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Abstract

Pre-clinical and human neuroimaging research implicates the extended-amygdala (ExtA)

(including the bed nucleus of the stria terminalis [BST] and central nucleus of the amyg-

dala [CeA]) in networks mediating negative emotional states associated with stress and

substance-use behaviours. The extent to which individual ExtA structures form a func-

tionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy

young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of

the BST and CeA using task-free functional magnetic resonance imaging (fMRI) data

from the Human Connectome Project. We assessed whether inter-individual differences

within these ICNs were related to two principal components representing negative dis-

position and alcohol use. Building on recent primate evidence, we tested whether within

BST-CeA intrinsic functional connectivity (iFC) was heritable and further examined co-

heritability with our principal components. We demonstrate the BST and CeA to have

discrete, but largely overlapping ICNs similar to previous findings. We found no evidence

that within BST—CeA iFC was heritable; however, post hoc analyses found significant

BST iFC heritability with the broader superficial and centromedial amygdala regions.

There were no significant correlations or co-heritability associations with our principal

components either across the ICNs or for specific BST-Amygdala iFC. Possible differ-

ences in phenotype associations across task-free, task-based, and clinical fMRI are dis-

cussed, along with suggestions for more causal investigative paradigms that make use of

the now well-established ExtA ICNs.

K E YWORD S

alcohol use, bed nucleus of the stria terminalis (BST/BNST), central nucleus of the amygdala
(CeA), dispositional negativity, extended amygdala (ExtA), intrinsic functional connectivity
(iFC), task-free functional magnetic resonance imaging (tf-fMRI)

1 | INTRODUCTION

The extended-amygdala (ExtA) is a basal forebrain macrosystem that

describes a set of small, complex and heterogenous subcortical nuclei

between the amygdala and ventral striatum (Alheid et al., 1998;

Alheid & Heimer, 1988; Alheid, 2009; Cassell, Freedman, & Shi, 1999;

Fudge et al., 2017; Johnston, 1923). Its principal structures include

the bed nucleus of the stria terminalis (BST) and the central nucleus of

the amygdala (CeA), as well as portions of the shell of the nucleus

accumbens and the sublenticular extended amygdala (SLEA)
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(an extension of amygdala neurons that connect the CeA and BST)

(Alheid, 2009; Cassell et al., 1999; Fox, Oler, Tromp, Fudge, &

Kalin, 2015; Fox & Shackman, 2019; Lebow & Chen, 2016; Martin,

Powers, Dellovade, & Price, 1991; Stamatakis et al., 2014). This mac-

rostructure, or neuronal continuum, has emerged as key area of inter-

est in the investigation of anxiety, fear, and substance use (Ahrens

et al., 2018; Avery, Clauss, & Blackford, 2016; Fox & Shackman, 2019;

Gilpin, Herman, & Roberto, 2015; Goode, Ressler, Acca, Miles, &

Maren, 2019; Goode & Maren, 2017; Lebow & Chen, 2016; Roberto,

Kirson, & Khom, 2020; Stamatakis et al., 2014; Volkow, Koob, &

McLellan, 2016).

Part of the interest in the ExtA stems from its anatomic location.

With structural connections to areas including sensory, mnemonic,

affective, and regulatory processing regions, the ExtA is strategically

placed to coordinate activities in multiple “limbic lobe” areas for the

development of behavioural responses through its output channels

(Avery et al., 2016; Fox et al., 2015; Fox & Shackman, 2019; Heimer &

Van Hoesen, 2006). As such, and in particular because of its direct

outputs to the hypothalamic pituitary adrenal axis, it has been impli-

cated in multiple behaviours linked to the processing of threat,

stressors, and negative emotional states (Fox & Shackman, 2019;

Giardino et al., 2018; Lebow & Chen, 2016).

That the ExtA is a key component within a stress-related network

further implicates it as an area of interest for substance-use behav-

iours (Avery et al., 2016; Erikson, Wei, & Walker, 2018; Stamatakis

et al., 2014; Volkow et al., 2016). Specifically, the ExtA is thought to

be important in the dysphoric state associated with drug withdrawal

and stress-induced relapse and has been associated with cellular

changes following alcohol use (Avery et al., 2016; Ch'ng, Fu, Brown,

McDougall, & Lawrence, 2018; Erikson et al., 2018; Roberto

et al., 2020; Stamatakis et al., 2014; Volkow et al., 2016). Association

of the ExtA with both alcohol and anxiety is especially interesting

given the high comorbidity between the two, with anxiety often pre-

cipitating alcohol use and being a hallmark of withdrawal (Gilpin

et al., 2015). Experimental evidence for involvement in fear, anxiety,

stress, and substance-use derives from a multitude of lesion,

optogenetic, and neural tracing studies in animals and, more recently,

human neuroimaging studies (for reviews, see Ahrens et al., 2018;

Avery et al., 2016; Ch'ng et al., 2018; Fox & Shackman, 2019; Goode,

Acca, & Maren, 2020; Lebow & Chen, 2016).

Advances in neuroimaging techniques and the recent availability

of high-quality ExtA anatomical masks (Theiss, Ridgewell, McHugo,

Heckers, & Blackford, 2017; Tillman et al., 2018; Torrisi et al., 2015;

Tyszka & Pauli, 2016), have enabled several studies to use intrinsic

functional connectivity (iFC) mapping of task-free functional magnetic

resonance imaging (tf-fMRI) data to examine how ExtA activity is cor-

related with activity in other regions under resting conditions

(Table 1) (Avery et al., 2014; Gorka, Torrisi, Shackman, Grillon, &

Ernst, 2018; Hofmann & Straube, 2019; Motzkin et al., 2015; Oler

et al., 2012; Tillman et al., 2018; Torrisi et al., 2015, 2019; Weis

et al., 2019). This analysis approach allows researchers to identify

“intrinsic connectivity networks” (ICNs) which can serve as an esti-

mate of the brain's functional architecture at rest (Kelly &

Castellanos, 2014; Seeley et al., 2007). The ICNs are highly organised,

reproducible, and are similar to extrinsic (task-driven) co-activation

patterns (Battistella et al., 2020; Suárez, Markello, Betzel, &

Misic, 2020; Thomas Yeo et al., 2011). IFC is correlated with structural

connectivity at around �R2 = .5 (Honey et al., 2009; Suárez

et al., 2020). The remaining variance can be explained by co-activation

of regions with indirect connections that, for example, are two or

more synapses removed from each other or between homotopic areas

within each hemisphere that are not directly connected (Suárez

et al., 2020).

Despite some agreement regarding the ExtA ICNs (overlapping

connections to medial prefrontal, hippocampal, wider amygdala, and

thalamic regions), because of data acquisition, processing differences

(such as brain coverage and choice of mask), and repeated use of the

same samples, the convergence between studies can be hard to

assess (Table 1). Thus, our first aim was to establish the ICNs of the

BST and CeA in a large (n= > 1,000) independent dataset—the Young

Adults Human Connectome Project (HCP). A major strength of this

approach is our use of the HCP data. The HCP contains high-quality

imaging data, with most participants having undergone an hour of tf-

fMRI (Glasser et al., 2013, 2016). Scan lengths longer than 10 min are

important as studies have highlighted the negative effects of short

scan times on the stability of brain function estimates (Birn

et al., 2013; Elliott et al., 2020). There is presently some debate as to

whether the ExtA acts mostly as a unified structure, or whether its

components represent separate systems underlying different pro-

cesses, in particular with regard to fear versus anxiety processing or in

the tracking of threat imminence (Fox & Shackman, 2019; Goode

et al., 2019, 2020; Hur et al., 2020; Tillman et al., 2018; Walker,

Miles, & Davis, 2009). Therefore, we utilised this sample to examine

the degree of overlap between the ICNs of the CeA and BST; giving

an indirect indication as to the similarity of their functions (Gorka

et al., 2018; Oler et al., 2012; Tillman et al., 2018; Torrisi et al., 2015,

2019; Weis et al., 2019).

While phenotypes such as anxiety, fear, depression, and sub-

stance use are often studied as if they were separate constructs, they

are frequently highly comorbid and demonstrate an overlap of symp-

toms (Hur, Stockbridge, Fox, & Shackman, 2019; Plana-Ripoll

et al., 2019). Recent work has suggested that these phenotypes can

be represented by broader overarching constructs, conceptualised as

“dispositional negativity” or simply “negative affect” (Hur et al., 2019;

Krueger et al., 2018; Shackman et al., 2018; Shackman, Stockbridge,

et al., 2016; Shackman, Tromp, et al., 2016; Waszczuk et al., 2020).

Genetic correlation studies have lent credence to this hypothesis,

demonstrating that many phenotypically similar traits such as anxiety

and depression also share a large proportion of underlying genetic risk

factors (Allegrini et al., 2020; Hur et al., 2019; Waszczuk et al., 2020).

Human and non-human primate neuroimaging work suggests that dis-

positional negativity traits are associated with networks that include

the ExtA, with a particular focus on the central amygdala (Hur

et al., 2019). Consequently, to expand on this previous work, we

placed self-report questionnaire measures examining phenotypes of

interest (anxiety, depression, fear, and alcohol use) into a principal
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component analysis (PCA). We then used these principal components

to test for associations with the ExtA ICNs. Human studies examining

self-report trait associations with ExtA ICNs have so far been limited

by small sample sizes, which hinder the power to detect an effect.

Here, we addressed this issue by using a large population-level sample

containing multiple measures of relevant phenotypes.

Psychological traits and aspects of brain function, such as iFC, can

be partly attributed to genetics (Adhikari et al., 2018; Colclough

et al., 2017; Elliott et al., 2018; Elliott et al., 2019; Yang et al., 2016).

Because psychological traits are underpinned by the brain, under-

standing whether psychological traits and brain function share under-

lying genetic influences can be useful for identifying where research

may be able to detect biological mechanisms contributing to both.

Despite its apparent importance in a range of psychopathology-linked

behaviours, to our knowledge only one study to date has examined

genetic co-variance of psychopathology-associated traits with ExtA

iFC. This study used a pedigree of rhesus monkeys to demonstrate

that iFC between the CeA and an area consistent with the BST was

co-heritable with anxious temperament (pgr = 0.87) (Fox et al., 2018).

While heritability estimates do not alone provide information about

the nature of shared genetic mechanisms (Turkheimer, 2016), this

result suggests that ExtA iFC and anxiety-related traits may be

influenced by common genetic factors.

Therefore, we used the kinship structure of the HCP data to esti-

mate within BST—CeA iFC heritability and co-heritability with our

principal components. Thus, we aimed to extend the non-human pri-

mate finding of Fox et al. to humans by demonstrating that within

BST-CeA iFC is both heritable and co-heritable with anxiety-related

traits (Fox et al., 2018). Previous evidence has also reported significant

BST iFC to other amygdala sub-nuclei in humans (Hofmann &

Straube, 2019). Hence, we further ran a post hoc analysis to assess

the heritability and co-heritability (with the principle components) of

BST iFC to the centromedial, basolateral, and superficial amygdala

regions.

2 | METHODS

2.1 | Sample descriptions

2.1.1 | The Human Connectome Project

Participants were drawn from the April 2018 release of the Young

Adults HCP study (n = 1,206) (Van Essen et al., 2012). Participants

were between the ages of 25–37 and primarily made up of family

groups, with an average size of three to four members and most con-

taining a MZ (273) or DZ (166) twin pair. Participants were excluded

during initial recruitment for psychiatric, neurological, or other long-

term illnesses, although participants who were overweight, smoked,

or had a history of recreational drug use and/or heavy drinking were

included (Van Essen et al., 2012). For the imaging analysis, our sam-

ples included participants who had at least one tf-fMRI scan

(n = 1,096). Of these, there were 596 females and 500 males. For

detailed recruitment information and for a full list of procedures see:

https://www.humanconnectome.org/study/hcp-young-adult. See the

supplementary material for a breakdown of participants demographic

information.

2.2 | Principal component analysis

In this study, phenotypes of interest were those related to anxiety,

depression, fear, and substance use. There are multiple instruments in

this dataset measuring each of these constructs and these phenotypes

are frequently highly correlated. Therefore, we performed PCA and

reduced data dimensionality by extracting the minimum number of

latent components that summarise the maximum amount of informa-

tion contained in the original measures. The questionnaire measures

outlined in the next section were joined into a single dataset and were

tested for sampling adequacy using a Kaiser–Meyer–Olkin (KMO) test

(Dziuban and Shirkey, 1974), followed by the Barlett's test of spheric-

ity. The measures were standardised automatically during analysis and

missing values were imputed by the mean of the variable (a maximum

of 25/1,206 datapoints, see Table 2). Following the PCA, components

were selected if they had an eigenvalue greater than 1 (Bourbon-Teles

et al., 2019). The PCA was conducted in R Studio using the software

package FactoMineR (Lê et al., 2008).

2.2.1 | Questionnaire selection

The questionnaires used were administered to each participant by the

HCP team and all measures were selected from the NIH toolbox, a

well-validated set of metrics for quick assessment of cognitive, emo-

tional, sensory and motor functions (Weintraub et al., 2013). Items

were selected if they measured anxiety, stress, fear, or substance use.

Where individual items were not provided, we used the relevant ques-

tionnaire subscales (Table 2). For the substance use metrics, we only

included measures of alcohol use, as self-reported smoking and “har-
der” drug use rates were low (<20% for tobacco use, <8% ever used

cocaine). In total, nine measures were selected (Table 2).

2.3 | Image acquisition and pre-processing

2.3.1 | HCP image acquisition

All images were acquired on a 3 Tesla Skyra Siemens system using a

32-channel head coil, a customised SC72 gradient insert (100 mT/m)

and a customised body transmit coil. Tf-fMRI scans took place over

four 15-min runs, split between two sessions (two runs in each ses-

sion). Participants were instructed to keep their eyes open with a fixa-

tion cross being projected onto a screen with a dark background in

front of them. Within each session oblique axial acquisition alternated

between phase encoding in a left-to-right or right-to-left direction.

Functional images were acquired using a multiband gradient echo EPI
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sequence (TR 720 m; TE 33.1 ms; 72 oblique axial slices; FOV

208 × 108 mm2; flip angle 52�; matrix 104 × 90; echo spacing

0.58 ms; 1,200 images per run). High resolution anatomical images

were also acquired using a 0.7 mm isotropic T1-weighted 3D

magnetisation-prepared rapid gradient echo sequence (TR 2,400 ms,

TE 2.14 ms, FOV 224 × 224 mm2, flip angle 8�) (Glasser et al., 2013;

Smith et al., 2013).

2.3.2 | HCP pre-processing

We used the minimally processed tf-fMRI 3 T dataset, described elsewhere

(Glasser et al., 2013). Scripts to run the pipeline are freely available online at

https://github.com/Washington-University/HCPpipelines. Briefly, the pipe-

line applies gradient distortion correction to account for spatial distortions,

followed by volume realignment to compensate for subject motion, co-

registration of the fMRI data to the structural image, non-linear registration

to MNI space, intensity normalisation to a mean of 10,000, bias field

removal, and masking of data with a brain mask. Structured noise was

cleaned from the data by combining independent component analysis (ICA)

with the automated component classifier tool FIX ICA (Griffanti et al., 2014;

Salimi-Khorshidi et al., 2014). Finally, head motion time series were

regressed out using a 24 confound time series containing the 6 rigid body

parameter time series, their temporal derivatives as well as the resulting

12 regressors squared (Glasser et al., 2013, summarised by Hofmann and

Straube (2019)). This pipeline was optimised for the HCP dataset and had

the aim of maximising the reduction of structured noise components, such

as those caused by subject motion, while retaining spatially specific bold sig-

nal components (i.e., ICNs) (Glasser et al., 2016). This was reportedly

achieved with better than 99% accuracy (Glasser et al., 2016; Griffanti

et al., 2014). To reduce the effects of signal drop-out (Schwaferts, 2017), for

each participant a single 4D image was created by taking a mean of their

scans using the FSLMaths (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012) mean function. To further mitigate against spurious and

systematic iFC correlations resulting from subject motion, we included mean

frame-wise displacement (MeanFD) as a covariate in the phenotype and

(co)heritability analyses. Participants with a MeanFD of >0.2 mm were

excluded from these analyses (n = 9) (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012). As a final precautionary check, we ran a correlation

between MeanFD and our phenotypes of interest (the principal compo-

nents and functional connections), which revealed no significant correlations

(supplementary material).

2.4 | Seed-based correlation analysis

2.4.1 | ExtA seed regions

We used two anatomically derived bilateral seed regions for the ExtA,

one for the BST and one for the CeA (Figures 1 and 2). The masks

were downloaded on March 25, 2019 from a repository on the Neu-

roVault website (https://neurovault.org/collections/3245) (Tillman

et al., 2018). All analyses were run separately for each seed region.

Both seeds were thresholded at 25% before use (Tillman et al., 2018)

(Figures 1 and 2).

The 3 T 2 mm BST mask was generated by a manual segmenta-

tion process undertaken on 10 healthy individuals using a scanning

sequence that provided high grey matter/white matter/CSF contrast

(Theiss et al., 2017) (Figures 1 and 2). The protocol was found to have

high reliability among raters (Dice similarity coefficient ≥ 0.85).

The CeA mask was generated by an experienced neuroanato-

mist, building on a process developed through a series of studies

(Birn et al., 2014; Najafi, Kinnison, & Pessoa, 2017; Oler et al., 2012,

2017; Tillman et al., 2018). Briefly, this was achieved using a spe-

cially processed version of the CITI168 high-resolution (0.7 mm),

multimodal (T1/T2) probabilistic template (Tyszka & Pauli, 2016),

and was guided by the Mai human brain atlas (Mai, Majtanik, &

Paxinos, 2015).

TABLE 2 PCA items

Item Questionnaire Description

N

(/1,206) Mean SD

DSM_Anxi_Raw Achenbach self-report SUB-scale reflecting DSM oriented anxiety traits 1,198 3.94 2.70

DSM_Depr_Raw Achenbach self-report SUB-scale reflecting DSM oriented depression traits 1,198 4.24 3.45

ASR_Anxd_Raw Achenbach self-report SUB-SCALE REFLECTING “anxious-depression” (traits
empirically derived)

1,198 5.93 5.40

FearSomat_Unadj NIH fear affect survey Somatic symptoms related to arousal 1,205 52.03 8.31

Fear_Affect_Unadj NIH fear affect survey Self-reported fear and anxious misery 1,205 50.28 8.08

PercStress_Unadj Stress and efficacy self-

report

A scale representing how unpredictable, uncontrollable and

overloading respondents find their lives

1,205 48.48 9.17

Total drinks 7 days Alcohol use survey Self-reported alcoholic drinks over the last 7 days 1,179 4.75 7.04

SSAGA_Alc_D4_Dp_Sx Alcohol use survey DSM4 alcohol dependence criteria count 1,204 0.55 0.84

SSAGA_Alc_D4_Ab_Sx Alcohol use survey DSM4 alcohol abuse symptoms count 1,204 0.27 0.58

Note: A description of the questionnaire measures that were entered into the PCA analysis. N refers to the number of participants who had data for that

particular questionnaire.

Abbreviation: PCA, principal component analysis.
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2.4.2 | Whole-brain seed-based correlation
analysis

Seed-based correlation iFC analysis provides a measure of temporal

coherence between a seed-region's blood-oxygenation-level-

dependent (BOLD) activation over time and that of the target regions.

Temporal coherence in tf-fMRI data is used to infer iFC (Battistella

et al., 2020; Suárez et al., 2020; Thomas Yeo et al., 2011). To run the

analysis we used the ciftify_seed_corr tool downloaded from https://

edickie.github.io/ciftify/#/ (Dickie et al., 2019), which was in turn

adapted from the HCP minimal processing pipeline (Glasser

et al., 2013). This works by first extracting a mean time-series of the

seed-region. This time-series is then correlated with the mean time-

series of the target regions, producing a Fisher's r correlation map.

These correlation coefficients are then converted to normally distrib-

uted z-scores using a Fisher r-z transform (Fisher, 1915). This pro-

duces a z-map for each participant that represents the strength of the

correlation of activity for each target region and the seed-region. We

used a whole-brain voxel-wise approach, meaning that our target

regions were every 2 mm voxel in the brain.

2.5 | fMRI statistical analysis

2.5.1 | Permutation-based one-sample t tests

Following the creation of a single z-map for each participant, all of

these images were visually inspected. Twenty-three participants had

images removed from further analysis due to having either sections of

the signal missing or for having z-score distributions containing too

many values within the outer or inner tail distributions (assessed via

fslstats -r-R and histogram plots). The remaining 1,071 participants

had their images merged across all participants to create a 4D image

using the fslmerge tool (Jenkinson et al., 2012). Permutation-based

one-sample t tests were then run to see which voxels had activity that

was significantly correlated with the seed-regions across all partici-

pants. This was done using FSL's PALM command line tool (Winkler

et al., 2016).

For the quantification of the whole brain ICNs, we wanted the

results to be generalisable to the wider population, thus we were not

interested in the influence of family effects across the whole network.

Therefore, because our sample was made up of siblings, it was impor-

tant to account for relatedness such that model estimations were not

inflated. PALM permits a kinship matrix that details the family struc-

tures within the population. PALM shuffles the data within and

between blocks according to this family structure, avoiding relatedness

F IGURE 1 The bed nucleus of the stria terminalis (BST) (blue) and central nucleus of the amygdala (CeA) (red) seeds

F IGURE 2 The bed nucleus of the stria terminalis (BST) seed
(blue), coronal section
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confounding the results. The kinship file was generated with the

HCP2Blocks MATLAB script provided online at https://brainder.org/

2016/08/01/three-hcp-utilities (Winkler, Webster, Vidaurre, Nichols, &

Smith, 2015).

PALM has several optional commands. We used threshold-free

cluster-enhancement (TFCE) and Gamma approximation. Briefly, TFCE

enhances cluster-like structures in the data without having to define

somewhat arbitrary cluster thresholds beforehand (Smith &

Nichols, 2009). Gamma approximation is an option used to speed up

the analysis by running a smaller number of permutations, computing

empirically the moments of the permutation distribution and then

fitting a gamma distribution (Winkler et al., 2016). The number of per-

mutations used was 1,000.

2.5.2 | Post hoc thresholding of PALM output
images

Given the large sample size, the vast majority of voxels in the brain

were statistically significantly correlated to our seed-regions after

family wise error rate correction. To reveal meaningful connections

and to reduce noise, we further thresholded the images post hoc

using the t-statistic. This was done by visually inspecting the output

images and choosing a t-score that met the criteria of delineating

meaningful anatomical structures in the brain, while keeping the maxi-

mum amount of signal (Tillman et al., 2018). The t-threshold we used

for both seed-images was 9. Using the -saveglm option from PALM,

we saw that this equated to a minimum Cohen's d value of 0.275

(Winkler et al., 2016). While we are confident this was an appropriate

threshold, given the somewhat arbitrary nature of this method,

thresholded and un-thresholded output images have been uploaded

to NeuroVault for inspection at https://identifiers.org/neurovault.

collection:8076.

2.5.3 | Analysing shared and unique BST and CeA
networks

To assess the shared ICNs between the BST and CeA, we used a mini-

mum conjunction (Boolean “AND”) to combine the t-thresholded

PALM output images of each seed (Nichols, Brett, Andersson,

Wager, & Poline, 2005; Tillman et al., 2018). This created a new image

displaying the areas of ICNs that overlapped between the two ExtA

regions.

To assess the unique BST and CeA networks, we performed a sin-

gle group paired difference t test using the method outlined on the

FSL GLM website (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Single-

Group_Paired_Difference_.28Paired_T-Test.29). Briefly, to get the

unique BST ICN, we subtracted each participants BST z-score image

from their CeA z-score image and then ran a one-sample permutation

t test on this difference map. This was repeated for the CeA network

(CeA—BST z maps, followed by a one-sample t test). A mask was used

to restrict analysis to the regions that were found to be connected to

one or both seeds in the original one-sample t tests, thus avoiding the

need to interpret differences in regions not significantly connected to

the seeds (Tillman et al., 2018).

2.5.4 | Region identification

Connected regions were identified using a mixture of the Oxford cor-

tical/sub-cortical atlas and the Juelich Histological Atlas, both pro-

vided with FSL (Jenkinson et al., 2012). For iFC to basal ganglia

structures and the hypothalamus, we used a collection of masks pro-

vided online at Neurovault (https://identifiers.org/neurovault.

collection:3145) (Pauli, Nili, & Tyszka, 2018).

2.6 | Intrinsic connectivity networks and principal
component association tests

Following the one-sample t tests for each seed region, we then cre-

ated a mask of the t-thresholded significantly connected regions. This

mask was then applied to the 4D image of participants connectivity z-

maps to select only the thresholded connected voxels for association

testing with our PC's and for gender effects. We used the PALM

command-line tool, with TFCE, Gamma-approximation, and event

blocks to control for family relatedness (see Section 2.5.1). As well as

the standard correction for multiple comparisons within each image,

PALM further allows for correction across different contrasts with the

-corr-con option (Winkler et al., 2016). This option was used along

with the -demean function, which mean-centres the variables, and the

-cmcx function, which allows for synchronised permutations account-

ing for repeated elements in the design matrix. Three tests were run

in total on each seed-image, one each for the two principal compo-

nents and one for gender (male, female). Age, age2, gender, and

MeanFD were used as covariates for all tests, except that gender was

of course not included as a covariate for the direct test of gender

effects. The number of permutations was 2000 for each test.

2.7 | Within BST—amygdala heritability, co-
heritability, and phenotype association analysis

We used the SOLARIUS package for R (Ziyatdinov et al., 2016) to

assess the following the (a) heritability of within BST-CeA iFC; (b) co-

heritability of the within BST-CeA iFC with each of the two principal

components; and (c) phenotypic (rho), genetic (rhog), and environmen-

tal (rhoe) correlations between BST-CeA iFC and each of the two prin-

cipal components. We further ran a post hoc analysis, conducting the

same tests but examining BST iFC with the superficial, centromedial,

and basolateral amygdala regions. These regions were defined using

the Juelich Histological Atlas, thresholding the probabilistic masks at

50% (Eickhoff et al., 2005) (Figure 3).

SOLARIUS is the R version of the widely used SOLAR-eclipse

software for genetic analysis (Almasy & Blangero, 2010). SOLAR uses
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a kinship matrix to estimate the proportion of variance in a phenotype

attributable to additive genetics, the environment, or to residual error. In

this case, we were only permitted to calculate the additive genetic compo-

nent, as to partition environmental and error effects you require house-

hold information that is not provided by the HCP. In this model,

monozygotic twins are given a score of 1 and dizygotic twins /siblings of

0.5 to indicate the estimated proportion of shared genetic variation. Half-

siblings were excluded from the analysis (n = 88). The pedigree file was

created using the HCP2Solar MATLAB function, a tool specifically

designed for the HCP participants (https://brainder.org/2016/08/01/

three-hcp-utilities) (Winkler et al., 2015). Because the model is sensitive to

kurtosis, the phenotype values were inverse normally transformed.

SOLARIUS allows analysis of co-heritability by computing bi-variate

genetic correlations (Kochunov et al., 2019). During the analysis,

SOLARIUS computes an estimate of phenotypic, genetic, and environmen-

tal correlation between the variables, which we used to assess the rela-

tionships between the clusters iFC and component scores. Participants

were excluded if they had a MeanFD >0.2 mm (N = 9). The covariates for

all analyses were MeanFD, sex, age, age2, sex × age, and sex × age2. The

final number of participants in these analyses was n = 933. For discussion

on using SOLAR for genetic neuroimaging, see Kochunov et al. (2019).

3 | RESULTS

3.1 | BST and CeA intrinsic functional connectivity
networks

All connected regions described below are the regions visible after

the thresholding at t = > 9. Negative correlations were observed only

within small regions surrounding the ventricles or white matter, and

are not reported here. See Tables 3 and 4 for significantly connected

clusters with more than 10 voxels. Interactive 3D images of the

results have been uploaded to NeuroVault at https://identifiers.org/

neurovault.collection:8076.

3.1.1 | Shared BST and CeA intrinsic functional
connectivity

Both the BST and CeA showed significant connectivity with areas

including the bilateral hippocampus, superficial amygdala, anterior and

posterior-dorsal insula, frontal orbital cortex, medial prefrontal cortex,

frontal pole, anterior paracingulate gyrus, superior temporal gyrus,

central opercular cortex, precuneus cortex, and the hypothalamus

(Figures 4 and 5, right). There was further shared iFC with pre- and

post-central gyri, extending bilaterally to primary motor and sensory

regions, and shared connectivity with the angular gyrus/superior lat-

eral occipital cortex. There were no significant voxels directly within

either the BST or CeA masks, suggesting that the two regions were

not co-activated at rest. There was however a bilaterally BST-

connected amygdala cluster directly adjacent (within a single voxel) to

the CeA mask (Figure 6). The bilateral SLEA region connecting the

BST and CeA also demonstrated overlapping connectivity (Figure 7).

3.1.2 | BST > CeA connectivity

The BST had more extensive iFC with the occipital lobe, in particular

within the superior occipital cortex, the intracalcarine cortex, and at the

occipital pole (Figures 4 and 8, left). There was also greater BST iFC with

the posterior and anterior cingulate gyrus, posterior thalamus, precuneus

cortex, left and right caudate, globus pallidus, lateral superior frontal gyrus,

paracingulate gyrus, and ventral tegmental area (Figures 4 and 8, left).

3.1.3 | CeA > BST connectivity

The CeA had greater iFC with the dorsal medial pre-frontal cortex,

frontal pole, temporal pole, central insular, anterior and superior tem-

poral gyrus, supramarginal gyrus, mid-line superior frontal gyrus, sub-

callosal cortex, and lateral globus pallidus (Figure 4, middle; Figure 8

right). There was also greater iFC around the surrounding amygdaloid

areas (Figure 5, middle) and more extensive connectivity within the

SLEA and amygdalo-hippocampal regions (Figure 6, middle).

3.2 | PCA results

The selected questionnaire items (Table 2) passed the KMO test

(overall MSA = 0.8) and Bartlett's test of sphericity (χ2(36) = 5,103.77,

p < .001) indicating that the data was appropriate for PCA. PCA rev-

ealed two components with eigenvalues greater than 1 (3.84 and

1.75). These components together explained 62.12% of variability in

the data (Figure 9, bottom right). The first component loaded

F IGURE 3 The Juelich Histological Atlas (Eickhoff et al. (2005))
amygdala subregions. Blue = basolateral, green = centromedial,
red = superficial. Masks shown were thresholded at 50%
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TABLE 3 : Significantly connected clusters to the BST

Cluster index Voxels Max t X Y Z Hemisphere Region(s) in cluster

271a 6,135 16.6 45.8 30 46.2 B Precuneus cortex, lateral occipital cortex, occipital pole,

posterior cingulate gyrus, intracalcarine cortex, middle/

superior temporal gyrus, angular gyrus, left hippocampus

dentate gyrus, left hippocampus subiculum, left

hippocampus cornu ammonis, lingual gyrus, ventral

posterior thalamus

270 3,419 15.3 47.5 53.6 61.5 B Post-central gyrus, pre-central gyrus, primary somatosensory

cortex, pre-motor cortex, primary motor cortex, inferior-

frontal gyrus, Broca's area, anterior cingulate gyrus

269 665 14.8 70.9 53.4 41.5 L Central opercular cortex, primary auditory cortex, insular

cortex

268 565 15.2 18.5 54.7 41.9 R Central opercular cortex, primary auditory cortex, insular

cortex

267 279 13.1 45.2 91.8 39.3 B Frontal pole, paracingulate gyrus, frontal medial cortex

266 138 11.9 33.3 24.9 28.2 R Occipital fusiform, lingual gyrus

265 136 13 56.5 77.2 59.7 L Middle frontal gyrus, superior frontal gyrus

264 86 12.1 64.6 62.7 65.2 L Pre-central gyrus, middle frontal gyrus, pre-motor cortex BA6L

263 50 10.7 20.1 74 49.8 R Middle frontal gyrus, Broca's area BA45, inferior frontal gyrus

262 43 12.2 32.5 77.2 59.9 R Superior frontal gyrus, middle frontal gyrus

261 36 15.4 32.5 54.2 27.9 R Hippocampus cornu ammonis, hippocampus dentate gyrus,

hippocampus subiculum, posterior amygdala

260 32 11.2 27.7 80.7 30.3 R Frontal pole, frontal orbital cortex

259 24 10.6 24.5 36.8 25.2 R Temporal occipital fusiform cortex

258 22 11.5 70.2 29.4 30.1 L Lateral occipital cortex inferior division

257 21 11.4 63 79.6 29.9 L Frontal orbital cortex

256 21 12 35.9 62.9 29.3 R Amygdala superficial group

255 19 10.2 62.8 17.8 38 L Visual cortex V3VL, visual cortex V4

254 19 11.9 53.8 62.2 29 L Amygdala superficial group

253 16 12.4 62.3 65.6 27.3 L Insular cortex (anterior, ventral regions)

252 14 11.5 28.2 66.7 27.2 R Insular cortex (anterior, ventral regions)

251 14 10 29.6 35.2 66.4 R Superior parietal lobule 7AR

250 14 10.9 32.1 72.6 58 R Middle frontal gyrus

249 13 10.5 57.2 16 44.6 L Occipital pole, visual cortex V2 BA18L, visual cortex V3VL

248 13 10.1 52.3 26.1 63.9 L Superior parietal lobule 7P

247 12 11.3 40.7 88 31.3 R Frontal medial cortex, frontal pole

246 12 47.9 41.1 63.1 35.8 R Thalamus (anterior)

245 12 10 24.9 20.1 42.9 R Lateral occipital cortex superior division

244 12 10.6 68.4 22.7 38.8 L Lateral occipital cortex inferior division

243 11 16.8 41.6 66.9 37.4 R Caudate (posterior)

242 10 10.7 61.9 33.7 65.2 L Lateral occipital cortex superior division, superior-parietal

lobule 7AL

241 10 10.7 61.2 35 26.4 L Temporal occipital fusiform cortex

Note: Significantly connected clusters to the BST following the one-sample permutation test. Images were thresholded at t= > 9 before clusters were

identified. Brain regions were listed if they had >50% chance of being within a cluster. Max t is the maximum t-stat located within a cluster. X, Y, and Z

columns represent the location of the centre of gravity for the cluster. Hemi indicates the hemisphere in which the cluster resides where B = bilateral,

R = right, and L = Left. For ease of interpretation, clusters shown are those with a minimum of 10 connected voxels.

Abbreviation: BST, bed nucleus of the stria terminalis.
aThe large 271 cluster may better be reflected as two clusters, one within the occipital/parietal cortex and the other covering the left hippocampal regions

seen in cluster 261.
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positively on measures capturing negative disposition, such as anxiety,

depression and perceived stress, and was therefore named the “negative
disposition” component. The second component had significant loadings

from alcohol measures and was therefore labelled the “alcohol use” com-

ponent. See Table 5 and Figure 9 for a breakdown of the PCA results.

3.3 | ExtA intrinsic connectivity networks and
principal component associations

3.3.1 | Intrinsic functional connectivity networks
and principal components

The PALM corr-con analysis provided no evidence that the negative

disposition or alcohol use components were significantly associated

with increased or decreased iFC across the ExtA ICNs in our sample.

Gender was also not associated with the BST or CeA ICNs after cor-

rection for multiple comparisons.

3.4 | Within BST—amygdala iFC heritability
analysis

3.4.1 | Univariate heritability analysis

Twin-based heritability analysis of within BST—CeA iFC found no evi-

dence for heritability (Table 6). Analysis of within BST-centromedial

iFC found that this connection was significantly heritable at

H2r = 0.15 (Table 6). BST-superficial iFC had a heritability estimate of

H2r = 0.14, but was marginally outside the bounds of statistical

TABLE 4 : Significantly connected clusters to the CeA

Cluster index Voxels Max t X Y Z Hemisphere Region(s) in cluster

101 1,303 20.3 71 55.9 52.3 L Somatosensory cortex BA1/BA3b, primary motor cortex BA4a,

premotor cortex BA6, planum temporale, central opercular cortex,

pre-central gyrus, temporal pole, primary auditory cortex, dorsal

posterior insular

100 1,141 19.9 18.9 56.6 54.1 R Somatosensory cortex OP4/BA3b/BA1, primary motor cortex BA4p,

planum temporale, central opercular cortex, pre-central gyrus,

primary auditory cortex

99 831 18 72.8 44.4 38.8 L Superior temporal gyrus anterior and posterior division, temporal pole,

lateral occipital cortex superior division, supramarginal gyrus

posterior division, angular gyrus, inferior parietal lobule

98 803 17.7 16.8 48.7 36.5 R Superior temporal gyrus anterior and posterior division, temporal pole,

middle temporal gyrus posterior division, supramarginal gyrus

posterior division, angular gyrus, lateral occipital cortex superior and

inferior division

97 318 14.9 45.8 91.7 49.2 B Frontal pole (dorsal), superior frontal gyrus (anterior)

96 263 46.5 32.8 60 28.5 R Insular cortex, superficial amygdala, temporal pole, laterobasal

amygdala, hippocampus cornu ammonis, hippocampus dentate gyrus,

sublenticular extended amygdala

95 221 47.4 56.4 59.5 28.3 L Insular cortex, superficial amygdala, temporal pole, laterobasal

amygdala, hippocampus cornu ammonis, hippocampus dentate gyrus,

sublenticular extended amygdala

94 174 17.1 44.9 91 31.7 B Frontal medial cortex, frontal pole

93 145 15.5 44.9 33.8 51.7 B Precuneus cortex, posterior cingulate gyrus

92 57 15.6 64.8 76.9 29 L Frontal orbital cortex, dorsal temporal pole

91 41 13.7 24.5 48.2 45.9 R Parietal operculum cortex, inferior parietal lobule PFcm

90 35 17.6 45 65.5 29.5 B Posterior subcallosal cortex

89 33 15 26 58.9 43.9 R Insular cortex (dorsal, posterior), central opercular (posterior)

88 32 12.9 66.1 45 45.1 L Parietal operculum cortex, planum temporale, primary auditory cortex

87 31 14.8 26.5 80.2 30 R Frontal pole (ventral), frontal orbital cortex (anterior)

86 16 12.2 46 50.1 64.4 L Primary motor cortex BA4a

85 14 12.5 29.6 22.6 18.6 R Cerebellum horizontal fissure

Note: Significantly connected clusters with the CeA following the one-sample permutation test. Images were thresholded at t= > 9 before clusters were

identified. Brain regions were listed if they had = > 50% chance of being within a cluster. Max t is the maximum t-stat located within a cluster. X, Y, and Z

columns represent the location of the centre of gravity for the cluster. Hemi indicates the hemisphere in which the cluster resides where B = bilateral,

R = right, and L = Left. For ease of interpretation clusters shown are those with a minimum of 10 connected voxels.

Abbreviation: CeA, central nucleus of the amygdala.
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significance after FDR correction (Table 6). BST-basolateral iFC

showed no evidence of significant heritability (Table 6). PC1 (negative

disposition) was significantly heritable at H2r = 0.22, and PC2 was sig-

nificantly heritable at H2r = 0.23 (Table 6). Age2 was a significant co-

variate for the negative disposition PC; however, it only explained a

small amount of variance (0.009). Sex was a significant covariate for

the alcohol use PC, with being male demonstrating a small positive

influence on the score (0.01).

F IGURE 4 The bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (CeA) share a common intrinsic functional
connectivity pattern, in particular with pre-frontal cortex, amygdala, hippocampus, superior temporal sulcus, insula, and precuneus. They also
share connectivity with areas of the motor and sensory cortex

1604 BERRY ET AL.



3.4.2 | Bivariate heritability analysis

Co-heritability analysis did not reveal any significant phenotypic, envi-

ronmental, or genetic correlations with either of the principal compo-

nents for any of the amygdala sub-regions (see supplementary

material for bivariate SOLARIUS outputs).

4 | DISCUSSION

4.1 | Summary of findings

Using a large young adult human sample, we revealed distinct, but

overlapping, ExtA ICNs that are largely consistent with findings from

smaller previous human neuroimaging studies (Avery et al., 2014;

Gorka et al., 2018; Oler et al., 2012, 2017; Tillman et al., 2018;

Torrisi et al., 2015; Weis et al., 2019). Genetic analysis of within

BST- CeA iFC provided no evidence for a heritable connection.

However, post hoc analysis of amygdala sub-regions revealed evi-

dence for small heritability estimates for BST-centromedial and

superficial regions. PCA reduced scores on nine questionnaire mea-

sures of anxiety, fear, depression, and substance use to two compo-

nents, which we interpret as “negative disposition” and “alcohol
use.” Contrary to our hypotheses, we report no evidence for associa-

tions of these phenotypes across the ExtA ICNs. We also found no

evidence that specific BST iFC to any of the tested amygdala regions

were co-heritable or otherwise correlated with either of the

components.

F IGURE 5 Axial section demonstrating shared connectivity of bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala
(CeA) with the hippocampus, insular, temporal gyri, frontal orbital and medial prefrontal cortex. The CeA has more extensive connectivity
generally with each of these regions and of note displays unique connectivity along amygdalo-hippocampal regions

F IGURE 6 The bed nucleus of the stria terminalis (BST)-correlated amygdala cluster (red) and central nucleus of the amygdala (CeA)
seed (blue)
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4.2 | Intrinsic connectivity networks of the ExtA

Our shared ICN results are in broad agreement with the previous liter-

ature, specifically demonstrating overlapping connections within a

now widely reported ExtA ICN that includes the mPFC, bilateral hip-

pocampus, insular regions, wider amygdala areas, and the precuneus

(Avery et al., 2014; Gorka et al., 2018; Pedersen et al., 2020; Tillman

et al., 2018; Torrisi et al., 2015, 2019; Weis et al., 2019). We report

shared iFC to lateral temporal regions, including the superior and mid-

dle temporal gyri and the temporal poles, again largely consistent with

previous human iFC results. Whist amygdala structural connections to

lateral temporal regions are well characterised (Folloni et al., 2019;

Janak & Tye, 2015; Klingler & Gloor, 1960), this is not the case for the

BST and it has been suggested that BST-temporal pole connectivity

may even be unique to humans (Avery et al., 2014). We demonstrate

shared iFC to areas of the sensory/motor cortex, auditory regions,

and to lateral occipital areas, something also reported by Tillman

et al. (2018). This largely cortical sensory-motor connectivity is consis-

tent with the suggestion that the ExtA serves as an integrator of sen-

sory information, which can then prepare the motor and endocrine

systems to act according to the emotional salience and threat-

relevance of the stimuli (Ahrens et al., 2018; Fox & Shackman, 2019;

Goode & Maren, 2017; Lebow & Chen, 2016). Our finding of iFC with

frontal regions, in particular the mPFC, is consistent with non-human

primate neural tracer studies and human structural imaging work dem-

onstrating direct structural connectivity with both the amygdala and

BST (Chiba, Kayahara, & Nakano, 2001; Crawford, Muhlert, MacDon-

ald, & Lawrence, 2020; Folloni et al., 2019; Krüger, Shiozawa,

Kreifelts, Scheffler, & Ethofer, 2015); a finding coherent with theories

of emotion regulation (e.g., Banks, Eddy, Angstadt, Nathan, &

Phan, 2007; Fox et al., 2010).

For the BST, we report a unique cluster of iFC within visual areas

(including V1, V2, and the occipital fusiform gyrus), the posterior

thalamus, and the posterior cingulate gyrus. Although BST-occipital

connectivity is not commonly reported in human or pre-clinical

research (McDonald, 1998), a similar pattern was revealed by Tillman

et al. (2018), who demonstrated a remarkably similar cluster of iFC in

humans stretching from the posterior thalamus, through the lingual

gyrus and into the visual cortices. Additionally, a recent study compar-

ing patients with anxiety disorder to controls also reported an unex-

pected coupling of these two regions, suggesting that abnormal

coupling of the BST to the occipital cortex could reflect differences in

anxiety-based interpretation of, or attention to, visual stimuli (Torrisi

et al., 2019). Our finding of BST connectivity with areas of the basal

ganglia and VTA has been widely reported in human imaging and pre-

clinical neuronal tracer work, whereas iFC with the paracingulate

gyrus is only reported in the human literature ( Avery et al., 2014;

Gorka et al., 2018; Tillman et al., 2018; Torrisi et al., 2015; Weis

et al., 2019). Diffusion tensor imaging by Avery et al. suggested that

the human BST and paracingulate are not structurally connected, indi-

cating an indirect functional connection mediated through other

structures (Avery et al., 2014).

The CeA exhibited a large cluster of iFC within the mPFC, com-

mensurate with pre-clinical tracer and human neuroimaging research

demonstrating widespread reciprocal structural connections between

the amygdala and pre-frontal regions (Aggleton, Wright, Rosene, &

Saunders, 2015; Chiba et al., 2001; Folloni et al., 2019). Temporal lobe

connectivity was more robust for the CeA than the BST, reaching

deeper into the brain to the mid-insular and extending further out to

an area of the superior temporal regions to the end of the bilateral

temporal poles. Extensive amygdala connectivity to the insular and

lateral temporal regions has been demonstrated in non-human pri-

mate research as well as in human FC and diffusion MRI studies

(Folloni et al., 2019; Janak & Tye, 2015; Klingler & Gloor, 1960). Of

interest, a recent human tf-fMRI mapping of iFC in anxiety disorder

patients found that CeA connectivity to the superior temporal gyrus

F IGURE 7 Clusters of connectivity in the region of the sublenticular extended amygdala (SLEA) (blue arrows). This pattern of activity is
similar to that reported by Tillman et al. (2018) (Figure 3)
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F IGURE 8 Results of the single group
paired-difference t test, showing the unique
intrinsic functional connectivity (iFC) to the
bed nucleus of the stria terminalis (BST) or
central nucleus of the amygdala (CeA)
seeds. The BST has greater connectivity
with lateral occipital regions and
paracingulate gyrus, whereas the CeA has
stronger connectivity with the surrounding

amygdala, dm-PFC, temporal poles, and the
anterior and superior temporal gyri
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was significantly stronger compared to a control group (Torrisi

et al., 2019). The CeA demonstrated unique iFC to wider amygdala

structures, as well as the amygdalo-hippocampal regions. Amygdala–

hippocampal connections are thought to be key in the processing of

emotionally salient events and manipulation of memory under stress,

with the CeA in particular implicated in context-dependent retrieval

of cued fear memories (de Voogd, Klumpers, Fernández, &

Hermans, 2017; Sylvester et al., 2020; Xu et al., 2016). Because we

F IGURE 9 Principal component analysis (PCA) plots. Top left: The circles represent the strength of contribution (cos2) of each questionnaire
measure to the principal component. Most measures are represented well by the two principal components (co2 > 5), with FearSomat and Total
Drinks 7Days being the least well represented. Bottom left: The correlation circle shows positively correlated variables as being grouped together.
Negatively correlated variables are positioned on opposite sides of the plot. Variables that are away from the centre are well represented by that
component. Here, it is shown that we can neatly cluster two separate components, representing negative disposition (PC1) or alcohol use (PC2).
Bottom right: The screen plot displays the amount of variance explained by each component. The first two components capture 62% of the total
variance of the original questionnaire measures. See Table 2 for a description of questionnaire measures
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only measure correlated BOLD activity, without taking into account

more elaborate models that assess causality, we are not permitted to

make inferences regarding the direction of connectivity (Rogers, Mor-

gan, Newton, & Gore, 2007). However, an extensive body of work on

the amygdala suggests that many of the CeA connections are medi-

ated through the basolateral amygdala to the CeA, which in turn

serves primarily as an output to basal forebrain structures (Janak &

Tye, 2015). The picture is complex, however, and many studies have

also shown direct structural connections with the CeA region, for

example, from agranular and dysgranular regions of the insular in

Macaques and from the ventral hippocampus in mice (Stefanacci &

Amaral, 2002; Xu et al., 2016).

Given pre-clinical and human imaging results demonstrating

structural and functional connectivity between the CeA and BST

(Avery et al., 2014; Davis, Walker, Miles, & Grillon, 2010; Fox

et al., 2018; Gorka et al., 2018; Hofmann & Straube, 2019; Martin

et al., 1991; Oler et al., 2017; Torrisi et al., 2015), we expected to find

evidence of strong iFC between our BST and CeA masks, however

this was not quite the case. After thresholding, we did not find evi-

dence of CeA iFC with the BST, although we did find a bilateral BST-

functionally connected region directly adjacent to the original CeA

mask (Figure 6). Given the small size of the structures, many studies

refer to “areas consistent with” the BST and CeA (Fox &

Shackman, 2019). These discrepancies can likely be explained by the

difficultly of accurately delineating the amygdala sub-regions using

MRI and/or the noisy nature of tf-fMRI data (Kedo et al., 2018;

Sylvester et al., 2020).

Our results revealed minimal connectivity to the thalamus. Given

thalamic connectivity is widely reported in structural and functional

studies in both pre-clinical and human studies (Fox et al., 2015; Fox &

Shackman, 2019; Lebow & Chen, 2016), it seems likely that this may

be due to a difference in data acquisition or pre-processing. Although

speculative, the discrepancy could perhaps be explained by signal

drop-out, something that has been shown to affect FC estimates of

the thalamus in the HCP data (Schwaferts, 2017).

In general, though, our findings are highly consistent with the

smaller previous studies, and in particular are similar to those of

Tillman et al. who, in a different sample, used the same BST and CeA

masks (Tillman et al., 2018). While needing to be formally evaluated,

this similar pattern of results across samples suggests the existence of

a reliable ExtA ICN in healthy humans. If validated, this network could

be used as a standard to compare against clinical groups; a technique

already used with some success for anxiety disorder patients

(Pedersen et al., 2020; Torrisi et al., 2019).

4.3 | Heritability and co-heritability of within
BST-amygdala iFC

Contrary to recent primate evidence (Fox et al., 2018), we do not

report evidence of a heritable functional connection between the BST

and CeA. A post hoc analysis did reveal evidence for a small magni-

tude of heritability between the BST and the centromedial and super-

ficial amygdala regions; however, there was no evidence of iFC co-

heritability with either of the principal components (negative disposi-

tion, alcohol use).

Although brain morphology and development are reliably heritable

(Jansen, Mous, White, Posthuma, & Polderman, 2015), this is not

TABLE 5 Principal component loadings

Item Dim.1 (cos2) Dim.2 (cos2)

DSM_Depr_Raw 0.700 0.003

DSM_Anxi_Raw 0.724 0.016

ASR_Anxd_Raw 0.819 0.013

FearSomat_Unadj 0.304 0.001

FearAffect_Unadj 0.626 0.001

PercStress_Unadj 0.587 0.011

SSAGA_Alc_D4_Ab_Sx 0.035 0.628

SSAGA_Alc_D4_Dp_Sx 0.044 0.608

Total_Drinks_7days 0.003 0.467

Note: This table shows the contribution of each variable to the two

principal components (cos2). Highlighted are the items that have a cos2 of

.5 and above.

TABLE 6 Results of the univariate heritability analysis

Phenotype H2r H2r SE p FDR-corrected Significant covariates

BST—superficial amygdala iFC 0.138 0.079 .035* 0.052 None

BST—laterobasal amygdala iFC 0.032 0.076 .334 0.401 None

BST—CeA amygdala iFC 0a NA .500 0.5 None

BST—centromedial amygdala iFC 0.149 0.077 .021* 0.042* None

PC1 (negative disposition) 0.218 0.081 .002** 0.006** Age2 (p = .02*, variance explained = 0.009)

PC2 (alcohol use) 0.225 0.078 .001** 0.006** Sex (p = .01*, variance explained = 0.016)

Note: SOLARIUS heritability analysis revealed BST iFC to the centromedial amygdala region was significantly heritable, with BST iFC to the superficial

amygdala moving marginally outside the bounds of statistical significance after FDR correction. Principal components one and two were significantly

heritable, with age2 and sex explaining a small amount of variance in each, respectively.

Abbreviations: BST, bed nucleus of the stria terminalis; CeA, central nucleus of the amygdala; FDR, false-discovery rate; iFC, intrinsic functional

connectivity.
aBST-CeA amygdala iFC had only a fractional difference between the sporadic and polygenic model likelihood values; therefore, the heritability estimate

was 0.
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necessarily the case for iFC where heritability estimates can frequently

be zero (Elliott et al., 2018; Jansen et al., 2015). In an analysis of the

SNP-based heritability of various image-derived phenotypes in the

large UK Biobank human sample (n = 8,428), Elliot et al. reported that

out of 1771 connectivity edges investigated, only 235 showed evi-

dence of significant heritability, and the average H2r of the significant

results was around .15 (Elliott et al., 2018). The reasons for low iFC her-

itability estimates are not well understood but could reflect either com-

paratively noisy signal or simply the greater context-dependent

variability inherent within fluctuating connections (Cabeza, Stanley, &

Moscovitch, 2018). This makes the Fox primate finding of high herita-

bility (.45) all the more interesting, although the usefulness of compar-

ing the strength of heritability estimates across samples is limited as

they are highly influenced by their particular environment; something

compounded by comparing across species (Turkheimer, 2016). The fact

that we found a heritable connection with the centromedial and super-

ficial amygdala, and not specifically the CeA as was reported in Fox

et al., may again reflect difficulties in locating small anatomical regions

within the amygdala. With this in mind, our finding of H2r results of

�.14, while smaller than the non-human primate evidence, is not zero

and is broadly in line with other estimates of the heritability of iFC find-

ings in humans (Elliott et al., 2018). Further examination in other human

samples could perhaps assess whether individualised task-based, natu-

ralistic fMRI, behaviourally defined (rather than self-reported) negative

disposition phenotypes, and/or the use of clinical groups influences the

heritability estimates of ExtA iFC (Finn et al., 2017). Larger twin-

samples with 7 T MRI data and rich phenotyping would also help to

resolve issues around the delineation of amygdala sub-region bound-

aries while allowing for co-heritability analysis, which is after all of pri-

mary interest given the suggestion of shared genetic mechanisms.

4.4 | Principal components and ExtA iFC

Our first principal component grouped together questionnaire items that

represented aspects of negative disposition (stress, fear, anxiety, depres-

sion), supporting previous work (Hur et al., 2019; Krueger et al., 2018;

Shackman et al., 2018; Shackman, Stockbridge, et al., 2016; Shackman,

Tromp, et al., 2016; Waszczuk et al., 2020). The ExtA is implicated by

numerous pre-clinical and human studies in aspects of negative disposi-

tion, in particular in relation to fear and anxiety (Fox & Shackman, 2019;

Hur et al., 2019). It is then perhaps surprising that we report no associa-

tions with this principal component across the ICNs. On closer inspection

of the literature, however, our finding is in keeping with other iFC studies

that have used non-clinical populations (Pedersen et al., 2020; Weis

et al., 2019). Weis et al. reported no robust associations within BST,

CeA, or BLA iFC with trait anxiety in a sample of healthy undergraduates

(Weis et al., 2019). This was also the case in a study by Pederson et al.

who, when looking at within ExtA (i.e., BST-CeA) iFC found no significant

associations with trait anxiety or negative affect in a healthy sample

(Pedersen et al., 2020).

Studies that do report ExtA associations with negative disposition

phenotypes are overwhelmingly conducted either in clinical

populations or during task-based fMRI where state anxiety or fear is

induced (Andreatta et al., 2015; Brinkmann et al., 2018; Choi,

Padmala, & Pessoa, 2012; Grupe, Oathes, & Nitschke, 2013;

Klumpers, Kroes, Baas, & Fernández, 2017; Mobbs et al., 2010; Naaz,

Knight, & Depue, 2019; Pedersen et al., 2020; Torrisi et al., 2019).

There could be a number of reasons for this discrepancy. It may sim-

ply be that in a relatively healthy sample, even with a large number of

participants, the variation in trait negative disposition is too small to

detect any resting-state ExtA network associations. Further to this,

recent research has suggested that there is a systematic sampling bias

whereby more anxious individuals are reluctant to undergo MRI scan-

ning (Charpentier et al., 2020). Second, although the ExtA is impli-

cated in studies that induce state anxiety, the networks involved in

this process may be different to those responsible for having high

anxiety as a trait. Torrisi et al. have demonstrated that the ExtA ICN

regions that differ between anxiety disorder patients and controls are

not the same as those recruited during state anxiety induction (Torrisi

et al., 2019). Further, when correlating anxiety symptoms in the

patient group with iFC, they found no overlap between the specific

anxiety symptoms and the regions that differentiated patients from

controls. This study, along with other recent findings (Porta-Casteràs

et al., 2020) suggests that clinical diagnoses, specific symptoms, and

trait measures may all be underpinned by different networks. It may

be the case then that at a neural level there is little continuity

between otherwise healthy people with, for example, high anxiety,

and clinical populations (Porta-Casteràs et al., 2020). As such, reveal-

ing the networks implicated in clinical disorders may not be as simple

as looking at typical trait variation and extrapolating from these find-

ings. As well, there is some evidence to suggest that individual differ-

ences are best observed under emotional or cognitive challenge,

rather than at rest (Finn et al., 2017; Stewart, Coan, Towers, &

Allen, 2014). In any case, despite associations using task-based, clini-

cal, and pre-clinical evidence, at present there does not seem to be

good evidence that iFC of the ExtA is related to self-reported negative

disposition in non-clinical human populations.

Likewise, and perhaps for similar reasons, we found no associa-

tion of ExtA iFC with our second PC, which represented alcohol-use.

Our sample did not consist of many heavy drinkers, with the median

drinks consumed per week being just two, which likely reduced our

chances of finding an effect. Despite quite a substantial body of pre-

clinical work linking the ExtA to alcohol consumption (Campbell

et al., 2019; Centanni, Bedse, Patel, & Winder, 2019; de Guglielmo

et al., 2019; Erikson et al., 2018; Harris & Winder, 2018; Kash, 2012;

Pleil et al., 2016; Roberto et al., 2020; Volkow et al., 2016), there is

very little investigation of the ExtA and alcohol use in humans; with

most work tending to focus on the amygdala proper (Hur et al., 2018;

Lebow & Chen, 2016). One study that did specifically examine ExtA

iFC found that under the influence of alcohol, BST and CeA reactivity

to emotional faces was dampened (Hur et al., 2018). Although we did

not find evidence of a self-report alcohol-use association in our sam-

ple, given the importance of understanding alcohol use behaviours

and the strength of evidence from the animal literature, ExtA neuro-

imaging work on the effects of alcohol in humans should remain a
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priority. Getting participants to drink alcohol (Hur et al., 2018),

utilising heavy drinkers, or making use of task-based fMRI (Finn

et al., 2017) could be a more fruitful approach for identifying ExtA-

alcohol associations.

Our estimates of negative disposition and alcohol use heritability

were broadly in line, if not slightly smaller, than similar human studies

(Han & Adolphs, 2020; Kranzler et al., 2019; Swan, Carmelli,

Rosenman, Fabsitz, & Christian, 1990; Zheng, Plomin, & von

Stumm, 2016). As mentioned above, however (Section 4.3), direct

comparison of the strength of heritability estimates across samples is

of limited value, and as such should not be over-interpreted

(Turkheimer, 2016). The covariates sex and age2 were statistically sig-

nificantly associated with alcohol use and negative disposition,

respectively. Age2 explained only a tiny amount of variance, and so

interpretation is limited in this case. The finding that being male is

associated with a small increase in alcohol use scores, however, is in

line with recent findings of US samples (White et al., 2015).

4.5 | Limitations

Our study has some limitations. First, our analyses were conducted

using 3 T MRI data. Although imaging at this field strength has been

found to accurately capture small regions such as the BST (Theiss

et al., 2017), higher resolution, and individualised anatomical

parcellations, would enable better characterisation of ExtA iFC net-

works. Additionally, it is the case that even the small BST structure is

made up of further sub-nuclei that may have distinct functions, a

point that is difficult to address using human MRI (Fox &

Shackman, 2019; Kim et al., 2013). Second, as is the case with all

seed-based correlation analyses, the interpretation of the results is

correlational only and mechanistic inferences including the direction-

ality of the connections cannot be inferred (Mohanty et al., 2020;

Pearlson, 2017). Third, although we aimed to be consistent with simi-

lar tf-fMRI HCP studies (Hofmann & Straube, 2019), our choice to

favour some pre-processing techniques over others, such as global

signal regression, could have impacted our findings (Glasser

et al., 2016; Murphy & Fox, 2017). This is unfortunately a limitation

upon all fMRI studies until a consensus approach on pre-processing

steps can be reached (Murphy & Fox, 2017). Finally, our questionnaire

measures were all self-report, which can sometimes affect the accu-

racy of the phenotyping (Rosenman, Tennekoon, & Hill, 2011). This

may be a particular problem for self-reported drinking behaviour as

previous studies have shown heavy-drinking to be underreported

(Northcote & Livingston, 2011).

4.6 | Conclusions and future directions

We used a large sample of high quality tf-fMRI data to assess the ICNs

of the two key ExtA nodes. Our ICN findings largely replicated previous

tf-fMRI mapping work, implicating the nodes in mostly overlapping ICNs

that includes iFC with medial pre-frontal, hippocampal, wider amygdala,

lateral temporal, and precuneus regions. Although for our analysis we

intended to establish the ExtA ICNs unencumbered by family related-

ness, so as to enable inferences to the wider population, future work

could intentionally explore how family relatedness influences the net-

works. This would allow for heritability and co-heritability analysis across

the entire ICNs, instead of a priori selected regions. We report for the

first time in humans that within BST- centromedial and superficial amyg-

dala iFC is heritable. We did not replicate the recent non-human primate

finding (Fox et al., 2018) of BST-CeA iFC co-heritability with an anxiety-

related phenotype. We found no evidence for network associations with

negative disposition or alcohol use principal components. Recent work

has suggested that self-report trait effects may not be associated with

the same neural networks as those identified under task-based condi-

tions and in clinical groups. Future work should explore further these dif-

ferences by using a combination of self-report, task-based measures, and

clinical groups (e.g., Porta-Casteràs et al., 2020). Given that this tf-fMRI

network appears to be reliably delineated across healthy samples,

researchers should move towards more causal approaches to probe its

function. As it has been shown that the ExtA has many functional and

structural cortical connections, one approach could be to use brain stim-

ulation techniques to alter the ExtA network via a cortical node to see

whether this impacts on related functions. This type of analysis has

already been used effectively to probe other subcortical–cortical net-

works, for example, those involving memory and the hippocampus

(e.g., Warren, Hermiller, Nilakantan, & Voss, 2019).
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