
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 6 6 8 3/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Yang, Xiaoh a n,  Li, Fa n  a n d  Liu, H a n t ao  2 0 2 1.  TTL-IQA: t r a n si tive  t r a n sfe r  lea r ning

b a s e d  no-r ef e r e nc e  im a g e  q u ali ty a s s e s s m e n t.  IEEE Tra ns ac tions  on  M ultim e dia  2 3  ,

p p .  4 3 2 6-4 3 4 0.  1 0.11 0 9/TMM.20 2 0.30 4 0 5 2 9  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.11 0 9/TMM.20 2 0.3 0 4 0 5 2 9  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



TTL-IQA: Transitive Transfer Learning based

No-reference Image Quality Assessment
Xiaohan Yang, Student Member, IEEE, Fan Li, Member, IEEE, and Hantao Liu, Member, IEEE

Abstract—Image quality assessment (IQA) based on deep
learning faces the overfitting problem due to limited training
samples available in existing IQA databases. Transfer learning is
a plausible solution to the problem, in which the shared features
derived from the large-scale Imagenet source domain could be
transferred from the original recognition task to the intended
IQA task. However, the Imagenet source domain and the IQA
target domain as well as their corresponding tasks are not directly
related. In this paper, we propose a new transitive transfer
learning method for no-reference image quality assessment (TTL-
IQA). First, the architecture of the multi-domain transitive
transfer learning for IQA is developed to transfer the Imagenet
source domain to the auxiliary domain, and then to the IQA
target domain. Second, the auxiliary domain and the auxiliary
task are constructed by a new generative adversarial network
based on distortion translation (DT-GAN). Furthermore, a TTL
network of the semantic features transfer (SFTnet) is proposed to
optimize the shared features for the TTL-IQA. Experiments are
conducted to evaluate the performance of the proposed method
on various IQA databases, including the LIVE, TID2013, CSIQ,
LIVE multiply distorted and LIVE challenge. The results show
that the proposed method significantly outperforms the state-of-
the-art methods. In addition, our proposed method demonstrates
a strong generalization ability.

Index Terms—Transitive transfer learning, image quality as-
sessment, auxiliary domain, distortion translation, semantic fea-
ture transfer, generative adversarial network.

I. INTRODUCTION

W ITH the fast development of social media and the

increasing demand for imaging services, a large num-

ber of digital images are generated, stored, processed and

transmitted every day [1]. Through these different stages of the

imaging pipeline, image signals are subject to a wide variety

of distortions, which may result in visual quality degradation.

A reliable IQA method can help quantify the image quality

on the Internet and accurately assess the performance of

image processing algorithms from the perspective of human

observers. Therefore, it is crucial to develop effective IQA

methods.

Objective IQA methods are classified in general into three

categories depending on the availability of the reference im-

age: full-reference IQA (FR-IQA) [2], [3], reduced-reference
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IQA (RR-IQA) [4], [5], and no-reference IQA (NR-IQA).

However, since the reference is not accessible in many practi-

cal scenarios, NR-IQA attracts a significant amount of research

interests in recent years.

Most of the traditional NR-IQA methods commonly adopt

some handcrafted features of the distorted images, and then

train a shallow regression model (e.g., support vector re-

gression) to map the feature representations to subjective

quality scores [6]-[8]. An obvious limitation of those NR-

IQA methods is that the handcrafted features may not be

powerful enough to adequately represent complex structures

and distortions of images for the IQA task. With the great

success of deep learning in the field of image recognition

and processing, the deep learning method provides a very

promising strategy for addressing the challenging NR-IQA

problem [12]. This is because the remarkable capability of the

deep neural network (DNN) in automatically discriminating

features related to image quality. Nevertheless, the success of

deep learning methods relies heavily on large-scale annotated

data, such as the Imagenet dataset for the image recognition

task [14]. Unfortunately, for the IQA task, there does not exist

a large database of training images with the groundtruth labels

of human subjective quality scores.

Therefore, researchers pay more attention to the use of a

variety of data enhancement methods to generate more training

samples for IQA task [15]. The most popular method is to

divide an image into small image patches. The subjective score

of the whole image or the proxy score derived from an FR

metric is used as the groundtruth label of each image patch.

However, these groundtruth labels are inaccurate to represent

the real subjective scores of image patches. Some methods aim

to transfer the shared features from the large-scale Imagenet

source domain to the IQA target domain to complete the IQA

quality score task, which can reduce the burden of training a

DNN model with an IQA database from scratch [16], [17].

However, since the Imagenet source domain and the IQA

target domain and their respective tasks are not directly related,

finding ways to achieve an effective transfer learning approach

remains challenging.

In this paper, we propose a transitive transfer learning based

no-reference image quality assessment method (TTL-IQA),

which aims to identify and reduce the irrelevance between

the Imagenet source and the IQA target domains and tasks.

Our contributions are summarized as follows.

(1) We develop an architecture of the multi-domain transi-

tive transfer learning (TTL) for IQA. An auxiliary domain

is designed to act as the intermediate bridge between the

Imagenet source and the IQA target domains, which aims



to enhance the multi-domain correlation by associating multi-

domain image properties. Also, the auxiliary task is designed

to act as the intermediate bridge between the recognition

and the IQA tasks, which aims to enhance the multi-task

correlation by associating multi-task labels.

(2) We construct the auxiliary domain and the auxiliary task

by a new generative adversarial network based on distortion

translation (DT-GAN). For the auxiliary domain construction,

the hallucinated distortion images are generated by the DT-

GAN using source images that are not from the IQA databases.

Meanwhile, a stack connected resize convolution module is

designed to perform the distortion distribution translation from

the IQA images to the hallucinated distortion images. For the

auxiliary task, the quality-level labeling strategy is proposed

to generate the labels for the hallucinated distortion images.

(3) We propose a new TTL network of the semantic features

transfer (SFTnet) to optimize the shared features for the TTL-

IQA. The semantic discrimination adaptation (SDA) block is

designed as the novel attention unit to adaptively enhance the

useful shared features of the IQA task relevant to the multi-

domain and multi-task learning, while suppressing the useless

features, including discriminative and class-specific features.

II. RELATED WORK

In this section, we provide a review of the recent NR-IQA

methods. A more detailed review of the NR-IQA methods can

be found in [12], [15], [27].

A. The traditional NR-IQA methods

The traditional NR-IQA methods attempt to extract some

specific features that could discriminate distortion images from

the pristine images, and learn a shallow regression model to

map the image representations onto scalar quality scores. The

first category methods [6]-[8] extract natural scene statistics

(NSS) as features based on the statistical regularity of natural

images. However, it remains limited for these handcrafted

features to fully represent complex image structures and dis-

tortions. The second category methods [9]-[11] extract features

by feature encoding with respect to a learned codebook. The

MSDD method [10] first extract compact and discriminative

quality-aware features of local image patches by using FR

method to optimize discriminative dictionary. Then, the image

level features are aggregated and the SVR method is used

to predict image quality. However, the FR method is difficult

to extract discriminative quality-aware features of authentic

distortion images and the SVR method is a shallow regression

model, which is difficult to simulate the complex perception

mechanism of humans [15]

B. Deep learning methods for NR-IQA

In recent years, much works has used deep learning for

NR-IQA. The motivation is that the DNN can automatically

capture more deep features relevant to quality assessment and

so to improve prediction performance. However, challenges

remain for the deep learning methods for NR-IQA, primarily

due to the lack of sufficient IQA databases.

To address this problem, there are two methods to enhance

the labeled image data for the IQA task. One is the image

patch-based method [28]-[30]. In this approach, each image

of the IQA database is divided into a large number of image

patches to achieve the internal enhancement. Kang et al. [28]

first divided an image into several image patches and used the

subjective score of the whole image as the label for all patches

to train the DNN model. Then, the image quality is predicted

by using the average score of all image patches. Instead of

using the subjective score as the label for all image patches,

some methods use the FR metric as the proxy patch label [29],

[30].

The other method is based on transfer learning[18], [31]-

[33]. In this approach, the pre-trained VGG network (VGG)

for the recognition task is commonly transferred the shared

features derived from the large-scale non-IQA image databases

to achieve the IQA task. In [18], the VGG is used to transfer

the shared features from the recognition task to the IQA task.

Moreover, some images in the image recognition datasets are

simulated artificially using typical distortion types in the IQA

databases. In [31], the method expands some external images

through some functions relevant to specific distortion types

in the IQA database and the corresponding quality labels

can be obtained by varying the parameters in the distortion

functions. Then, the Siamese network contained with twin

pre-trained VGG [34] derived from the recognition task is

used to rank these external images quality level, and then

fine-tune a branch of the VGG to assess image quality score.

Similarly, Zhang et al. [32] use the same method to expand

IQA database and train the DNN and the pre-trained VGG

derived from the recognition task to predict image quality both

the synthetic and authentic distortion images. In addition, some

methods opt to the GAN [35], [36] to generate the hallucinated

reference images constrained on the distortion images in the

IQA database and use the DNN model to predict image quality

[33].

Compared with different NR-IQA methods, we summary

the difference between our method and different NR-IQA

methods. Different from the tradition MSDD method [10],

Our TTL-IQA method is suitable for evaluating quality of

images with authentic, mixed and synthetic IQA databases

and the quality prediction accuracy can be enhanced by using

deep learning. In contrast to the method in [18], our TTL-

IQA method enhances the relationship between the ImageNet

source domain and the IQA target domain as well as their cor-

responding visual tasks by constructing the auxiliary domain

and auxiliary task. For the methods in [31], [32], they can

only use simple functions to simulate some synthetic/artificial

distortions in images with specific and known distortion types,

and they cannot simulate e.g., authentic and mixed distortions

in images. Also, the method in [33] relies on the information

from the pristine reference images, therefore, is not suitable

for the evaluation of authentic distortions in images. Our TTL-

IQA method overcomes these problems by using GT-GAN

to simulate a variety of distorted images, including synthetic,

authentic, and mixed distortions in images. In addition, our

TTL-IQA method does not highly depend on the pristine

reference images in the IQA database.



III. THE FRAMEWORK OF TTL-IQA

A. The limitation of the transfer learning method for IQA

The transfer learning method is to use the shared features

of the VGG from the large-scale Imagenet source domain for

the IQA target domain to achieve the task transfer from the

recognition task to the IQA quality score task. The following

abbreviations are used in this paper, as shown in Table I.

The definitions of the Imagenet source domain and the IQA

target domain are given as:

Ds = {χs, P (Xs)} (1)

Dt = {χt, P (Xt)} (2)

where Ds and Dt are the Imagenet source domain and the

IQA target domain, respectively. χs and P (Xs) are the image

feature space and marginal probability distribution in Ds,

respectively. Xs is a image set in Ds, which belongs to

χs. χt and P (Xt) are the image feature space and marginal

probability distribution in Dt, respectively. Xt is a image set

in Dt, which belongs to χt.

The recogniton task and the IQA quality score task are

defined as:

Ts = {ys, fs(·)} (3)

Tt = {yt, ft(·)} (4)

where Ts and Tt are the recogniton task and the IQA quality

score task, respectively. ys and yt are the classification and the

quality score labels, respectively. fs(·) and ft(·) denote the

predictive functions for the classification and the IQA quality

score tasks, respectively.

The major limitations of the transfer learning method for

IQA are described below, and as shown in Fig. 1.

( ){ },s s sD P Xc= ( ){ },s s sT y f= )}

IQA task

( ){ },t t tT y f= )}( ){ },t t tD P Xc=
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Fig. 1. The limitations of the transfer learning method for IQA.

(1) Ds and Dt are not directly related. Although χs and χt

are similar, P (Xs) and P (Xt) are not similar, because there

is a little overlap in the image properties between the two

domains. The image properties in Ds represent salient object,

shapes, size, activities and so on [20], [21]. Nevertheless, the

image properties mainly include distortion, image content and

salient object [22], [23] in Dt.

(2) Ts and Tt are dramatically unrelated. First, ys and yt are

irrelevant. ys is the object classification and yt is the quality

scoring. Moreover, fs(·) and ft(·) are different. For Ts, fs(·)
aims to learn the mapping relationship between the images of

the Imagenet dataset and object classification labels. However,

for Tt, ft(·) is to map the relationship between distortion

images and quality scores.

B. The difficulities of TTL method

In order to overcome the irrelevance between Ds and Dt,

as well as Ts and Tt, it is necessary to construct an auxiliary

domain and its task to enhance the correlation between Ds

and Dt, as well as Ts and Tt.
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Fig. 2. The framework of the proposed TTL-IQA for IQA.

The requirements for constructing Da and Ta are summa-

rized as follows.

(1) The construction of Da needs to associate the marginal

probability distribution of image data between Ds and Dt.

It means that the marginal probability distribution of image

data is mainly related to the common image properties and

the important image properties for the IQA task. Since Ds

and Dt have the constraints of rich scene content, it can

act as the characteristic in Da to associate the common

image properties. Furthermore, since the distortion is the most

important property to the IQA image data, the images in Da

need to contain various distortion features.

(2) The construction of Ta needs to associate the labels. For

multi-task labels, the label of Ta not only needs to associate the

classification label for Ts, but also to maximize the transition

to perceived quality label for Tt.

(3) The appropriate TTL network needs to be designed to

associate the shared features of prediction functions between

the two tasks. For Ts, the salient object and the highly

discriminative and class-specific features are used to construct

the prediction function. However, for Ta and Ts, the distortion

and salient object are most useful features to construct the

prediction functions. Therefore, the appropriate TTL network

needs to share these useful features to construct the multi-task

correlation.

However, there are some difficulties to construct appropriate

Da and Ta to complete TTL. First, the construction of Da is

incomplete by using the popular artificial distortion simulation

methods [31], [32]. In fact, there is a lack of the pristine refer-

ence images and the prior distortion information especially for

the authentic and the mixed IQA databases [37], [51]. Second,

the labels between multiple tasks (Ts,Ta,Tt) are not highly

related, because the labels in Ta cannot be highly associated

with multiple tasks. Third, the shared features are insufficient

from Ts to Ta. Although the VGG is useful for transfer

learning, it not only transfers the shared features related to

salient object that are useful to Ts and Taql, but also transfers

the shared highly discriminative and class-specific features that

are useful for Ts but useless for Taql. It makes the performance

of transfer learning is non-optimal.



TABLE I
THE ABBREVIATIONS USED IN THIS PAPER

abbreviations Symbols abbreviations Symbols

Imagenet source domain Ds Recognition task Ts

Auxiliary domain Da Auxiliary task Ta

– – Auxiliary quality level task Taql

IQA target domain Dt IQA quality score task Tt

The IQA distortion image Id The hallucinated distortion image I
′

d

The high quality image Ihq The hallucinated high quality image I
′

hq

The generative network of the hallucinated distortion quality images D-Gnet – –
The discriminative network of the hallucinated distortion quality images D-Dnet – –

The generative network of the hallucinated high-quality images H-Gnet – –
The discriminative network of the hallucinated high-quality images H-Dnet – –

C. The framework of the proposed TTL-IQA for IQA

Therefore, we propose a new TTL-IQA framework, as

shown in Fig. 2. The DT-GAN is proposed to generate large-

scale hallucinated distortion images and corresponding quality

semantic labels. Meanwhile, the SFTnet is proposed to opti-

mize the shared features to improve prediction performance of

image quality for TTL.

The advantages of the proposed DT-GAN and SFTnet are

as follows, respectively.

(1) The proposed DT-GAN aims to construct Da, which

contains large-scale hallucinated distortion images. Compared

with the traditional simulation distortion approaches [31], [32],

DT-GAN can easily learn to simulate various distortion types,

including synthetic, mixed and authentic distortions using

DT-GAN architecture and its loss functions. This method is

widely applicable and can overcome the limitations of other

simulation methods [31], [32] that require explicit noise func-

tions. Also, DT-GAN can learn the distribution of distortion

properties of the IQA databases, making sure the simulated

distortions have a similar distribution to that of the image

distortions in the IQA databases.

Therefore, once Da is constructed, domain correlation is

enhanced. This is because from Ds to Da, the properties of

various image scenes in Da are associated with the common

image properties of Ds and Dt. From Da to Dt, the distortion

properties in Da can act as the specific IQA property to as-

sociate Dt, which can overcome the disadvantage of artificial

distortion simulation methods.

(2) The proposed DT-GAN aims to construct Taql, including

quality semantic labels . This is because DT-GAN can si-

multaneously generate quality labels of hallucinated distortion

images. Once Taql is constructed, task correlation is enhanced.

From Ts to Taql, the labels are about the classification tasks.

From Taql to Tt, the labels are directly related to the quality

semantics, which aim to describe the image quality from the

coarse-grained quality level to the fine-grained quality score.

(3) The proposed SFTnet aims to enhance the shared

features in the TTL process. When transferring from Ts to

Taql, the SFTnet can enhance the shared salient object features,

which is useful for both Ts and Taql, and also it suppresses

the shared highly discriminative and class-specific features,

which is useful for Ts but useless for Taql. When transferring

from Taql to Tt, it is easy to inherit all the shared features

obtained from Taql to achieve Tt. Since the shared salient

object features obtained from Ts and the learned distortion

features obtained from Taql are most useful to achieve Tt, the

SFTnet is only to be fine-tuned to achieve the transformation

from Taql to Tt.

IV. THE CONSTRUCTION OF THE AUXILIARY DOMAIN AND

THE AUXILIARY TASK FOR TTL-IQA

In this part, we introduce the architecture of the proposed

DT-GAN in detail, which aim to construct the auxiliary

domain and the auxiliary quality level task for TTL-IQA.

A. The architecture of DT-GAN

In order to construct the auxiliary domain Da and the

auxiliary quality level task Taql, we propose a DT-GAN archi-

tecture to generate a large number of hallucinated distortion

images with three quality levels, whose distortion distribution

is similar to that of the IQA databases. In Fig. 3, we give the

architecture of the proposed DT-GAN.

H-Dnet

D-Gnet

H-Gnet

D-Dnet

d
I

hd
I

'

hd
I

'

d
I

with specific quality level

label in the IQA database

with specific quality

level label

Fig. 3. The architecture of the proposed DT-GAN.

1) The composition of the DT-GAN: The DT-GAN consists

of four parts, including the generative network of the halluci-

nated distortion images (D-Gnet), the discriminative network

of the hallucinated distortion images (D-Dnet), the generative

network of the hallucinated high-quality images (H-Gnet), and

the discriminative network of the hallucinated high-quality

images (H-Dnet).



The D-Gnet aims to generate the hallucinated distortion

images I
′

d from the large number of the high quality images

Ihq beyond the contents of the IQA databases. Furthermore,

the D-Dnet is trained by using I
′

d and the distorted images Id
with a specific quality level in the IQA databases. The goal

is to translate the distortion distribution from Id to I
′

d so that

the distortion distribution of I
′

d is indistinguishable with that

of Id.

TABLE II
THE PARAMETER SETTINGS IN DT-GAN

DT-GAN L KS S P IC OC U

D-Gnet/H-Gnet

SC1 7 1 0 3 64 ×
SC2 3 2 1 64 128 ×
SC3 3 2 1 128 256 ×
RB1 3 1 0 256 256 ×
RB2 3 1 0 256 256 ×
RC1 3 1 0 256 128 NN
RC2 3 1 0 256 128 NN
SC4 7 1 0 64 3 ×

D-Dnet/H-Dnet

SCm1 4 2 1 3 64 ×
SCm2 4 2 4 64 128 ×
SCm3 4 2 1 128 256 ×
SCm4 4 1 1 256 512 ×
SCm5 4 1 1 512 1 ×

However, the disadvantage is the distortion translation is

highly under-constrained by using the D-Dnet and the D-Gnet.

Since the image scenes of Ihq are different from that of Id,

this leads to the contents of I
′

d to be destroyed to meet the

image distribution consistency between I
′

d and Id.

In order to ensure that the content distribution remain

unchanged for I
′

d, the H-Gnet aims to construct an inverse

mapping relationship that can translate I
′

d into the hallucinated

high-quality images I
′

hq , which is similar to the content of Ihq .

It prevents the interference of the image content of the IQA

database to I
′

d. Finally, I
′

hq is to fool the H-Dnet, which cannot

distinguish the content difference between I
′

hq and Ihq .

2) The architectures of D-Gnet and H-Gnet in GT-GAN:

In the DT-GAN, the D-Gnet and the H-Gnet architectures are

the same, as shown in Fig. 4. It follows the auto-encoder and

decoder modules. The architecture of auto-encoder module

consists of three standard convolution (SC) layers and three

stacked residual blocks (RB) [42], which aims to obtain the

deep features of the lower dimensions and avoid the gradient

vanish of the deep network. The architecture of decode module

consists of two resize convolution (RC) layers and a SC layer.

It aims to alleviate the external checkerboard distortion in the

decoder module caused by the general deconvolution (DC)

operation [43],[44].

The parameter settings of the D-Gnet or the H-Gnet are

shown in Table II. Note that L means the different layers and

the KS means the kernel size. The S, P, IC, OC and U mean the

stride, padding, input channel, output channel and upsampling,

respectively.

3) The architectures of D-Dnet and H-Dnet in GT-GAN:

In the DT-GAN, the D-Dnet and the H-Dnet architectures are

also the same, as shown in Fig. 5. It contains the five SC layers

and the parameter settings are shown in Table II. The D-Dnet

aims to discriminate the fake I
′

d from the real Id. Meanwhile,

SC1 SC2 SC3 RB1 RB2 RB3 RC1 RC2 SC4

Fig. 4. The D-Gnet/H-Gnet architecture.

SCm1 SCm2 SCm3 SCm4 SCm5

Fig. 5. The D-Dnet/H-Dnet architecture.

the H-Dnet aims to discriminate the fake I
′

hq from the real

Ihq .

B. The quality level label of the hallucinated distortion image

for training DT-GAN

After the I
′

d image are generated to construct Da, the

reasonable labels of I
′

d need to be designed to construct Ta

for TTL. It not only needs to associate the labels from Ts

to Tt, but also associate the labels from Ta to Tt. The most

reliable method is to evaluate the quality label of I
′

d from

the large number of subjects. However, this method is time-

consuming and impractical. Therefore, we propose the quality

level strategy to roughly generate the label of I
′

d for training

DT-GAN.

The definition of quality level is to describe quality degrada-

tion. It aims to classify the subjective scores of the distortion

images into three quality levels, including High (i.e., with

perceptible but not annoying artifacts), Medium (i.e., with

noticeable and annoying artifacts) and Low (i.e., with very

annoying artifacts) quality levels for each IQA database.

Especially, each quality level includes the distortion images

with similar subjective scores and the number of images in

the three quality levels is approximately the same, as shown

in Table III.

Let ~S be the subjective scores of the

distortion images in each IQA database.
~S1=sort{~S}=[s1, s2, ..., sNtotal

3
+1

, ..., s 2Ntotal

3
+1

, ..., sNtotal
]

is the ranking of the subjective scores. Ntotal is the number

of the distortion images. For LIVE, LIVEMD, CSIQ, the

subjective scores are DMOS, hence these scores are ranked

in the ascending order. For LIVEC, TID2013, the subjective

scores are MOS, these scores are ranked in the descending

order. The quality levels are defined as:

L1 = [s1, sNtotal

3

] (5)

L2 = [sNtotal

3
+1

, s 2Ntotal

3

] (6)

L3 = [s 2Ntotal

3
+1

, sNtotal
] (7)



where L1,L2 and L3 are the range of the high, medium, low

quality level scores, respectively. The distortion images with

each quality level are found according to L1,L2, L3.

For different IQA databases, the range of quality scores

varies. Therefore, we classify the distortion images into three

quality levels, according to the specific MOS/DMOS scale in

each IQA database. This can effectively avoid the overlap of

quality level semantics caused by uneven score distribution in

different IQA databases.

The advantages of this quality level strategy are summarized

as follows. First, the quality level strategy is to associate

the Ts, Ta and Tt for TTL. This is because it makes Ta

a classification task with the quality level, which not only

associates Ts based on the classification task with the scene

contents, but also associates Tt based on the regression task

with the quality semantics. Therefore, the construction of

quality level label aims to smooth the transformation from the

classification task to the regression task, which progressively

enhances the correlation of multiple tasks for TTL.

Moreover, the quality level strategy makes that each dis-

tortion image within a quality level also gives the semantic

characteristic of human perception. This is because humans

prefer to use the natural language to evaluate image quality

[47], such as high, medium, low. The natural language metric

is a range measure, which reduces the error of absolute scores

for different subjects.

In addition, this strategy is beneficial for training the DT-

GAN. This is because this strategy reduces the significant

difference of the number of images between the high, medium

and low levels, which enhances the ability of the D-Dnet

to distinguish between the fake I
′

d and the real Id and then

enhances the accuracy of the generated quality level label.

C. The loss function of the DT-GAN

Our goal is to train the DT-GAN to generate I
′

d with the

similar distortion distribution to the IQA database. At the same

time, it needs to ensure that the content of I
′

d is consistent

with the corresponding content of Ihq, which is not affected

by the image content of the IQA database. Therefore, the loss

function of the DT-GAN is computed by two components: the

adversarial loss and the cycle consistency loss.

To make the distortion distribution of I
′

d indistinguishable

from Id, we adopt the adversarial loss Ladv [45],as:

Ladv(w; θ) = L1(w; θ) + L2(w; θ) (8)

L1(w; θ) = E[logDw(Id)] + E[log(1−D(Gθ(Ihq)))] (9)

L2(w; θ) = E[logDw(Ihq)] + E[log(1−D(Gθ(I
′

d)))] (10)

where L1(·) is the loss function of the D-Dnet and the D-Gnet;

G(Ihq) aims to generate I
′

d in the D-Gnet; The D(G(Ihq))
tries to discriminate the probability distribution in the D-Dnet

between I
′

d and Id. Similarly, L2(·) is the loss function of

the H-Dnet and H-Gnet; G(I
′

d) aims to generate I
′

hq; The

D(G(I
′

d)) tries to discriminate the probability distribution

in the H-Dnet between I
′

hq and Ihq . Finally, the adversarial

learning is to minimize Ladv , which makes the generated I
′

d

and I
′

hq from D-Gnet and H-Gnet to fool D-Dnet and H-Dnet

and realize the translation of the distortion distribution.

Although the adversarial loss can translate the distortion

distribution into I
′

d and preserve its content unchanged, the

similarity of statistical characteristics relevant to image content

cannot guarantee that I
′

hq and Ihq come from the same image

content. Therefore, we propose a cycle consistency loss Lcyc

to optimize the consistency of image content.

Lcyc(θ) = Lp(θ) + Ls(θ) (11)

Lp(θ) =
1

N

N
∑

i=1

∥

∥

∥
Gθ(I

′

d)− Ihq

∥

∥

∥

2

(12)

Ls(θ) =
1

M

M
∑

i=1

∥

∥

∥
φ(Gθ(I

′

d))− φ(Ihq)
∥

∥

∥

2

(13)

where Lp(·) is the pixel-wise loss between I
′

hq and Ihq to

represent the holistic content consistency roughly; N is the

image dimensions; Ls(·) is the high-level semantic loss to

refine local content similarity between I
′

hq and Ihq; φ(·)
represents the extracted high-level semantic features from the

last fully connected layer of the VGG for the recognition task;

M is the dimensions of the high-level semantic features.

Finally, the objective loss function L is presented to opti-

mize the DT-GAN:

L(w; θ) = Ladv(θ) + λLcyc(θ) (14)

where λ controls the relative importance of the two loss

components in the DT-GAN.

D. The training strategy of DT-GAN

The inputs of DT-GAN are the pristine high quality images

and the specific quality level IQA images. These pristine high

quality images are from the large-scale Waterloo Exploration

Database [46], which contains a total of 4744 high quality im-

ages diverse content, as shown in the brown box in Fig. 3. The

specific quality level IQA images are from the IQA database,

as shown in the purple box in Fig. 3. Since the Waterloo

Exploration Database includes various scene contents, it can

associate the properties of various scene contents among Ds,

Da and Dt.

We train DT-GAN three times. Every time, the inputs are

the same 4744 pristine high quality images and the IQA

images with a specific quality level label (High, Medium or

Low). Considering the insufficient IQA image data, sample

enhancement strategies have been applied for training DT-

GAN. First, we adopt the distorted samples and their flipped

images to enhance the training samples in the IQA database.

Second, the training of the discriminator (D-Dnet and H-Dnet)

in the DT-GAN is based on PatchGAN method [48]. This

method does not send the whole image into the discriminator,

instead it divides an image into several patches. The goal is to

characterize structures at the image patch scale and classify

each N × N (N=70) patch in an image as real or fake.

Therefore, after training the DT-GAN three times, the I
′

d with

three different quality level labels are generated to construct



TABLE III
THE DIVISION OF QUALITY LEVEL IN EACH IQA DATABASE

Database Subjective score Distortion Type
High quality Medium quality Low quality

Range Numbers Range Numbers Range Numbers

LIVEC MOS N/A [67.6 100] 387 [49.4 67.6] 386 [0 49.4] 389

LIVEMD DMOS
GB+WN [0 47.5] 75 [47.5 58] 74 [58 100] 76

GB+JPEG [0 42] 75 [42 59] 73 [59 100] 77

LIVE DMOS

JPEG [0 39] 58 [39 58] 59 [58 100] 58
JP2K [0 36] 56 [36 54.5] 56 [54.5 100] 57
GB [0 36] 49 [36 50.5] 49 [50.5 100] 47
WN [0 35] 49 [35 51] 49 [51 100] 47
FF [0 34] 49 [34 51.5] 48 [51.5 100] 48
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Fig. 6. The SFTnet architecture.

the Da and the label of Ta. The total number of hallucinated

images for each distortion type is 4744× 3.

All the training samples are the size of 256 × 256 pixels

that randomly cropped from the high-quality and the distorted

images. Generator and the discriminator are trained alternately.

First, using I
′

d of the D-Gnet, the D-Dnet is optimized to

maximize max
D−Dnet

L1 so that it can correctly discriminate the

real Id and the fake I
′

d. Then, according to the loss error of the

D-Dnet, the D-Gnet can minimize min
D−Gnet

L1 to fool D-Dnet.

This adversarial training ensures that the distortion distribution

and the label of the generated I
′

d is similar to that of Id. Then,

I
′

d are fed into the H-Gnet to generate I
′

hq so that the H-Dnet

can be trained to maximize max
H−Dnet

L2. It can discriminate

the fake I
′

hq and the real Ihq . By adjusting the parameters of

H-Gnet, the H-Gnet is also optimized to minimize min
H−Gnet

L2

and min
H−Gnet

Lcyc. The goal is to trick the H-Dnet to judge

I
′

hq as the real Ihq . In this way, the image content of I
′

d can

be preserved from Ihq . Finally, the joint optimization of four

loss functions in DT-GAN makes the distortion distribution

and the label of I
′

d be translated from the IQA images without

changing their image contents.

V. THE SFTNET FOR TTL-IQA

For TTL, an appropriate TTL network can optimize the

shared features among multiple tasks to improve the prediction

performance. Although the VGG is used to act as the transfer

network to complete the IQA task, not all of the shared

features of the salient objects and the highly discriminative and

class-specific abilities are useful to the IQA task. Therefore,

an appropriate TTL network is important to the TTL-IQA

method.

A. The SFTnet architecture

In order to construct an appropriate TTL network, we pro-

pose a new SFTnet, which aims to enhance the useful shared

features of salient objects and image distortion and suppress

the useless shared features of the highly discriminative and

class-specific abilities to achieve the IQA task.

Fig. 6 shows the SFTnet architecture. It contains two

modules, including the VGG and a new attention unit of the

semantic discrimination adaptation (SDA) block. The architec-

ture of SDA block consists of the two depth-wise convolution

(DWC) [49], the SC and the maxpooling (MP) layers.

1) The DWC layer of single channel correlation enhance-

ment: In order to accurately identify image semantic proper-

ties, we design the two DWC layers, which aim to perform

a spatial convolution operation of each channel feature map

independently.

For each single channel, the spatial convolution operation

is defined as:

fc = vc ⊗ kc (15)

where fc is the c-th feature map output, which enhances

the correlation of spatial locations to highlight the semantic

properties. ⊗ denotes the element-wise multiplication. vc



denotes the c-th feature map input of the previous convolution

layer. kc denotes the parameters of the c-th filter in the

DWC layer. fc, vc and kc are the 2D size. Especially, fc ∈
~F = [f1, ..., fc, ..., fC ]. ~F collects the semantic properties of

each channel feature map after the DWC operation.

2) The SC layer of the multiple channels correlation en-

hancement: In order to tackle the issue of discriminating the

importance of feature maps over the multiple channels, we

design the SC with 1 × 1 windows, projecting the channels

output of the DWC layer into a new channel space with

multiple channel convolution operation. The multiple channel

output is defined:

uc =
C
∑

c=1

fc ∗ wc (16)

where uc is the output of the c-th channel, which aims to

establish the interdependency among different channels to

highlight local information of an image. ∗ denotes convolution

operation. The larger uc is, the greater the image properties of

this channel become. uc ∈ ~U = [u1, ..., uc, ..., uC ]. ~U collects

the multiple channel outputs after the SC operation. wc is the

parameters of the c-filter in the SC layer.

3) The MP layer of explicitly establishing the dependency

of multiple channels: In order to discriminate the influence of

different channels for the IQA task, we explicitly establish the

dependency of multiple channels by using the MP layer:

u
′

c = MaxPool(uc) (17)

where u
′

c is the output of the c-th channel by using MP layer.

u
′

c ∈ ~U
′ = [u

′

1, ..., u
′

c, ..., u
′

C ].
~U

′

collects the outputs of the

MP layer, which can be interpreted as a collection of the

local image information whose statistics are expressive for the

whole image.

Then, the sigmoid activation is used to obtain channel

weights:

sc = σ(δ(w
′

cu
′

c)) (18)

where sc denotes the weight of the c-th channel, which is

to discriminate the importance of local image information

from the global image information. δ is the ReLU activation

function; σ is the sigmoid function. It means that these weights

can selectively emphasize salient object features relevant to

the relationship between the recognition and the IQA tasks, as

well as the image distortion features relevant to the IQA task.

Also, they suppress the features of highly discriminative and

class-specific abilities that are not important to the IQA task.

sc ∈ ~S = [s1, ..., sc, ..., sC ]. ~S collects the weights of each

channel.

Finally, the final outputs of feature maps ~X are obtained by

rescaling ~V with the weight activation ~S.

~X = ~V ⊗ ~S (19)

B. The training strategy of the SFTnet

First, before training the SFTnet, the parameters of VGG is

shared to the SFTnet. The parameters of the SDA block in the

SFTnet is initialized randomly.

Second, the SFTnet is trained from the recognition task

to the auxiliary quality level task by using the hallucinated

distortion images and the quality level lables. The input images

of the SFTnet are randomly cropped to the size of 224× 224
pixels. The sofmax cross-entropy loss is used to classify the

three quality levels. In this way, the SFTnet is trained to

complete the quality level task for TTL.

Third, the SFTnet is trained from the auxiliary quality level

task to the IQA quality score task by using the IQA images

with the subjective score labels. The last fully-connected

layer of the SFTnet is changed to a one-dimensional output.

The input IQA images are resized to 224 × 224 pixels. The

Euclidean distance loss between the prediction score and the

groundtruth subjective score is used to fine-tune the SFTnet

by using the stochastic gradient decent strategy. In this way,

the SFTnet is trained to achieve the IQA quality score task

for TTL.

VI. EXPERIMENTS

A. Experimental setups

1) IQA databases: The five public IQA databases are used

to evaluate the proposed TTL-IQA method, including LIVE

[38], TID2013 [39], CSIQ [50], LIVE multiply distorted (MD)

[51] and LIVE In the Wild Image Quality Challenge Database

(LIVEC) [37]. Especially, the LIVEC is the authentic IQA

database and the LIVE MD is the mixed IQA database. The

rest are the synthetic IQA databases. The characteristics of

these five IQA databases are summarized in Table IV. Note

that Ref means the number of reference images. Dist means

the number of distorted images. DT means the number of

distortion types. SST and SR denote subjective score’s type

and range, respectively.

TABLE IV
THE BENCHMARK DATABASES FOR NR-IQA METHODS

Database Ref. Dist. DT SST SR

LIVE 29 779 5 DMOS [0,100]
TID2013 25 3000 24 MOS [0,9]

CSIQ 30 866 6 DMOS [0,1]
LIVE MD 15 450 2 DMOS [0,100]

LIVEC N/A 1162 Numerous MOS [0,100]

2) Evaluation criteria: To evaluate the performance of the

TTL-IQA method, we use two standard measures, including

Spearman Rank-Order Correlation Coefficient (SROCC) and

Pearson Linear Correlation Coefficient (PLCC). The PLCC

measures the prediction accuracy and the SROCC measures

the prediction monotonicity. For both correlation metrics a

value close to 1 indicates high performance of a specific

quality measure.

3) Training settings: In the process of training the DT-

GAN, we randomly divide the high-quality images into two

sets: 80% for training and 20% for testing in the Waterloo

Exploration database. The high-quality images in the training

sets are used as the inputs of the HD-Gnet. For the IQA

database, the distorted images are also randomly divided into

two sets in each quality level, 80% of distorted images with



the specific quality level labels are used as the training set for

the HD-Dnet and the remaining 20% of distorted images are

used for testing. Especially, there is no overlap in the image

contents between these training and test sets for the synthetic

databases. In the LIVEC database, since all the images are

different in content, the training and testing sets are randomly

selected. We use the Pytorch framework to train the DT-GAN.

We use the Adam solver [52] with a batch size of 1. The

learning rate is set as 0.0002. We keep the same learning rate

for the first 100 epochs and linearly decay the rate to zero

over the next 100 epochs.

Next, we use the Caffe framework to train the SFTnet. The

min-batch is set to 30. The momentum and weight decay is

set to 0.9 and 0.0005. The learning rate is set to 1e-6. Training

rates are decreased by a factor of 0.1 every 10K iterations for a

total of 50K iterations. The dropout regularization ration is set

to 0.5. Finally, the above the training set of the IQA database

is used to fine-tuning the SFTnet.

B. Performance on individual databases

We compare our proposed TTL-IQA method with the state-

of-art FR-IQA and NR-IQA methods. The FR-IQA methods

contain PSNR, SSIM [2] and FSIMc [53]. The NR-IQA

methods contain the classic NR-IQA methods (BLIINDSII

[54], BRISQUE [6], BWS [8], CORNIA [55], GMLOG [56]

and IL-NIQE [57]), and the deep learning methods (CNN [28],

RankIQA [31], BIECON [58], DIQaM [19], DIQA [30], DB-

CNN [32], HIQA [33]). Especially, we also compare the TTL-

IQA method with the methods that first pre-train a well-known

DNN model, such as AlexNet[13], ResNet50 [42] and VGG-

16Net [59] for the recognition task and then fine-tune this

model for the IQA task.

Since the training and testing sets are randomly selected

in our TTL-IQA method, the random process is repeated ten

times to eliminate the performance bias. The average results

of the obtained SROCC and PLCC values are reported as the

final performance. Table V shows SROCC and PLCC on the

five public databases. The italics indicate DNN-based methods.

The best three results among the NR-IQA methods are shown

in bold. The weighted average (WA) of SROCC and PLCC

over the five databases is shown in the last column. The weight

of each database is proportional to the number of distorted

images in the database.

Compared with the performance of the classical NR-IQA

methods, the proposed TTL-IQA method is superior over all

classical NR-IQA methods. This is because the TTL-IQA

method is the deep learning method that can automatically

extract deep features relevant to image quality instead of the

handcrafted low-level features. Furthermore, compared with

the deep learning methods, the proposed TTL-IQA method

has the best prediction performance on the authentic distortion

database (LIVEC) and the mixed distortion database (LIVE

MD). The performance of this method is better than most of

other methods on the LIVE, TID2013 and CSIQ.

Compared with the image patches-based methods (CNN,

BIECON, DIQaM, DIQA), our TTL-IQA method still out-

performs the most of these methods, because the quality

labels of image patches used in those methods are inaccurate.

In addition, the correlation between image patches was not

explicitly considered. Especially, for the LIVEC and LIVE

MD databases, the authentic distortions are much more het-

erogeneous than the synthetic distortions so that it makes less

sense to use the label of image patch to describe the image

quality. We use the images instead of image patches.

Compared with the external enhancement methods (RANK,

DB-CNN, HIQA), the prediction performance of our methods

is significantly improved in the LIVE MD and LIVEC. This is

because for the LIVEC, the prior distortion information cannot

be acquired in advance. For LIVE MD, the influence of mixed

distortion types is also complex, which cannot be simply act

as the sum of individual distortions. Therefore, these images

cannot be artificially simulated, which leads to the inaccurate

performance. Furthermore, compared with the methods related

to the pre-trained DNN model, our method is better than them

in most cases. This is because TTL can learn more shared

features than directly transfer learning.

In addition, compared with the FR methods, the TTL-IQA

method even outperforms the FR methods in the LIVE and

LIVE MD databases. Therefore, the performance of our TTL-

IQA method is overall promising.

C. Performance on individual distortion types

To take a closer look at the behaviors of the TTL-IQA on

individual distortion types along with several competing NR-

IQA methods, the models are trained with all the distortion

types from the training set (80%) and tested on individual

distortion types from the test set (20%). In Table VI, we

compare the performance of the TTL-IQA method and other

IQA methods.

As shown in Table VI, even when each distortion type is

tested separately, the TTL-IQA method is better than classical

and other deep learning NR-IQA methods for most distortion

types. We observe the performance of our TTL-IQA method

is the best in the LIVE MD database. This is because our

proposed method can automatically generate the distortion

images in the auxiliary domain, which is similar to the mixed

distortion types in the LIVE MD. For the LIVE, CSIQ and TID

2013, our method shows higher prediction accuracy than any

other methods on the common distortions (GB, WN, JPEG,

JP2K and FF). Especially, for the LIVE and the TID 2013,

our method is significantly superior to the other methods for

the common FF distortion. Because of the uncertainty of the

local distortion, it is difficult to generate the images with this

distortion type in [31]. Compared with the FR methods, the

TTL-IQA outperforms the FR methods in the LIVE and the

LIVE MD. In addition, for the TID 2013, the performance of

TTL-IQA on the JGTE, CHA, CTC and Block are even better

than the FR methods.

To facilitate a comparison of the performance between

the TTL-IQA method and the other NR-IQA methods, there

are 37 distortion types in the four databases, including 5

distortion types in LIVE, 24 distortion types in TID2013, 6

distortion types in CSIQ, 2 distortion types in LIVE MD. In

the Table VII, we calculate the number of times that the best



TABLE V
THE SROCC AND PLCC COMPARISON ON THE FIVE DATABASES

Types Algorithms
LIVE TID2013 CSIQ LIVE MD LIVEC WA

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

FR
PSNR 0.876 0.872 0.636 0.706 0.806 0.800 0.725 0.815 N/A N/A N/A N/A

SSIM[2] 0.913 0.945 0.775 0.691 0.834 0.861 0.845 0.882 N/A N/A N/A N/A
FSIMc[53] 0.963 0.960 0.802 0.877 0.913 0.919 0.863 0.818 N/A N/A N/A N/A

NR

BLIINDSSII[54] 0.912 0.916 0.536 0.628 0.780 0.832 0.887 0.902 0.463 0.507 0.628 0.689
BRISQUE[6] 0.939 0.942 0.572 0.651 0.775 0.817 0.897 0.921 0.607 0.645 0.676 0.729
CORNIA[55] 0.942 0.943 0.549 0.613 0.714 0.781 0.900 0.915 0.618 0.662 0.659 0.708
GMLOG[56] 0.950 0.954 0.675 0.683 0.803 0.812 0.824 0.863 0.543 0.571 0.713 0.727
IL-NIQE[57] 0.902 0.908 0.521 0.648 0.821 0.865 0.902 0.914 0.594 0.589 0.651 0.719

BWS[8] 0.934 0.943 0.597 0.622 0.786 0.820 0.901 0.922 0.482 0.526 0.666 0.693
AlexNet[13] 0.942 0.933 0.615 0.668 0.647 0.681 0.881 0.899 0.765 0.788 0.707 0.742
VGG-16[59] 0.952 0.949 0.612 0.671 0.762 0.814 0.884 0.900 0.753 0.794 0.721 0.765
ResNet50[42] 0.950 0.954 0.712 0.756 0.876 0.905 0.909 0.920 0.809 0.826 0.797 0.826

CNN[28] 0.956 0.953 0.558 0.653 0.683 0.754 0.933 0.927 0.516 0.536 0.644 0.702
RANK[31] 0.981 0.982 0.780 0.793 0.861 0.893 0.908 0.929 0.641 0.675 0.800 0.818

BIECON[58] 0.961 0.960 0.717 0.762 0.815 0.823 0.909 0.933 0.663 0.705 0.765 0.797
DIQaM[19] 0.960 0.972 0.835 0.855 0.869 0.894 0.906 0.931 0.606 0.601 0.800 0.818
DIQA[30] 0.970 0.972 0.843 0.868 0.844 0.880 0.920 0.933 0.703 0.704 0.839 0.857

DB-CNN[32] 0.968 0.971 0.816 0.865 0.946 0.959 0.927 0.934 0.851 0.869 0.868 0.897

HIQA[33] 0.982 0.982 0.879 0.880 0.884 0.901 – – – – – –
TTL-IQA 0.979 0.984 0.844 0.869 0.895 0.907 0.952 0.960 0.884 0.890 0.884 0.899

Red: the highest performance. Blue: the second best performance. Green: the third best performance.

TABLE VI
THE SROCC COMPARISON ON INDIVIDUAL DISTORTION TYPES

D T PSNR SSIM FSIMc BLIINDSII CORNIA GMLOG RANK BIECON DIQaM TTL-IQA

LIVE

JP2K 0.895 0.961 0.972 0.930 0.921 0.926 0.970 0.952 0.944 0.979

JPEG 0.881 0.972 0.979 0.950 0.938 0.963 0.978 0.974 0.928 0.978

WN 0.985 0.969 0.971 0.947 0.957 0.983 0.991 0.980 0.971 0.983
GB 0.782 0.952 0.968 0.915 0.957 0.929 0.988 0.956 0.936 0.978

FF 0.891 0.956 0.950 0.874 0.906 0.899 0.954 0.923 0.899 0.979

TID2013

AGN 0.934 0.867 0.910 0.714 0.550 0.748 0.667 0.769 0.512 0.785

ANC 0.867 0.773 0.854 0.728 0.209 0.591 0.620 0.708 0.313 0.722

SCN 0.916 0.852 0.890 0.825 0.717 0.769 0.821 0.859 0.744 0.899

MN 0.836 0.777 0.801 0.358 0.360 0.491 0.365 0.607 0.513 0.516

HFN 0.913 0.863 0.904 0.852 0.797 0.875 0.760 0.811 0.712 0.830

IN 0.900 0.750 0.825 0.664 0.585 0.693 0.736 0.753 0.760 0.780

QN 0.875 0.866 0.880 0.780 0.727 0.833 0.783 0.806 0.783 0.829

GB 0.910 0.967 0.955 0.852 0.840 0.878 0.809 0.882 0.789 0.910

DEN 0.953 0.925 0.933 0.754 0.721 0.721 0.767 0.780 0.604 0.837

JPEG 0.922 0.920 0.934 0.808 0.806 0.823 0.866 0.881 0.762 0.901

JP2K 0.886 0.947 0.959 0.862 0.800 0.872 0.878 0.902 0.899 0.921

JGTE 0.806 0.845 0.861 0.251 0.595 0.400 0.704 0.769 0.766 0.898
J2TE 0.891 0.883 0.912 0.755 0.654 0.731 0.810 0.800 0.717 0.878

NEPN 0.679 0.782 0.794 0.081 0.157 0.190 0.512 0.524 0.304 0.496
Block 0.330 0.572 0.553 0.371 0.016 0.318 0.622 0.535 0.226 0.609

MS 0.757 0.775 0.749 0.159 0.177 0.119 0.268 0.118 0.344 0.222

CTC 0.447 0.378 0.468 -0.082 0.262 0.224 0.613 0.437 0.461 0.669

CCS 0.634 0.414 0.836 0.109 0.170 -0.121 0.662 0.044 0.299 0.694

MGN 0.883 0.780 0.857 0.699 0.407 0.701 0.619 0.722 0.469 0.796

CN 0.841 0.857 0.914 0.222 0.541 0.202 0.644 0.533 0.579 0.800

LCNI 0.916 0.806 0.949 0.451 0.696 0.664 0.800 0.915 0.599 0.930

ICQD 0.820 0.854 0.882 0.815 0.649 0.886 0.779 0.807 0.662 0.848

CHA 0.880 0.878 0.893 0.568 0.689 0.648 0.629 0.609 0.525 0.913

SSR 0.911 0.946 0.958 0.856 0.874 0.915 0.859 0.626 0.797 0.942

CSIQ

WN 0.963 0.896 0.936 0.702 0.763 0.804 0.844 0.804 0.860 0.882
JPEG 0.888 0.956 0.966 0.846 0.842 0.864 0.935 0.752 0.907 0.917

JP2K 0.936 0.961 0.970 0.850 0.869 0.890 0.915 0.837 0.817 0.924

PGN 0.934 0.892 0.937 0.812 0.567 0.774 0.888 0.847 0.845 0.913

GB 0.929 0.961 0.973 0.880 0.854 0.857 0.840 0.822 0.859 0.894

CTD 0.862 0.792 0.944 0.336 0.533 0.562 0.671 0.661 0.592 0.821

LIVEMD
GB+JPEG 0.736 0.898 0.885 0.899 0.900 0.824 0.909 0.797 0.815 0.919

GB+WN 0.743 0.912 0.899 0.892 0.899 0.863 0.933 0.869 0.812 0.971

Red: the highest performance. Blue: the second best performance. Green: the third best performance.



SROCC value appears in the 37 distortion types. Our proposed

TTL-IQA method shows 26 times being the best performing

method, followed by GMLOG (3 times), BLIINDSII (1 time),

CORNIA (0 time), RANK (5 times), BIECON (2 times),

DIQaM (1 times). It means the TTL-IQA method is better

than other NR-IQA methods in terms of overall performance.

Meanwhile, we also report WA and the weighted standard de-

viation (WSTD) of the competing methods across all distortion

groups in Table VII. The TTL-IQA has the highest average

and lowest STD across all distortion groups. Hence, the TTL-

IQA method achieves a consistently good performance on all

available distortion types.

TABLE VII
THE SROCC OF WEIGHTED MEAN AND STD

Algorithms Weighted Average Weighted STD

BLINNDSII 0.661 0.285
CORNIA 0.651 0.260
GMLOG 0.686 0.270

RANK 0.763 0.166
BIECON 0.753 0.210
DIQaM 0.703 0.208

TTL-IQA 0.845 0.160

D. Performance on cross-database test

In the previous experiments, the training and the testing

samples are selected from the same database. It is expected that

an IQA model that has learned on one image quality database

should be able to accurately assess image quality in other

IQA databases. Therefore, to demonstrate the generalization

ability of the TTL-IQA method, a cross database validation is

conducted.

For strict cross-database experiment, when a IQA database

is tested, the distortion information of IQA database for test

cannot be learned in advance. For our TTL-IQA method,

this rule is strictly followed. That is to say, our pre-training

method is to train hallucinated images generated by each

IQA database, respectively. Therefore, there is a separate

pre-training model for each IQA database. When the cross-

database experiment measure the IQA database for test, make

sure that DNN does not obtain distortion information of IQA

database for training. In addition, the compared IQA methods

are also follow the strict cross-database experiment.

The SROCC results are shown in Table VIII. We ob-

serve that the generalization ability of the proposed TTL-

IQA method is better than that of other methods. Also, the

generalization ability of deep learning method is better than

that of the traditional method (BLINDSII). This is because

the deep learning methods can automatically extract the deep

features that are highly related to the quality degradation.

Compared BIECON and DIQaM methods, the generalization

of TTL-IQA method is better than that of BIECON and

DIQaM. This is bacause these methods are based on image

patch methods. It is difficult to obtain quality label of image

patch. Comapred with RANK, our method also has a stronger

generalization ability. This is because our method can generate

the mixed and the authentic hallucinated distortion images

and can adaptively discriminate the useful and useless shared

features for TTL.

E. Ablation experiments

In order to evaluate the design rationality of the TTL-

IQA method, we conduct several ablation experiments by

comparing the proposed network model with several baseline

models in various IQA databases. In this ablation experiment,

we use the same experimental settings as described in section

VI(A).

We design four groups of the comparative experiments, as

shown in Table IX. The experiment in the first group is the

transfer learning method, which uses the VGG to transfer

features from Imagenet source domain to the IQA target

domain. The second experiment is to replace the VGG with

the designed SFTnet to obtain the prediction performance in

the transfer process. The third and the fourth experiments use

the DT-GAN to construct the auxiliary domain. However, the

difference between the third and fourth experiments is that

the former adopts the VGG for TTL, while the latter uses

the SFTnet. We observe that our proposed TTL-IQA method

achieves the best performance. The experimental result of the

first group is the worst, mainly because the Imagenet source

domain and the IQA target domain, as well as their tasks are

not directly related. The performance of the second group is

not better than that of the first group for LIVE and LIVE

MD. It may be because the number of training images in

these databases is very small, which leads to the overfitting

problem by using the SFTnet. However, the performance of the

second group is not the best, because it fails to resolve domain

irrelevance. For the third group, since the introduction of DT-

GAN can enhance training samples, it improves the prediction

accuracy. Thus, the performance is also not the best, because it

cannot resolve the irrelevance between the recognition and the

IQA tasks. Therefore, when the DT-GAN and the SFTnet are

used together, the prediction performance is the best among the

four groups. This is because our method not only overcomes

the shortcoming of the Imagenet source and the IQA target

domains by constructing the auxiliary domain and the auxiliary

IQA task, but also alleviates irrelevance of the recognition and

the IQA tasks by using the SFTnet in TTL.

F. Discussions

1) The rationality of three quality level strategy in the IQA

database: In order to show the rationality of three quality

level strategy, we have done experiments on the authentic, the

mixed, the synthetic IQA databases, as shown in Table X.

We observe that the performance of three quality levels is the

best. Compared with the two and three quality level strategies,

the performance of three quality levels is the best. It may

be caused by the increase of the number of images or the

increase of the label accuracy. Compared with the three and

five quality level strategies, the performance of three quality

levels is also the best. This is because although the increasing

of image data can enhance the performance for the five quality

level strategy, the inaccuracy of the labels can also limits the

prediction accuracy.



TABLE VIII
THE SROCC COMPARISON OF THE CROSS-DATABASE TEST

Train Test BLIINDSII BRISQUE RANK BIECON DIQaM TTL-IQA

LIVE

TID 2013 0.019 0.358 0.518 0.337 0.392 0.571

CSIQ 0.547 0.562 0.810 0.710 0.681 0.807
LIVE MD 0.225 0.301 0.322 0.251 0.275 0.457

LIVEC 0.014 0.337 0.367 0.171 0.111 0.490

TID 2013

LIVE 0.130 0.790 0.817 0.628 0.673 0.832

CSIQ 0.105 0.590 0.725 0.663 0.717 0.749

LIVE MD 0.188 0.152 0.273 0.311 0.184 0.795

LIVEC 0.023 0.254 0.276 0.292 0.192 0.334

CSIQ

LIVE 0.491 0.847 0.710 0.588 0.785 0.840
TID 2013 0.019 0.454 0.477 0.350 0.464 0.497

LIVE MD 0.300 0.296 0.396 0.255 0.275 0.375
LIVEC 0.052 0.131 0.265 0.238 0.200 0.298

LIVE MD

LIVE 0.511 0.681 0.852 0.697 0.612 0.880

TID 2013 0.013 0.255 0.531 0.429 0.368 0.585

CSIQ 0.574 0.501 0.851 0.598 0.661 0.863

LIVEC 0.049 0.062 0.179 0.300 0.241 0.314

LIVEC

LIVE 0.010 0.238 – – 0.315 0.676

TID 2013 0.133 0.280 – – 0.198 0.338

CSIQ 0.096 0.241 – – 0.333 0.606

LIVE MD 0.112 0.355 – – 0.462 0.780

TABLE IX
THE SROCC FOR BASELINE MODELS

Groups DT-GAN SFTnet LIVE CSIQ LIVEC LIVEMD

1 × × 0.952 0.762 0.753 0.884
2 ×

√
0.943 0.785 0.774 0.846

3
√

× 0.962 0.812 0.878 0.918
4

√ √
0.979 0.895 0.884 0.952

TABLE X
THE SROCC OF DIFFERENT QUALITY LEVELS IN

DIFFERENT DATABASES

Quality levels LIVE CSIQ LIVEC LIVEMD

No-level 0.952 0.762 0.753 0.884
Two-levels 0.963 0.817 0.875 0.926

Three levels 0.979 0.895 0.884 0.952

Five levels 0.960 0.811 0.870 0.901

TABLE XI
THE QUALITY SCORES OF HALLUCINATED IMAGES

CALCULATED BY OBJECTIVE IQA METRICS, SSIM AND
BRISQUE.

Index
SSIM [2] BRISQUE [6]

High Medium Low High Medium Low

Fig. 7(a) 0.831 0.803 0.731 0.678 0.463 0.347
Fig. 7(b) 0.879 0.778 0.684 0.694 0.524 0.327

TABLE XII
THE QUALITY SCORE AVERAGED OVER ALL

HALLUCINATED IMAGES (PER LEVEL) CALCULATED BY
SSIM AND BRISQUE METRICS FOR THE LIVEC DATABASE

Quality levels High Medium Low

Average SSIM score 0.798 0.745 0.699
Average BRISQUE score 0.622 0.498 0.374

Therefore, considering the prediction performance in the

synthetic, mixed and authentic IQA databases, we select the

three quality level strategy to generate hallucinated distortion

images as a compromise.

2) The accuracy of quality level of hallucinated distortion

images: We show the hallucinated distortion images of dif-

ferent quality levels, as shown in Fig. 7. The images are

derived from the Waterloo Exploration Database whose index

is 250 and 415, respectively. We use the LIVEC database to

generate the hallucinated distortion images. To help readers

easily see the differences in quality, the distortion portion is

highlighted according to the method in [61]. The hallucinated

distortion image in Fig. 7 is cropped out a portion of an

hallucinated distortion image and illustrate that portion closer

to the original resolutions. We observe the quality level can

be discriminated. In order to explicitly represent quality level

discrimination, we also use SSIM [2] and BRISQUE [6] to

calculate the difference quality score, as shown in Table XI.

We observe these hallucinated distortion images with different

quality levels can easily be discriminated by using different

quality scores. It should be noted, the purpose of using SSIM

and BRISQUE, as objective quality indicators, in this part

of this paper is only to provide an supplementary tool (in

additional to the visual inspection as mentioned above) to

help confirm the distinctive quality of levels. Moreover, we

show the objective quality score averaged over all hallucinated

images for each level using SSIM and BRISQUE on the

LIVEC database, as shown in Table XII. This clearly shows

that the hallucinated images reflect three distinctive levels of

perceived quality.

3) Comparison of different generation methods: In order

to ensure that the DT-GAN can promote the prediction per-

formance for the IQA, we compare the different generation

methods, including the DT-GAN and the artificial simulation.

Especially, The artificial simulation method is to generate

the synthetic distortion images with three quality levels from

the RANK method [31]. Since there is lack of the prior



TABLE XIII
THE SROCC AND PLCC OF DIFFERENT GENERATION METHODS

Methods
LIVEC LIVE CSIQ LIVE MD TID2013

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

DT-GAN 0.884 0.890 0.979 0.984 0.847 0.888 0.952 0.960 0.821 0.848
Artificial simulation 0.796 0.802 0.962 0.946 0.810 0.832 0.935 0.945 0.770 0.779

distortion information in the LIVEC database, the prediction

performance is obtained by training the model of the TID2013

database. In order to ensure fairness, after expanding the

image data, we use the SFTnet to pre-train these distortion

images and then fine-tune the IQA database. The prediction

performance is presented in Table XIII. We observe that

the DT-GAN is better than the artificial simulation method

[31]. This is because DT-GAN can easily simulate various

distortion types, including synthetic, mixed and authentic dis-

tortions. Also, DT-GAN can learn the distribution of distortion

properties of the IQA databases, making sure the simulated

distortions have a similar distribution to that of the image

distortions in the IQA databases.

(a)

(b)

Reference High Medium Low

MediumReference High Low

 

Fig. 7. The different quality levels of a hallucinated distortion image.
(a) Results of the 250th image of the Waterloo database. (b) The
415th image of the Waterloo database.

4) Comparison of different authentic IQA databases: In

the previous experiments, the performance of our TTL-IQA

method is significantly improved in the authentic LIVEC

database. It is necessary to verify the prediction performance

of our TTL-IQA method in the large scale authentic IQA

database (KonIQA-10k [63]). However, it should be noted

that directly testing the current model on KonIQA-10k is

considered inappropriate. This is mainly because the gener-

ated auxiliary domain currently contains a total of 14, 232

hallucinated images, which is disproportional to the KonIQA-

10k database (10, 073 images) being used as the test set. More

specifically, if we were to conduct the experiment with above

setting, the number of images in the pre-training and fine-

tuning stages would be approximately the same, which would

violate the conventional train-test split requirements of transfer

learning [16]. Therefore, we should expect that by increasing

the number of hallucinated images in the auxiliary set, the

model’s performance testing on KonIQA-10k would increase.

To verify this hypothesized trend, we now check how the

model performance changes with the increase in the num-

ber of hallucinated images in the auxiliary domain, as the

results shown in Table XIV. Note TTL-IQA is our current

model in the manuscript; and TTL-IQA1 and TTL-IQA2

represent the modified models by adding more hallucinated

images for training. In this new experiment, based on the

PASCAL VOC 2012 database [64] with 17,125 images of

diverse content, we randomly select some images to generate

additional hallucinated images. As can be seen from Table XIV

that with the increase in the number of hallucinated images,

the model’s prediction performance on KonIQA-10k indeed

increases. Scaling up the process is straightforward and would

eventually make the auxiliary set proportional to the test

set of KonIQA-10k, but this would have involved massive

experimental efforts, which will be explored in the next further

work.

TABLE XIV
The prediction performance of TTL-IQA on the KonIQA-10k

database. TTL-IQA1 and TTL-IQA2 represent modified models
with a increased number of hallucinated images for training.

Method Number of hallucinated images SROCC PLCC

TTL-IQA 14232(orginal) 0.691 0.708
TTL-IQA1 18732 0.713 0.722
TTL-IQA2 29232 0.755 0.770

5) Comparison of FR-based proxy score method: In addi-

tion to the above quality level as proxy label, we also compare

the performance of our method and various FR-based proxy

score methods on the synthetic, mixed and authentic IQA

databases, as shown in Table XV. The BIECON method [58]

uses an FR metric to generate image patch proxy quality

scores. Note to be able to evaluate BIECON on LIVEC

(pristine reference images are unavailable so BIECON cannot

be directly applied as mentioned above), the model is trained

on the TID2013 database, with the purpose of making the

domain closer to the target LIVEC database. The SSIM-label

and VIF-label methods use SSIM [2] and VIF [62] as FR

metrics to calculate image proxy scores in the auxiliary do-

main. Note we generate hallucinated images using the pristine

images contained in the Waterloo Exploration Database [46].

A traditional simulation method [31] is used to simulate four

distortion types (i.e., JPEG, JP2K, WN, GB contained in

the LIVE database). The SSIM and VIF metrics are used to

calculate proxy scores of hallucinated images, respectively. As

can be seen from Table XV, the prediction performance of

these FR-based methods is lower than our TTL-IQA method.

It suggests that the domain problem still exists for the FR-



based methods. This might be due to the fact that the proxy

quality scores generated by the FR-based methods cannot

sufficiently reflect the distortion properties of the target IQA

databases, so the features learned in the pre-training stage are

less relevant/accurate for quality prediction.

TABLE XV
Comparison of performance of our method vs FR-based proxy
score methods on the synthetic (LIVE), mixed (LIVE MD) and

authentic (LIVEC) IQA databases

Method
LIVE LIVEMD LIVEC

SROCC PLCC SROCC PLCC SROCC PLCC

SSIM-label 0.930 0.940 0.903 0.918 0.824 0.857
VIF-label 0.945 0.934 0.914 0.925 0.826 0.847
BIECON 0.961 0.960 0.909 0.933 0.663 0.705
TTL-IQA 0.979 0.984 0.952 0.960 0.884 0.890

6) Discrimination of the feature importance in SFTnet:

While the SFTnet has been shown to improve the DNN

performance, we would also like to directly know how to

discriminate the feature importance. Thus, two images with

WN (Fig. 8(a)-(b)) are fed into the SFTnet, respectively.

Fig. 8(a)-(b) are the global and local distortion images with

WN. Then, we extract the visualization of the feature maps

and their corresponding weights from the SFTnet. Fig. 8(c)-

(d) show the visualization of the 129th and the 210th feature

maps of the global distortion image. Fig. 8(e)-(f) show the

visualization of the 183th and the 186th feature maps of the

salient object distortion image. We observe that whether these

images represent global or salient object distortion, the SFTnet

can emphasize the salient objects and the distortion features

that are important to the IQA task by assigning large weights

to the feature maps. The features of the highly discriminative

and class-specific abilities that are not important to the IQA

task are suppressed by assigning small weights to the feature

maps.

         

(a)                              (b) 

          

   W=0.902        W=0.620        W=0.911        W=0.688 

      (c)            (d)              (e)             (f)  

Fig. 8. The visualization of the different feature maps from SFTnet.

VII. CONCLUSION

In this paper, we propose a new TTL-IQA method for IQA.

First, we develop a TTL architecture to enhance the correla-

tion between multiple domains and between multiple tasks.

Moreover, we propose a DT-GAN to construct the auxiliary

domain and the auxiliary quality level task, which acts as

the intermediate bridge for TTL. Finally, a newly proposed

SFTnet is used in the TTL network, which optimizes the

utilization of the shared features for the IQA task. Experiments

demonstrate that the proposed TTL-IQA method is superior

over alternative NR-IQA methods in most cases. Especially

for the authentic distortion (LIVEC) and the mixed distortion

(LIVE MD) images. Moreover, the TTL-IQA method also

shows a strong generalization ability.

In addition, some future work is proposed to solve the IQA

task by using GAN. We hope this work could help researchers

to design effective IQA methods and to foster many potential

applications.

First, the perceived quality score label of the hallucinated

distortion image generated by GAN could be studied. If the

IQA images can be assigned to the perceived quality score

during training GAN, it will be more beneficial to optimize

the final IQA quality score task.

Second, Multi-distortion types are selected simultaneously

to generate the hallucinated distortion images. After training

GAN only once, it could automatically complete the transla-

tion of distortion distribution under different distortion types.

This has a good potential for the enhancement of the IQA

database.

Third, it is worth studying the loss function of GAN. The

loss function of GAN is considered to complete the translation

of distortion distribution. Moreover, the different constraints

of the loss function need to be considered to control the

performance of the hallucinated distortion image. In addition,

the matching degree among the loss functions of the whole

GAN could also be studied to benefit the fast convergence

and the final generation effect.
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