GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/136569/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Petri, Ioan , Rana, Omer , Bittencourt, Luiz Fernando, Balouek-Thomert, Daniel and Parashar, Manish 2021.
Autonomics at the edge: resource orchestration for edge native applications. IEEE Internet Computing 25
(4), pp. 21-29. 10.1109/MIC.2020.3039551
Publishers page: http://dx.doi.org/10.1109/MIC.2020.3039551
Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may

not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.

IEEE INTERNET COMPUTING

Autonomics at the Edge:
Resource Orchestration for Edge Native Applications

Toan Petri, Omer F. Rana, Luiz F. Bittencourt, Daniel Balouek-Thomert, and Manish Parashar,

With increasing availability of edge computing resources there is a need to develop edge orchestration and resource management
techniques to support application resilience and performance. Similar to the use of containers and microservices for cloud
environments, it is important to understand the key attributes that characterise edge native applications. As edge devices increase
in their autonomy and intelligence, orchestration techniques are needed to respond to changes in device properties, availability,
security credentials, migration and network connectivity protocols. Implementing autonomics techniques for edge computing can
increase resilience of the interaction between devices and applications reducing execution time and cost. The use of autonomics at
the network edge can address the complexity requirement of industrial workflows to overcome execution latency, data privacy, and

reliability constraints.

Index Terms—Autonomics, edge computing, orchestration, resilience, cost models, resource management.

I. INTRODUCTION

S processing and communication capacities of edge
devices increase, the need for a new computing envi-
ronment to benefit from this additional capacity, closer to
a user, has emerged. The complexity of applications hosted
on these devices has continued to increase, including com-
plex data processing of audio and video, to event-processing
capabilities (e.g. triggers for service offloading in mobile
devices). Understanding how edge native applications can be
designed and deployed becomes a key research challenge,
aligned with similar recent interest in cloud native applica-
tions development. Application developers must consider how
offloading can improve quality of service levels, depending on
connectivity between a user and the computing infrastructure
— cloud or edge. In this context, pre-configured prior-to-
use application configuration (with static behavior) is now
unsuitable. Resource intensive applications (e.g. computational
simulation) which are generally hosted on cloud systems can
be steered through edge systems, leading to more effective
use of cloud/data center resources. Application orchestration
at the edge involves resource management, allocation and
scheduling of application components/services to fulfil user
requests. A single request may involve multiple services to
acquire, transfer, and process data from different sources
across multiple types of computational infrastructures.
Defining how services should be distributed across a hier-
archical infrastructure from the edge to the cloud, including
network elements, edge devices (e.g. Raspberry Pi) to cloud-
hosted accelerators, remains a challenge. As service granu-
larity can vary, from data analytics and sampling services to
user authentication, an orchestrator to manage such service
chains must take into account user requirements in terms of
security, performance, and costs [1]], [2]. We describe how

I. Petri is with School of Engineering, Cardiff University, Wales, UK
(email:petrii @cardiff.ac.uk).

O. F. Rana is with School of Computer Science and Informatics, Cardiff
University, Wales, UK (email:ranaof @cardiff.ac.uk).

L. F. Bittencourt is with the Institute of Computing, University of Campinas,
Brasil (email:bit@ic.unicamp.br).

D. Balouek-Thomert and Manish Parashar are with School of Computer
Science, Rutgers University, New Jersey, USA (email:parashar @rutgers.edu).

self-management and autonomic computing can facilitate the
use and coordination of edge resources — specifically: (i) we
present how edge resources can be aggregated through an
edge ensemble (a collection of resources that are able to
operate as an adaptive group) and (ii) an industrial edge native
model based on requirements from a food processing industry
application — but which can be generalised to other process
management/factory operations context.

This work shares a number of similarities with the use of
autonomic computing for resource management in data centre-
based cloud systems, however the key differences include: (i)
connectivity & capability of edge resources can have signifi-
cant variations; (ii) multiple resource managers can co-exist,
as edge resources can exist across different administrative
domains; (iii) network properties (latency, jitter, packet loss)
between resources can vary significantly over time. This paper
is organised as follows: Sections |lI| provides a comparison
with related approaches, followed by an overview of how au-
tonomic techniques can be used to support edge orchestration
in Section The application scenario we use to illustrate the
proposed techniques, and experimental evaluation, is presented
in Section A discussion focusing on key lessons learned
and conclusions from the work are presented in sections

and [V1] respectively.

II. RELATED WORK

Edge computing introduces computing capacity closer to
IoT devices — to support increasing demand from such devices
as their numbers continue to grow. In IoT, a (potentially large)
set of heterogeneous devices are networked to collaborate
towards a particular data monitoring/processing objective [3]].
Fog cells is a concept adopted to define a grouping of IoT
devices based on vicinity, where a device can coordinate
with other IoT devices to, for example, improve performance,
support data analyses, and increase security. As opposed to
traditional cloud-based implementations, a Fog cell allows
application services to run close to data sources and sinks,
reducing communication delays and improving resource effi-
ciency at edge devices. Pre-processing and data aggregation

IEEE INTERNET COMPUTING

from sensor node streams [4] as well as data processing for
smart systems [S]] are examples of applications that can take
advantage of Fog infrastructures. Mobile devices can also act
as a dynamic geodistributed computing infrastructure [6]]. The
Cloud of Things [7] proposes the introduction of in-network
processing between IoT and Cloud systems. Consequently,
operations over data (e.g. running queries in complex event
processing — CEP) can occur in the path between data capture
and cloud-based processing [J8].

Edge ensembles have also been investigated to aggregate
computation from different combinations (groupings) of edge
resources. Such an ensemble has demonstrated benefit by
delivering workflow execution efficiency with data protection
and security [9]. The use of an orchestrator also enables
execution of a service function chain, where functions are
physically hosted on different devices. Such capability can be
configured based on user and application constrains as a mean
to respond dynamically to new data flows [[10].

III. AuTONOMIC EDGE ORCHESTRATION

The autonomic edge comprises resources FE =
{e1,ea,e3,..,em}, where each e; can include processing
units, storage, and fype. Resource nodes can be grouped
based on their type, using (similarity in) properties in
relation to proximity, latency and/or cost. A set of processes
P = {p1,p2,p3,..,pm} are enacted over edge resources E
with a view to increase resource efficiency and distribute
workload across edge nodes. A process p; is an executable
function/operation that can be deployed over one or more
e;. The notation used in this work is based on [§]]. The
autonomic approach described in Figure 1| has the following
components:

1) Monitoring and feedback: a feedback control loop that
collects data from the three layers: cloud, fog nodes,
and edge devices, and leads to orchestration across these
layers in a unified way. Understanding dependencies be-
tween cloud, fog, and edge resources is essential to ensure
that resources are used efficiently. As edge resources
are represented as an ensemble e;, monitoring of node
properties is restricted to members of e;.

2) Strategies: monitoring leads to event triggers that gen-
erate control actions — as illustrated in Figure [I] These
actions can trigger one of three behaviours: (i) updates
to the ensemble — i.e. addition/removal of resources; (ii)
use of approximation techniques that enable “steering”
actions to be carried out on the supported fog and cloud
resources; (iii) adaptation techniques that lead to resource
configuration updates, but which require use of learning
techniques based on usage data of edge resources. These
three behaviours, on their own or in combination, provide
the key autonomic capability within the system.

3) Orchestration: involves carrying out the behaviour mod-
ification strategies in (ii). The orchestration involves the
use of a number of controllers that interact with local
schedulers in cloud, fog, and edge resources.

The ability to orchestrate resources at the edge represents
a key advantage in heterogeneous edge environments where

devices have different properties and different operating goals.
As IoT devices can be geographically distributed, the orches-
trator needs to take account of local requirements but also to
coordinate the entire ensemble of edge resources. Therefore,
an orchestrator can run based on two different types of goals:

o Local goals — refer to particular edge device objectives
that need to be considered in a local (constrained) edge
environment. Local goals (e.g. improve utilisation or
reduce energy usage) are usually application specific, but
need to be balanced with overall demands specified as
part of one or more global goals.

« Global goals — identify more advanced strategies that an
edge orchestrator needs to ensure in the wider manage-
ment of edge resources. As an orchestrator may coordi-
nate an ensemble, the global goals are intended to max-
imize the performance of the entire edge infrastructure
while complying with the local goals identified over an
ensemble.

In a smart factory scenario involving energy simulation, local
goals can identify the period over which a simulation is
to be carried out in relation to a number of simulation
instances that can impact the quality of results. When an
artificial neural network (for instance) is used, training and
testing should take place in combination with a simulation
process. For neural network learning, the local goal can be
related to the error rate based on the quality and consistency
of the historical data. From a global perspective, the edge
orchestrator needs to achieve a trade-off between local goals
within an edge ensemble, while providing an improvement in
the global goals at the scale of the entire edge infrastructure.
In a smart factory scenario, for example, where different
buildings conduct specific industrial activities, the global goal
can involve minimization of data transfer between various
edge devices, which may be distributed throughout the factory.
From Figure [2| we identify the following layers based on a fish
factory example scenario.

o The energy layer — identifying energy production units
such as photovoltaic panels and the power grid (with
associated meters).

e The appliance layer — identifying a set of appliances nec-
essary to clean, store, and process the fish in the factory.
In our scenario we consider the following appliances: (i)
cold room, (ii) ice-flake and (iii) box washing machine,
(iv) lighting systems, (v) battery storage system.

e The edge layer— identifying Raspberry Pi nodes hosting
optimization modules that periodically actuate and sched-
ule physical appliances. These nodes are co-located with
the appliance layer.

o The cloud layer — formed of cloud computing nodes that
execute energy optimisation/simulation tasks.

Autonomics can be applied in the following way — the
application and associated edge infrastructure is explained in
section
(i) Resource management mechanisms for training/executing
neural network tasks on cloud resource when edge resources
are congested — e.g. based on cost of execution, time-to-
execute, and orchestration time.

IEEE INTERNET COMPUTING

Triggers

Monitoring

l

[Control actions J

Strategies

Modification

' ‘ Ensemble ‘

3 +1))

Approximations ‘

Dot mm |

Edge Devices (Billions)

) ‘ Adaptation ‘

Orchestration

Fig. 1. Integrated edge layer
PV Panel 1 PV Fanel 2 Main Grid
Energy TITITL
layer

Energy production

units ¢ J,
v v v v ¥

Cold room Ice-Flake Lighting Battery

Applicance Box-washer

layer o ul

Appliances D
Edge layer T

Rasberry PIs Pi1 ."i’l’ii'

v
Nn?s; 1

T — W —

Fig. 2. The industrial edge layers

PisaEaEas

v
Nn?es

Cloud layer
Cloud nodes

(ii) Performance improvement by migrating from edge to
cloud resources when performance degrades. Such strategies
include offloading tasks based on time-to-execute, execution
cost, and deadlines.

(iii) Ensemble formation by combining edge resources to
collectively execute tasks (e.g. training or execution of a neural
network or federated learning tasks) and sharding data between
different nodes.

(iv) Mobility support for more effective use of edge devices
closer to a user as their device migrates. This involves migrat-
ing data and processing along the path of movement, following
or anticipating these paths, so the latency and number of
hops between users and their data is minimised. Data and
computational task migration decision-making should consider
application and network changes, as well as edge resource
workloads [T1]].

(v) On-demand edge federation to support resource grouping
based on an aggregation of edge and cloud capabilities.
Cloud systems can be extended towards the network edge
through a federation of providers and systems with different

specifications and locations. Such a cloud continuum provides
flexibility and adaptation to respond to task queue congestion,
cost efficiency, and reliability.

(vi) Resilience that accounts for availability (and uptime) of
edge resources (i.e. some edge resources fail) and network
performance (communication with an edge device). This can
occur if: (a) edge resources fail — requiring other edge re-
sources in the ensemble to overcome the effect of failure,
i.e. replicate execution on multiple resources and (b) network
fails, i.e. where the network connecting the edge resources
and the cloud platform is available: (i) intermittently — i.e. the
connection bandwidth varies over time significantly; (ii) fails
with no transfer capacity being available. Such metrics can
involve cost, time-to-execute, failure rate, re-sync rate, etc.
(vii) Placement of services on edge or cloud resources impact
overall user latency and response time. The key idea is to con-
sider: (i) full edge-ward placement of services; (ii) full cloud-
based placement (iii) movement of services between the edge
and cloud—driven by performance and cost considerations.

IV. SMART FACTORY SCENARIO

We first consider the building energy optimisation scenario
which makes use of EnergyPlus simulation [12]]. Our proposed
edge orchestrator has the following objectives:

1) measure performance for task deployment at the edge of
the network and mechanisms to use when such deploy-
ment takes place in an industrial application scenario (i.e.
tasks properties, time constraints, etc)

2) investigate execution of EnergyPlus simulation in a native
edge environment involving multiple edge resources and
shared executions; and

3) demonstrate the use of the autonomic edge to coordinate
tasks that require execution closer to data source but also
addressing a specific quality-of-results. Task allocation
can be dynamically adapted based on tasks properties,
using the edge orchestrator.

IEEE INTERNET COMPUTING

A. Simulation scenarios

The Milford Haven port is the largest port in South Wales
where a fish processing industry generates increased energy
demand with long operational times and intensive energy
operations. The port has an annual energy consumption of
about 1600 MWh, and produces carbon emission of about
790 tonnes. The key objective in the port is to reduce energy
consumption and to eliminate carbon emissions. The Pack-
away (main building in the port) contains multiple energy
consuming appliances that need be optimised in terms of
energy consumption: a flake-ice machine, a cold-room, a
box-washing machine, the lighting systems, and a battery
systems. Each of these devices has augmented edge computing
capability to process operational data — as explained below.
These edge resources are able to receive data directly from
these applicances and carry out an initial analysis.

«»Outdoor Temperature
«»Wind Speed

«»Wind Direction
+Solar Radiation
«»Solar Azimuth Angle

—Optimised electrical energy
consumption

—Optimised CO2 emissions
—Optimised ice-flake setpoint
—Optimised box-washer setpoint
—Optimised cold-room setpoint
—Optimised lighting setpoint
—>Optimised battery charge

«»Solar Altitude Angle
«»Zone Air Temperature
«»Zone |deal Cooling Rate
+»Occupancy

+lce-flake Consumption
+«»Box-washer Consumption

. setpoint
+Cold-room Consumption
_) — OUTPUT VARIABLES
«Lighting Consumption
. f EDGE
% Battery Charged Capacity OPTIMISATION

AND ACTUATION

INPUT VARIABLES

Fig. 3. Edge optimisation scenario for industrial appliances

The box washing machine— has a S0KW capacity and is active
for short time intervals within a day. An efficient operation
schedule and set-point needs to be identified in order to
optimize the energy consumption of this appliance.

Lighting system— consumes 400W and is used when the actual
fish processing operations are conducted during day and night
schedules. An optimum schedule and set-point needs is needed
to reduce energy consumption.

Flake ice— produces small pieces of ice for use in the cold
storage to preserve the fish. The ice-flake consumes 32KW
and requires an optimum operation schedule and an optimum
set-point to support fish processing demand.

Cold storage— operates over a 24 hours period to meet fish
processing demand and is considered to be the most power-
consuming device in the building. The temperature is main-
tained between -10 and -55 degrees Celsius. Based on cold
storage cycle, an optimised schedule and temperature set-point
can significantly improve the energy efificiency and support
fish operations in the building.

Battery system— comprises (i) main battery with a capacity
of 6000Ah and (ii) a secondary battery of 4000Ah used to
store excess of energy in production periods. The optimisation

objective is to determine the correct amount of energy that
needs to be stored on the two batteries.

The main objective is to determine the optimised set-points
and actuate these on the five appliances using simulation
(executed every 15 minutes). An orchestration between all
appliances is required to determine operation schedules in
the Packaway building. The actual optimisation process is
executed on the Rasberry Pis linked to the appliances as in
Figure 2] - and which constitute the edge devices used in this
system. The range of set-points are: (i) On/Off for box-washer,
ice-flake and lighting, (ii) optimum temperature set-point for
the cold-room, and (iii) optimum quantity of energy to store in
the battery storage system. Figure [3] presents the optimisation
scenario with several variables forming the optimisation — with
input variables related to energy generation (e.g. solar azimuth,
wind direction and speed, outdoor temperature, etc) and energy
consumption of appliances.

B. Autonomics testbed and scenarios

We consider an industrial edge environment with five Ras-
berry Pi (RPi) that run energy optimisation tasks. We run
different optimisation scenarios that demonstrate the use of
autonomics in the industrial edge context with five appliances
that require optimised set-points. We use CometCloud [13]]
to form a federation between different edge and cloud envi-
ronments. The experiment testbed makes use of two different
types of resources: (a) computing resources identifying (i)
five HPC nodes forming a cloud system able to accommodate
energy optimisation tasks, and (ii) five edge resources (RPi)
forming an industrial edge layer hosting optimisation tasks
closer to data source; and (b) industrial resources identifying
(i) an appliance layer identifying a set of industrial devices,
and (ii) an energy production layer with different energy pro-
duction units. Our industrial edge layer aggregates computing
resources across different appliances, where each optimisation
task can be executed in the local edge resource and across the
entire ensemble of edge resources.

C. Experiments

We conduct our experiment on a real industrial testbed
with multiple appliances deployed at the factory. We seek to
evaluate and implement optimised appliance set-points with a
view to reduce energy consumption in the pilot project through
the use of edge-autonomics. The experiments are applied to
the Packaway building with the set of appliances that require
different types of optimisation tasks as presented in Table I}

TABLE I
TASK PROFILES

| Job Type | Data Size | No. of Tasks |

Typel 50MB 16
Type2 100MB 24
Type3 150MB 32

IEEE INTERNET COMPUTING

We apply a cost perspective by calculating a total cost with
computation in relation to storage, transfer, and execution of
tasks.

Cost = exec.ime * COStegeution + net.tranfer 1)
*COSttransfer + Storagetime * COStstorage

where costezecution refers to CPU processing time required,
€0Styrqns fer measures the amount of data being transferred
and costssorage identifies the cost of storage. We calculate the
costs based on Amazon EC2 pricing schemes in dollars ($).
To support the experimental scenarios, we use the following
configurations:

« Traditional Cloud Only (T-C): The cloud configuration
involves 5 HPC nodes that have capability to execute
computationally demanding tasks. Such configuration
identifies regular scheduling strategies where tasks are
allocated for execution randomly based on the availability
of nodes. Tasks execution criteria is related to time
and budget constraints and access to edge resources is
disabled.

« Edge Resources (ER): The edge configuration assumes
that cloud and autonomic mechanisms are disabled. The
edge nodes can be grouped (in our example we use an
ensemble formed of 5 Rasberry Pis). The edge system is
located in proximity of data source(s).

o Edge Autonomics (EA): The role of autonomics at the
edge is to coordinate edge resources based on incoming
tasks properties and user requirements. We consider dif-
ferent tasks types with associated deadlines that are man-
aged by an orchestrator with a view to optimise costs and
efficiency in relation to execution. The autonomics also
involve communication between different nodes based on
a set of incoming tasks requirements.

a) Data Transfer Time: The aim of this experiment is to
show the edge autonomics capability to improve the overall
data transfer time. This experiment emphasizes that proximity
to data source can play a key role for tasks execution. As
the edge layer is closer to data capture devices, transfer is
often not required whereas for clouds multiple network hops
need to be transited before the actual tasks execution can take
place. Figure [] shows the transfer time required to compute
different types of tasks (see Table [) and demonstrates that
an edge configuration delivers the lowest data transfer time,
with edge-autonomics requiring additional data transfer for the
coordination of the edge resources. A Cloud-based deployment
shows a linear increase in data transfer time based on the
number of hops in the network path, and the complexity of the
tasks to execute. This experiment shows that autonomics at the
edge can ensure a trade-off related to data transfer showing
that tasks with an increased size of data do not necessarily
generate an increase in the transfer time.

b) Completion time: The objective of this experiment is
to demonstrate the impact of edge autonomics in terms of
completion time and task complexity. In edge environments,
time constraints are tied up to the quality of results, therefore
providing comparing analysis for clouds, edge and edge-
autonomics systems from a time perspective can lead to more
informed decisions for users. The results reported in Figure [3]

show that edge and edge-autonomics have increased time
completion based on different types of tasks. When tasks
identify a higher number of sub-tasks such as “type 2” and
“type 3”, edge autonomics seem to deliver a lower completion
time comparing to a regular edge configuration. Clouds have
a linear increase for different task types and their performance
depends on the complexity of the workflow. This experiment
demonstrates that edge-autonomics can bring an improvement
in the task execution process, as task complexity (identified in
task data size and number of sub-tasks) seems to have a small
impact on the completion time, showing that orchestration at
the edge can keep the overall completion time to reasonable
levels. Therefore, autonomics at the edge can support a more
efficient orchestration of resources which leads to improved
completion time, whereas cloud and edge systems use a more
generic task allocation which incurs an increase of the time to
complete.

c) Cost with task execution: To demonstrate the benefits
of implementing autonomics at the edge, we seek to under-
stand the impact of the task execution in the actual computing
cost. We consider different cost components such as storage,
transfer, and execution to calculate the impact of deploying
tasks at the network edge using three different scenarios such
as clouds, edge and edge-autonomics. Figure [6] demonstrates
how cost evolves with different tasks types and associated size
of data. The experiment shows that using lighter tasks (i.e.
small number of sub-tasks) is more advantageous in terms
of cost than when using more complex tasks (i.e. higher
number of sub-tasks). In a native edge environment storage
and transfer costs are low therefore the impact in terms of
costs is also limited. When using an edge-autonomics con-
figuration, multiple coordination strategies are required with
managing decentralised edge resources which incur a higher
cost. However, for large edge ecosystems with an increased
number of nodes such edge-autonomics is beneficial in terms
of resource orchestration and tasks scheduling. Clouds identify
the higher cost as pricing of resources in cloud systems is more
expensive.

V. IMPROVING ADOPTION: AUTONOMICS IN EDGE
APPLICATIONS

In edge native applications, the user and the edge system are
interacting based on various objectives, where such objectives
have particular cost implications which must be taken into
account. In industrial edge applications, the resilience of the
edge infrastructure depends on the WiFi access points and
accessibility of services, but is also subject to costs that need to
be covered usually by (i) cloud providers; (ii) local businesses;
or (iii) from public funding [14]. Such cost models are based
on a demand/workload profile of an application. From an
autonomics perspective, there are several generic principles
which characterise edge infrastructures, that once satisfied, can
enable a wider adoption. Such principles include:

1) Usage — the autonomics of edge infrastructures need to
deliver a set of common usage policies and utilise generic
management techniques to support required computing
operations and running time.

IEEE INTERNET COMPUTING 6

Data Tran_sfer Time

*" | =Autonomics

N
S
T

Data Transfer Time (sec)

Type 2

Task Type

Type 3

Fig. 4. Data Transfer Time.

Completion Time
200 T

180 H @Edge -
o Cloud g
Autonomics

C
>
=]

i

Completion Time (se
¥ 5 38 8 B 3
T T T T T T I

[=}

Type 1 Type 2

Task Type

Type 3

Fig. 5. Completion Time.

Cqst

25

~ 15|

Cost ($

05}

Type 2 Type 3
Task Type
Fig. 6. Cost with task execution
2) Availability — referring to the ability of edge infrastruc- sociated with dependability such as readiness for usage,
tures to deliver a certain Quality-of-Service and acces- reliability, and maintainability.
sibility for potential users. Techniques for maximising 3) Cost — the use of autonomics should be support cost

availability identify service replication or service mi-
gration in relation to a set of application requirements.
Availability also embeds some adaptation techniques as-

efficient process that can be attractive for businesses while
also having flexibility in terms of pricing models based
on application requirements.

IEEE INTERNET COMPUTING

4) Performance — edge infrastructures should have the abil-
ity to accommodate different workloads and associated
scaling methods in relation to the type of application.
Performance also refers to system responsiveness iden-
tifying the time required for the system to respond to
processing events.

5) Security — autonomics should enable certain flexibility
of the edge infrastructures while delivering a high level
of security, especially for applications involving data
confidentiality and sensitivity. Such security clauses need
to be specified in terms of confidentiality, integrity, and
availability.

The autonomics and self-adaptability of edge applica-
tions can be considered with respect to functional and non-
functional properties commonly used to assess the reliability
of a computing infrastructures. The functional properties that
an edge infrastructure needs to expose are [15]: (i) self-
configuration — applies to automated device initialization at
run time. It refers to the ability of an edge infrastructure
to automatically reconfigure based on high-level rules and
triggers; (ii) self-optimization — represents the system’s ca-
pacity to continually improve the value of non-functional
resources (i.e., quality attributes such as efficiency, or resource
use such as power consumption) in relation to a set of
incoming application requirements or business objectives; (iii)
self-restoration — refers to the system’s capacity to locate
and restore malfunctions on its own at run-time; (iv) self-
protection — identifies the system’s capacity to react and
eliminate malicious attacks or intrusions by implementing
different trust and protection strategies.

VI. CONCLUSION

Edge computing models and services are adopted for in-
dustrial applications as a mean to address time constraints
and proximity to data source requirements. Although the
commercial edge computing market is still maturing, it is
important to consider the types of techniques that are required
to orchestrate and ensure a level of autonomics in edge envi-
ronments. Whereas previously resources available at the edge
of a network have been utilised to capture and collect data, the
increase in performances and pervasive nature of the edge has
enabled hosting of analysis and tasks execution at the edge
for different applications. The possibility to create a hybrid
edge-cloud environment represents a significant advantage for
applications with sensitive constraints such as quality of results
or time-to-complete often identified in an industrial process.
As industries have entered in a transition from old cen-
tralised operations to decentralisation of energy management,
the orchestration of edge resources at the network edge for
energy optimisation can provide a competitive advantage on
the market and a higher order of cost efficiency. In relation
to non-functional properties, adding autonomic capability to
edge infrastructures also supports: (i) stability, in terms of
system behaviour and resilience, (ii) improved accuracy and
convergence for application outcomes (e.g. error rate in a
neural network), (iii) a mechanism to address heterogeneity of
edge resources, e.g. replacement of devices and components.

Acknowledgement This work was supported by the EU IN-
TERREG piSCES Project: “Smart Cluster Energy Grid Sys-
tems for Fish Processing Industries”, grant number: 504460.

REFERENCES

[1] G. Douglas, B. Drawert, C. Krintz and R. Wolski, “CloudTracker: Using
Execution Provenance to Optimize the Cost of Cloud Use”, Proc. GECON
conference, Sept. 16-18, 2014. Cardiff, UK. Springer.

[2] Jorn Altmann, Mohammad Mahdi Kashef, Cost model based service
placement in federated hybrid clouds, Future Generation Computer Sys-
tems, Vol. 41, 2014, pp 79-90.

[3] L. Atzori, A. Iera, G. Morabito, “The internet of things: a survey”.
Computer Networks 54:2787-2805, 2010.

[4] A. V. Dastjerdi, H.Gupta, R. N. Calheiros, S. K. Ghosh SK and R. Buyya,
“Fog computing: principles, architectures, and applications”. In: Internet
of things: principles and paradigms, chap. 4, MorganKaufmann, 2016.

[5] S. Rohjans, C. Dnekas and M. Uslar, “Requirements for SmartGrid ICT-
architectures”. In: 3rd IEEE PES international conference and exhibition
on innovative smart grid technologies. Berlin, Germany, pp 1-8, 2012.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments. Springer, 2014, pp.
169-186.

[71 M. Aazam and E.-N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in Intl. Conference on Future Internet
of Things and Cloud (FiCloud). IEEE, 2014, pp. 464-470.

[8] A.R.Zamani, M. Zou, J. Diaz-Montes, 1. Petri, O. Rana, and M. Parashar.
A computational model to support in-network data analysis in federated
ecosystems. Future Generation Computer Systems, 80 (2018): 342-354.

[9] 1. Petri, A. R. Zamani, D. Balouek-Thomert, O. Rana, Y. Rezgui, and
M. Parashar. “Ensemble-based network edge processing.” In IEEE/ACM
11th Int. Conf. on Utility and Cloud Computing (UCC), pp. 133-142,
2018.

[10] I. Petri, O. Rana, A. Zamani, Y. Rezgui, “Edge-Cloud Orchestration:
Strategies for Service Placement and Enactment”. In IEEE Int. Conf. on
Cloud Engineering (IC2E), 24 June 2019 (pp. 67-75).

[11] L.F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar.
Mobility-aware application scheduling in fog computing. /IEEE Cloud
Computing, 4(2):26-35, March 2017.

[12] V. Garg, K. Chandrasen, S. Tetali, J. Mathur, “Energyplus Simulation
Speedup Using Data Parallelization Concept.” ASME Energy Sustain-
ability Conf., New York: American Society of Mechanical Engineers. pp.
1041-1048, 2010.

[13] H. Kim and M. Parashar, “CometCloud: An Autonomic Cloud Engine,”
Cloud Computing: Principles and Paradigms, Wiley, 2011, pp 275-297.

[14] L. F. Bittencourt., M. Lopes, I. Petri, O. F. Rana, “Towards Virtual
Machine Migration in Fog Computing”, 10th Int. Conf. on P2P, Parallel,
Grid, Cloud and Internet Computing, November 4-6, 2015, Krakov,
Poland.

[15] N. Villegas, G. Tamura, and H. A. Miiller. “Architecting software
systems for runtime self-adaptation: Concepts, models, and challenges.”
Managing Trade-offs in Adaptable Software Architectures. Morgan Kauf-
mann, 2017. 17-43.

	INTRODUCTION
	Related work
	Autonomic Edge Orchestration
	Smart Factory Scenario
	Simulation scenarios
	Autonomics testbed and scenarios
	Experiments

	Improving Adoption: Autonomics in Edge Applications
	Conclusion
	References

