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Abstract: Meristem cells are irregularly shaped and appear in confocal images as dark areas
surrounded by bright ones. Images are characterized by regions of very low contrast and absolute loss
of edges deeper into the meristem. Edges are blurred, discontinuous, sometimes indistinguishable,
and the intensity level inside the cells is similar to the background of the image. Recently, a technique
called Parametric Segmentation Tuning was introduced for the optimization of segmentation
parameters in diatom images. This paper presents a PST-tuned automatic segmentation method of
meristem cells in microscopy images based on mathematical morphology. The optimal parameters of
the algorithm are found by means of an iterative process that compares the segmented images obtained
by successive variations of the parameters. Then, an optimization function is used to determine
which pair of successive images allows for the best segmentation. The technique was validated
by comparing its results with those obtained by a level set algorithm and a balloon segmentation
technique. The outcomes show that our methodology offers better results than two free available
state-of-the-art alternatives, being superior in all cases studied, losing 9.09% of the cells in the worst
situation, against 75.81 and 25.45 obtained in the level set and the balloon segmentation techniques,
respectively. The optimization method can be employed to tune the parameters of other meristem
segmentation methods.

Keywords: meristem cells; morphology; segmentation; receiver-operating characteristic

1. Introduction

The Shoot Apical Meristem (SAM) is a structure located at the end of each shoot, responsible for
generating almost all the surface tissue of the plant. The outer cells are organized into two layers,
epidermal and subepidermal, with very few cells moving between them. The identification of cells
through their boundaries is a particularly important task because it allows for the analysis of their
behavior, both as individuals and in groups.

Some regularity is observed in the walls in the pattern of cell shapes during cell division in the
Arabidopsis Shoot Apical Meristem. The placement of new walls shows regular cell size and number
of neighbors. However, a major problem appears when cells are clustered and have an irregular
shape, particularly in intact tissue, due to the difficulty to distinguish each cell individually and the
impossibility of using shape descriptors to recognize them.

Appl. Sci. 2020, 10, 8523; doi:10.3390/app10238523 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4986-630X
https://orcid.org/0000-0001-9972-8621
https://orcid.org/0000-0003-0584-2250
http://dx.doi.org/10.3390/app10238523
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/23/8523?type=check_update&version=2


Appl. Sci. 2020, 10, 8523 2 of 15

The cells found in the SAM are an example of irregularly shaped, clustered cells (Figure 1).
The shapes of the cells are determined by semi-rigid cell walls that surround and join tightly to
their neighbors. Cells join to a varying number of neighbors with their common boundary to define
individual wall segments. Therefore, these individual wall segments can contribute in different
proportions to the total perimeter of a cell, that is, there is no consistent geometrical description of
a cell shape. Additionally, the SAM consists of hundreds of overlapped cells, which makes manual
segmentation a time-consuming solution. Confocal images of the SAM are characterized by regions
of very low contrast and absolute loss of edges when deeper into the meristem. Edges are blurred,
discontinuous, sometimes indistinguishable, and the intensity level inside the cells is similar to the
image background.
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Figure 1. Six sample images taken from two of the meristem stacks used, in this work, for the evaluation
of the proposed method.

Recent technical advances in microscopy have fostered the development of new image processing
techniques. These methods provide useful tools to extract quantitative information from images of
biological samples, especially when large data sets must be collected. Several methods have been
developed to automate the process of cell identification and segmentation, but most of them assume
either that cells have a regular shape or are developed to detect their nuclei.

Molnar et al. [1] discussed the detection of the cell nuclei and their morphology even in high
confluence cell cultures with many overlapping cell nuclei. They combined the active contour model
“gas of close circles”, which favors circular shapes but also allows slight variations around them,
with a new data model. This captures a common property of many microscopic imaging techniques:
the intensities of the overlapping nuclei are additive.

Wienert et al. [2] presented a novel contour-based “minimum-model” cell detection and
segmentation approach that uses minimal a priori information and detects independent contours of
their shape. This approach avoids a segmentation bias with respect to shape features and allows an
accurate segmentation (precision 50.908; recall 50.859; validation based on 8000 manually-labeled cells)
of a broad spectrum of normal and disease-related morphological features without the requirement of
prior training.
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Dima et al. [3] found cell edges from fluorescent microscopy images using edge detection and
k-means clustering methods. Parvati et al. [4] applied mathematical morphology techniques to
derive an edge detection algorithm, including an edge function and a marker-controlled watershed
segmentation. This method was applied in medical Magnetic Resonance Imaging (MRI) for brain cell
analysis and also in satellite images. The authors reported that the watershed transformation produces
good segmentation when markers are used on masks, even if they contain irregularities.

Jung et al. [5] proposed a fully automated watershed-based nuclei segmentation technique.
Using the h-minima transformation to identify each candidate nucleus, they found the optimal
h value by comparing the distortion between the segmented image and the proposed synthetic model.
Dorini et al. [6] proposed a novel method to segment the nucleus and cytoplasm of white blood cells
(WBC). They employed simple morphological operators and explore the scale and space properties of
a switching operator to improve the accuracy of the segmentation.

Dimopoulos et al. [7] developed a graph cut segmentation that takes into account cell boundary
information by means of directional cross-correlation, and automatically incorporates spatial constraints.
Cheng et al. [8] suggested an automatic technique to segment cell nuclei in fluorescence microscopy
images, using shape markers and marking functions. The method begins with an initial segmentation of
nuclei, using active contours without edges. Then, a marker-controlled watershed algorithm is applied
with a new marking function capable of accurately separating clustered nuclei. An adaptive h-minima
transformation is applied iteratively; then, images are binarized, and a distance transformation is used
before the watershed transformation. Singh et al. [9] presented a survey of all the actual division
approaches used to divide a picture into non-convergent premises with the ultimate goal that each
area is homogeneous, as well as the union of two not nearby districts.

Several techniques can be applied for the automatic or semi-automatic segmentation of Shoot
Apical Meristem cells in confocal microscopy images, including a level set algorithm by Liu et al. [10],
watershed by Fernandez et al. [11] and Jung et al. [5], and balloons by Federici et al. [12]. However,
their methods are not fully automatic, given that several parameters must be fixed beforehand.
Stegmaier et al. [13] proposed a development that consists of a conservative super-voxel generation
method followed by super voxel agglomeration based on local signal properties and a post-processing
step to fix under-segmentation errors using a Convolutional Neural Network.

Several attempts have been made to provide optimal segmentation procedures, but the problem
has not been completely solved yet, as image segmentation is, most of the time, an ill-posed problem
without a clear unique solution. Most automated-cell segmentation methods need several parameter
values to be fixed beforehand in order to get the best results. This process is time-consuming because
segmentation must be repeated with each new value, and variations in the image quality must be
tackled. Liu et al. [10] are the only authors who propose an automated method to tune a segmentation
procedure, but this optimization is based on an approximation between the expected area of the cells
and the area of the resulting objects. Thus, it requires previous knowledge.

Rojas et al. [14] introduced a meristem segmentation method based on mathematical morphology,
which requires three parameters to be tuned. This segmentation algorithm produces as output a
binary image as a function of the variation of three parameters, where a grey level represents the object
of interest and another one the background. The automated optimization procedure, proposed by
Rojas et al. [15], is employed to tune the segmentation. The technique, called Parametric Segmentation
Tuning (PST), is an iterative process that finds the best parameters by comparing the segmented images
obtained by successive variations of the parameters. The meristem segmentation technique is extended
here and compared with the methods of Liu et al. [10] and Federici et al. [12]. The comparison showed
that our procedure led to a significant improvement of the segmentation results.



Appl. Sci. 2020, 10, 8523 4 of 15

2. Materials and Methods

2.1. Technical Specifications of the Image Stack

Ten stems wild-type Arabidopsis inflorescence stems (Col0 ecotype) were dissected to expose the
SAM, which is normally concealed by the developing floral buds. Field work was not involved, and all
samples grew under cabinets with controlled environment in the laboratory, using seeds collected
from laboratory-grown plants, obtained originally from the Nottingham Arabidopsis Stock Center
(http://arabidopsis.info).

All the work involving plant growth and genetic modification was carried out under the regulations
and inspection of the UK Health and Safety Executive. Cell membranes were stained by submerging
the structure in a 66 ng/mL aqueous solution of FM4-64 (Life Technologies) for one minute. SAM was
imaged using a Zeiss 710 confocal system with an Observer Z1 microscope stand and an Achroplan
40×/0.8 W long working distance water-dipping objective.

Excitation was provided at 488 nm (3% power) and emission collected between 605 and 695 nm
using a pinhole of 54 µm (1 Airy unit). Ten stacks of 102 images on average were acquired with a xy
resolution of 512 × 512 pixels (pixel size 0.52 µm2) and z-spacing of 0.52 µm. Gain and offset were
optimized to give the best contrast between stained cell walls and unstained cytoplasm as assessed
by eye.

Each stack is sufficiently representative to make an analysis and generalize the segmentation
process as it contains most of the characteristic issues that affect this type of images (blurriness,
diffuse contours). Figure 1 shows three images from two of the stacks, randomly chosen at different
depths. From each one of these images, a subsection of size 322 × 320 pixels was chosen to test the
methods and segmented by hand to obtain six manually annotated ground truth images.

2.2. Segmentation Algorithm

Rojas et al. [14,15] introduced an automatic tuning technique for segmenting diatom images,
which is used here to find the best values of the proposed segmentation technique. As shown in
Figure 2, three parameters

→
p n = [B, h, d] must be set to find the best segmentation. For each variation

of one of the parameters, a segmented image is obtained. For the sake of simplicity, we call
→
p n to

the image obtained with a certain set of parameter values and
→
p n+1 to a neighboring image in the

parameter space, obtained by the variation of one of the parameters.
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Figure 2. Flowchart of the proposed segmentation algorithm. As can be seen, three parameters B, h, d
must be tuned to obtain the best possible result.

To segment the meristem stacks, a method of seven steps is proposed, as shown in Figures 2
and 3. First, a white top-hat transform (e.g., Beucher [16] and Vincent [17]) is employed to highlight
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the edges of the cells, in particular those in low contrast regions (Figure 3—Step 2). By applying this
transform, the bright details of the image are highlighted on a dark background. To get a good result,
the appropriate size of the structuring element B, i.e., the first parameter of the method, is fixed as
explained in Section 2.3.
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Then, to identify each candidate cell, a seed or mark must be placed in each of them. In the
images, the cells are identified as black regions surrounded by bright walls. If the image is seen as
an orographic system, where the altitude of each point is given by the intensity of the pixel, then,
each cell can be identified by finding its local minimum. In this way, seeds are found across the basins
in the images, as defined by Vincent [18] (Figures 2 and 3—Step 3). The depth of the basin is given
by d and ideally, a single seed should be found for each cell. However, depending on the chosen
value of depth d, one seed can be shared amongst several cells (if d is too big), or one cell may contain
several seeds (if d is too small). To solve this problem, the optimal depth d is found, as explained in
Section 2.3. Since more than one basin can still appear inside a cell, a steerable Gaussian filter is used
to remove the false seeds, as shown in Step 4 of Figures 2 and 3. In Step 5 (Figures 2 and 3), seeds are
finally determined by computing iteratively the extended-minima transform of height h. As cells have
irregular shapes and their edges are not detectable by classical geometry, they are identified by the
region of minimum intensity. Thus, by varying h, it is possible to find the regions that contain the local
minima of the image. In the ideal case, a single local minimum contained within each cell is obtained.

Then, the distance transform by Vincent et al. [19] is used as a model of probability distribution
and applied in Step 6 (Figures 2 and 3). The distribution around the minimum determines the zone of
influence of each cell, which corresponds to the internal region bordered by the cell edges. Once the
zone of influence is identified, the watershed transform is applied, and the area of each cell is found in
Step 7 (Figures 2 and 3).

As shown in Figure 4, varying a parameter within a range of values in the segmentation method
produces a move from under-segmented images to over-segmented ones that passes through an
intermediate value, where the best possible result is obtained. Changes between under-segmented and
over-segmented images are more abrupt compared to those produced between the images closer to
the optimal result. This behavior is expected because the optimal result seeks to get closer to what
is actually seen in the original image. In other words, if two consecutive under-segmented images
are compared, the second one will be more segmented than the first one. Thus, if two consecutive
under-segmented images are matched, the first will be less sub-segmented than the next. Assuming that
the first image is the ground truth image, there will be zero false negatives and a high number of false
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positives. Similarly, if two consecutive over-segmented images are compared, the second one will be
more over-segmented than the first one. In this case, if it is assumed again that the first image is the
ground truth, the second one will have zero false negatives and a high number of false positives. If the
segmented images are close to the optimal result, the variation between them will be minimal and the
number of false positives will be low. This observation was used by Rojas et al. [15] to develop their
tuning technique. Since the same observation is also true in the meristem images, the PST was used
here to fine-tune the segmentation algorithm. The ground-truth images obtained by hand were only
used to validate the results. To validate the method, the binary images obtained were compared with
the ground truth using the Jaccard index.
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2.3. Overview of the Parametric Segmenting Tuning Technique (PST)

The PST technique is briefly described here and employed to tune the segmentation algorithm.
An image I of size N ×M, where N and M are the width and height of the image, respectively, may be
represented as a vector α of size u = N ×M. Let T

(
I,
→
p
)

represent the transformation of an image I into
a binary one as a result of a segmentation algorithm, given a certain number r of parameters p, where a
grey level represents the object of interest and another one the background.

Therefore, an r-dimensional solution space Pr
⊆ Rr generated by the transformation T

(
I,
→
p
)

can be
defined, where each coordinate is given by a parameter and each point of the space represents a binary
image. Considering image segmentation as an optimization problem, the best solution can be found
by maximising a similarity function Ψ in Pr, or minimising a distance function.

The object function is defined as: Ψ : Zu
2 ×Zu

2 −→ R , where Ψ is an indicator associated to each
pair of neighbor images of Zu

2 × Zu
2 . Each binary image In is an element, in the space of possible

solutions Pr
⊆ Rr, generated by the transformation T

(
I,
→
p n

)
, as shown in Figure 5.
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Figure 5. Space of solutions. The segmentation solutions space is three-dimensional, where each
coordinate is a segmentation parameter (B, h, d) and each space element is a binary image of size u.
Each triplet of coordinates is used to generate a u-size binary image.

The decision criterion consists of finding the set of images with the highest associated index
(maximization problem), or the lowest associated distance (minimization problem). Table 1 presents the
four indices used here and explained in [15]: Sensitivity, Coverage, Minimum Distance and Co-linearity.
The sensitivity and Minimum Distance Index relate the True Positive Rate (TPR) and the False Positive
Rate (FPR). The relation between the TPR and the FPR is known as ROC space (Receiver Operating
Characteristic).

Table 1. Definition of the similarity and distance indices used for tuning the Parametric Segmentation
Tuning (PST).

Index Definition Mathematical Expression

Sensitivity

It represents a relationship between the True Positive
Rate (TPR) and the False Positive Rate (FPR). It varies
between zero and one, being minimal when the FPR is

zero and maximum when the TPR is one.

ΨIS(α, β) = 0.5(1 + TPR− FPR)

Coverage
It compares the reference and segmented sets α and β,
measuring the one-to-one correspondence between the

pixels of both sets.
ΨIC(α, β) = 2α·βt

‖α‖ + ‖β‖

Minimum
Distance

Minimum distance in the ROC space between the
optimum segmentation point (0.1) and the one located in

(FPR, TPR).
Ψdmin(α, β) =

√
1− TPR2 + FPR2

Collinearity

It measures how well two sets of points of the compared
images α and β match each other. It varies between 0

and 1, being zero if the sets of points are orthogonal and
one if they coincide, i.e. they are collinear.

ΨICo(α, β) = λ =
α·βt

‖α‖ · ‖β‖

Let the binary set Z2 = {0, 1} be the binary space u-dimensional Zu
2 = Z2 ×Z2 × . . .×Z2 u-times.

An element α (image) of Zu
2 is an u-upla formed by Z2 elements. Thus, α = (α1,α1, . . . αu),

with αi ∈ Z2, that is, Zu
2 =

{
α = (α1,α1, . . . αu),∨,α ∈ Z2 ×Z2 × . . .×Z2 ∧ αi ∈ Z2

}
.

In other words, the optimal segmentation parameters are obtained by finding the best index value
between each pair of neighboring images, which can be expressed mathematically as follows:

→
p
∗

= arg
{
optimum(Ψ[·](In, In−1))

}
Subject to : In ∈ Zu

2

(1)

Therefore, the best solution, noted by an asterisk
→
p
∗

= [B∗, h∗, d∗], can be found in Figures 5 and 6,
by sweeping the solution space and evaluating a similarity function between each pair of binary
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neighbor images In = T
(
I,
→
p n

)
and In−1 = T

(
I,
→
p n−1

)
. These images are the result of the segmentation

algorithm T
(
I,
→
p
)

explained in Section 2.1.
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Figure 6. Flowchart of the tuning technique.

Since there are three parameters to be tuned, the PST Algorithm 1 can be implemented with the
following pseudo-code:

Alogrithm 1 Parametric Segmenting Tuning Technique (PST)

1: Input: I original image
2: Output: optimal segmented image
3: In: Image segmented in step n
4: B, h, d Parameters to be tuned
5: B∗, h∗, d∗ Optimal parameters
6: n = 1
7: In−1 = White_Image
8: f or (B = Bmin ; B ≤ Bmax B ++)

9: f or (h = hmin ; h ≤ hmax h ++)

10: f or (d = dmin ; d ≤ dmax h ++)

11: {

12: In = segmentation (B, h, d)
13: i f (ψ(In, In−1) is optimun) then B∗ = B, h∗ = h, d∗ = d
14: previous In−1 = In

15: }

16: Optimal_Image = segmentation (B∗, h∗, d∗)

This algorithm is slow, but it allows finding the optimal segmentation parameters. It is possible to
build more efficient algorithms to obtain the best parameters, although this objective is beyond the
scope of this work. However, a faster method to get the approximate parameters consisted in sweeping
one parameter (B), while the other two remain fixed until finding the value (B) that allows obtaining
the best index. Then, another parameter (h) is swept, while the other two remain fixed (B with the
best value found) looking also for the best value. This process is applied to all three parameters.
This approach is much faster and was used to find the optimal values of the segmentation method.
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3. Experiments, Results, and Discussion

Figure 7 shows the results of the segmentation. The four similarity indices shown in Table 1 were
used to find the optimal parameters and determine the most efficient. Figure 8 shows the similarity
curves obtained by each index, with ten different values of d, while modifying h and keeping B constant.
Figure 8A shows the collinearity index, Figure 8B the minimum distance to the point index (0.1)
and Figure 8C the coverage and sensitivity indices, where the maximum values of each iteration in
d (horizontal axis) are the arguments of h.
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Figure 8. Curves of the similarity indices obtained from the tuning of the segmentation technique on
the image in Figure 7A. (A) Co-linearity indicator. (B) Minimum distance indicator. (C) Coverage and
sensitivity indicators. All the curves vary in the range between 0 and 20, but to allow comparing and
visualizing the minimum point. They were displaced in intervals of 20 between one and the other.
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From those iterations, the algorithm chooses the one with the lowest error and the highest match.
Figure 9 shows the ROC curve and the trend towards the point (0,1) between the two neighbour
segmented images. Points are located in the upper left part of the 45◦ line. The parameters vary
from left to right, passing by a point in which high true positive and low false positive rates are
found. This point is the minimum distance to (0,1) in the ROC curve, which means that the best pair
of segmented images has been found. Table 2 shows the indices and optimal values found for the
parameters of the segmentation method, for each image in Figure 7. The same optimal parameters
were found with each index. Therefore, the computational load was used as the only criterion to
choose sensitivity as the best tuning index.
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Figure 9. ROC Analysis. Three regions are identified: over-segmentation, under-segmentation, and
optimal segmentation.

Table 2. Parameter values and optimal similarity indices obtained with the proposed method for each
image in Figure 7.

Images B d h Sensitivity Index Coverage Index Minimum Distance Index Co-linearity Index

A 30 10 4 0.856 0.737 0.273 42.48
B 30 10 3 0.852 0.736 0.279 42.52
C 30 10 4 0.855 0.742 0.266 42.01
D 30 20 6 0.846 0.729 0.331 44.78
E 30 10 4 0.841 0.717 0.293 44.13
F 30 10 4 0.835 0.673 0.342 45.68

To validate the method, the binary images obtained were compared with the ground truth using
the Jaccard index. As shown in Table 3, the Jaccard index is higher than 90, which shows the quality of
the obtained segmentation.

Table 3. Jaccard index obtained between the results of the proposed method and the ground truth images.

Images/Ground-Truth B d h Jaccard Index %

A 30 10 4 94.00
B 30 10 3 90.09
C 30 10 4 93.44
D 30 20 6 96.51
E 30 10 4 96.77
F 30 10 4 96.20

3.1. Comparison with Level Set Algorithm and Balloon Segmentation Technique

Six sub-images from the stacks were randomly selected and segmented using all the three methods.
The results obtained with the available free methods depend on the value of a parameter chosen by the
user, in addition to delivering no binary segmented image itself, but rather the highlighted contours
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of the cells at grey levels. Therefore, the cells found were marked and numbered for different values
of the input parameters. The true and false positive percentages were then obtained. Figure 10A
illustrates an example of the result obtained with the proposed method in a sub-image from Figure 1.
Figure 10B shows the fifty cells identified by hand. Figure 10C shows the ground-truth, and Figure 10D
presents the ground-truth overlapping the original image. Figure 10E,F expose the result obtained
with the proposed method: 47 cells were identified with a non-success error of 6% compared with
the ground-truth.
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3.2. Comparison with the Level Set Algorithm Technique

The algorithm proposed by Liu et al. (Liu, Yadav, Chowdhury, & Reddy, 2010) adapts the
region-based energy model, known as the Chan-Vese Level Set Model for segmentation. Figure 11
shows a sequence of four different results obtained by modifying the model level h.
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The segmented images were compared to the original ones and to the ground-truth. For each level
of segmentation, cells that matched the ground-truth were listed. In Figure 11A (h = 1), Figure 11B
(h = 3) and Figure 11 (h = 100), it is possible to see that the technique estimates the cells edges.
However, when the threshold level increases, the algorithm begins to detect high intensity regions
instead, as shown in Figure 11D (h = 150), thus, cells are not identified.

Table 4 summarizes the results obtained by comparing the ground-truth image, the one segmented
by the proposed method, and those obtained with the level set algorithm. The maximum success rate
was reached at level 3, where a failure rate of 40% was obtained, which is high compared with the 6%
obtained with our method.
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Table 4. Results obtained with the proposed method and the level set algorithm for different values of
level h.

Method Level h Found Cells Failures [%]

Ground-truth - 50 0

PST - 47 6

1 26 48
3 30 40
5 29 42
7 29 42
10 27 46

Level set 12 28 44

20 26 48
35 28 44
50 29 42

100 26 48
150 0 100
200 0 100

3.3. Comparison with the Balloon Segmentation for Multicellular Images—BSMI Technique

The technique described by Federici et al. (Federici, Dupuy, Laplaze, Heisler, & Haaeloff,
2012) uses a physical balloon inflation algorithm to detect cellular architectures from the cell wall
segmentation in microscopy images. This method extracts information about the cellular morphology
and determines which cells are in contact with each other. The stages of the process are automatic.
However, manual changes can be made at each step.

Prior to segmentation, this technique uses a pre-processing step. Then, in the first stage,
the Watershed Transform is applied to find the edges of the cellular tissue to be segmented. In the
second stage, the seeds used to recognize each cell are found, manually or automatically, through a
sampling algorithm based on the “path” between two points to determine if both are inside the same
cell. If the foregoing is true, one of them is removed. This decision is based on the product h*l, where h
is the highest intensity along the path and l the distance between points. If there is a small relation,
the point belongs to the cell, but if there is a large one, some cells cannot be detected. Figure 12 shows
a sequence of four images segmented by the BSMI technique with increasing values of the product h*l.
This technique identifies regions with low-intensity levels, surrounded by pixels with higher levels
to detect and locate the central parts of each region. The sequence of images shows that, in some
areas, the centers are adequately located. However, some of them are outside the region of interest,
hence producing false positives in the background.
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Table 5 summarizes the results obtained by comparing the ground-truth image, the one segmented
by the proposed method and those obtained with BSMI technique. The maximum success rate was
reached for h*l = 15, where the failure rate was 12%, compared with the 6% obtained with our method.

Table 5. Results obtained with the proposed method and the BSMI technique.

Method BSMI Found Centers Found Cells Failures [%]

Ground-truth - - 50 0

PST - - 47 6

7 47 40 20
10 45 39 22
15 49 44 12
20 50 42 16
25 46 39 22
30 46 40 20

Balloon
50 47 39 22Technique

100 46 41 18
120 42 37 26
300 48 41 18
500 47 41 18

5000 45 40 20

Table 6 Summarizes the number of cells found with the different methods in the six sub-images
shown in Figure 13, which were taken from each image in Figure 1, using the best parameters found
by hand in the level set and BSMI techniques. Results show that the proposed method has better
performance, losing 9.09% of the cells in the worst case.
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Table 6. Results obtained with the meristem segmentation methods.

Sub-
Images

Ground-Truth Proposed Method Level Set Algorithm BSMI

Cells Found
Cells

Failure
[%]

Level
Set

Found
Cells

Failure
[%] h*l Accurate

Cells
Failure

[%]

A 50 47 6.00 3 30 40.00 15 44 12.00
B 55 50 9.09 7 32 41.82 10 41 25.45
C 61 57 6.56 7 20 67.21 30 53 13.11
D 86 83 3.49 1 44 48.84 10 69 19.77
E 62 60 3.23 10 15 75.81 300 60 3.23
F 79 76 3.80 7 22 72.15 25 69 12.66

4. Conclusions

A method for the segmentation of meristem cells was introduced in this paper, based primarily
on mathematical morphology techniques. The proposed method requires the adjustment of three
parameters. For its automatic optimization, the technique called Parametric Segmentation Tuning was
employed. In the PST, optimal parameter values are obtained through an iterative process. In this way,
automatic segmentation of microscopy images of the shoot apical meristem, containing irregularly
shaped cells with variable contrast, is achieved with improved reliability. The PST technique can
employ a variety of similarity functions or distances. When these functions are optimized, they allow
for estimating the best parameters of the segmentation algorithm. The indices tested produced the
same results, thus finding that the sensitivity index is better thanks to its lower computational cost.

Experimental results showed that the proposed method is effective, eliminates false objects
produced by local minima, and correctly identifies cells. This technique requires no geometrical
information to obtain the best segmentation and could be applied with any other state of the art meristem
segmentation technique, where several parameters must be adjusted by hand. When validating with
the ground-truth images, it is concluded that the proposed segmentation technique is accurate in
at least 90% of the cases, and better results are obtained than those of techniques based on level set
algorithm and balloon segmentation techniques.
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