
Statistics and Probability Letters 171 (2021) 109019

r
a
a
p
o
(

r
h
(

t
t
c
c

o
J

h
0
l

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Revisiting the predictive power of kernel principal
components
Ben Jones, Andreas Artemiou ∗

School of Mathematics, Cardiff University, United Kingdom of Great Britain and Northern Ireland

a r t i c l e i n f o

Article history:
Received 10 August 2020
Received in revised form 17 November 2020
Accepted 5 December 2020
Available online 19 December 2020

Keywords:
Model-free regression
Conditional independence
Hilbert spaces
Dimension reduction
Principal components

a b s t r a c t

In this short note, recent results on the predictive power of kernel principal component
in a regression setting are extended in two ways: (1) in the model-free setting, we relax
a conditional independence model assumption to obtain a stronger result; and (2) the
model-free setting is also extended in the infinite-dimensional setting.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The efficient statistical analysis of high-dimensional datasets is considered one of the most challenging problems in
ecent years. The ability to collect and store massive amounts of data in a cheap way has allowed scientists to collect
lot of high-dimensional data. In an effort to reduce the dimensionality of the datasets, researchers are resorting to
preprocessing step which allows them to reduce the dimensionality of the dataset. In a regression setting, when the
redictors are high dimensional and there is need to reduce the dimension of the dataset for an efficient analysis a number
f preprocessing steps have been proposed in the literature. One of these approaches is the principal component analysis
PCA) which reduces effectively the dimensionality of the predictors (see for example Chiaromonte and Martinelli, 2002).

During the 20th century, a long debate in the Statistics community, evolved around the effectiveness of using PCA to
educe the dimensionality in a regression setting (and more generally — in a supervised setting). The debate on this topic,
ad some prominent statisticians taking opposing sides (see for example Mosteller and Tukey, 1977; Cox, 1968). Cook
2007) gives a very detailed overview of this debate.

Following the discussion of this topic in Cook’s Fisher Lecture (Cook, 2007) by (Li, 2007) a number of researchers
ried to give a probabilistic answer on the predictive potential of principal components, that is on the probability that
he higher order principal components will be more correlated with the response rather than the lower order principal
omponents. Artemiou and Li (2009) discussed this in a linear model under the assumption of an orientationally uniform
ovariance matrix Σ = var(X) and they proved that the probability of a higher order principal component having higher
correlation with the response than a lower order one is greater than 1/2. Ni (2011) extended the result showing that
the exact probability is (2/π )E(arctan

√
λi/λj) where λi is the ith eigenvalue of Σ and i, j where i < j are the subscripts

f the two principal components. Artemiou and Li (2013) expanded the results for a more general regression settings.
ones and Artemiou (2020) discussed the results in the context of functional principal components and Jones et al. (2020)
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iscussed this for the kernel principal components. The more general result in Jones et al. (2020) essentially shows that
n a model-free setting, if someone randomly chooses a measure for the conditional distribution of Y |X similar results as
he one proved by Artemiou and Li (2009) and Ni (2011) hold.

In this paper we generalize further some of the results in Jones et al. (2020) for the predictive potential of kernel
rincipal components on different directions. First of all, we generalize the results in the model-free setting, that is, we
xtend the results in the case where the conditional independence Y ⊥⊥ Σ |X is relaxed to g(Y ) ⊥⊥ Σ |X and then we

propose a way to extend the results in the case that we have infinite-dimensional kernels. In Jones et al. (2020) the model
free setting was discussed only in the case where we have finite dimensional kernels. In this work, we incorporate an
extra assumption to demonstrate that the results can be extended to infinite dimensional kernels.

The rest of the paper is structured as follows. First, we revisit some key results and notation from Jones et al. (2020)
in Section 2. In Section 3 we discuss the extensions of the previous results. We close with a short discussion in Section 4.
Here we emphasize that the proofs are very similar to the ones presented in Jones et al. (2020) and therefore they can be
omitted completely. In any case we provide the proof of the more general result in this work which is the most general
result to this day on the predictive potential to kernel principal components. (Essentially this is the most general result
on the predictive potential of any form of principal component analysis).

2. Predictive power of kernel principal components

In this section we revisit the most general results from Jones et al. (2020) which are the ones for the predictive potential
of Kernel Principal Components in the model-free setting. The key assumption in their results is the Y ⊥⊥ Σ |X which we
elax in the next section.

heorem 1. Suppose that:

1. Y ⊥⊥ Σ |X
2. H has finite dimension
3. Σ is a random covariance operator where the distribution is invariant under unitary transformation. In other words,

Σ has the same distribution as UΣU−1 for any unitary U : H → H. It is assumed that, almost surely, the non-zero
eigenvalues have unit multiplicity.

4. g(Y ) is a real-valued measurable function of Y such that the function x ↦→ E[g(Y )|X = x] belongs to H.

Then, with probability 1,

P
{
Corr2[g(Y ), ui(X)|Σ] ≥ Corr2[g(Y ), uj(X)|Σ]

}
= (2/π )E

{
arctan[(λi/λj)1/2]

}
or any two eigen-pairs (λi, ui) and (λj, uj) of Σ satisfying i < j and

Cov[g(Y ), ui(X)|Σ] ̸= 0, Cov[g(Y ), uj(X)|Σ] ̸= 0.

The next theorem gives the more general result Jones and Artemiou (2020) proved where it states that we can
arbitrarily choose a conditional distribution for Y |X and the result still holds. In Section 4 we will extend this, as well as
the above result, to allow for the Hilbert space H to be infinite dimensional.

Theorem 2. Suppose that:

1. Σ is a random covariance operator where the distribution is invariant under unitary transformation. In other words,
Σ has the same distribution as UΣU−1 for any unitary U : H → H. It is assumed that, almost surely, the non-zero
eigenvalues have unit multiplicity.

2. H has finite dimension
3. ν is a random conditional distribution for Y |X such that P(ν ∈ K0) = 0 where K0 denotes the set of conditional

distributions for which X and Y are independent
4. Y |(X, ν) ∼ ν, ν ⊥⊥ (X, Σ), Y ⊥⊥ Σ |(X, ν)
5. g is a real-valued measurable function of Y such that the random function mν(·) =

∫
g ν(dω, ·) belongs to H almost

surely and, with probability 1,

Cov[g(Y ), ui(X)|ν, Σ] ̸= 0, Cov[g(Y ), uj(X)|ν, Σ] ̸= 0.

Then for any i < j,

P{Corr2[g(Y ), ui(X)|ν, Σ] ≥ Corr2[g(Y ), uj(X)|ν, Σ]} = (2/π )E{arctan[(λi/λj)1/2]}.

. Model free setting

In this section we present the most important results of this paper. We first demonstrate how one can relax the

ssumption in Theorems 1 and 2 to extend the results in a more general setting. Then we also demonstrate how the

2



B. Jones and A. Artemiou Statistics and Probability Letters 171 (2021) 109019

m
t
r

t
r

R

3

p

T

T

3

n
b

A
f

i

t
F
p

T

odel free results can be extended in the infinite dimensional Hilbert space H. We emphasize here that the results in
his section are the most general to date in the predictive power of kernel principal components. More importantly the
esults on the infinite dimensional Hilbert space H were not addressed at all in Jones and Artemiou (2020).

Before we outline the result we explain the assumption we use in the model free setting. In Jones and Artemiou (2020)
he assumption Y ⊥⊥ Σ |X was used. To extend Theorem 1, a random conditional distribution can be chosen for g(Y )|X
ather than for Y |X . See below an example why such relaxation is important.

emark 1. An example of a model for which g(Y ) ⊥⊥ Σ |X holds but Y ⊥⊥ Σ |X fails is given by:

Y =

⎛⎝Y1

Y2

Y3

⎞⎠ =

⎛⎝λ1 0
0 λ2

2 4

⎞⎠(X1

X2

)
+

⎛⎝ϵ1

ϵ2

ϵ3

⎞⎠
Take g(Y ) = Y3. Then g(Y ) ⊥⊥ Σ |X , but not Y ⊥⊥ Σ |X .

.1. Finite dimensional setting

Although both Theorems 1 and 2 can be extended in this setting we focus on the extension of Theorem 2 which
resents the more general setting. the extension for Theorem 1 is straight forward.

heorem 3. Suppose that:

1. Let H be a finite dimensional Hilbert space
2. g is a real-valued measurable function of Y such that the random function mν(·) =

∫
g ν(dω, ·) belongs to H almost

surely and, with probability 1,

Cov[g(Y ), ui(X)|ν, Σ] ̸= 0, Cov[g(Y ), uj(X)|ν, Σ] ̸= 0.

3. Σ is a random covariance operator where the distribution is invariant under unitary transformation. In other words,
Σ has the same distribution as UΣU−1 for any unitary U : H → H. It is assumed that, almost surely, the non-zero
eigenvalues have unit multiplicity.

4. ν is a random conditional distribution for g(Y )|X such that P(ν ∈ K0) = 0 where K0 denotes the set of conditional
distributions for which X and g(Y ) are independent

5. g(Y )|(X, ν) ∼ ν, ν ⊥⊥ (X, Σ), g(Y ) ⊥⊥ Σ |(X, ν)

hen for any i < j,

P{Corr2[g(Y ), ui(X)|ν, Σ] ≥ Corr2[g(Y ), uj(X)|ν, Σ]} = (2/π )E{arctan[(λi/λj)1/2]}.

.2. Infinite dimensional kernels

In this section we show how one can address the model-free setting in the infinite dimensional kernel case which was
ot considered in Jones and Artemiou (2020). By making a uniformity assumption on a ‘‘restriction" of Σ , the results can
e extended.

ssumption 1. Suppose that Σ is a random compact covariance operator. There exists a set of integers V = {v1, . . . , vl},
or some l ∈ N, such that

Σ∗ =

∑
vi∈V

λvi (uvi ⊗ uvi )

s invariant under unitary transformations. Without loss of generality, it will be assumed that v1 < v2 . . . < vl.

The following theorem says that you can choose any measure to define the relationship between X and Y as long as
he two are not independent. This is the more general theorem of the predictive power of kernel principal components.
or this reason, we provide its proof (although it is very similar to the one in Jones and Artemiou, 2020). (Similarly to the
revious section we show the extension of Theorem 2 under the new Assumption. One can adjust Theorem 1 simlarly).

heorem 4. Suppose that:

1. g is a real-valued measurable function of Y such that the random function mν(·) =
∫
g ν(dω, ·) belongs to H almost

surely and, with probability 1,

Cov[g(Y ), ui(X)|ν, Σ] ̸= 0, Cov[g(Y ), uj(X)|ν, Σ] ̸= 0.
3
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2. Σ is a random compact covariance operator satisfying Assumption 1. It is assumed that, almost surely, the non-zero
eigenvalues have unit multiplicity.

3. ν is a random conditional distribution for g(Y )|X such that P(ν ∈ K0) = 0 where K0 denotes the set of conditional
distributions for which X and g(Y ) are independent

4. g(Y )|(X, ν) ∼ ν, ν ⊥⊥ (X, Σ), g(Y ) ⊥⊥ Σ |(X, ν)

et V = {v1, . . . , vl} (v1 < v2 < · · · < vl) be such that
∑

vi∈V
λviuvi ⊗ uvi is unitarily invariant. Then for any i < j ≤ l,

P{Corr2[g(Y ), uvi (X)|ν, Σ] ≥ Corr2[g(Y ), uvj (X)|ν, Σ]} = (2/π )E{arctan[(λvi/λvj )
1/2

]}.

roof. We begin similarly to the proof of theorem 11 by noting that for any i

Cov[g(Y ), uvi (X)|ν, Σ] = Cov{E[g(Y )|ν, Σ, X], ui(X)|ν, Σ}.

lso note that

E[g(Y )|ν, Σ, X] = E[g(Y )|ν, X] = mν(X).

ecause of the assumption Y ⊥⊥ Σ |(X, ν). We see that ν ⊥⊥ (X, Σ) implies mν ⊥⊥ (X, Σ). Thus, for any κ ∈ K, we have
hat

Cov[mν(X), uvi (X)|ν = κ, Σ] = Cov[mκ (X), uvi (X)|Σ] = ⟨mκ , Σuvi⟩H = λvi⟨mκ , uvi⟩H.

hich implies

Cov[mν(X), uvi (X)|ν, Σ] = λvi⟨mν, uvi⟩H.

lso by ν ⊥⊥ (X, Σ) we have

Var[uvi (X)|ν, Σ] = Var[uvi (X)|Σ] = λvi .

nd therefore

Corr2[g(Y ), uvi (X)|ν, Σ]

Corr2[g(Y ), uvj (X)|ν, Σ]
=

λvi⟨mν, uvi⟩H

λvj⟨mν, uvj⟩H
.

e see that mν ⊥⊥ (uvi , uvj , λvi , λvj ) implies mν ⊥⊥ (uvi , uvj )|(λvi , λvj ). Therefore, for any κ ∈ K, that

P

(
⟨mν, uvj⟩

2
H

⟨mν, uvi⟩
2
H

<
λvi

λvj

⏐⏐⏐⏐⏐ ν = κ, λvi , λvj

)
= P

(
⟨mκ , uvj⟩

2
H

⟨mκ , uvi⟩
2
H

<
λvi

λvj

⏐⏐⏐⏐⏐ λvi , λvj

)
.

sing the results to prove Theorem 3 in Jones and Artemiou (2020), the right hand side is (2/π ) arctan[(λvi/λvj )
1
2 ]. So we

have shown that

P

(
⟨mν, uvj⟩

2
H

⟨mν, uvi⟩
2
H

<
λvi

λvj

⏐⏐⏐⏐⏐ ν, λvi , λvj

)
= (2/π ) arctan[(λvi/λvj )

1
2 ].

and by taking the conditional expectation on both sides of the above equality we get the desired result of the proof. □

4. Discussion

In this paper we extend recently proposed results in the literature on the predictive potential of kernel principal
components. There are two important contributions in this work. The most important contribution of this paper is the
relaxation of the assumption on the model free case. The new conditional independence proposed is more general than
the previous assumption and therefore we demonstrate that the result holds in a much broader range of cases. The second
important contribution is the extension of the model free approach in the infinite dimensional Hilbert space settings.

The results in this work enhance the discussion around a topic that has troubled Statisticians in the 20th century
and has received renewed interest lately due to the volume of high-dimensional data collected nowadays, which forces
researchers to perform variable screening in supervised settings using PCA approaches (which are unsupervised). In the
last decade, a series of papers provided evidence of the predictive potential of principal components in various settings and
in this work we expand the results on the predictive potential of kernel principal components which was first addressed
in Jones and Artemiou (2020).

This discussion is still open and there are a lot of interesting questions one can try to address. One of the most obvious
one is that we are measuring the relationship between Y and X on nonlinear regression models using correlation which
measures linear relationship. It will be interesting to extend this into a different measure of association which is more
appropriate for nonlinear relationships. One such approach is given in Artemiou (2021).
4
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