + (;Z)) — 2. (8.5.12)

replaced by
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Also as in Lemma 8.3.1 we have that Ls.op(7,t,q) =0 when ¢t > 2 and 0 <r <t —2, and we
similarly adjust the limits of (8.5.9) by T given in (8.5.2).

On substitution of each of the terms (8.5.7), (8.5.11) and (the discussed) placement of the
variable T" into (8.5.9) gives (8.5.1). Furthermore, as in (8.3.8), we have for 0 < r < m — 2,
that Ls.000(r,m,2m) = 0; and from (8.5.12) that Ls000(m — 1,m,2m) = 2, so we obtain
(8.5.3). 0

Remark. It will be observed that the “factor” 1 — 4z is not a complete factor of the

M+1 (yequired to cancel the additional term created

numerator, due the remainder term Dx
when the 1 — 4~z is "taken outside” of the summation). However, we consider the generating

function of (8.5.1) as a transitional form as opposed to a practical one.

We now examine a means of simplifying the numerator of the generating function de-
termined in Lemma 8.5.1. We start with the simpler case ¢t = 0, with the aid of Lemma
8.5.2.

LEMMA 8.5.2 (binomial sum rearrangement). For non-negative integers N and K, we

(M) i) = (o) w20 2n) + (5 23)

We start with the expression on left hand side and manipulate as follows:

have

() - () () () )
(GG () ()
(L

_l’_

(5 21)+ (5 2)
(x2)

THEOREM 8.5.3. For non-negative integers M, k and B, M =m—(1—b) and B=1-b,

we have

14033 1y <2M the j) <2k T2 2j> (ya)k — D1

k=0 j=0 J k1=
M
oM +B (2M+B—k
=23 ()T B 5.1
(=) 2M+B—k< k )x (8:5.13)
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Proof. With 0 < k < M, we consider the coefficient of (yx)* on the left hand side of (8.5.13).
This gives

Z’“: <2M+Bj> <2kz+22j> _4k1(_1)j<2M+Bj><2(k:1)+22j)
par j k41— P j (k—1)+1—3j
2’“: <2M+B—]> <2/<:+2—2j> 4’“‘1( 1)j<2M+B—j> <2k—2j)

J k+1—7 ] k—j

]:O =0

.

From Theorem 8.4.3 this simplifies to

k .
2M +B—2— OM+B—-1—k—j
2 § —1)kti 4§ 1)kt . (8.5.14

j:O( ) ( k—Jj >+ ( k—1-j ) (5244

We now use Lemma 8.5.2 with N = 2M 4+ B —k —j and K = k— j to write the inner bracket
of (8.5.14) as

k k—1 .
M+ B—Fk—j OMAB-1—k—j

k+] ) _1k+]
Sy (M) 2.0 5T

Jj=0 J

A2 IM+B-2—Fk—j
)kt —2-k-

DI (MrE ),

or alternatively,

z’“: Jis (2M + B = k:—] +’“i oo (M B =1k
k- par k—1-j

Jj=

=0
= OIM+B—1—k—j| <2 IM+B—-2—k—j

—1)k+ o —1)ki R 8.5.15
DI (M )+;O< P (M) )

However, due to the cancellation of terms, (8.5.15) simplifies to

1t <<2M+kB—k) . <2M+B—1—k>> :(_1)k2M+B<2M+B—k>

k—1 2M + B -k k
(8:5.16)
Substituting (8.5.16) into (8.5.14) obtains (8.5.13). Finally we choose D such that it cancels
the coefficient of the term z*!. This is determined in (8.5.10) of Lemma 8.5.1. O

We take a similar approach as in Theorem 8.5.3 to evaluate the general case when ¢ # 0.

THEOREM 8.5.4 (simplified Fibonacci product sum general case). For non-negative in-
tegers M > 1,0 < k< M and 1 <t < M, where M = m — (1 —b) and B =1—1b, we



106

have

‘“*H(_l)j IM+B—7\/2%k+2—c—2§
J k+1+t—c—j

k t

<. I
=) | o

(71)k+1_t+j 2(M—t)+ B+c—1—k—j
k4+1—t—j

(2(M—t)+ B+c—1—-k —k—1+t1
_(_1\kt+1-t ) .
=(-1) ( b1t )ﬂﬁ<k+1_2“r_w_3_c,]).(&5N)

Proof. We recall from Lemma 8.4.1 that we have

kH%@&V OM+B [2M+B—5\[2k+2—c—2j
par 2M + B — j j k+1l+t—c—j
_kit(_l)j<2M+B—j><2k+2—c—2j>
par j k+1+t—c—j
k—t . .
(2M+B—-2—j 2k —c—2j
N (=1 : 8.5.18
S (M) (@515

=0

<.

Also from Theorem 8.3.6 we have that

kéley OM+B [2M+B—75\[2k+2—c—2j
par 2M + B — j j k+1l+t—c—j

_(pyert (Q(M — 1)+ Bk++ Cl_—lt_ (k+1— t)> |

and so (8.5.18) becomes

k+1-t

k§5%4y<mi+3—j><%ﬁﬂ—ﬂ—2j>_SfGJyCMJ+B—2—j><%—m—2j
par j k+l+t—c—j) = j k+t—c—j

(_1)k+1_t<2(M—t)+B+c— 1—(k+1 —t)>

<.

(8.5.19)

As in Theorem 8.4.3, we use induction on the variable K = k+1—t, where 0 < K < M —t.
K=k+1—t=0 implies k + 1 =t and this gives

1y <2M0+ B) (Z—D _ <2(Mt)+03+c 1> .

Assuming the relation holds for all values up-to and including K — 1 we have
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kt@4y<%M'1)fsz><%kD+2C%>

= J k+t—c—j

k—t .
:_Z(_l)k_t+j 2IM —1-t)+B+c—1—(k—t)—j

; k—t—j

7=0

k—t

== (—1)k—t+j<2(M_t)+B4l;C_—tQ_;(k‘—l-l—t)—j)

(8.5.20)

_ «Jﬁﬂ%ﬂ<ﬂM>¢y+B+c—1—(k+1—w—j)

k+1—t—j

Putting (8.5.20) into (8.5.19) and rearranging the latter equation we have

kit(_l)](QM—FB—j)(2]{:4—2—0—23’)
par ] k+1l4t—c—j

k+1— .
‘—EZ%JﬁH%ﬂ UM —t)+B+c—1—(k+1—t)—j
— k+1—t—j '

Hence the simplified binomial form then follows by induction. The hypergeometric form of
(8.5.17) follows immediately from Lemma 8.4.2 with N = 2M — 3t + B + ¢ and replacing k
with £ +1 —¢. O]

THEOREM 8.5.5. For non-negative integers M = m+b—1,0< k< M, B=1-5b and
D as given in (8.5.10) of Lemma 8.5.1, we have

M [k—t+1 . .
_ (2M + B —j 2k+2—-c—-2j
t+1 61_4 _1] kJ_D M+1
S V@ké] éo( )< ; ><k+1+t_c_j> (yz) x

m-+bc—t

PN o] (A LA

Proof. From Theorem 8.5.4 we have

55}4V<m4+3j><2k+2c%>
— j k+1+t—c—j

—t

k

.

k

+
—_

(_Umhﬂj2M4_0+B+C—1—%+1—ﬂ—j
k+1—t—j !

o

<.

and the left hand side of (8.5.21) becomes

M k+1—t .
i (2M =)+ B4c—1—(k+1—1t)—j
1—-14 -1 k+1—t+j ]{;.
( wmk34 ;ﬂ( ) ( ki1t (vz)

(8.5.22)
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For 0 < k < M we consider the coefficient of (yx)* in (8.5.22) to obtain

k—i_t(_l)k+lt+j (2(M —t)+Btrc-1-(k+1-1)- j)

= k+1—t—j
k—t .
ri(2(M —t)+ B+c—1—(k—t)—
—4 1)kt ) 8.5.23
]E:O( ) ( k—t— ( )

Now we use Lemma 8.5.2 with N =2(M —t)+ B+c+1—(k+1—t)and K = k+1—1t (and

also using this notation in order to condense the binomial coefficients) we write (8.5.23) as

g(_”m () +2§(_1>K+j (1) +§<_1>K+j (20,

or alternatively,

Jj=0 Jj=0
K—-1 . K-2 .
(N -1- (N —2-
+ (—1)K+ﬂ< o _3> + 3 (—)fH (K_2_?). (8.5.24)
=0 J =0 J

However, (8.5.24) simplifies to

() () - ).

so that on replacing N and K with their original values and on recalling that M = m — (1 — b)

and B =1 — b we continue as

() 2(M —t)+B+c+1 (M —t)+B+c+1—(k+1—1)
B 2(M —t)+B+c+1—(k+1-1t) k+1—t
(1)Lt 2(m—t)+b+c 2(m —t)+b+c—(k+1—1)
N 2m—t)+b+c—(k+1—1) k+1—t '
We now have
M=m+b—1
D S I 2(m —t)+b+c 2m —t)+b+c—(k+1—1t) ()’
Rl 2(m —t)+b+c—(k+1—1) k+1—t
and this is equivalent to
C’”*ZH(_ it 2m —t) +b+c 2m —t) +bte—(k+1-1)) 4
T 2(m—t)+b+c— (k+1—¢) k+1—t
and on the rescaling of k + 1 — ¢ with k we obtain
m—+b—t
2(m —t)+b+c [(2(m—t)+b+c—k _
c k k+t—1
— . 5.2
D () 2(m—t)+b+c—k‘< k v (8:5.25)
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However, we observe that the binomial coefficient in (8.5.25) when k = m + b — ¢ and the
—t

mr—n‘rl—t

(8.5.21). Finally as in Theorem 8.5.3 we choose D such that it cancels the coefficient of the

M+1"and we recall that this value is determined in (8.5.10) of Lemma 8.5.1. O

parameters b = 1 and ¢ = 0 becomes ( ) = 0. Consequently we can write (8.5.25) as

term x
This then motivates the following theorem.

THEOREM 8.5.6 (generating function of Lgopc). For Lsapc(r,t,q) as given in Defini-
tion 3.1.2 withc <t < M and M =m — 1+ b, we have with a =0,

2yjonm+1—b(—7%) L

GL (z,t,q) = (I1—4vz)Japs+2-b(—72) ifc=t=0

s;0bc z,1,q) = ’cht71j2(m+bc—t)+b+c72bc(—'yx)
(1—4yx)Jons 42—p(—7)

otherwise.

Here, Jn(x) is the Jacobsthal polynomial as defined in (5.2.2), jn(x) the Jacobsthal-Lucas
polynomial as defined in (5.2.6) and v = (—1)°.

Proof. From Lemma 8.5.1 we have

_ M k-T i (2M+1—b—j k+2—c—275
7t+1 “(1 — dym) Zk:T ijo (=1) (2 +;~ j) (zfﬁlfcgg)(’ﬂ?)k — DgMH

(1 — dyz) Sl (=) (P07 F) 2

T t ift=0
t—1 ift>1.

Then when t = 0 (and ¢ = 0) we have from Theorem 8.5.3 that (8.5.26) simplifies to,

g'cs;Obc(xv t, Q) =

)

(8.5.26)

where

—1+b k 2m—14b (2(m—1+b)+1—b—ky\ k
273705 (=) z)m”llﬁ_k( o k) )z

(1 — dyz) Y o (=) b (RO 10 HI=0R) ke ,

gﬁs;DbO (Jf'? 07 Q) = (8527)

and when ¢t > 1 we have from Theorem 8.5.5 that

cx~m—t+be, Nk _2(m—t+bc)+btc—2bc (2(m—t+bc)+b+c—2bc—k\ k+t—1
VDo () 2(m—t+bc)+b+c—2bc—k( k )z

(1 — 4vyz) 21:_01“’(_,7)16(2(m—1+12+1—b—k)xk

g£3;0b0<$7 t, Q) =

(8.5.28)
Now on applying (5.2.3) and (5.2.7) to express (8.3.23) and (8.3.24) in terms of Jacobsthal
and Jacobsthal-Lucas polynomials the theorem follows. O

From Theorem 8.5.6 we identify the generating function for each of the sequences when a = 0.

COROLLARY. We have fort =0,

o 27%0(=x) 4
gﬁO;Olc(xaoa 1) - (1 — 4:[})J1<—[L') - 26(1 _ 4:1;)’

() ) (-9
GLroe(®:0.1) = TGy @) = A+ d0)
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GLo.000(,0,2m) = 2ja(m-1)+1(=%) _ 2221:—01(_1)16%(2(771—1]3“%)%1@
’ Y (1= 42) Jym-1)42(=2) (1 — da) S (— 1)k (B TR gk 7
9 (= 9 m: (_l)k 3{,2 2m—k .CUk
GLo010(,0,2m + 1) = fam(=2) = Li=o e a 2:;—12 ,
(1 —42) Jomia (=) (1 —4dw) S (=D)F (377" 2b
_2j2(m—1)+1(x) —22 150 251m11k( (m_lk)ﬂ_k)xk

GL1.000(x,0,2m) = = ’

and 2 om—k\ k
. m m—
—2jom () 2 gy (P )

Lio10(z,0,2m + 1) = = .
g 1,010(1/' m + ) (1 + 4$)J2m+1(x) (1 + 4'%,) ZZLZO (QTYI];—k)xk

We have for 1 <t <m,

. m— 2(m—t 2(m—t)—k _
2" fotm—p) (—1) _ k:ot(_Uk‘z(n(%t)zk(( kt) )kt

GLo.ooo(z,t,2m) = = )
o002 ) sy 8] (1L~ 42) S (R O T o

(when we define the limit of the numerator when t =m as 2),

1. m—t 2(m—t)+1 (2(m—t)+1—k —
GLooor (z,t,2m) = at 1]2(m—t)+1(_$) _ ]C:O(_]')kQ(TgL—t)-i)-l—k(( k)+ )ka !
I (1 = 42) Jo(m-1)12(—2) (1 — 42) Y (— 1)k (B D+ =Ry gl
1 - m—t 2(m—t)+1 (2(m—t)+1—k —
GLo.o10(x,t,2m+ 1) = z* 1]2("1—?5)“(_%) — k:0<_1)k2(7ﬁl t)J)rl k(( k)+ ) e
00t (1= 42) Jom1(—) (1—42) S (-DF (7 Pz
1. m+1—t 2(m+1—t) 2(m 1 t)—k —
GLo.o11(z,t,2m+1) = 1‘72(7”“4)(_%) = k:JB (_1)k2(m+1 Dk k( e ) o
onin (1 42) Jomi1 (—2) (1—42) Yy (—1)F (2”" £)at ’
. m—t 2(m—t 2(m—t)—k _
' oy () k=0 2(77(1 t))k(( k) )ttt

GL1.000(z,t,2m) = = ,
1,000( ) (1_|_41,)J2(m_1) 2(1,) (1+4$) k 0 (2(m 1k)+1 k) k

—1: m—t 2(m—t)+1 (2(m—t)+1—k B
6Ly (o1, 2m) = L J2m=p1 () (=1 25 m(( LRk
1;001\45 4, n (1 +4x)<]2(m71)+2($) N ( +4x) k 0 (2(m 1]€)+1 k’) ,

(m=t)4+1  2(m—t)+1—k\, k+t—1
( k )z

“ogm— nr(z) i (m—1)+1—k

L t,2m+1 7
GLyow0(z,t,2m +1) = (14 42)Jopmar1(z) (1 +4a) Sop, (7 F)h

and

1 m+1—t 2(m+1-—t 2(m+1—t)—k _
—a' 1J2(m+1—t)(90) B (—1) >k W(( k ) )ka !

(1 +42) Jamya(z) (1+4z) Sty (7 *)ak

Proof. Each of the sequences follows immediately from Theorem 8.5.6 on substituting the

gﬁl;Oll(xa t: 2m + 1) =

appropriate values for each of the parameters s, b and c. For the case ¢ = 1, we simplify
the generating function of the sums Lg010(r,0,¢) and Ls011(r,0,q) = —Ls011(r, 1,¢), and
then we note that jo(x) = 2 and Ji(z) = 1. The result for the sequences L.000(r, m,2m) is
demonstrated in Lemma 8.5.1 which introduces an additional factor of 2 that is not displayed

in the equation. O



Chapter 9

Minor Corner Layered (MCL)
Determinants

In this chapter we wish to establish the relationship between the generating function, the

recurrence relation polynomial and MCL determinants of type 1 and 2 (as defined in [31]).

9.1 Minor Corner Layered (MCL) Determinants

In the works of Lettington [30], [31] and Coffey, Hindmarsh, Lettington and Pryce [9], three
types of determinants were described, two of which defined below are necessary for our cal-

culations.

Definition 9.1.1 (MCL (and half-weighted) Determinant). Let A,(h) be an r X r minor

corner layered (MCL) determinant, where & means entry index i in «; increasing left to

—

right, be defined such that Ag(h) =1, and for r > 1 we have

hi 1 0 0 ... 0

ho h1 1 0 ... 0

_, hs ho h1 1 ... 0
AE) = (| o ] (9.1.1)

hr—1 hyr—2 hp—3 hp—y ... 1

hr hr—l hr—2 hr—3 o hl

where the vector h = (h1,ha, hs,...) is an infinite dimensional vector.

Similarly, let \IIT(H, ﬁ) be a half-weighted v x r MCL determinant defined such that we

have

Hy 1 0 0 ... 0

Hy hi 1 0 0

L. Hy he hy 1 ... 0
U,(h,H) = (-1)"| . . . o (9.1.2)

Hr—l hr—Q hr—3 hr—4 1

Hr hrfl hr72 hr73 hl
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where h = (h1,ho, hs,...) and H = (Hy, Ho, Hs,...) correspond to two infinite dimensional

vectors.

Furthermore, the works of [30] and [31] have established the following lemmas associating

an MCL determinant with a recurrence relation polynomial.

LEMMA 9.1.1. Let g, be a function satisfying an (r + 1) term recurrence relation (or

r-th order relation) such that

r—1
gr = — Z hr—kgk-
k=0

Then for r > 1 we have
gr = AT(H)7

where AT(H) is defined as in Definition 9.1.1.
Proof. See the Corollary of Lemma 6.1 of [30]. O

LEMMA 9.1.2. We have for r > 1 that
U, (b, H) = =) " H,_;Ay(h), (9.1.3)

where A(h) and ¥, (h,H) are defined as in Definition 9.1.1.
Proof. See display (3.2) of Lemma 3.1 in [31]. O
COROLLARY. If the vector H= (1,0,0,0,...), then we have
U, (h,H) = —A,_;(h).
Proof. We put Hy =1, and for r > 2 we put H, =0, into (9.1.3). O

In preparation of the work that we introduce in Section 9.2 it is necessary to elaborate on

Definition 9.1.1 in the following manner.

Definition 9.1.2 (signed MCL (and half-weighted) Determinant). Let Af(ay,) be an r X r
MCL determinant with p € {0,1} and defined such that we have *

p

a, 1 0 0 ... 0

Qan,2 afL, 1 0 0
P P

a an.2 a 1 0

N n,3 n, n,l
Af(dn) = (=1)" x| . . : . ,
p p p p
a’n,r—l an,r—Z an,r—S an,r—4 1

p p p p p

Qn,r an,r—l an,r—2 an,r—S an,l

'Throughout, we use af, , = (=1)*a,, x and ARy = (—1)?* Ay for layout considerations.
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where the vector &y, = ((—1)Pan 1,an2, (—1)Pap3, ..., and ar = 0 when k > n.
Similarly, let U7 (8, JKN,T) be a half-weighted (r+1) x (r+1) MCL determinant defined such
that (when T =0),

Ano 1 0 0 ... 0
P P
AN’1 a, 1 0 0
o . Anp an2 ah 1 0
TP (&g, Ang) = (1) x| _ : . ,
p p o o
AN,T—I aTL,T—l an,r—Q an,r—3 1
0 o p o p
AN,?" Gn,r an,r—l a?’L,T—2 an,l

where the vectors &y = ((—1)Pan 1,an2, (—1)Pans, ...,

and XNO = ((-1)?An1,AN2, (—1)PANng,...); ay = 0 when k > n and Ay =0 when k > N.
The positive integer T corresponds to a downwards displacement from the top of each of the
elements An g, (0 < k < N), such that the element Ay, is shifted downwards from row k+1
torowk+T+1. (When T = 0 in the set of determinants under consideration, the subscript

T may be dropped for clarity, so that A’N,O = _/KN)

Altering the labelling of Hj, to Ay ;1 has an impact on Lemma 9.1.2 that we observe in
Lemma 9.1.3.

LEMMA 9.1.3. We have for r > 0 that

U0 (an, AN) = > An,—kAR(En), (9.1.4)
k=0

where A%(&y) and W0(ay,, AN) are defined as in Definition 9.1.2.

Proof. Using Lemma 9.1.2 we replace Hj, with Ay ;1 and define
Ul (8n, AN) = An (as opposed to Uy (h,H) = —H)). O

COROLLARY 1. If the vector AN = (1,0,0,0,...), then we have
U)(&n, AN) = A)(8n).
Proof. We put Ayo =1, and for r > 2 we put Ay, = 0, into (9.1.4). O
Remark. We note that in the particular case p =0, n = N =r and T = 0, we have
U0(&,, Ay) = =0, 1 (h, H).

9.2 Relationship between the generating function and the re-
currence polynomial.

We start by examining the relationship between the generating function of a function P” (as

defined in Definition 9.2.1) and its recurrence relation polynomial.
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Definition 9.2.1. We denote by P?, a function that takes the values PP(r, T, N,n), where

r, T, N and n are non-negative integers, and it has generating function GPP given by

N k k+T 0
_1)Pk A
GP? (. TN, n) = k=0 TV Anga™ " PP(k,T, N.n).
Ek:o(_l)pkan»kazk k=0

Here the parameter p € {0,1} is a sign indicator, whilst the variable r is the term number,

T is the “shift” value, n is the order of the denominator polynomial and N the order of the
numerator. Moreover, the coefficients anp # 0 (0 <k <n) and Anji #0 (0 <k < N) are

determined by n and N respectively.

From this generating function, we now associate the function P? to a recurrence relation

polynomial using Theorems 9.2.1 and 9.2.2.

THEOREM 9.2.1. If P? is a function given as in Definition 9.2.1 with PP(0,0,0,n) = 1

and 1
(x, b 9 n) an_o( 1>pk n’kmk ) ( )

then for r > 1, PP obeys the recurrence relation

r—1
PP(r,0,0,n) = = > (=1’ Ha, ., PP(k,0,0,n), (9.2.2)
k=0
where for r > n we have ay, = 0.
Conversely, if PP satisfies the recurrence relation given in (9.2.2), then the generating function

is given by (9.2.1).

Proof. Since for the theorem we have that N, n and T are constants, for clarity we write
PP(r) = PP(r,0,0,n). Then
1

GP?(x,0,0,n) = NS T PP(0) + PP(1)x + PP(2)2* + ...,
k:() - 77,,

and on multiplication of both sides by ZZZO(—l)pkan’kxk, and comparing the coefficients of

x” we obtain the system of equations

1 = anoP’(0)
0= (—1)pan71Pp(O) + CLmoP'D(l)
0= amgPp(O) + (—1)pan71P'D(1) + an70P’)(2)

0= (=1)"an, P?(0) + (=1)*"Va, . 1 PP(1) + ...+ anoP?(r). (9.2.3)

On rearrangement of (9.2.3) and putting a, o = 1 we have for 1 <r <mn,

r—1
Pr(ry==> (-1 Pa, ., PP(k). (9.2.4)
k=0
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If r > n, on letting » = n + h, (9.2.3) becomes

0 =0P?(0) + 0PP(1) + ... + (=1)""ann PP(h) + (=1)*" Va, , 1 PP(h+1)
+...+anoP’(h+n), (9.2.5)
and on rearrangement of (9.2.5) we once more obtain (9.2.4), where a,, ,_; = 0 when r—k > n.
Conversely, suppose that the function P? satisfies (9.2.2) for all » > 1. Then on rear-
rangement of (9.2.4) we obtain the system of r + 1 equations (where r — oc0) as in (9.2.3).

Multiplication of the first equation by 2, the second by z! and the (r + 1)-th equation by

z" produces
1 =a,0P"(0)
0=(—1)an1P?(0)x + anoP’(1)x
0 :anngp(0)$2 + (—1)"an’1Pp(1):U2 + an’oi’t’p(Z)ﬂs2

0 =(—1)"a, , PP(0)2" 4+ (=1)*™ Va,, , 1 PP(1)2" + ... + an o P’ (n)z"

0 =(=1)"an,PP(0)z" 4+ (=1)?" Ve, . 1 PP(1)a" + ... + (=1)"apn P*(r — n)z"
+ ... FanoP?(r)x".

Then summing both sides with the right hand side being summed with respect to the
second parameter of the constant a,j for 0 < k < n across the (top left to bottom right)
diagonals we have

1 =an (P(0) + PP(1)z + P*(2)2° +...)
+ (=1)Papz (PP(0) + PP(1)z + PP(2)2* +...)
+ appz® (PP(0) + PP(1)z + PP(2)z® +...)

+ (=1)"an pz™ (PP(0) + PP(1)z + PP(2)2* 4 .. ),
(9.2.6)
and on factorising this gives us
1= (amo + (=D ap1z + an,2x2 +...+ (—1)p"an7nx") X
(PP(0) + PP(1)z + PP(2)a* +...), (9.2.7)

so that on division by Y }_,(—1)"*a, xz* on both sides of (9.2.7) we obtain
1
> ho(—1)PFap, pz*

This forces each coefficient of ", (r > 1) in the numerator to be 0, and hence the result. [J

= PP(0) + PP(1)z + PP(2)z® + ...
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COROLLARY 1. Let P? be a function defined as in Definition 9.2.1 with PP(j,7,0,n) =1
and PP(i,5,0,n) =0 if i < j, and so Apo = 1. Then if

GPP(z,5,0,n , 9.2.8
) e Dt -
then for r > j 4+ 1, PP obeys the recurrence relation
r—1
PP(r,j,0,n) = = (=1)"Fan P’ (k, 5,0,n), (9.2.9)
k=j

where ap r = 0 when R > n. Conversely, if PP satisfies the recurrence relation given in

(9.2.9), then the generating function is given by (9.2.8).

Proof. We have
1

Zk o= 1)Pk ankxk

=2/ GP?(x,0,0,n)

=z/ (P*(0,0,0,n) + P"(1,0,0,n)z" + P*(2,0,0,n)z* +...)
=P*(j§,7,0,n)z7 + PP(j 4+ 1,7,0,n)z/ ™ + PP(j +2,7,0,n)27 "2 + .. ..

The recurrence relation (9.2.9) then follows from Theorem 9.2.1 on comparsion of the co-
efficient of 277/ (as opposed to z"). Similarly the converse follows from Theorem 9.2.1 on

respectively replacing “multiplication by z°, 2!, 22 7 by “multiplication by 7, 2+, 2712,

L O

Remark. We could still begin with r = 1,2, 3, ..., rather than j and obtain the same result,
as the extra terms simply correspond to coefficients 0 in the recurrence.
COROLLARY 2. We have forr > N +1,
r—1
PP(r,0,N,n) = = (=1)""Ma, . P*(k,0,N,n), (9.2.10)
k=0
where ap,—, =0 if r —k > n.

Proof. For brevity we write PY.(r) = P?(r,0, N, n), (using the subscript N to avoid confusion
with PP(r) = P?(r,0,0,n) used in Theorem 9.2.1.
When N > 1, (9.2.3) becomes
AN70 = an,gP]’\),(O)
(—1)P AN = (=1)"an1 PR (0) + ano Py (1)

()N Ann = (=1)"Nan, PR 0) + (=1)PNVa, vy 1 PR(1) + ... + anoPY(N)
0= (—1)*N*Va, N1 PL0) + (—1)"NannPR(1) + ... + anoPY(N 4 1)

0= (=1)"an, P%(0) + (=1)P" Va1 PL(1) + ... + anoPh(r).

)
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And so we have that

P (0) = Ao
P4(1) = (1) Ax — (~1)Pan1 P§(0)
PK,(Q) =Ang2 — (Ln’QP]%(O) — (—1)pan,1P]’\’,(l)

r—1
P{(r) = (1) Any = Y (1P Py, ., PR (k). (9.2.11)
k=0
That is (9.2.10) will only be satisfied when » > N + 1 (when Ay, = 0). O

Remark. Corollary 2 could be alternatively stated as:
The function P? with P?(0,0, N,n) = An o, (and so apo = 1) will satisfy (9.2.10) only when
r> N+ 1.

COROLLARY 3. We have forr < N,

r—1

P{(r,0,N,n) = (=) A, — > (-1 Pay . P (k,0,N,n).
k=0
Proof. This follows from Corollary 2, in which P (r,0, N, n) is given by (9.2.11). O

THEOREM 9.2.2. We have

P(r,0,N,n) =Y (-1)""M Ay, 1 P*(k,0,0,n).
k=0

Here PP is given as in Definition 9.2.1 via the generating function

Z]kvzo(il)pkAN,kxk ( > N)
= n
Dh—o(=D)PFap gk T

where n is the order of the denominator and N is the order of the numerator.

GP?(x,0,N,n)

Proof. From the generating function of P? when N > 1 we have that

S (—1)PR A gt
B > oheo(—1)Pkay, pak
N

(_1)pkAN,kxkgPp(xv 07 07 n)

GP?(x,0,N,n)

[]= 11

(—1)P*An pa® (PP(0,0,0,n) + PP(1,0,0,n)x + P?(2,0,0,n)2% +...).

b
Il
<)
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If r < N < n, then we find that on equating the coefficient of " we have

PP(r,0,N,n) = ANQPP(’F 0,0,n) + (-1)PAny 1 P?(r —1,0,0,n) + ...+ (-1

—Z )P A, PP(k,0,0,n).

Furthermore, if » > N, then the equation becomes

P?(r,0,N,n) =AnoP?(r,0,0,n) + (—=1)? Ay P?(r — 1,0,0,n) +

+ (=1)PN Ay Ny PP(r — N,0,0,n) + 0PP(r — N —1,0,0,n) +

=Y (=P M AN, PP(E,0,0,n).
k=0

where we recall that Ay ,_ =0 when r —k > N.

Remark. We note that (9.2.12) can be expressed more succinctly as

N
PP(r,0,N,n) Z pkAMka(r —k,0,0,n),
k=0

)" AN »P?(0,0,0,n)

..+ 0P”(0,0,0,n)

(9.2.12)

O]

and if we put N = 0, we observe that the sum P”(r,0, N,n) simplifies to P?(r,0,0,n).

9.2.1 Relationship between p =0 and p =1 cases.

We relate the sum P(r,0,0,n) to P°(r,0,0,n), (as given by Definition 9.2.1) by Lemma 9.2.3.

LEMMA 9.2.3. With P'(0,0,0,n) = P°(0,0,0,n) = 1, and thereafter for all v > 1, we

have
PY(r,0,0,n) = (=1)"P°(r,0,0,n).

Proof. The identity is true for £ = 0, Then assuming the relationship holds true for k£ < 7,

we use Theorem 9.2.1 to obtain
-
P! (r+1,0,0,n) =— Z(_l)wrlikan,'r—i-l—kpl(h 0,0,n)

k=0
r

= Z(_1)r+1_kan,r+1—k(_1)kpo(k7 07 07 n)

k=0

=(—1)*! (- > anrp1-1P°(k, 0,0, n))

k=0
=(=1)"" PO+ +1,0,0,n).

Similarly we relate the sum P'(r,0, N,n) to P°(r,0, N,n), (as given by Definition 9.2.1).
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LEMMA 9.2.4. Forr > 0 we have
PY(r,0,N,n) = (—=1)"P°(r,0, N, n).

Proof. From Theorem 9.2.2 and Lemma 9.2.3, for all non-negative r we have
P'Y(r,0,N,n) =Y (1) *Ax,_xP'(k,0,0,n)
k=0
=3 (-1)"FAn,_k(=1)*P°(k,0,0,n)
k=0
:(_1)T Z AN,r—k‘PO(ka 0,0, n)

k=0
:(—1)TP0(T,0,N, n).

COROLLARY (to Lemmas 9.2.3 and 9.2.4). These lemmas demontrate that by alternating
the sign of the terms as in Definition 9.1.2, the absolute value of the sequence term r is

unaffected, but when the parity of v is 1, the value of the term is multiplied by —1.

9.2.2 Association of a generating function with an MCL determinant

THEOREM 9.2.5. We have P?(0,0,0,n) = Af(an) =1 and for r > 1 that
PP(r,0,0,n) = Af(an).

Here PP is given as in Definition 9.2.1 via the generating function

1
P?(,0,0,n) = C(n>N),
g ($7 s ,n) ZZ:O(_l)pkan,kl'k (TL = )

so that for r <n,

p
a, 1 0 0 ... 0
an,2 ap7 1 0 0
P P
a an.2 a 1 0
N r n,3 m, n,l
Af(an) = (1) : . . :
p p p p
an,r—l an,r—Q an,r—?) a’n,r—4 1
p p p p p
an,r an,r—l an,r—2 a’n,r—3 an,l
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and for r > n,

a1 0 0 0 0 0
ang  ap 0 0 0 0 0
af%g an,2 0 0 0 0 0
afw_l afw_Q 1 0 0 0 0
AP(ay) = (—1)"| ahn afw_l afh1 1 0 0 0 |,

0 0 (.2 af%l 0 0 0
0 an,n aﬁ,n—1 a'rpz,n—Q aﬁ,l 1 0
0 0 an.n afl,n_1 Qan,2 afz,l 1

0 0 0  din apsy an2 aj,

where (an = ((—1)Pan1,an2,...,(—1)"a,y,0,0,0,...).

Proof. From Theorem 9.2.1 we have

r—1
P?(r,0,0,n) = = > (—1)"" Ma, ., P?(k,0,0,n),
k=0

and from Lemma 9.1.1,
r—1
gr == h_rgr = Ar(h).
k=0

The theorem is then obtained (from also using Lemma 9.2.3) on putting g = P?(k,0,0,n),
hi, = (=1)P%ay and A, (h) = AL(ay). O

THEOREM 9.2.6. We have P*(0,0,N,n) = \Ilg(é’n,ANp) = Ao, and for r > 1 that

—

PP(r,0,N,n) = VP(a,, ANo)-

)

Here PP is given as in Definition 9.2.1 via the generating function

N [ 1\pk k
GP?(2,0, N,n) = kol ANATE o (9.2.13)

> k—o(=1)Fan gk’

so that forr < N <n,

Anp 1 0 0 0
A?V,l afL’l 1 0 0
5 AN72 Gn,2 afl 1 1 e 0
VP (@n, Ano) = (-1)7| : . R
A?V,r—l afL,T’—l aﬁ,r—z afL,T—3 1
A?V,r afl T afm"—l aZ,T—Q afz,l
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for N <r <mn,

AN 1 0 0 0
A?V,l afhl 1 0 0
ANz G2 ap 1 0
WP(&n, Ano) = (—1)" : :
7 (8n 0)=(-1) Ajp\r,N a%N aﬁbj\_l ap N2 0
0 CLn,N—&—l an,N a’n,N—l 0
0 a7pl T a’fz,rfl aﬁ,r72 afl»l
and for r > n, W (a,, AN,O) =
Avog 1 0 0 0 0 0 0 0
ANy an, 1 0 0 0 000
AN72 an,2 afm 0 0 0 0 0 0
Al dns 0 0 0 0 0 0
Afwv a%N CLQNil 0 0 0 0 0 0
| O oy 0 0 0 0 0 0
0 afm afmfl e af% 1 0 0 0
0 0 0 A S 0 0 0
0 0 an,n aﬁ,nfl afL,an aﬁ,l 1 0
0 0 0 afl n af%nfl an2  Qp 1 1
0 0 0 0  dhn aps Gng

Proof. From Theorem 9.2.2 we have

P(r,0,N,n) =Y (-1)*""M Ay, P*(k,0,0,n),
k=0

and from Theorem 9.2.5 that
PP(r,0,0,n) = AP(a,), (r=>0). (9.2.14)

Then using Lemmas 9.1.3 and 9.2.4 we obtain

r

Uo(an, An) = > (-1 M AN, AL (). (9.2.15)
k=0

On substitution of (9.2.14) into (9.2.15) we conclude that P(r,0, N,n) = U2(d,, Ax). O

An important corollary to Theorem 9.2.6 concerns the effect of the “shift” variable T on the
half weighted MCL determinant.
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COROLLARY 1. We have
PP(r,T,N —T,n) = WP (ay, AN_T.1),

with PP defined as in Definition 9.2.1 via the generating function

N_T(—l)pkANfT,kkarT

GPP(z,T,N —T,n) = =k=0_ , (n>N),
( ) > h—o(—1)PFay, pxk ( )
and the half weighted (r + 1) x (r + 1) MCL determinant
\Iﬂr)({iml&N—T,T) = (—=1)"x
0 1 0 0 0 0 0 0 0
0 a%l 1 0 0 0 0 0 0
: 0 0 0 0 0 0
A?\/’—T,O ath afL7T_1 0 0 0 0 0 0
AN_rn-T n,N GZ,N 1 0 0 0 0 0 0
0 nN+1 al 0 0 0 0 0 0
0 ahn afmfl afL’l 1 0 0 0
0 0 0 an2 az,l 1 0 0 0
0 0 A aﬁ,n aﬁ,nfl afm72 a;oh1 1 0
0 0 ... 0 aﬁ,n afwfl R ail 1
0 0 ... 0 0 afm e e afL73 an2 arplyl
where an = ((—1)Pan1,an2,...,(—1)"an,,0,0,...),
and l&N—T,T = (O, 07 e ,O, AAN_T707 (—1)pAN_T71, ey (_1>p(N*T)AN_T7N_T7 0, .. )
———
T times

Proof. Using (9.2.13) of Theorem 9.2.6 we put Ay = 0 for k£ <T — 1. The numerator then

becomes

N N-T
S (D) Angat = > (1) Ayt (9.2.16)
k=T k=0

So on renumbering the coefficients Ay 47 of (9.2.16) we then obtain

o ()PP AN g

>ok—o(=1) P an pak

The result then follows from Theorem 9.2.6. O]

k+T

= GP?(2,T,N — T, n).

Of particular interest to Corollary 1 is the case T'= N. We then have

PP(r,T,0,n) = U (&,, AoT)
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0 1 0 0 0
0 af, 1 0 0
0 apg afl’l 1 0
0 aﬁ,ﬁ” ap,2 agl 0
S L ,

1 QZ,T aﬁ,Tfl ag,sz L

0 aprir G Gupoq Qoo

where &, = ((=1)?an.1, a2, -, (=1)""ay 1, 0,0,0,...), and Ao = (0,0,...,0,1,0,0,0,...).
~————
T times

9.3 Lsauc(r,t,q) as a half weighted MCL determinant

Lemmas 9.1.1 and 9.1.3 were employed in [30] to express, as a type 2 MCL determinant, the
specific functions (that we denote as) Li.11¢, (where ¢ € {0,1}).

From the results obtained in this chapter, we now express each of the sixteen forms of the
function Ls..pc as a type 2 MCL determinant.

In Chapter 5 we determined an order M’ = m + b(1 — a) recurrence relation for the function
Ls.ape of the form

M M1
+.

T —yamT o+ M a4+ ()M an =0,

where we recall v = (—1)* or equivalently —y = (—1)}7%.

Let us put a, = ay and Ayj = Ag. In Chapter 8 on application of Theorem 8.3.7 and

Theorem 8.5.6, we were able to express the generating function of L. in the form

N
27 o (=) AN pa®
Sro(— 1 Fan gzt

GLsap0(,0,q) = t=0, N=M -1, (9.3.1)

or
2SN (=) R AN et
Yoo (=Fan gzt

We recall that the polynomials in both numerator and denominator are reciprocal polynomials
so that the coefficient of z* (0 < k < n) becomes A -

t>1, N=M —t. (9.3.2)

g['s;abc(ma t, Q) =

Now we associate the function Lg.qp. with a function Lgbc as given in Definition 9.3.1, (see
also Definition 9.2.1), where the parameters a, b and ¢ determine the coefficients a,, ; and
AN k-

On separation of the cases for the parameter ¢ = 1 and a = 0, we then express each of the
functions L5 as a type 2 MCL determinant via the corresponding function L(llgcs using

Theorems 9.3.1 and 9.3.2 respectively.
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be a function taking the values LZbC(r, T, N—T,n) with generating

Definition 9.3.1. Let L”

abc
function
N-T

(_ 1)pk ANfT,kiUk+T

o0
z,T,N —T,n) = =k=0 =S L” (k,T,N —T,n)z".
( ) Zzzo(_l)pkamkﬂjk kz_o abc( )

where the coefficients an . and Ay_ry are determined by the parameter a according to the

GgL?

abc

criteria:

Whena = 0, let ank = Jn—1k +4Jn—1k-1, and  AN_Tk = JN-T ks

(Jnfl,kfl =0, ka - 0)7 and

whena =1, let Ank = Jn ks and AN—T) = IN-Tk-

Here j,, 1, is the k-th coefficient of the Jacobsthal-Lucas polynomial of order n and Jy_1 is the
k-th coefficient of the Jacobsthal polynomial of order N — T, (see Section 5.2). Furthermore,

the variables n and N are determined in part by the parameters b and c.
THEOREM 9.3.1. We have that
Lsave(r,t,q) = L 5(r, T, My — T, m) = KWL= (am, A, —11)-

Here, \I’}n_s(ﬁsz;Ml—T,T) = (—=1)"x

0 1 0 0 0 0 0
1-s
0 Ay 1 1 0 0 0 0
: 0 0 0 0
Al al=s al=s 0 0 0 0
M;,—T,0 m,T m,T—1
1—s 1—s 1—s
AM17T7M17T ?m,Ml M —1 0 0 0 0
—S8 —S8
A My +1 alm M, ; 0 0 0 ’
1— —s —s
0 A, fn am,m—l U1 1 0 0
0 0 0 Um.2 an i 0 0
1—s 1—s
0 0 o S (e | aT7m72 o 11 0
1— —s —s

0 0 o . am,fn S U 11

1— —s

0 0 o e 0 amyfn Cee Gm2 Gy

where am = (—Yam1,am2, -, (=¥) " @m,m,0,0,0,...),

and AMl—T,T = (0, O, Ce . ,0, AM—1,07 _')’AMl—T,la ey (—’y)Ml_TAMl_T’Ml_T, 0, 0, 0, .. )

T times
Furthermore,
2 ft=20 t ift=20 -1 ift =0
k=2 ¥ T = if and M;=1"" if
~NE At > 1 t—1 ift>1, m—1-0bcd ift>1,

where b =1 —bandcd =1 —c.
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Moreover, the term a,, i, represents the coefficient of the term z* of the (2m+b)-th Jacobsthal-
Lucas polynomial, and similarly the term Apr, —1 1, represents the coefficient of the term z*
of a Jacobsthal polynomial according to

M T 27 o(m—1)4146(=72) ifc=t=0
Z (_’Y)kAMl—T,k = Jg(m_l_t)+2(—’7$) ifb=c=0andt>1
h=0 Yoo m—t)+btre(—7T)  otherwise.

Proof. We first isolate the particular sum Lg.1p0(r,0,q) before considering the other cases
(when ¢t > 1).
For the sum L 1p0(r, 0, q) we recall from Theorem 8.3.7 that

297 Jomap—1(—yx
gﬁs;lbo(rjqu) _ 7‘2 +b 1( it )
]2m+b(—’737)

Dy G N G A
D e R F

2y ()R A

B Z?:o(—v)kam,km’“

For each of the other sums, we have from Theorem 8.3.7 that

ct—1
S R s
GLgpe(r,t,q) = S2(m—t)+b+ ( )
Jom+b(—7)

—t—b'¢ —t)+bte—1—k -
_ VCZZLJ C(_,y)k(2(m t)+b+c—1 )xk-&-t 1

k
2m+b  (2m+b—k
Z?:o(—v)kzmﬁ_k( " )ak
N V] _
_ ’YC E?:()t b'c (—’Y)kAm—t—b’c’,k=Tk+t 1

From Definition 9.3.1 we have

2m+b [(2m+b—k 2m=1)+b—k ift =0
A,k = _omEo < m )7 and  Ap_1k = (2<m7t'§+b+cf)17k 1
Yo 2m4b—k k ’ ( L ) ift>1.

So with ¢ =0, we have T'=0, and M; — T = m — 1, and from Theorem 9.2.6
Ls;lbO(ra Oa Q) = Z’YLi(;CS(Tv 07 m — 17 m) = QV‘IJ}gis(é’rm Am—l,ﬂ)-

On putting K = 2+ the identity (for ¢ = 0) is established.

When ¢t > 1, wehave T =t —1l,and M1 —T=m—-1-0b0c —(t—1)=m—t—-10bc.
So that from Theorem 9.2.6 and Corollary 1 to this theorem we have when b = ¢ = 0,

ES;IOO(ra tv Q) = L%b_cs(/n t— 17 m—1— 17 m) - \Ijq{_s(é‘ma Am—t—l,t—l)u
and otherwise,
ﬁs;lbc(ra ta Q) - ’YCLL)_CS(Tv t— 17 m — tv m) = 70\1171“78(57717 -‘&m—t,t—l)‘

On putting K = 7€ the identity (for t > 1) is established.
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THEOREM 9.3.2. We have that
‘CS;ObC(ra t, Q) L(l]bcs (T7 Tv MO - Tv m—+ b) = K\I]}"_S(é’m—i-ba AMO—T,T)-

Here, U1~ (am+b,AM0 rr) = (—=1)"x

0 1 0 0 0 0
l s
0 al 1 0 0 0
: : 0 0 0
1 s 1 s
AMy-1,0 Ctb,T Qb 71 0 0 0
Alfs 1 s 0 0 0
Mo—T,Mo—T m+b My m+b Mpy—1
0 al- al=s 0 0 0
m+b Moy+1 i m+b,M0 ’
—S
0 am+b m+b am1+b,m+b71 h 1 0 0
—S —S8
0 0 Cppibmtb - Qb 0 0
0 0 al=s 1 0
m+bm+b2 X
—S8
0 0 m+bm+b1 e 11
—S
0 0 am+bm+b oo Qb2 Gy
= b
where Am+tb = (_7am+b,17 Am+b,25 - - - (_7)m+ Am+b,m+b» 07 07 07 .. ');
A My—T
and AMO*T,T = (O) O) L) 07 AMO*l,O’ _’YAMofT,h ceey (_’Y) 0 AMO*T,MO*T7 07 O) O) .- )
~—_——
T times
Furthermore,

2 ift = t ft = —1+5b ft =
K= 7 %f 0 T = Zf 0 and My = " + Zf 0
v aft > 1, t—1 ift>1, m—14+bc ift>1.

Moreover, the term a4 1 represents the coefficient of the term x¥ created from the product of
the (2m +b)-th Jacobsthal polynomial with the factor (1 —4~x). Similarly the term Angy—1 1,

represents the coefficient of the term z* of a Jacobsthal-Lucas polynomial according to

Mo—T 2vJo(m-14b)+1-0(—7x) ife=t=0
Z (=1 AMo—1.k = § Viz(m—i+1)(—72) fb=c=1andt>1
k=0 'ch2(m—t)+b+c(_7x) otherwise.

Proof. We first isolate the particular sum Lgpp(r,0,q) before considering the other cases
(when ¢t > 1).
For the sum L.0p0(r, 0, ¢) we recall from Theorem 8.5.6 that

29J2(m—14b)+1-6(—77)
(1 = 4y2) Jam—14b)+2-6(—77)
QVZm ()b 2molkb (2(m=1+D)+1-b-k)

g£5;0b0 (7”, 07 Q) =

2m—1+b—k k
1+b 2(m—1+b)+1—-b—k
(1 = dya) S o (=) (P T )k
_ D] () LY WL
m-+b :

k=0 (_V)kam—i-b,kxk
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For each of the other sums, we have from Theorem 8.5.6 that

’chQ(m—t—i-bc)—l—b—i-c—ch(*’V‘T)
(1 = 4vz) Jo(m—14)+2-5(—7T)
t+b k_2(m—t)+b+c (2(m—t+bc)+b+c—2bc—kY  k
Zm C( ) Q(YELnjt).g)_bJ,-cEk( (m C)k c C )l‘
(1 . 4’733) Z”L_foler(_,y)k(2(m71+l;€)+17b7k)xk
Zm t+b0( )kAmfterc,kwk

b
let) ( V)kam-i-b,kl'k

gﬁs;Obc(ra t, (]) =

From Definition 9.3.1 we have

2m+b—1—k 2m+b—k
mene = (" (PR, (933)
and
2m—1+b (2m—1+b—k . o
Ap1k = {2%1(;11:3—_%]2—56 Q?mft)1b+cfk lit ; (;
2(m7t)+b+cfk( k ) ift>1

So with ¢ = 0, we have T'= 0, and My — T = m — 1 + b. and from Theorem 9.2.6 we have
that

'Cs;ObO(Tv O, q) = 2’7‘[’1 S(r 0,m—1+ b7 m + b) = 27\1’71"_8(5771-&—1)7 Am—l-{-b,O)'

abc

On putting K = 2y (when ¢t = 0) the identity is established.

Whent > 1, we have T'=t—1,and My —T =m—1+bc— (t—1) =m —t+ bc.
So that from Theorem 9.2.6 and Corollary 1 to this theorem we have when b = ¢ =1,

Es;Oll(Ty ta Q) Ll S( = 1a m—t+ 1a m 4+ 1) = W\D;_S(é’qu’ AWLle»l,tfl)a

abc

and otherwise,
Es;[)bc(ra ta Q) CLI S( = 17 m — ta m + b) = VCWi_S(Q‘m—}—b -&mft,tfl)-

abc

On putting K = ¢ (when ¢ > 1) the identity is established. O

We illustrate Theorem 9.3.1 and Theorem 9.3.2 with two examples.

Example 1.
21 0 0 0 0 0
8 7 1 0 0 0 0
6 14 7 1 0 0 0
L£1110(6,0,7) = (=10 7 14 7 1 0 0]|=-3430,
0 0 7 14 7 1 0
00 0 7 14 7 1
00 0 0 7 14 7
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2989,

0

1
7

1 14 7

0 0

14

1

7T 14 7

0

0

= —1911,

637.

(-1)% o0 7

L1:110(6,1,7)

1 0

7

1 14 7

0

14

1

T 14 7

0

0

0

1
7

1 14 7

0 0

14

1

T 14 7

0

0

L1110(6,2,7) = (-1)°| 0 7

=(-1)% 0 7

£1;110(67 37 7)
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9.4 Expression of the sums L .(r,t,2m + b) for generalised m

In Section 3.1, (and also see Appendix A), each of the sums Lg.qpc(7,t,q) were expressed in

terms of sums of binomial coefficients. When
r+t+1l—c<qg=2m+D, (9.4.1)

the sum is composed of the single binomial coefficient

( % +2—c > 943

r+t+1-—c

and is, therefore, independent of the modulus ¢ (and the parameters a and b).

In Theorems 9.3.2 and 9.3.2 we expressed the values of L.qpc(7, ¢, ¢) using an MCL determi-
nant. If the value of m remains unspecified, then each of the nonzero entries (# 1) becomes
a polynomial in m, and we might expect that the determinant also yields a polynomial in m.

However, we have the following lemma.

LEMMA 9.4.1. The MCL determinant of the terms Lg.ape(r,t,q) when the variable m

remains unspecified is an integer value.

Proof. When m is not specified we find that the condition is equivalent to (9.4.1) and so
(9.4.2) is also obtained. Consequently the result of determining the MCL determinant in
m is the numerical value (9.4.2): all terms of the final polynomial cancelling except for the

constant terms. O

We demonstrate Lemma 9.4.1 with the following example.

Example.

L1:110(4,1,q) =

1 1 0 0 0
2m — 3 2m + 1 1 0 0
)ix| L@2em—4)2 Cntl(opy —2) 2m + 1 1 0
(=1)"x | a1(2m 21 m m +
%(27’1 —5)3 (%;,Tl) (2m —3)? (%;,H) (2m —2) 2m +1 1
nm -6t G om — 42 CrEiom —3)2 Lkl (om —9) 2m 41

2
_ x 442 _ 10 _ 910,
44141 6

9.4.1 The functions L. for negative r

Contrariwise, if we consider the sums Lg.qpc(—7,1,¢), that is if we run the sequences back-
wards, their evaluations using sums of binomial coefficients no longer make sense and a term

independent of m such as (9.4.2) does not exist. Instead we turn to methods such as the roots
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of unity and trigonometric sums employed in Chapter 4. In consequence to this dependence
on the variable m, we find that when determining the values of Lg.qp.(—T, ¢, q) for unspecified
m, there is no wholesale cancellation of the polynomial in m.

In a study by Lettington [30] these polynomials were investigated for each of the sequences
of the sums Ly.11.(—r, t,2m+1), (c € {0,1}). Interesting results were discovered for the leading
coefficient of the particular cases of the variable t = 1 and t = m. More specifically when

k

t = 1 (and with m replaced with 7) this leading coefficient of the term z" was identified to

be equal to the even zeta function, ((2k), when ¢ = 1, and ((2k)/2 when ¢ = 0.

We now broaden these findings to include the sixteen cases produced by varying the
parameters a, b, ¢ and s, when t = m and t = 1. We determine the generating function
of the terms Lg.qp.(—7,t,¢) and from them obtain the required polynomial from the MCL
determinant. Since it is the leading coefficient of this polynomial that is of particular interest,
we construct an amended function that produces precisely this, and in doing so immensely
simplifies each of the individual polynomial entries of this determinant.

Let us introduce some definitions.

Definition 9.4.1. We denote by L__,  the function such that for integer r > 0 it produces

s;abc

the values
L1 8.0) = L1, 0).

Definition 9.4.2. We denote by L1, the function such that

s;abc
Cg;bc(r,t, q) = leading coefficient of L_, (r,t,q).
Definition 9.4.3. Let the polynomial

-1 )
pn(x) = anz™ + an—12"" + ap—ox™

+...+a1x + ag,
and
prn(x) = an2™ + 12T o™ b aeT 4 g (9.4.3)

Then let N =n+T and relabel the coefficients such that

an ifn>0
Ay =
0 fN<Z<T-1,

so that (9.4.3) becomes
Py(x) = iL‘Tpn(:L') =AnaN + A2V o+ AT Apa 02T 402+ 0.

LEMMA 9.4.2. The reciprocal polynomial p(z) of the polynomial x*p,(z) as defined in
Definition 9.4.3 is given by

py(z) = a:”pn(x_l) = an + an1% + an_ox® + ...+ a12™ " + apz™.
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Proof. From Definition 9.4.3 we have
Py(z) = ;chn(a?) = AyzN + Ay 2N 4+ AT+1xT+1 + Aral 4027+ .. 402 40.
The reciprocal polynomial P} (z) of the polynomial Py(z) is given by

P(x) =z Py(z™h)

=An 4+ Anrz 4o+ ApaV T 0eN T 02N 02N
=y + ap 17+ an_ox® + .. a1+ aga”
=pn ()
as required. .

Remark. When the reciprocal of a polynomial 27p, () is determined the power of 27 is

effectively removed.
We now consider separately the generating functions of the terms £, and L, .

THEOREM 9.4.3. The generating function of the function L_,, ., as defined in Definition

9.4.1, is given by

*2F2(m—1)+1+b(v —2)

Lagr V=70 #t=0
GL yyelat,q) = § S i) ifb=c=0andt>1
c(_ N\t — be —
\ ¥E(—=) (\/LT;v")ﬁii(/%;b“(m) otherwise
(2505 () (cre)® ift=0

m 2 m—+b+k k
k=0 m+7bn+k( 2k+b )(_7”)

)™ Sy (M ) ()

p) Tk
2ohe0 MR (m2k )(_’Vx)k

—t —t)+bte—1+k
P Ry (M e ) ()t
2mib (m+btk &
ko m-TzH—k (mzk-‘-b )(_ x)

Proof. From Theorem 8.3.7 we have

2vJo(m—1)146(—77)
Jam+b(—7T) ( )
_ ) & Samo1—p2(—2
gﬁs;lbc(xv t, Q) - , 1j2m(—’ﬂ)
72" Jo(m—t) bt (—7T)
j2m+b(_’7x)

Let us generalise the generating function of (9.4.5) as

Kzl Jopie(—vz
gﬁs;lbc(xut7Q) = . ant ( i )
]2m+b(*'7x)

_ KTy ()"

ifb=c=0andt>1

otherwise.

ift=0
ifb=c=0andt>1

otherwise.

(2n+ekflfk) :L‘k

- 2 b—k ’
S ho (—)F gl (BT ak

(9.4.4)

(9.4.5)
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where K is a constant and the parameter e € {1, 2}.

Now since
Es abc(r t Q) 'cs;abc(_ratv Q), (T > 0),

we determine the reciprocal polynomial of the numerator and denominator of (9.4.5).

From Lemma 9.4.2 we recall that the reciprocal polynomial p (z) of 27p, () is
py(z) = npn(m_l) = ap + an 1% + an_ox® + ...+ a1z + apz™.
We then have that GL_,,  is given as

2 —1-k —

K3 o) (i e
P L e —
Sheo (= gy O )k

20)
te—1+k
K ) )
- _k 2m+b +b+k
S oho (=) m ke (M) 2

—1+k
D E ) ()t
b b+k
() ()R 2 (TR
K(/=72) Fyy e/~
(g BV ot/ =9T e gy
LQm—&-bV_’ya7
Soift=0,weput K =2y, n=m—1,e=1+band d=0;
whilst if t > 1, and b=c=0, weput K =1, n=m—-1—t,e=2and d = —1,
and in all other cases we put K =~°, n=m—t, e = b+ c and d = be, we then obtain (9.4.4)

gﬁs_;lbc<$>t7q) =

and the theorem follows. ]

Finally, we have two corollaries to give the explicit forms for each of the parameters b and c,

when a = 1 and the variables t = m and ¢t = 1.

COROLLARY 1. When the variable t = m, we have

Fo(v—z)
Gl ) = e 8
GL 101 (z,m, q) = MR L)l
5,101\ 115 LQm(\/TW) Z?:O%(nézk)(irylj)k,
Gy (e.m.g) = CVTERGVYD) (=)™
s 1OV T Lom+1(vV=72) Yt i ("o ) (mya)t
and
V(=) (V=) _ (=)™

gﬁ;lll(mv m,q) =

= j .
Loma(V=y2) Lo 2 (Mo ) (—ya)*
Proof. Each of the results follow from substitution of the parameters b and ¢ and the variable

t = m into Theorem 9.4.3. ]
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COROLLARY 2. When the variable t = 1, we have
(m—2) +1+k)

6L oo (2.1,q) = Fy(m—2)4+2(v/=7T) _ i ( 241
100 V=2 Lom(v—7x) > ko rs:—nk (m;];k:)( —7x )

—Foim-yr1(vV/=72) =0 (") (-

gﬁ_-lm(x»LQ) = = )
; Lom (V=) Zﬁﬂﬁﬁ@ﬂﬂbﬁ@k
6L (2.1,q) = =T (m—1)+1(vV/=77) _ Shso (") (= )
e Lom+1(v=72) Sk mart (ki1 ) (=
and | (1) 10k
GL (2,1, q) = —Fypn-1)r2(V=y) - > (7 2%+1 ) (=)
;111\ & - — - k :
: Lomr(V=yx) 3, 2L (M) ()
Proof. Each of the results follow from substitution of the parameters b and ¢ and the variable

t = 1 into Theorem 9.4.3. O

THEOREM 9.4.4. The generating function of the function L, . as defined as in Definition
9.4.1 is given by

( 27Lam—14p)+1-6(vV—7%) ift=0
i s )
- Y(=y)" L m—+1— - .
g‘cs;Obc(x’ t’ q) = (5’3_4"{)}2'—'(2m-:—11\;)_W) Zfb = C= 1 and t Z ]_

(=)0 (y *’Yff)l_Qb_CLz(m—t)-o-b-‘-c(v —T) .
otherwise
(z—47) Fa(m—1+b)+2—6(vV—7T)

1+b 2(m—14b)+1-b ((m—1+b)+1-b+k k
(2505 m(m b ) (<)
1 b 1+b)+1—-b+k
(2—47) i 0 (R, ) ()

ift=0

+1—t 2(m+1-—t) m+1—t)+k k
= 1Zm (m:-n1 t)+k(< 2k) >(_'Y$)

(z—47) i (Vo) (—ya)k

o) ifb=c=1andt >1

m—t 2(m—t)+b+c

VN TR e trrerr (ki ) (10 otherwise
{ (2—47) S (R ) () ‘
(9.4.6)
Proof. From Theorem 8.3.7 we have
27J2(m—1+b)+1-(—77) ey
(=02) om0y 2 o079 0= 0
GLsove(w,t, q) = ”g 4j§§’3;;+j)(( ]j)) ift>1landb=c=1 (9.4.7)
2" o (m—t)+b e (—7T) otherwise.

(1—4v2) J2(m—14b)+2—b(—72)
Let us generalise the generating function of (9.4.7) as
Kij2n+f(_7x)
gL 0be(Z, 8, q) =
snel ) (1 — dyx)Janr+o—b(—y)

N E 2ntf (2n4f—k\ kK
K37 (=7) %(nkf )z

T L) P
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where K is a constant and the parameter f € {0,1}.
Now since

E;abc(r’ t’ q) = ‘CS}GbC(_rv t7 q)7 (7’ Z 0)7

we determine the reciprocal polynomial of the numerator and denominator of (9.4.7).

From Lemma 9.4.2 we recall that the reciprocal polynomial p (z) of 27 p, () is
pi(x) = 2"pp(z7Y) = an 4+ an 12 + an_ox® + ...+ a1z + apz™.
We then have that QE;Ob . Is given as

2 I+ f—ky n—
KZZ:O(_V)anZ}_{k( n+kf A
M M1—b—F\ M —
(z — 4v) Zkzo(_W)k(Z ﬂg JEa

—k _2n+ +f+k
K Yo (=) 2 () 2t

M _ _
(= 4) Zplo (M (") 2
2 k
(="K ZZ:O(_’Y)knJT:;_Jfk (n;cj:} )z
M —b+k
(=M (z — 4v) Zk:o(—v)’“(]\éﬁd )ak
K(/=z)L N
= (_’Y)niM ( ’yx) 2n+f( ’ym)7 d e {_17 07 1}
(z — 4y) Fano—s (V=)
Sowith M =m—14+bandift=0, weput K =2y, n=m—1, f=1—band d=0;
whilstif t >1,andb=c=1, weput K =y, n=m—-1—t, f=0and d=0,
and in all other cases we put K =~ n=m—t, f =b+cand d =1—2b— ¢, we then obtain

9.4.6) and the result follows. O
(9.4.6)

gﬁs_;()bc(x’ t, Q) =

Finally, we have two corollaries to give the explicit forms for each of the parameters b and ¢

when ¢ = 0 and the variables t = m + bc and t = 1.

COROLLARY 1. When the variable t = m, we have

GLm (e.m.q) = N VTVEL(VAT) A
5000\, 710, (= 49) Fapno1y42(V=77) (2 — 47) St (P50 HF) (—ya)b
GL o (z,m,q) = YN LV E) (=)l
5,001 (L, 1M (@ =49 Fagn-1)+2(V17) (2 — 4) St (M0 (—ya)

GL o10(z,m, q) = oS Ity = —
SO Ve — 4 Famn (V) (- 4) Sy (o) (—ra)k

and

_ _ =" LeV=rr) 2y (="
GLgon(z,m+1,q) = (x — 47) Foms1(vV=72) (z —47) 21 (%Jlgk)(_w")k

Proof. Each of the results follow from substitutiom of the parameters b and ¢ and the variable

t = m + be into Theorem 9.4.4. O




135

COROLLARY 2. When the variable t = 1, we have

V=72 Lay(m—1)(v/=77) _ > e 01 fnmlffi (m 22%) (—ya)*
(=) Fam-1)+2(V=77) (2 — 47) 0 ((m;}ﬁ):lp“k)(—yx)k’

gﬁs_;ooo(l’a l,q) =

m—1 2(m—1)+1 S D Y
GL- (o1,q) = E2tm-n11(V=72) Y o () ()
5,001\ & - — = = m — ’
(.’I} 47)F2(m—1)+2(m) (l‘ _ 4,)/) 1 (( 2}C)J—ri-ll+k)(_’yx)k

—YLom-1)+1(vV=77)
V=yx(x — 4y) Fopy1 (v/ =)

1 2 (m—1)41 —1)+1+k k
_'Y > ko (m—1)+1+k ((m Qk)Jrl )(_’Vx)

(& —49) Y4 (") (=)

g[’s_;OlO(x7 17 q) =

)

and
YLom (V=A%) iy i (") (—72)*
(@ = AN Pom1(V=77)  (z —4y) Spy (SR (—ya)k

95;011(1’7 1,q) =

Proof. Each of the results follow from substitutiom of the parameters b and ¢ and the variable
t =1 into Theorem 9.4.4. O

9.4.2 Determination of the leading coefficient of the polynomial £ abc(x, 1,q)

We now truncate the polynomials created in the Corollary to Theorems 9.4.3 and 9.4.4 to
obtain the function ££;b . as defined in Definition 9.4.2. To achieve this we identify the leading
coefficient(s) of the polynomial in m obtained from the term x* of both the numerator and
denominator of the generating function of E; abe- These polynomials derive from the binomial
coefficients, in the variables m and k, of either the Fibonacci or Lucas polynomials. We first
look at the binomial coefficients from the Fibonacci polynomial and consider the sum
N+
2 <2k + b) o

k=0

We have the following lemmas.

LEMMA 9.4.5 (leading coefficients 1). We have

" /N +k " N2k 4 kN2 4 Jower degree terms
> (M) =% : :

T
‘ )
— 2k Pt (2k)!
and
= <N + k) p s N2 L ON2F 1 Jower degree terms o
= \2k+1 — (2k +1)!
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Proof. For the case b =0,

" /N +k o (N+1)2  (N+22%, (N+3)% ,
(")

2\ ok o T e T
=0
N+1)N  (N+2)(N+1)N(N -1
:1+( ;,) 1:+( +2)( Z,) ( )332
N4+3)(N+2)(N+1)N(N —-1)(N -2
DWWV DNW DN =2,

Truncating (9.4.8) to the first two coefficients we have

Ly NPEN L ONTNG NP RN —~ N 4 N2l
x 2" = _
2! 4! (2n)! — (2k)!
Then for b =1,
n
N+k N+132 (N+2)35 N +3)% .
Z( + )xk:N+( D)7 V2 (V3 s
= \2k+1 3! 5! 7!
N+1)N(N -1 N+2)(N+1)N(N —-1)(N -2
v WDV Z1), (04 DN =D =)
N+3)(N+2)(N+1)N(N -1)(N -2)(N -3
L BV DVN DN =DV =80 g
Truncating (9.4.9) to the first two coefficients we have
N3 + ON?2 W + ON4 ) N2n+1 4 ON2n n N2k+1
N et ————a" = —_—".
LA T - R R I [ 2 kv
O
LEMMA 9.4.6 (leading coefficients 2). We have
n n
N +Ek\ 4 N2 4 EN?*=L + lower degree terms .
4 =4 9.4.10
ey (V)= a0 o a)
k=0 k=0
and
n n
N+E\ . N2 4 ONZ* + Jower degree terms
4 =4 . 9.4.11
(z+ )kzo(%“)x = (2k + 1)! ¢ (94.11)

Proof. The coefficient of z* on the left hand side of (9.4.10) and (9.4.11) is given by

N+Ek—-1 N+ k
4 . 4.12
<2(k:—1)+b>+ <2k:+b> (94.12)
The leading two coefficients comes solely from the second term of (9.4.12) and so on applica-

tion of Lemma 9.4.5 we obtain desired result. O
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We also require the leading coefficents for the Lucas polynomial and consider the sum

z": 2M +b (M+b+k) 4
MA+b+k\ 2k+0 '
k=0

and use the following lemma.

LEMMA 9.4.7 (leading coefficients 3). We have

n

n 2k 2k—1
2M <M+k)xk:22M +0M o
= M+k\ 2k — (2k)!

and

N 2M+1 (M+1+k\ " M2 4 ML
=(2M +1
Z; +1+k< 2k + 1 >x (2M + )kzzo Qk+1)!

Proof. When

k=
b=
M (M +1)% , (M +2)5 4
M+/<: < >x —2+2M5x—|—2MT$ oM T g8y

6!

L 2 ony M2 £ 1)2{(1\4_ DM -2) 4

:2< M2 (M+1)M*(M—-1) 5 (M+2)(M+1)M*(M—-1)(M —2) ,

(M +1)M(M —1) n
14+ —x+ x° + x—l—)
4

—2+2M—x+2M

2! 4! 6!

Truncating (9.4.13) to the first two coefficients we have

1+ gt T2 2y
T TR A A O T

2( M?  M*+0M? , M?" 4 0?1 n) R

Then when b =1,

z”: OM+1 (M+Ek+1
e M+k+1\ 2k+1

M +1)2 M +2)4 M + 3)8
:(2M+1)<1+( ;)x+( ;)m2+( ;3) x3+...>

—(2M +1) (1 L +3!1)M%+ (M +2)(M +5!1)M(M -1,

(M 43)(M +2)(M +7!1>M<M ~D(M=2) 5. ) _ (9.4.14)

Truncating (9.4.14) to the first two coefficients we have

M2+ M M* + 203 M6 + 306 M2 4 pp2n—l
(2M+1)<1+ + * 2 M 3 o ”>

3 x + 5] T 7 z oot 2n+1)!

n

M2k kM2k 1
—eM 1)y T 2"
k=0

(2k+1
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We now employ lemmas 9.4.5 and 9.4.7 (in Theorem 9.4.8) to determine the leading coefficient

of the polynomial in the variable m of the r-th term of the alternating sequences a = 1.

THEOREM 9.4.8 (leading coefficient of the alternating a = 1 sequences). The generating
function of the sequences, ﬁsT;Ibc(T’ t,m), derived from the leading coefficient of the polynomial

sequences, L_,,.(r,t,m), when t =m, and r > 0, are given by

ET_ -0 ET_ f)/(_’y)m
g s;lOO(xam7Q) ) g 5;101(337m> Q) )k m?2k k:’
255, ! (2k T
- vc(—v)m
g[’s;llc(‘r7m+c’ Q) - Em2k 7

(2m +1) 32k Wfﬂ

and when t =1, by

k 2k+1 k
D k= 0 2k;+1)' r
~)Fm2k

b
QZkO 2k gk

k 2k—1
(=)"km k
7~ Loy L[ D=1 R ¥
g s;lOl(x7 7Q) - 7 kak & )
D ke 0 e T
k Qk k

— > = 0 2k x
ko 2k
2m+12k0 (2)”1)' 2k

GLY 0o(z,1,9) =

(9.4.15)

(9.4.16)

GLIo(z,1,9) = , (9.4.17)

k

and
kkak 1 k
—m Zk 1‘ (2k:+1) x

k 2k
2m+1 S 0((;k+T' ok

gﬁs iz, 1,q) =

(9.4.18)

Proof. We employ the generating function of the function £ s:1be and choose r < m — ¢, where
e € {0,1,2}. Then in the case t = m, we use Lemma 9.4.7 to identify the leading coeffi-
cient, whilst in the case t = 1, we use Lemmas 9.4.5 and 9.4.7, to identify the coefficients of
the leading two terms of both numerator and denominator. When the factorials of top and
bottom are of different parity there is no cancellation of terms and consequently the leading
coefficient of both is sufficient to determine ££Ibc. Conversely when they are of the same

parity, consideration will required to be given to a second coefficient.

For the polynomial sequences of the type £ 1e(T,m, q), (r > 0), we have

m

(=)

GL100(x,m, q) =0, GL 101 (x,m, q) = m_(m ’
| ’ Sk e (M) (=)

and
m

_ (=)

GL 11(x,m, q) = :
5 ’ ’ 2 +k+1

> heo m+7/?+1 (m21<;+1 )(_'Yx)k
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The first result is complete, and the other two follow from application of Lemma 9.4.7 and

replacing x with —~vz.

For the polynomial sequence, ﬁ;loo(r, 1,q) we have
-2 ((m—1+k
ZL:O ((n;kJr;r )(_’Yw)k
: .
Sio 2 ()
With 0 <r < m —2, and N = m — 1, by applying Lemmas 9.4.5 and 9.4.7, we select the

leading coefficient of both numerator and denominator. The result is (9.4.15).

GL 100(7,1,q) =

For £ 141(r, 1, q) we have

¥ iy ("o ) ()

- .
> ko nsz (m;l; )(_WC)k

With r <m —1, and N = m — 1, we have from Lemma 9.4.5, that the numerator of (9.4.19)

GL 0 (7, 1,q) = (9.4.19)

is

"\ (m —1)% 4+ k(m — 1)?*~1 + lower degree terms
k=0 '
" m2* — 2km? 1 4 Em?*~1 + lower degree terms &
k=0 '
T2k 2k—1
m-" — km + lower degree terms
— Z @] (=) (9.4.20)
From (9.4.20) and Lemma 9.4.7 we then obtain
(_ )k m2k_k.m2k71 kk,’ 2k—1
V2 k=0 (2R)! )xk 0 2 k-1 =, (2k7)n' xt
gﬁs 101(x7 1,q) = (—)Fm2F = 9 1 - )Fm2k
23 ko TRt D k= 0 (2k z

as required.

For £114(r, 1, q) we have

1 (m—1+k
k0 (m 2k+ )(_Vx)k

2mtl (mtk+1 :

> keo kT (m2k+1 )(_Vx)k

With » <m—1, and N = m—1, on application of Lemmas 9.4.5 and 9.4.7 we obtain (9.4.17).

gﬁ;no(x, 1,q) =

Finally, for £_,,(r,1,q) we have

T Dk (2k+1)( )

2 +1 +k+1 .
Zk:o mTk-ﬁ-l (ka+1 )(—’Yfﬂ)k

GL (2, 1,q) =
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With r < m — 1, we have from Lemmas 9.4.5 and 9.4.7,

2k+1

YD k=0 2k+1)( yz)*

2k 2k—1
2m+ 1375 ™y (—ya)k

2k k 2k71_k 2k—1
_am Zk:ﬂ et 77(lzlm-l)! - (_7$)k
- 2k 4 Jon2k—1
2m+1 S0 %(_Wv)k
Qk 1 k
_am Zk 0 (2k:+1 (=)
- B 2k Jon2k—1
2m +1 Zk:o %(—’m)k
2k 1 k
ym > k=0 2k+1 (=)
“oma1 (1T m2F k
Zk =0 (2k+1)! (=)
as required. O

Next we utilise Lemmas 9.4.6 and 9.4.7 in Theorem 9.4.9 to determine the leading coefficient
of the polynomial (in the variable m) of the r-th term of the sequences of the parameter
a=0.

THEOREM 9.4.9 (leading coefficient of the nonalternating a = 0 sequences). The gen-
erating function of the sequences, Ezabc(r,t,m), derived from the leading coefficient of the

polynomial sequences, L_,.(r,t,q), when t = m + be, are given by

2=y - 2070( v)m“
km2k 40 and gLs;Olc(xvm+C’ Q) 7)km?2k

amy oy 072,3“) T 4o ! 2k: r

gﬁg(?oc(% m, Q) K’

and when t =1, by

k 2k
(=)Fm2* k
- > k=0 e T
2m km2k g0
D k= o 21<;+1)' x

(=)Fkm2 g
Zk 1

GLL (. 1,q) =

_ —(2m —1) (2k+1)!
g£§001(x7 Lq) = Yem2k )
4m > k=0 2k+T ak
Nk, 2k
(2m — 1) Zk=o %9«“}“

gﬁsT;(io(mv 1,q) =

YEm2E 0

4 Zk(] 2k “aprak

and
2k—1

k
(=1)"km k
> k1 e 7
(=)Fm2k
> k=0 CDI

Proof. We use the same approach as in Theorem 9.4.8, but also require Lemma 9.4.6.

GLoon(z,1,q) =5 | 1~

no 2

For the polynomial sequences of the type L£_,.(r,m + bc, q¢) we have

21—0,70(_,)/)m—1
(@ —49) X () ()

g'cs_;OOC(x7 m, Q) =
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and 96 (_m)
3 CAC —y m
g£s~01c(x’ m,q) = m oo .
’ (2 = 49) Spy (i) ()

Both results follow from application of Lemma 9.4.6 on replacing 4 with —4-~y, and within the
summation replacing x with —vyz.

For the polynomial sequences type L (7,1, q) we have

1 2(m—1) fm—1+k k
> heo n§m1+k; (m 2%k )(_'VI)

(.1' _ 47) m 1 ((m—z}g)—:-ll—l—k)(_,yx)k'

gﬁs_;ooo(xa l,q) =

With 0 <r <m —1and M =m — 1, on application of Lemmas 9.4.6 and 9.4.7 we obtain

m 1)2k k k 2k k
25 % Qk) r ’YZk o! zk)' r
) Fm2k+T Yem2h+1

4y owx QZk 0 (2k+1) z

gﬁs 000(377 L,q) =

For £ 401(r, 1, q) we have
1 2(m=1)+1 ((m—1)+1+k k
72 k=0 mml 1tk ((m 2k)+1 ) (=72)

(.’E o 4/_}/) m 1 ((m—zllg):—ll-i-k)(_ryx)k ’

GL o1 (7, 1,q) =

and so

- m—1)2F 4k (m—1)2k—1
y(@m — 1) Yy P (<)t

T— (2k+1)!
g£5;001 (z,1,q) = 2kl i
—47 2 k=0 Gy (—77)
2%k 1. 2k—1
_(@2m — 13— 0%(—7$)k
- 2k
—4ym Yy, 271?+1)( ya)*
kk 2k—1
—(2m —1) D= 021671{)5&
= 1- oy, (9.4.21)
> k=0 @kt *
For 55_;010(7'7 1,q) we have
1 2(m=1)+1 —1)+1+k k
GL= (@1, q) = —Y 2 k=0 mml Ttk ((m 2k)+1 ) (=)
;010 Pt )
° (2 = 47) 25 (") (=)
and so
1)k L k: 2k k
oLt (1 )_—( 1) - 0%37 (2m—1)2k0 (2k+1)'x
5010\ 1, 4) = 4 Yrm2k 4 v)Em2k 4"
4y 3= 0‘ err % D e o 2k; x

Finally for £, (r, 1, q) we have

YD o n%Tk (erk)( )"
(& — 4) i (o) (=) k-

GLson(z,1,9) =
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and then

kak kak

273 hy ¢ (Qk r _ 2y Yoy | (2k r
2k 2k—1 - 2k 2k—1
—4v3 ko %(—W)k —4v > o %(—W)k

kkak 1 k kkak 1 k

GLoon (.1, q) =

s N D k= 1T)11’ _ D k= 1T)'$
= 2k 2h—1 - 9 2k
2 P o%( )" 2 D e =0 el ( ya)*
The result follows on applying the same manipulation as employed in (9.4.21). O

9.5 The polynomials D?(r,0,0,n) and D’ (r,T, N,n)

In the previous section we established the generating function G£~ sab wbe(T5 1, q) that we employed
to determine, (when ¢ is not specified), the leading coefficient of the terms £, .(r,1,¢) and
-

sabe(T> M, q). Extending the work of [30] we now wish to relate these coeflicients to a known

Dirichlet series. We find this easier to achieve by first relating them to an “intermediary
polynomial” and then relating the latter to the Dirichlet series. In this manner and replicating

the format of Definition 9.2.1 we employ the following definitions.

Definition 9.5.1. Let us denote by Df a function, that for non-negative integers r and n,
takes the values DZ(r,0,0,n), and has generating function

1
Z (—1)Pk 2k $k'
k=0 2k+e

Here we have ay j, = 72k /(2k + €)! and the parameter e represents the parity of the factorial

GDE(x,0,0,n) =

i the denominator.
Similarly, we denote by DY, a function that for non-negative integers r, T, N and n takes

the values Dse(r, T,N,n), and as has generating function

n—4y (—l)pkk‘sﬂ'% k
—r T L
k=0 (2k+d)'
pkﬂ-2k
D ke 0 2k+e' x

gD’ (x,6,n — d,n) = (—1)° (9.5.1)
Here we have any, = ¢ /(2k + ¢)! and Ayy = kn%/(2k + d)!; the parameters d and e
represents the parity of the factorial in the numerator and denominator respectively; 6 = dq.c,
is the Kronecker delta function and p € {0,1}.

9.5.1 Expression of the function D?

We first turn our attention to the function DZ, and employ two lemmas.

LEMMA 9.5.1 (even parity). We have

lim GDf(2,0,0,n) =

Tim {sech (my/x) ifp=0 (95.9)

sec (my/x) ifp=1.
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Proof. We have when p = 0,

1 1 1
nh_{rolo FD(z 0,0,m) = "h_{go > k=0 g:; ‘ Zk 0 ( ”% T ~ cosh (my/x) —ech (Wﬁ)’
and p =1,
lim GD§(x,0,0,n) = li ! 1 ! (mv/)
im o(z, n) = lim T = = sec (mv/x).
n—00 n—00 Zk 0 (Q)k)ﬂ; .Z‘k Zk 0 2k7r xk CcOos (F\/E)
O
We note that when p = 0, the expansion of (9.5.2) gives
72  5rt 2 6176 3 27778, 50521710 .
l-—2+4+ —2°— —— T — T R I
2 24 " 720 " 8064 3628800
and when p = 1, we have
- 2 N 571' 2 6176 By 2777r8x4 N 505217r10x5
71' —_— [
2 24 " 720 © 8064 3628800
LEMMA 9.5.2 (odd parity). We have
h fp=20
lim GD?(z,0,0,n) = 4 VIS TVE) i p (9.5.3)
n—00 m/zese (my/x)  if p=1.
Proof. We have
1 1
lim gD} (z,0,0,n) = lim Ty I
n—o0 n—00 Zk 0 2k+1)' (L‘k Zk 0 2k+1' zk
On expansion of the denominator when p = 0, we have
, 2 o 6 8 10
—i-?x—k—a: —|—ch +§x —i-ﬁx +.
7
l 3/2 4 m° 25/2 T 7/2 1 9/2
wf<f+ ST T T
h 9.5.4
== sinh (), (95.4)

and when p = 1, we have

5 7 9
L 7T 23217 5/2 T 7/2 , T 99 _ 1
wf(ﬂf —|—5!a? e —i-g!x —~

Therefore, on taking separately the reciprocal of (9.5.4) and (9.5.5) we obtain the result. [

sin (m/x). (9.5.5)

We note that when p = 0, the expansion of (9.5.3) produces the terms

Tt o, 31n° 3 12778, 73710
1——ax+ —=x + x* — x+ ...,
6 360 15120" " 604,800 3421440

and when p =1,

2

1+£x+7i 2+317r6 5 12778, 73710

6" ' 360 15120° T 604,807 " 3421440

Employing these two lemmas we now state Theorem 9.5.3.

x5—}-....
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THEOREM 9.5.3. The terms DZ(r,0,0,n) as defined in Definition 9.5.1 and with r < n

are determined by:

(1) The generating function.

We have
1 sech(my/x) ifp=0
ng(:r,0,0,n) 1)pkn2k = 1
S CH o~ \see (rv) o =1,
and
GD?(2.0.0 1 _JmVxesch(ny/z) ifp=0
1(ZL’, s 7”) 1)k 72k - \/» . -1
S 0 2k+1 T my/xcse(my/x)  if p=1.
(2) The recurrence polynomial.
With D£(0,0,0,n) = 1, we have
— 2026 By DO (k,0,0,m) ifp=0
D{(r,0,0,n) = (9.5.6)
r kp2(r—k) i
Zr 1(1T7]€)),D6(k70707n) pr:L
and i
~ Y e DY (5, 0,0,m)  ifp=0
DY (r,0,0,n) = (9.5.7)
1 r—k2(r—k) .
—ZT ! WDl(k 0 0 Tb) Zf,O: 1.
(8) The MCL (type 1) determinant.
We have Df(r,0,0,n) = Ar(é’%o)) =
(Lo’ 1 0 0 0
2
= (CL)em 1 0 0
_ pﬂ.ﬁ 4 _ pﬂ.2
| f o ! !
(_1)p(r;1)ﬂ.27‘72 _1)p(r;2)ﬂ.2'r74 (_1)p(7‘;3)ﬂ.27‘76 (_1)p(r;4)ﬂ.2r78 1
2r—2)! 2r—A)! 2r—6)! 2r—3)!
(Elgp’l‘TZQT 71);()(7‘—1))71.27‘—2 (71);()(:—2))7.‘.27‘—4 71)2(:—3))71_27“—6 (71);77‘.2
(2r)! (2r—2)! (2r—4)! (2r—6)! T 2!
and DY (r,0,0,n) = Ar(é’g)) =
(L)’ 1 0 0 0
2
(717)")71’ L"L (713)'p7r 1 0
(=1)" x . . :
_1)/3(7”;1)71.27“72 (_l)p('rf‘Q)ﬂ_Q'rf4 (_1)p(r;3)ﬂ.2r76 _1)p(7‘*’4)7r2r78 1
2r—1)! 2r—3)! 2r—5)! 2r—7)!
(Elr)prﬂ?%‘ 71)2(:71))71.27”72 (71);()(:72))7.‘.27‘74 (71);(7(:73)272r76 (71),371.2
@r+1)! @r—1)! @r—3)! @r—5)! e 31
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Proof. We have that

(1) follows from Lemmata 9.5.1 and 9.5.2 respectively,

(2) follows from Theorem 9.2.1, and

(3) follows from Theorem 9.2.5. O

We now relate the terms L’S el m~+d’be, q) to those of DZ(r,0,0,n).

COROLLARY. We have for all positive integers r < n,

(_,.Y)m,.)/CQIfc

47

s
4

Eiaoc(r, m,27) = D%_s(r, 0,0,n),

LG (rm+c2m+1) = Dy=3(r,0,0,n),

_A\m
EZIOI(T, m,27) = M;’yDé_s(r, 0,0,n),

and

Y)Y s
ﬁsllc(rm2ﬂ.+ ) ((2 )_’_1)D1 (,0,0,H).

Proof. The creation of the terms £

‘Cs ,abc
liberty to make the substitution m = m. We also put p = 1—s and the result now follows from

(r,m,2m 4+ b) by the truncation of the polynomials

s,abc

(r,m,2m + b) removes the dependence of r on m (i.e. r < m), therefore, we are at

comparison of the expressions in Theorems 9.4.8 and 9.4.9 with that of Theorem 9.5.3. [

9.5.2 Expression of the function D/,

When the order of the numerator of the generating function of DY, is non-zero, we observe
from (9.5.1) of Definition 9.5.1 that there are four types, which we consider in pairs, depen-

dent upon the parity of the factorials in the denominator.

We first address the pair of the form, DSl’ and require a few lemmas to associate their

generating function with a trigonometric expression.

LEMMA 9.5.4. We have

k. 2k k
) e o (pgk)v my/xz coth (my/x) if p=0
,,,Lll_)r{.lo gDSl (x7 0’ n, n) pkﬂ-rik = T cot ( \/5) Zf -1 (958)
> ke 0 (2k+1) T T p==

Proof. For the case p = 1, we have on expanding sin (7/z) and cos (my/x) about x = 0,

3,3/2  15.5/2  pT.7/2 19.9/2

. T
sin (7v/x) = m/x — 3l + T + T (9.5.9)

and 2 4,.2 6,.3 8,.4
T T 7Tl‘ T

cos(wf)_1—7+ 1 TR TREE (9.5.10)
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From (9.5.9) and (9.5.10) we write the second member of (9.5.8) as

cos (m/x)

%sin ) = m/z cot (m/x)

as required.
When p = 0, we simply replace the expansions (9.5.9) and (9.5.10) with sinh (7/z) and
cosh (m/x) respectively. O

LEMMA 9.5.5. We have

B Z 1)Pk 216]% _ {%1\/5 (sinh (my/z) — my/z cosh (my/x)) if p=10
2k +1 %1\/5 (sin (my/x) — /2 cos (m+/T)) if p=1.

k=0
Proof. We demonstate the case when p = 1. For the case p = 0, we replace sin with sinh and

cos with cosh.
From the expansion of sin (7+/z) in (9.5.9), and cos (7/x) in (9.5.10), we multiply (9.5.10)
by my/z and subtract the result from (9.5.9). We then obtain

sin (my/z) — my/x cos (my/z)

3,3/2  15.5/2  [T.T/2 19.9/2

STV T T Ty g
3,3/2  5,5/2 . T,7/2  9.9/2
S A e TR Sy T T

3_17r3x3/2 5—1 5 5/2+7—17r7$7/2_9—17rgx9/2_

T N 7l 9!
_ 2 332 _ 4 75.:5/2 2772 _ 8 79292 4

=ta 3! 5' + 7' 9'

7.(.21, ot 4132 3 6 3 47.[.8 4
1)k+1 2k ook

=2

W\fz 2k: 1)

Division by 27+/z then produces the result. O

LEMMA 9.5.6. We have
Zk: 0 )Pk 2k gk 1—m/x coth (ﬂ\/gf)

. 2k+1) ifp=0
nh_>ngo g‘D%l(m7 1’ n— 17 n) = _1 pk g2k ok = 1—71'\/5(302t (W\/E) . (951]‘)
> heo 2k+1) ——— ifp=1

Proof. For the case p = 1, we have from Lemma 9.5.5, that the numerator of the expression

n (9.5.11) is given as

0 k 2kk$ 1 .
kzo 2k+1 BN (sin (mv/x) — mv/z cos (1)) (9.5.12)
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and for the denominator we have

& (—l)kTFQkxk _ @ N 7T4J)2 7T6.%'3 7r8$4
o (2k+1)0 3! 5! 7! 9!
1 a303/2  5g5/2 LTLT/2 19,92
T /T e T (L TR
1
- i . 9.5.13
S sin (7v/z) ( )

Then on division of (9.5.12) by (9.5.13) we obtain the result.
When p = 0, for the numerator we replace (9.5.12) with

7'l'2kkl‘k

1
- 2 k1) = NG (sinh (Wﬁ) — m/7 cosh (71'\/5)) , (9.5.14)
and for denominator we have
2k ok T Y R 5 S p
k_()m:”?* s T o T
B /i 3,3/2  15.5/2  [T.7/2 19.9/2
_wa + X !+5!+7!+9! ¥
1
= inh . 9.5.15
P~ sinh (m/z) ( )
Then on division of (9.5.14) by (9.5.15) we obtain the lemma.
]
Employing these lemmas, we now state Theorem 9.5.7.
THEOREM 9.5.7. The terms D (r,d,n — 6,n) with r < n, are given by:
(1) The generating function.
_1 pk 2k
o > k=0 2k)| a® ] m/xcoth (my/x) if p=0
gDOl(:Evan?n) ( 1 pk 2k - .
S o (2k+1 xk myxcot (my/x) ifp=1,
and
(=D)Pkkn2k ) 1— h .
GD? (x,1,n—1,n) = Zk 0 2’“+1§r v Wﬁcgt =) fp=0
1L\ 5 0 - (—1)Pkp2k ") 1-my/zcot (ﬂﬁ) .
> k=0 2k+1 ak ————— ifp=1
(2) The recurrence polynomial.
(i) In terms of the function DY.
) r (_1)p(7“—k)ﬂ.2(r—k) )
Dp,(r,0,n,n) = G —2h)! DY (k,0,0,n), (9.5.16)
k=0
and .
_
—1)Pr=k) 2 20r=k) (p _ [
Dl (r,1,n—1,n) = — Sl )D'f(k,o,o,n). (9.5.17)

(2r — 2k +1)!

i

0
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(ii) In terms of themselves.

I G Ve

DF =~ - Db, (k 5.1
01(T,0,n,n) (27‘)' };) (2T-2k+1)' 01( ,O,n,n), (95 8)
and
1)l 1L (pyplrh) g2
D’ 1,n—1 :( D (k,1,n—1,n). 9.5.19
(r1,n , M) @+ 1) ; r—2k+1) 1k, 1Ln , M) ( )

(3) The MCL (type 2) determinant.
Dfy(r,0,m,n) = ¥,(&, &) =

0 0 0
_1)Pr2 _1)Pr2
S S ! 0 0
4 i (=1)Pm? 1 0
ar B 3!
(=1)Pm® (=1)PmS U (=1)Pm? 0
(=1)" x 6! 71 BT 3! ,
(71)p(r;1)ﬂ.2r72 (71)p(7‘;1)ﬂ.2r72 (71)p(r;2)ﬂ.27‘74 (71)p(r;3)7r2r76 )
@r—2)! @r—1)! @r—3)! @r—5)! 1
(_1)pr7r27" (_1)prﬂ_2r (_l)p(r—l)ﬂ.Qr—Q (_1);)(7‘—2)71_27*—4 (_1);)71_2
(2r)! (2r+1)! (2r—1)! (2r—3)! T 3!
and DY{(r,1,n —1,n) = \pr(aﬁf),ﬁfj_l)l) =
0 1 0 0 0
ﬂ? (_13?")7r2 1 0 0
(=1)P2r4 ,rix (=1)Px?
B 5 31 1 0
3n¢ (=1)PnS 7t (=1)Pm? 0
(—1)" x 71 7l 51 3!
(71),0(7"—2)&,,.71)7{.27‘—2 (71)p(r—.1)7r2'r—2 (71)P(7‘_.2)71-27‘_4 (71)p(r—.3)ﬂ.27‘—6 )
(2r—12! 2r—-1)! (2r—3)! (2r—>5)! 1
(_1)/)(7"71 2T (_l)prﬂ_2r (_1)p(r71)ﬂ_2r72 (_l)p(r72)7r21"74 (_1)p7r2
(2r+1)! (2r+1)! (2r—1)! (2r—3)! T 3!
Proof. We have that
(1) follows from Lemmas 9.5.4 and 9.5.6;
(2) follows from Theorem 9.2.2, and (2ii) from Corollary 3 of Theorem 9.2.1, and
(3) from Theorem 9.2.6. O

COROLLARY. We have for positive integer r < n,

—(2r -1

55500(7“7 1,2m) = ;TZD(I)I_S(T, 0,n,n), £3T;501("”7 1,2m) = )Dh_s(r, 1,n—1,n),

Ezﬂ;l_l()(rala%r"i‘ 1) (27:1)1)1 S(T707n7n)’

and

£8T;1_11(7’71727T+1) - D%l_s(nl’n_ 17”)

-1
(2m 4+ 1)
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Proof. As (reasoned) in the Corollary to Theorem 9.5.3, we put m = 7, and also put p = 1—s.
The Corollary then similarly follows from comparison of the expressions in Theorems 9.4.8
and 9.4.9 with that of Theorem 9.5.7. O

We now consider the pair of functions of the form DY, and simiarly commence with some

lemmas that associate each of the generating functions with a trigonometric function.

LEMMA 9.5.8. We have

k2K ook
_ Z ) my/ztanh (myvz) e 0
lim GDf(z,0,n,n) = = 0 (2k)! = 2 ifp
n—oo

kﬂQkxk my/T tan (1/7) S
> he 0( 1(9%)' 2 ifp=1.

Proof. When p = 1, we first observe that

T/ 7T2$ 7T4.%'2 7T6ZL‘3 7T8.7,‘4 7'[‘10.7}5
Y in (Vo) =5~ S o~ a T oer
_ 2 22 37r6 3 48yt 5pl0gd
D TERT 6! 8l 0
oo (—1)k7r2kk$k
L (2K)!

So we have that

0o —1)kp2k gk

- R0 TS ny@sin(ryE) | my/Etan (1y/7)
o (D kn2kgk - ‘
> ( 22k)! 2 cos (m\/x) 2

For the case p = 0 the proof is identical, except that we replace each of the trigonometric

functions with their hyperbolic equivalent. O

Finally for the expression (9.5.21) of Type (10) we use Lemma 9.5.9.

LEMMA 9.5.9. We have

1)Pkg2kghk anh (mv/x .
Zk(] 2k+1) _{ti(\/gf) ifp=20

lim GD7y(z,0,n,n) = =9 tan .
n—00 Zk; 0 f;’:rzk xk ta 7I—(\7;5\/5) ifp=1.

Proof. For the case p = 1 we have from (9.5.9) and (9.5.10),

kak

ke 0 2k+1)| _ f}/;sm (my/x) _ tan (my/x)
S 0( 1)km2kgk cos (m/T) T

(k)

Similarly for p = 0, we replace the trigonometric function with its hyperbolic equivalent. [

Using Lemmas 9.5.8 and 9.5.9 we have Theorem 9.5.10.
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THEOREM 9.5.10. The terms D' (r,0,0,n) as defined in Definition 9.5.1, and with r < n,

are determined by:

(1) The generating function.

We have
kk.ﬂ.Qk k
Xk d mywtanh (ny/z) e
GDfo(, 1,1 —1,n) = — = & kaw% = = | r/Etan (ry) Z‘fp_ "
S ! TERT 2 ifp=1
and
pk 2k an T/ T -
p > k= 0 2k+1)' a e rve) i\(ﬁ‘[) ifp=20
GDY(x,0,n,n) = DT = | tana)
S St FRAT =1
(2) The recurrence polynomial.
(i) In terms of the function D}.
T (r—k) 2(r—k)
p _ (=17 T p
Diy(r,0,n,n) _k,O Gr =21 1) D{(k,0,0,n),
and
r—1
( 1) (r k)7.r2(r k)(r—k)
Dgo(r’]"nilfn):i (27"—2k') Dp(kao 0 TL)
k=0
1) In terms of themselves.
(ii) I f themsel
pr 2r T_l k) 2(r—k)
p ( p
DYy(r,0,n,n) = o + Z% 2r gAY DYy(k,0,n,n),
and
_l)p(r+1)7a7r2r r—1 (_1)p(rfk)7r2(r7k)
DP(r,1,n—1 = ( — Df 1,n—1,n).
oo(r 1, —1,m) (2r)! kz_o @ —opy Dotk Ln—1Ln)
(8) The MCL (type 2) determinant.
Dfy(r,1,n—1,n) = \I/,,(é}(lo),_&flof)l) =
0 1 0 0
= (1Pt 1 0
(*1)%.727'('4 724 (71);}7‘.2 1
41 ar 2!
376 —7b 7 (—1)Pn2
(—1)" x 6 or ar 2!
(_1)p('r72)&r_1)ﬂ,27‘72 (_1)p(r;1)ﬂ.2r72 _1)p(7‘;2)ﬂ,2'r74 (_1)p(7‘;3)ﬂ,27‘76
(27"—2?! (2r—2)! (2r—4)! (2r—6)!
(71);)(7‘—1 rr2r (71)/)7"71_27" (71)/)(7‘—1)71.27‘—2 (71);7(7"—2)7‘.27‘—4
(2r)! (2r)! (2r—2)! (2r—4)!

(9.5.20)

(9.5.21)

(9.5.22)

(9.5.23)

o o O O

(=1Pn?
3!
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and
DfO(T, 0,n, n) = ‘I’T(_)%O)y Anl)) =
1 0 0 0
_1)Pr2 _1)Pr2
Sy = 1 0 0
=t t (=1)Pm? 1 0
oo (1) i (-1)rn®
—1)Pr —1)Pr T —1)Prm
(—1)r>< ( 7! 6! ar o1 0
e Yt
(2r—-1)! (2r—2)! (2r—4)! (2r—6)! T
(=1)Pr 2y (=1)Pr 2y (=1)Pr—Dx2(p—1)  (=1)Pr—272(r—_2) (—1)P72
(2r+1)! (2r)! (2r—2)! @r—a)! e 30

Proof. We have that

(1) follows from Lemmas 9.5.8 and 9.5.9;

(2i) follows from Theorem 9.2.2 and (2ii) from Corollary 3 of Theorem 9.2.1, and

(3) from Theorem 9.2.6. O

COROLLARY. We have
2 — 1

LT50(r, 1,27 + 1) = DI*(r,0,n,m), Ll (r 127 +1) = %Déo_s(r, 1,n—1,n),

1 -1
C?;Ioo(?‘» 1,27) = iDigs(r,O,n,n), and EsT;l_Ol(T, 1,27) = TD(l)gs(T, 1,n—1,n).

Proof. As reasoned in the Corollary to Theorem 9.5.3, we put m = 7, and also put p = 1—3s,
and then the corollary similarly follows from comparison of the expressions in Theorem 9.4.8
and Theorem 9.4.9 with that of Theorem 9.5.7. 0

9.5.3 Connecting the functions D! and D]_to Dirichlet functions

We now connect the functions D! and D}, to familiar Dirichlet functions, and to the Bernoulli

numbers, B, (which we shall discuss in a subsequent chapter), and Euler numbers, E,,.

Definition 9.5.2. convenient notation. We write

B 0 1 B (_1)r+1(2ﬂ.)2rB2r
C(s) = nz:l 5 80 that ((2r) = 320 ,
X _1yn—1 _1\r+1l/92r—1 _ 7.‘_27’
n(s) = Z (:1)5 so that n(2r) = (=)™ (2 o)1 D B2T,
n=1 :
> _1\r+1(92r _ 7r2r .,
A(s) = Z (2”1‘1)8 so that \(2r) = (=1) (3(27“)!1) B ,

n=0
and with x(n) denoting the non-trivial Dirichlet character modulo 4, and E,, denoting Fuler
numbers

n (_1)r7.‘_2r+1E2r '

— (-1
B<S>:§Ms80thatﬁ(2r+l): E=TCTS IR
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the explicit values are at odd, not even, integers since x(n) is an odd Dirichlet character with
x(=1) =-1
We also have the following lemmas.

LEMMA 9.5.11 (even eta relation). We have for positive integers r < n,

DY (r,0,0,n
1( 5 ) — 77(27,)
Proof. From Theorem 9.5.3 we have, for r < n, that
1
GDi(2,0,0,n) = iy, = TV cse (/).

> k=0 2k+1)‘ x

For 0 < r < n, we consider the coefficient of " in the expansion of z cscz/2 with z = 7/z,
that is

(_1)r+12 (22r71 _ 1) 71—2TB27= (_1)T+1 (227“71 _ 1) 7T2TB2r

= =n(2r).
2(2r)! (2r)! n(2r)
O
LEMMA 9.5.12 (even zeta relation). We have for positive integers r < n,
1
Diy(r,1,n—1,n) = —ipgl(r, 0,n,n) = ¢(2r). (9.5.24)

Proof. From Theorem 9.5.7 we have, for 1 <r < n, that

1 — t
GDiy(z,1,n —1,n) = —igDél(:c,O,n,n) _— xc; (W\/E)

For 1 <r < n, we consider the coefficient of 2" in the expansion of —z cot z/2, with z = 7/x,
that gives

—(—1 7"227”7r2rB , -1 r+1 I 27"B ,
: )2(27“)! x-S 2(;7")!) - =cn.

LEMMA 9.5.13 (even lambda relation). We have for positive integers r < n,

1
ﬁDéO(Ta 17” - 17”)

Proof. From Theorem 9.5.10 we have, for 1 < r < n, that

22T+1 DlO( —1,0,n,n) = A(2r).

2
t
GDgo(x,1,n —1,n) = %gDio(ﬂfaO,n,n) = W'

For 1 <r < n we consider the coefficient of 2" in the expansion of ztan z/2, with z = 7/x.
We then have

(71)7”-1—1227“ (22r _ 1) 7.(.27"‘8271 B (71)7"—1—1 (22r _ 1) ﬂ.ZTBZT
2(2r)! 2(2r)!

= 22"\ (2r).
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Consequently we have
2
D(l)O(rv 17 n—= 17 TL) - ?D%O(r - 17 07 n, n) = 22r}\<27“)7
and on division by 22" we obtain the lemma. O

LEMMA 9.5.14 (odd beta relation). We have for non-negative integers r < n,

7TD6 (r,0,0,n)

pTEs =B(2r+1).

Proof. From Theorem 9.5.3 we have, for r < n, that

GD}(2,0,0,n) =

1
R, = Sec (/).
2 k=0 @R ¥
For, 0 < r < n, we consider the coefficient of 2" in the expansion of mwsecz/4"t!, with
z = my/x. We then proceed as

(—1)T7T2T+1E2r

11 (20) =5(2r+1).

From the results of the Corollaries to Theorem 9.5.7 and to Theorem 9.5.10 and
Lemmas 9.5.11 - 9.5.14, we can associate each of the sequences Ega_bc(r, m,2m + b) and

[,;‘)F,a_bc(r, 1,2m + b) to a particular Dirichlet function. We summarise these connections in
Tables 9.1 and 9.2.

Table 9.1: Relationship between the terms of the sequences Eg;bc(r, m,2m +b), DX(r,0,0,n)
and a Dirichlet series.

[,g:;b . | D! | Dirichlet series
a+b e type

even | 1 n(2r)

odd 0 B(2r+1)

Table 9.2: Relationship between the terms of the sequences Eggb (r1,2m +b), DL (r,64.e,mn—
dd,e;n) and a Dirichlet series.

EOT;;b . D}le Dirichlet series
a+b e type

even 1 ¢(2r)

odd 0 A(2r)
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In the final part of this chapter we consider (in Theorem 9.5.15) a collection of linear
recurrence relations involving the Dirichlet n and ¢ functions, that occur naturally from The-
orem 9.5.3 and Theorem 9.5.7 and Lemmas 9.5.11 and 9.5.12. Similarly (in Theorem 9.5.16)
we have a set of recurrence relations involving the Dirichlet 8 and A functions, that occur
naturally from Theorem 9.5.3 and Theorem 9.5.10, and Lemmas 9.5.13 and 9.5.14.

THEOREM 9.5.15. With n(0) = 1/2, ¢(0) = —1/2 and r a positive integer, we have the

following linear recurrence relations:

ﬁ
|

1 (_1)r—k7.r2(r—k)

k=0
" (=1)kg2(r—k)
k=0
r—1 r—kﬂ.Q(r—k) r—
C@2r)=-2)" ( 1)(% o (1)! k>77(2k:), (9.5.27)
k=0

and
(_1)r+17r2r r—1 (_l)rfkﬂ2(rfk)

B> mg(zk). (9.5.28)

¢(2r) =
Proof. For the first relation we have from Lemma 9.5.11, that for 0 < r < n,
Di(k,0,0,n) = 2n(2k). (9.5.29)

We substitute (9.5.29) into (9.5.7) (of Theorem 9.5.3), and (9.5.25) follows on cancellation of
the factor of 2.
For (9.5.26) and (9.5.27), we have from Lemma 9.5.12, that for 1 < r <mn,

1
Di(r,1,n—1,n) = —iDél(r,O,n, n) = ((2r). (9.5.30)

We then substitute (9.5.30) and (9.5.29) into (9.5.16) and (9.5.17) of (2¢) of Theorem 9.5.7
and results follow (on cancellation).
For the last relation we use either (9.5.18) or (9.5.19) of (2ii) of Theorem 9.5.7, and (as in

the previous two relations) use (9.5.30) to convert to a relation involving ((2r). O

THEOREM 9.5.16. With (1) = w/4, A(0) = 0 and r a positive integer, we have the

following linear recurrence relations:

T*l 1rk2( —k)

B(2r+1) Z =TT ~  _B(2k+1), (9.5.31)
k=0
o r (_1)r—k:7.[.2(7"—k)
A2r) =5 P 1)!6(% +1), (9.5.32)

k=0
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LN (= — kD 2% + 1 9.5.33
”kzzo 4r'f12r—2k) B2k +1), (9.5.33)

and
(_1)r+17.r2r7ﬂ r—1 (_1)7”7’457.‘.2(7"716)

AR = ~ £ gr=k(2r — 2k)!

A(2K). (9.5.34)

Proof. For the first relation we have from Lemma 9.5.14, that for 0 < r < n,

7TD(1) (r,0,0,n)

T = p(2r +1). (9.5.35)

We substitute (9.5.35) into (9.5.6) of Theorem 9.5.3, and (9.5.31) follows on division of the
factor 471, For (9.5.32) and (9.5.33), we have from Lemma 9.5.13, that for 1 <r < n,

1
ﬁDéo(r, 1,n—1,n) = ——Diy(r —1,0,n,n) = A(2r). (9.5.36)

227"+1

We then substitute (9.5.36) and (9.5.35) into (9.5.16) and (9.5.17) of (2i) of Theorem 9.5.10
and results follow on cancellation.
For the last relation we use either (9.5.22) or (9.5.23) of (2ii) of Theorem 9.5.10, and (as in

the previous two relations) use (9.5.36) to convert to a relation involving A\(2r). O

These relations establish that the recurrences for the n, ( and A\ functions at even integer
arguments, and the S function at odd integer arguments are embedded in the negative con-

tinuation of the sequences Lo.qpc (7,1, q).



Chapter 10

Bernoulli numbers of the first and
second kind

In Section 10.1 we introduce modified Bernoulli numbers of the first kind and the Bernoulli
numbers of the second kind, outlining their determination from the generating function and
recurrence polynomial. This is followed in Section 10.2 by their construction as a MCL deter-
minant, and then finally in Section 10.3, with Theorems 10.3.3 and 10.3.9, we investigate the
uncancelled denonominator of these two kinds of numbers, that culminates in a corollary on
the uncancelled denominator of the even zeta function. Here we establish that the exponent
of each prime p occurring in the product of the n-th uncancelled Bernoulli number (of the

first kind) is that of the Fleck quotient.

10.1 Modified Bernoulli numbers of the first kind

Let B, represent the r-th Bernoulli number of the first kind and B, = B, /r! represent the

r-th “modified” Bernoulli number. The generating function of these numbers is [28]

r 1
-1 1+&+ 424,
11 1 1 1
—1-= g2 T g4 G 8 4.,
2" T 12" 720" T 30.240% T 1.209.600° T
1+—1 +1x2+—1x4+1x6+—1:1:8+
= — Tt -t F ——F ———+ ...
2 P62 T304 T 426 ' 30 8
— ZBkH => Bpa", (10.1.1)
k=0 k=0
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where B, denotes the (usual) sequence of modified Bernoulli numbers that has B; = —1/2.

Alternatively, with an alteration to the denominator we obtain

x _ 1
l—e® 1-24+2 24

TR R SR ! ®+

= T — T — ——= r — —————

27 " 127 7207 T 30,240 1,209, 600

[o.¢]

=3 Bfat, (10.1.2)
k=0

where we let B, denote the sequence of (modified) Bernoulli numbers that has By = Bf" = 1/2.

To express the Bernoulli numbers, B,, in terms of a recurrence polynomial we have [28],

1 1 1 1
T+ By + T+ By + T+ Byt ...+ T+ B, =0,
0 1 2 T

which on rearrangement and division by (r + 1)! gives us a corresponding recurrence for the

modified Bernoulli numbers of the form

1 1 1 1
B, = —m[)’o - 581 - m82 e T aBr—l' (10-1-3)

10.1.1 Expression of the modified Bernoulli numbers in terms of B”

Definition 10.1.1. Let us denote by B, a function that for non-negative integers, r and n

takes the values BP(r,0,0,n), and as in Definition 9.2.1 has generating function GBP given
by

GBP(z,0,0,n) = —w Z (k,0,0,n)z (10.1.4)
Zk 0 (k+1)!

LEMMA 10.1.1. We have

lim B?(r,0,0,n) =

n—oo

B, ifp=0
BY ifp=1.

Proof. We have on comparison of the generating function (10.1.4) with (10.1.1) and (10.1.2),

1 x
lim GB%(z,0,0,n) = = =GB,
nee 2 k=0 ‘(kil)!xk '

and

1
lim GB(z,0,0,n) = =1 ° —
> heo (k+1 'xk —°

n—oo

= GB;.
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THEOREM 10.1.2. The terms B°(r,0,0,n), for r < n, are given by:
(1) The generating function.
gB, ifp=0

B*(r,0,0,n)
{ —gB+ if p=1.

(2) The recurrence polynomial. With Bf(0,0,0,n) =1, we have
r—1

(=1)rtrk) .
B (r,0,0,n) = kZ_O(TH_k).BP(k,o,o, ).

(8) The MCL (type 1) determinant. We have for 1 <r <n,

B°(r,0,0,n) = AP(&,)

(721!)‘7 11 . 0 0 ... 0
3 . . 0 ... 0
| Gl = 1 0
- (_1) . . )
(*1)[’(?“—1) (71)/’(’"_2) (71)P(T—3) (,1)/}(7"—4)
r! (r=1)! (r—2)! (r=3)! 1
i U SRS Vi (-1
(7"+1)! rl (7‘—1)! (T’—Q)! Ce o1
where A (&) is a MCL determinant with &, = ((_21!)’37 A (_1):!(“1)7 ((;i)lp)’;)

Proof. We have that:

(1) follows from Lemma 10.1.1;

(2) follows from Theorem 9.2.1, and
(3) follows from Theorem 9.2.5.

COROLLARY. We have
rIA%(&,) = B,.

Proof. This follows directly from Theorem 10.1.2 on recalling that
B%(r,0,0,n) = B, = B,/r!.

O]

Remark. To generate any B, value, we can truncate the infinite summation of the denomi-

nator of (10.1.1) to the finite summation, and then consider a function B°.

10.2 Bernoulli numbers of the second kind

The Bernoulli numbers of the second kind, b,, are determined by the generating function [28],

(p259),
T 1
b_ —
TR
1 3 9 4 S k
4 cr— —2? 4 —P— gty =3
Tt TR gt Tt T D> b

(10.2.1)
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If we replace z with —z we obtain

— = :
Gb, logl — 1-1—%4—%—1—“”—3—%...
1 1 1 19 >
—loCp— g2 g3 2T a Nk 10.2.2
2" 12" T 24" T 70 Db, (102.2)

where we let b, denote an alternative sequence of Bernoulli numbers of the second kind such
that for r > 1, we have b, < 0.

10.2.1 Expression of the Bernoulli number in terms of a function ”

Definition 10.2.1. Let us denote by b°, a function that for non-negative integers, r and n

takes the values b°(r,0,0,n), and as in Definition 9.2.1 has generating function Gb° given by

Z (k,0,0,n)x

G (x,0,0,n) =

(=DP* ke
> k=0 k+1 z

LEMMA 10.2.1. We have

bi ) =
lim v(r,0,0,n) =4 " ire
n—00 b ifp=1.

T

Proof. We have from the generating functions (10.2.1) and (10.2.2),

1 _ —x

o G 0.0.m) — _ — gy,
nl—>nolog (IL‘, ) an) Ez‘;o %ka logl - g "
and 1
X
hm gbl(iﬂ,o,ovn) e = = gb .
n—00 ZZO:O %:ﬂk 10g 1+ '

THEOREM 10.2.2. The terms b°(r,0,0,n), for r <n, are given by:
(1) The generating function.
We have
GV (r,0,0,n) = {151 =g dp=0
Tgliz — Gb. ifp=1.
(2) The recurrence polynomial.
With b°(0,0,0,n) = 1, we have

1

r

—1)p(r—k)
b’(r,0,0,n) = — (=1)

D
" b (k,0,0,n).

e
Il
o

(3) The MCL (type 1) determinant.
We have for 1 <r <mn,
b’ (r,0,0,n) = AP(a,)
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_1)r
3 3 1 0
(=1* % (=1)” 1 0

4 2

(=1)Pr=1)  (—1)pr=2)  (_q)p(r=3)  (_1)p(r—4)

T r—1 r—2 r—3 . tee
(=nFr (! (=nr— (=3 (=1*
r+1 T r—1 r—2 T 2
where AL(&,) is a MCL determinant with &, = ((721),,’ %, e (71):(“1), (;i)lm)
Proof. We have that:
(1) follows from Lemma 10.2.1;
(2) follows from Theorem 9.2.1, and
(3) follows from Theorem 9.2.5. O

10.3 Bernoulli numbers and their (uncancelled) denonimators

We examine the natural (uncancelled) denominator of the Bernoulli numbers of the second
kind and the (modified) Bernoulli numbers of the first kind, and find that for both, the power
of each prime p, (p — 1 < n), satisfy the Fleck congruence [n/(p —1)].

We begin by examining the Bernoulli Numbers of the second kind.

10.3.1 Denominator theorem: Bernoulli numbers of the second Kind

Definition 10.3.1. We have bg =1, and

1 1 1 1
bn = *bnfl - *bn72 +...+ (_1)mabnfm+1 +...+ (—1)”5131 + (_1)n+1

5 ; —bo. (10.3.1)

n+1

We denote by e, the lowest common multiple of the denominators in (10.3.1) before any

cancellation has occured, so that
en =LCM [(n+ 1)eg,ner, (n—1)ea, ..., mep—mi1,---,2€n—1], (10.3.2)

and

en = H pv(n,p).

p<n+1

Then let by, = fn/en, where f, € Z and by = eg = 1. Furthermore, let

n
E, = H pdp), where d(n,p) = { 1J . (10.3.3)
p<n+1 p=

It is observed that for each prime p < n + 1 its first occurence in the term e, is when
M =n—m+1=p—1 and thereafter, the exponent of the prime p increases by 1 after each
interval of p — 1 terms. We propose that v(n,p) = d(n, p).

However, in order to prove this result it will be helpful to introduce some lemmas.
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LEMMA 10.3.1. For §(n,p) defined as in (10.3.3) we have

Proof. From (10.3.3) we have

_|n—-p+1 p—1 n _
o(n P+17P)+1—{ P J—i—p_l—{p_lJ—é(n,p).

LEMMA 10.3.2. With2 <m <n+1 and r an integer we have
5(n>p) 2 (5(77’ —-—m+ 1ap) + T,
whenever p” divides m.

Proof. We use |u] + |v]| < |u+v].

Take u = (n+1—m)/(p— 1), and, v = (m — 1)/(p — 1), to obtain
e M e P

6(n—m+1,p)+6(m—1,p) <d(n,p).

which implies

Then rearranging and putting m = jp", where j t p, we have

m—1 Jp"—1 pr—1
_ _ > > >
d(n,p) —d(n m+1,p)_{p_1J_{p_1J_{p_lJ,

and

so that d(n,p) > d(n — m + 1,p) + r as required. O
Remark. If ptm, then r = 0 and m = j, and Lemma 10.3.2 still holds.

We are now in a position to state

THEOREM 10.3.3 (denominator theorem: Bernoulli numbers second kind). With e,, E,,
v(n,p) and §(n,p) given as in Definition 10.3.1 we have

v(n,p) = 6(n,p). (10.3.4)



162

Proof. We show the equality of (10.3.4) using induction on N, (N > 0), and for p > 2.

For N =0, we have 6(0,p) = [0/(p —1)] = 0, and also (0, p) = 0 follows from eg = 1. So it
is true for N = 0.

When N = M, let us assume v(M,p) = 6(M,p), for M =n—1,n—2,... (as many as
required). We wish to demonstrate the case N = n.

Let us put M =n —p+ 1 (and m = p). Now from (10.3.2),

Pen—p+1 | €n

and from the induction hypothesis

"—
Yn—p+1Lp)=dn—p+1p)= {n_ﬂ

so that from Lemma 10.3.1 the exponent of p in the term pe,_,11 is
Yn—p+Llp)+1=6dn—-p+1)+1=26n,p).

Therefore, when N = n, we have that d(n,p) is a factor of v(n,p). Is it the greatest factor?

Any such term of (10.3.2) with a greater exponent of p will require m = p”. We have
penprt1=79n—p +1Lp)+r=306n-p +1,p)+r<dnp)

from Lemma 10.3.2. That is no there is no term mey,_n,1+1 with a greater exponent than

pen—p+1- Therefore, we conclude that

) = 000) = | |

for each p < n + 1, and the theorem follows. O

10.3.2 Denominator theorem: (Modified) Bernoulli numbers

We consider the numbers B,, = B, /n!, where B,, is a Bernoulli number of the first kind, so
that, for example, we have By = 1, By = 1/2, By = 1/12, B3 = 0, B4 = —1/720, .... Then
since for r > 1, Bo,11 = 0, for n > 2 we write n = 2r. Analogous to Definition 10.3.1 we
define

Definition 10.3.2. Let By = 1, and (from (10.1.3)) we have

(=n"

n!

(_1)n+1
(n+1)!

(-1
(n—1)!

1
B, = Bo + By + By +...+ Eanl. (10.3.5)

Denote by e, the lowest common multiple of the denominators in (10.3.5) before any cancel-

lation has occurred, so that

en = LOM [(n+ 1)leg,nler, (n — Dleg,....mlep—mit1, ..., 2len—1],
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whilst for n = 2r > 2,
egr = LOM [(2r + 1)leq, (2r)ler, (2r — 1)le, ..., (25 + 1)ley_y), ..., 3lear—a] ,  (10.3.6)

and

en = H pv(n,p)_

p<n+l
Then let By, = fn/en, where f, € Z and By = ey = 1. We also write m = 2s + b, where
b€ {0,1} is the parity of m.
Furthermore, let

1 o(n
En= 55 I P, (10.3.7)
p<n+1

where 6(n,p) = [n/(p—1)| and D is the sum of the digits of n expressed in binary form.

By definition (of the lowest common multiple) it is evident that for each such p, its (greatest)
exponent in e, must equal its (greatest) exponent in at least one of the terms mle,_p41. As

in Theorem 10.3.3 we put m = p and note that for p = 2s+ 1 > 3,
n—p+1=2r—2s+1)+1=2(r—s),

so that e,—,1+1 # 0. Conversely when p = 2 and n > 4, we have e, 241 = 0.

It is observed that for each prime p < n+1, its first occurence in the term e, is whenn = p—1,
and thereafter, (for p > 3), the exponent of the prime p increases by 1 after each interval of
(p — 1) terms. For p = 2, this pattern is affected by the fact that for n > 1, By, 11 = 0.

Once again, (perhaps surprisingly), we are motivated to conjecture that for n > 1,
v(n,2) =d6(n,2)+1— D, and that forp > 3, v(n,p) = d(n,p). (10.3.8)

The demonstration of (10.3.8) requires accounting for the fact that each of the terms com-
prising the lowest common multiple now has the form m!e,_,,+1 (as opposed to me,_m+1),
and in the case of the prime p = 2, the determination of the offset, 1 — D. The following set
of lemmas enable us to establish these amendments.

First we require a definition.

Definition 10.3.3. Let k be a positive integer expressed in the scale of b > 2, whose digits
are d;(k), dj—1(k), ..., da(k), di(k), do(k), where for 0 < i < j, 0 < d;(k) < b—1. We
express the sum of the digits of k in the scale of (base) b by

D(k) = di(k). (10.3.9)

Also let
R(k) =) (v = 1)di(k), (10.3.10)
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then we have
k = D(k) + R(k).

If k is evident, then we simplify (10.3.9) and (10.3.10) to

j i

D=>"di, and R=) (V' —1)d;

i=0 =0
respectively.
LEMMA 10.3.4 (factorial factor). With E, defined as in (10.3.7) for some integer k we

have
E,=k(n+1).

Proof. The power of p in (n + 1)! is given by

t=1[(n+1)/p] + |+ 1)/p*] + [(n+1)/p°] +...
<n+1)/p+n+1)/p?+n+1)/p>+.... (10.3.11)

This gives t < (n+1)/(p—1) which (since t is a positive integer) implies that t < |[n/(p—1)].

Therefore, we have

I1 ol Z k1)

p<n+1

for some integer k£ > 1. O

Remark. There cannot be equality in (10.3.11), because [(n + 1)/p"] is 0 when r is large.

LEMMA 10.3.5 (power of prime p in factorial n). We have that the power, e, of a prime

il

Proof. There are [n/p] multiples of p in 1,2,3,...,n. Each of these contributes at least one

p in factorial n is given by

B
Il
—

factor p to n!.
The multiples of p? contribute an extra power of p. There are [n/p?] of them in 1,2,3,..., n.
The multples of p? contribute an extra power of p. There are [n/p?] of them in 1,2,3,...,n
And so on. This sequence of steps stops after [logn/logp| steps.
So the prime p is raised to the power

“[n

O]

We improve on the result of Lemma 10.3.5 by presenting a more applicable formula for e.
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LEMMA 10.3.6 (power of prime p in factorial n: Exact Formula). We have that the power,

e, of a prime p in factorial n is given by

1
1 CEDIAE
Proof. The positive integer n can be written in the scale of p (with digits 0,1,...,p — 1) as

drdy—q ... dydp.
This is formally

(o)
> dep’,
s=1

where ds = 0 for s > r. So we have the double sum

k=1 p k=1 s=0 p
I D 07 1 (o 0 PSS O
k=1 s=0  k=s+1 =1 s=0

LEMMA 10.3.7. Let D(n) and R(n) be defined as in Definition 10.3.3. Then for a positive
integer n expressed in the scale of b > 2, whose sum of digits is given by D(n), we have that
for 0 <m <mn,

D(n)+ (b—1)c = D(m) + D(n — m), (10.3.12)

or equivalently

R(n) — (R(m)+ R(n—m)) = (b—1)c. (10.3.13)
Here ¢ > 0 denotes the number of times b is carried over in the sum D(m)+ D(n —m).

Proof. Let us consider the sum of the right hand side of (10.3.12). From Definition 10.3.3 we

have

so that

=0 1=0
= ZJ: dz(m) + dz(n - m) (10.3.14)
=0

When i = 0, we have one of the conditions

do(m) + do(n —m) =do(n), (1)
do(m) + do(’n — m) = do(n) +b. (2)
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When 1 < ¢ < j — 1, one of the conditions

di(m) + di(n —m) =di(n), (1)

di(m) +di(n —m) =di(n) +b,  (2)
1+di(m) +di(n —m) =di(n),  (3)
1+di(m) + di(n —m) = d;(n) + b. (4)

Finally when ¢ = j, it is one of the conditions

dj(m) + dj(n —m) = dj(n), (1)
1+ d;(m) + di(n — m) = d;(n). (3)

If for every i, (0 < i < j), condition (1) is satisfied then the number of carries ¢ = 0, and we

have
D(m) + D(n —m) = D(n).

If the number of carries ¢ > 1, then each time condition (2) or (4) is satisfied in the i-th sum,
(0 <i<j—1),1ie., having b on the right hand side, we obtain a 1 on the left hand side of
the (i 4+ 1)-th sum. To the total sum (10.3.14), the former adds b whilst the latter subtracts
1. Let ¢ denote the number of times condition (2) or (4) occurs in this sum, then (10.3.14)

becomes

D(m)+D(n—m) =Y di(m)+di(n—m) =Y di(n)+ (b—1)c=D(n)+ (b— 1),
=0 =0

and so we obtain (10.3.12).
Also from Definition 10.3.3 we have

n=m-+n-—-m
D(n)+ R(n) = D(m) + R(m) + D(n — m) + R(n —m)
D(n) + R(n) — (R(m) + R(n —m)) = D(m) + D(n —m),

and so we obtain (10.3.13). O

COROLLARY. For a positive integer n expressed in the scale of b > 2, whose sum of digits
is D(n), we have that for 0 < m < n,

D(n) < D(m) 4+ D(n —m).

Proof. This follows directly from (10.3.12) of Lemma 10.3.7 on noting that since b > 2 and
¢ >0, then (b—1)c > 0. ]
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LEMMA 10.3.8. The exponent of the prime factor 2 in the uncancelled denominator of By
is 0, that of By is 1 and thereafter, for n = 2r, is given by

v(2r,2) = 2r + 1 — D(2r), (10.3.15)
where D(2r) is the sum of the digits of 2r expressed in the scale of 2.

Proof. We have By = 1 and so 7(0,2) = 0. Then for n > 1, we use induction on n. When
n =1, we have y(1,2) =1 =1+ 1 — 1. Let us assume that (10.3.15) holds for N < 2r — 2,
then for N =n = 2r we have from (10.3.6)

ear = LOM [(2r + 1)leq, (2r)ler, (2r — 1)lea, ..., (25 + D)leg(_g), - -, 3legr—a] . (10.3.16)
From Lemma 10.3.6, and the induction hypothesis, the power of the prime factor 2 in (10.3.16)
is

v(2r,2) = max[2r + 1 — D(2r +1),2r — D(2r) +v(1,2),2r — 1 — D(2r — 1) + (2, 2),

o2+ 1—=D2s+ 1) +v(2(r —s),2),...,3—D(3) +v(2r — 2,2)]

=max[2r+1—-D((2r+1),2r— D(2r)+2—-D(1),2r—1—D(2r — 1) + 3 — D(2),

o2+ 1—-D(2s+1)+2(r—s)+1—-D(2r—2s),...,3—D(3)+2r —1—D(2r — 2)]

=max[2r+1—D(2r+1),2r+2— (D(2r)+ D(1)),2r +2 — (D(2r — 1) + D(2)),

27 +2— (D25 + 1)+ D(2r — 25)),...,2r + 2 — (D(3) + D(2r — 2))]. (10.3.17)

Now since y(1,2) = 1, the second term can be written

2 +1—D(2r)>2r+1—D(2r+1),

therefore, demonstrating that its exponent of 2 exceeds (by 1) that of the first term. Then

from the Corollary of Lemma 10.3.7 we have
D(2r+1)=D(2r)+ D(1) < D(2r+1—m)+ D(m),

and so from (10.3.17) no other term can have an exponent of 2 that exceeds the term (2r)!e;

and this exponent is indeed given by

v(2r,2) = 2r + 1 — D(2r).

This now leads us to state

THEOREM 10.3.9 (denominator theorem). With e, E,, v(n,p), d(n,p) and D given as
in Definition 10.3.2, we have for n =0,

7(0,p) = 6(0,p) =0,
and for n =1, and thereafter, for n = 2r, that

v(n,2) =d§(n,2)+1— D, and for p > 3, ~v(n,p) = d(n,p). (10.3.18)
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Proof. Our method of determination is similar in approach to that of Theorem 10.3.3. We
show the equality of (10.3.18) using induction on N, for all non-negative values of N and
for all prime p < n + 1. We consider separately the cases p =2 and p > 3.

For the case p = 2, we have from Lemma 10.3.8 that for n = 0,
7(0,2) = 6(0,2) =0,
and for n > 1,
vn,2)=n+1-D= {QﬁlJ +1-D=46(n2)+1-D,

where since n, and p = 2, are constant we write D for D(n).

We now proceed with the case p > 3. For N = 0, we have §(0,p) = [0/(p—1)] = 0, and
also (0, p) = 0 follows from eg = 1. So it is true for N = 0.

When N = M, let us assume v(M,p) = §(M,p), for M =n—1,n—2,... (as many as
required). We wish to demonstrate the case N = n. Let us put M =n —p+1 (and m = p),
and first note that in consideration of the LCM of the term a,, = ag,, the term ple,_,11 # 0.
Now from (10.3.2),

plen—pti | €n
and from the induction hypothesis

n—p—i—lJ

Yn—p+1lp)=dn-p+1lp) = { p—

so that from Lemma 10.3.1 the exponent of prime p in the term ple,_p1 is
Yn—p+1lp)+1=46n—p+1p)+1=25bnp).

Therefore, when N = n, §(n,p) is a factor of v(n,p). Is it the greatest factor?
We need to determine the exponent of p in m!. Now from Lemma 10.3.4 this exponent is
bounded by §(m—1,p) and so (assuming the induction hypothesis) we have that the exponent

of p in the term mle,_.,+1 is bounded by

d(m—1,p)+~vy(n—m+1,p)
6( —Lp)+dn—m+1,p)

)
N

That is, no term mle,_,,+1 has a greater exponent of p than ple,,_, 1. Therefore, we conclude
that

7(n,p) = d(n,p) = Lﬁﬁ 1J

for each p < n + 1 and the theorem follows. O
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Table 10.1: Bernoulli values of the first kind for 0 < n < 16, in its usual (cancelled) form By;
its modified (and uncancelled) form B,, = B,,/n!, and the uncancelled denonimator E,, of B,

n 0 1 2 4 6 8 10
T T T T T 5
By 1 3 i —30 yo) — 30 &6
Bn 1 % % _% 30%40 _3622800 23958 800
T S T I U I T s 30285 395005
—Bo | T By | T FEo | T By — FEg —Fg —_ Fio
E, 1 2 223 [ 2432 5]2°.335.7]28.31.52.7 ] 29.3°.52.7.11
n 12 14 16
B _ 691 7 — 3617
n 2730 510
B” 13076?4368000 784604110208000 320118‘%0231640000
T § 86552807 68
E, || 2. 36 5. 72 11.13 | 212, 37 53 72 11.13 | 216,38, 54 72 11 13.17

COROLLARY. We have
(27.‘_)2r
¢(2r) =

and the natural denominator (before cancelling) of the value of (10.3.19) is given by

Fy, = 22_D H p{pzle )

3<p<2r+1

where D is the sum of the digits of 2r expressed in the scale of 2.

Proof. We have ([28]) that

(277)

¢(2r) = |Bar |,

o] | Bar |, (10.3.19)

where we recall B,, = B, /n!, and B, is a Bernoulli number of the first kind, so that on

application of Theorem 10.3.9 and cancellation of the factor 22" ~! the result is obtained. [

Table 10.2: Positive Zeta values in its cancelled, ((2r), and uncancelled, {(2r)*, form; and its

uncancelled denominator Fb,..

r 1 2 3 4 5 6 7
cer) || = i il i il _691m72 _2m
6 90 945 9450 93555 638512875 18243225
C(QT)* 2 Pl 78 38 510 691712 2.1057H4
6 90 945 28350 467775 6385128I§ 191553862?
| x| x| 377 — 57r 6917r 3577r
k| T Fy ~_Fg
Fy || 23 [23°5]3°5.7 A ER A EE R A E PR A CAVRE
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Appendix A

Some expressions for Ls;abc(r,t, q)

A.1 Closed binomial forms for L;...(r,t,q)

cs;abc(rv t, Q) :Fs;ab(Ra T, Q>

SN R

k=T (mod 2) k=T+q (mod 2)
/) [(R=T4)/q] R
Ty (T d
=y AL/ A :
! ; (Tq + dQ>

When a = ¢ = 0 we have

Ls.op0(7,t,2m + b) :’yT"'tH]:S;Ob(Qr +2,7r+t+1,2m +0b)

_ Z o <2r;2> N Z qvk (27“;2)

k=T (mod 2)q k=T+q (mod 2)

[(R=T4)/q]
ot Zq (2T+2>_
= Ty +dg

When a = 0 and ¢ = 1 we have

Ls.op0(r,t, 2m + b) :’yr+t.7:5;0b(27“ +1,r+t2m+0)

2r+1 2r+1
K ( k > K < k >
k=T (mod 2)q k=T+q (mod 2)q

ot L(R_Tq)/qJ < 27,. + 1 >

- Ty + dg

d=0

173



174

When a =1, b =0 and ¢ = 0 we have
['5;100 (T’ t, Qm) :Fs;10 (R, T, 2m)
2r + 2 2r 4+ 2
- X M)y ()
k=T (mod 2)q k=T+q (mod 2)q

( al [(R=T4)/q] 9 19
N _1)Lr+t+1)/q -1 d )
(Y > (2 o)

When a =1, b =0 and ¢ = 1 we have

Ls101(r,t,2m) =Fs10(R,T,2m)

_ Z 7%%;1) B Z q7k<2T;1>

k=T (mod 2)q k=T+q (mod 2)
[(R=T4)/q]
2r+1
— r+t _1 |_(7"+t)/qj _1 d .
V(1) S 0y )

d=0

When a =b=1 and ¢ = 0 we have

Es;no(?", t,2m + 1) :.7:3;11(R, T, 2m + 1)

_ Z q7k<2r;2>_fy Z q7k<2T;2>

k=T (mod 2) k=T+q (mod 2)
[(R=T4)/q]
2r +2
L) Lr+1) /g 1 d( >
() DR VAl el

d=0

When a = b =c =1 we have

[,5;111(7“, t,2m + 1) :]:s;ll(Ry T, 2m + 1)

_ Z q7k<2T;1>_7 Z q7k<2r;1>

k=T (mod 2) k=T+q (mod 2)
[(R—=T4) /4]
2r+1
— r+t _1 |_(r+t)/qj _1 d )
(1) ORRC

d=0
A.2 Expression as a sum of (r + 1)-th powers

To express the term Ly q5c(r, %, ) as a sum of r-th powers we recall Theorem 4.4 that states

7r+1—c22r+3—c

'Cs;abc(ra t, CI) = f X

(a—1 L‘“‘f)/ 2 . <7T(c —20)(2d — e — scq)) <COS <7r (2d — e — sq)»?r“‘: |

2 = 2q 2q
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where

. |0 if a=sh,
els
1 if a # sb.

If we let z,, 0 = 4, and for d > 1,

m(2(d - s(ﬂ;q—i— a'b)) — a)> _ tycos? (ﬂzz;q— a) )

Tmd = 4y cos? (
where D = d — s(m — d'b), a’ =1 —a and ¢ = 2m + b, then for all non-negative integers r,
the function L. takes the form

T T ' '
qLsabe(T,t,q) = Ut 0T, 0 + Qm 1T, 1 + Qm 280, 9 4« - - 4 Qun g M Ty, -

Here we define

o = =yt ifa=0
b 0 ifa=1,

and more generally for 1 <d < M =m+ (b—1)(1 —a),

8 —2t)(2D — 2D —
O td = ’;—C cos mle ) @) cos?~¢ L( a).

2q 2q

We also note that each a4 is real.

Remark. We note that upon fixing the parameters a, b and ¢, the variables affecting the x
terms are m and d and that of the o terms are m, t and d. Furthermore, whereas the sums

produced (for positive r) are integers, the scalars oy, ¢ 4, are in general not integers.

However, in respect to the above remark it is apparent that certain values of ¢t produce “nice”
values for a,¢q. In particular, we find that for the function L.qp, with ¢ = 1, that (for
d>1) amtd = Tmd, and so we obtain

qﬁs;abl(ry 1’ Q) — 7r+122r+2—c + :BT—H + xr—i—l 4.+ x;;i—]lw

m,1 m,2

So for example, when ¢ = 1, ¢ =6, (b =0), a =1 and s = 0, with 1 < d < 3 we have
r+1 r+1
3 3
swieno =27 (1) e (1))

and when t =1, ¢ =16, (b=0), a =0 and s = 1, with 0 < d < 2 the expression becomes
4r+1
oo (1.0) = (1) (T 1t ).

Moreover, it is evident that when the parameter ¢ = 1, we have that o, 04 = am 1,4, S0 that

the sequences for t = 0 and ¢ = 1 are identical.



Appendix B

The polynomials Ag. (7, Q)

B.1 Expression as Fibonacci type polynomials

THEOREM B.1.1 (Theorem 5.4.1). The polynomial Ag.qp(x, Q) defined in Definition 5.4.1

is equated to a Fibonacci, Lucas or (monic) Chebyshev polynomial such that

(Som-140)11-b(x) if s=0,a=0

Comap(T) ifs=0,a=1
Agap(T,Q) =
Fym-110)12-0(z) ifs=1,a=0
Lom+b(2) ifs=1a=1,

where Q@ =q— (1 —a)(1 —s) and ¢ =2m +b.

Proof. This follows on substitution of each value of each of the parameters s, a and b into the

product and binomial and forms of Ag..(x, Q) as given in Definition 5.4.1, and then compared

with the corresponding (monic) Chebyshev, Fibonacci and Lucas polynomial forms.

Ag;oo(ﬂ?, 2m — 1) :Ao;oo(zc, 2(m - 1) + 1)

2m—1 m—1
= H <3: - 2cos > ( B 1l)c+ 1- k) p2(m=1)+1-2k

d=1

O

:SZ(mfl)+1(x)a

2m m
7d 2m — k
Agor(z,2m) =] <g; —2c08 5 1) = Z(—l)k< L >x2m2k = Som(z),

d=1 k=0

Ar00(,2m) = Agm_1)42(7)

2m—1 m—1
H <£U — % cos > < + 1= k) g2(m—1)+1-2k
d=1 —0

= Fy(m-1)42(),
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nd " (2m—k _
Aoi(z,2m+1) = <90 — 21co8 Dy 1) = Z < i )me 2k — By (z),
k=0

2m m
AO;lO(fE, Zm) = H <QZ —2cos —— (2d 1 ) Z k m < mk k> :E2m_2k = CQm(x)a

k=0

2m+1 m +
(2d — 1) 1) 2m+1 2m+1—k\ oni1_9k
Aon(w2zm+1) = ] (e—2 =) (Vo "
oj11(@,2m + 1) (“T oem+1) — 2m+1—k k ‘

2m m
2d — 1) 2m —
Ajq0(x,2m) = <:C — 21¢c08 ——— ( d > Z 2m ( m k) 222k = Lo (2),

k
d=1
and
2m+1 m
B (2d — 1)m 2m+1 (2mA+1—k\ o1 on
Apqi(z,2m+1) = H <;U—2100522 ) Z2m+l— I T
d=1 k=0
= Lomy1(x)

B.2 Expression as modified Fibonacci type polynomials

Expressing each of the modified polynomials that follows from the Corollary to Theorem
5.4.1.

Apso(@,2m —1) = S5, 1)1 (@)

= (o)™ 2;1711 (f — 2cos ;i) _ j:_:(_l)k (2(m = 1}1+ 1- k) e

A{;00($, 2m) = FQT(m—l)—&-Q(‘T)

2m—1 m—1
_ d 2m—1)+1—k 1
! H <\f2mos7r> = < >xm 1=k
e 2m k
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Alo(@,2m +1) = F§m+1( )

= H <\f—2zcos

)£ )

Ap10(z,2m) = Cyy ()

S N

d=1

Ag;ll(xa 2m + 1) = Cgm—&—l(x)

2m—+1 m
1 B (2d — 1)7T . _ k 2m + 1 2m + 1— ]f m—k
g (‘f 2008 S om + 1) =2 V' k T

2m

2d-D71\ = 2m  [2m—k\ . .
—H< T — 21c08 i _ZQm—k i T ,

Alqo(x,2m) = Ly, (z)

and

Al (@, 2m+1) = Ly, 4 (@)
2m+1

. (2d o2m1l 2m A1k
2 :
}:Il (f L em 1) +1> 2 Itk k v

k=0

B.3 Simplification of expression as Fibonacci type polynomi-
als

THEOREM B.3.1 (Theorem 5.4.2). For Agq.(x, Q) defined as in Definition 5.4.1 we have

m—(1—a)(1-0b)

. (2d — a)m
N | B G T )]

where @ =q— (1—a)(1—5s) and e =a(2b—1)+ 1 —b.

Proof. The proof is a demonstration by subsitution of each value of each of the parameters
s, a and b into Definition 5.4.1 and suitable “pairing” of terms. Let us first consider the cases
for s.

When s = 0, we have

2m~+b+a—1 (2d . CL)7T
Ao;ab($,2m+b— (1-@)) = ;[1 <$—2COS 2(2’,’)’L—|—b)> y
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on the other hand when s =1,
2m+b+a—1

2d —
Ajap(z,2m +b) = H <£L‘ — 2108 (a)W) .

e 2(2m +b)

Now with ¢ = 0 we obtain

g—1 o 2m+b—1 dr
Agop(z,2m+b— (1 —s)) = H <a: — 2¢° cos 2q> = H <:1c — 21° cos (2m+b)) .

d=1 d=1
More specifically, when a = b = 0, we have
2m—1 dr
Ap.oo(z,2m — 1) = H (a; — 2cos 2m>
d=1
m—1
2m — k
:(x—Qcos—) <:E—2cos7r> ($—2cos(m )7r)
m m 2m
d=1
m—1
d
=z (a;—2c:os7r> <x+2cos>
m m
d=1
m—1
dm
_ 2 2 T
=x H < 4 cos m) ,
d=1
and
2m—1 dr
Aq0(x,2m) = H <:U — 21co8 2m>
d=1
m—1
d 2m — d
:<x—21c08m> H :15—22(:05—7r :/U—2zcosM
2m 2m 2m

d=1
m—1
dm dm
x | I <£L‘ 1 COS 2m> <:U+ 1 COS 2m>
d=1
m—1 dr
2 2
= 4 — .
T || (93 + 4 cos 2m>

d=1

Now with a = 0 and b =1, we have

o
3

d
Apo1(x,2m) = (a; - 2(:os 1 1

i
)

xr — 2cos

|
=

< 2m +1 2m +1
dm

-2 2
(a: cos 2m 1 <:c + COS — 1)

z? — 4 cos? ),
+1

a
Il
—

)
Fr) (e )
)

[
3

a
Il
—_

I
3

a
Il
—
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and

2m kr
Ay 2 1) = -2
101(x,2m + 1) (x 1c0S 2m+1>
d=1
m
d 2 1—-d
:H T — 2108 T :c—2zcos( m+ )
e 2m+1 2m+1
m
dm
:H<w—22c052 1) <x+21cos2 +1>
d=1
m
drm
2 2
= 4
H(m + 4 cos 5 +1>

Next we look at the cases when a = 1 and in general obtain

2m—+b

(2d — )
A, 2 = —2° -
si1p(z,2m + b) }:[1 <:L’ 1% cos 22m 1 b)
q
2d — 1
= H <x2fcos(d2)7r) :
d=1 q
Repeating the first four cases for a = 1, we have
2m
2d -1)
Ag.10(x,2m) = (x — 2cos 7T>
d=1
ik (2d — -1
:H<x—2608 7T> <x—|—2cos )7r>
4m

d=1

A 2d — 1)

= H <a: — 4cos? (),
4m
d=1

and
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Finally when ¢ = b = 1, we have

2m—+1
2d —1
Apai(z,2m+1) = H (x — 2cos ()7r>

o] 2(2m +1)
_ ( 2o m) df_} <x 2o m> <x ~ 2c0s 2™ +21(2—m <2+d1; WT)
zﬁ <—2m> Qm%)
().
and

2m—+1
2d — 1
Ap(z,2m+1) = H (3: — 21c08 ()7T>

i 2(2m+1)
any (24— D (2m 41— (2 — 1))
= (x — 21c08 5) };[1 <x — 21c08 2?;71_1{1)> (x — 21c0s 2 +21(2m j—dl) 1 )

:gcijl (:c — 2ucos m> (x +2ucos m)
:xf[l <:r:2 + 4 cos? m>

— ﬁ <x2 — 4 cos? é?;;?;) .

d=1

O

B.4 Simplification of expression as modified Fibonacci type
polynomials

Simplifying the product form of A, ab(x, @) that follows from the Corollary to Theorem 5.4.2

we have

m—1
drm
r . T o 2
Apo(z,2(m —1) +1) =55, (x) = | | (m 4 cos o ) ,

m
d=1

m
dm
Apo1(w,2m) = 53, (v }:Il <x — 4 cos? . 1> ,

m—1
dm
AT oo (2, 2(m — 1) +2) = FL(z) = Lo 4T
Loo(z,2(m — 1) +2) () dl_l1 <x+ cos 2m>,

m

dm
Aloi(z,2m+1) = Fy, 4 (z }_[1 <x+4cos 2m+1>7
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- 1
Apyo(,2m) = (@) = [ (:c ~ dcos? <2d>ﬂ> |

4m
d=1
T T . (2d _ 1)7T
Apa1 (@, 2m + 1) = Cgp 4 (2) = 511:[1 <$ ~ 4cos” 22m+1))°

o 2d — 1
Ao 2m) = Do) = T (1 cos? 2407

dm
d=1
and
T T . (2d _ 1)7r
Aln(z,2m+1) = Ly, 4 (2) = dl_[l <$ +4cos” 22m+1))°

B.5 The recurrence polynomial, R.q(x, m)

THEOREM B.5.1 (Theorem 5.5.2). The recurrence polynomials R.qp(x,m) are, expressed

as a product of their roots, given by

m—(1—a)(1-b)

Reap(,m) =[] (“47‘3082 <W(22qa))>

d=a

where v = (—1)°.

Proof. We consider each of the four cases for the parameters a and b for both the cases s = 0
and s = 1.

Case 1: a =0, b=0.

From (5.5.5) the roots of the recurrence polynomial Ro.0o(x,m) are 4 cos? dr/q, where

0 < d < m—1. On the other hand, the roots of Ry.09(z, m) are —4 sin? dn/q, where 1 < d < m.
Since m/q = 1/2 we have that

(m —d)m dm

sin ——— = cos —,

so that

O dm et (m—d)m s drm

H (m + 4 sin? > = H <:U+4$in2 ) = H (x + 4 cos? > .

d=1 q - q q

Case 2: a=0,b=1.

From (5.5.5) the roots of the recurrence polynomial R.o1 (x, m) are still of the form 4 cos® dr /g,
but now 0 < d < m. However, we see that those of R1.01(x, m) are given by —4sin? (2d — 1)7/2q,
where 1 <d <m+1.

Noting that
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we then have

m+1 m
IT (@ + 4sin? @d—1my _ I (= + 4sin (@2m +1 - 2d)r
d=1 2q d=0 2q

i -2 i d
:H<:v—|—4sin2w> = <:v—|—4cosQ7T>.
d=0 2q d q

[e=]

Case 3:a=1,b=0.
When the sum alternates in sign, we observe from (5.5.5), that the roots of Rg.19(z, m) and
Ri.10(x, m) are respectively 4 cos? (2d — 1)7/2q and —4sin? (2d — 1)7/2q, both with
1 <d < m. We have
(g—(2d—1)w < (2d — 1)71') (2d — 1)m
os [ -2 — )%

sin = cos = CcoOs ————,
2q 2q

so that

<x+4sin2 (2d—1)7r> = ﬁ <x+4sjn2 (2m +1— 2d)7r>
2q

(o 4 <<>>) (e 107,

Case 4:a=1,b=1.

From (5.5.5) the parameter b has no effect on the recurrence polynomial Rg.11(x, m) and so

m
11
d=1

m

=11
d=1

we have that

i 2d — 1)
Ro.10(x,m) = Ro11(x,m) = a;—4cos2(>.
oo m) = R = ] ( -

Conversely, for R1,11(z, m), we note that e =0 (mod 2), and consequently we have

<x+48m2 d7T> =11 <w+4sin2 WWT)

e

d=1 q d=1 q
_ ﬁ (w A sin? (2m +2 — 2d)7r> _ ﬁ (w A sin? (2m +1 — (2d — 1))7r>
2q 2q
d=1 d=1
“ —(2d -1 e 2d — 1
:H <x+4sin2 (q ( ))ﬂ-> — H <x+4c082 ()7T> .
d=1 2q d=1 2q



Appendix C

Some calculations of the recurrence
polynomial R.,(x, m)

C.1 Evaluation of the coefficients from the roots

We commence with the (non)alternating parameter case a = 0. From (5.5.5), the d* root of

the function lgp(r, ¢, q) is given by

_ 2 md
xgq = 4 cos <2m+b>’

where 0 < d<m-+b—1.

So for the even base parameter case b = 0, when ¢ = 2m = 2, d = 0 and
zg = 4cos? (0m/2) = 4(1)% = 4,
RO;OO(CU; 1) = (.T — 4).

When g =4, then d = 0,1 and

wo = 4cos? (0 /4) = 4(1)? = 4,

71 = dcos? (m/4) = 4(v2/2)* =2,
Ro.00(z,2) = (x — 4)(z — 2) = 2% — 62 + 8.

When ¢ = 6, then d =0,1,2

2o = 4cos? (0m/6) = 4(1) = 4,

x1 = 4cos? (1/6) = 4(v/3/2)? = 3,

xy = 4cos? (21/6) = 4(1/2)? = 1,

Ro00(z,3) = (x —4)(z — 3)(x — 1) = 23 — 822 + 192 — 12.

When ¢ = 8, then d =0,1,2,3 and
zo = 4cos? (0m/8) = 4(1)2 = 4,
11 = 4cos? (1/8) = 4(V2+V2/2)? =2+ V2,
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ro = 4cos? (27/8) = 4(v/2/2)% = 2,
x3 = 4cos? (31/8) = 4(V2 — V2/2)2 =2 — /2,
Ro.00(w,4) = (v — 4)(x — 2) (v — 2 — V/2) (2 — 2+ /2) = 2* — 1023 + 3422 — 44z + 16.

For the case a = 0 with odd base b = 1, the form (5.5.5) remains unaltered but from
Theorem 4.4.2 there are now m + 1 roots. So when ¢ = 2m + 1 = 3, then d = 0,1 and we
have

xo = 4cos? (0m/3) = 4(1)% = 4,
71 =4cos? (1/3) = 4(1/2)? =1,
Roo1(z,1) = (x —4)(z — 1) = 2% — 5z + 4.

And when ¢ =5, then d = 0,1,2 and

xo = 4cos? (0m/5) = 4(1)% = 4,

r1 = 4cos? (1/5) = 4(v/5 +1)2/16 = (6 + 2v/5) /4,

xy = 4cos? (21/5) = 4(v/5 — 1)2/16 = (6 — 2v/5) /4,

Ro01(z,2) = (x — 4)(z — (6 +2v5)/4)(x — (6 — 2v/5)/4) = 2> — T2 + 13z — 4.

If, on the other hand, the alternating parameter case is a = 1, we simplify (5.5.5) to
zq = 4cos® (m(2d — 1)/2(2m + b)), where 1 <d <m.

So for even base we have ¢ = 2m =2, d =1 and
r1 = 4cos? (n/4) = 4(1/2) = 2,
Ro;l()(l‘, 1) = (J} — 2).

When g =4, then d = 1,2 and
71 = 4cos? (1/8) = 4(V/2 +2/2)? = 2+ V2,
T = 4cos? (31/8) = 4(V2 — V2/2)2 =2 — /2,

RO;IO(-T, 2) =% —dx + 2.

When ¢ = 6, then d =1, 2,3 and

r1 = 4cos? (1/12) = 4(v/2 +V3/2)? =2+ /3,

T9 = 4cos? (31/12) = 4(v/2/2)? = 2,

r3 = 4cos? (57/12) = 4(v/2 — V/3/2)? =2 — /3,

Ro0(z,3) = (2 — (24 V3)) (z — (2—V3)) (x — 2) = 2® — 622 + 92 — 2.

When g =8, then d =1,2,3,4 and
z1 =4cos? (1/16) = 4(\/2+ V2 +V2/2) =2+ V2 + V2,
T9 = 4cos? (37/16) = 4(\/2 + V2 — V2/2)? =2+ /2 — V2,
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r3 =4cos? (51/16) = 4(\/2 — V2 —V2/2)2 =2 — /2 — /2,

x4 =4cos? (Tn/16) = 4(\/2 — V2 +V2/2)2 =2 — V2 + V2,

Ro:10(x,4) = (m -2+ m)) (a: —(2- m))
X (:p—(z—M)> (ac—(2— 2+\@)>

=z* — 823 + 202% — 162 + 2.

Finally for the case a = 1 with odd base b = 1, when ¢ =3, d =1 and
x1 = 4cos? (n/6) = 4(\/3/2)% = 3,
Roai(z,1) = (x - 3).

When ¢ =2m+1=5,d=1,2 and
2
x1 = 4cos? (n/10) = 4 < (5+ \/5)/8> = (5+5)/2,

2
x9 = 4cos? (31/10) = 4 < (5 — \/5)/8> = (5—-+5)/2,
Roa1(z,2) = (x — (5+V5)/2)(z — (5 —V5)/2) = 22 — 5z + 5.

C.2 Evaluation of the coefficients using Theorem 5.6.1

When a = 0 we have
Roop(z,m) = (z — 4) (V)" Samyp1 (V) = (2 — 4)S%m+b71(1‘)'
In the case b = 0, the roots are given by (/7)™ 1S2m,_1(1/) and so we have

Roo(w,m) = (x = 4)(V2) ™' Sam-1(vx) = (x = 4) S35 1 ().
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The first few polynomials are given by

Rooo(z,1) = (z = 4) (V&) S1(Va) = (z — 4)(Vz) " (V)
=z —4,
Ro0(,2) = (z — 4) (V&) ' S3(Va) = (z = 4) (Vo) (Va)? = 2v/x)
=(z—-4)(z—-2)
=122 — 6z + 8,
Rooo(x,3) = (x — 4) (V) 185(vz) = (z — 4) (V)" (V2)° — 4(V2)* + 3Vx)
= (z —4)(z% — 42 + 3)
=% — 822 + 19z — 12,
Rooo(x,4) = (z — 4)(Va) ' S7(vr) = (z — 4) (Vo) (V)" = 6(v2)° + 10(Vz)* - 4y/)
= (z —4)(2® — 62 + 102 — 4)
=z — 1023 4 342 — 44z + 16,
Roo(,5) = (= 4) (V&) ' So(Va) = (z = 4) (Vo) (Va)? = 8(vx)" +21(V2)® - 20(V2)* + 5V/x)
= (z —4)(z* — 823 + 212% — 20z + 5
= 2% — 122" + 5323 — 10422 + 852 — 20).

In the case b = 1 the roots are determined by

Ro01(z, m) = (x — 4)ng(\/§) of order m + 1,

Roo1(z,1) = (z — 4)S2(Vz) = (z — 4) (Vz)* - 1)
=(z—-4)(z-1)
= 2% — 5z +4,
Ro01(z,2) = (x —4)S4(vVz) = (z - 4) (Va)' = 3(vV2)* + 1)
= (z—4)(2* =3z +1)
=% — 72% + 13z — 4,
Roo1(z,3) = (z = 4)86(Vx) = (z —4) (vV2)° = 5(vVa)"' + 6(v2)! — 1)
(z — 4) (23 — 52° + 62 — 1)
= 2% — 923 + 2622 — 252 + 4,
Roor(x,4) = (x = 4)Ss(V) = (x = 4) (V2)* - 7(v2)° + 15(v)! = 10(V2)? + 1)
= (z —4)(z* — 72 + 1522 — 10z + 1)
= 2% — 11z* 4+ 4323 — 7022 + 41z — 4.
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When a = 1 with b = 0 we identify with the polynomial Cy,,(y/x) so that the first few

polynomials are given by

Roao(z,1) = Co(vV7) = (Va)* -2
=z -2,

Rosi0(,2) = Ca(vr) = (Vo)! - 4(V2)? 42
=22 — 4z + 2,

Ro0(z,3) = Cs(vr) = (V) — 6(v2)* + 9(V/2)* -2
:a:3—6332+93:—2,

Roo(x,4) = Cs(va) = (Va)® = 8(va)® + 20(Va)" = 16(v/2)* +2

=zt — 823 4 202% — 162 + 2.
and when b = 1 we have Ro.11(z,2m + 1) so that

Rogi(z,1) = (Vo) ' C3(Vr) = (Va) ! (V) - 3Vx)
=z — 3,
Roai(z,2) = (Vo) ' Cs (Vo) = (Vo) ™! (Va)® — 5(Vx)® + 5vx)
=% -5z +5,
Roai(z,3) = (Vo) 'Cr(va) = (Vo) (Vo) — 1(Va)® + 14(vV2)? — 7Vx)
=23 — T2? + 142 — 7,
Rog(z.4) = (Vo) Co(va) = (Vo) (V)® = 9(/a)" +27(Vx)® - 30(Vz)* + 9V/x)
=zt — 923 + 2722 — 30z + 9.



Appendix D

The hypergeometric function

For demonstration purposes, we simplify the generalised hypergeometric function given in

Definition 8.1.1 to the Gauss hypergeometric function

r aq, G 1) = - Oéllcag 1
241 6 y —Z IBE E

k=0

Here, if all the parameters are positive, we require R[3 — a; — ag] > 0.
Now to help illustrate how we have applied the hypergeometric function in Chapter 8, let us
consider the following example which involves the simplificaton of a sum product to a single

binomial coefficent.

D.1 A worked example

Example. For positive integers n, x and r we have
n
n\ (z+k x
—1)" = (-1)" D.1.1
S () (T = e 7). (D.11)
k=0
where we define the binomial coefficient (:1) =0, if either m < 0 or m > x.
Proof. We denote the sum of the first member of (D.1.1) as
n
>_Ti
k=0
and find the ratio Tyy1/Tk.

(=Dl (z + k +1)!
LT e D —k— D@+ k+ 1 20Tk

(—D)Fn!(z + k)!
k'(n —k)rl(x+k—r)l

so that
Tit1 (=Dl + k + D)kl(n — k)rl(z 4+ & —7r)!
T, (=Dknlz+ k) (k+1D)!(n—k-Drl(z+k+1—7)!
(D)@ +E+1)(n—k) (-12(k —n)(k+z+1)
S (+k+1-n)(k+1) (ktx+l-7r)(k+1)
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We will then have

n
-n,r+1 [z -n,r+1
ZTk_Tosz1< 1y ,1) = <r>2F1<x+1—r ,1), (D.1.2)

k=0
where we observe that in consequence of the parameter —n, this hypergeometric function
sum will be finite and terminate after the term that includes (—n)™. This also removes the
restriction R[5 — (—n) —a] =n—r > 0.

Therefore, to evaluate the second member of (D.1.2), we apply the result of Vandermonde’s

o b1 < —%,a §1> = (5;:)”‘

summation formula

We then evaluate

(B—a)" = (=) = (=r)(=r+1)...(—r—14n) = (~1)"r(r—1)... (r+1-n) = (—1)n(7"i!n)!7
(D.1.3)

and
Br=(x+1—-r)"=@+1-7)z+2—-7)...(x+n—71)= M (D.1.4)

(z—1)!
Then substituting (D.1.3) and (D.1.4) into the second member of (D.1.2) we have

(f)ﬁl < R ;1> = (_1)%(;1 N i!n)! (x(i;i)!r)! = (_1)n<rfn>‘




Appendix E

E.1 Tables of values of F,.(r,t,q) for =6 and ¢ =7

Table E.1: foo(r,t,6), 0 <r <14, 0 <t < 11.

t\r |[0|1|2(3[4|5 |6 |7 |8] 9 |10 11 | 12| 13 14
O [1{1 (11|11 |2 |8/]29| 8 |211 463|926 | 1730|3095
1 /0123|145 |6 |8 |16| 45 |130| 341|804 | 1730 | 3460
2 J0]0[1|3|6|10|15[21|29| 45 | 90 | 220 | 561 | 1365 | 3095
3 10/0]0]1]4|10]|20|35|56| 8 | 130|220 | 440 | 1001 | 2366
4 1/0|10]0]0|1|5 |15]35|70|126 | 211 | 341 | 561 | 1001 | 2002
5 ||010]0]0]0| 1] 6 |21]56]126 252|463 | 804 | 1365 | 2366
6 (|11 (11|11 |2|8/]29| 8 |211 463|926 | 1730|3095
7101112345 |6 |8 /|16| 45 | 130|341 | 804 | 1730 | 3460
8 010]1]3]6|10]|15[21|29]| 45 | 90 | 220 | 561 | 1365 | 3095
9 10{0(0|1|4]|10|20|35|56| 8 |130 |220 | 440 | 1001 | 2366
10|00 ]0|0O]1| 5 |15]35|70]|126 | 211 | 341 | 561 | 1001 | 2002
11 {00 ]0|0]0| 1 |6 |21]|56]126 | 252|463 | 804 | 1365 | 2366
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Table E.2: for(r,t,7), 0<r <14, 0 < ¢ < 13.

t\r[|0]1]2]3]4]5 |6 /|78 9 10 | 11 | 12 13 14

O (1111111 ]21]9]| 37 |121 331|793 | 1717 | 3434

1 0|12 (3(4] 5|6 | 7|9 18 | 55 |176|507 | 1300 | 3017

2 |0[0]1]3|6|10(15]21 28] 37 | 55 |110|286 | 793 | 2093

31/0[0]0|1]{4]10|20|35|56| 84 | 121|176 |286 | 572 | 1365

4 /0|0[0|0|1| 5 |15[35]70]|126| 210|331 |507 | 793 | 1365

5 (1010000 1|6 |21]|56]126|252 462|793 | 1300 | 2093

6 (|0/0|0|0]0| O | 1] 7 |28]| 84 |210 462|924 | 1717 | 3017

Ty 1121937 | 121 1331|793 | 1717 | 3434

8 /012345 |6 | 7|9 ]| 18| 55 |176 507 | 1300 | 3017

9 ||0OJ0|1|3]6|10 15|21 28| 37 | 55 | 110|286 | 793 | 2093

100[0]|0|1]4|10]|20|35|56| 84 | 121|176 |286 | 572 | 1365

11 070]0]0|1| 5 [15|35|70]| 126|210 | 331|507 | 793 | 1365

12]0[0[{0[0[0| 1 |6 |21]|56]|126]| 252|462 | 793 | 1300 | 2093

13110[{0{0|0|0| 0| 1|7 |28 84 |210 462|924 | 1717 | 3017

Table E.3: fio(r,t,6), 0 <r <13, 0 <t <11.

t\r || O 1 2 3 4 5 6 7 8 10 11 12 13
0 1 1 1 1 1 1 0 —6 | 27| —83 | =209 | —461 | —922 | —1702
1 0 1 2 3 4 5 6 6 0 —27 | =110 | =319 | —780 | —1702
2 0 0 1 3 6 10 15 21 27 27 0 —110 | —429 | —1209
3 0 0 0 1 4 10 20 35 56 83 110 110 0 —429
4 0 0 0 0 1 ) 15 35 70 126 209 319 429 429
5 0] 0] 0]O07]O 1 6 21 | 56 | 126 | 252 | 461 | 780 | 1209
6 -1|(-1|-1|-1]-1| -1 0 6 27 83 209 461 922 1702
7 O |-1}-2|-3|—-4| 5| —6| —6 0 27 110 319 780 1702
8 0 0 |-1|-3|—-6|-10|—-15| —21 | —-27| —27 0 110 429 1209
9 0 0 0 |-1]—-4|—-10|—-20| —-35| =56 | —83 | —110 | —110 0 429
w0wjfo0o|0]0]|0]-1]—-5]-15]-35|—-70|—-126|—209 | —319 | —429 | —429
11 0 0 0 0 0] -1 | —6|—-21]—-56|—126 | —252 | —461 | —780 | —1209




Table E4: fi1(r,t,7), 0 <r <13, 0 <t <13.
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t\r || O 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1|1 ] 111 1 1 0 -7 | =35 | =119 | =329 | —791 | —1715
1 0 1 2 3 4 5} 6 7 7 0 —35 | —154 | —483 | —1274
2 0 0 1 3 6 10 15 21 28 35 35 0 —154 | —637
3 0 0 0 1 4 10 20 35 51§ 84 119 154 154 0
4 0 0 0 0 1 ) 15 35 70 126 210 329 483 637
) 0 0 0 0 0 1 6 21 51§ 126 252 462 791 1274
6 0 0 0 0 0 0 1 7 28 84 210 462 924 1715
7 ||l-1}-1|-1|-1|-1| -1 | -1 0 7 35 119 329 791 1715
8 O |—-1]-2|-3|—-4| 5| —6 | =7 | —7 0 35 154 483 1274
9 0 O |—-1|-3|—-6|—-10|—15|—-21|—-28| =35 | —35 0 154 637
01(0]0]0|—-1|—-4|-10]—-20|-35|—-56| —84 | —119 | —154 | —154 0
11 0 0 0 0 |—-1] =5 | —=15|—=35| =70 | —126 | —210 | —329 | —483 | —637
12 0 0 0 0 0 -1 | —6 | =21 | =56 | —126 | —252 | —462 | —791 | —1274
13 0 0 0 0 0 0 -1 | =7 | —-28| =84 | =210 | —462 | —924 | —1715
Table E.5: Fyo(r,ts,6), 0 <r <13, 0 <t <5.
t\r |0 1 2 4 5 6 7 8 9 10 11 12 13
O 1] 1|1 1]1]1 1 2 8 29 85 211 | 463 | 926 | 1730
1 40| -1|-2|-3|—-4| -5 | =6 | -8 | =16 | —45 | —130 | —341 | —804 | —1730
2 110] 0 1 3 6 10 15 21 29 45 90 220 561 1365
3 ]10] 0 0O |—-1|—-4|-10|—-20|—-35| =56 | —85 | —130 | —220 | —440 | —1001
4 (0] O 0 0 1 5) 15 35 70 126 211 341 561 1001
5 [|0] O 0 0 0 -1 | —6 | =21 | =56 | —126 | —252 | —463 | —804 | —1365
Table E.6: Fo(r,7,7), 0 <7 <13, 0 <t <6.
t\r||0] 1 2 4 5! 6 7 8 9 10 11 12 13
0 |[1] 1 1 1 1 1 1 -2 | =9 | =37 | =121 | =331 | =793 | —1717
1 o|-1|-2|-3|—-4| 5| -6 | -7 | -9 18 55 176 | 507 | 1300
2 ]10] 0 1 3 6 10 15 21 28 37 59 —110 | —286 | —793
310/ 0|0 |—-1|-4]|-10|-20|—-35|—56| —84 | —121 | —176 | —286 | 572
4 10| 0O 0 0 1 ) 15 35 70 126 210 331 507 793
5 0] O 0 0 0 -1 | —6 | =21 | =56 | —126 | —252 | —462 | —793 | —1300
6 [|0] O 0 0 0 0 1 7 28 84 210 462 924 1717
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Table E.7: Fig(r,t,6), 0 <r <13, 0 <t <5.

tNel[O] 1 ]2 ]3] 4] 5] 6 | 7] 8 9 10 | 11 | 12 13

O lt] T [ T[T [ 1] 1 [0 |—6]|—-27] -8 |—-209|—-461]—-922| —1702
1{o|-1|-2|-3|-4|-5|-6|-6| 0 | 27 | 110 | 319 | 780 | 1702
2 1lolo| 1|36 10] 15|21 | 27| 27 0 |—110] —429 | —1209
300/l0|0|-1|-4|-10]-20|-35|-56| —83 | —110 | —110| © 429
40oloflolo| 1|5 | 15|35 | 70| 126 | 209 | 319 | 429 | 429
510lol0|l0| 0| -1]-6|-21|-56|-126|—252|—461|—780 | —1209

Table E.8: Fi1(r,t7,7), 0<r <13, 0< ¢ <6.

t\eJO] 1 | 2] 3[4 5] 6] 7 ] 8 9 10 | 11 | 12 13

ol t | 1t 1 [ 1] 1 [ T 0| =73 |—-119]-329]-791| —1715
1{o|-1|-2|-3|-4|-5|-6|-7]-7] 0 35 | 154 | 483 | 1274
2 lolo| 1|3 |6|10]15 |2 | 28| 35 | 35 0 |-154| —637
30000 |-1|-4|-10]-20|-35|-56| —84 | —119 | —154 | —154| 0

40oloflolo| 1|5 | 15|35 | 70 | 126 | 210 | 329 | 483 | 637
50000 |0|0]|-1|-6|-21]-56|-126|-252|—462| —791 | —1274
6lololololo| o | 1| 7 | 28| 8 | 210 | 462 | 924 | 1715




Appendix F

F.1 Tables of values of Ly, ,.(7,t,q) for =6 and ¢ =7

Table F.1: Looo(r,t,6), 0 <r< 10, 0 <t< 3,

(and LOOO = (—1)r+t+1l000).

t\e| O] 1| 2 | 3 4 5 6 7 8 9 10
0 ||-2] 6 | —20| 70 | —252| 926 | —3460 | 13110 | —50252 | 194446 | —758100
1| 1 |—4| 15 | =56| 211 | —804 | 3095 | —12016 | 46971 | —184604 | 728575
2 10| 1| —6|29|-130| 561 | —2366| 9829 | —40410 | 164921 | —669526
300010 ] 2 |-16] 90 |—440| 2002 | —8736 | 37130 | —155080 | 640002

Table F.2: Lool(T‘7t, 6), 0 S T S 10, 1 S t S 3, (and L001 = (—1)T+tl001).

t\e| O] 1| 2 | 3 4 5 6 7 8 9 10
1 |[—-1] 3 |-10] 35 | —126 | 463 | —1730 | 6555 | —25126 | 97223 | —379050
2 0 |—-1| 5 |—21| 8 |—341| 1365 | —5461 | 21845 | —87381 | 349525
3000 ] —-1| 8 | —45| 220 | —1001 | 4368 | —18565 | 77540 | —320001

Table F.3: Loio(r,t,7), 0 <7 <10, 0<t <3, (and Loio = (—1)" """ p10).

t\e] O] 1| 2 | 3 4 5 6 7 8 9 10

0 ||-2] 6 | —20| 70 | —252| 924 | —3434 | 12902 | —48926 | 187036 | —720062
1| 1 |—4| 15 | =56| 210 | =793 | 3017 | —11561 | 44592 | —172995 | 674520
2 |01 | —6|28|—121| 507 | —2093 | 8568 | —34885 | 141494 | —572264
3J0]0] 1 | -9] 55 |—28| 1365 | —6188 | 27132 | —116281 | 490337
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Table F.4: Loy (r,t,7), 0< 7 <10, 1 <t < 4,

(and L011 = (—1)T+t1011).

t\r || O 1 2 3 4 ) 6 7 8 9 10
1 ||—-1| 3 |—-10| 35 | —126 | 462 | —1717 | 6451 | —24463 | 93518 | —360031
2 0 |—-1|] 5 |—-21| 8 | —=331| 1300 | —5110 | 20129 | —79477 | 314489
3 0 0| -1 7 =37 | 176 | =793 | 3458 | —14756 | 62017 | —257775
4 010 0 -2 18 | =110 | 572 | =2730 | 12376 | —54264 | 232562
Table F.5: L1oo(r,t,6), 0 <7 <10, 0<t <3, (and Ligo = (—1)" "+ 1i1q0).
t\r || O 1 2 3 4 ) 6 7 8 9 10
0 ||—-2| 6 | =20 70 | =252 | 922 | —3404 | 12630 | —46988 | 175066 | —652764
1 1 | —4| 15 | =56 | 209 | =780 | 2911 | —10864 | 40545 | —151316 | 564719
2 0 1| —6 | 27 | =110 | 429 | —1638 | 6187 | —23238 | 87021 | —325358
3 010 0 0 0 0 0 0 0 0 0
Table F.6: L101(T,t, 6), 0 S T S 10, 1 S t S 3, (and L101 = (*1)r+tl101).
t\r || O 1 2 3 4 ) 6 7 8 9 10
1 {|-1} 3 |-10| 35 | =126 | 461 | —1702 | 6315 | —23494 | 87533 | —326382
2 0 |—-1| 5 | —=21| 8 | —=319| 1209 | —4549| 17051 | —63783 | 238337
3 0 0| -1 6 =27 | 110 | —429 | 1638 | —6187 | 23238 | —87021
Table F.7: Luo(r,t, 7), 0 <r< 10, 0 <t< 3, (and L110 = (—1)T+t+1l110).
t\r | O 1 2 3 4 ) 6 7 8 9 10
0 [|—2| 6 | =20 | 70 | =252 | 924 | —3430 | 12838 | —48314 | 182476 | —690802
1 1 | —4] 15 | =56 | 210 | =791 | 2989 | —11319 | 42924 | —162925 | 618772
2 0 1 —6 | 28 | —119 | 483 | —1911 7448 | —28763 | 110446 | —422576
3 0 0 1 -7 35 | =154 | 637 —2548 9996 —38759 | 149205
Table F.8: Llll(r,t, 7), 0 S T S 10, 1 S t S 3, (and L111 = (—1)T+tl111).
t\r || O 1 2 3 4 ) 6 7 8 9 10
1 -1 3 |—-10] 35 | =126 | 462 | —1715| 6419 | —24157 | 91238 | —345401
2 0 |—-1| 5 |—21| 84 | —=329| 1274 | —4900 | 18767 | —71687 | 273371
3 0 0| -1 7 —35 | 154 | —637 | 2548 | —9996 | 38759 | —149205




