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ON UNIQUENESS OF P-TWISTS

RINA ANNO AND TIMOTHY LOGVINENKO

Abstract. We prove that for any P
n-functor all the convolutions

(double cones) of the three-term complex FHR
ψ
−→ FR

ǫ
−→ Id defin-

ing its P-twist are isomorphic. We also introduce a new notion of
a non-split Pn-functor.

1. Introduction

A P
n-object E in the derived category D(X) of a smooth projective

variety X has Ext∗X(E,E) ≃ H∗(Pn) as graded rings and E⊗ωX ≃ E.
These were introduced by Huybrechts and Thomas in [HT06] as mir-
ror symmetric analogues of Lagrangian CP

ns in a Calabi Yau manifold.
Moreover, there is an analogue of the Dehn twist: the P-twist PE about
E is the Fourier-Mukai transform defined by a certain convolution (dou-
ble cone) of the three term complex

E∨
⊠ E[−2]

h∨⊗Id− Id⊗h
−−−−−−−−→ E∨

⊠ E
ǫ
−→ O∆ (1.1)

where h is the degree 2 generator of Ext∗X(E,E). It was shown in
[HT06] to be an auto-equivalence of D(X).

A convolution of a three term complex in a triangulated category D

A
f
−→ B

g
−→ C (1.2)

is any object obtained via one of the following two constructions. A
left Postnikov system is where we first take the cone Y of f , then lift g
to a morphism m : Y → C, and take the cone of m. A right Postnikov
system is where we first take cone X of g, then lift f to a morphism
j : A[1] → X, and take a cone of j.

A B C

Y

f g

⋆ m

A B C

X

f

j

g

⋆

Apriori, convolutions are not unique. For example, the convolutions of
A[−2] → 0 → C are the extensions of A by C in D. If D admits a DG-
enhancement C, the convolutions of a complex in D up to isomorphism
are in bijection with the twisted complex structures on it in C up to
homotopy equivalence, cf. §2.2.
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2 RINA ANNO AND TIMOTHY LOGVINENKO

In [HT06, Lemma 2.1] it was shown that the complex (1.1) has a
unique left Postnikov system and defined the P-twist to be its convo-
lution. Later Addington noted in [Add16] that

Hom−1
D(X×X)(E

∨
⊠ E[−2],O∆) ≃ Hom1

X(E,E) = 0 (1.3)

which by a simple homological argument implies that the complex (1.1)
has a unique convolution. At the heart of this note is Lemma 2.2 where
we establish an abstract criterion for the unicity of the convolution of an
arbitrary three-term complex (1.2). This criterion is trivially satisfied
whenever (1.3) holds, see Remark 2.3(1) after Lemma 2.2.
In [Add16] and [Cau12] Addington and Cautis introduced the no-

tion of a (split) P
n-functor to generalise P

n-objects in a similar way
to spherical functors [AL17] generalising spherical objects [ST01]. It
was a brilliant idea and numerous applications followed [Kru15][Kru14]
[ADM16][ADM19].

For Z and X smooth projective varieties a split P
n-functor is a

Fourier-Mukai functor F : D(Z) → D(X) with left and right Fourier-
Mukai adjoints L,R such that for some autoequivalence H of D(Z) we
have an isomorphism

RF ≃ Hn ⊕Hn−1 ⊕ · · · ⊕H ⊕ Id (1.4)

satisfying the monad condition and the adjoints condition which gen-
eralise the P-object requirements of Ext∗X(E,E) ≃ H∗(Pn) respecting
the graded ring structure and of E ≃ E ⊗ ωX . The P-twist about F is
then the convolution of a certain canonical right Postnikov system of
the three-term complex

FHR
ψ
−→ FR

ǫ
−→ Id (1.5)

where ǫ is the adjunction co-unit and ψ the corresponding component

of the map FRFR
FR ǫ− ǫ FR
−−−−−−→ FR after the identification (1.4).

Addington noted in [Add16, §4.3] that Postnikov systems for (1.5)
are not necessarily unique. This caused technical difficulties in applica-
tions. They were aggravated by the fact that it was sometimes simpler
to calculate left Postnikov systems associated to (1.5). In a word, it was
often easy to compute some convolution of (1.5) but difficult to prove
that it was indeed the convolution defined in [Add16] as the P-twist for
split Pn-functors.

The main result of this paper is that contrary to the expectations of
specialists, including the authors of this paper, the three term complex
(1.1) has a unique convolution. Thus we can compute the P-twist via
any Postnikov system, taking cones in any order and using any lifts.
To prove this we prove a more general fact:

Theorem (see Theorem 3.1). Let Z,X be separated schemes of finite
type over a field. Let F : D(Z) → D(X) be an exact functor with a
right adjoint R. Let ǫ : FR → IdX be the adjunction co-unit. Let



ON UNIQUENESS OF P-TWISTS 3

G : D(X) → D(Z) be any exact functor and f : FG→ FR any natural
transformation with ǫ ◦f = 0. Finally, assume these are all Fourier-
Mukai functors and natural transformations thereof.
Then all convolutions of the following three-term complex are iso-

morphic:

FG
f
−→ FR

ǫ
−→ IdX . (1.6)

Our proof shows that the complex (1.6) has a unique right Postnikov
system. We then prove in Lemma 2.1 that in an arbitrary triangulated
category for any left Postnikov system there exists a right Postnikov
system with the same convolution, and vice versa.
In a DG-enhanced setting we can work more generally and give a

more direct proof. In Prop. 3.1 we construct a homotopy equivalence
between any two twisted complex structures on (1.6). We thus obtain:

Theorem (see Theorem 3.2). Let A and B be enhanced triangulated
categories. Let F : A → B be an exact functor with a right adjoint R.
Let ǫ : FR → IdB be the adjunction counit. Let G : B → A be any exact
functor and f : FG → FR any natural transformation with ǫ ◦f = 0.
Finally, assume that all these are also enhanceable.
Then all convolutions of the following three-term complex are iso-

morphic:

FG
f
−→ FR

ǫ
−→ IdB . (1.7)

The uniqueness of P-twists as established by these two theorems
removes a significant roadblock in the way of research into P

n-functors.
Our results were immediately applied in a number of papers including
[HK17], [KM17], [MR19].

Finally, Addington and Cautis referred to the notion which they in-
troduced as Pn-functors. We propose to use the name split Pn-functors
instead. This is because in their definition the monad RF splits into
a direct sum of Id and powers of an autoequivalence H. On the other
hand, in the definition of a spherical functor the monad RF can be a
non-trivial extension of Id by an autoequivalence, and this is the case
in many interesting examples. Indeed, it was later noted by Adding-
ton, Donovan, and Meachan in [ADM19, Remark 1.7] that it would
be nice to allow RF to have a filtration with quotients Id, H, . . . , Hn,
however it would then be difficult to formulate the monad condition
and to construct the Pn-twist as a convolution of a three-term complex.
In §2.3 we propose a general notion of a (non-split) Pn-functor which

deals with all of these issues. These are the functors F for which RF
is isomorphic to a repeated extension of Id by H, . . . , Hn of the form

Id Q1 Q2 . . . Qn−2 Qn−1 Qn.

H H2 . . . Hn−1 Hn

⋆

ι1 ι2

µ1
⋆ µ2

⋆

ιn−1

µn−1

ιn

⋆ µn
σ



4 RINA ANNO AND TIMOTHY LOGVINENKO

This has to satisfy three conditions: the monad condition, the adjoints
condition, and the highest degree term condition, see §2.3. The defini-
tion in [Add16] only asks for two conditions. However, in the non-split
situation, the analogue of the monad condition in [Add16] is compli-
cated to state on the level of triangulated categories. We weaken it to
the point where it can be easily stated on the triangulated level, but at
the price of introducing the highest degree term condition. However,
as explained in §2.3, if the non-split analogues of the two conditions in
[Add16] hold, they do imply our three conditions. Thus our definition
is strictly more general. Indeed, in [AL19, §7] we give examples of
four families of non-split P

n-functors, while in [AL19, Appendix] our
study of the case of the derived category of a point demonstrates the
existence of split P

n-functors which do not satisfy the strong monad
condition of [Add16], yet do satisfy our weaker monad condition.
We define the P-twist about such F to be the unique convolution of

the three-term complex

FHR
ψ
−→ FR

ǫ
−→ IdB (1.8)

where ψ is again the corresponding component of FR ǫ− ǫ FR after
appropriate identifications. The uniqueness follows by Theorem 3.2 of
this paper. In [AL19] we show that this P-twist is indeed an autoe-
quivalence and give examples of non-split Pn-functors.

On the structure of this paper. In §2.1 and §2.2 we give preliminaries
on Postnikov systems and on twisted complexes, respectively. In §2.3
we give the definition of a (non-split) P

n-functor. Then in §3.1 and
§3.2 we prove our main results via triangulated and DG-categorical
techniques, respectively. Those only interested in the triangulated ap-
proach should read §2.1, §3.1, and, possibly, §2.3.

Acknowledgements: We would like to thank Alexei Bondal and Mikhail
Kapranov for introducing the notions of a DG-enhancement and a
twisted complex in [BK90].

2. Preliminaries

2.1. Postnikov systems and convolutions. Let D be a triangulated
category and let

A
f
−→ B

g
−→ C (2.1)

be a complex of objects of D, that is g ◦ f = 0.
A right Postnikov system associated to the complex (2.1) is a diagram

A B C

X

f

j

g

⋆
h

i (2.2)
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where the starred triangle is exact and the other triangle is commuta-
tive. The dashed and dotted arrows denote maps of degree 1 and −1

respectively. The convolution of (2.2) is the cone of the map A[1]
j
−→ X.

Similarly, a left Postnikov system associated to the complex (2.1) is
a diagram

A B C

Y

f g

k
⋆l m

(2.3)

Its convolution is the cone of the map Y
m
−→ C.

We say that an object E ∈ D is a convolution of the complex (2.1)
if it is a convolution of some right or left Postnikov system associated
to it. The following is a direct proof of the three-term complex case of
the more general fact about arbitrary Postnikov systems whose proof
is sketched out in [GM03, §IV.2, Exercise 1]:

Lemma 2.1. For every right (resp. left) Postnikov system associated
to the complex (2.1) there is a left (resp. right) Postnikov system with
an isomorphic convolution.

Proof. Let

A B C

X

f

j

g

⋆
h

i (2.4)

be any right Postnikov system associated to (2.1). Then we have a
commutative diagram

A B

X[−1] B.

f

j[−1]

i

(2.5)

Let

A
f
−→ B

k
−→ Y

l
−→ A[1]

be any exact triangle incorporating the map f . By [May01, Lemma
2.6] it follows from the octahedral axiom that (2.5) can be completed
to the following 3× 3 diagram with exact rows and columns

A B Y

X[−1] B C

Cone(j)[−1] 0 Z.

f

j[−1]

k

i

g
(2.6)
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Let m be the map Y → C in the right column of (2.6). Since the top
right square in (2.6) commutes

A B C

Y

f g

k
⋆l m

(2.7)

is a left Postnikov system associated to (2.1). Since the bottom row
is exact the object Z is isomorphic to Cone(j), i.e. the convolution of
the right Postnikov system (2.4). On the other hand, since the right
column is exact, Z is isomorphic to Cone(m), i.e. the convolution of
the left Postnikov system (2.7). Thus (2.7) is a left Postnikov system
whose convolution is isomorphic to that of (2.4), as desired.

The proof that given a left Postnikov system associated to (2.1) we
can construct a right Postnikov system with an isomorphic convolution
is analogous. �

Lemma 2.2. If the natural map

Hom−1(A,B)
g◦(−)
−−−→ Hom−1(A,C) (2.8)

is surjective then the convolutions of all right Postnikov systems asso-
ciated to (2.1) are isomorphic.

Similarly, if the natural map

Hom−1(B,C)
(−)◦f
−−−→ Hom−1(A,C) (2.9)

is surjective then the convolutions of all left Postnikov systems associ-
ated to (2.1) are isomorphic.

Proof. We only prove the first assertion as the second assertion is
proved similarly. Take any exact triangle incorporating the map g

B
g
−→ C

h
−→ X

i
−→ B[1]. (2.10)

Then for every right Postnikov system

A B C

X ′

f

j′

g

⋆
h′

i′ (2.11)

there exists a map A[1]
j
−→ X such that

A B C

X

f

j

g

⋆
h

i (2.12)
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is a Postnikov system whose convolution is isomorphic to that of (2.11).

Indeed, let X ′ t
−→ X be an isomorphism which identifies the exact

triangles in (2.12) and in (2.11) and set j = t ◦ j′.
Thus the convolutions of all right Postnikov systems associated to

(2.1) are isomorphic to the cones of all possible maps j : A[1] → X

with f = i ◦ j. To show that all convolutions are isomorphic, it would
suffice to show that i ◦ (−) is injective.

Now consider the following fragment of the long exact sequence ob-
tained by applying Hom•

D(A,−) to the exact triangle (2.10):

· · · → Hom−1
D (A,B)

g◦(−)
−−−→Hom−1

D (A,C)
h◦(−)
−−−→

→Hom−1
D (A,X)

i◦(−)
−−−→ Hom0

D(A,B) → . . .

Since the sequence is exact, g ◦ (−) being surjective is equivalent to
h ◦ (−) = 0 which in turn is equivalent to i ◦ (−) being injective. The
claim follows. �

Remark 2.3. (1) Note, in particular, that if Hom−1
D (A,C) is zero

then both the criteria in Lemma 2.2 above are automatically
fulfilled. Thus these criteria each refine that of Hom−1

D (A,C)
vanishing.

(2) In view of Lemma 2.1 if either of the criteria in Lemma 2.2
holds then the convolutions of all right and all left Postnikov
systems associated to (2.1) are isomorphic.

2.2. Enhanced triangulated categories and twisted complexes.

For technical details on twisted complexes, pretriangulated categories
and DG-enhancements see [AL17, §3], [BK90], [LO10, §1]. Below we
give a brief overview.
A DG-category is a category C enriched over the category Mod -k

of differentially graded complexes over k. Its morphism complexes are
complexes of k-modules. Truncating each complex to its degree zero
cohomology produces an ordinary category which is called the homo-
topy category H0(C) of C. Examples to keep in mind are a DG-algebra
and the DG-category of complexes of objects of an abelian category.

Enhanced triangulated categories were originally introduced in [BK90].
Roughly, an enhanced triangulated category is a triangulated category
T together with the data of a DG-category C that truncates to it.
More precisely, a DG-category C is pretriangulated if H0(C) is a trian-
gulated subcategory of H0(Mod -C). A pretriangulated DG-category
C is a DG-enhancement of a triangulated category T if there is an ex-
act equivalence T ≃ H0(C). An example to keep in mind is that the
bounded derived category of an abelian category is usually enhanced
by the DG-categories of complexes of injective or projective objects,
respectively.
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DG-enhancements are considered up to quasi-equivalences, the DG-
functors whose H0-truncation is an equivalence of the underlying tri-
angulated categories. These play a role analogous to that of quasi-
isomorphisms between complexes of objects in an abelian category. An
enhanced triangulated category is a quasi-equivalence class of pretrian-
gulated DG-categories. It is defined by specifying a pretriangulated
DG-category C. The underlying triangulated category is then H0(C).

Let A and B be two enhanced triangulated categories. Let D(A-B)
be the derived category of A-B-bimodules. The enhanceable exact
functors H0(A) → H0(B) are in one-to-one correspondence with the
isomorphism classes inDB-qr(A-B), the full subcategory ofD(A-B) con-
sisting of B-quasi-representable bimodules [Toë07]. If the underlying
triangulated categories are Karoubi-complete, we can use the Morita
framework where A and B are Morita equivalence classes of small DG-
categories. The underlying triangulated categories are the full subcate-
goriesDc(A) andDc(B) of the compact objects inD(A) andD(B). The
enhanceable exact functors are in one-to-one correspondence with the
isomorphism classes in DB-Perf (A-B), the full subcategory of D(A-B)
consisting of B-perfect bimodules [Toë07]. Either way, this shows that
to make our results applicable to any pair of adjoint enhanceable ex-
act functors between two enhanced triangulated categories it suffices
to work with homotopy adjoint DG-bimodules.

Let C be a pretriangulated DG-category. Let Pre-Tr(C) be the DG-
category of one-sided twisted complexes (Ei, qij) over C. Here one-sided
means that qij = 0 for i − j ≤ 0. The category H0(Pre-Tr(C)) has
a natural triangulated structure: it is the triangulated hull of H0(C)
in H0(Mod -C). Since C is pretriangulated, the natural embedding
H0(C) → H0(Pre-Tr(C)) is an equivalence, see [BK90, §3], [Dri04, §2.4],
[Kel06, §4.5]. Fix its quasi-inverse H0(Pre-Tr(C)) → H0(C). We refer
to it as the convolution functor and write {Ei, qij} for the convolution
in H0(C) of the twisted complex (Ei, qij). We think of C as a DG-
enhancement of the triangulated category H0(C) and of Pre-Tr(C) as
an enlargement of C to a bigger DG-enhancement ofH0(C) which allows
for the calculus of twisted complexes described below.

Any one-sided twisted complex (Ei, qij) over C defines an ordinary
differential complex

. . .
qi−2,i−1

−−−−→ Ei−1
qi−1,i

−−−→ Ei
qi,i+1

−−−→ Ei+1
qi+1,i+2

−−−−→ . . . (2.13)

in H0(C). This is because by the definition of a twisted complex all
qi,i+1 are closed of degree 0 and we have qi,i+1 ◦ qi−1,i = (−1)idqi−1,i+1.
The data of the higher twisted differentials of (Ei, qij) defines a number
of Postnikov systems for (2.13) in H0(C) whose convolutions are all
isomorphic to {Ei, qij}, see [AL20, Cor. 2.9]. Below we describe this in
detail for two- and three-term twisted complexes.
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A two-term one-sided twisted complex concentrated in degrees −1, 0
is the data of

A B
deg.0

f
(2.14)

where A,B ∈ C and f is a degree 0 closed map in C. The corresponding
complex in H0(C) is

A B
f

(2.15)

A Postnikov system for (2.15) is an exact triangle incorporating f . The
triangle defined by (2.14) is

A B

{A
f
−→ B

deg.0
}

f

kl (2.16)

where l and k are the images in H0(C) of the following maps of twisted
complexes:

l̄ :

A B

A
deg.0

f

Id k̄ :

B

A B
deg.0

Id

f

A three-term one-sided twisted complex concentrated in degrees −2,
−1, 0 is the data of

A B C
deg.0

f

x

g
(2.17)

where A,B,C ∈ C, f and g are closed maps of degree 0 in C and x is
a degree −1 map in C such that that dx = −g ◦ f . The corresponding
complex in H0(C) is

A B C
f g

(2.18)

with the composition g ◦ f being zero in H0(C) as it is explicitly a
boundary dx in C. Note that the datum of the degree −1 map x is
not visible in the triangulated category H0(C), it exists only in its DG-
enhancement C. The twisted complex (2.17) in C specifies not only the
ordinary complex (2.18) inH0(C), but also its convolution. Specifically,
the datum of the map x in C defines a right and a left Postnikov system
for the complex (2.18) in H0(C):
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Definition 2.4. The right Postnikov system induced by the twisted
complex (2.17) is

A B C

{B
g
−→ C

deg.0
}

f

j

g

⋆ h

i

(2.19)

where the maps h, i, j are the images in H0(C) of the following maps
of twisted complexes:

h̄ :

C

B C
deg.0

Id

g

ī :

B C

B
deg.0

g

Id j̄ :

A

B C
deg.0

.

f
x

g

The left Postnikov system induced by the complex (2.17) is

A B C

{A
f
−→ B}

f g

k

⋆l m (2.20)

where the maps l, k, m are the images in H0(C) of the respective maps:

l̄ :

A B

A
deg.0

f

Id k̄ :

B

A B
deg.0

Id

f

m̄ :

A B

C
deg.0

.

f

x
g

Lemma 2.5. For any twisted complex (2.17) the convolutions of its left
and right Postnikov systems are isomorphic in H0(C) to the convolution
of the twisted complex itself.

Proof. By definition the convolutions of (2.19) and (2.20) are Cone(j)
and Cone(m), respectively. As we’ve seen, given a map in C the cone of
its image inH0(C) is its convolution as a two-term twisted complex over
C. In case of j̄ and m̄, the objects of this twisted complex are themselves
convolutions of twisted complexes. The double convolution of a twisted
complex of twisted complexes is isomorphic to the convolution of its
total complex [BK90, §2]. In case of both j̄ and m̄ these total complexes
coincide with (2.17), whence the result. �

The conceptual explanation for Lemma 2.1 is as follows. Any Post-
nikov system for a given complex in H0(C) lifts (non-uniquely) to a
twisted complex over C. In Lemma 2.6 we prove this for three-term
complexes. This twisted complex can then be used to induce a Post-
nikov system of any given type whose convolvution is isomorphic to
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the convolution of the original Postnikov system. In Lemma 2.5 we
prove this for three-term complexes. The general case can be proved
in a similar way but with a more convoluted notation.

Lemma 2.6. Any right or left Postnikov system for a differential com-
plex

A B C
f g

(2.21)

in H0(C) is induced up to an isomorphism by some lift of (2.21) to a
three-term twisted complex over C.

Proof. We prove the claim for left Postnikov systems, the other case is
analogous. Let the following be a left Postnikov system for (2.21):

A B C

Y

f g

k′

⋆
l′ m′

(2.22)

Let f̄ and ḡ be some lifts of f and g from H0(C) to C.
Since any two exact triangles incorporating f are isomorphic, the

exact triangle in (2.22) is isomorphic to the exact triangle

A
f
−→ B

k
−→

{

A
f̄
−→ B

deg.0

}

l
−→ A[1],

where k and l are the images in H0(C) of the twisted complex maps

l̄ :

A B

A
deg.0

f̄

Id k̄ :

B

A B
deg.0

.

Id

f̄

Hence (2.22) is isomorphic to the Postnikov system

A B C

{

A
f̄
−→ B

}

f g

k

⋆l m (2.23)

for some map m. It remains to show that there exists a degree −1 map
x : A → C in C such that m equals the image in H0(C) of the twisted
complex map

m̄ :

A B

C
deg.0

.

f̄

x
ḡ
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Since the convolution functor is an equivalence we can lift m to some
closed degree 0 map of twisted complexes

A B

C
deg.0

.

f̄

x′
g′ (2.24)

We have dx′ + g′ ◦ f = 0 as the map is closed. By definition of a
Postnikov system m ◦ k = g in H0(C) and thus ḡ − g′ = dα for some
degree −1 map α. We then have

A B

C
deg.0

f̄

x′
g′ + d













A B

C
deg.0

f̄

α













=

A B

C
deg.0

.

f̄

x′−α◦f̄
ḡ (2.25)

Since the RHS of (2.25) differs from (2.24) by a boundary, its image in
H0(C) is also m. Set x = x′−α◦ f̄ . The left Postnikov system induced
by the twisted complex

A B C
deg.0

f̄

x

ḡ

is precisely (2.23), and thus isomorphic to the original left Postnikov
system (2.22), as desired. �

2.3. P
n-functors. Let A and B be enhanced triangulated categories.

Definition 2.7 ([Add16]). A split Pn-functor is a functor F : A → B
which has left and right adjoints L,R : B → A such that:

(1) For some autoequivalence H of A there exists an isomorphism

Hn ⊕Hn−1 ⊕ · · · ⊕H ⊕ Id
γ

−−−−→ RF. (2.26)

(2) (The strong monad condition) In the monad structure on Hn⊕
Hn−1⊕· · ·⊕H⊕ Id induced by γ−1 from the adjunction monad
RF the left multiplication by H acts on

Hn ⊕Hn−1 ⊕ · · · ⊕H (2.27)

as an upper triangular matrix with Id’s on the main diagonal.
(3) (The weak adjoints condition) R ≃ HnL.

Note that as the matrix in the strong monad condition is evidently
invertible the resulting endomorphism of (2.27) is necessarily an iso-
morphism.

Let ψ be the composition:

FHR →֒ FHnR⊕ · · · ⊕ FHR⊕ FR
γ
−→
∼
FRFR

FR ǫ− ǫ FR
−−−−−−→ FR.
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The P
n-twist PF was defined in [Add16, §3.3] as the convolution of

FHR
ψ
−→ FR

ǫ
−→ Id (2.28)

given by a certain canonical right Postnikov system associated to it.
Addington noted that such system is no longer unique but provided a
canonical choice of one.
As mentioned in the Introduction, in his original definition in [Add16]

Addington simply called these objects Pn-functors. We propose to call
them split Pn-functors instead, since the monad RF splits into a direct
sum of Id and powers ofH. We then propose the following more general
definition which allows RF to be a repeated extension:

Definition 2.8. Let H be an endofunctor of A. A cyclic extension of
Id by H of degree n is a repeated extension Qn of the form

Id Q1 Q2 . . . Qn−2 Qn−1 Qn.

H H2 . . . Hn−1 Hn

⋆

ι1 ι2

µ1
⋆ µ2

⋆

ιn−1

µn−1

ιn

⋆ µn

(2.29)

Here all starred triangles are exact, all the remaining triangles are
commutative, and all the dashed arrows denote maps of degree 1. We

further write ι for the map Id
ιn◦···◦ι1−−−−→ Qn.

Note that if we replace each H i by H i[−i] and adjust degrees of all
the maps accordingly, the bottom row of (2.29) becomes a differential
complex, while the rest of (2.29) becomes a Postnikov system on that
complex. Thus, equivalently, a cyclic extension of Id by H of degree n
is any convolution of a one-sided twisted complex of the form

Hn[−n] Hn−1[−(n− 1)] . . . H[−1] Id
deg.0

.

The maps Id
ι
−→ Qn and Qn

µn
−→ Hn are the inclusion of the degree 0

term and the projection on the degree −n term, respectively.

Definition 2.9. A P
n-functor is a functor F : A → B with left and

right adjoints L,R : B → A such that

(1) There exists an isomorphism

Qn
γ
−→ RF

where Qn is a cyclic extension of IdA by an autoequivalence H
of A with H(KerF ) = KerF . Moreover, this isomorphism in-

tertwines Id
η
−→ RF and Id

ι
−→ Qn, that is, the following diagram
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commutes:
Id Qn

RF.

ι

η
γ (2.30)

Now, observe that as F
F η
−−→ FRF is a retract, so is F

Fι
−→

FQq by (2.29). Hence the exact triangle FR → FQ1R → FHR

is also split. Choose any splitting FHR → FQ1R and denote
by φ the composition

FHR −→ FQ1R
ιn◦...◦ι2−−−−→ FQnR

FγR
−−→ FRFR. (2.31)

Define the map FHR
ψ
−→ FR to be the composition

FHR
φ
−→ FRFR

FR ǫ− ǫ FR
−−−−−−→ FR.

Any choice of the splitting FHR → FQ1R in the definition of
φ produces the same ψ since the following composition is zero:

FR
F η R
−−−→ FRFR

FR ǫ− ǫ FR
−−−−−−→ FR

(2) (The monad condition) The following is an isomorphism:

FHQn−1
FHιn−1

−−−−→ FHRF
ψF
−−→ FRF

Fκ
−→ FC[1], (2.32)

here C is the spherical cotwist of F defined by an exact triangle

C → Id
η
−→ RF

κ
−→ C[1].

(3) (The adjoints condition) The following is an isomorphism:

FR
FRη
−−−→ FRFL

µnL
−−→ FHnL. (2.33)

(4) (The highest degree term condition) There is an isomorphism
that makes the diagram commute:

FHQn−1L FHRFL FRFL FHnL

FHQn−1L FHRFL FHRFH ′L FHHnH ′L,

FHιnL ψFL FµnL

FHιnL FHRψ′ FHµnH
′L

where H ′ is the left adjoint of H and ψ′ : FL → FH ′L is ob-
tained from ψ : FHR → FR via adjunctions.

In the split case treated by Addington the objects FHQn−1 and
FC[1] are both isomorphic to

FHn ⊕ . . . · · · ⊕ FH.

The map (2.32) is the image under F of the left multiplication by H
in the RF monad structure minus a strictly upper triangular matrix.
Our monad condition asks for (2.32) to be invertible, while the one in
[Add16] asks for the left multiplication by H to be upper triangular
with Id’s on the main diagonal. The precise non-split analogue of this



ON UNIQUENESS OF P-TWISTS 15

would be requesting the map (2.32) to come from a one-sided map of
twisted complexes whose vertical arrows are homotopy equivalences.
This stronger condition implies our highest degree term condition and

implies that RF
RηL
−−→ RFLF

µnLF
−−−→ HnLF is an isomorphism [AL19,

Lemmas 5.16 and 5.13]. That, in turn, means that the existence of any
isomorphism FR ≃ FHnL implies our adjoints condition above [AL19,
Prop. 5.14]. Thus, even the non-split analogue of a P

n-functor in the
sense of [Add16] satisfies our definition.

Definition 2.10. The P-twist PF of a P
n-functor F is the unique con-

volution of the complex

FHR
ψ
−→ FR

ǫ
−→ Id . (2.34)

The uniqueness of the convolution is the main result of this paper,
see Theorem 3.2 and Theorem 3.1. In [AL19] we prove that this P-twist
is indeed an autoequivalence of B.

3. Uniqueness of P-twists

3.1. An approach via triangulated categories. Let Z and X be
separated schemes of finite type over a field k. We work with Fourier-
Mukai kernels using the functorial notation: e.g. for any Fourier-Mukai

kernels F ∈ D(Z ×X) and G ∈ D(X × Z) of exact functors D(Z)
f
−→

D(X) and D(X)
g
−→ D(Z) we write FG for the Fourier-Mukai kernel

of f ◦ g given by the standard Fourier-Mukai kernel composition:

π13∗(π
∗
12G

L

⊗ π∗
23F ) ∈ D(X ×X).

Here πij are projections from X × Z ×X to the corresponding partial
products. We further write IdZ ∈ D(Z × Z) and IdX ∈ D(X ×X) for
the structure sheafs of the diagonals.

Let F ∈ D(Z×X) and R ∈ D(X×Z) be Fourier-Mukai kernels and

let maps FR
ǫ
−→ IdX and IdZ

η
−→ RF define a 2-categorical adjunction

of F and R, i.e. the following compositions are identity maps:

F
F η
−−→ FRF

ǫ F
−→ F,

R
η R
−−→ RFR

Rǫ
−→ R.

In other words, consider adjoint exact functors (f, r) : D(Z) ⇄ D(X)
with a fixed lift to 2-categorically adjoint Fourier-Mukai kernels (F,R).
Let G be a Fourier-Mukai kernel of an exact functor g : D(X) → D(Z).

Theorem 3.1. For any FG
f
−→ FR with ǫ ◦f = 0 all convolutions of

the following complex are isomorphic:

FG
f
−→ FR

ǫ
−→ IdX . (3.1)
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Proof. By Lemma 2.1 it suffices to show that the convolutions of all
right Postnikov systems associated to (3.1) are isomorphic, since for
any left Postnikov system there exists a right Postnikov system with
an isomorphic convolution. Then by Lemma 2.2 it suffices to show that
the natural map

Hom−1
D(X×X)(FG, FR)

ǫ ◦(−)
−−−→ Hom−1

D(X×X)(FG, IdX)

is surjective. The idea is: by the 2-categorical adjunction of F and R
it suffices to show the surjectivity of

Hom−1
D(X×Z)(G,RFR)

Rǫ ◦(−)
−−−−→ Hom−1

D(X×Z)(G,R),

whereupon we note that R ǫ has a right quasi-inverse η R : R → RFR.
Indeed, let φ ∈ Hom−1

D(X×X)(FG, IdX) be any element. Let

ψ ∈ Hom−1
D(X×X)(FG, FR)

be the composition

FG
F ηG
−−−→ FRFG

FRφ
−−→ FR.

Then ǫ ◦ψ is the composition

FG
F ηG
−−−→ FRFG

FRφ
−−→ FR

ǫ
−→ IdX .

Since the composition of Fourier-Mukai kernels is functorial the follow-
ing two compositions are equal:

FRFG
FRφ
−−→ FR

ǫ
−→ IdX and FRFG

ǫ FG
−−→ FG

φ
−→ IdX .

Thus ǫ ◦ψ equals the composition

FG
F ηG
−−−→ FRFG

ǫ FG
−−→ FG

φ
−→ IdX

which is just φ since (ǫ FG) ◦ (F η G) = Id. We conclude that ǫ ◦(−) is
surjective as desired. �

3.2. An approach via DG-enhancements. Let A and B be two
small DG categories. LetA-Mod-B, B-Mod-A, A-Mod-A and B-Mod-B
be the bar categories of A-B-, B-A-, A-A- and B-B-bimodules [AL20].
These could be replaced by any other DG enhancements of the de-
rived categories of bimodules equipped with (homotopy) unital tensor
bifunctors (−) ⊗A (−) and (−) ⊗B (−) which descend to the bifunc-

tors (−)
L

⊗A(−) and (−)
L

⊗B(−) between the derived categories. For
example, one can take h-projective or h-injective enhancements. The
advantage of bar categories is that any adjunction of enhanceable func-
tors can be lifted to a pair of homotopy adjoint bimodules described in
the next paragraph, cf. [AL20, §5.2]



ON UNIQUENESS OF P-TWISTS 17

Let M ∈ A-Mod-B and N ∈ B-Mod-A be homotopy adjoint, that
is, there exist maps

ǫ : N ⊗A M → B η : A →M ⊗B N

in A-Mod-A and B-Mod-B such that

M
η⊗ Id
−−−→M ⊗B N ⊗A M

Id⊗ ǫ
−−−→M (3.2)

N
Id⊗ η
−−−→ N ⊗A M ⊗B N

ǫ⊗ Id
−−−→ N (3.3)

are homotopic to IdM and IdN . Thus there exists a degree −1 map
ζ :M →M such that the composition in (3.2) equals IdM +dζ.

LetX ∈ B-Mod-A and letX⊗AM
f
−→ N⊗AM be any map such that

the following is a differential complex in D(B-B) ≃ H0(B-Mod-B):

X ⊗A M N ⊗A M B.
f ǫ (3.4)

Proposition 3.1. Any two lifts of (3.4) to a twisted complex over
B-Mod-B are homotopy equivalent.

Proof. Any lift of (3.4) in D(B-B) to a twisted complex over B-Mod-B
is readily seen to be homotopy equivalent to a twisted complex which
lifts f to f and ǫ to ǫ. The latter is simply a choice of the degree −1
map h : X ⊗A M → B with ǫ ◦f + dh = 0. Let h1 and h2 be any two
such maps. Define ξ to be the composition

X ⊗A M
Id⊗ η⊗ Id
−−−−−−→ X ⊗A M ⊗B N ⊗A M

(h1−h2)⊗Id⊗2

−−−−−−−−→ N ⊗A M.

Then dξ = 0. Consider the following diagram:

X ⊗A M X ⊗A M ⊗B N ⊗A M N ⊗A M

X ⊗A M B.

Id⊗ η⊗ Id

Id

(h1−h2)⊗Id⊗2

Id⊗2 ⊗ ǫ ǫ

h1−h2

(3.5)

It descends to a commutative diagram in D(B-B), thus it commutes
up to a homotopy in B-Mod-B. Let η be the homotopy up to which
it commutes, so that dη = ǫ ◦ξ − h1 + h2. Then the following are two
mutually inverse isomorphisms of twisted complexes:

X ⊗A M N ⊗A M B

X ⊗A M N ⊗A M B
deg.0

h1

f

ξ
−η

ǫ

h2

f ǫ
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X ⊗A M N ⊗A M B

X ⊗A M N ⊗A M B
deg.0

.

h2

f

−ξ η

ǫ

h1

f ǫ

�

Theorem 3.2. Let A and B be enhanced triangulated categories. Let
F : A → B be an exact functor with a right adjoint R. Let ǫ : FR → IdB

be the adjunction counit. Let G : B → A be any exact functor and
f : FG → FR be any natural transformation with f ◦ ǫ = 0. Finally,
assume that all these are also enhanceable.
Then all convolutions of the following three-term complex are iso-

morphic:

FG
f
−→ FR

ǫ
−→ IdB . (3.6)

Proof. As at the beginning of this section we can lift F and R to a
pair of homotopy adjoint bimodules M and N and we can lift G to
an bimodule X. Then by Prop. 3.1 any two lifts of (3.6) to a twisted
complex are homotopy equivalent. By Lemmas 2.5 and 2.6 every con-
volution of (3.6) is isomorphic in D(B-B) to the convolution of some
twisted complex lifting it. It follows that all convolutions of (3.6) are
isomorphic. �
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