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Abstract

The degradation process of complex multi-component systems is highly stochastic in nature. A major side effect of this

complexity is that components of such systems may have unexpected reduced life and faults and failures that decrease

the reliability of multi-component systems in industrial environments. In this work we provide maintenance practitioners

with an explanation of the nature of some of these unpredictable events, namely the degradation interactions that

take place between components. We begin by presenting a general wear model where the degradation process of

a component may be dependent on the operating conditions, the component’s own state, and the state of the other

components. We then present our methodology for extracting accurate health indicators from multi-component systems

by means of a time-frequency domain analysis. Finally we present a multi-component system degradation analysis of

experimental data generated by a gearbox accelerated life testing platform. In so doing, we demonstrate the importance

of modelling the interactions between the system components by showing their effect on component lifetime reduction.
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1 Introduction

The increasing number of new manufacturing requirements

is pushing original equipment manufacturers (OEM) to

design more complex systems to fit the industrial needs.

Such machines are becoming increasingly difficult to

maintain (31; 32), especially due to their degradation

processes becoming highly stochastic in nature. These

degradation processes can limit the accuracy of diagnostics

and remaining useful lifetime (RUL) predictions, leading to

an increase in the number in unforeseen faults and failures

and a reduction in the reliability of multi-component systems

in industrial environments.

Consider for example a system with two components,

an induction motor with a lifetime, say, up to 5 years that

is coupled with bearings that have a lifetime that is but a

fraction of this. In many multi-component systems like these,

it is almost inevitable that after running the system for a long

enough time, old worn out components will be coupled with

new healthy components, and since old worn out components

may potentially accelerate the degradation process of new

components, it is in effect this old-new component coupling

that affects the reliability of a system and leads to a system

wearing out in an unforeseen accelerated fashion. Thus

extracting correct health indicators and accounting for old-

new component couplings in multi-component systems can

play a crucial role in diagnosing the health state of a system.

Often however, the deterioration processes of components

are assumed to be independent, see (7; 21; 29). But since

real world systems are usually complex and include multiple

interacting components, and that these inter-dependencies

can potentially affect overall system availability, recently

condition based maintenance (CBM) research is showing a

growing interest in multi-component systems (15).

In (19) The authors develop a CBM policy for systems

with multiple failure modes. They consider that failures

can occur before reaching a maintenance threshold, and

that the failure rate of components can be influenced by

the age of the system, the overall state of the system or

both. This work however does not model the deterioration

dependence between components and focuses mainly on

the CBM policy rather than degradation modelling itself.

In (13) the authors present a methodology for mixed

signal separation of identical components using Independent

component analysis (ICA), they specifically consider the

case where there exists limiting constraints over sensor

placement. They then use the separated signals as indicators

of degradation severity for each of the components, and

validate their approach via a numerical example using

simulated degradation signals. Although this work is an

essential step for modelling the degradation of such multi-

component systems, it does not specifically model the
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deterioration dependence between components. In (6) the

authors use stochastic differential equations to model the

degradation between components. specifically they study

how the degradation rate of one component can be influenced

by the degradation state of other components with the

aim of predicting residual lifetime of components. They

then evaluate their approach using simulated data and

compare it to a benchmark approach which assumed

component degradation independence, finally showing the

importance of capturing degradation dependencies between

components. Although this work deals with deterioration

dependence between components, it does not account for

other interfering factors. In (18) the authors discuss what

they refer to as the fault propagation phenomenon. This

is described as the co-existence of inherent dependence

and induced dependence when considering deterioration

dependence between components. A continuous time

Markov chain approach is developed to capture fault

propagation characteristics. However this approach might

suffer from state-space explosion problem, and does not

consider other factors that may influence degradation and so

does not describe the full underlying mechanism of system

deterioration. In (24) and (9) the works consider state-rate

degradation interactions. Both works study two component

systems where they either consider a numerical simulation

of a degradation process in (9), and perform degradation

modelling for the particular case at hand in (24), They

both then use the results for optimising the CBM policy.

These works mainly deal with the optimisation of the CBM

policy rather than developing a general degradation model

for interdependent components.

Further to the works mentioned above, and considering

the extensive body of literature on degradation modelling,

see (30) and (29) for an overview, the literature shows

that a component’s degradation process may depend on the

system operating conditions such as the load on the system,

vibration, humidity, temperature etc. see (4; 8; 27) and (10),

and it is also shown that a system’s degradation process may

depend on the system’s current state, see (26).

In this paper we aim to improve the accuracy of multi-

component system diagnosis and prognostics by more

accurately modelling the degradation process of such

systems. We consider a practical generic model where the

degradation process of a component may be dependent

on the operating conditions, the component’s own state,

and the state of the other components. We also provide

a methodology for accurately extracting component health

state information in a multi-component system and show the

effect of degradation interactions between components, both

through the use of numerical simulation and experimental

data. The experimental data is obtained using the analysis

of vibration arising from a gearbox accelerated life testing

platform. Through this, we show the impact of old-new

component couplings on the reduction of life expectancy of

a new healthy component in a multi-component system.

The remainder of this paper is organised as follows: A

general multi-component degradation model is presented

in section 2 with a discussion on practical methods for

fitting the proposed model parameters. In Section 3 we

present our methodology which is used for extracting health

indicators from a multi-component system with degradation

interactions. In section 4, we begin by presenting our

experimental setting and scenarios of the gearbox accelerated

life testing platform, we then show how we extract the state

of the components from the data collected and show our

analysis and results. Finally, section 5 concludes the paper.

2 Degradation modelling with rate-state

interactions

2.1 Degradation model and simulation

In this section, we will present our general degradation

model for multi-component systems with degradation

interactions as seen in (3).

Consider a multi-component system with n number of

components. The degradation state of each component i is

represented by an accumulation of wear over time which is

assumed to be described by a scalar random variable Xi
t .

Component i fails if its degradation state reaches a threshold

value Fi. If any of the components fail we consider the

system to have failed, and if a component is not operating

for whatever reason, no change occurs to its degradation state

unless a maintenance intervention is carried out.

We assume the evolution of the degradation state of

component i is represented by:

Xi
t+1 = Xi

t +∆Xi
t (1)

where ∆Xi
t represents the degradation increment of

component i during one time step.

The degradation of a component i at time step t may depend

on the operating conditions, the state of component i, and

also the state of other components to a varying degree. Thus

we suggest a general stationary model for the increment

∆Xi
t :

∆Xi
t = ∆Oi

t +∆Xii
t +

∑

j 6=i

∆X
ji
t (2)

where:

• ∆Oi
t represents the degradation increment caused by

the operating conditions of component i during one

time step t. ∆Oi
t can be specified as deterministic or

as a random variable.

• ∆Xii
t represents the degradation increment which is

intrinsic to i at time step t. In other words ∆Xii
t

depends on the degradation state of component i at

time step t. ∆Xii
t can also be specified to be a

deterministic or random variable.

•
∑

j 6=i ∆X
ji
t represents the sum of all degradation

increments which are caused by the interaction of

component i with the other components of the system.

The degradation interaction between a component i

and another component j may be considered to be a

deterministic or random variable.

We can now specify different variants of the proposed model:

Case 1: ∀ i in n, ∆Oi
t > 0, ∆Xii

t = 0 and ∆X
ji
t = 0, in

this case there is neither an intrinsic nor an interaction

effect, and so the proposed model is reduced to

a model of homogeneous degradation behaviour of

independent components as seen in (29).
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Parameter Value

Component 1 Component 2 Component 3

Shape α 4.944 4.35 5.193

Scale β 3.919 1.09 2.257

Table 1. Simulation parameter values

Case 2: ∀ i in n, ∆Oi
t > 0, ∆Xii

t > 0 and ∆X
ji
t = 0, in

this case there is no degradation interaction between

the components, and so the proposed model becomes

a model describing non-homogeneous degradation

behaviour as seen in (26).

Case 3: ∀ i in n, ∆Oi
t = 0, ∆Xii

t = 0 and ∆X
ji
t >

0, in this case the components have degradation

inter-dependencies only, and the proposed model

corresponds to the degradation model that was

introduced in (24).

Case 4: ∀ i in n, ∆Oi
t > 0, ∆Xii

t = 0 and ∆X
ji
t > 0,

in this case the components have degradation inter-

dependencies but no intrinsic degradation is present;

this case then corresponds to the models presented in

(6) and (9).

Case 5: ∀ i in n, ∆Oi
t > 0, ∆Xii

t > 0 and ∆X
ji
t >

0, in this case the degradation processes of the

components are dependent on the interaction between

the components, the intrinsic degradation of the

components and the operating conditions of the

system.

It is assumed that if a component i reaches a specific

threshold of degradation F i it is then considered to have

failed.

For the purpose of illustrating the interactions that can

influence the degradation process of components in a multi-

component system, we will use Case 4 from the general

deterioration model to create a numerical simulation of

the degradation process of a 3 component system. Since

the degradation of any component can only accumulate

positively over time, we can then use a gamma process

since it is widely used in degradation modelling as in

(23; 29) to represent non-negative increments. And so for

every component i among the n components of the system,

the corresponding ∆Oi
t follows a gamma distribution with

distinct parameters, shape αi and scale βi as shown in:

fαi,βi =
(βi)α

i

Γ(αi)
xαi−1

exp
−βix

(3)

We can model inter-dependencies between components as

presented in (9), and by extending from a two component

system to a multi-component system we can now represent

our general degradation model using the following:

∆Xi
t = ∆Oi

t +∆Xii
t +

∑

j 6=i

µji × (Xj
t )

σji

(4)

where µji and σji are non-negative real numbers which are

used to quantify component j’s influence on component i.

Figure 1. Illustration of degradation evolution with rate-state

interactions

And so by running a simulation using ∆Oi
t’s gamma process

parameters given in Table1, along with the µji and σji values

as shown below, we can obtain degradation trajectories as

seen in Fig.1.

µji =







0 0.254 0.1080

0.384 0 0.346

0.242 0.118 0







σji =







0 0.54 0.7290

0.785 0 0.836

0.838 0.555 0







From Fig.1, we can see the normal degradation trajectories

of all 3 components from time step 1 till 40 since the

system is considered to have started with all components

having a healthy new state. We can now compare the normal

deterioration trajectory of component 1 with it’s accelerated

deterioration after being replaced at time step 42 and being

coupled with the other two worn out components. We can

clearly see two phases of accelerated degradation after

component 1 has been replaced with a new component, a

highly accelerated degradation from time step 42 till 48, then

a somewhat less accelerated degradation from time step 49

till 56. The first highly accelerated degradation is due to the

fact that a new component 1 was interacting with a worn out

component 2 and a severely worn out component 3 that was

above 75% deteriorated; subsequently, the less accelerated

degradation is a result of the replacement of component 3

with a new component at time step 49.

This old-new component coupling is clearly influencing

the lifetimes of the components after being replaced with

new ones. This kind of interaction can lead to accelerated

degradation of the components and the system as a whole,

thus resulting in unexpected faults and failures. The result of

this old-new component interaction will be analysed using

experimental results described in section 4 of this paper.

2.2 Parameter identification

The procedure for performing model-based prognostics

using any of the variants of the general degradation model

starts by the selection of the variant type and specifying

its different parameters. Then we can proceed to parameter

identification which can be done using different approaches.
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There exists an extensive body of literature on the topic of

parameter identification see for example (1; 12; 20).

In practice, if the degradation model is not too complex,

we can fit the model parameters using Maximum likelihood

estimation. However if the model is too complex or if we

are collecting online observation on the health condition

of the components and would like to achieve real time

prognostics, we suggest to use sequential Monte Carlo

methods, specifically the particle filter (PF) which is a very

popular approach for parameter estimation (11). This allows

for an online numerical estimation of the parameter values

by means of a recursive Bayesian inference approach. The

posterior distribution of the model parameters can be then

obtained using a number of particles and their corresponding

weights. This method is very flexible and can be used

for non-linear models where the noise is not necessarily

Gaussian. Such an approach has been successfully used in

the field of prognostics for model parameter estimation as

seen in the works of (17; 22; 33).

Say we would like to estimate the parameters of a

degradation model that corresponds to Case 4. Let’s assume

the operational effect is stochastic and follows a gamma

distribution ∆Oi
t is i.i.d. Γ(αi, βi), and that we have two

interacting components where the interaction is modeled

as presented in (9). Then the deterioration model can be

rewritten as:

Xi
t+1 = Xi

t + Γ(αi, βi) + µji × (Xj
t )

σji

(5)

In this case there exists two sets of parameters

Θ1 and Θ2. Where Θ1 = (α1, β1, µ21, σ21, ǫ) and Θ2 =
(α2, β2, µ12, σ12, ǫ) with , ǫ representing the variance of the

observation noise which can be assumed to be Gaussian. For

each set of parameters we generate a specific n number of

particles, each having 5 parameter values selected at random

from a prior distribution. We then generate a prediction of the

next health condition x̃i
t+1 for i = 1 : n. After observing the

next health condition xi
t+1 we can calculate the importance

weight of each particle by computing the likelihood of

that observation given the predicted values of each particle

p(xi
t+1|x̃

i
t+1). We then normalise the weights and perform

bootstrap sampling i.e. we re-sample with replacement n

particles from the previous set of particles. For more in depth

information about PF we suggest reading (11).

The following section details our methodology for

acquiring component health state data from real multi-

component systems.

3 A methodology for component state

extraction

The methodology for state indicator extraction is presented

as a flowchart in Fig.2. As shown, we start by acquiring

data from sensors, specifically vibration data, since it has

been extensively studied and successfully used for the

purposes of diagnosing industrial rotating machinery, mainly

for components such as gears (16), bearings (2; 28) and

induction motors (5).

After acquiring data from multi-component systems, a

major challenge for modelling existing inter-dependencies is

the complex nature of the signals acquired, where each signal

may represent a mixture of the signals of all components

Component specific sensor

Data Acquisition

Component health

STFT

RMS

Denoising

Evolution of Health State

Degradation Interactions

Figure 2. Methodology for extracting components’ state

indicators and interactions in a multi-component system

at once, but to varying degrees. So an accurate way of

acquiring component specific degradation state information

from multi-component systems is to consider time-frequency

domain analysis of the acquired signals. To motivate our use

of time-frequency domain analysis over the other common

waveform data analysis approaches, namely time-domain

analysis and frequency domain analysis (14), we will briefly

overview them and show their advantages and shortcomings

in a multi-component system diagnosis scenario.

Time domain analysis is applied to the signals acquired

in their time waveform. Common time domain analyses

will mainly include descriptive statistics of the signal such

as the mean value, standard deviation, root mean square,

crest factor, skewness, kurtosis, etc. And so although this

approach is typically computationally more efficient than

other techniques, due to gathering statistics directly from the

time waveform signal, this kind of analysis will rarely be able

to differentiate which component is responsible for which

changes in the signals, and will serve poorly when trying to

model the degradation interdependence of components.

Another approach is frequency domain analysis. This

is applied to the frequency domain transform of the

acquired time waveform signals, usually by applying a

discrete Fourier transform (DFT) on the signal, or other

more computationally efficient variants for computing DFT,

algorithms such as the fast Fourier transform (FFT). In the

frequency domain, one can clearly see the ratio of influence

of the different frequency bands on the time waveform signal,

and although this can be related directly to the physical

systems associated with the different frequencies, this

approach on its own will fail to show us the evolution of these

ratios with time, again an essential part would be missing for

modelling inter-dependencies between components.
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Algorithm 1: Outlier Removal algorithm

w represents the window length;

input : RMS signal Sig, a row matrix of size

m× w

output: RMS signal with no outliers

for i← 1 to m do

med←ComputeMedian(Sig(i));
mad←ComputeMAD(Sig(i));
for j ← 1 to w do

if Sig(i, j) < (med−mad) or Sig(i, j) >
(med+mad) then

Sig(i, j) = X ∼ N (med, mad)
end

end

end

Finally we have time-frequency domain analysis; tech-

niques such as the Short Time Fourier Transform (STFT) that

allow for the analysis to be performed in both the time and

frequency domains, isolating the frequency components of

interest all while representing their evolution with time. This

gives time-frequency domain analysis an advantage over the

two previously mentioned approaches since it allows the han-

dling of non-stationary waveform signals. Consequently, we

will use a time-frequency domain analysis when performing

diagnosis on multi-component systems.

Therefore, in order to extract the health states of

components accurately, we apply the STFT over the time-

waveform data as shown in:

STFTs(t, ω) =

+∞
∫

−∞

h(τ − t)s(t) exp−jωt dt (6)

This will allow us to isolate frequencies of interest all while

showing the evolution of the energy through time. Then

we can compute the root mean square (RMS) over a the

frequency band of interest, as given by:

XRMS =

√

√

√

√

1

N

N
∑

i=1

x(i)2 (7)

to estimate how the magnitude of the frequency band of

interest evolves in time. In this way, we can study a time

series signal that describes the evolution of the condition of

components over time.

Finally since we are dealing with physical systems, where

clean data are not often encountered, data cleaning of the

acquired time series should be performed. An example of

an outlier removal algorithm is detailed in Algorithm1. First

we would need to specify a window of data points based

on the operating profile of the system is specified. Then the

median value or geometric mean of the data and the median

absolute deviation (MAD) are computed. Then values that

exceed the median plus or minus the MAD value are filtered

by replacing them with a random variable sampled as X ∼
N (med, mad), thus preserving as much as possible the true

nature of the signal.

Figure 3. Gearbox accelerated life testing platform

4 Case Study

In an industrial setting, gearboxes are present in virtually

any mechanical system, playing the essential role of torque

and speed conversion, and unforeseen faults can lead to

lowered machine up time and less plant efficiency. A

gearbox is a good example of a system with multiple

components. Therefore with the aim of collecting data on

multi-component interactions we carried out our experiments

on a gearbox accelerated life testing platform as shown in

Fig.3.

The gearbox experimental platform is comprised of three

gears forming a gear train mounted in series. The gears

are arranged as gear 1 (G1) on the left, gear 2 (G2) in the

middle and gear 3 (G3) on the right. Each gear is fixed on a

shaft. These shafts have restricted translation motion due to a

friction-less rotation system. Such restriction is provided by

small washers that are held against the inner ring of the shaft

supporting bearings using shaft collars. Friction-less rotation

is essential as it prevents additional noise originating from

friction and unwanted additional loads. A fixed bracket holds

the driving motor. This can be seen on the left of the figure.

This is a 24 Volt, 250 Watt motor that can reach up to 2750

Revolutions per minute (RPM). Feedback from an encoder

is collected for extracting exact rotational velocity and

steady state behaviour, along with a temperature feedback

controller that is used for setting the fail-safe threshold.

The gearbox is coupled to a dynamometer system that

provides the load. Vibration analysis has been extensively

researched and has become a standard for gearbox system

diagnostics and prognostics (16; 25). Therefore we used

three accelerometers, each mounted on one of the three

gear supporting shafts, to collect vibration data from the

gearbox. This allows the vibration signals of each gear to

be distinguished more accurately. The accelerometer signals

were transmitted using a Data Acquisition Card (DAQ) to a

PC workstation where they were processed for the purpose

of performing system diagnosis. The three accelerometer

Prepared using sagej.cls
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Figure 4. Raw accelerometer data from Gears 1 and 2,

represented in Gs.

Figure 5. Visual representation of the spectrum of frequencies

of Gear 1 in Run 1 varying with time

sensors collect data on three axis and have a full sensing

range of±3Gs. To avoid distortion of vibration signals, these

accelerometers are each mounted over the centerline of the

shaft supporting bearing. We do this by fixing these sensors

using hex socket screws to a 3D printed housing that lies on

top of the frame of the gearbox.

The experimental runs of the gearbox were designed for

accelerated life testing, thus achieving failure in a shorter

amount of time than it would usually take under normal

operating conditions. These runs are an alternating sequence

of two types of cycles; the first cycle is a low speed low load

cycle, referred to as LSLL; and the second type is a high

speed high load cycle, referred to as HSHL. The vibration

measurements used in this study were collected in the LSLL

cycles in order to improve the signal to noise ratio (SNR).

We computed the SNR to be on average 10.6dB using the

following:

SNR =
Psignal

Pnoise

(8)

SNRdB = 10 log10(SNR) (9)

4.1 Experimental scenarios

To demonstrate the degradation interaction that takes place

between an old worn out component and a new healthy

component, we will consider only two gears in the system,

gear 1 and gear 2 referred to as G1 and G2 respectively.

Figure 6. Degradation time series of gears 1 and 2. In blue the

first acquired time series signal, and in red an overlay after

applying the outlier removal algorithm.

The Gearbox platform was run three times in the following

manner:

Run 1: the first run consisted of a new G1 and a new G2.

The gearbox was run alternating between HSHL and

LSLL until high levels of vibration were observed in

the gearbox at which point the experimental run was

terminated.

Run 2: After the first run, G1 was replaced with a new

gear, while G2 remained unchanged, so the second

run consisted of a new G1 and a worn out G2. The

gearbox was ran alternating between the two cycles

until high vibration was observed; on this run high

system vibration occurred in a shorter amount of time,

and after terminating the run, G2 showed more severe

damage on it’s teeth surface than that observed after

the termination of run 1.

Run 3: In the third run, G1 was replaced with a new gear,

while G2 remained unchanged, so we find ourselves

with a similar condition scenario as in run 2, this time

however with a more worn out G2. The gearbox ran

alternating between the two cycles until high vibration

was observed. This run lasted an even shorter amount

of time than in run 2, and so the run was terminated

earlier than in run 1 and run 2.

Vibration data were collected from the accelerometers in

all three runs, and treated using the methodology discussed

in section 3.

4.2 Component state extraction

A sample of duration 2 seconds of reading from the

accelerometers of gears 1 and 2 can be seen in Fig.4.

This raw time waveform vibration data were then turned

into time-frequency domain data using STFT resulting in a

spectrogram as shown in Fig.5. Now using the number of

teeth of the gears N = 16, we computed the gear meshing

frequency to be around 120Hz using the following formula:

fmesh = RPM ×N (10)

Now we use a frequency band of 5Hz, dynamically allocated

over the spectrogram due to changes in the meshing
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LSLL Cycle Number

Run Gear 1 2 3 4 5 6 7 8 9 10

1 1 5.1 4.83 4.58 6.69 4.38 5.03 3.42 9.04 12.94 11.32

1 2 6.26 5.05 5.81 6.48 4.64 7.12 5.03 10.51 9.92 10.95

2 1 5.82 4.58 6.32 5.71 10.82 9.28

2 2 8.39 8.35 8.72 8.56 11.1 10.8

3 1 6.62 6.38 8.94 10.3

3 2 10.84 8.85 10.34 11.95

Table 2. Average Gear meshing frequency magnitude for each LSLL cycle for both gears in all there runs.

Gear 1 Gear 2 Gear 1 Cycles to Failure Gear 1 Life Expectancy (%)

Run 1 new new 7 100

Run 2 new worn out 4 57

Run 3 new severely worn out 2 29

Table 3. Effect of deterioration on component interactions

frequency caused by small variations in the rotational speed

of the system, to accurately capture the magnitude of the

gear meshing frequency in time. We then computed the RMS

value for each time step, which results in the degredation

time series shown in Fig.6, where the experimental runs are

separated by the dashed red vertical lines, the silver dashed

vertical lines represent the start of a new data collection

cycle, i.e. an LSLL cycle, and noting that a) between every 2

LSLL cycles there exists an HSHL cycle, and b) The HSHL

vibration data were not used and is thus not represented in

this figure.

4.3 Results

Based on the experimental runs, the vibration signals emitted

and the wear observed on the surface of the teeth of the gears,

we can set the failure threshold as F = 8. Therefore when

a gear meshing frequency magnitude is greater or equal to

8, as can be seen in Fig.6, the system is considered to have

failed, or severely degraded in the sense that the platform is

no longer operable in a normal condition.

Now in order to indicate the degradation interactions

between the two gears, we compute the average of each

LSLL cycle and display the obtained values in Table 2. Note

that here the average vibration doesn’t necessarily increase

at every LSLL, this small fluctuation is due to the change

between HSHL and LSLL which can distort the signal

acquired by the accelerometers when capturing vibration

data. However, we can already see that there is a general

trend of increase in vibration with the increase in LSLL cycle

count which indicates the degradation of the Gears.

The degradation interactions can already be detected when

looking at Table 2, however for a more clear view of the

interactions that are taking place, we can look at Table 3

which indicates the time to failure of the components, and

there we can clearly see the accelerated degradation of the

Gears that is due to their interaction.

As shown from Table 2 in Run 1, it takes seven cycles

to reach the G1 failure limit when both gears are new.

We can consider this as normal degradation behaviour of

the components and so we can say that in this case, the

life expectancy of a component when coupled with a new

component is 100%. Now looking at Run 2, we see that it

takes four cycles to reach the G1 failure limit when G1 is new

and G2 is worn out. Thus compared to Run 1, where both

gears were new, we see that having a new component coupled

with a worn out component would lead to accelerated wear

of the new component and so the life expectancy is reduced

to only 57%, in this case, in comparison with normal

degradation of the components. Finally in Run 3 we see that

it takes only two cycles until G1 reaches its failure limit when

G1 is new and G2 is severely worn out. This means that in

comparison to normal degradation behaviour G1 had, in this

case, a life expectancy of 29% relative to that under normal

degradation. This is clearly shown in summary in Table 3.

Such results demonstrate the importance of modelling in

the state of other components when performing diagnosis or

prognosis on a multi-component system. For if we were to

replace a specific component in the system with a new one,

ignoring the accelerated degradation effect that would result

from it being coupled with a now worn out component, there

would arise unexpected failures and faults, caused by the

reduced lifetime of the new installed components that were

not operating under what would be considered to be normal

conditions.

5 Conclusions

In this paper we show the accelerated degradation effect that

can take place when multiple components are interacting

within a system. We present a general degradation model that

can be used to represent the component interactions in the

degradation process of a multi-component system. We then

develop our methodology for extracting accurate health state

information of components in a multi-component system,

starting from the data collection process and going through

the selection of a time-frequency domain analysis for the

processing of the waveform data that should be collected,

and finally acquiring a time series signal for each component

in the system. This signal can be used to accurately diagnose
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the system health by showing the degradation interaction that

results when the components of a system are in different

health states. We validate this approach and demonstrate

our analysis on experimental data collected from a gearbox

accelerated life testing platform. Here we show that when a

new gear is coupled with a worn out gear, the life expectancy

of the new gear may be reduced to 29% of that of a new

gear coupled with another new gear. Through this work we

show the importance of accounting for the state of other

components when diagnosing the health of a system as a

whole, since old-new component couplings can ultimately

lead to accelerated wear out of the system.

Our future work will focus on the fitting of the proposed

degradation model to acquired experimental data, along with

providing a comparative study of state of the art machine

learning algorithms, and assessment of their prognostic

accuracy when different health features are extracted from

multi-component systems.
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