
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/136718/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Alwasel, Khaled, Jha, Devki Nandan, Habeeb, Fawzy, Demirbaga, Umit, Rana, Omer , Baker, Thar, Dustdar,
Scharam, Villari, Massimo, James, Philip, Solaiman, Ellis and Ranjan, Rajiv 2021. IoTSim-Osmosis: A

framework for modeling and simulating IoT applications over an edge-cloud continuum. Journal of Systems
Architecture 116 , 101956. 10.1016/j.sysarc.2020.101956

Publishers page: http://dx.doi.org/10.1016/j.sysarc.2020.101956

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

IoTSim-Osmosis: A Framework for Modelling and Simulating IoT

Applications over an Edge-Cloud Continuum

Khaled Alwasela,b, Devki Nandan Jhaa, Fawzy Habeeba, Umit Demirbagaa,c, Omer Ranad, Thar
Bakere, Scharam Dustdarf, Massimo Villarig, Philip Jamesa, Ellis Solaimana, Rajiv Ranjana,h

aNewcastle University, Newcastle upon Tyne, UK
bSaudi Electronic University, Riyadh, Saudi Arabia

cBartin University, Bartin, Turkey
dCardiff University, Cardiff, U.K

eUniversity of Sharjah, UAE
fTU Wien, Vienna, Austria
gUniversity of Messina, Italy

hChinese University of Geosciences, Wuhan, China

Abstract

The osmotic computing paradigm sets out the principles and algorithms for simplifying the de-
ployment of Internet of Things (IoT) applications in integrated edge-cloud environments. Various
existing simulation frameworks can be used to support integration of cloud and edge computing
environments. However, none of these can directly support an osmotic computing environment
due to the complexity of IoT applications and heterogeneity of integrated edge-cloud environ-
ments. Osmotic computing suggests the migration of workload to/from a cloud data centre to
edge devices, based on performance and security trigger events. We propose ‘IoTSim-Osmosis– a
simulation framework to support the testing and validation of osmotic computing applications.
In particular, our detailed related work analysis demonstrates that IoTSim-Osmosis is the first
simulation framework to enable unified modelling and simulation of complex IoT applications
over heterogeneous edge-cloud environments. IoTSim-Osmosis is demonstrated using an elec-
tricity management and billing application case study, for benchmarking various run-time QoS
parameters, such as IoT battery use, execution time, network transmission time and consumed
energy.

Keywords: Osmotic computing, Internet of Things (IoT), Edge Computing, Cloud Computing,
Software-Defined Network (SDN), Simulation.

1. Introduction

The Internet of Things (IoT) infrastructure is now used across a number of applications,
such as smart city, healthcare, and manufacturing. In such applications, data from IoT devices
can be processed by different resources at edge and cloud data centres [1]. The transition from
distributed systems (e.g. cloud computing) to a distributed system of systems – with the edge and
cloud acting as independently managed systems to support an IoT ecosystem, has led to a new
generation of heterogeneous and complex environments. Although the platforms that support a
system of systems perspective may vary, a common theme is to link different types of distributed
systems in a unified manner. Osmotic computing focuses on the design and implementation
of a unified computing model that leverages the capabilities of various distributed systems,
which include edge computing, cloud computing and a software-defined wide area network (SD-
WAN) [2]. The aim is to optimise the performance of the overall IoT ecosystem as well as the
performance of individual components that are part of such an ecosystem.

Preprint submitted to JSA December 1, 2020

Consider an example of electricity management and billing in a smart city. Each house has
a smart meter installed to capture electricity consumption on a per-second basis, with a local
display showing live meter reading and monetary cost. Periodically (usually at 15 minutes), the
reading is sent to a central server for combined billing, load management and outage control.
This process seems simple, and yet also extremely complex, as every smart meter can have a
different architecture and follow different communication protocols based on network range and
availability. Local processing and transmission in a smart meter may also vary based on its
charging state, processing and storage capability. The data of every smart meter enroute to
cloud datacenters may experience network congestion, latency and buffering, and use security
controls (e.g., firewalls, encryption).

Considering customised solutions for Osmotic computing in a production environment can
be challenging. Various research projects including CHOReOS [3], CityPulse [3] are proposed to
investigate the infrastructure composition and data analytics operations. The main aim of these
projects is to orchestrate numerous services to offer a unified deployment solution. However,
they are not involved in the analysis of proposed approaches or algorithms for the deployment.
Therefore, simulation-based tools are a useful alternative for analysing and evaluating algorithms
and Quality of Service (QoS) policies – to undertake various “what if” investigations. There
are several simulation environments currently available such as IoTSim-Edge [4], IoTsuite [5],
SimIoT [6], amongst others for IoT systems. However, their key focus remains on IoT systems
and devices, and therefore they have limited capability to model migration and dynamic container
management required in osmotic computing within a unified simulation model.

This paper describes IoTSim-Osmosis– an SDN-based osmotic computing toolkit. IoTSim-
Osmosis supports modeling and simulation of multiple Osmotic systems in a unified environment.
It enables the integration of IoT, edge and cloud ecosystems along with mechanisms to support
SD-WAN networking. Using this toolkit, IoT devices are able to send data using different
wireless technologies (e.g., WiFi,) while the edge can include virtualized devices and SDN-aware
infrastructure. Similarly, a cloud data centre can include virtualized host machines and SDN-
aware networks. IoTSim-Osmosis also provides policies to control different components (e.g.
edge and cloud task scheduling, and edge to cloud routing protocols).

1.1. Challenges

Modelling and simulating IoT-based osmotic environments present the following challenges:

• Infrastructure heterogeneity: Osmotic computing is based on the use of a multi-layered
architecture (comprising IoT, edge, cloud and SD-WAN), which requires coordination be-
tween the layers. Each layer is constantly evolving with heterogeneous components, data
formats, and protocols, which might involve a number of different behaviours and con-
figuration parameters (e.g. type of power source, processing/ storage capacity, network
capacity etc.) [7].

• Communication heterogeneity In osmotic environments, several message exchange for-
mats may co-exist between different devices. The increasing use of software-defined net-
working (SDN) in edge and cloud environments adds an additional potential layer of config-
uration [8]. The use of SD-WAN in osmotic environments imposes several challenges, such
as obtaining a guaranteed network QoS and the requirement of reserving network slices [9].

• Complexity of application graph: Increasingly, IoT applications can be represented as
a graph of microservices, with data and control flow dependencies between such services
encoded in the graph. This use of microservices enables re-use and a mechanism to integrate
services offered by a variety of different providers. Each application componentservice in

2

Figure 1: 4-tier architecture – the outer layer is composed of IoT devices generating data and transmitting these
to Edge devices (second layer). The Innermost layer is comprised of a Cloud datacenter, with a data network
connecting these layers

the graph can have specific functional and QoS requirements for successful execution of the
application [10].

1.2. Contributions

This paper describes a novel framework to model and simulate osmotic computing environ-
ments, based on the characteristics outlined above. Our key contributions include:

• The architecture and systems model of IoTSim-Osmosis, highlighting components used to
support edge-cloud heterogeneity and IoT application complexity. This architecture also
includes several system management policies that can be extended by other researchers.

• A case study based validation of IoTSim-Osmosis using an energy (electricity) management
and billing application. Simulation results highlight the unique capabilities provided by
IoTSim-Osmosis for analyzing various parameters, such as IoT energy usage, execution
time and network transmission delay.

The rest of the paper is organized as follows. Section 2 describes osmotic computing and
graph-based IoT application construction. Section 3 discusses the modelling capabilities of
IoTSim-Osmosis and Section 4 provides an empirical validation of our approach. Before pro-
viding concluding comments and future work in Section 6, we describe related work in Section 5
by comparing IoTSim-Osmosis with state-of-art efforts.

3

2. Background

2.1. IoT environment

Although actual IoT infrastructure can vary across different application areas, a common
(abstract) model can be represented using a 4-tier architecture as shown in Figure 1. The four
tiers are:

Tier 1. IoT layer: This layer can consist of sensors, actuators, Radio Frequency IDentification
(RFID) tags and mobile devices, which can sense the physical environment and transfer data
to edge/ cloud data centres for further analysis [11, 12]. These devices can consist of different
software/ hardware (and data usage) architecture, energy sources and communication proto-
cols. Unlike devices and networks which exist to offer physical connectivity, network-connected
applications create opportunities for human-to-device connectivity [13].

Tier 2. Edge layer: For applications with the following properties: (a) close coupling between
data generators and processing environments [14], (b) where data transfer bandwidth is limited
[15], and (c) data generating devices are battery operated [1], it is not efficient to send all the data
to a cloud system. Emergence of edge computing which offers data storage and analysis to the
network edge closer to IoT devices provides an efficient solution. Edge devices, including smart
phone, Raspberry Pi and UDOO board, favour local processing and data storage in proximity
to data generation. Similar to IoT devices, edge devices can be heterogeneous, which makes the
modelling complex.

Tier 3. Network layer: This layer is involved in transferring data between various IoT infras-
tructure layers. The sensor and actuator nodes (Tier 1) form arbitrary network topologies that
are interconnected via edge gateways (Tier 2) to remote clouds (Tier 4) via the Internet back-
bone. The inter-connectivity of these network types vary from short-range low-power wireless
links offering a bandwidth of few hundred Kb/s with a radio range of few meters, to powerful
local and cellular area networks. There is often direct communication between an IoT device
and an edge device using light weight network protocols such as LoRa-WAN, NB-IoT (over long
distances) and Bluetooth Low Energy (over shorter distances), whereas edge and cloud layers use
network protocols such as 4G/5G [16]. The dynamic nature of modern IoT applications requires
dynamic reconfiguration of network links and support for bandwidth slicing, which requires a
move away from traditional WAN solutions towards SD-WAN solutions [17].

Tier 4. Cloud layer: This layer provides computing as a utility service which can be provisioned
on a pay-per-use basis, as user demand changes. To handle the increasing diversity and scalability
of current applications, cloud environments offer resources with different characteristics and at
different costs (based on duration of use).

Regardless of the complexity of the above 4 layers, it is necessary to optimize the performance
of an application executing across the the combined IoT-edge-cloud environment.

2.2. Application Topology

Osmotic Computing focuses on strategies and mechanisms to extend IoT device capabilities
by developing a computing model that makes use of all the 4 IoT infrastructure layers [18]. To
handle the complexity and diversity of applications, it provides an abstraction referred to as
“Microelements” (MELs) – which encapsulates services, resources and data. In particular, any
IoT applications can be represented using a graph of MELs as shown in Figure 2. Modelling an
application as a graph of MELs involves:

• Encapsulation of multiple components In the context of an IoT application, sensed
data needs to be processed across a number of functions or operations. The representation
of each operation can take different forms, leading to an IoT application being specified

4

SD-WAN

MEL

Cloud

L1

SDWAN

L2

Edge

L3

IoT

L4

Datacenter

Cloud

MEL

Edge

MEL

IoT

MEL

MEL

Datacenter

MEL

Datacenter

MEL

Osmotic

Resources

Data and

Control Flow

MELMEL

MELMELMELMEL

MELMEL

SD-WAN

Controller

SDN-Edge

Controller

SDN-Cloud

Controller

SDN-Cloud

Controller

SDN-Cloud

Controller

Figure 2: Application MEL graph

as a graph of MELs. Each MEL can contain micro data and be realised as a microservice
which can be deployed on the IoT infrastructure. A MEL, as an entity, needs to abstract
all of these capabilities.

• Maintaining data and control flow There is a strict dependency between various MELs
within an application. The dependency can be in the form of data transfer or control flow.
An example of MEL graph dependency is given in Figure 2.

• Performance optimization across heterogeneous IoT infrastructure This involves
understanding how the Cloud (L1) interacts and coordinates with the IoT (L4) and Edge
(L3) layers, through an SDWAN (L2). Each MEL has specific QoS constraints limiting the
locations at which a MEL can be deployed. For example a deep learning model cannot be
deployed on IoT or edge device if it has specific QoS constraints. In addition to this, it is
necessary to optimize the underlying IoT infrastructure layers while executing MELs.

3. Design of IoTSim-Osmosis

This section discusses the conceptual model of IoTSim-Osmosis, including it’s architecture
and components.

3.1. IoTSim-Osmosis architecture

The architecture of IoTSim-Osmosis is presented in Figure 3. It is divided into four main lay-
ers: input, management, osmotic orchestrator and infrastructure. IoTSim-Osmosis requires two
input files – an end-to-end configuration file which includes a description of each infrastructure
element. For example, it contains attributes of IoT device (e.g. device ID, bandwidth, battery
capacity). When IoTSim-Osmosis finishes building the required infrastructure, it would require
an IoT-MEL graph as workload to execute. The workload contains details of a transaction, rep-
resented as MELs and network operations. Each transaction can have different performance and
can be used to evaluate the performance of a given osmotic application.

5

Input End-to-End Configuration MEL graph workload

Management

IoT Policy MEL Policy Edge Device Policy

Network Policy Host Policy

Osmotic Orchestrator

Infrastructure

VM Policy

E
v

en
t

M
a

n
a

g
em

en
t

Cloud

Edge

SDWAN

IoT

………….…………. ………….

Figure 3: Architecture of IoTSim-Osmosis simulator

SD-WAN

Controller

Host

Datacenter

SDN System

SDN-DC

Controller

Topology

Osmotic Orchestrator

Cloud

Datacenter

LinkSwitch
Forwarding

Table

1

SDN-Edge

Controller

Edge

Datacenter

IoT Device

MELEdge

Device

1

1

1..*

SD-WAN

Routing Table

1

1

1 1

1..* 1

1..*

1

1..*

1

1

1

1 1

1

1

1

1

1

1 1

1..*

Figure 4: IoTSim-Osmosis system components

The management layer is modeled to facilitate the process of deploying tailor-made osmotic
policies. It obtains several policies for different purposes e.g., network policy is designed to
instruct SDN/SDWAN controllers with routing and traffic. As another example, virtual machine
(VM) policy is used to select a host that can deploy requested VM. For each policy, IoTSim-
Osmosis has a number of implemented algorithms that can be freely used.

The infrastructure layer is modeled to represent four infrastructure components: IoT, edge,
cloud, and SDWAN. To provide a realistic representation of osmotic computing, each infrastruc-
ture component is modeled with many elements. For example, an IoT component is designed
to obtain IoT devices with various attributes, such as device type, data rate, data type, and
supporting network protocols. Finally, the osmotic orchestrator is designed to control all the
events and operations happening in IoTSim-Osmosis. Using the event management system, it is
able to manage the infrastructure and network while allowing a user to apply the management
policies.

6

3.2. IoTSim-Osmosis system components

An overview of IoTSim-Osmosis’s system components is illustrated in 4. IoTSim-Osmosis
has an SDNSystem component, which mimics the general behaviour of SDN. It is coupled with
a routing table to store routing information and relation among nodes in its respective network.
The child components (SDN-Edge controller, SDN-DC controller, and SDWAN controller) extend
the SDNSystem to obtain general, shared functions along with adding their customized functions.
Each controller obtains its unique route table, which is used to make proper routing decisions.
An osmotic coordinator is used to interlink the controllers so that routing decisions are made in
a global manner.

Each component of edge datacenter, cloud datacenter, and SDWAN is coupled with a topol-
ogy component to describe the arrangement of the networks’ nodes (e.g., edge devices, hosts,
switches). Each component separately defines the way different nodes are interconnected with
each other. The topology component is totally managed by a respective controller. Every con-
troller must update its topology with network changes, such as an edge device is disconnected.
Also, each controller uses its topology to help build routing tables.

Every edge datacenter has an associated proxy component – on an edge and IoT device.
Similarly, the edge datacenter can have a number of connected IoT devices, generating data over
a particular time interval. Each IoT device obtains a battery with an integrated consumption
policy. Data from each IoT device is forwarded to a MEL component residing at an edge device.
Every cloud datacenter maintains a number of hosts with associated MELs to carry out further
processing when required.

3.3. IoTSim-Osmosis model

An overview of IoTSim-Osmosis’s model is shown in Figure 5. Every IoT device consistently
senses its surrounding environment over a given time interval, sending its sensed data to a
respective MEL residing in an edge datacenter. The MEL processes the received data, with the
computational capability of MEL being specified in Million Instructions Per Seconds (MIPS). To
support additional processing, data may be exchanged with another MEL residing in the same
edge datacenter or in another edge/ cloud datacenter. The routing decision is handled by the
SDN-edge controller. If the SDN-edge controller cannot determine the destined MEL, it will ask
the source MEL to forward the data to the edge datacenter gateway. As an SDWAN controller
is updated with network information of all associated datacenters by the osmotic orchestrator, it
determines a path to the destined MEL. As a result, the SDWAN controller sends the data to the
gateways of the destined MEL. As data arrives, the gateway requests its associated edge/ cloud
SDN controller to find a network route to the destined MEL (for data processing). The journey
from IoT device to the last MEL is considered to be a transaction where every processing and
transmission results are stored.

In general, data transmission in osmotic computing takes place multiple times based on a
given application MEL graph. Any MEL graph always starts from an IoT layer where IoT
devices observe and send their observed data to an associated edge MEL(s). To compute every
IoT data transmission time iott, Equation 1 is used where iotds is the IoT observed data size,
iotbw is the available bandwidth of an IoT device, and embw is the available bandwidth of an
edge MEL. As the edge MEL might receive data from different IoT devices, it is important to
take the minimum bandwidth of the two associated elements.

iott =
iotds

min(iotbw, embw)
(1)

More data transmissions occur when edge MELs require further analysis by other edge/cloud

7

Sensing surroundings

Send IoT data to MEL

Process IoT data

YesNo Requiring

further

analysis

Encapsulate data inside a new

network flow

Send the data to a network layer

SDN controller determines dentations

Yes NoInside the

edge

Send the data to the dentations

Process the data

Report results

Send to SD-WAN network layer

SD-WAN controller determines dentations

Send the data to the dentations gateways

Process the data

SDN controller determines dentations

Send the data to a network layer

Send the data to the dentations

Simulation is

finished?

Yes

No

Figure 5: IoTSim-Osmosis overview model

MELs. It is important to compute a MEL data transmission time whenever a given MEL sends
data to another MEL, whether in the same edge datacenter or in other edge/cloud datacenters.
To properly compute every MEL data transmission time melt, an end-to-end network path must
be first determined. Failure to do so would lead to incorrect estimation of melt. For example,
Figure 6 illustrates how the end-to-end network transmission time is computed incorrectly (step
1) and correctly (step 2). In step 1, it can be seen that each separate environment computes
melt of the same data (D) and then melt are summed altogether. Each environment computes
melt to 2 seconds, which result in melt = 6 seconds. Such estimation is incorrect because melt
should be computed from a source MEL to a destined MEL rather than from one environment
to another. The correct calculation is shown in step 2 where an end-to-end network estimation
of melt is considered, which results in melt = 2 seconds.

In order to obtain an end-to-end osmotic network estimation for any given melt, an end-to-
end path must first be established. Every edge, cloud, and SDWAN controller must communicate

Edge Datacenter SDWAN Cloud Datacenter

D melt= 2 secs D melt = 2 secs D melt = 2 secs

D melt = 2 secs melt = 2 secs

melt = 6 secs1

2

Figure 6: Illustration of osmotic network transmission time

8

with one another via the event management component to establish the end-to-end path. Every
controller has full control of its network where it selects the best path based on its routing
algorithm (e.g., shortest path, maximum bandwidth). Following similar graph theory technique
in reference [19], the path/routing table of every controller is dynamically determined. Once
every controller determines its path, it sends the path information to the osmotic orchestrator.
When the osmotic orchestrator has the end-to-end path information, it estimates the bandwidth
of the end-to-end path endbw(x) for the xth MEL by using Equation 2 where l denotes a link, L
denotes a set of links, m is a decision variable set to 1 or 0 to determine if the link exists on the
path or not respectively, and bw is the available bandwidth of l.

Next, the orchestrator requests the source MEL to send the data and in turn the orchestrator
keeps estimating melt until the data is fully transmitted. To compute melt(x) of the xth MEL,
the orchestrator uses Equation 3 where melds(x) is the data size of the xth source MEL,

endbw(x) = min(l(m, bw)) m = 1, ∀l ∈ L (2)

melt(x) =
melds(x)

endbw(x)
(3)

To compute the processing time of each MEL, Equation 4 is used where mele(t) is the pro-
cessing time of the tth MEL, melmi(t) is the Million Instruction (MI) size of the tth MEL, and
melmi(t) is the MIPS capacity of the tth MEL.

mele(t) =
melmi(t)

melmips(t)
(4)

Equation 5 is used to compete the total time of each transaction T where X is a set of MEL
belongs to the transaction. The transaction is important to consider as it can determine the
performance of each osmotic application.

T = iott +
∑
∀x∈X

melt(x) + mele(x) (5)

IoTSim-Osmosis can be configured to stop generating IoT data at any given time. However,
if the battery of all the IoT devices are drained, then IoTSim-Osmosis must stop and report the
results. Therefore, to estimate the total running time RT (a) of the ath osmotic application,
Equation 6 is used where trs(first) is the start time of the first transaction and trf (last) is the
finish time of the last transaction.

RT (a) = trs(first)− trf (last) (6)

As IoT devices might depend on batteries, IoTSim-Osmosis is modeled to track the battery
consumption of each IoT device. Every time an IoT device senses new data, IoTSim-Osmosis
would use Equation 7 to update the battery consumption bc of the device where sr is the draining
rate for sensing the surrounding environment and tr is the draining rate for sending the data. For
computing the power consumption in edge, cloud, and SDWAN, IoTSim-Osmosis follows similar
patterns as given in [20].

bc = sr + tr (7)

9

IoT smart meter

Edge

datacenter
Cloud

datacenter

SD-WAN

Network

Figure 7: Osmotic computing example (a smart home connected to a smart city electricity meter)

4. Evaluation of IoTSim-Osmosis

A wide range of osmosis applications can be simulated and evaluated in IoTSim-Osmosis.
This section illustrates the overall applicability of IoTSim-Osmosis in terms of simulating smart
city applications based on the osmosis paradigm. The paradigm shift in traditional IoT envi-
ronments to provide next-generation services and improves city infrastructures require a hybrid
infrastructure that smartly interconnects IoT-oriented computing systems (SDN-enabled edge,
SDN-enabled cloud, and SDWAN). IoTSim-Osmosis is developed to allow such hybrid infrastruc-
ture to be simulated where the dynamic management and performance metrics of IoT-oriented
services across edge and cloud datacenters via SDWAN are easily achieved. The section pro-
vides strong evidence that IoTSim-Osmosis is an effective tool for assessing the effectiveness of
tailor-made solutions for accelerating and enhancing the performance of heterogeneous osmosis
applications.

Software availability : The IoTSim-Osmosis’s software with the source code can be downloaded
from https://github.com/kalwasel/IoTSim-Osmosis. A guideline for installation is given along
with presenting a number of examples and tutorials to illustrate the use of the simulator. IoTSim-
Osmosis uses features from a combination of existing simulation environments (IoTSim-SDWAN
[19] and IoTSim-Edge [4]).

4.1. Smart city

The advances of IoT have contributed to the establishment of smart cities to improve citizens’
quality of life. Developing a smart city requires the complex deployment of IoT ecosystems in
numerous domains, such as in smart meters to save energy consumption, in roads to improve
traffic management, and in self-driving cars to provide transportation for customers on demand.
Each domain has various requirements (e.g., a certain level of communication delays, and artificial
intelligence to enrich the decision-making process). Osmotic computing would play an essential
role in enabling such requirements. It allows IoT applications to be defined in the form of MELs,
which are deployed across several edge-cloud resources.

The example of electricity management and billing in smart city is used as an evaluation
scenario. Several smart meter sensors installed in houses that collects data about the energy
consumption. The sensor sends the data to a local gateway (edge device) installed nearby to
perform basic analytic operation such as filtering and windowing. Since the smart meters can
be of different types, we considered two scenarios, a) smart meter sensors with varying data
rate (dynamic data flow) and b) varying the number of smart meters (dynamic number of IoT
devices). Finally the data is sent to cloud for further evaluation and storage. Figure 7 illustrates

10

Edge SwitchCore Switch Aggregate switch Edge Device Host-VM

SDN-Edge

Controller

SDN-Cloud

Controller

SD-WAN

Controller

Gateway

IoT Devices Edge Cloud

Router

Osmotic Orchestrator

Figure 8: Osmosis infrastructure for case 1

Table 1: Computing configuration for the use-cases

IoT device Edge device Host (Cloud) VM (Cloud)
Bandwidth 100 Mbps CPUs 4 CPUs 4 CPUs 2

Battery capacity 100 mA Bandwidth 100 Mbps Bandwidth 1 Gbps Bandwidth 100 Mbps
Battery sensing rate 0.001 mAH RAM 4 GB RAM 8 GB RAM 2 GB
Battery sending rate 0.001 mAH MIPS/CPU 250 MIPS/CPU 1250 MIPS/CPU 250

Network type WiFi Storage 200 GB Storage 500 GB Storage 200 GB

Table 2: Network configuration for the use-cases

Edge network SDWAN network Cloud network
Edge device to edge switch 100 Mbps Edge gateway to SDWAN router 100 Mbps Gateway to aggregate switches 100 Mbps

edge switch to gateway 100 Mbps Between SDWAN routers 100 Mbps Core switches to aggregate switches 100 Mbps
- - Cloud gateway to SDWAN router 100 Mbps Aggregate switches to edge switches 100 Mbps
- - - - Edge switches to VMs 100 Mbps

Table 3: Application configuration for case 1

Tests
Data time

interval (seconds)
Stop IoT data

generation (seconds)
IoT device name

IoT Device
output data (Mb)

MEL name EdgeLet size
MEL output
data (Mb)

VM name CloudLet size

Test 1 10 3600 Variable 90 Variable 250 70 Variable 200
Test 2 15 3600 Variable 90 Variable 250 70 Variable 200
Test 3 20 3600 Variable 90 Variable 250 70 Variable 200
Test 4 25 3600 Variable 90 Variable 250 70 Variable 200

Table 4: Device requirement for case 1

Number of IoT devices Number of edge devices Number of MELs Number of hosts Number of VMs
10 2 2 2 2

an overview of a smart home connected to a smart city meter for electricity management and
billing.

11

4.1.1. IoTSim-Osmosis policies

IoT-based osmotic applications and infrastructures require a number of policies in every layer
of osmotic computing. IoTSim-Osmosis is modeled to support the implementation of new policies
in a seamless manner where researchers can easily extend the main policies and develop tailor-
made solutions and algorithms. Each layer can have different policies; for example, the task
scheduling of MELs in the edge can have a time-shared policy while VMs in the cloud can have a
space-share mechanism. To properly execute IoTSim-Osmosis and illustrate the given use cases,
the following policies are used:
• The task scheduling of MELs and VMs is based on a time-shared policy.

• The allocation of MELs and VMs is set to the least used resources of edge devices and
cloud servers.

• Network routing in the edge, cloud, and SD-WAN is based on shortest-path maximum-
bandwidth [19].

• The network traffic policy of IoT applications is based on a fair-share mechanism where
each application obtains an equal amount of network bandwidth.

4.1.2. Case 1: dynamic data flow

This case is used to evaluate the outcome effectiveness of the simulator based on dynamic
data intervals. The case is executed with four different data generation times. An overview
of the simulated infrastructure setup is illustrated in Figure 8. Table 1 shows the computing
configuration of edge and cloud datacenters while Table 2 illustrates the network configuration
in the edge, cloud, and SDWAN. Finally, Table 3 presents the attributes used to run each test.
Table 4 shows the number of devices used in the case. The focus of this case is to show the effect
of dynamic data generation intervals.

The simulation results are presented in Figure 9. Figure 9a illustrates the battery consump-
tion of the IoT Devices. It can be observed that the lower the time interval for sending data,
the higher the battery consumption. Figure 9b shows the total size of the generated data by
IoT devices, while Figure 9c illustrates the total number of transactions. It can be seen that the
total size of the generated data and transactions is inversely proportional to the size of the time
interval. Figure 9d shows the total time taken by each transaction. It can be observed that they
consume similar time. This is because different transactions do not interfere with each other
at any given resource (e.g., edge device, edge network). If the interval time is, for instance, set
to one second, the time of each transaction would most likely vary. Figure 9e shows the total
energy consumption of edge, cloud, and SDWAN. The Figure reveals that the lower the time
interval for IoT generating data, the higher the energy consumption. Figure 9f shows the total
time of transactions of every time interval. It is apparent that generating more data would lead
to higher transaction times due requirement for more processing and transmission. Figure 9g
illustrates the total running/simulation time. The IoT devices are set to stop generating data at
3600 seconds. It can be seen that the finishing time is not similar because the last transaction
of time intervals 5 and 6 requires more time to finish.

4.1.3. Case 2: dynamic number of IoT devices

This case is used to evaluate the energy consumption of the osmotic environment by changing
the number of associated IoT devices. The computing and network configurations are shown in

12

0.00

0.25

0.50

0.75

1.00

10 15 20 25
Time interval (seconds)

B
at

te
ry

 c
on

su
m

pt
io

n
(m

A
H

)

(a) Battery consumption

0

10000

20000

30000

40000

10 15 20 25
Time interval (seconds)

To
ta

l I
oT

 g
en

er
at

ed
 d

at
a

(M
b)

(b) Total IoT generated data

0

100

200

300

400

10 15 20 25
Time interval (seconds)

N
um

be
r

of
 tr

an
sa

ct
io

ns

(c) Number of transactions

0

5

10

15

20

25

10 15 20 25
Time interval (seconds)

T
im

e
of

 e
ac

h
tr

an
sa

ct
io

n
(s

ec
on

ds
)

(d) Time of each IoT transaction

0

100

200

300

400

500

600

10 15 20 25
Time interval (seconds)

E
ne

rg
y

co
ns

um
pt

io
n

(W
/h

) Cloud

Edge

SDWAN

(e) Energy consumption of cloud,
edge, and SDWAN infrastruc-
tures

3610.5 3605.5 3600.5

2931.5

0

1000

2000

3000

4000

10 15 20 25
Time interval (seconds)

To
ta

l t
ra

ns
ac

tio
n

tim
es

 (
se

co
nd

s)

(f) Total transaction times

3610.5 3605.5 3600.5 3595.5

0

1000

2000

3000

4000

10 15 20 25
Time interval (seconds)

To
ta

l t
ra

ns
ac

tio
n

tim
es

 (
se

co
nd

s)

(g) Total running time

Figure 9: Simulation result for case 1

Table 1 and 2. This case has similar application configuration and device requirement as case
1 (see Table 3 and 4). However, the number of IoT devices varies from 2 to 10 to illustrate the
impact of IoT devices on energy consumption of edge, cloud, and SDWAN. Also, the time interval
for IoT devices to generate data is set to 10. Figure 10 illustrates the energy consumption of edge,
cloud, and SDWAN. It is apparent that the increase in the number of IoT devices requires more
energy for the edge, cloud, and SDWAN. The battery consumption of IoT devices is neglected
because data generation is static, which results in similar battery consumption for all the IoT
devices.

13

0

200

400

600

800

2 4 6 8 10
Time interval (seconds)

E
ne

rg
y

co
ns

um
pt

io
n

(W
/h

) Cloud

Edge

SDWAN

Figure 10: Energy consumption of cloud, edge, and SDWAN infrastructures (use case 2)

Table 5: Space and time complexity configuration

Test Number of IoT devices
Edge Cloud

Number of datacenters Number of edge devices Number of datacenters Number of edge devices Number of hosts Number of VMs
1 20 2 20 2 20 20 20
2 40 4 40 4 40 40 40
3 60 6 60 6 60 60 60
4 80 8 80 8 80 80 80
5 100 10 100 10 100 100 100

0

20

40

60

80

1 2 3 4 5
Test

S
im

ul
at

io
n

tim
e

(s
ec

on
ds

)

(a) Time consumption

0

50

100

150

200

1 2 3 4 5
Test

M
em

or
y

us
ag

e
(M

B
)

(b) Memory consumption

Figure 11: Simulation complexity

4.2. Space and time complexity of IoTSim-Osmosis

The magnitude of memory and time consumption to simulate osmotic environments would
vary from one case to another. A special scenario is presented to illustrate such consumption.
The computing and network configurations are shown in Table 1 and 2. The case has a similar
application configuration as case 1 (see Table 3). However, the time interval for IoT devices
to generate data is set to 20. The case special configuration is shown in Table 5. The case is
executed five times, represented as tests. Figure 11a illustrates the simulation time complexity.
It can be seen that the simulation time increases as the number of requirement increases in each
test. However, the simulation time is very reasonable for all tests, taking up to 68.70 seconds to
complete the simulations. Figure 11b shows the memory consumption. It can be observed that
the memory consumption of the simulations slightly increases as the number of requirements
increase in each test.

14

5. Related Work

To simulate the complex environment of cloud, edge and underlying networks, various sim-
ulation and emulation frameworks have been introduced. This section summarizes the most
relevant simulation and emulation frameworks and illustrates how these frameworks are not able
to satisfy the requirements for osmotic computing environments as compared to our proposed
IoTSim-Osmosis simulator.

5.1. Cloud simulators

Multiple simulation frameworks have been proposed to model and simulate cloud computing
infrastructures. The most popular one is CloudSim [21], which is a discrete-event simulation
tool designed to enable the modelling and simulation of cloud-based systems and services. It
supports the modelling of various cloud system components; for example, cloud datacenters,
virtual machines (VMs) along with providing mechanisms to easily test and evaluate new strate-
gies that improve the performance of cloud infrastructures. NetworkCloudSim [22] extends the
functionality of CloudSim to leverage traditional network infrastructures within cloud datacen-
ters. RC2Sim [23] is another cloud-based tool with the focus on evaluating cloud management
techniques. It is a combination of simulation (e.g. calculating a time for creating a VM im-
age) and emulation (e.g. sending real TCP/IP traffic) to enable the testing of large-scale cloud
environments in a single machine.

iCanCloud [24] is also a cloud simulator offering several features for conducting large-scale
cloud experiments. It can simulate computing and network resources efficiently. It is equipped
with a global hyper-visor to test different cloud brokering strategies. GreenCloud [25] is a cloud
simulation toolkit built on top of an NS-2 simulator. It is capable of simulating computing and
network cloud infrastructures along with offering numerous energy-aware models.

DCSim [26] is a cloud-based simulator that enables the modeling and simulating of cooling
systems in addition to computing and network infrastructures. It is provides mechanisms to quan-
tify the performance and energy consumption in terms of servers, network, and cooling systems.
By using DCSim, energy-aware algorithms can be effectively evaluated. Multi-RECloudSim [27]
is an extension of CloudSim focusing on modeling and simulating of multi-resource task execu-
tions. It provides rich features in terms of power modeling and multi-resource task scheduling.
DISSECT-CF [28] is a customizable simulation framework which builds upon existing cloud
computing concepts. It is mainly designed for energy consumption evaluation in relation to
Infrastructure-as-a-Service (IaaS), which supports model task scheduling.

These simulators have the power to support modeling and simulation of cloud infrastructures,
which include computing and traditional networking. However, they are limited to traditional
clouds and do not simulate current technological paradigms (e.g., IoT, SDN, SD-WAN).

5.2. Network simulators and emulators

Several network-based simulation tools have been introduced for building and evaluating
different types of network infrastructures in a simulated manner. Some examples of network
infrastructures include wireless sensor networks (WSNs), local area networks (LANs), internet
protocols (e.g. border gateway protocol). One of the most powerful network-based tools is NS-
3 [29]. NS-3 is an open-source network simulator based on discrete-event mechanisms, which
offers several types of network infrastructures, such as WSNs and LANs. It also provides several
features, such as the ability to evaluate the designs and algorithms for the energy consumption
and routing protocols of WSNs.

ConesC [30] is a verification WSN tool designed to easily deploy and test different types of
WSN models in terms of design perspectives. It efficiently allows developers to check and evaluate

15

the correctness of proposed WSN designs. COOJA [31] is a simulator that can be employed to
model multiple deployment levels (e.g. operating systems, machine code instruction sets, and
networks). Although COOJA is principally designed for use with the Contiki operating systems,
it can also be used to support simulation of heterogeneous network nodes.

TOSSIM [32] is a toolkit that simulates the hardware components of sensor devices. It
allows TinyOS applications to seamlessly run and interact with the underlying components of
TOSSIM without the need for real sensor devices. TinyOS [33] is an operating system designed
for wireless devices that are equipped with low-power batteries. By using TOSSIM, TinyOS
applications can easily be evaluated and tested in terms of performance and energy consumption.
OMNeT++ [34] is a generic network-based toolkit designed to simulate several network-specific
domains/models (e.g., wireless ad-hoc network simulations, storage area network simulations).
OMNeT++ has an effective graphical user interface (GUI) which accelerates and simplifies the
deployment of different network-based scenarios. Castalia [35] is as an extension of OMNet++
developed to simulate networks of low powered devices, such as body area networks. It can also
be used to dynamically model and simulate large numbers of mobile nodes. GreenCastalia [36]
extends the capability of Castilia to allow the modelling and simulation of harvesting-aware power
management for embedded devices. The most important limitation of these simulators lies in
the fact that they lack the support for SDN-aware mechanisms within and across edge-cloud
environments.

5.3. SDN-aware network simulators and emulators

Mininet [37] is a lightweight SDN-centric emulation tool that enables virtualization mecha-
nisms for large-scale SDN-aware networks in a single machine. It offers the advantage of quantify-
ing SDN performance within different network structures and routing protocols. CloudSimSDN
[20] extends the functionality of CloudSim to provide SDN architectures and models within cloud
datacenters. Additionally, it consists of different network and management strategies for energy
management. BigDataSDNSim [38] is built on top of cloudSimSDN and provides models to
derive different performance and network metrics of big data applications in SDN-enabled cloud
datacenters.

IoTSim-SDWAN [19] is a new simulation tool that provides a model of distributed SDN-
enabled cloud datacenters communicating via SD-WAN network infrastructures. It facilitates
the process of evaluating new designs and algorithms in the context of SD-WAN/SDN aware
datacenters. SDN-Sim is a new simulator and emulation toolkit that integrates multiple frame-
works (e.g., OpenDaylight SDN controller, Mininet, and GNS-3). It supports different SDN-based
simulation and emulation models to evaluate different SDN performance perspectives. The focus
of SDN-Sim [39] is to facilitate the deployment and testing of several SDN-based policies, such
as channel modeling, traffic shaping, and QoS demands.
5.4. IoT, edge, and fog simulators

In recent years, several simulators have been proposed to simulate IoT and edge environ-
ments. SimIoT [6] is another simulator which operates by modelling the transmission of data
between IoT devices and cloud datacenters. Whilst the simulations associated with this tool
do not include edge devices, it permits the dynamic testing of multi-user submissions in IoT
contexts. Another simulator, Edge-Fog [40] supports various energy and network models in ad-
dition to assisting with task scheduling. iFogSim [41] can be employed for modelling IoT and
Fog environments where all the computing nodes are represented as fog nodes. Moreover, it
measures the influence of resource managements in relation to network congestion, cost, latency,
and energy use. MyiFogSim [42] extends iFogSim and simulate network configurations, failures,
and provisioning of mobile customers according to given virtual machine migration policies.

16

Table 6: Comparison of various simulation frameworks with the proposed IoTSim-Osmosis

Simulator
Features

Cloud
processing

SDN
support

SD-WAN
support

Network
comm.

Network
protocols

Edge
processing

Edge
comm.

IoT
devices

Application
composition

CloudSim [21] X
NetworkCloudSim [22] X X

RC2Sim [23] X X
iCanCloud [24] X X

GreenCloud [25] X X
DCSim [26] X X

Multi-RECloudSim [27] X
DISSECT-CF [28] X

NS-3 [29] X X
ConesC [30] X
COOJA [31] X X
TOSSIM [32] X X

OMNeT++ [34] X X
Castalia [35] X X

GreenCastalia [36] X X
Mininet [37] X X X

CloudSimSDN [20] X X X
BigDataSDNSim [38] X X X X X
IoTSim-SDWAN [19] X X X X X

SDN-Sim [39] X X X X
SimIoT [6] X X

Edge-Fog [40] X X X
iFogSim [41] X X X X

MyiFogSim [42] X X X X X
EdgeCloudSim [43] X X X

IoTSim-Edge [4] X X X X X
Diasuite [44] X X X
IoTsuite [5] X X
AWS IoT

Device Simulator1
X X X X

Microsoft
IoT Simulator2

X X X X

Propoed
IoTSim-Osmosis

X X X X X X X X X

EdgeCloudSim [43] and IoTSim-Edge [4] extends the capability of CloudSim to incorporate
different features of IoT and edge computing environments. While EdgeCloudSim explores the
modeling of network links, mobility, and edge servers, it lacks IoT application composition and
network complexities. IoTSim-Edge handles the application complexity along with heterogeneous
communication mechanisms and mobility. However, both these simulators does not support the
cloud and SD-WAN layers, which are essential components of IoT infrastructures.

A number of IoT-based simulators are also proposed for the deployment and testing of IoT
applications. Diasuite [44] and IoTsuite [5] are the most common frameworks for managing the
whole lifecycle of IoT applications. Both rely on a Siafu [45] simulator for evaluating proposed so-
lutions for IoT applications. However, these frameworks have a very limited support for handling
the complexity and deployment of IoT applications and infrastructures. Few industry-oriented
simulators are also available (e.g., AWS IoT Device Simulator1 and Microsoft IoT Simulator2).
The Amazon Web Services (AWS) simulator can be executed only on AWS infrastructures (where
user have to pay) while the Microsoft simulator can be used only on a Windows 10 environment.
There are limits to how far they support networking and SDN-aware environments. Also, defin-
ing and evaluating various end-to-end IoT policies and algorithms are complex in these industry
simulators.

1https://aws.amazon.com/solutions/implementations/iot-device-simulator/
2https://www.microsoft.com/en-us/p/iot-simulator/

17

In summary, there are numerous frameworks available for simulating cloud, edge and/or SDN-
based network components. However, none of the existing frameworks simulate the composition
of all these components along with abstraction of complex IoT applications. Our proposed simu-
lator, IoTSim-Osmosis covers all these components in a holistic manner and provides researchers
the necessary support to evaluate end-to-end IoT application performance using the concept of
osmotic computing. The advantage of IoTSim-Osmosis as compared with the existing simulation
frameworks is clearly visible in Table 6.

6. Conclusions and Future Work

Osmotic computing provides a simplified model for the deployment of IoT applications in
the integrated edge-cloud environment. This paper propose a simulation framework, IoTSim-
Osmosis for analyzing and validating the osmotic computing environment in a simple manner.
In particular, IoTSim-Osmosis handles the heterogeneity of integrated edge-cloud environments
along with the complexity of IoT applications. The efficacy of IoTSim-Osmosis is validated using
a case study for an electricity management and billing application within a smart city. Results
show the various capabilities of IoTSim-Osmosis in terms of IoT battery, execution time, and
energy consumption. Our results also demonstrate the scalability of IoTSim-Osmosis in terms
of time and memory consumption.

Our experimental results and related work analysis demonstrate the useful and unique sim-
ulation capabilities of IoTSim-Osmosis. Future work will focus on enhancing IoTSim-Osmosis
capabilities in a number of directions. The modeling of its IoT protocols (e.g., XMPP), although
not the focus of this paper, is currently very basic. Therefore, further research will be conducted
to investigate and model IoT protocols according to their characteristics and functionalities.
Moreover, the modeling of wireless communication (e.g., WiFi) is currently limited to band-
width speed, and the current implementation of IoTSim-Osmosis assumes IoT devices to be in
fixed locations. We will extend the wireless communication layer of IoTSim-Osmosis to include
different signal factors, such as distance and IoT device mobility.

Acknowledgement

The work in this paper is supported by Saudi Electronic University (SEU) through the Saudi
Arabian Culture Bureau (SACB) in the United Kingdom. This research is also supported by
three UK projects, SUPER: EP/T021985/1, PACE: EP/R033293/1 and Osmotic MindSphere:
P35792/BH192113.

References

[1] D. N. Jha, P. Michalak, Z. Wen, P. Watson, R. Ranjan, Multi-objective deployment of data
analysis operations in heterogeneous iot infrastructure, IEEE Transactions on Industrial
Informatics.

[2] M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ranjan, Osmotic computing: A new paradigm
for edge/cloud integration, IEEE Cloud Computing 3 (6) (2016) 76–83.

[3] M. Autili, P. Inverardi, M. Tivoli, Choreos: large scale choreographies for the future internet,
in: 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineer-
ing, and Reverse Engineering (CSMR-WCRE), IEEE, 2014, pp. 391–394.

18

[4] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula, S. Garg,
D. Puthal, P. James, A. Zomaya, et al., Iotsim-edge: A simulation framework for modeling
the behavior of internet of things and edge computing environments, Software: Practice and
Experience 50 (6) (2020) 844–867.

[5] S. Chauhan, P. Patel, A. Sureka, F. C. Delicato, S. Chaudhary, Iotsuite: a framework to
design, implement, and deploy iot applications: demonstration abstract, in: Proceedings of
the 15th international conference on information processing in sensor networks, 2016, pp.
1–2.

[6] S. Sotiriadis, N. Bessis, E. Asimakopoulou, N. Mustafee, Towards simulating the internet
of things, in: 2014 28th International Conference on Advanced Information Networking and
Applications Workshops, IEEE, 2014, pp. 444–448.

[7] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, R. Ranjan, Modelling and simulation chal-
lenges in internet of things, IEEE cloud computing 4 (1) (2017) 62–69.

[8] O. Salman, I. Elhajj, A. Chehab, A. Kayssi, Iot survey: An sdn and fog computing perspec-
tive, Computer Networks 143 (2018) 221–246.

[9] A. A. Barakabitze, A. Ahmad, R. Mijumbi, A. Hines, 5g network slicing using sdn and nfv:
A survey of taxonomy, architectures and future challenges, Computer Networks 167 (2020)
106984.

[10] A. Brogi, S. Forti, Qos-aware deployment of iot applications through the fog, IEEE Internet
of Things Journal 4 (5) (2017) 1185–1192.

[11] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): A vision, archi-
tectural elements, and future directions, Future generation computer systems 29 (7) (2013)
1645–1660.

[12] M. Tao, J. Zuo, Z. Liu, A. Castiglione, F. Palmieri, Multi-layer cloud architectural model
and ontology-based security service framework for iot-based smart homes, Future Generation
Computer Systems 78 (2018) 1040–1051.

[13] I. Lee, K. Lee, The internet of things (iot): Applications, investments, and challenges for
enterprises, Business Horizons 58 (4) (2015) 431–440.

[14] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, M. Nemirovsky, Key ingredients in
an iot recipe: Fog computing, cloud computing, and more fog computing, in: Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD), 2014 IEEE
19th International Workshop on, IEEE, 2014, pp. 325–329.

[15] W. Shi, S. Dustdar, The promise of edge computing, Computer 49 (5) (2016) 78–81.

[16] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed software defined wan,
ACM SIGCOMM Computer Communication Review 43 (4) (2013) 3–14.

[17] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the edge
computing for the internet of things, IEEE access 6 (2017) 6900–6919.

19

[18] M. Villari, M. Fazio, S. Dustdar, O. Rana, D. N. Jha, R. Ranjan, Osmosis: The osmotic
computing platform for microelements in the cloud, edge, and internet of things, Computer
52 (8) (2019) 14–26.

[19] K. Alwasel, D. N. Jha, E. Hernandez, D. Puthal, M. Barika, B. Varghese, S. K. Garg,
P. James, A. Zomaya, G. Morgan, et al., Iotsim-sdwan: A simulation framework for in-
terconnecting distributed datacenters over software-defined wide area network (sd-wan),
Journal of Parallel and Distributed Computing.

[20] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, R. Buyya, Cloudsimsdn: Modeling
and simulation of software-defined cloud data centers, in: 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, IEEE, 2015, pp. 475–484.

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R. Buyya, Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms, Software: Practice and experience 41 (1) (2011) 23–50.

[22] S. K. Garg, R. Buyya, Networkcloudsim: Modelling parallel applications in cloud simula-
tions, in: 2011 Fourth IEEE International Conference on Utility and Cloud Computing,
IEEE, 2011, pp. 105–113.

[23] D. Citron, A. Zlotnick, Testing large-scale cloud management, IBM Journal of Research and
Development 55 (6) (2011) 6–1.

[24] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero, I. M.
Llorente, icancloud: A flexible and scalable cloud infrastructure simulator, Journal of Grid
Computing 10 (1) (2012) 185–209.

[25] D. Kliazovich, P. Bouvry, S. U. Khan, Greencloud: a packet-level simulator of energy-aware
cloud computing data centers, The Journal of Supercomputing 62 (3) (2012) 1263–1283.

[26] M. Tighe, G. Keller, M. Bauer, H. Lutfiyya, Dcsim: A data centre simulation tool for
evaluating dynamic virtualized resource management, in: 2012 8th international conference
on network and service management (cnsm) and 2012 workshop on systems virtualiztion
management (svm), IEEE, 2012, pp. 385–392.

[27] W. Lin, S. Xu, L. He, J. Li, Multi-resource scheduling and power simulation for cloud
computing, Information Sciences 397 (2017) 168–186.

[28] G. Kecskemeti, Dissect-cf: a simulator to foster energy-aware scheduling in infrastructure
clouds, Simulation Modelling Practice and Theory 58 (2015) 188–218.

[29] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, J. Kopena, Network simulations with
the ns-3 simulator, SIGCOMM demonstration 14 (14) (2008) 527.

[30] M. Afanasov, L. Mottola, C. Ghezzi, Software adaptation in wireless sensor networks, ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 12 (4) (2018) 1–29.

[31] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt, Cross-level sensor network simula-
tion with cooja, in: Proceedings. 2006 31st IEEE Conference on Local Computer Networks,
IEEE, 2006, pp. 641–648.

20

[32] P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable simulation of en-
tire tinyos applications, in: Proceedings of the 1st international conference on Embedded
networked sensor systems, 2003, pp. 126–137.

[33] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, et al., Tinyos: An operating system for sensor networks, in: Ambient
intelligence, Springer, 2005, pp. 115–148.

[34] A. Varga, R. Hornig, An overview of the omnet++ simulation environment, in: Proceed-
ings of the 1st international conference on Simulation tools and techniques for communica-
tions, networks and systems & workshops, ICST (Institute for Computer Sciences, Social-
Informatics and . . . , 2008, p. 60.

[35] A. Boulis, Castalia: revealing pitfalls in designing distributed algorithms in wsn, in: Pro-
ceedings of the 5th international conference on Embedded networked sensor systems, 2007,
pp. 407–408.

[36] D. Benedetti, C. Petrioli, D. Spenza, Greencastalia: An energy-harvesting-enabled frame-
work for the castalia simulator, in: Proceedings of the 1st International Workshop on Energy
Neutral Sensing Systems, 2013, pp. 1–6.

[37] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid prototyping for software-
defined networks, in: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, 2010, pp. 1–6.

[38] K. Alwasel, R. N. Calheiros, S. Garg, R. Buyya, M. Pathan, D. Georgakopoulos, R. Ranjan,
Bigdatasdnsim: A simulator for analyzing big data applications in software-defined cloud
data centers, Software: Practice and Experience.

[39] S. Ghosh, S. Busari, T. Dagiuklas, M. Iqbal, R. Mumtaz, J. Gonzalez, S. Stavrou, L. Ka-
naris, Sdn-sim: Integrating a system-level simulator with a software defined network, IEEE
Communications Standards Magazine 4 (1) (2020) 18–25.

[40] N. Mohan, J. Kangasharju, Edge-fog cloud: A distributed cloud for internet of things com-
putations, in: 2016 Cloudification of the Internet of Things (CIoT), IEEE, 2016, pp. 1–6.

[41] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya, ifogsim: A toolkit for modeling
and simulation of resource management techniques in the internet of things, edge and fog
computing environments, Software: Practice and Experience 47 (9) (2017) 1275–1296.

[42] M. M. Lopes, W. A. Higashino, M. A. Capretz, L. F. Bittencourt, Myifogsim: A simulator
for virtual machine migration in fog computing, in: Companion Proceedings of the10th
International Conference on Utility and Cloud Computing, 2017, pp. 47–52.

[43] C. Sonmez, A. Ozgovde, C. Ersoy, Edgecloudsim: An environment for performance evalua-
tion of edge computing systems, Transactions on Emerging Telecommunications Technolo-
gies 29 (11) (2018) e3493.

[44] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Balland, C. Consel, Diasuite: A tool
suite to develop sense/compute/control applications, Science of Computer Programming 79
(2014) 39–51.

21

[45] M. Martin, P. Nurmi, A generic large scale simulator for ubiquitous computing, in: 2006
Third Annual International Conference on Mobile and Ubiquitous Systems: Networking &
Services, IEEE, 2006, pp. 1–3.

22

	Introduction
	Challenges
	Contributions

	Background
	IoT environment
	Application Topology

	Design of IoTSim-Osmosis
	IoTSim-Osmosis architecture
	IoTSim-Osmosis system components
	IoTSim-Osmosis model

	Evaluation of IoTSim-Osmosis
	Smart city
	IoTSim-Osmosis policies
	Case 1: dynamic data flow
	Case 2: dynamic number of IoT devices

	Space and time complexity of IoTSim-Osmosis

	Related Work
	Cloud simulators
	Network simulators and emulators
	SDN-aware network simulators and emulators
	IoT, edge, and fog simulators

	Conclusions and Future Work

