
Machine Learning Algorithm for Detection of False
Data Injection Attack in Power System

Ajit Kumar
School of Comp. Science & Engineering

Soongsil University
Seoul, South Korea

ajitkumar.pu@gmail.com

Neetesh Saxena
School of Comp. Science & Informatics

Cardiff University
Cardiff, UK

nsaxena@ieee.org

Bong Jun Choi
School of Comp. Science & Engineering

Soongsil University
Seoul, South Korea

davidchoi@soongsil.ac.kr

Abstract—Electric grids are becoming smart due to the in-
tegration of Information and Communication Technology (ICT)
with the traditional grid. However, it can also attract various
kinds of Cyber-attacks to the grid infrastructure. The False Data
Injection Attack (FDIA) is one of the lethal and most occurring
attacks possible in both the physical and cyber part of the smart
grid. This paper proposed an approach by applying machine
learning algorithms to detect FDIAs in the power system. Several
feature selection techniques are explored to investigate the most
suitable features to achieve high accuracy. Various machine
learning algorithms are tested to follow the most suitable method
for building a detection system against such attacks. Also, the
dataset has a skewed distribution between the two classes, and
hence data imbalance issue is addressed during the experiments.
Moreover, because the response time is critical in a smart grid,
each experiment is also evaluated in terms of time complexity.

Index Terms—Data Injection Attack, Smart Grid, Machine
Learning, Power System

I. INTRODUCTION

Today, the electric power grid is becoming more intelligent,
called a smart grid, by adopting advanced Information and
Communication Technology (ICT) [1]. This intelligence brings
efficiency, accuracy, ease-of-use, and connectivity in the gener-
ation, distribution, and consumption of electricity. However, at
the same time, it also introduces new vulnerability issues that
result in various kinds of cyber-attacks [2], [3]. Any potential
attack or disturbance in the functioning of the smart grid is
critical because electricity has become a vital part of our daily
lives. Also, most industrial devices (e.g., manufacturing plants)
and social infrastructure (e.g., hospitals) run on electric power.
The recent attack on the Ukraine grid infrastructure is an
alarming example which calls for robust security requirements
to protect against human errors and economic losses [4].

The False Data Injection Attack (FDIA) compromises the
integrity of the data (value of sensors, meters, etc.) in which
either attacker or environment manipulates the real values with
falsified values. It is a critical and most occurring attack from
the set of known attacks to the smart grid. Depending on the
type of successful FDIAs, it can cause damage to physical
infrastructure or result in economical loss [5] and, importantly,
in many cases, it can be life threatening [6]. So, considering
the scale of damage detecting and preventing FDIA in the
power system is of high importance. Although there were

some existing theoretical (modeling) and ICT-based solutions
proposed and adopted, there still exist intrinsic limitations like
the real-time generation of huge events, complex physical and
cyber interface, post-analysis, etc. Therefore, we aim to use
machine learning (ML) for FDIA detection, which will provide
a pro-active detection and help perform FDIA detection in
real-time.

In particular, we investigate and evaluate the capabilities
of various ML algorithms to detect FDIA to fulfill the re-
quirements of the smart grid. The objective has been achieved
by conducting various experiments on the publicly available
dataset on the power system [7]. The experiments in the
proposed work focus on exploring the impact of feature
selection on performance, finding ranking of features, and
addressing the dataset’s specific problem, such as missing
value, corrupted value, and imbalanced dataset for training
and testing various ML algorithms. The contributions of this
work can be summarized as follows:

1) We develop a method to pre-process the existing power
system dataset [7] and convert it into a binary class
problem by filtering and merging FDIA events and non-
FDIA events1.

2) With different feature selection techniques (i.e., filter,
wrapper, and embedded), we rank the features and
compared (top and bottom 10 features) the outcome for
selection techniques.

3) We also addressed imbalance class and data value is-
sues (missing, infinite, etc.) using stratification and pre-
processing of the dataset.

4) With a various set of features (the outcome of selection
techniques and the number of features), we train and test
nine ML algorithms in two setups (percentage split (70-
30%) and 10-fold cross-validation) that can help to find
the most suitable and robust model of FDIA detection
for the smart power system.

This paper is organized as follows: Section II presents the
related works. Section III presents the framework of the power
system in which the events are recorded. Section IV explains
different feature selection methods and presents the selected
features as per rank. The result of various ML training and

1Data is made available https://github.com/urwithajit9/FDIA-classification.



testing are discussed in Section V. Lastly, the conclusion and
future work is provided in Section VI.

II. RELATED WORK

The threat of a successful FDIA is critical and alarming,
with the fast transition of the traditional grid to the smart grid.
In recent work, Serkan et al. [5] have demonstrated the impact
of FDIA through the insider attack model by modifying the
memory address of Programmable Logic Controller (PLC).
The authors demonstrated that change in PLC could directly
affect bill management software and the final bill. The FDIA
in the smart power system can understand in-depth through
the recent (2015-20) survey works carried in this domain [6],
[8]–[10]. These literature works explain various aspects of the
FDIA, such as specific challenges posed by FDIA, available
countermeasures, and their existing challenges. These works
also discuss the current trend in detection technologies and
big data, ML, and artificial intelligence for securing the smart
power system.

In recent times, ML is used for FDIA detection in parallel
with earlier state estimation and time-series analysis meth-
ods [11]. The performance of ML-based techniques has im-
proved over time, and some interesting research is carried out
in this domain. One-Class Support Vector Machine (OCSVM)
was used to address the class labeling and availability of
datasets for anomaly detection in Supervisory Control and
Data Acquisition (SCADA) system [12]. The False data detec-
tion using anomaly detection (applying Principal Component
Analysis (PCA)) and Distributed SVM given a new direction
and addresses issues like stealthiness, and lower computation
complexities for FDIA detection. The Distributed SVM has
provable optimality and faster convergence rate so very suit-
able for larger size data and real-time detection [13]. Three
supervised learning algorithms were used to detect the ”direct”
and ”stealth” FDIA in the smart grid [14]. The balanced
and imbalanced cases were considered, and experiments were
done using the IEEE 30-bus system simulation. Under FDIA
detection, Artificial Intelligence methods (ANN and ELM)
were used to detect malicious meters [2]. The proposed
methods were verified by using the dataset resulted from the
mapping of NYISO load data on the IEEE 14 bus system. Yi
Wang et at. [15] grouped FDIA into Cyber-space and Physical
space and have proposed to use a Data-centric approach to
detect and prevent FDIA using Big data and Margin Setting
Algorithm (MSA) on synchronized Phasor Measurement Units
(PMUs), in both simulated and Real-world, events dataset.
Defu Wang et at. [16] applied ensemble ML techniques to
detect FDIA attacks along with other cyber attacks (37-class
fault) in the power system. The authors have used a publicly
available dataset that contains readings of four PMUs and
communication meta-data from IDS and firewall [7]. Cao et
al. [11] discussed the scope and performance of ensemble
learning for FDIA detection in great detail by explaining FDIA
in the context of Cyber-Physical Power System (CPPS). The
power system dataset [7] was used to train and test four ML
algorithms (One R, J-Ripper, Random Forest (RF), and Naive

Fig. 1. The configuration of the power system framework for recording
events [7].

Bayes (NB)) for the three-class problem, i.e., natural, no-event,
and attack [17].

The aforementioned related works on the FDIA and ap-
plication of ML-based techniques indicate that ML-based
solutions are good in resolving issues. In the future, the smart
grid will have wide adoption of these solutions. It is also
evident that most of the earlier works have used the power
system dataset [7] and have considered event classification
as a multi-class problem. In contrast to existing research
work, the proposed work pre-processed the dataset suitable
for binary classification. The original dataset also has a binary
classification, but that is ”Attack vs. Normal” events while the
proposed work only selected ”FDIA and non-FDIA” events,
and explored the impact of feature selection to reduce the
complexity (time and space) of ML-based classifiers. The
proposed work also investigates the best performing classifiers
with minimum number features and provides the reasoning of
best-performing features.

III. POWER SYSTEM FRAMEWORK

A smart grid for the power system has a very complex and
huge infrastructure, and due to 365 days X 24-hours usage, it
is not possible to research and run new solutions directly to
the infrastructure. The security and privacy issue also restrict
access to data related to smart grid operations. To overcome
these issues, most research uses Mississippi State University
and Oak Ridge National Laboratory dataset2 which contains
the data of the power system having various attacks and
normal events [7]. The experimental Power system framework
configuration in which all the events were recorded is depicted
in Fig. 1. In figure 1, the G1 and G2 are two power generators;
R1-R4 are four Intelligent Electronic Devices (IEDs), which
is used to switch on/off the breakers (BR1-BR4). The power
system also has two lines between BR1-BR2 and BR3-BR4.
Further, the power system is connected to a control room using
substation switch and power distribution center (PDC).

2https://www.sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets



TABLE I
FEATURE DESCRIPTION WITH SIGNAL REFERENCE

Feature Description
PA1:VH – PA3:VH Phase A - C Voltage Phase Angle
PM1: V – PM3: V Phase A - C Voltage Phase Magnitude
PA4:IH – PA6:IH Phase A - C Current Phase Angle
PM4: I – PM6: I Phase A - C Current Phase Magnitude
PA7:VH – PA9:VH Pos. – Neg. – Zero Voltage Phase Angle
PM7: V – PM9: V Pos. – Neg. – Zero Voltage Phase Magnitude
PM7: V – PM9: V Pos. – Neg. – Zero Current Phase Angle
PM10: V - PM12: V Pos. – Neg. – Zero Current Phase Magnitude
F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Appearance Impedance for relays
PA:ZH Appearance Impedance Angle for relays
S Appearance Impedance Angle for relays

Further, in this section, a brief description of the features
and dataset is presented that will help to understand the results
of feature selection and ML algorithms training and testing.

A. Features Description

The original dataset has 128 features, which come from
two groups,1) PMUs measurement and 2) Control Room logs.
There are 4 PMUs, and from each 29, measurements are
collected, which contribute to total of 112 features and the
control room logs are divided into the control panel, snort, and
relay logs, each has 4 features, so it a total 12 features. The
column naming in the dataset follows a naming convention,
which helps to understand each feature better. Each PMUs
measurement is represented as R#-Signal Reference, where R#
represents the PMU number, which is R1, R2, R3, and R4
and Signal Reference is explained in Table I. The information
in Table I is adopted from original dataset description docu-
ment 3 and a detail explanation can be found from original
document 3.

B. Dataset Description

Pan et al. [7] has presented a very well explained and
enriched dataset on the power system attack. The initial
dataset is divided into 15 sets, and each has 37 power
system event scenarios. These scenarios are further divided
into Natural Events, No Events, and Attack Events (data
injection, command injection, etc.) which has 8, 1 ,and 28
events respectively. Further, the initial dataset was randomly
sampled and grouped into three datasets for (1) binary-class,
(2) three-class, and (3) multi-class. The multi-class dataset has
37-classes representing each type of event as a class, and this
dataset is in Attribute-Relation File Format (ARFF), which is
suitable for the WEKA tool.

In this proposed work, the multi-class dataset is used after
pre-processing (converting ARFF to CSV and filtering events).
The scenarios related to normal (scenarios 1-6, 13, 14, 41)
and data injection attacks (scenarios 7-12) were carved out
from all 15 sets. Once all the events are filtered from each

3http://www.ece.uah.edu/∼thm0009/icsdatasets/PowerSystem Dataset
README.pdf

TABLE II
FILTER METHOD: TEN TOP AND BOTTOM FEATURES WITH INDIVIDUAL

SCORE

Top Features Bottom Features
Features Score Features Score

R2-PM11:I 89.957696 R3-PA4:IH 0.506336
R2-PM12:I 77.299363 R1-PM2:V 0.410809
R1-PM12:I 76.535194 snort log2 0.396175
R1-PM9:V 72.015296 R1-PA8:VH 0.161182
R3-PM11:I 69.674591 R1-PA:Z 0.086954
R2-PA6:IH 68.635097 R2-PA3:VH 0.061740
R1-PM8:V 62.671352 R2-PM2:V 0.052888
R2-PM8:V 58.446877 R3-PA3:VH 0.052869
R3-PM8:V 58.252764 R3-PM7:V 0.012634
R3-PA6:IH 54.064154 R1-PA9:VH 0.006151

set, they are further merged and relabeled as 0 for the normal
and 1 for the data injection scenario. After pre-processing the
resulting dataset1 has a total of 32296 samples and each has
128 features. The classes were distributed as 22714 normal
events and 9582 data injection events, which indicate that
the dataset is skewed towards normal events, and it is an
imbalanced dataset. During pre-processing, the features (R1-
PA:Z, R2-PA:Z, R3-PA:Z, R4-PA:Z) with infinite as value
were replaced with 0.

IV. FEATURE SELECTION

The feature selection is the process of ranking and selecting
features that contribute to predicting the output variable with
high probability or support. It is one of the core components of
the ML-based detection pipeline, and it has a major impact on
the model in terms of both the performance and computational
(time and space) requirements. Feature selection is grouped
into three categories based on how it is processed: (1) filter
method, (2) wrapper method, and (3) embedded method [18].

A. Filter Method

The Filter method is also known as the univariate selection
in which features are selected, having a strong relationship
with the output variable. This relationship between features
and output variables is measure through well established
statistical tests such as chi-squared. Filter methods are fast
and easy to interpret [18]. Table II lists out the top and bottom
10 features with their score that were selected using the filter
method by applying ANOVA F-value. From Table II, we can
observe that feature related to Magnitude of PMUs got higher
ranking in filter method. The reason could be attributed to the
fact that features related to Magnitude got higher values, while
features related to Angle have smaller value and even negative
value that impacts the ANOVA calculation for ranking these
features.

B. Wrapper Method

The wrapper method is a model-specific feature selection. In
this method, features are selected as per their importance with
a particular model’s performance. It is obvious that feature
rank varies with different models and features are tightly cou-
pled with models. The wrapper methods are computationally



TABLE III
WRAPPER METHOD: TEN TOP AND BOTTOM FEATURES WITH ITS

IMPORTANCE

Top Features Bottom Features
Features Importance Features Importance

R4-PM2:V 0.017745 R4-PA9:VH 0.000044
R1-PM5:I 0.016291 R2-PA9:VH 0.000041
R4-PM5:I 0.016251 snort log1 0.000024
R2-PM5:I 0.016208 snort log3 0.000021

R3-PA7:VH 0.015746 control panel log3 0.000009
R1-PM2:V 0.015684 control panel log2 0.000002
R2-PA3:VH 0.015622 control panel log1 0.000000
R3-PA3:VH 0.015482 control panel log4 0.000000
R3-PM5:I 0.015026 snort log2 0.000000

R2-PA7:VH 0.014930 snort log4 0.000000

Fig. 2. Process of embedded feature selection.

expensive, and the greedy search used to find the best features
is not optimal and often suspected of false starts [18]. Table III
lists out the top and bottom 10 features with their importance
that were selected using the wrapper method. From Table III it
can be observe that both Magnitude and Angle related features
equally (6 and 4 respectively) appeared in top 10 features
based on their importance. The reasons behind this can be
contributed to the fact that tree-based classifier is not affected
by the number of features but affected by the participation of
the value in classification accuracy. This can also be verified by
the bottom 10 features in which mostly controls logs related
features are listed, and these features are Boolean and very
sparse. They do not contribute to classification (importance
value equal to zero).

C. Embedded Method

The embedded method is a hybrid approach that combines
the filter and the wrapper method to get the best of these
two methods (speed of filter) and better performance (as in
wrapper) with the model. This is achieved by making the
feature selection as part of the model training itself, i.e., the
ML algorithm keeps selecting the features during the on-going
model training process [18]. Many ML algorithms recursively
perform embedded feature selection, i.e., after training model
with all features, a subset of features are selected based
on importance, and re-training repeats until the convergence
condition is met. The LASSO and RIDGE regression are two
common examples of embedded feature selection. Through
block diagram Fig. 2 display the overall process of embedded
feature selection.

V. EXPERIMENTS AND RESULTS

This section presents results of all experiments carried out
to train and test various ML algorithms on a different subset
of features (ALL, Top10, Top20, Top30, Top40, and Top50).

A. Experimental System
All experiments are carried out with the system that has the

latest version of Ubuntu 20.04 LTS, 64-bit OS running on Intel
i5-6200U CPU 2.30 GHz quad-core processor with 16 GB
primary and 1 TB secondary memory. Python programming
language with required modules (pandas, NumPy, matplotlib,
CSV, etc.) is used to conduct all experiments. The Scikit-learn
framework is used to carry out all ML-related tasks such as
feature selection, model training, and testing.

B. Machine Learning Algorithms
The working principle of each ML algorithm is different;

some works on conditional probability while others use dis-
tance calculation. To have a better understanding of different
learning techniques, different ML algorithms, i.e., Regres-
sion, Naive Bayes (NB), Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM) and Ensemble methods
(Bagging and Boosting), are selected for training and testing
with the same feature set [19]. This experimental arrangement
provides a common platform to compare the performance and
help decide the best performing models.

C. Training and Testing
The training and testing are performed with two setups:

(1) percentage split (70-30) and (2) 10-fold cross-validation.
The training and testing with cross-validation methods result
in a more robust model and handle the overfitting issue of
training [20].

1) Percentage Split (70-30): In percentage split setup, the
initial dataset is split into training and testing part as per giving
percentage. For example, using a 70-30 ratio, the training
dataset will have 70% of the randomly selected sample, and
the rest 30% will be treated as a testing dataset. This method
gives an approx model and suffers from overfitting issue. First,
all ML-algorithms were trained with a 70-30% split on all
features. Fig. 3 shows the accuracy of all algorithms, and with
92% accuracy Random Forest is the best performing model in
the ensemble group, and with 85% accuracy Decision Tree
outperform the other individual model.

For the model’s suitability to the smart grid environment, the
time complexity is a major performance metric. So, the model
building process (training and testing) is benchmarked with an
execution time that will help to understand the time complexity
of each algorithm. Table IV lists out the execution time of
each algorithm in seconds. We can observe that Naive Bayes
(NB) takes the minimum while Bagging with SVC takes the
maximum time. The Naive Bayes is fast because it reuses the
prior probability values for calculating the posterior, but only
if it holds the conditional independence assumption. Bagging
takes more time because it randomly re-sampled the dataset
and generate multiple subsets of the dataset to train the base
classifier.



Fig. 3. Accuracy of ML algorithms on all features.

TABLE IV
TIME TAKEN BY ALL THE CLASSIFIERS FOR TRAINING AND TESTING

Classifiers Time Taken (Sec.)
NB 0.132
SVC 9.770
KNN 7.280
DT 3.580
RF 17.900
Adaboost 11.800
BSVC 533.000
LR 1.140
XGB 62.000

2) 10 Fold Cross-validation: The training and testing with
a percentage split given an initial estimation of algorithms’
performance and a robust performance measuring the proposed
work have trained and tested all algorithms with a 10-fold
cross-validation method. After training and testing all algo-
rithms with 10-fold cross-validation, its performance is com-
pared with the percentage split methods. Table V and Fig. 4
shows the accuracy of all the algorithms in both percentage
split and 10-fold cross-validation. It can be observed that the
accuracy of many algorithms (RF, SVC, kNN, DT, and GB)
gets reduced in 10-fold cross-validation. In contrast, other
algorithms (LR, NB, Adaboost, and Bagging) either retained
the same accuracy or only reduced slightly. The first set of
algorithms has an inherent limitation of overfitting, while other
sets of algorithms can handle overfitting.

From the complexity result, we can see that Bagging
with SVC takes a longer time to train and test, so it was
dropped from further experiments. After understanding the
algorithms’ performance with percentage split and 10-fold
cross-validation, the proposed work aims to determine the
performance variation of algorithms with a subset of features.
These features were selected separately using filter and wrap-
per methods and grouped into the following sets (ALL, Top10,
Top20, Top30, Top40, and Top50). So, we have 11 subsets
of our initial dataset, and eight selected ML algorithms were
trained and tested with 10-fold cross-validation. The accuracy
of all algorithms on five feature sets selected using the filter
method is shown in Fig. 5. Three kinds of effects, namely (1)

TABLE V
ACCURACY OF CLASSIFIERS IN TRAIN-TEST SPLIT AND 10-FOLD

CROSS-VALIDATION

Classifiers Split
(70-30)

10-fold
(CV)

Random Forest (RF) 92.00 70.88
Support Vector (SVC) 70.74 58.40
Linear Regression (LR) 70.70 70.17
Naive Bayes (NB) 70.25 69.36
Nearest Neighbors (kNN) 81.69 62.76
Decision Tree (DT) 85.15 63.20
Adaboost (Ada) 70.86 69.26
Gradient Boosting(GB) 73.53 70.00
Bagging SVC(BSVC) 70.66 70.19

Fig. 4. Accuracy of classifiers in train-test split and 10-fold cross-validation.

no change, (2) increase, and (3) decrease in the accuracy, can
be observed while the number of selected features increases
from 10 to 50. The accuracy of SVC, Adaboost, and GB
decreases while the accuracy of LR, kNN, and DT increases.
The accuracy of RF and NB does not significantly change.

Similar to the filter method, five different datasets are
prepared using a subset of features, and all the eight algo-
rithms are trained and tested with 10-fold cross-validation. The
accuracy of these algorithms on all five datasets are shown in
Fig. 6. LR has no change in its accuracy, while the accuracy
of kNN increases with an increasing number of features. The
NB recorded a decline in the accuracy and has a significant
accuracy difference with the top10 and other features. The
RF, SVC, DT, Adaboost, and GB have either mixed changed
(increase with either end of feature set, i.e., top10 to top50)
or no significant increase or decrease in accuracy with an
increasing number of features. For example, the accuracy of
RF and DT dropped and recorded a minimum with top30
features while it is approximately constant with other feature
sets. In other groups, the change in accuracy of SVC and
Adaboost is not related to an increase in the number of
features.



Fig. 5. Accuracy of classifiers with selected features using filter methods.

Fig. 6. Accuracy of classifiers with selected features using wrapper methods.

VI. CONCLUSION AND FUTURE SCOPE

The proposed work aims to explore the suitability of ML
for detecting FDIA in the power system. This was achieved by
conducting various experiments with different feature selection
methods and training and testing various ML algorithms with
a different setup. Through experiments, it was found out that
feature selection methods directly relate to the performance of
ML algorithms. We observed that the algorithms’ performance
varies according to the type of selection. For example, the
accuracy of NB is not affected by the increasing number
of filter method features while decreasing with the wrapper
method’s features. Table II and Table III clearly indicate
that output of selection methods results selecting different
features. It was also observed that there is a significant dropped
in performance (accuracy) of algorithms when trained with
percentage split and 10-fold cross-validation. For example,
the Random forest decreased from 90% to 70%. Based on
experimental results and considering time and performance
trade-off Random forest is the most suited model for FDIA
detection in the power system. It should also be noted that its
performance is constant with either filter or wrapper methods,
and maximum accuracy is achieved with the minimum number
of features. The performance enhancement is considered as a
future work in which algorithms performance will be measure
and compare on various other metrics such as Receiver Oper-
ating Characteristic (ROC), Area Under Curve (AUC), Partial
AUC, False Positive Rate (FPR), True Positive Rate (TPR),

etc.

ACKNOWLEDGEMENT

This research was supported by the National Research
Foundation (NRF), Korea (2019R1C1C1007277) funded by
the Ministry of Science and ICT (MSIT), Korea. This research
was also supported by the Cardiff University HEFCW GCRF
Small Project: Secure, Low-Cost, and Efficient Energy Solu-
tion (SP113).

REFERENCES

[1] E. R. Griffor, C. Greer, D. A. Wollman, and M. J. Burns, “Framework
for cyber-physical systems: Volume 2, working group reports,” 2017.

[2] K. Khanna, B. K. Panigrahi, and A. Joshi, “Ai-based approach to
identify compromised meters in data integrity attacks on smart grid,”
IET Generation, Transmission & Distribution, vol. 12, no. 5, pp. 1052–
1066, 2017.

[3] Y. Maleh, M. Shojafar, A. Darwish, and A. Haqiq, Cybersecurity and
Privacy in Cyber Physical Systems. CRC Press, 2019.

[4] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015
ukraine blackout: Implications for false data injection attacks,” IEEE
Transactions on Power Systems, vol. 32, no. 4, pp. 3317–3318, 2016.

[5] S. Gönen, H. H. Sayan, E. N. Yılmaz, F. Üstünsoy, and G. Karacayılmaz,
“False data injection attacks and the insider threat in smart systems,”
Computers & Security, p. 101955, 2020.

[6] S. Aoufi, A. Derhab, and M. Guerroumi, “Survey of false data injection
in smart power grid: Attacks, countermeasures and challenges,” Journal
of Information Security and Applications, vol. 54, p. 102518, 2020.

[7] S. Pan, T. Morris, and U. Adhikari, “Developing a hybrid intrusion de-
tection system using data mining for power systems,” IEEE Transactions
on Smart Grid, vol. 6, no. 6, pp. 3104–3113, 2015.

[8] Z. Guan, N. Sun, Y. Xu, and T. Yang, “A comprehensive survey of
false data injection in smart grid,” International Journal of Wireless and
Mobile Computing, vol. 8, no. 1, pp. 27–33, 2015.

[9] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review
of false data injection attacks against modern power systems,” IEEE
Transactions on Smart Grid, vol. 8, no. 4, pp. 1630–1638, 2016.

[10] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection algo-
rithms for false data injection attacks in smart grids,” IEEE Transactions
on Smart Grid, vol. 11, no. 3, pp. 2218–2234, 2019.

[11] J. Cao, D. Wang, Z. Qu, M. Cui, P. Xu, K. Xue, and K. Hu, “A novel
false data injection attack detection model of the cyber-physical power
system,” IEEE Access, vol. 8, pp. 95 109–95 125, 2020.

[12] L. A. Maglaras and J. Jiang, “Intrusion detection in scada systems
using machine learning techniques,” in 2014 Science and Information
Conference. IEEE, 2014, pp. 626–631.

[13] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, “Detecting
stealthy false data injection using machine learning in smart grid,” IEEE
Systems Journal, vol. 11, no. 3, pp. 1644–1652, 2014.

[14] J. Yan, B. Tang, and H. He, “Detection of false data attacks in smart
grid with supervised learning,” in 2016 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2016, pp. 1395–1402.

[15] Y. Wang, M. M. Amin, J. Fu, and H. B. Moussa, “A novel data analytical
approach for false data injection cyber-physical attack mitigation in
smart grids,” IEEE Access, vol. 5, pp. 26 022–26 033, 2017.

[16] D. Wang, X. Wang, Y. Zhang, and L. Jin, “Detection of power grid
disturbances and cyber-attacks based on machine learning,” Journal of
Information Security and Applications, vol. 46, pp. 42–52, 2019.

[17] M. Panthi, “Anomaly detection in smart grids using machine learning
techniques,” in 2020 First International Conference on Power, Control
and Computing Technologies (ICPC2T). IEEE, 2020, pp. 220–222.

[18] S. Kotsiantis, “Feature selection for machine learning classification
problems: a recent overview,” Artificial Intelligence Review, vol. 42,
no. 1, pp. 157–176, 2011.

[19] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[20] J. Shao, “Linear model selection by cross-validation,” Journal of the
American statistical Association, vol. 88, no. 422, pp. 486–494, 1993.


