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ABSTRACT
We present a statistical analysis of the gravoturbulent velocity fluctuations in molecular cloud complexes extracted from
our ‘Cloud Factory’ Galactic-scale interstellar medium (ISM) simulation suite. For this purpose, we produce non-local
thermodynamic equilibrium 12CO J = 1 − 0 synthetic observations and apply the principal component analysis (PCA) reduction
technique on a representative sample of cloud complexes. The velocity fluctuations are self-consistently generated by different
physical mechanisms at play in our simulations, which include Galactic-scale forces, gas self-gravity, and supernova feedback.
The statistical analysis suggests that, even though purely gravitational effects are necessary to reproduce standard observational
laws, they are not sufficient in most cases. We show that the extra injection of energy from supernova explosions plays a
key role in establishing the global turbulent field and the local dynamics and morphology of molecular clouds. Additionally,
we characterize structure function scaling parameters as a result of cloud environmental conditions: some of the complexes
are immersed in diffuse (interarm) or dense (spiral-arm) environments, and others are influenced by embedded or external
supernovae. In quiescent regions, we obtain time-evolving trajectories of scaling parameters driven by gravitational collapse and
supersonic turbulent flows. Our findings suggest that a PCA-based statistical study is a robust method to diagnose the physical
mechanisms that drive the gravoturbulent properties of molecular clouds. Also, we present a new open source module, the
PCAFACTORY, which smartly performs PCA to extract velocity structure functions from simulated or real data of the ISM in a
user-friendly way.
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1 IN T RO D U C T I O N

The relative importance of the physical mechanisms involved in
star formation has been subject to intense debate over the last
decades. Undoubtedly, gravitational effects govern the concluding
stages of individual star-forming systems (Mac Low & Klessen 2004;
Krumholz & Tan 2007; Keto & Zhang 2010; Ballesteros-Paredes
et al. 2011; Traficante et al. 2018a,b), but additional factors may play
a role on the larger scales where gas is assembled into molecular
clouds and successive fragmentation takes place (Bergin & Tafalla
2007; Klessen & Glover 2016). Observational data from the latest
generation of telescopes have confirmed that, far from being isolated
systems, stars are formed within large-scale molecular cloud com-
plexes (10−60 pc) that form in the cold interstellar medium (ISM;
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Blitz 1993; Williams, Blitz & McKee 2000). These cloud complexes
consist of interconnected molecular clouds (2−20 pc) that, at the
same time, exhibit high degrees of sub-structuring over subsequent
scales (Falgarone, Puget & Perault 1992) and filamentary signatures
(André et al. 2010; Ragan et al. 2014; Smith, Glover & Klessen
2014b; Arzoumanian et al. 2019). Thus, studying the dynamics of
molecular structures in different spatial regimes becomes highly rele-
vant to uncover the nature and evolution of star formation properties.

A few decades ago, Larson (1979, 1981) discovered a sys-
tematic increase of the global velocity dispersion �υ (km s−1)
with the projected size L (pc) of diverse molecular associations
(�υ ∝ L0.38) using mostly optically thin (13CO, H2CO, NH3) but
also optically thick tracers (12CO). Larson interpreted this hierar-
chical behaviour to be a consequence of energy transport across
successive spatial scales as it is reminiscent of the Kolmogorov
structure law (δυ ∝ l1/3, where lower case δυ and l indicate
internal velocity fluctuations and spatial scales), derived from the
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statistical framework developed by Kolmogorov (1941) and Onsager
(1949) for viscous incompressible (subsonic) turbulent fluids.1 This
linewidth–size relationship, often termed the (first) Larson law,
would lay the groundwork for subsequent literature on the role of
turbulence in setting dynamical signatures of the ISM.

Solomon et al. (1987) focused on a more homogeneous sample
of clouds and reported a similar but slightly steeper linewidth–size
relationship (δυ ∝ l1/2) using 12CO data. They interpreted this result
as a consequence of virial equilibrium under the premise that the
mean surface density of clouds is independent of size. However,
this idea would be contradicted a few decades later by Heyer et al.
(2009) who re-examined the same objects using a lower opacity
tracer (13CO) and higher spectral and angular resolution. In any case,
classical statistical-hydrodynamic theories (e.g. Kraichnan 1974;
Fournier & Frisch 1983) derived the same velocity scaling index
(γ 2 = 1/2) for fluids in a compressible (supersonic) turbulent field,
which thereby suggests that energy dissipation in molecular clouds
not only occurs at small scales (where viscosity dominates) but can
be driven by supersonic shocks at larger scales as well (McKee &
Ostriker 2007).

Turbulence is essential not only for triggering primordial density
enhancements and seeding star formation, but also for regulating the
onset of new stellar systems. Compressible (supersonic) turbulent
velocity fields generate large-scale converging flows and strong
density fluctuations, which, by the action of gravity, may end up
collapsing and forming new stars in the most massive regions (Mac
Low & Klessen 2004). At the same time, turbulence is a key
mechanism for controlling star formation rates as it acts against
gravity, which alongside support from magnetic forces, prevents run-
away gravitational collapse (Falgarone et al. 1992; Federrath 2018).
Further details about a gravoturbulent scenario for fragmentation in
molecular clouds and its implications for star formation properties
can be found in Klessen et al. (2004).

Additionally, the interplay between supersonic turbulence and
local gravitational forces produces particular gas density distri-
butions. High column densities associated with massive regions,
dominated by self-gravity, exhibit power-law probability density
functions (PDFs; Ballesteros-Paredes et al. 2011; Schneider et al.
2015). Conversely, low column densities dominated by turbulent
supersonic motions yield lognormal PDFs (Vazquez-Semadeni 1994;
Kainulainen et al. 2009) that can also exhibit non-Gaussian wings
due to intermittency effects (Federrath et al. 2010a). The range
of densities in cloud complexes is typically wide (102–105 cm−3,
Mac Low & Klessen 2004), which implies that density distributions
from realistic scenarios (see e.g. Schneider et al. 2002) are in
general a combination of both profiles (Hennebelle & Chabrier 2008;
Kainulainen et al. 2009; Burkhart 2018). Gravoturbulent mechanisms
are hence crucial to establish stellar and core initial mass functions
that may be closely related to the mass distribution of parental clouds
(Padoan & Nordlund 2002; Hennebelle & Chabrier 2009).

A great deal of effort has also been expended on understanding
the origin of non-thermal motions in the cold ISM. Heyer &
Schloerb (1997) adapted the principal component analysis (PCA)
reduction technique to investigate the turbulent behaviour of indivial
cloud complexes using spectroscopic data. The method consists

1However, Larson (1981) also hinted at the possibility of supersonic turbu-
lence in molecular clouds given the steeper scaling exponent compared to that
of Kolmogorov’s law. Larson interpreted this as a lack of velocity fluctuations
at small scales caused by energy dissipation at larger scales via supersonic
shocks.

in finding non-redundant representative components of (molecular)
line emission data to extract velocity fluctuations δυ (km s−1)
associated with characteristic spatial scales l (pc) of the analysis
region. They applied the algorithm to synthetic and real objects and
found power-law dependencies analogous to the Larson linewidth–
size relationship. Several studies were then carried out to connect
the scaling parameters retrieved from this method to their intrinsic
hydrodynamic structure function (Brunt & Heyer 2002; Brunt et al.
2003; Heyer & Brunt 2004; Roman-Duval et al. 2011; Brunt &
Heyer 2013), responsible for describing the 3D velocity fluctuations
field as a function of the spatial separation of particles in the fluid.
Other works tested the sensitivity of the technique to different
feedback conditions. Heyer, Williams & Brunt (2006) found distinct
relationships for clouds inside (δυ = (1.00 ± 0.04)l0.79 ± 0.06) and
outside (δυ = (0.70 ± 0.03)l0.66 ± 0.06) an ionization front driven by
a cluster of massive stars in the Rosette cloud complex. Bertram
et al. (2014) used numerical simulations of molecular clouds with
imposed turbulent fields and noticed variations in PCA-derived
exponents when changing mean densities and optical depths. Using
12CO intensity, they infer a steeper relationship δυ ∝ l0.82 ± 0.03

for clouds with gas mean density n = 300 cm−3, compared to the
δυ ∝ l0.59 ± 0.02 for n = 100 cm−3. Also, they suggest that using 13CO,
which is an optically thinner tracer, can lead to slightly different
relationships (δυ ∝ l0.74 ± 0.02 for n = 300 cm−3). These findings
make the technique an interesting tool to investigate the nature of
non-thermal motions in the ISM.

Magnetohydrodynamic simulations carried out by de Avillez &
Breitschwerdt (2005) and Joung, Mac Low & Bryan (2009) in-
cluded a global Galactic context to consistently investigate the ISM
evolution. They found that several observational properties of the
ISM turbulence can be reproduced in supernova feedback-dominated
scenarios. However, due to the achievable spatial resolution (∼1.5 pc)
and the lack of local gravitational effects, they could not study the
internal structure and dynamics of molecular clouds in detail.

Later, in order to uncover the structure of turbulent motions
in molecular clouds, Federrath et al. (2010a) simulated synthetic
turbulent fields made up of two different forcing components,
solenoidal and compressive, within periodic uniform grids assuming
isothermal gas. They suggest that molecular clouds have generally
different mixtures of forcing, in which the solenoidal component is
associated with quiescent regions with low star formation activity,
and the compressive component to regions dominated by sources
of strong energy feedback. This is supported by observations of
quiescent and active star-forming regions or a combination of both
scenarios (Heyer et al. 2006; Hacar et al. 2016).

More sophisticated high-resolution simulations were then devel-
oped to try to explain the origin and nature of these turbulent
motions. Klessen & Hennebelle (2010) provided analytic and nu-
merical calculations including magnetic fields, self-gravity, and a
standard ISM cooling function to show that accretion processes
can drive the observed turbulence on several scales, from galaxies
to protostellar discs. They used converging flows of accretion,
incoming from the computational boundary with superimposed mean
velocities and fluctuations, and obtained a linewidth–size relation
�υ = 0.8(L/pc)0.5 km s−1 compatible with Larson’s law. This
suggests that the turbulent scenario is similar to the classical energy
cascade process from large to small scales, driven by outside-
cloud phenomena. However, further work on energy injections
from supernovae explosions (Gatto et al. 2015; Walch et al. 2015;
Girichidis et al. 2016; Pan et al. 2016), stellar outflows (Nakamura &
Li 2007; Cunningham et al. 2011; Federrath et al. 2014) and H II

regions (Peters et al. 2017; Haid et al. 2018), would demonstrate
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5270 A. F. Izquierdo et al.

that the role of stellar feedback is also essential in configuring the
turbulent field of molecular clouds (for a summary see also Klessen &
Glover 2016). In particular, ISM simulations presented by Padoan
et al. (2016a,b, 2017) claimed that the structure and dynamics of
molecular clouds are a natural consequence of a supernovae-driven
scenario, and suggest that supernovae energy injection is necessary
to set and maintain the turbulent cascade observed in molecular
clouds. They generated random supernovae over a periodic cubic
box of 250 pc, with high (sub-parsec) spatial resolution, but at the
cost of considering neither the large-scale gravitational potential nor
differential rotation.

Our Cloud Factory simulations seek to address this limitation by
including both supernova feedback and the large-scale Galactic envi-
ronment with high enough resolution to study the internal turbulence
within clouds. We take into account the global Galactic context using
a multicomponent gravitational potential and Galactic differential
rotation while, at the same time, resolving selected molecular clouds
with cell masses as small as 0.25 M�. We include stellar feedback in
the form of supernovae, both randomly distributed across the Galaxy
and tied to sites of star formation, as well as local gravitational
forces and molecular chemistry. In this work, we use full non-local
thermodynamic equilibrium (LTE) radiative transfer calculations and
the PCA technique on our cloud complexes to investigate the detailed
signatures of non-thermal motions over a wide range of spatial scales
provided by our simulations. Full radiative transfer modelling is
necessary to produce realistic synthetic observations that can be
readily compared to observational data with analogous methods.
Our analysis aims at investigating the role of clustered supernova
feedback and local and large-scale gravitational forces in configuring
the velocity fluctuations field of the cold ISM. We conclude that our
simulations are able to self-consistently generate cloud complexes,
with realistic turbulent fields, which can be used in future studies of
clustered star formation in a Galactic context.

We briefly present the main aspects of our Cloud Factory simula-
tion suite and the selected cloud complexes in Section 2. Sections 3
and 4 are dedicated to the radiative transfer set-up and statistical
description of velocity fluctuations in fluids. In Section 5, we outline
the general workflow and explain the three PCA extraction methods
explored in the paper. We then present in Section 6 the results split by
physical scenario (6.1), line-of-sight projection (6.2), time snapshot
(6.3), and analysis scale (6.4). We provide a discussion on the re-
semblance of our self-consistently generated clouds to observational
data and the role of supernovae feedback in Section 7, and wrap up
with the conclusions of the work in Section 8. In Appendix A, we
add supporting figures including edge-on cloud column densities,
line emission, and optical depth profiles, and also show variations
in PCA-derived parameters when assuming LTE and large velocity
gradient (LVG) level populations for the radiative transfer.

2 TH E C L O U D FAC TO RY S I M U L AT I O N SU I T E

2.1 The hydrodynamic code and physical ingredients

The cloud complexes that we examine in this work are extracted
from our Cloud Factory simulation suite (Smith et al. 2020, hereafter
Paper I), which is built on a version of the AREPO code (Springel
2010; Pakmor et al. 2016) customized with a set of physical/chemical
modules that account for various mechanisms taking place in the cold
molecular ISM such as

(i) the Galactic gravitational potential,
(ii) time evolution of CO and hydrogen chemistry,

(iii) ultraviolet (UV) extinction considering H2 and CO shielding
properties, and dust absorption,

(iv) star formation via sink particles, and
(v) injection of (energy/momentum) feedback from supernova

explosions.

We use an analytic description of the large-scale gravitational
potential of the Galaxy to efficiently determine and control its
influence on the dynamics of mesh cells in each time-step of the
simulation. The potential is a combination of a dark-matter halo,
a bulge, and a gas disc with thin and thick components. We use
the best-fitting model of McMillan (2017), which is constrained by
observations of the Milky Way. Additionally, we include a four-
armed spiral component from Cox & Gómez (2002) and a consistent
spiral perturbation to the potential, already implemented in Smith
et al. (2014a). The density profiles spawning the large-scale potential
are fully described in Paper I.

Our gas chemistry description adopts the approach of Nelson &
Langer (1997), where the CO evolution is a simplified treatment that
assumes a direct conversion between the C+ and CO abundances
(intermediate species are neglected). The CO formation is triggered
by a radiative association between C+ and H2 to form hydrides that
react afterwards with atomic oxygen. The CO destruction depends on
the UV photodissociation rate from de Jong (1977) and Falgarone &
Puget (1985), which is a function of the gas number density and the
strength of the UV portion of the interstellar radiation field (assumed
in our simulations to be that of the solar neighbourhood derived
by Draine 1978). We use the TREECOL algorithm (Clark, Glover &
Klessen 2012) to compute the UV extinction of the medium by
considering H2 and CO self-shielding, the shielding of CO by H2,
and the shielding of both by dust absorption.

Regarding the convergence of CO abundance in our simulations,
at our highest resolution points for a number density of 104 cm−3

we have a resolution of 0.05 pc or smaller (see fig. 4 in Paper I),
which compares well with the converging flow spatial resolution
requirement from Joshi et al. (2019). It is unclear that we meet
their convergence criterion everywhere as our resolution is spatially
variable. However, when we plug a conservative estimate of the
internal velocity dispersion in 0.1 pc scales in their criterion, we
meet the resolution requirement at these densities.

The non-equilibrium hydrogen chemistry from Glover & Mac Low
(2007a,b), implemented in our Cloud Factory, involves reactions
between molecular (H2), atomic (H), and ionized (H+) hydrogen,
electrons, cosmic rays, dust grains, and the UV radiation field. This
encompasses H2 formation on grains, collisional and photodissoci-
ation of H2, cosmic rays and collisional ionization of H, and H+

recombination in the gas phase or on dust grains. The net energy
exchange due to radiative and chemical gas heating or cooling is
computed using an atomic and molecular cooling function as outlined
in Clark et al. (2019).

Our model of star formation uses a hybrid approach based on
sink particles that can represent either individual stellar systems
or clusters of stars depending on the target mass resolution of
the region where they form. In order to become a sink particle,
following Bate, Bonnell & Price (1995) and Federrath et al. (2010b),
a cell and its neighbours have to be above a critical density ρc

and satisfy energy checks to confirm that they are bound and the
internal collapse is runaway: the cells must be located on a local
minimum of the gravitational potential, outside the accretion radius
of any other sink particle and have inwardly directed velocities and
accelerations. Sink particles behave like non-gaseous bodies that
interact gravitationally with the surrounding medium and can accrete
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material from neighbouring bound cells that are within a given sink
accretion radius. Sinks are especially helpful to set up a natural
halt threshold in the code and prevent excessive mesh refinements
(Hubber, Walch & Whitworth 2013) but at the same time to keep track
of the sites where stellar feedback will be injected in form of thermal
energy and/or momentum from supernovae explosions (Gatto et al.
2015; Walch et al. 2015; Girichidis et al. 2016; Padoan et al. 2016a,b;
Pan et al. 2016). In this paper, we only consider supernovae as
they are the most energetic source of stellar feedback and generally
accepted to be the dominant driving mechanism of turbulence in star-
forming galaxies (Mac Low & Klessen 2004; Padoan et al. 2016a).
Either way, other mechanisms such as outflows/jets (Nakamura & Li
2007; Cunningham et al. 2011; Federrath et al. 2014), stellar winds
(Dale & Bonnell 2008; Gatto et al. 2017; Peters et al. 2017) and local
photoionizing radiation (Peters et al. 2017; Haid et al. 2018) are also
present in real scenarios.

We consider two ways of injecting stellar feedback: (i) purely ran-
dom supernova explosions and (ii) a mixture of random supernovae
and supernovae tied to star formation sites. For the first approach,
we randomly distribute the supernovae according to the gas density
profile of the Galactic disc. We adopt a rate of 1 event every 50 yr
as estimated from Milky way observations of gamma-ray emission
in massive stars (Diehl et al. 2006). Our second approach produces
bursts of strong feedback from the spiral arms. It assumes a star
formation efficiency and a realistic stellar initial mass function in
order to compute the number of massive stars (>8 M�) that will
undergo supernovae explosions at the end of their lifetime. We
use the stellar mass function from Kroupa (2002) and calculate the
number of massive stars out of the stellar content of sink particles
following Sormani et al. (2017). When the target mass is large
(100 M�; see Section 2.2 below), the sink particles introduced in
the simulation correspond to portions of clouds with size scales
larger than individual star-forming cores, and hence a large fraction
of gas in the sinks should not actually form stars. We account for
this by adopting a low star formation efficiency for these sinks of
1−2 per cent based on the work of Krumholz & Tan (2007). When the
simulation target mass is small (<10 M�), the sink particles more
closely correspond to individual star-forming cores and so in this
case we adopt a higher star formation efficiency of 33 per cent, based
on Matzner & McKee (2000). In this approach, we also use random
supernovae but at a lower rate of 1 event every 300 yr to account for
Type Ia supernovae. The way in which energy from supernovae is
released into the gas depends on whether the Sedov–Taylor phase
of the supernovae expansion is resolved, similar to the approach
of Hopkins et al. (2014) and Gatto et al. (2015), and introduced
analytically by Blondin et al. (1998). In our case, if the expansion
phase is resolved by 32 cells we inject thermal energy directly into the
surrounding gas, otherwise we inject terminal momentum pointing
radially outwards. Further details of our supernovae model can be
found in Paper I and in Tress et al. (2020).

2.2 Simulation set-up and refinement scheme

The initial gas distribution of our simulation is based on observational
constraints and theoretical modelling of the Milky Way presented
in McMillan (2017). They suggest an exponential profile for the H
and H2 densities as a function of the radius of the Galaxy disc. We
rather take the mass contribution from both profiles and start with
a single gas distribution consisting only of H, from which H2 will
form self-consistently according to our chemical treatment as the
Galaxy evolves.

In the first stage of the simulation, we let our Galaxy evolve
for 150 Myr under the effects of the large-scale potential and the
energy/ momentum feedback from random supernovae to naturally
form spiral arms and reach a steady state. In this stage, the cell target
mass resolution is set to 1000 M� and the mesh refinement operates
accordingly.

Next, we start the middle phase of the simulation by turning on a
co-rotating 3 kpc high-resolution box centred at a Galactic radius of
8 kpc. This phase lasts for around 70 Myr, or two spiral arm passages.
In this phase, we launch three runs undergoing different physical
mechanisms as follows: (a) a potential-dominated scenario in which
the ISM dynamics respond only to the large-scale gravitational
potential and the random supernova feedback as it was set up during
the first stage of the simulation, (b) same as the previous case but this
time gas self-gravity between cells is included, and (c) a feedback-
dominated scenario in which both the large-scale potential and self-
gravity effects operate, and the supernova feedback is mixed. By
mixed feedback we mean that both the random and supernovae tied
to sink particles are turned on (see our supernova implementation in
Section 2.1). The target mass resolution of this phase is initially set
to 100 M� but is further lowered down to 10 M� for the final 10 Myr
of the middle phase.

In the final stage of our simulation, and in order to resolve sub-
structures within the processed cold ISM, we further increase the
resolution on individual cloud complexes of ∼100 pc radius within
the high-resolution box by injecting Monte Carlo tracer particles
(Genel et al. 2013) everywhere the gas density is above 100 cm−3.
The target mass is lowered down to 0.25 M� where tracer particles
are present, which allows us to achieve high spatial resolutions (e.g.
cell diameters of dcell = 1 pc at n = 5 cm−3, or dcell = 0.03 pc at n =
105 cm−3). For this target mass, we set a sink creation density of
ρc = 104 cm−3, which according to Mac Low & Klessen (2004; and
based on the size scales reachable in this phase) corresponds either to
individual star-forming clumps or protostellar cores. Unlike Paper I,
in this phase we split the potential-dominated scenario in two cases,
with and without self-gravity, in order to explore the effects of local
gravitational forces on the dynamical signatures retrieved from our
cloud complexes.

Regardless of the stage of the simulation, we require that the Jeans
length is resolved by at least four cells everywhere in the mesh to
adequately check energy and bounding conditions and avoid artificial
fragmentation (Truelove et al. 1997; Federrath et al. 2011). If sink
creation densities are achieved but the gas fails to pass the energy
checks (see Section 2.1), we continue to resolve the gas until it is
unambiguously bound as long as it remains above the sink creation
density.

2.3 The selected cloud complexes

In order to comprehensively investigate non-thermal motions in our
synthetic clouds we use the same regions as in Paper I: A, B, C, and
D, but include two more complexes, A0 and B0, in which self-gravity
is switched off.

These cloud complexes arise from contrasting environments in
the Galaxy. Complexes A0 and A are (at the same location) in a
dense spiral arm, whereas B0 and B are in an interarm, more diffuse
region. Cloud complexes C and D, representative of the feedback-
dominated scenario, are the densest regions in the high-resolution
box and were born after a burst of clustered supernova feedback.
However, complex D, the denser of the two, gets to form massive
stars that undergo supernovae explosions over time, whereas complex
C is only influenced by external feedback as it does not produce
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Table 1. Cloud complexes analysed in this work and physical mechanisms
operating in each, with a short description of their surrounding environment.

Cloud
complex

Galactic
potential Self-gravity

Supernova
feedback Description

Random On sinks

A0 � � � � Inside arm
B0 � � � � Interarm region

A � � � � Inside arm
B � � � � Interarm region

C � � � � No embedded SNe
D � � � � Embedded SNe

embedded supernovae during the analysis time. This information is
briefly summarized in Table 1. A figure showing the exact location
of our cloud complexes can be found in Paper I.

We consider two different time snapshots for complexes A0, B0,
C, and D, and (for time evolution analysis) three snapshots for
complexes A and B. In all cases, the first snapshot was extracted
at a time when no massive sink particles had formed yet. Also,
we explore three different cloud orientations, which we refer to as
face-on, edge-on φ=0◦ and edge-on φ=90◦ views. In cylindrical coor-
dinates, the face-on line-of-sight points towards the {−êz} direction,
meaning that the cloud complex is viewed from above the Galaxy.
The edge-on φ=0◦ and edge-on φ=90◦ lines-of-sight point, respectively,
towards the {+êφ} and {−êR} directions.

Fig. 1 shows face-on projections of H, H2, and 12CO column
densities from the selected set of cloud complexes, 2 Myr after
tracer refinement has commenced (edge-on φ=90◦ views can be found
in Fig. A3). As a short comment, note that the CO density does
not necessarily trace the density of hydrogen species, which is a
consequence of collisional and photodissociation processes induced
by supernova explosions and the interstellar radiation field in our
simulations. This is particularly apparent in feedback-dominated
complexes C and D, hinting at high amounts of CO-dark molecular
gas (see e.g. Smith et al. 2014a), which is sensitive to variation of
the feedback conditions in clouds.

3 RAD IATIV E TRANSFER MODELLING

We perform radiative transfer simulations of our synthetic cloud
complexes using the Line Modelling Engine code (LIME,2 Brinch &
Hogerheijde 2010) and the Polarized Radiation Simulator (POLARIS,3

Reissl, Wolf & Brauer 2016). Both are flexible codes that predict
molecular line and dust continuum emission from arbitrary 3D
geometries in (sub-)millimetre and infrared wavelengths.

For a given grid point distribution, in our case with information on
position, gas density, temperature, and velocity, the codes construct
a Delaunay triangulation and its corresponding Voronoi mesh where
they iteratively propagate photons and integrate the radiative transfer
equation. In particular, LIME comprises two approaches to solve the
line excitation problem, suitable for matter in different equilibrium
states:

(i) An LTE approximation in which the radiative features of
the gas are fully and uniquely determined by the local kinetic
temperature and its internal properties, namely, the atomic/molecular
level populations are dominated by particle collisions that obey a
Maxwell–Boltzmann distribution law. The code uses this to calculate

2https://lime.readthedocs.io
3http://www1.astrophysik.uni-kiel.de/∼polaris

the level populations and the Kirchoff’s law for thermal radiation to
solve the transfer equation (see e.g. Rybicki & Lightman 1986).

(ii) A non-LTE mode for media in which the level populations
are not only ruled by collisions but also have a non-negligible
contribution from the local radiation field. This problem needs to be
addressed iteratively over the physical domain, taking into account
the outgoing radiation from all the grid cells with each other. LIME

solves this by propagating randomly oriented packages of photons
from every cell of the grid, along lines of the Delaunay triangulation.
In each cell, the algorithm computes provisional level populations
using the incoming local radiation and collisional rates and releases
a number of photons proportional to the number of neighbouring
cells. The calculation stops when the propagating photons escape
the physical domain, and the whole process is repeated, ideally,
until convergence (i.e. populations in equilibrium) is reached. As
convergence depends on the input physical distributions, the number
of iterations is not fixed by LIME but left as a free parameter.

On the other hand, besides LTE, POLARIS supports a LVG
approximation that we also explore in this work. This approach
assumes that velocity variations over a given size scale are larger
than microturbulent and thermal velocities, which simplifies the
computation of optical depths and level populations (Sobolev 1960).

Once the level populations are determined in either of the ap-
proaches, the codes integrate the radiative transfer equation along
isotropic tracer rays that cross the Voronoi grid until they hit the
border of the physical domain. The resulting specific intensity is
then used to compute the observed intensity at the distance, spatial
and spectral resolutions established by the user. The output FITS file
is a 3D nxpix × nypix × nchan position–position–velocity (PPV) cube
containing intensity (in units of either Jy pix−1, Kelvin or L� pix−1)
or optical depth (τ ) information as a function of the spectral channel
(in m s−1).

Full radiative transfer modelling is necessary to produce synthetic
emission maps that can be readily compared to observational
data with analogous methods, especially at the present time with
the advent of new telescopes and techniques that allow resolving
non-ideal and highly coupled regimes. Evidently, the resulting cubes
also inherit observational limitations such as spatial and spectral
finite resolution and natural constraints from projection and optical
depth effects.

In the Appendix, we show variations in line emission profiles
(Fig. A4) and optical depth maps (Fig. A5) after considering the
radiative transfer approaches (LTE, LVG, and non-LTE) outlined
in this Section, as well as their impact on PCA-derived structure
function parameters (Fig. A6).

3.1 Non-LTE 12CO J = 1 − 0 line excitation

Our analysis focuses on the emission of carbon monoxide in its
ground state rotational transition 12CO J = 1 − 0, which, along with
other isotopologues, have been used extensively to trace molecular,
relatively dense, cold gas (van Dishoeck & Blake 1998; van Dishoeck
2004) as well as in previous statistical studies (Larson 1981; Heyer &
Brunt 2004; Roman-Duval et al. 2011; Bertram et al. 2014) of both
simulated and observed molecular associations.

We use the non-LTE implementation of LIME because, in our simu-
lations, a considerable fraction of the H2 density (the main collisional
partner of 12CO) is below the critical density (ncrit ∼ 2 × 103 cm−3) to
collisionally populate 12CO at the upper level of its ground transition,
which is valid within a wide range of temperatures (2−3000 K, Yang
et al. 2010). This implies that the first rotational level of 12CO is
populated by different mechanisms in our cloud complexes; it is
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The Cloud Factory II: gravoturbulent clouds 5273

Figure 1. Face-on projections of H, H2, and 12CO column densities (
) from cloud complexes (labelled on the right) extracted 2 Myr after injecting tracer
particles in the simulations. If any, sink particles are overlaid on H maps as the star markers.
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Figure 1. – continued.
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dominated by radiation in diffuse regions and thermally controlled
by collisions in dense regions (see section 12.4 of Wilson, Rohlfs &
Hüttemeister 2013). We note that we do not consider collisions
between CO and H in our modelling, which may be important for
diffuse CO gas near the edges of clouds due to turbulent mixing.

3.2 New tools for handling AREPO-Like meshes in radiative
transfer codes

3.2.1 Input unstructured meshes and implementation of KDTREE

algorithm in LIME

Our previous customization of LIME allowed the user to compute the
radiative transfer solutions on analytic 3D models of star-forming
regions generated with the SF3DMODELS package (Izquierdo et al.
2018). These models were based on a uniform Cartesian grid and
then mapped by LIME via random grid points weighted by the
density distribution of the model. Cartesian grids are computation-
ally efficient and a good approach to problems with low-dynamic
range. Our current simulations, however, are based on (highly)
non-uniform Voronoi grids specially adapted to track the effects of
physical mechanisms governing the gas dynamics at several time and
length-scales. On top of that, our statistical analysis requires well-
determined spatial scales to properly and unambiguously uncover
the gravoturbulent nature of molecular clouds via velocity structure
functions (see Section 4.1). For these reasons, we modified LIME to
also handle unstructured meshes pre-processed with SF3DMODELS.
To this end, we halt the default randomly weighted generation of
grid points in LIME and force it to rather take the simulation points to
reconstruct the Voronoi mesh where the radiative transfer is solved.

Another addition to the code is motivated by the fact that, unlike
Cartesian grids, finding neighbouring cells in unstructured grids is
non-trivial. This is necessary during the ray-tracing algorithm in
which the radiative transfer equations are computed iteratively over
subsequent cells. Clearly, a ‘brute force’ search that minimizes the
distance from the test cell to the whole set of cells is rather slow
[of order O(N2)] with increasing number of cells N. To solve this,
we implement a k-d tree algorithm that splits the search domain in
representative areas to discard unnecessary distance checks to remote
cells. We use the third-party, open source, C library KDTREE,4 which
is pre-built in our customized version of LIME and does not need any
particular installation.

Additionally, the LIME domain is spherical and surrounded on its
surface by randomly distributed points called ‘sink-points’ (not to
be confused with the sink particles that we use to represent star
formation in the AREPO simulations), through which tracer rays
emerge from the physical model to make up the synthetic image.
Since the input unstructured grid can have any shape, large voids
between sink-points and inner physical grid points are likely to exist,
leading to artefacts at the borders of the image as the reconstructed
Voronoi cells are larger there than in the original mesh. We soften
this effect by including empty ‘dummy’ grid points close to the
border of the radiative transfer domain using our new GRID.FILLGRID

module incorporated in SF3DMODELS. We distribute N/10 dummy
points randomly between a radius enclosing 90 per cent of the total
gas mass and the maximum radial extent of the grid. However, this
needs to be done with caution. For instance, including dummy points
starting at small radii could induce multiple artificial holes in actual
regions of the simulation and may also lead to an underestimation

4https://github.com/jtsiomb/kdtree

of gas masses as the volume of the original grid cells would have to
decrease to make room for the newly inserted dummies.

3.2.2 Removal of twin AREPO cells after a refinement step

According to Springel (2010), a cell meeting user-defined refinement
criteria is split along its centroid into two cells. Initially, the position
locators of the newborn cells co-exist with the original cell centre.
During subsequent time-steps, the new locators are separated via
mesh-regularization techniques until they reach the actual centroids
of the split cells. This bears the possibility of finding two or more
cell locators at the same position in a single time snapshot of the
simulation. Such subtlety can lead either to errors during the grid
reconstruction by the triangulation algorithms of the radiative transfer
codes, or it can slow down intermediate grid smoothing steps.

We have written an efficient iterative algorithm included in the
AREPO. UNIQUECELLS module of SF3DMODELS to get rid of these
‘twin’ cells. Broadly speaking, the algorithm constructs an array of
cell ids based on unique radially sorted cells. These unique cells
are then compared only to their nearest neighbours to check if they
share the exact same location in 3D. The algorithm recycles the mass
of the twin cells into the surviving cell using a direct summation,
whereas the other physical properties remain unchanged as they are
approximately equal in all the twin cells. The algorithm returns a
clean dictionary with unique cells and their new physical properties.

The SF3DMODELS package and the latest customized version of
LIME are open source and documented online.5

3.3 Radiative transfer set-up

The front domain of the cloud complexes is deliberately set 2.4 kpc
away from the observer, a typical distance to large nearby star-
forming regions (e.g. W33, Immer et al. 2013). The pixel size of the
PPV cubes is 26 arcsec, which translates into a projected physical
resolution of 0.3 pc. This pixel size is a good compromise between
resolving most of the cells from our AREPO meshes (which contain
cells as small as ∼0.03 pc, see fig. 3 in Paper I) and the processing
time of the radiative transfer. We assume an optimal scenario where
no beam smearing or noise are considered. The spectral resolution,
or channel width, for each cloud complex is determined using the
relation �chan = (υmax − υmin)/(nchan − 1), where υmax and υmin

are the maximum and minimum projected velocities along each of
the three lines-of-sight explored in this work (face-on, edge-on φ=0◦

and edge-on φ=90◦ ). The number of channels is constant (nchan =
101) to ensure the same dimensionality of the PCA. Typical channel-
widths range from ∼ 0.2 km s−1 in potential-dominated complexes to
∼ 0.4 km s−1 in feedback-dominated complexes.6 For the calculation
of level populations in the non-LTE set-up, we assume 50 iterations
as the populations converge after approximately 30 cycles. We ran
tests with 100 iterations for selected regions and found differences
of < 5 per cent in mean intensities, which is reasonable within the
expected random uncertainty.

For consistency, we include micro-turbulence as an additional
source of line broadening to account for non-thermal motions on
scales smaller than the cell size. This contribution is assumed to
be equal to the sound speed of each cell of the mesh and added

5https://star-forming-regions.readthedocs.io
6We also analysed cubes with constant �chan = 0.1 km s−1 for each physical
scenario, at one time-step, and in all cases the PCA-derived parameters
remained unchanged except for the associated errors that decreased sys-
tematically by a factor ≤3.
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in quadrature to the standard thermal broadening during the line
transfer. A typical mass-weighted average temperature in our cloud
complexes is 11 K, which yields a sound speed of 0.25 km s−1 for H2.
In cold dense cells, where the 12CO mass is non-negligible, micro-
turbulence is generally much smaller than the bulk speed of the
cells (×10–100 lower). Note that there may be additional unresolved
small-scale turbulence or organized motions (e.g. driven by gravity)
within the cell so our assumed micro-turbulence is a lower limit.

LIME takes the number density of hydrogen nucleons and CO
abundance available from our simulations to compute the CO mass
consistently. We assume that the CO collisional partners, the spin
isomers of molecular hydrogen (para-H2 and ortho-H2), have a 1:1
ratio corresponding to the expected value for molecular gas with an
age of a few Myr (see e.g. Flower, Pineau Des Forêts & Walmsley
2006). However, we note that the CO excitation rate is only weakly
sensitive to the ortho-to-para ratio and hence our results should not
be affected by this choice.

4 STATISTICAL DESCRIPTION O F V ELOCI TY
F L U C T UAT I O N S I N M O L E C U L A R
ASSO C IATIONS

4.1 Velocity structure function of a fluid

The concept of a generalized function to describe non-thermal veloc-
ity fluctuations in a 3D fluid originated with the work of Kolmogorov
(1941). The author considered an incompressible viscous fluid with
very large Reynolds numbers (→ ∞), namely, locally dominated
by isotropic turbulent motions, and assumed all the components of
the turbulent velocity to be homogeneous and statistically random
variables. Using similarity hypotheses on time and length-scale
energy dissipation rates, the author found that the (averaged) velocity
dispersion is a function of the spatial separation between test points
of the fluid. This work envisioned the idea of rapid successive
transport of turbulent kinetic energy, from large (low order) to small
(high order) scales of the fluid, as a cascading process. Higher
order scales end up dispersing energy in the form of heat as the
effect of viscosity exceeds the magnitude of velocity fluctuations on
small scales. Later, Onsager (1949) used an analogous theoretical
basis to demonstrate that 3D vorticities can accelerate the turbulent
cascade and explain the rapid viscous dissipation of energy with
increasing wavenumber. Based on this, he found the characteristic
energy spectrum of Kolmogorov-like fluids

E(k)dk = AQ2/3k−5/3dk, (1)

where A is a dimensionless constant, k = 2π /l is the wavenumber
associated with a given size scale l in a Fourier expansion of the
velocity field, and E(k)dk stands for the kinetic energy distribution
within an interval dk, which is being dissipated as heat at a rate Q.

However, incompressible flows of the kind considered in Kol-
mogorov’s scenario are rare in molecular clouds, where non-thermal
motions are not negligible but rather transonic or supersonic (Mac
Low & Klessen 2004; McKee & Ostriker 2007). In particular,
supersonic motions lead to shock-dominated turbulence (Burgers-
like turbulence, Burgers 1939; Kraichnan 1974; Fournier & Frisch
1983; Passot, Pouquet & Woodward 1988; Frisch, Bec & Villone
2001), which serves as a mechanism of energy diffusion at large
scales apart from just heat dissipation at small scales. This makes the
energy spectrum decay faster at high-order wavenumbers:

E(k) ∝ k−2. (2)

Moreover, it is well known from early studies that the gradient
of energy dissipation in non-ideal turbulent fluids depends on
the properties of the medium (Kraichnan 1974) and the turbulent
cascade must reflect this on different size scales. Hence, a power-law
generalization of the energy spectrum is a reasonable approach to
account for intrinsic velocity fluctuations as a function of the input
environment (see e.g. Federrath et al. 2010a),

E(k) ∝ k−β . (3)

The exponent β is known as the spectral index of the energy
spectrum in a 3D turbulent fluid and is an intrinsic property of
the velocity distribution in the medium. In addition, this power-
law dependence is supported in Onsager (1949) by the fact that the
total vorticity of a fluid is in general a linear combination of the
wavenumber scale vector 
k.

Using equation (3), it is possible to compute the mean square
velocity fluctuations at a given size scale l by summing up the energy
contributions from higher order (smaller-sized) scales as follows:

〈|δυ(l)|2〉 ∝
∫ ∞

2π/l

E(k)dk ∝
∫ ∞

2π/l

k−βdk ∝ l(β−1); (β > 1), (4)

from which is straightforward to derive the root-mean-square (rms)
velocity,

〈|δυl |2〉1/2 = υ0l
γ2 ; with γ2 = (β − 1)/2, (5)

where υ0 and γ 2 are the intrinsic scaling parameters of the rms
velocity fluctuations field.

A generalized description of velocity fluctuations, the so-called
velocity structure function, was introduced by Kolmogorov (1941)
and further developed by Anselmet et al. (1984) and Frisch (1995)
in order to (statistically) explain multicomponent turbulent motions,
which the scaling parameters of the rms-velocity field are unable
to model comprehensively (see Brunt et al. 2003). In molecular
clouds, multicomponent turbulence arise from several dissipation
mechanisms such as shocks, magnetic fields, radiative cooling, and
heat diffusion (Boldyrev, Nordlund & Padoan 2002), but also from
energy-injection mechanisms like stellar feedback, both affecting
different time and length-scales of the region. The velocity structure
function is written as

Sp(l) = 〈|δυ(l)|p〉; with δυ = υ(r) − υ(r + l), (6)

where the exponent p accounts for the order of the velocity fluctua-
tions δυ and provides information about the degree of coherence of
the velocity field when subject to spatial variations l. This relationship
can be modelled as a power law of the size scale Sp(l) ∝ lζp

analogous to the approach followed in equations (4) and (5) for
the rms velocity, then

〈|δυ(l)|p〉1/p = υ0l
γp ; with γp = ζp/p, (7)

being γ p (or the equivalent ζ p) the intrinsic scaling exponent of order
p and υ0 the magnitude of velocity fluctuations known as scaling
coefficient or normalization of the velocity structure function.7

In Section 4.2.1, we expand the discussion on structure function
variations with changing p-orders.

As a final comment, note from equation (5) that Kolmogorov’s law
(β = 5/3) and the Burgers-like turbulence (β = 2) yield rms scaling
exponents, γ 2 = 1/3 and γ 2 = 1/2, respectively.

7Note that this expression satisfies the upper limit of the Hölder condition for
the (l, δυ) metrics, which implies that the velocity distribution is uniformly
continuous within the spatial domain of the fluid.

MNRAS 500, 5268–5296 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5268/5974289 by Acquisitions user on 12 M
arch 2021



The Cloud Factory II: gravoturbulent clouds 5277

4.2 Principal component analysis

In this sub-section, we briefly summarize the main aspects of the
PCA technique applied to the study of the structure and dynamics of
molecular associations in the ISM.

PCA is a statistical multivariate method that transforms an input
data set of n, possibly correlated, variables into a new object spanned
by a set of m orthogonal uncorrelated components (called principal
components) in such a way that the variance of the initial data set,
which can be seen as the amount of information as a function of the
original variables, is (non-redundantly) maximized along subsequent
principal components. This property allows the dimensionality of the
analysis to be reduced to only the components that hold most of the
variance of the data, i.e. m ≤ n.

The method’s theoretical framework was originally presented by
Pearson (1901) and Hotelling (1936) but adapted for the first time for
the study of ISM dynamics in the work of Heyer & Schloerb (1997),
who described the formalism of the technique when considering
PPV data cubes and demonstrated its ability to retrieve velocity
fluctuations within characteristic spatial scales from synthetic models
with well-known line profiles and noise level. However, it was
not until the study of Brunt & Heyer (2013, hereafter BH13) that
the method, applied to spectroscopic images, acquired a formal
theoretical foundation.

Using the PPV intensity cube Tij = T (r i , υj ), composed of n =
nx × ny pixels, and nc velocity channels, the method first finds the
associated covariance matrix defined as

Sjk = 1

n

n∑
i=1

TijTik. (8)

The method then computes the corresponding eigenvalues λm, and
eigenvectors um, of the covariance matrix, by solving the eigenequa-
tion Su = λu. The subscript m stands for the mth principal component
of the covariance matrix. Next, the intensity cube is projected on to
the eigenvectors to construct the associated eigen images:

Im(r i) = 1

n

nc∑
j=1

Tijumj . (9)

The characteristic width of the 3D autocorrelation functions of the
eigenvectors um and eigenimages Im, i.e. the velocity and spatial lags
for which the autocorrelation functions have decreased by a factor
of 1/e from their peak values, determine, respectively, the mth order
velocity fluctuations δυm and the spatial scales δlm. Further details
can be found in BH13 and references therein.

Heyer & Schloerb (1997) applied this PCA technique to a sample
of four cloud complexes and found, for each, a correlation of the
form

δυ = υ0l
α, (10)

linking velocity fluctuations δυ to characteristic size scales l, where
the normalization υ0 is the magnitude of velocity fluctuations in
a given cloud complex. Note that we use α to refer to the PCA-
derived scaling exponent, but in general it differs from the intrinsic
exponent γ p of the velocity structure function as we briefly discuss
in Section 4.2.1. In any case, this pseudo-structure function seems
analogous to the empirical linewidth–size relationship,

�υ = CL�, (11)

found by Larson (1979, 1981) after computing global velocity
dispersions �υ from an ensemble of varied molecular associations
as a function of their projected sizes L. We use capitals C and �

to indicate that the scaling coefficient and exponent, respectively,

were derived from a global linewidth–size analysis that combined
data from independent clouds rather than from a local-scale study of
velocity fluctuations within individual clouds.

Both relationships were systematically investigated in subsequent
works, some of which are listed in Table 2 for further comparison
with our results. Also, both of them resemble a structure function-
like dependence (see equation 6), but actually do not represent the
natural behaviour of non-thermal motions mainly due to projection
and radiative transfer effects. It is possible, however, to connect
these pseudo-structure functions to intrinsic structure functions via
calibration relations and universality principles of turbulence as
summarized in Sections 4.2.1 and 4.2.2.

We use the PCA module included in the TURBUSTAT8 package (Koch
et al. 2019) to retrieve characteristic size and spectral scales (l, δυ)
from our cloud complexes. We constrain the PCA algorithm to keep
most of the data variance in principal components (95−99 per cent
of the total variance), but not too much (i.e. 
99 per cent) in order to
avoid artificial clustering of points at the minimum recoverable scales
of intensity cubes. The PCA pseudo-structure functions and their
corresponding scaling parameters (υ0, α) are computed separately by
our PCAFACTORY package according to the three extraction methods
summarized in Section 5.

4.2.1 Calibration from PCA to structure function scaling
parameters

Brunt & Heyer (2002) tested the sensitivity of the technique to
different energy spectra E(k) ∝ k−β from simulated data and
found an empirical calibration that relates the PCA-derived scaling
exponent α with the spectral index β, which is intrinsic to the
3D velocity distribution. Equivalently, Roman-Duval et al. (2011,
hereafter RD11) obtained almost the same calibration using a wider
range of synthetic scenarios with different intermittency (both spatial
and temporal sporadic fluctuations in the turbulent flow) and power
spectra for density and velocity. It is valid below a relatively high level
of density variability and for spectral indices β between 1.2 and 2.6.
Later, BH13 derived a slightly steeper but very similar calibration
from an analytic point of view. However, in this work we use the
RD11 calibration because, as BH13 suggest, their analytic result
should be seen as a supportive element rather than a replacement of
the previous empirical estimations given the approximations used in
their derivation. The RD11 calibration can be written as

β = (0.20 ± 0.05) + (2.99 ± 0.09)α, (12)

which is useful for connecting PCA scaling parameters derived from
genuine observables to the intrinsic energy distribution within a given
3D fluid volume. Observables in molecular clouds result from line-
of-sight projected averages of velocity fluctuations in the best case,
but there might also be optical depth effects involved.

The retrieved spectral indices β are related to the second-order
structure function scaling exponent γ 2 via equation (5). However,
as mentioned in Section 4.1, the rms velocity is generally not a
full representation of the fluctuations field in a fluid due to its
multicomponent nature triggered by several energy dissipation and
injection mechanisms.

Brunt et al. (2003) demonstrated that equation (12) is a good
link between α and γ 2, which holds even for orders p �= 2 as
long as the velocity field of the region is non-intermittent and
therefore reproducible by a single γ . For completeness of details,

8https://turbustat.readthedocs.io
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Table 2. Scaling parameters from Larson-like and PCA-derived structure functions reported in selected literature. For comparison, calibrations indicated in
Section 4.2.1 are used to translate parameters to rms structure function parameters when not provided. From top to bottom, the horizontal rules separate classical,
observational and theoretical parameters.

Reference Marker
Larson-like

exponent
PCA-derived

exponent Structure function Short description
� α υ0 (km s−1) γ

Kolmogorov (1941) – – – 1/3 • Kolmogorov’s law for ideal incompressible turbulence.
Kraichnan (1974) – – – 1/2 • Compressible supersonic shock-dominated turbulence (Burger’s

turbulence).

Larson (1979, 1981) 0.38 − 1.1 0.38 • Molecular clouds, clumps, cores, H II regions, mapped by different
tracers.

Solomon et al. (1987) 0.50 ± 0.05 − 1.0 ± 0.1 0.50 ± 0.05 • 12CO emission from homogeneous sample of 273 clouds.

Heyer & Schloerb (1997) − 0.43 ± 0.04 1.23 ± 0.08 0.24 ± 0.10 • 12CO emission of cloud complex Sh 155.

Heyer & Schloerb (1997) − 0.55 ± 0.03 0.78 ± 0.05 0.42 ± 0.09 • 12CO emission of cloud complex Sh 235.

Heyer & Brunt (2004) – 0.65 ± 0.01 0.87 ± 0.02 0.57 ± 0.07 • 12CO emission from 27 molecular clouds.

Heyer et al. (2006) – 0.74 ± 0.04 0.73 ± 0.03 0.71 ± 0.12 • Rosette cloud complex as a whole.

Heyer et al. (2006) – 0.79 ± 0.06 1.00 ± 0.04 0.79 ± 0.04 • Rosette cloud complex, zone I: inside ionization front, feedback
from H II region, using 12CO (similar for 13CO).

Heyer et al. (2006) – 0.66 ± 0.06 0.70 ± 0.03 0.59 ± 0.14 • Rosette cloud complex, zone II: outside ionization front.

Bolatto et al. (2008) 0.60 ± 0.10 − 0.76 ± 0.27a 0.60 ± 0.10 • Molecular clouds in extragalactic systems, using 12CO.
Roman-Duval et al. (2011) – 0.62 ± 0.20 − 0.53 ± 0.35 • Average from 368 molecular clouds, with a resolution limit of 1

FHWM (48 arcsec), using 13CO emission.

Hacar et al. (2016) – – 0.66a 0.58 • Musca cloud as a whole, isolated from stellar sources of feedback,
using 13CO and C18O(2 − 1) emission.

Rice et al. (2016) 0.49 ± 0.04 − 0.66 ± 0.09a 0.49 ± 0.04 • Dendrogram-based catalogue of 611 outer Galaxy clouds.
Rice et al. (2016) 0.52 ± 0.03 − 0.87 ± 0.09a 0.52 ± 0.03 • Dendrogram-based catalogue of 428 inner Galaxy clouds.
Miville-Deschênes, Murray & Lee
(2017)

0.63 ± 0.30 − 0.83a 0.63 ± 0.30 • 12CO catalogue of 8107 clouds in the Galactic plane.

Traficante et al. (2018b) 0.09 ± 0.04 − − 0.09 ± 0.04 • Gravity-dominated regions, core and clump scales.

Federrath et al. (2010a) – 0.66 ± 0.05 – 0.59 ± 0.13 • Simulations with purely solenoidal forcing (∇ · f = 0).
Federrath et al. (2010a) – 0.76 ± 0.09 – 0.74 ± 0.19 • Simulations with purely compressive forcing (∇ × f = 0).

Klessen & Hennebelle (2010) – – 0.8 0.5 • Simulations with continuous accretion of diffuse material.
Bertram et al. (2014) – 0.82 ± 0.03 − 0.83 ± 0.11 • Non-isothermal simulations of chemically evolving clouds. Values

for 12CO emission and mean density n = 300 cm−3.

Padoan et al. (2017) – – 0.82a,b 0.5 ± 0.1 • Simulated clouds with supernovae-driven turbulence.

Notes. aConverted from 1D to 3D velocity dispersion assuming isotropy. bExtracted manually from their fig. 4. We provide a graphical version of this summary in Fig. A1.

it is straightforward to show from equation (7) that γ p is constant
(γ p = γ 2 ≡ γ ) if and only if ζ p depends linearly on p (ζ p = pγ ).
This is not the case for intermittent velocity fluctuations, in which the
exponent γ p is no longer constant but depends on the order p of the
function. Furthermore, they concluded on intermittent fields that the
PCA-derived exponent α, after calibration, is better correlated with
structure function exponents of orders p = 1/2, 1, which means that
the translation given by the combination of equations (5) and (12)
is preferentially a measure of the intrinsic scaling exponent γ p of
low order rather than rms velocity fluctuations. Qualitatively, fields
that are intermittent exhibit extreme differences in the magnitude of
velocity fluctuations and/or density distribution over a given spatial
scale (Brunt et al. 2003), which is why multiple structure functions
would be needed to fully describe such a scenario.

4.2.2 Universality of turbulence in the molecular ISM

Based on earlier works, Larson (1981) collated 3D rms velocity
dispersions along with projected sizes L (in pc) of varied molecular
associations and derived the relation �υ = 1.10L0.38 for 0.1� L
�100 pc. This can even be extended up to larger scale ∼1000 pc
interstellar motions (Larson 1979). He found complementary rela-
tionships that connect mass and density to the dynamics of molecular
clouds. Similarly, but from a more homogeneous sample, Solomon
et al. (1987) found the relation �υ = (1.0 ± 0.1)L0.5 ± 0.05 (see

also Falgarone, Pety & Hily-Blant 2009, for a compilation of data
covering five orders of magnitude in spatial scale). For the velocity
dispersion calculation, they extracted centroid and line-width-based
velocity differences and added them in quadrature.

These relationships describe multiple evaluations of the structure
function in particular cases S2(l = L), which, when combined, turn
out to follow the same functional form as if they were part of a single
fluid, despite the fact that most of the objects analysed were born far
from each other and do not interact.

Heyer & Brunt (2004) applied PCA on individual molecular
clouds and performed Monte Carlo simulations to prove that this
resemblance is a consequence of the turbulence universality and self-
similarity over different scales of the molecular ISM in the Galaxy,
which hints at common formation mechanisms for molecular clouds.
For this reason, let us adopt the following 1-to-1 translations from
Larson-like to structure function parameters:

C ≈ υ0

� ≈ γ2.
(13)

For standardization purposes, we use this turbulence universality
condition and the second-order calibrations (equations 5 and 12) to
translate, respectively, Larson-like exponents � and PCA-derived
exponents α to rms scaling exponents γ 2, which we will simply call
γ from now on.
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4.2.3 Optical depth effects on PCA pseudo-structure functions

Larson (1981) considered optically thin regions, mostly traced by
13CO, H2CO, and NH3, and only two 12CO optically thick regions,
where the large-scale velocity variations were dominant (compared
to the smaller scale fluctuations derived from linewidths) in order
to avoid any effects from line saturation. However, numerical and
observational studies have concluded that PCA-derived scales are
nearly insensitive to the opacity regime of the emission (Heyer &
Schloerb 1997; Brunt 2003; Brunt & Mac Low 2004; Heyer et al.
2006; Brunt, Heyer & Mac Low 2009; Roman-Duval et al. 2011).
This is a strong point of the method as it allows us to study a broad
range of objects/scales traced by opaque emission. Brunt & Heyer
(2013) suggest that this is a consequence of the centroid velocity not
being affected by saturation in the optically thick regime as long as
it is symmetric to the line central frequency (see also the discussion
in Bertram et al. 2014).

In Section 6.2, we discuss optical depth effects by comparing
the retrieved scaling parameters from cloud complexes at different
orientations.

5 G E N E R A L M E T H O D O L O G Y

We implement three PCA extraction methods to investigate the
response of the retrieved pseudo-structure functions to different
analysis scales:

(i) The Mixed method: This method consists of deriving PCA
scales (l, δυ) from small (30 pc) cloud portions,9 which are
semi-automatically extracted from the simulated cloud complexes
(∼200 pc). The resulting scales are then combined to construct a
single fit equation (often called ‘Mixed fit’) that represents the
pseudo-structure function of the complex. This is the method that
we use the most throughout the work.

(ii) The Complex method: In this method, we analyse the cloud
complexes as they are, without any sub-portioning.

(iii) The Individual Cloud method: For this method, we do not
combine the PCA-derived scales from the individual (30 pc) portions
but rather use them to compute their pseudo-structure functions
separately, as individual objects. This will allow us to do further
statistics, especially to analyse cloud environmental effects on the
retrieved scaling parameters. Henceforth, we refer to individual
portions interchangeably as ‘individual clouds’ or just ‘clouds’.

The Complex method is straightforward to implement. We take the
intensity cubes obtained from the radiative transfer calculations and
pass them directly through the TURBUSTAT.PCA module to compute
spatial (l) and velocity scales (δυ) from our cloud complexes, as
single objects. The Mixed and Individual Cloud methods require,
however, further steps that we explain below in detail.

First, we determine zeroth moment maps using the cloud complex
intensity cubes. The zeroth moment is defined as the integrated
intensity along the velocity (or frequency) axis ψ as follows:

M0(x, y) =
∫

ψ

T (x, y; υ)dυ, (14)

where x and y refer to the pixel location in the synthetic cube.
Then, we use the ASTRODENDRO10 package with each zeroth

moment map as input to compute a hierarchical tree, called a

9This size is typical of giant molecular clouds, used as individual objects for
PCA in, e.g. Heyer & Brunt (2004).
10http://www.dendrograms.org

Figure 2. Basic workflow to retrieve PCA pseudo-structure functions of
cloud complexes formed in our Cloud Factory simulation suite. This figure
illustrates the Mixed PCA extraction method.

dendrogram, which divides the map into closed sub-regions denoted
by equal-valued pixels.

From the computed dendrograms, we focus on extracting the
innermost, irreducible, sub-structures of the region, called ‘leaves’,
which are usually within larger scale ‘branches’ that may also be part
of more extended structures (see panel c in Fig. 2). To construct the
dendrograms, we set the three main parameters, min value = 0.1 M0,
min delta = M0 and min npix between 100 and 400, where M0

is the mean value of the zeroth moment. For reference, typical
values for complex D are min value = 9.3, min delta = 92.9, and
min npix = 300. Next, we find peak pixels in ‘leaves’ and centre
(30 pc)2 portions on them that we use afterwards to slice the original
12CO cubes. Ideally, these portions (or individual clouds) should
cover the cloud complex moment map as much as possible so that
the least intensity is left out of the analysis, regardless of the velocity
channel. In order to achieve this, we set the dendrogram parameters
in such a way that the ‘leaves’ are enough in number and sufficiently
separated from each other. Finally, PCA is computed on individual
clouds to construct the Mixed and Individual Cloud fits. Fig. 2 is a
schematic representation of this procedure.
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For the fitting process we randomise the PCA-derived scales
(l, δυ) N times using their uncertainties (σ l, σ δυ ) as Gaussian
standard deviations. We run 1000 random realisations for the
Mixed and Complex fits and 200 for each Individual Cloud fit.
The reported fit consists of the mean scaling parameters (υ0, α)
obtained from the N random fits, and the errors correspond to
the standard deviations (συ0 , σα) from the mean values. We also
report the associated coefficient of determination, R2, and the
reduced chi-square, χ2, to evaluate the goodness of the fits. This
is all recorded in the supplementary data base provided with the
manuscript.

Despite the fact that we assign a single power-law structure
function to each cloud complex, all of them can be seen as a
composition of different power laws, each of which is associ-
ated with a different portion of the complex (one per colour in
Fig. 4). The structure functions extracted from individual clouds
(e.g. Fig. 7, bottom row) are all collected in the Supplementary
file. The dispersion of individual cloud scaling parameters is re-
lated to the level of intermittency of the hosting complex (see
Section 4.2.1).

This pipeline and analysis tools are all built-in and executed by
our PCAFACTORY package.

6 R ESULTS

In this section, we present the PCA of a set of cloud complexes
extracted from our Cloud Factory simulation suite using 12CO J =
1 − 0 intensity PPV cubes. We report the impact on velocity structure
functions after adding physical mechanisms such as gas self-gravity
or supernova feedback on star-forming sites (Section 6.1). Likewise,
we present variations driven by different line-of-sight projections
(Section 6.2) and time snapshots (Section 6.3). Lastly, we investi-
gate cloud environmental effects and explore variations in velocity
fluctuations when applying PCA locally on individual molecular
clouds or globally on full cloud complexes (Section 6.4). We study
six cloud complexes (two per physical scenario) as summarized in
Table 1, but since we consider (three) different lines-of-sight and
(two/three) time snapshots, there are in practice 42 different objects:
12 for the potential-dominated scenario with no self-gravity; 18 for
the potential-dominated scenario with self-gravity, for which we
extracted an extra time snapshot to study the time evolution of clouds
under local gravitational effects (see Section 6.3); and 12 for the
feedback-dominated scenario.

For reasons of space, the corresponding PCA figures and line emis-
sion profiles from all the cloud complex configurations can be found
in the supplementary file provided along with this manuscript.11

Additionally, the whole catalogue of (l, δυ) and (υ0, α) pairs extracted
from individual clouds and cloud complexes is also available online.
The software developed to carry out this work, the PCAFACTORY, is
open source and available on GitHub.12

6.1 Structure function dependence on the physical scenario

In Fig. 3, we present the structure function scaling parameters (υ0,
γ ) derived for all our cloud complexes. The scaling parameters were
retrieved using the Mixed PCA extraction method (see Section 5),
which combines PCA-derived scales (l, δυ) of smaller cloud portions
to find the associated pseudo-structure function of each cloud

11https://github.com/andizq/andizq.github.io/tree/master/pcafactory-data
12https://github.com/andizq/pcafactory

Figure 3. Structure function parameters (υ0, γ ) of cloud complexes extracted
from different physical scenarios (marker colour), orientations (marker style),
and time snapshot (marker size) after tracer refinement has commenced. The
parameters are derived from PCA pseudo-structure functions using the Mixed
method (see Section 5 and Fig. 2). The grey crosses are the best cluster
centres obtained from a K-means clustering analysis. The empty circles and
the horizontal lines, with errors as the shades, are selected parameters from
previous literature (see Table 2).

complex. The translation from PCA-derived scaling exponents (α)
into the corresponding structure function exponents (γ ) assumes
the second-order calibrations given by equations (5) and (12). The
(υ0, γ ) pairs are computed for different line-of-sight projections
and time snapshots for each cloud complex. For comparison, we
include representative observational and synthetic values reported in
previous literature as well as theoretical regimes for subsonic and
supersonic turbulence (see Table 2).

The most obvious aspect is that the scaling parameters agglomerate
in different zones according to the physical mechanisms governing
the cloud complexes. To assess this, we perform a K-means clustering
analysis along with a Silhouette Coefficient score test that suggests
that the parameter distribution is better represented by two clusters
(score = 0.56), followed by three clusters (score = 0.51). The cluster
centres are also shown in Fig. 3. Overall, the structure function
scaling exponents (γ ) are similar regardless of the physical scenario
and lie mostly around the range of values obtained by RD11 and
Bertram et al. (2014), suggesting that the structure exponent alone
is not sufficient to fully determine the physical nature of cloud
complexes. Scaling coefficients (υ0) must also be taken into account
to effectively distinguish between clouds.

We summarize in Table 3 the mean and standard deviations of
scaling parameters derived from all the cloud complex configura-
tions, using three PCA extraction methods detailed in Section 5.
For the potential-dominated case with no self-gravity, the mean
scaling exponent γ = 0.51 ± 0.15 corresponds to that of the clas-
sical Burger-like turbulence (γ = 1/2). Turning on self-gravity
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Table 3. Mean and standard deviation of structure function parameters derived from different PCA
extraction methods. The mean is taken over all time snapshots and lines of sight. Conventions: a. Potential
dominated; b. Potential dominated with self-gravity; c. Feedback dominated.

PCA extraction method Physical scenario Cloud complex υ0 (km s−1) γ

Mixed a A0 & B0 0.41 ± 0.06 0.51 ± 0.15
b A & B 0.46 ± 0.17 0.78 ± 0.19
c C & D 1.14 ± 0.18 0.74 ± 0.14

Complex a A0 & B0 0.31 ± 0.05 0.48 ± 0.15
b A & B 0.36 ± 0.14 0.74 ± 0.19
c C & D 1.13 ± 0.20 1.02 ± 0.18

Individual clouds a A0 0.36 ± 0.09 0.64 ± 0.26
a B0 0.48 ± 0.11 0.64 ± 0.31
b A 0.49 ± 0.20 1.01 ± 0.26
b B 0.45 ± 0.22 0.82 ± 0.35
c C 1.37 ± 0.55 0.84 ± 0.48
c D 1.20 ± 0.46 0.85 ± 0.29

increases scaling exponents to γ = 0.78 ± 0.19 while maintaining
low scaling coefficients υ0 = 0.46 ± 0.17 km s−1. On the other hand,
feedback-dominated complexes show similar exponents but suffer a
substantial increase in scaling coefficients to υ0 = 1.14 ±
0.18 km s−1.13 Additionally, we show in Table 4 a comparison
between PCA parameters derived from 12CO and 13CO J = 1− 0
cubes for some cloud complexes and orientations. We assume that the
13CO abundance is a factor of 69 lower than that of 12CO (see Visser,
van Dishoeck & Black 2009). Despite the contrast in opacity between
the two tracers, no significant differences are found for scaling
exponents. This indicates that both tracers are valid descriptors of
cloud kinematics as long as velocity fluctuations are supersonic
(generally satisfied), which softens opacity effects. We find that
even in edge-on orientations, line emission profiles from small cloud
portions can span over a wide range of velocities and exhibit sub-
structure suggesting that the emission can still arise from different
depths in the cloud (see e.g. Fig. A4). Scaling coefficients, however,
decrease systematically in the case of 13CO, which we attribute to
the fact that 13CO lines are less extended in velocity channels and
hence the retrieved fluctuations decrease for all size scales.

For illustration, in Fig. 4 we show the PCA relationships derived
for three cloud complexes, B0, B, and D, each from a different
physical scenario. All of them are seen face-on and extracted at
similar time-steps after starting tracer refinement so that the effects
of varying physical scenario prevail. The PCA already hints at
differences in pseudo-structure functions (δυ) from case to case,
increasing both the scaling exponent (γ ) and coefficient (υ0) as we
add more physical processes in the simulation. However, if we look
at the full set of results for γ shown in Fig. 3, which includes values
for the other cloud complexes and other projections, we see that
while there is still a clear sign that including self-gravity increases γ ,
the difference between the feedback- and (both) potential-dominated
cases is less clear.

The coloured circles in the left-hand panel of Fig. 4 are the PCA-
derived scales (l, δυ) from selected cloud portions correspondingly
illustrated as coloured squares in the right-hand panel, overlaid on
the 12CO J = 1 − 0 zeroth moment map of the cloud complex. The
crosses in the left-hand panel are the PCA-derived scales from the

13We warn the reader that the reported γ should be used with caution as it
more reliably traces low-order fluctuations (rather than rms velocities) when
the region is intermittent (see Section 4.2.1).

cloud complex as a whole. The pie chart shows the number of PCA
scales extracted from each cloud portion with the total net scales
in the middle. Yet, a cloud portion is subject to rejection so long
as (a) the centre of its associated window is enclosed by another
window or (b) it has no scales retrievable by the PCA. This is shown
by the coloured round boxes at the bottom of the left-hand panel.
The blue line is the associated fit to the combined points from cloud
portions (Mixed method) and the pink line is the fit to the points
derived from the cloud complex as a whole (Complex method). The
blue- and pink-shaded regions are the uncertainties of these fits (see
details in Section 5). For reference, the dashed grey line is the best
fit found by Heyer & Brunt (2004) using PCA-derived scales from
27 molecular clouds, which, in this case, most closely resembles the
feedback-dominated cloud complex D.

Also, note that the number of PCA points is more sensitive to
higher zeroth moment values than to larger 12CO flux extents, as one
might think at first. This is because the zeroth moment is related to
intensity variance along the velocity axis. If density fluctuations and
velocity intermittence in the region are low, a high-valued pixel in
zeroth moment spans into a wide range of values in the covariance
matrix of the line cube. Thus, it is equivalent to the amount of
information that principal components can keep and hence the PCA
algorithm will raise more (l, δυ) pairs. Furthermore, the number
of pairs usually depends on the characteristic scaling exponent of
the region. There are fewer pairs (per number of cloud portions)
for cloud complexes with lower exponents (see also Brunt & Heyer
2002), which is in turn related to the diagonality of the covariance
matrix, driven by a typically higher degree of line-centroid variation
in higher exponent velocity fields (see e.g. fig. 1 of Brunt & Heyer
2013).

On the other hand, the fact that the velocity scaling coefficients
are generally low for complexes A and B, at all times, reflects a high
level of velocity coherence due to weak stellar feedback in these
regions. This favours the development of long filamentary structures
present in both complexes (stretched out by differential rotation of
the Galaxy), their preservation over time, and a sustained emergence
of stellar systems represented by sink particles. This agrees with
the weak feedback provided by randomly distributed supernovae,
and also with the low-velocity gradients in complex B and in long
filaments of complex A reported in Paper I.

Conversely, clustered supernova feedback plays a significant role
in taking cloud complexes out of that coherent state. As previously
found in Paper I, supernovae tied to star formation sites make

MNRAS 500, 5268–5296 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5268/5974289 by Acquisitions user on 12 M
arch 2021



5282 A. F. Izquierdo et al.

Table 4. Comparison between PCA-derived scaling parameters from LVG 12CO and 13CO J = 1 − 0 cubes for
different cloud complexes and orientations, using the Mixed extraction method. We also show the distribution of
parameters for both isotopologues in the LVG panel of Fig. A6.

Complex Time-step (Myr) Orientation 12CO 13CO
υ0 (km s−1) αPCA υ0 (km s−1) αPCA

A0 2 face-on 0.30 ± 0.01 0.66 ± 0.03 0.16 ± 0.01 0.57 ± 0.05
A0 2 edge-onφ=90◦ 0.49 ± 0.01 0.69 ± 0.03 0.27 ± 0.01 0.79 ± 0.05

B 3 face-on 0.77 ± 0.01 0.61 ± 0.02 0.60 ± 0.02 0.73 ± 0.03
B 3 edge-onφ=90◦ 0.88 ± 0.03 0.87 ± 0.05 0.49 ± 0.02 0.93 ± 0.05

C 1 face-on 0.83 ± 0.03 0.75 ± 0.07 0.59 ± 0.03 0.74 ± 0.09
C 1 edge-onφ=90◦ 0.91 ± 0.04 0.94 ± 0.09 0.79 ± 0.04 0.88 ± 0.10

D 1 face-on 0.79 ± 0.02 0.88 ± 0.04 0.79 ± 0.03 0.99 ± 0.05
D 1 edge-onφ=90◦ 1.04 ± 0.04 0.92 ± 0.06 0.87 ± 0.04 0.90 ± 0.07

complexes C and D have shorter and less massive filaments. This
type of feedback also induces stronger shear that reduces filament
lifetimes and consequently also their star formation efficiencies. In
this work, this manifests as high scaling coefficients, which indicates
a larger degree of velocity fluctuations in complexes C and D. Again,
this is in good agreement with the physical mechanisms we know
are governing the regions and suggests that the velocity scaling
coefficient of the structure function can provide valuable information
about the cold dense molecular ISM.

In summary,

(i) cloud complexes governed by different physical mechanisms
produce separate clusters of points in the (υ0, γ ) parameter space
(see e.g. Fig. 3).

(ii) the scaling coefficient υ0 is an excellent reference to distin-
guish between potential-dominated and feedback-dominated cloud
complexes, whereas the role of γ is only discernible when self-
gravity is turned off (see Fig. 3 and Table 3).

(iii) Low velocity scaling coefficients are associated with (quies-
cent) regions with coherent velocity fields, which favours the devel-
opment and preservation of long filamentary structures. Conversely,
strong stellar feedback takes cloud complexes out of their coherent
state, producing smaller and short-lived structures.

6.2 Structure function: cloud orientation effects

We also vary the line-of-sight projection of cloud complexes during
the radiative transfer calculations to explore the influence of den-
sity/velocity anisotropies and optical depth effects on the retrieved
structure functions. As shown by the different markers in Fig. 5, there
are no systematic variations in scaling parameters when changing the
orientation of cloud complexes; they rather depend on the particular
geometry of each complex and hence on their evolution over time.

Edge-on projections of cloud complexes with low scale heights
(A0, B0, A, and B) exhibit flat and continuous CO distributions but
actually consist of both nearby and distant structures that comprise
each cloud complex as a whole (see Figs 1 and A3). Background
emission is hence susceptible to being blocked by foreground gas
with similar line-of-sight velocities if optically thick tracers are used
as in our case with 12CO. However, opacity effects are softened by the
fact that velocity fluctuations are generally supersonic and, in conse-
quence, part of the background emission can still reach the observer.

Projection effects for A0 and B0, which are our least realistic cases,
seem to be driven by column density variations. As shown in Fig. 5,
complex A0 yields comparable scaling exponents both for the edge-
on φ=0◦ and edge-on φ=90◦ orientations (γ ≈ 0.6 at any time) but

lower values for the face-on views (γ ≈ 0.3). The column densities
are very high when this complex is viewed edge-on (either φ = 0◦

or φ = 180◦) compared to the face-on view (≈3× higher).
Cloud complex B0 does not follow the same pattern. In this case,

variations induced by line-of-sight projections are smaller. This is
in good agreement with our previous interpretation because gas
column densities are this time nearly the same for all projections,
with differences smaller than 30 per cent between face-on and edge-
on column densities.

When compared to PCA applied over cloud complexes as a whole,
the variability of complex B0 decreases even more (see Fig. A2).
For B0, all the scaling parameters lie around υ0 = 0.35 km s−1

and γ = 0.4 regardless of orientation. This suggests that variations
in scaling parameters in this complex are due to individual cloud
velocity fluctuations driven either by local collisions or random
supernova feedback. On the other hand, cloud complex A0 does
maintain the same behaviour when studied as a whole, namely, the
face-on orientations still yield the lowest scaling exponents at all
times and the gap to edge-on values is roughly the same. Both results
strengthen our argument that larger column densities yield steeper
scaling exponents, and equivalently, isotropic column densities result
in similar scaling parameters. We emphasize, however, that these are
small variations that in no way resemble the variations induced by
changing feedback conditions.

Complexes A and B show similar signatures but their parameters
are strongly affected by local gravitational forces, displaying rather
systematic variations over time. Hence, we prefer to leave this
for Section 6.3 where cloud complexes are analysed from their
evolutionary context.

For feedback-dominated complexes, C and D, the edge-on φ=0◦

orientation (parallel to the φ-axis) produces high scaling exponents
and the highest scaling coefficients in most of the cases. This is
because for both complexes the axes of filamentary structures are
preferentially stretched out along the φ-direction due to differential
rotation of the Galaxy. This makes the edge-on φ=0◦ projection
contain more gas mass within smaller projected scales than the
other orientations. Additionally, the scale height of these regions
is naturally high due to nearby (in C) and internal (in D) energy
feedback from supernova explosions, which enables more gas to
contribute to the retrieved velocity fluctuations as optical depth
effects are softened (see Fig. A5).

In summary,

(i) in potential-dominated complexes without self-gravity, higher
column densities lead to steeper scaling exponents. For comparable
column densities, variations in scaling parameters are smaller and
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Figure 4. Left column: Velocity structure function from the face-on view of cloud complexes B0 (top), B (middle), and D (bottom) at selected time snapshots.
The coloured circles are the PCA-derived scales (l, δυ) from the same-coloured (30 pc)2 clouds on the right-hand panel. The white crosses are the PCA-derived
scales from the cloud complex as a whole. The pie chart indicates the number of scales extracted from each cloud and the total number of scales in the middle.
Overlapping cloud portions are rejected and shown in colours at the bottom of the left-hand panels. For reference, the dashed line is the PCA-derived best fit
found by Heyer & Brunt (2004) from an ensemble of 27 molecular clouds. The blue and fuchsia lines are, respectively, the fit from considering all the points
from individual clouds simultaneously (Mixed method) and the fit to the points from the cloud complex as a whole (Complex method). Right column: Cloud
portions extracted for PCA, overlaid on the synthetic 12CO J = 1 − 0 zeroth moment maps of the cloud complexes.
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Figure 5. Structure function parameters (υ0, γ ) of cloud complexes extracted
from different physical scenarios (marker colour) and orientations (marker
style) using the Mixed method. The solid lines (and their errors as shades)
are reference literature values whose legends can be found in Table 2.The
markers in grey are potential-dominated self-gravitating complexes studied
separately in Section 6.3 as a function of time.

driven by localized cloud-scale disturbances (e.g. cloud collisions,
isolated supernovae).

(ii) in feedback-dominated complexes, where optical-depth ef-
fects are less prominent, projections with larger column densities
yield higher scaling parameters. Especially for edge-on φ=0◦ lines of
sight, which are parallel to the long axis of filamentary structures.

6.3 Structure function: time evolution

Fig. 6 follows the evolution of structure function parameters of cloud
complexes for each physical scenario and orientation. Potential-
dominated complexes with no self-gravity yield stable scaling
exponents (γ ) over time but present a systematic reduction of velocity
scaling coefficients (υ0). This suggests a sustained lack of turbulence
fueling sources to compensate the natural accelerated energy decay
over length-scales characteristic of Kolmogorov-like fluids (see e.g.
Onsager 1949), which, on small scales, rapidly lose energy via vis-
cous dissipation. Also, this indicates that in these complexes, driving
of large-scale velocity fluctuations by random supernovae is unable
to maintain the level of turbulence within the clouds (see also Ibáñez-
Mejı́a et al. 2017 and Seifried et al. 2018 who find similar results).

Turning on self-gravity dramatically changes this behaviour. In this
case, the scaling coefficient (or magnitude of velocity fluctuations,
υ0) increases with time for complexes A and B. The gradient of this
increment appears linear and is similar for both complexes, which
allows us to capture the time evolution of velocity scaling coefficients
with the following relationship:

υ0(t) = 0.07 + 0.19

(
t

Myr

)
[km s−1]. (15)

As expected, we also find a (nearly linear) sustained increase in mean
surface densities over time. For instance, cloud complex B yields
mean surface number densities 
H(t = 1 Myr) = 7.65 × 1019 cm−2,

H(t = 2 Myr) = 1.07 × 1020 cm−2, and 
H(t = 3 Myr) = 1.44 ×

1020 cm−2. This is in excellent agreement with the dependence of
υ0 on the cloud surface density found by Heyer et al. (2009), and
suggests that the physics behind such a dependence is dominated by
local gravitational interactions.

Conversely, the evolution of scaling exponents γ is less pre-
dictable, which might indicate that local gravitational forces trigger
velocity fluctuations across a wide range of spatial scales. To assess
this, we zoomed into cloud complex B to track the evolution of indi-
vidual filament scaling parameters as a response to local gravitational
effects (see Fig. 7). At t = 1 Myr, when there are still no sink particles,
individual cloud parameters cluster around a common zone in the
(υ0, γ ) space. Overall, scaling exponents are steeper (γ = 0.75)
and velocity fluctuations weaker (υ = 0.28 km s−1) compared to
those of the potential-dominated case with no self-gravity (γ = 0.51,
υ = 0.42 km s−1). We propose that this is a consequence of global
(large-scale) collapse processes that reduce the degree of turbulence
in the region by increasing coherence.

Later, at t = 2 Myr, there is a burst of star formation in the long
dense filament (Nsinks > 100) but none in the diffuse filament yet. This
produces a clear separation of individual cloud parameters coming
from each filament as shown in the middle panel of Fig. 7. The PCA
scaling exponents of the short diffuse filament are this time shallower
because gravitational fragmentation has commenced. This favours
small-scale interactions in the region and is likely to be a signature
of pre-core stages in molecular clouds. The long dense filament
skipped this phase as it formed several individual clumps/cores much
faster. Such a rapid emergence of stellar systems drastically lowers
velocity fluctuations on small scales and, hence, increases the scaling
exponent (γ ). This ‘burst’ of new cores also establishes multiple
point-like centres of collapse affecting inter-core gas predominantly
on intermediate and large scales. For reference, the region in the long
filament where sink particles are more numerous has a mean sink
separation of ≈ 0.5 pc (see Fig. 1). As a side note, a consequence
of our sink particle implementation is that there is some missing
information from gas velocities on small scales because it reduces
the bound gas mass around the cores to point-mass gravitating
particles. Hence, in real observations, shallower (but still high)
scaling exponents should be found in core stages because gas from
cores/clumps do still contribute to small-scale velocity fluctuations
in the region via line broadening.

Finally, at t = 3 Myr, the short filament commences the formation
of cores at its upper tip. For that particular cloud (cld 13 at t =
2 Myr, cld 12 at t = 3 Myr), both scaling parameters increase and
favour the zone occupied formerly by clouds from the long filament,
but not as high as them, because of the much lower core formation
rates. As expected, cloud portions with no cores retain the same γ ,
but with higher υ0, because fragmentation is still carrying on. Both
parameters continue to increase for the long filament as the number
of cores grows over time. Interestingly, new molecular associations
appear on the right side of the complex and yield scaling parameters
close to the same zone where clouds from both of the filaments started
at t = 1 Myr, which strengthen the idea that quiescent clouds have
gravity-driven time-dependent trajectories in the (υ0, α) space. This
behaviour also holds for cloud complex A, namely individual cloud
scaling parameters also respond differently depending on local core
formation stages. Note that both fragmentation processes in pre-core
stages, as well as in subsequent formation of cores, continuously lead
to an increase in the magnitude of velocity fluctuations (υ0) across
the cloud complex.

Feedback-dominated cloud complexes evolve according to their
particular environment. As seen in Fig. 6, the common pattern is that
complex C migrates towards lower scaling coefficients υ0, whereas
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The Cloud Factory II: gravoturbulent clouds 5285

Figure 6. Top row: Structure function parameters split by physical scenario to illustrate variations over time. The arrows show the evolution of cloud complex
parameters for a given line of sight. Literature values are shown for reference; marker codes and descriptions are summarized in Table 2. Bottom row: time
evolution of scaling coefficients υ0 for each cloud complex and orientation. The dashed line in the middle panel is the linear best fit obtained for complexes in
the potential-dominated scenario with self-gravity.

complex D moves towards higher υ0. Local gravitational effects do
not play the same role in these complexes as in quiescent regions be-
cause mass instabilities are this time more difficult to reach. In com-
plex C, external feedback from supernova explosions set large tur-
bulence driving scales that decay over time through smaller scales as
there are no internal fueling sources of turbulence. Other mechanisms
of internal feedback (beyond the scope of this work) such as winds or
photoionizing radiation could potentially help inject fresh energy into
the cloud (see e.g. Peters et al. 2017). In complex D, however, energy
re-injection from internal supernovae seems to sustain and increase
the level of turbulence through expanding supernova bubbles.

In summary,

(i) random supernovae alone are unable to sustain turbulence in
molecular clouds at a level consistent with observations.

(ii) quiescent self-gravitating molecular clouds have time-
dependent trajectories in the (υ0, γ ) parameter space.

(iii) there is a common zone in the parameter space where
molecular clouds are born.

(iv) the scaling coefficient υ0 increases steadily over time. This
is associated with gravitational fragmentation processes (both in
pre-core and core formation stages) that increase the magnitude of
velocity fluctuations over the cloud lifetime.

(v) the evolution of scaling exponents γ is less predictable. It
is associated with variations in the characteristic driving size-scale
of gravitational evolutionary stages in cloud portions of a complex.
Thereby, large-scale collapse, pre-core, and core formation stages,
which may all take place at the same time in a cloud complex, respond
differently in the (υ0, γ ) space.

(vi) mean surface densities in quiescent self-gravitating cloud
complexes also increase steadily over time, suggesting a connection

MNRAS 500, 5268–5296 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5268/5974289 by Acquisitions user on 12 M
arch 2021



5286 A. F. Izquierdo et al.

Figure 7. Time evolution of scaling parameters in cloud complex B. The top row shows zeroth moment maps at different time-steps after commencing tracer
refinement. The bottom row shows the PCA-derived pseudo-structure function parameters (υ0, α) from individual clouds in complex B. The standard deviation
of cloud parameters is shown in the lower left corner of the panels. The colour code of individual portions in top panels matches the marker colours in bottom
panels. Individual clouds migrate over time in the (υ0, α) space in response to different gravitational processes taking place in the complex.

between the evolutionary stage of local gravitational processes
and the dependence of υ0 on surface density reported in previous
literature.

(vii) pre-core stages favour small-scale fluctuations ruled by
turbulence and local fragmentation, yielding shallower exponents.

(viii) core stages increase scaling exponents as cores act as
multiple point-like centres of collapse affecting inter-core gas at
medium and large scales predominantly.

(ix) Local gravitational effects do not seem to play the same role in
feedback-dominated cases because mass instability is more difficult
to achieve and supernovae effects prevail.

(x) In feedback-dominated complexes, driving of large-scale ve-
locity fluctuations by clustered supernovae can sustain the level of
turbulence within the clouds.

(xi) Unlike external feedback, internal clustered supernovae sub-
stantially increase the magnitude of velocity fluctuations υ0 over
time, which in turn destroys the cloud faster.

6.4 Structure function: variability within cloud complexes and
environmental effects

We explore three PCA extraction methods to address any variations
in scaling parameters that might arise when different analysis
scales are used to retrieve structure functions. As a reminder, the
three approaches are the Mixed, the Complex, and the Individual

Cloud methods. The Mixed method consists of combining PCA-
derived scales from cloud portions to construct the structure function
representative of their hosting complex; the Complex method applies
the PCA algorithm on whole complexes, without sub-portioning;
and the Individual Cloud method extracts PCA-derived structure
functions from cloud portions as if they were individual objects,
without mixing them. See further details in Section 5.

Fig. 8 shows the distribution of structure function scaling pa-
rameters derived from each of the PCA extraction methods and
physical scenarios, and Table 3 summarizes the mean values and
standard deviations. The Mixed and the Complex methods yield very
similar parameter dispersion for all the physical scenarios. However,
studying cloud complexes as a whole with the Complex method shifts
the potential-dominated cases (A0, B0, A, and B) to lower scaling
coefficients υ0 (�υ0 ∼ −0.1 km s−1) and the feedback-dominated
cases (C, D) to higher scaling exponents γ (�γ ∼ 0.22) compared
to the Mixed method. We attribute these variations to intermittency
of density and velocity fields that make the PCA scaling exponents
not to follow second-order velocity fluctuations but lower orders
only (see Brunt et al. 2003; Roman-Duval et al. 2011). Similarly, the
difference in scaling coefficients is due to the PCA-derived scales
describing low-order velocity fluctuations within the Complex (see
e.g. Fig. 4). This effect is more prominent in the Complex analysis
method, in which PCA is computed on entire cloud complexes
and hence intermittent fields are more likely to appear; especially
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The Cloud Factory II: gravoturbulent clouds 5287

Figure 8. Distribution of structure function parameters for different PCA extraction methods: from left to right, Mixed, Complex, and Individual Clouds
(see Section 5). The filled contours correspond to 33, 68, and 95 per cent levels. Mean parameters and standard deviations for each method and scenario are
summarized in Table 3. The horizontal lines and the circles are the literature parameters listed in Table 2.

Figure 9. Same as the third panel of Fig. 8 but discriminating individual
clouds according to their hosting cloud complex. The lines and the circles
refer to the literature values indicated in Table 2.

in the feedback-dominated cases where extreme fluctuations in the
turbulent flow are expected.

In Fig. 8, we also present the scaling parameter distribution for
the Individual Cloud method, which computes the structure function
of individual molecular clouds and treats them as individual objects.
Due to the much higher number of objects, the parameter scattering
is naturally larger for all the scenarios compared to the Mixed
and Complex methods. However, the feedback-dominated scenario
produces the widest range of scaling parameters as a consequence of
the variation in localized internal and external supernova feedback
plus the local gravitational influence.

Fig. 9 splits individual cloud distributions depending on the
origin cloud complex to illustrate the influence of the surrounding
environment. Parameter variations due to different density contexts
are not significant for potential-dominated complexes though. On
the other hand, both cloud complexes in the feedback-dominated

scenario produce similar scaling parameters, however, complex D
spans a smaller range of parameters as noticed from its individual
cloud values. This is due to the supernova explosions embedded in
complex D that destroy cloud structures faster than in the quieter
complex C.

As expected, due to the prescribed burst of supernovae in our
feedback-dominated scenario, the mean scaling parameters lie close
to values resulting from hypersonic-turbulence samples such as the
ionized zone of the Rosette cloud reported by Heyer et al. (2006;

marker in Figs 8 and 9) and the Federrath et al. (2010a) simulations
using purely compressive forces (the solid blue line ).

In summary,

(i) using different analysis scales can reveal density and velocity
intermittent fields.

(ii) feedback-dominated cases are more prone to intermittency.
This is evidenced as higher dispersion of individual cloud scaling
parameters than potential-dominated complexes.

(iii) environmental conditions of clouds may also split scaling
parameters (υ0, γ ) into separate clusters of points for each physical
scenario.

(iv) the feedback-dominated scenario produces the largest range
of scaling parameters.

(v) the parameter distribution from clouds with embedded super-
novae is more confined in γ than those with external feedback only.
We attribute this to the faster disruption of coherent structures in the
former case.

7 D ISCUSSION

7.1 Comparison to observational and synthetic structure
functions

From Fig. 8, the potential-dominated complexes without self-
gravity are mostly clustered between (incompressible) subsonic
(Kolmogorov 1941; Onsager 1949) and supersonic shock-dominated
turbulence (Kraichnan 1974; Frisch et al. 2001) regimes, or just above
the latter. This suggests that large-scale gravitational forces along
with random (isolated) supernova feedback are able to reproduce
classical scaling exponents (γ ) from theoretical fluids. They also
agree with observational exponents found by Larson (1981) and
Solomon et al. (1987), and with simulations of pure solenoidal
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turbulence forcing performed by Federrath et al. (2010a). The
solenoidal turbulence is associated with regions of low star formation
activity such as the quiescent zone of the Rosette cloud complex
(Heyer et al. 2006) or the Musca cloud (Hacar et al. 2016). However,
the magnitude of velocity fluctuations (υ0) remains too low in this
scenario to fully reproduce the observations.

Turning on self-gravity generally produces steeper structure func-
tion scaling exponents (γ ). Depending on the evolutionary stage
of cloud complexes, gravity-driven (non-thermal) motions such as
collapse and/or accretion flows can increase the velocity dispersion.
This results in a sustained increase of the magnitude of velocity
fluctuations (υ0), triggered by the emergence of local potential
wells in the region. In pre-core stages, this occurs on small scales
characterized by the core accretion zone, and in core stages on
medium/large scales given by the separation between cores (Smith
et al. 2016). Complex B is an excellent sample to study local
gravitational effects as it is composed of two quiescent filamentary
structures that evolve differently. At early stages, one filament is
dense and prominent and the other is diffuse and discontinuous. Fig. 7
shows that the PCA-derived parameters from individual clouds of this
complex are clearly different depending on the analysed filament.
Both υ0 and α are in general higher for the longer, denser filament,
which agrees very well with the idea that massive regions yield
higher velocity dispersion for larger column densities due to bound
clumps and cores undergoing gravitational collapse (Ballesteros-
Paredes et al. 2011).

It is particularly interesting to compare the results from this
physical scenario with real giant molecular clouds that have little
stellar feedback. This is the case for the Musca cloud in the Musca-
Chamaeleonis molecular complex reported by Hacar et al. (2016) as
the first observational evidence of a filament that is largely coherent
with negligible internal turbulence. They found two observational
relations of the form δυ = υ0lγ that depend on the scale size range
of the cloud: (i) a transonic δυ = 0.55l0.25 for scales < 1.0 pc and
(ii) a supersonic δυ = 0.66l0.58 on scales between 1.0 and 3.0 pc. We
multiplied their reported δυ by a factor of

√
3 (assuming isotropic

3D velocity fluctuations) to facilitate comparison with our 3D
parameters. Our self-gravitating cloud complexes without clustered
feedback are consistent with the scaling parameters derived from
this quiescent region in the supersonic regime, especially the most
evolved complexes (see middle panel of Fig. 6). Additionally, some
cloud portions in complex B also manage to reproduce Musca’s
parameters in the transonic regime. This is the case for clouds in
the diffuse filament of complex B where core formation has just
commenced at t = 3 Myr (see Fig. 7).

Furthermore, Hacar et al. (2016) also found that an independent
analysis of individual portions in the Musca cloud leads to a
wide range of scaling parameters, suggesting the presence of local
fluctuations that can substantially differ from the structure function
of the cloud as a whole. This resembles our result that individual
cloud parameters exhibit a high degree of scatter when compared to
the parent larger scale cloud complex parameters. We found that this
level of scattering is related to several gravitational stages governing
different scales of the cloud/complex (see Fig. 7), which at the same
time, is closely related to the density distribution of the region. Thus,
we attribute the broken power law reported for the Musca cloud to
asynchronous evolution of parameters driven by local gravitational
effects.

Scaling exponents (γ ) derived from our feedback-dominated cloud
complexes are consistent with Federrath et al. (2010a) simulations
with purely compressive forces or with the value reported by Bertram
et al. (2014) for 12CO emission of molecular clouds with artificial

turbulent fields. When considering both scaling parameters (γ , υ0),
our cloud complexes and individual clouds can reproduce a range
of observations including those of Larson (1981), Solomon et al.
(1987), and Heyer & Brunt (2004; see Figs 8 and 9). The distribution

of parameters is centred around the point corresponding to the
zone II of the Rosette cloud complex, which is dominated by strong
stellar feedback from nearby massive stars (Heyer et al. 2006). This is
compatible with the burst of supernova explosions that inject strong
energy feedback in our simulations.

7.2 Are supernovae important for driving turbulence in
molecular clouds?

It is useful to briefly discuss the role that supernovae play in
driving cloud-scale turbulence in these simulations, given their
overall importance for the energy balance of the ISM (see e.g.
Mac Low & Klessen 2004). We find, in common with several
previous studies (Ibáñez-Mejı́a et al. 2017; Seifried et al. 2018), that
randomly distributed supernovae that explode with a rate similar to
the supernova rate in the Milky Way are unable to drive turbulence in
molecular clouds at a level consistent with observations of Galactic
GMCs. As Seifried et al. (2018) explore in some detail, the reason
for this is that in the random supernova scenario, the chances of
supernovae exploding close to the clouds on a regular basis are
small and so any turbulence injected into the clouds by a nearby
supernova tends to decay away long before the next nearby supernova
occurs. We therefore conclude that supernovae are not important for
driving the turbulence observed in quiescent (i.e. non-star forming)
molecular clouds and rather gravity plays a more dominant role
(see e.g. Klessen & Hennebelle 2010). On the other hand, in cloud
complexes actively forming massive stars, supernova explosions
do not occur with a spatially random distribution, but instead are
highly correlated with the gas distribution. In this case, the rate of
nearby supernova explosions is much higher than with the random
distribution, allowing the supernovae to play a dominant role in
driving the turbulence in these clouds. Future work will include the
analysis of other important driving mechanisms such as stellar winds,
jets, and photoionizing radiation, as well as the influence of magnetic
fields.

8 C O N C L U S I O N S

We have performed PCA on full non-LTE radiative transfer sim-
ulations of molecular cloud complexes, self-consistently generated
using our Cloud Factory Galactic-scale ISM simulation suite. We
explore PCA-derived velocity structure functions from three different
physical scenarios set up in our Cloud Factory: (a) one where the
ISM dynamics is dominated by the large-scale Galactic potential,
with (isolated) supernovae explosions randomly distributed across
the Galaxy, (b) same as the previous case but self-gravity is turned on,
and (c) a feedback-dominated scenario where supernova explosions
are random but also tied to star formation sites, which results in strong
clustered feedback. Large-scale potential and local gravitational
effects are both active in this case.

Regardless of the physical scenario, we find that all the cloud
complexes analysed from our Cloud Factory zooms agree with
distinct types of turbulence reported in the literature. Clearly, large-
scale gravitational forces alone when combined with turbulent decay
are enough to reproduce Kolmogorov’s and Burgers-like turbulence
scaling exponents, but scaling coefficients remain too low compared
with observations. None the less, under weak influence of isolated
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supernova explosions, local gravitational forces can make structure
functions evolve over time and reproduce observations of quiescent
molecular clouds.

We report time-dependent trajectories in the structure function
parameter space driven by local gravitational effects and supersonic
turbulent flows. The magnitude of velocity fluctuations (υ0) increases
steadily for self-gravitating regions with low stellar feedback. Typi-
cally, just-assembled clouds display low magnitudes and then migrate
through the (υ0, γ ) parameter space as star-forming cores emerge
within. The scaling exponents (γ ) are generally less predictable
because they depend upon the stage of gravitational collapse, which
varies locally as a function of the boundness conditions of sub-
structures in the cloud complex. This could explain power-law breaks
and variations in structure function parameters observed for different
size-scales in quiescent molecular clouds.

However, gravitational forces alone (when combined with random
supernovae feedback) are not enough to reproduce both the scaling
coefficient and exponent of molecular clouds with active star for-
mation. We find that clustered feedback from supernovae tied to
sites of star formation is key to self-consistently generate clouds
that reproduce the scaling parameters reported by observations with
similar size-scales and resolutions to those used in our simulations.

Our results suggest that a PCA-based statistical study is a robust
method to diagnose the physical mechanisms driving gravoturbulent
fluctuations in molecular clouds by providing a quantitative descrip-
tion of the velocity field. The analysis tools developed in this work
are all condensed in our new open source PCAFACTORY package.
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Figure A1. Comparison of selected structure function scaling parameters
reported in previous literature. Line and marker codes are listed in Table 2.

Figure A2. Same as Fig. 3 but using the complex method (see Section 5).
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Figure A3. Edge-on φ=90◦ projections of H, H2, and 12CO column densities (
) from cloud complexes (labelled on the right) extracted 2 Myr after injecting
tracer particles in the simulations. If any, sink particles are overlaid on H maps as star markers.
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Figure A3. – continued.
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Figure A4. LTE (the dashed lines) LVG (the red-dotted lines) and non-LTE (the solid lines and the shades) 12CO J = 1 − 0 emission profiles of individual
clouds in cloud complexes B0 (top), B (middle), and D (bottom). These are edge-on φ=90◦ views of the complexes analysed in Fig. 4. The colours of the axes
spines in the right-hand panels correspond to the colour code in the left-hand panels and indicate from which cloud the line profile is extracted.
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Figure A5. Same as Fig. A4 but using optical depth maps.
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Figure A6. Same as left-hand panel of Fig. 8 but using LTE (left) and LVG (right) level populations for the radiative transfer of 12CO from our cloud complexes.
The coloured markers in the right-hand panel are the 13CO parameters presented in Table 4.
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