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SUMMARY
Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that
elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced
hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl
transferase-null (GOAT�/�) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by
acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF
signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is
important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating
AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients,
and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression
remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of
hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic
biomarker of dementia.
INTRODUCTION

Circulating factors are known to both enhance1-4 and impair5-7

neuronal plasticity and learning in adult mammals. However,

the mechanisms underlying these effects are not completely un-

derstood. Systemic factors such as Growth Differentiation Fac-

tor 11 (GDF11)1 are reported to regulate the neural stem/progen-

itor cell (NSPC) niche in the adult hippocampus to promote new

neuron formation, termed adult hippocampal neurogenesis

(AHN), and cognition. Conversely, circulating Beta-2 microglo-

bulin (B2M)6 and eotaxin5 impair the same niche resulting in

reduced neurogenesis and impaired cognitive function. These

data demonstrate that the hippocampal neurogenic niche is

responsive to systemic factors, even in agedmammals, and sug-

gest that circulating factors act as important modulators of mne-

monic function.

The birth and maturation of new neurons in the adult hippo-

campal dentate gyrus (DG) is essential for spatial pattern sepa-

ration memory,8,9 which is the ability to separate highly similar

components of memories into distinct memory representa-
Cell Repo
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tions.10 This process is impaired in neurodegeneration11 and de-

mentia12 but is enhanced by lifestyle factors, such as exercise13

and calorie restriction.14 Indeed, neurogenic impairments

observed in the familial Alzheimer disease (FAD) model,

5xFAD, are rescued by exercise. In addition, the suppression

of adult neurogenesis was associated with increased neuron

loss in 5xFAD, but not wild-type (WT) mice, suggesting a patho-

physiological link between impaired AHN and AD progression.15

Similarly, AHN is impaired in rodent models of Parkinson disease

(PD),16-18 and both NSPC and immature neuron number are

reduced in the DG of humans diagnosed with PD dementia

(PDD).11 However, therapeutic strategies that promote AHN

are limited.

We recently showed that calorie restriction increased AHN

and hippocampal-dependent memory in a mechanism depen-

dent on signaling via the stomach hormone, acyl-ghrelin.14

Indeed, acyl-ghrelin, which is elevated during calorie restriction,

crosses the blood-brain barrier and binds to the growth hormone

secretagogue receptor (GHS-R) within the hippocampus and im-

proves spatial memory.19 Moreover, we showed that peripheral
rts Medicine 1, 100120, October 20, 2020 ª 2020 The Author(s). 1
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Figure 1. Unacylated-Ghrelin Inhibits Hippocampal Neurogenesis in Adult Mice

Peripheral administration of UAG or genetic ablation of GOAT reduces the number of dividing Ki67+ cells (A and B) and immature Dcx+ neurons (C and D) in the

mouse DG. Statistical analysis was performed by 2-way ANOVA followed by Holm-Sidak post hoc comparisons. Scale bar, 200 mm (inset scale bar, 20 mm). *p <

0.05, **p < 0.01, ***p < 0.001 versus WT vehicle group. Data shown are mean ± SEM n = 5–6 mice/group.
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injection of acyl-ghrelin, at physiological doses, increases AHN

and enhances pattern separation memory in adult rats.20

Similarly, deletion of GHS-R in mice results in increased suscep-

tibility to chronic stress coupled with reduced neurogenesis

in the ventral DG.21 These studies clearly identify acyl-ghrelin

as an important pro-neurogenic circulating factor.22 In order

to generate acyl-ghrelin, ghrelin must undergo post-translational

acylation by the enzyme ghrelin-O-acyl transferase (GOAT),23,24

prior to binding and activating GHS-R signaling.25 Unacylated-

ghrelin (UAG) represents �80%–90% of circulating ghrelin and

is often considered an inactive precursor to acyl-ghrelin. Howev-

er, there is growing evidence that UAG functions as a hormone

distinct from acyl-ghrelin and GHS-R. For example, UAG in-

duces genome-wide changes in the expression of genes linked

to glucose and lipid metabolism in fat, muscle, and liver from

GHS-R�/� mice,26 providing evidence for the existence of a

UAG receptor that is yet to be identified. UAG also inhibits

acyl-ghrelin actions that are mediated by GHS-R.27-29 For

example, UAG suppressed acyl-ghrelin-induced neuronal activ-

ity in the brainstem and prevented the acyl-ghrelin/GHS-R-medi-

ated increase in food intake.30 We therefore sought to determine
2 Cell Reports Medicine 1, 100120, October 20, 2020
whether UAG modulates hippocampal plasticity and memory

function and whether plasma levels of acyl-ghrelin and UAG

associate with dementia in humans.

RESULTS

UAG Inhibits Hippocampal Neurogenesis in Adult Mice
To assess whether UAG regulates adult NSPC plasticity in the

sub-granular zone (SGZ) of the hippocampus, we analyzed the

effect of UAG administered peripherally for 7 days in WT and

GOAT�/� mice.23 GOAT�/� mice lack circulating acyl-ghrelin

but have elevated levels of UAG making them ideally suited to

assessing the loss of acyl-ghrelin coupledwith increased plasma

UAG.31 Surprisingly, UAG-treated WTmice showed a significant

40% decrease in Ki67+-proliferating cells in the SGZ compared

to vehicle-treated WT mice (p = 0.0056) (Figures 1A and 1B).

Similarly, genetic blockade of acyl-ghrelin signaling in GOAT�/�

mice reduced the number of dividing Ki67+ progenitor cells in the

SGZ (p = 0.0020) (main effect of genotype, p = 0.0175, F(1,19) =

6.766; interaction between genotype and treatment, p = 0.0074,

F(1,19) = 9.003) (Figures 1A and 1B). These findings were
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accompanied by a significant reduction in the number of double-

cortin positive (Dcx+) immature neurons within the SGZ of both

UAG-treated WT (p = 0.0106) and vehicle-treated GOAT�/�

mice (p = 0.0003) (main effect of genotype, p = 0.0096,

F(1,19) = 8.287; interaction between genotype x treatment, p =

0.0009, F(1,19) = 15.33) (Figures 1C and 1D). UAG did not further

exacerbate the reduction in proliferating cells and immature neu-

rons in GOAT�/� mice, suggesting that UAG’s effect on neuro-

genesis may be via a saturable mechanism. The responsiveness

of the GOAT�/� neurogenic niche to UAG treatment may be

attenuated by developmental compensation or exposure to

consistently high levels of UAG throughout development. While

UAG is often considered inactive, reports of UAG opposing

acyl-ghrelin function on hepatocyte gluconeogenesis,32 block-

ing acyl-ghrelin-induced food intake33 and suppressing activity

of the GH axis,34 provide support for our findings. Together,

these data suggest that the striking decrease in hippocampal

cell proliferation and immature neuron number is due to elevated

UAG, rather than simply loss of acyl-ghrelin.

UAG Reduces the Number of New Adult-Born Immature
Neurons and Non-neuronal Cells in the Adult
Hippocampus
Next, as�70% of young adult-born neurons undergo Bax-medi-

ated programmed cell death during an early stage of differentia-

tion,35 we studied whether UAG reduced the number of new

adult-born DG neurons. To achieve this, mice in the above study

received an injection of BrdU to birth-date-proliferating cells on

day 2 of the infusion prior to brain dissection and immunochem-

ical analysis on day 7. The number of immature neurons (BrdU+/

Dcx+) was significantly reduced in GOAT�/� mice36 (main effect

of genotype, p = 0.0171, F(1,18) = 6.896) (Figures 2A and 2D; Fig-

ure S1B). There was also a�30% reduction in the mean number

of BrdU+/Dcx+ cells in UAG-treated WT mice; however, this was

not statistically significant (p = 0.2757) (Figure 2A). Further anal-

ysis revealed a significant reduction in the number of new

adult-born cells that lack Dcx immunoreactivity (BrdU+/Dcx–) in

UAG-treated WT mice, relative to vehicle-treated WT mice (p =

0.0288) (interaction between genotype x treatment, p = 0.022,

F(1,18) = 6.282) (Figure 2B). Indeed, quantification of the relative

proportion of new adult-born cell types demonstrated that UAG

reduced the proportion of BrdU+/Dcx– cells in WT mice (p =

0.0029) (main effect on cell type, p = 0.0033, F(1, 36) = 9.924;

interaction between treatment x cell type, p = 0.0276, F(3, 36) =

3.413) (Figure 2C). These data suggest that UAG may play an

important role in regulating the number of new astro-glial cells

or new stem cells originating following asymmetric cell division.

Analysis of a second mouse model with genetic deletion of

GOAT37 revealed a similar reduction in DG neurogenesis (Fig-

ures S3A–S3D). Importantly, genetic deletion of GOAT, in either

knockout model, did not affect the number of type II stem cells

(Sox2+) in the SGZ (p = 0.4433, Figures S1C and S1E and p =

0.4075 Figures S3E and S3F). To avoid counting a subset of as-

trocytes that co-express Sox2, we performed double immuno-

fluorescence, using anti-Sox2 and the astrocyte-specific anti-

S100b antibodies. Our findings demonstrate unaltered expres-

sion of Sox2+/S100b– cells in the SGZ of GOAT�/� mice

(3,012 ± 114.0 cells) relative to WT mice (3,001 ± 133.8 cells)
(p = 0.9964) (Figures 2E and 2F), suggesting that the observed

reduction in dividing progenitors was not due to a reduced stem

cell pool but by modulation of the adult neurogenic niche. To

determine whether circulating immune factors, that are known

to inhibit AHN, were altered in UAG- and vehicle-treated

GOAT�/� and WT mice, we quantified plasma levels of eotaxin,

fractalkine, interleukin-6 (IL-6), IL-10, RANTES, and tumor ne-

crosis factor-a (TNF-a). However, there were no significant al-

terations in levels of these circulating factors in GOAT�/� mice

or in WT mice following UAG treatment (Figure S2). These

data identify GOAT-mediated acylation of ghrelin as an impor-

tant modulator of AHN, with UAG providing anti-neurogenic ac-

tivity opposing acyl-ghrelin’s pro-neurogenic effects.14,20

To further test this finding, we quantified neurogenesis in mice

with genetic ablation of the ghrelin gene. Theseghrelin�/�mice38,

which lack both acyl-ghrelin and UAG, had no impairments in

adult neurogenesis. A previous study reported that the rate of

cell proliferation and neuronal differentiation were reduced in 8-

to 9-week-old male ghrelin�/� mice compared to non-littermate

controls.39 However, our analyses of total NSPC number (Sox2;

p = 0.3674), cell proliferation (Ki67; p = 0.4797), immature neuron

number (Dcx; p = 0.1527), and new adult-born neuron number

(BrdU/NeuN; p = 0.6409) throughout the rostro-caudal extent of

the hippocampus in 6-month-old male and female ghrelin�/�

mice confirmed no change in any of these measures relative to

WT, sex-matched, littermate control mice (Figure S4). Our data

from ghrelin�/� mice are consistent with the idea that the loss

of pro-neurogenic acyl-ghrelin andanti-neurogenicUAG resulted

in no net change in AHN. In contrast, GOAT�/� mice lack acyl-

ghrelin but have high levels of UAG, suggesting that high circu-

lating UAG is at least partly responsible for the reduction in

AHN, rather than simply the lossof acyl-ghrelin. Indeed, this inter-

pretation is consistentwithourdata showing that elevatedUAG in

WT mice results in reduced hippocampal plasticity.

UAG and GOAT�/� Reduce Markers of Hippocampal
Plasticity in Adult Mice
Next, we assessed whether elevation of UAG disrupted other

molecular signatures of hippocampal impairment. The immedi-

ate early gene (IEG), c-Fos, which is associated with changes

in neuronal gene expression that promote learning and memory

function,40,41 was quantified in theDGof vehicle- or UAG-treated

WT and GOAT�/� mice. In keeping with our findings of impaired

plasticity, we observed a significant reduction in immuno-label-

ing of c-Fos in both UAG-treated WT (58%, p = 0.0147) and

GOAT�/� (44%, p = 0.0377) mice (main effect of treatment, p =

0.0392, F(1,16) = 5.046; interaction between genotype x treat-

ment, p = 0.0343, F(1,16) = 5.354) (Figures 3A and 3B). In addi-

tion, as acyl-ghrelin promotes F-actin expression in hippocam-

pal dendrites it is linked with the generation and re-modeling of

spines.42 Therefore, we analyzed dendritic spines on hippocam-

pal neurons from WT and GOAT�/� mice. While there was no

change in total spine number between the two groups (p =

0.4695, Figure 3C), our analysis revealed a significant 53%

reduction in immature ‘‘stubby’’ spine number in GOAT�/�

mice (p = 0.0164) (main effect of spine type, p = 0.0001,

F(4,20) = 26.36) (Figures 3D and 3E). Dendritic spines form excit-

atory synapses with pre-synaptic axons and are essential for
Cell Reports Medicine 1, 100120, October 20, 2020 3



Figure 2. Unacylated-Ghrelin Reduces the Number of New Adult-Born Non-neuronal Cells

(A–C) Genetic ablation of GOAT reduced the number of new neuroblasts (main effect of genotype) (A) and new non-neuronal cells (B). UAG treatment reduced the

number of new non-neuronal cells (B, C).

(D) Representative confocal image of DG from wild-type mouse showing new BrdU+/Dcx+ neuroblast (arrowhead) and a new BrdU+/Dcx– non-neuronal cell

(arrow), n = 5–6 mice/group.

(E) Type II NSPC number was unaltered in the DG of GOAT�/� mice, n = 3 mice/group.

(F) Representative confocal image of DG from wild-type mouse showing Sox2+/S100b– type II NSPCs (arrow) and Sox2+/S100b+ astrocytes (arrowhead) in

the DG.

Statistical analysis was performed by 2-way ANOVA followed by Holm-Sidak post hoc comparisons. Scale bar, 50 mm. *p < 0.05, **p < 0.01, versus WT vehicle

group. Data shown are mean ± SEM.
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Figure 3. UAG and GOAT�/� Reduce Hippocampal Plasticity in Adult Mice

(A and B) Peripheral administration of UAG or genetic ablation of GOAT reduces the number of c-Fos+ neurons in the mouse DG. Statistical analysis was

performed by 2-way ANOVA followed by Holm-Sidak post hoc comparisons. Scale bar, 200 mm (inset scale bar, 20 mm). *p < 0.05 versus WT vehicle group. Data

shown are mean ± SEM n = 5–6 mice/group.

(C–E) Hippocampal dendritic spine number was unaltered in GOAT�/�mice (C and D); however, spine sub-type analysis demonstrated a significant reduction in the

number of stubby spines (E). For spine analysis, statistical analysis was performed by Student’s t test (C) and two-way ANOVA followed by Fisher’s LSD test (E).

Scale bar, 5 mm. n = 3 mice/group. All data shown are mean ± SEM. *p < 0.05 versus WT group.

Article
ll

OPEN ACCESS
synaptic plasticity, with spine morphology linked to cognitive

function.43 Given the established role of hippocampal c-

Fos27-29 and dendritic spines44 in regulating plasticity and cogni-

tion, we reasoned that hippocampal-dependent learning and

memory may be impaired in GOAT�/� mice.

Adult GOAT�/� Mice Display Hippocampal-Dependent
Spatial Memory Deficits that Are Rescued by Acyl-
ghrelin Treatment
To determine whether the neurochemical and structural deficits

in hippocampal plasticity-related factors observed in GOAT�/�

mice resulted in memory impairments, adult WT and GOAT�/�

mice were tested using the hippocampal-dependent spatial

memory Y-maze task (Figure 4). GOAT�/� mice displayed a

deficit in performance compared to WT mice, entering the novel

arm fewer times (p = 0.0023; interaction between arm choice x

genotype, p = 0.0007, F(6, 60) = 4.607. Figure 4A) and spending

significantly less time in the novel arm of the Y-maze (p = 0.0168;
main effect of genotype, p = 0.0001, F(1,20) = 26.70. Figure S5A)

compared to WT mice. To assess whether this deficit could be

rescued by acyl-ghrelin, WT and GOAT�/� mice were given daily

injections of either saline or acyl-ghrelin for one or seven days

prior to Y-maze testing. Acyl-ghrelin treatment 1 h before testing

did not alter performance in GOAT�/� mice relative to vehicle-

treated GOAT�/� mice (entries into novel arm, p = 0.1692 (Fig-

ure 4A); time in novel arm, p = 0.7972 (Figure S5A). However,

treatment with acyl-ghrelin for 7 days enhanced performance

relative to vehicle-treated GOAT�/� mice (entries into novel

arm, p = 0.0114 (Figure 4B); time in novel arm, p = 0.0019 [Fig-

ure S5B]) and rescued the deficit in GOAT�/� mice relative to

acyl-ghrelin-treated WT mice (entries into novel arm, p =

0.8263 [Figure 4B]; time in novel arm, p = 0.7254 [Figure S5B]);

main effect of arm choice, p % 0.0001, F(2, 60) = 145.1;

interaction between arm choice x genotype, p % 0.0001,

F(6, 60) = 7.426 [Figure 4B]). Interestingly, the rescue of spatial

memory performance in acyl-ghrelin-treated GOAT�/� mice
Cell Reports Medicine 1, 100120, October 20, 2020 5



Figure 4. Adult GOAT�/� Mice Display Hippocampal-Dependent Spatial Memory Deficits that Are Rescued by Acyl-ghrelin Treatment

(A–C) Analysis of relative entries into each arm of the Y-maze shows that GOAT�/�mice enter the novel arms less often (A and B; p < 0.01). Acyl-ghrelin treatment

for 7 days significantly increases the number of entries to the novel arm in GOAT�/� mice on day 7 (B, p < 0.05) and day 28 (C, p < 0.05).

(D) Schematic representations of Y-maze apparatus, indicating novel, old, and home arms.

Statistical analysis was performed by 2-way ANOVA followed by Holm-Sidak post hoc comparisons (n = 6 mice/group). *p < 0.05, **p < 0.01. All data shown are

mean ± SEM.
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relative to vehicle-treated GOAT�/� mice was observed on day

28, 21 days following the end of treatment (entries into novel

arm, p = 0.0357 [Figure 4C]). Similarly, acyl-ghrelin-treated WT

mice and GOAT�/� mice performed comparably at this time

point (entries into novel arm, p = 0.7069 [Figure 4C]; time in novel

arm, p = 0.3413 [Figure S5C]; main effect of arm choice, p %

0.0001, F(2, 60) = 92.78; interaction between arm choice x geno-

type, p = 0.0006, F(3, 60) = 4.696 [Figure 4C]). Analysis of total

Y-maze arm entries suggest that GOAT�/�mice do not have def-

icits in exploration (Figures S5E–S5G). These data are consistent

with our neurochemical findings and demonstrate that GOAT is

essential for intact hippocampal-dependent spatial memory.
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UAG Inhibits Acyl-Ghrelin-Mediated Hippocampal Cell
Proliferation and New Cell Survival In Vitro

To determine whether the ghrelin peptidesmediate direct effects

on the hippocampus, we used the thymidine analog, EdU, to

quantify cell proliferation and survival following treatment of hip-

pocampal cell cultures with acyl-ghrelin or UAG. The primary

hippocampal culture system, containing a mix of cell types (Fig-

ure S6), was used to show that 24 h acyl-ghrelin treatment signif-

icantly increased, in a dose dependent-manner, the number of

dividing EdU+ cells labeled in the final hour of treatment (p =

0.0186 [100 nM], p = 0.0205 [1,000 nM]). Similar treatment with

UAG had no effect (p = 0.9814 [100 nM], p = 0.8033 [1,000 nM]



Figure 5. UAG Inhibits Acyl-ghrelin-Mediated Cell Proliferation and Survival in Primary Hippocampal Cultures

(A–C) Schematic representation of the cell proliferation assay (A). Acyl-ghrelin (AG) but not unacylated ghrelin (UAG), directly stimulated cell proliferation in a

GHSR-dependent manner (B and C).

(D) Representative images of newly divided EdU+ cells in primary hippocampal cultures.

(E) Schematic representation of the cell survival assay.

(F) AG, but not UAG, increased new cell survival in a GHSR-dependent manner.

(G) UAG inhibited the AG-mediated increase in new cell survival.

(H) Representative images of surviving EdU+ cells in primary hippocampal cultures.

Statistical analysis performed using two-way ANOVA followed by Dunnett’s post hoc test (B), one-way ANOVA followed by Dunnett’s post hoc test (C, F, and G).

Scale bar, 400 mm. *p < 0.05, **p < 0.01, ***p < 0.001 versus vehicle. Each independent experiment was performed three times, with each treatment condition

performed in triplicate. Data shown are mean ± SEM.
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(Figures 5A, 5B, and 5D). The proliferative effect of acyl-ghrelin

was lost when the cells were cultured in the presence of the

GHS-R-antagonist, [D-Lys3]-GHRP-6 (Figure 5C). In addition,

we used a modified protocol to quantify cell survival, whereby
dividing cells were pulsed with EdU for the first 16 h of culture,

prior to acyl-ghrelin or UAG treatment (Figure 5E). Acyl-ghrelin

significantly increased the survival of newborn EdU+ cells after

4 days of treatment (p = 0.0003), while UAG had no effect
Cell Reports Medicine 1, 100120, October 20, 2020 7
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(p = 0.3202). Similarly, the pro-survival effect of acyl-ghrelin was

lost when the cells were cultured in the presence of [D-Lys3]-

GHRP-6 (p > 0.999) (Figure 5F). These data demonstrate that

acyl-ghrelin promotes cell proliferation and survival via a direct

hippocampal mechanism that is mediated by the ghrelin

receptor, GHS-R. In contrast, UAG did not directly affect cell

proliferation or survival, suggesting that its inhibitory effect on

neurogenesis may be induced indirectly or by opposing acyl-

ghrelin induced GHS-R signaling. To test whether UAG can

modulate acyl-ghrelin’s effect, we co-treated hippocampal

cell cultures with acyl-ghrelin and UAG at equimolar (1:1) and

non-equimolar doses (1:10 and 1:30), respectively. These non-

equimolar doses were used to reflect the elevated level of UAG

in GOAT�/� mice and in our UAG-treated WT mice. Notably,

we report that UAG completely attenuated the pro-survival effect

of acyl-ghrelin at each of the ratios tested (Figures 5G and 5H).

These findings do not rule out the presence of an alternate

UAG-specific receptor or steric effects that may inhibit GHS-R

signaling. However, the direct antagonistic effect of UAG on

acyl-ghrelin induced hippocampal cell survival, which is medi-

ated by GHS-R, provides compelling evidence for the ability of

UAG to block acyl-ghrelin-mediated GHS-R signaling in the

hippocampus.

Acyl-ghrelin Increases Survival of Newborn
Hippocampal Cells via BDNF in a Non-cell-Autonomous
Manner
To determine whether acyl-ghrelin induces the survival of

newborn cells via the action of soluble neurotrophic factors,

we treated primary hippocampal cells with acyl-ghrelin and

quantified the gene expression of BDNF, a known pro-neuro-

genic factor.45 BDNF mRNA was significantly increased in pri-

mary hippocampal cells following treatment with acyl-ghrelin

(Figure 6A). To determine whether this effect was relevant to

the in vivo hippocampus, we treated adult mice with a single

intra-peritoneal injection of acyl-ghrelin. Twenty-four hours later,

we collected brain tissue for RNAScope in situ hybridization (ISH)

analysis to show that acyl-ghrelin treatment significantly

increased BDNF IXa mRNA, specifically in the rostral granule

cell layer (GCL) of the DG, relative to the vehicle-treated mice

(p < 0.05, Figures 6B and 6C). These studies confirm that acyl-

ghrelin increases the expression of hippocampal BDNF in vitro

and in vivo. Subsequently, we collected the conditioned media

from treated primary hippocampal cultures and incubated

them with a separate culture of hippocampal NSPCs46 that do

not express GHS-R (Figure 6D; Figure S7). Conditioned media

collected from acyl-ghrelin treated primary hippocampal cells

significantly increased the number of surviving newborn cells

when incubated with hippocampal NSPCs. Notably, this pro-

survival effect was completely blocked by the addition of a

BDNF-neutralizing antibody to the hippocampal NSPC cultures

(Figures 6E and 6F), suggesting that acyl-ghrelin supports the

survival of newborn hippocampal via BDNF signaling.

The Circulating Ratio of AG:UAG Is Reduced in PDD
Mechanistically, we reasoned that as circulating levels of acyl-

ghrelin and UAG have opposing actions on neurogenesis and

cognition in mice and that UAG inhibits acyl-ghrelin-mediated
8 Cell Reports Medicine 1, 100120, October 20, 2020
cell proliferation and survival in vitro, this may be reflected in

the plasma ratio of acyl-ghrelin to UAG (AG:UAG) in humans

diagnosed with dementia. We therefore hypothesized that circu-

lating AG:UAG ratios may be particularly affected in individuals

diagnosed with PDD compared to a cognitively unimpaired PD

group. To test this hypothesis, we recruited individuals with

PD, PDD, and age-matched healthy controls to determine fast-

ing and post-prandial levels of both acyl-ghrelin and UAG. In

keeping with our pre-clinical data, we found that the plasma ratio

of AG:UAG was significantly reduced in the PDD group

compared to the cognitively intact PD (p = 0.0033) and control

cohorts (p = 0.0145) (Figures 7A and 7B). Consistent with this

finding, cognitive impairment was correlated with a reduction

in plasma AG:UAG (Spearman r2 = 0.1164, p = 0.0145) (Fig-

ure 7C), suggesting this ratio may be valuable as a diagnostic

biomarker for human dementia. Interestingly, the cognitively

intact PD group did not have reduced acyl-ghrelin levels in either

the fasted state or 180 min after eating (Table S1), further

supporting a specific role for ghrelin in regulating mnemonic

function. Analysis of several other feeding-related (PYY,

leptin), metabolism-related (insulin, GLP-1), and growth-related

(GH, IGF-1) hormones, as well as cytokines (IL-6, TNF-

alpha), revealed no significant differences between the groups

(Figure S8).

Levels of Circulating Medium-Chain Fatty Acid
Substrates for GOAT Were Unchanged in PD and PDD
To determine whether there were changes in levels of circulating

GOAT substrate, we quantified medium-chain fatty acids

(MCFAs) C6, C8, and C10 in fasted plasma samples from healthy

control, PD, and PDD subjects. Levels of theses MCFAs, relative

to the standard, nonanoic acid (C9), were unaltered in each of the

three groups (Figures 7D–7F).

Ghrelin Receptor Is Expressed in the Human DG and Is
Unchanged in PD and PDD
In situ BaseScope analysis of human post-mortem hippocampal

brain tissue identified GHS-R1a mRNA expression within the

adult human DG (Figure 7G). Notably, quantification of GHS-

R1a in the hippocampal GCL from healthy control, PD, and

PDD subjects revealed no significant changes in receptor

expression in these groups (Figure 7H).

GOATExpression Is Reduced in theHippocampal GCL of
PDD Brain
To determine whether the reduced AG:UAG ratio may be

compensated byGOAT-mediated acylation of UAG at the hippo-

campus, we first performed western blot analysis of GOAT

expression in hippocampal lysates from control, PD, and PDD

brain. This assay demonstrated a significant decrease in GOAT

immunoblot density in both PD (p < 0.05) and PDD (p < 0.05) tis-

sue, relative to control (Figures 7I and 7J). These data are consis-

tent with impaired acyl-ghrelin signaling across all hippocampal

regions in both PD and PDD brain. For a specific assessment of

GOAT expression within the GCL, we quantified the number of

GOAT+ cells in this DG sub-region using immunohistochemistry

on hippocampal sections from control, PD, and PDD brain (Fig-

ure 7K). Our data reveal a significant reduction in the number of



Figure 6. Acyl-Ghrelin Increases Survival of Newborn Hippocampal Cells via BDNF

(A–C) 24 h acyl-ghrelin (1mM) increases the expression of BDNFmRNA in primary hippocampal cultures (A; *p < 0.05, Student’s t test, n = 3mice/group) and in the

GCL of the adult mouse hippocampus (B; *p < 0.05, two-way ANOVA followed by Holm-Sidak post hoc test, n = 6 mice/group) (C; RNAScope BDNF IXa probes

denoted by white arrow heads. Scale bar, 100 mm).

(D) Schematic of in vitro experiment to determine the non-cell-autonomous effects of acyl-ghrelin on neurogenesis. Initial treatment of primary hippocampal

cultures with acyl-ghrelin, followed by transfer of conditioned media to hippocampal NSPCs and subsequent analysis of cell survival.

(E and F) Conditioned media from acyl-ghrelin (AG-CM)-treated primary hippocampal cultures increases survival of hippocampal NSPCs in a BDNF-

dependent manner (E). These data suggest that acyl-ghrelin stimulates the release of BDNF from primary hippocampal cells to promote the survival of newborn

hippocampal NSPCs in a non-cell-autonomous manner. Statistical analysis performed by one-way ANOVA followed by Dunnett’s post hoc test. **p < 0.01 .

Scale bar, 400 mm. Each independent in vitro experiment was performed three times, with each treatment condition performed in triplicate. Data shown are

mean ± SEM.
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GOAT+ granule layer cells specifically in PDD tissue (Figure 7L)

(p < 0.05).

DISCUSSION

Previous findings support a role for acyl-ghrelin in improving hip-

pocampal neurogenesis, spine remodeling, LTP, and memory

function. The current study, to the best of our knowledge, dem-

onstrates a previously unknown function for UAG in reducing

hippocampal plasticity and spatial memory performance, and

opposing the cognitive enhancing effects of acyl-ghrelin.

Despite several studies reporting the beneficial effects of acyl-
ghrelin on neurogenesis and learning, little was known about

the role of UAG, the most prevalent form of ghrelin, in this

context. Our results therefore identify a critical role for the

post-translational modification of ghrelin in regulating neurogen-

esis and learning and expand our understanding of ghrelin

biology in the adult hippocampus.

We report a reduction in dividing Ki67+ hippocampal cells and

Dcx+ immature neurons following the genetic ablation of GOAT.

These data are consistent with similar reductions in markers of

neurogenesis in WT mice treated with UAG. The impairment

in neurogenesis was further substantiated by a BrdU pulse-

chase study, which revealed a reduction in the number of new
Cell Reports Medicine 1, 100120, October 20, 2020 9



Figure 7. The Plasma Ratio of AG:UAG and Hippocampal GOAT Is Reduced in Humans with PD Dementia

(A) Plasma AG:UAG ratio in healthy controls (n = 20), PD (n = 20), and PDD (n = 8) patients under fasting and post-prandial conditions. Dotted line indicates

breakfast consumption at time 0.

(B) Area-under-the-curve (AUC) values demonstrate a significant reduction in AG:UAG ratio in control versus PDD and PD versus PDD groups.

(C) Correlation of cognition (MoCA score) with plasma AG:UAG (AUC). Statistical analysis was performed by Kruskal-Wallis test with Dunn’s multiple comparison

and Spearman correlation analysis (two-tailed).

(D–F) Analysis of plasma free fatty acid substrates; caproic acid (C6) (D), octanoic acid (C8) (E), and capric acid (C10) (F) revealed no differences between groups.

The ratio of each analyte was normalized to the internal standard, nonanoic acid (C9).

(G) BaseScope analysis of human hippocampal tissue identified ghrelin receptor (GHS-R1a1zz) mRNA within the dentate gyrus (red dots, top panel, white

arrowheads). Scale bar, 20 mm. Internal control mRNA probe PPIB1zz is also shown (red dots, bottom panel, white arrowheads).

(H) GHS-R1a mRNA was not altered in PD or PDD brain. Statistical analysis was performed using a one-way ANOVA with the Tukey multiple-comparison test

(n = 5–7/group).

(I and J) WB analysis of GOAT in hippocampal homogenates (I) identified a significant reduction in PD and PDD subjects (J) (n = 6/group).

(K and L) IHC analysis of GOAT immunoreactivity (brown, white arrowheads) in hippocampal GCL (K) identified a significant reduction GOAT+ cell number in PDD

subjects (L) (n = 5–6/group). Scale bar, 25 mM. Statistical analysis was performed by Kruskal-Wallis test with Dunn’s multiple comparison.

All data shown are mean ± SEM. *p < 0.05, **p < 0.01.
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BrdU+/Dcx+ adult-born immature neurons in GOAT�/� mice.

Intriguingly, there was a reduction of new BrdU+/Dcx– adult-

born cells in UAG-treatedWTmice and GOAT�/�mice, suggest-

ing that UAG may play an important role in regulating new astro-

glial or new NSPCs in the hippocampus. Notably, the number of

type II NSPCs was similar in both WT and GOAT�/� mice, sug-

gesting that the genetic ablation of GOAT during development

does not impair the generation of NSPCs in the hippocampal

niche.

Analysis of other plasticity related markers also revealed

changes consistent with impaired hippocampal function. These

changes included a reduction in the number of c-Fos+ cells

within the DG in UAG-treated WT and GOAT�/� mice. Moreover,

analysis of dendritic spines, which are essential for synaptic

plasticity, revealed a reduction in the number of ‘‘stubby’’ spines

present on hippocampal neurons fromGOAT�/�mice. As neuro-

genesis, IEGs, and dendritic spines are important for brain plas-

ticity and new memory formation, our data suggested impair-

ments to hippocampal-dependent learning and memory.

Indeed, hippocampal-dependent spatial memory testing re-

vealed a performance deficit in GOAT�/� mice relative to WT

mice. Recent studies suggest that acyl-ghrelin induces expres-
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sion of plasticity related proteins, the NR2B subunit of the

NMDA receptor,47 and the GluA1 AMPA receptor subunit48 to

promote synaptic transmission and LTP. Our data suggest that

acute 1 h acyl-ghrelin treatment is not sufficient to trigger

changes that promote learning and memory. However, 7 days

of daily acyl-ghrelin treatment significantly improved perfor-

mance levels of GOAT�/� mice to WT levels. In addition, the

rescue of spatial memory performance remained partially intact

when tested 21 days after the final acyl-ghrelin injection. The

long-term rescue of spatial memory, long after acyl-ghrelin has

cleared the circulation, is consistent with longer-term changes

in hippocampal plasticity such as AHN20 and increased c-Fos-

mediated transcriptional programs that support memory.14

However, further cellular analysis of new adult-born neurons

coupled with testing behavioral ‘‘pattern separation’’ perfor-

mance, that places emphasis on distinguishing similar but

distinct spatial contexts, is required to fully elucidate the behav-

ioral consequences of the acyl-ghrelin-mediated rescue of AHN

in GOAT�/� mice.

We recently showed in mice that the acyl-ghrelin receptor,

GHS-R, is expressed on mature DG neurons but not NSPCs.14

This finding was further substantiated by single-cell RNA
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sequencing (RNA-seq) of distinct hippocampal cell populations

that report GHS-R expression in mature granule neurons but

not in NSPCs.49 We therefore propose that acyl-ghrelin pro-

motes hippocampal neurogenesis in a non-cell-autonomous

manner.22,50 To validate this, we show that acyl-ghrelin treat-

ment of hippocampal NSPCs in vitro had no effect on cell prolif-

eration—a result that was consistent with the absence of detect-

able GHS-R expression in these cells (Figure S7). To determine

whether acyl-ghrelin and UAG directly affect the hippocampus,

we treated primary hippocampal cultures, which contain amixed

population of cells, including neurons and NSPCs (Figure S6).

These studies demonstrated that acyl-ghrelin, but not UAG,

stimulated cell division and enhanced the survival of newly

divided cells in a GHS-R-dependent manner. More strikingly,

UAG was able to inhibit the neurogenic effect of acyl-ghrelin

in vitro, which is consistent with the inhibitory effect of UAG on

neurogenesis in WT mice. However, while UAG inhibited the

neurogenic effect of acyl-ghrelin in vitro, when given alone it

did not reduce basal hippocampal cell division, suggesting that

UAG may induce additional extra-hippocampal changes to

reduce neurogenesis in mice. Nonetheless, our in vitro studies

confirm that UAG inhibits the pro-neurogenic effect of acyl-ghre-

lin signaling in hippocampal cells and suggest that ghrelin, via

post-translational regulation, can fine-tune neurogenesis and

cognition in both positive and negative directions.

As several soluble neurotrophic factors are known to promote

neurogenesis within the hippocampal niche, we reasoned that

acyl-ghrelin may stimulate the production and/or release of

such factors to promote neurogenesis. One such diffusible factor

that promotes neurogenesis51 and memory45 is BDNF. Indeed,

we show that BDNF mRNA was significantly increased in both

primary hippocampal cells (Figure 6A) and in granule cells of

the rostral, but not caudal, DG of adult mice (Figures 6B and

6C) following treatment with acyl-ghrelin. Notably, the rostral

pole of the DG is linked with regulation of spatial learning and

memory.52 To determine whether acyl-ghrelin regulates the sur-

vival of newborn hippocampal cells via BDNF, we collected the

conditioned media from treated primary hippocampal cultures

and incubated them with hippocampal NSPCs. This culture

method is well suited for testing this hypothesis as GHS-R is

not expressed in NSPCs. We demonstrate that conditioned me-

dia collected from acyl-ghrelin treated primary hippocampal

cells significantly increased the number of surviving newborn

cells when incubated with hippocampal NSPCs. Notably, the

pro-survival effect of conditioned media collected from acyl-

ghrelin treated primary cells was completely blocked by the

addition of a BDNF-neutralizing antibody to the hippocampal

NSPC cultures (Figures 6E and 6F). These data suggest

that acyl-ghrelin supports neurogenesis, at least in part, via

increased hippocampal BDNF signaling.

With the findings of our pre-clinical studies in mind, the reduc-

tion in NSPC and immature neuron number in the DG of humans

diagnosed with PDD11 and the impaired performance of PD pa-

tients in an Object Pattern Separation task, we reasoned that

ghrelin signaling may be impaired in PDD.53 Therefore, we quan-

tified plasma acyl-ghrelin in cognitively intact PD, PDD, and

healthy control subjects and reported no difference between

groups under fasted and fed conditions. Similarly, several circu-
lating factors that have been reported to modulate neurogenesis

and cognition, including leptin, GH, and IGF-1, were unchanged.

However, quantification of total ghrelin revealed a significant

reduction in the AG:UAG ratio in the PDD group compared to

both PD and control groups. This is in contrast to previous re-

ports of a reduction in circulating acyl-ghrelin in PD subjects.54,55

This difference may be explained by our stratification of PD

groups by cognitive performance. These findings are consistent

with our data from pre-clinical studies demonstrating that

elevated levels of UAG had detrimental effects on hippocampal

neurogenesis and spatial memory.

Longitudinal studies are required to elucidate whether the

AG:UAG ratio may represent a prognostic PDD biomarker. In

addition, more extensive analysis of larger cohorts are needed

to understand the role of AG:UAG in clinically distinct popula-

tions of patients diagnosed with dementia. As biomarkers are

important for precision-medicine-based targeted therapies in

dementia, the need for blood-based biomarkers to complement

the high cost and invasive CSF and PET markers of amyloid-b

and Tau proteins are eagerly anticipated.56 Our findings identify

a possible blood-based biomarker associated with dementia

and emphasize the importance of assessing post-translational

modifications in patient cohorts.

Interestingly, acyl-ghrelin treatment of GOAT�/� mice, which

have high levels of UAG, restored learning and memory perfor-

mance to control levels. We therefore speculate that raising

the circulating AG:UAG ratio may ameliorate cognitive decline

in PDD patients via restoration of hippocampal plasticity and

pro-neurogenic signaling. Supporting this view, we show that

GHS-R1a mRNA is expressed in the DG of adult humans (Fig-

ure 7G). There were no statistically significant changes across

control, PD, and PDD cohorts; however, there was an almost

doubling of the mean GHS-R1a mRNA expression levels in

PDD versus control brain (Figure 7H). This change may reflect

a homeostatic response to the reduction in plasma AG:UAG

and therefore attenuated hippocampal ghrelin-signaling in

PDD. These data demonstrate that the hippocampal ghrelin-re-

ceptor is present in PDD brain and that elevation of the plasma

AG:UAG ratio should, in principle, result in activation of pro-

neurogenic hippocampal GHS-R1a signaling. Impairments in

hippocampal GHS-R1a signaling were recently identified in

5xFAD mice and in post-mortem human Alzheimer disease tis-

sue. Notably, co-activation of GHS-R1a/DRD1 rescued synaptic

andmemory deficits in 5xFADmice.57 We show that the levels of

octanoic acid, required for the post-translational formation of

acyl-ghrelin, were unaltered in PDD plasma (Figures 7D–7F).

Therefore, we speculate that enzyme activity for the acylation

and/or de-acylation of ghrelin may be impaired in PDD leading

to a reduction in the AG:UAG ratio. Of interest, recent studies

indicate that ghrelin undergoes tissue-dependent acylation,

including within the hippocampus, to support acyl-ghrelin

signaling.36,58 To understand the potential for UAG to undergo

tissue-dependent acylation, we quantifiedGOAT levels in the hu-

man hippocampus. Using crude hippocampal lysates, we show

a significant reduction in GOAT protein expression in both PD

and PDD brain (Figures 7I and 7J). Subsequently, we quantified

the number of GOAT+ cells within the GCL on brain tissue sec-

tions to reveal a reduction that was specific to the PDD
Cell Reports Medicine 1, 100120, October 20, 2020 11
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hippocampus (Figures 7K and 7L). Therefore, our studies sug-

gest that a reduction in plasma AG:UAG, coupled with the

inability of hippocampal cells to acylate UAG (via GOAT), leads

to reduced GHS-R1a signaling in the GCL and cognitive deficits

manifest in PDD. Of note, rodent toxin-based and genetic-based

models of PD16-18 have impaired hippocampal plasticity,

including neurogenesis. In future, these pre-clinical models

may be valuable tools in determining whether GHS-R1a agonists

or compounds that inhibit ghrelin de-acylation can rescue hippo-

campal plasticity and cognitive function.

In summary, we describe how a post-translational modifica-

tion to a circulating factor modulates, in either direction, neuro-

genesis and cognition in mice. In addition, the reduction in circu-

lating AG:UAG ratio correlated with dementia in human

neurodegenerative disease. The findings extend our

understanding of how adult brain plasticity is regulated by

circulating factors and suggest that manipulating the post-trans-

lational acylation of plasma ghrelin may offer therapeutic oppor-

tunities to ameliorate cognitive decline in human neurodegener-

ative disease.

Limitations of Study
The plasma diagnostic biomarker data presented are from rela-

tively small cohorts. Further studies are needed, with increased

sample size, to validate our findings. Also, it is not known

whether the reduction in AG:UAG is specific to PDD or whether

it represents a broader measure of dementia in humans. Signif-

icant additional data are required to test these possibilities in

distinct dementia phenotypes. Similarly, it remains to be seen

whether the use of highly sensitive analytical chemistry tech-

niques (i.e., liquid chromatography-mass spectrometry [LC-

MS]) will provide greater insight into the biochemical composi-

tion of ghrelin species in plasma from individuals diagnosed

with dementia. Nonetheless, we provide a possible mechanistic

link between circulating ghrelin, hippocampal function, and PDD

in humans.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat anti-BrdU BioRad MCA6143: RRID: AB_2868611

Goat anti-Dcx (C-18) Santa Cruz Biotechnology sc-8066; RRID: AB_2088494

Rabbit anti-Sox2 Abcam ab97959; RRID: AB_2341193

Mouse anti-S100b Sigma S2532; RRID: AB_477499

Rabbit anti-Ki67 Abcam ab16667; RRID: AB_302459

Rabbit anti-GOAT antibody Phoenix Pharmaceuticals G-032-12; RRID: AB_2868614

Rabbit anti-GAPDH Sigma G9545; RRID: AB_796208

Rabbit anti-c-Fos Santa Cruz SC-52; RRID: AB_2106783

Rabbit anti-BDNF Millipore AB1779SP; RRID: AB_90994

Goat anti-GFAP BioRad AHP1468; RRID: AB_2294553

Rabbit anti-Sox2 Abcam ab97959; RRID: AB_2341193

Mouse anti-NeuN Millipore MAB377; RRID: AB_2298772

Donkey anti-Goat AF-568 ThermoFisher A11057; RRID: AB_2534104

Donkey anti-Mouse AF-568 ThermoFisher A10037; RRID: AB_2534013

Donkey anti-rat AF-488 Life Technologies A-21208; RRID: AB_2535794

Goat anti-rabbit AF-568 Life Technologies A-11036; RRID: AB_10563566

Goat anti-mouse AF-488 Life Technologies A-11001; RRID: AB_2534069

Biotinylated goat anti-rabbit Vectorlabs BA-1000; RRID: AB_2313606

Biotinylated donkey anti-goat ThermoFisher PA1-28663; RRID: AB_10980902

Biological Samples

Hippocampal brain tissue sections (for Basescope assay). PUK Brain Bank at Imperial

College London (ethical

approval: 07/MRE09/72)

N/A

Healthy controls (n = 5); Age (mean ± SD) 73.2 ± 24.27; Males 40%

PD (n = 7); Age (mean ± SD) 78.43 ± 5.798; Males 57.14%

PDD (n = 5); Age (mean ± SD) 80.6 ± 1.673; Males 40%

Hippocampal brain tissue sections (for IHC assay). PUK Brain Bank at Imperial

College London (ethical

approval: 07/MRE09/72)

N/A

Healthy controls (n = 5); Age (mean ± SD) 73.2 ± 24.27; Males 40%

PD (n = 6); Age (mean ± SD) 80 ± 5.292; Males 50%

PDD (n = 6); Age (mean ± SD) 77.33 ± 8.14; Males 50%

Hippocampal brain tissue (for WB assay). PUK Brain Bank at Imperial

College London (ethical

approval: 07/MRE09/72)

N/A

Healthy controls (n = 6); Age (mean ± SD) 88 ± 5.865; Males 50%

PD (n = 6); Age (mean ± SD) 81.83 ± 6.432; Males 66.66%

PDD (n = 6); Age (mean ± SD) 81.83 ± 6.432; Males 66.66%

Human plasma samples; Clinical Aging Research Unit,

Newcastle University (ethical

approval: 14/NE/0002)

N/A

Healthy controls (n = 20); Age (mean ± SD) 74 ± 6.28; Males 55%

PD (n = 20); Age (mean ± SD) 72.2 ± 5.51; Males 55%

PDD (n = 8); Age (mean ± SD) 74.75 ± 5.99; Males 87.5%

Chemicals, Peptides, and Recombinant Proteins

B27 ThermoFisher 17504

GlutaMax ThermoFisher 35050

L-glutamine ThermoFisher 25030081

Neurobasal media ThermoFisher 21103

Penicillin-streptomycin-fungizone ThermoFisher 15240062

Phosphate Buffered Saline ThermoFisher 10010031

Poly-l-ornithine Sigma P4957

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Laminin AMS Bio 3400-010-02

DMEM F12 ThermoFisher 21331

Poly-d-lysine Sigma P6407

Accutase Millipore SCR005

N2 ThermoFisher A1370701

Trypan Blue ThermoFisher 15250061

[D-Lys3]-GHRP-6 Tocris 1922

Acyl-ghrelin Tocris 1465

Ethylene glycol Sigma 324558

Glycerol Sigma G5516

bFGF Peprotech 100-18B

ImmPACT� DAB Vectorlabs SK-4105

Sample loading buffer BioRad 1610747

ECL Select GE Healthcare RPN2235

Prolong-gold anti-fade solution Life Technologies P36930

[D-Lys3]-GHRP-6 Tocris 1922

Acyl-ghrelin (rat) Tocris 1465

Des-octanoyl-ghrelin Tocris 2951

Ethylene glycol Sigma 324558

Glycerol Sigma G5516

bFGF Peprotech 100-18B

AEBSF Sigma Aldrich A8456

Ethanol > 99.5% Sigma Aldrich 459836

Gill’s hematoxylin Vectorlabs H-3401-500

Vectamount mounting media Vectorlabs H-5000

Superfrost+ slides VWR, France 631-0108

Bio-Plex Sheath Fluid BioRad 171-000055

Vacutainer� EDTA-plasma tubes VWR, France 6450

Critical Commercial Assays

EdU detection kit ThermoFisher C10350

RNA scope 2.5 Red Assay ACD Bio 322360

RNA scope BDNF probes ACD Bio 461591

Milliplex-MAP 6-plex mouse cytokine magnetic bead panel kit Millipore SPR402

Milliplex MAP Kit - Human Metabolic Hormone Magnetic Bead Panel Millipore HMHEMAG-34K

EdU Click-IT assay ThermoFisher C10337

AllPrep DNA/RNA/Protein mini kit QIAGEN 80204

Pierce BCA Protein Assay Kit ThermoFisher 23227

VectaStain Elite ABC-HRP Kit Vectorlabs PK-6100

Human Ghrelin (Total) ELISA Millipore EZGRT-89K

Human Ghrelin (Active) ELISA Millipore EZGRA-88K

Human IGF-1 DuoSet ELISA R&D Systems DY291

Human GH DuoSet ELISA R&D Systems DY1067

BaseScope Reagent Kit - RED Advanced Cell Diagnostics 322900

BaseScope Probe – BA-Hs-GHSR-tv1a-E1E2 Advanced Cell Diagnostics 709121

FD Rapid GolgiStain Kit FD Neurotechnologies Inc. PK401A

Experimental Models: Cell Lines

Rat hippocampal primary cells ThermoFisher A1084101

Rat neural stem/progenitor cell-line Hsieh Lab Palmer et al.46

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

GOAT�/� mice: 12-week old male mice on a C57BL/6 genetic

background were maintained at Monash University, Australia, with

approval from the Monash University Animal Ethics Committee.

Regeneron Pharmaceuticals

(Tarrytown, NY, USA)

Bayliss et al.37

GOAT�/� mice: 6-month old male mice on a C57BL/6 genetic

background were maintained at Cardiff University, UK, with approval

from the UK Animals (Scientific Procedures) Act 1986.

Taconic Farms (Hudson,

NY, USA)

Hopkins et al.36

Ghrelin�/� mice 5-month old female mice on a C57BL/6 genetic

background were maintained at Cardiff University, UK, with approval

from the UK Animals (Scientific Procedures) Act 1986.

Dr Yuxiang Sun lab

(Texas A&M, TX, USA)

Sun et al.38

Oligonucleotides

Total BDNF mRNA oligos (NCBI: M61178) PrimerDesign, UK This paper

F: CGAGAGGTCTGACGACGACG

Total BDNF mRNA oligos (NCBI: M61178) PrimerDesign, UK This paper

R: GCGTCCTTATGGTTTTCTTCGTTG

Software and Algorithms

GraphPad Prism 8.0 https://www.graphpad.com/ N/A

ImageJ https://www.imagej.nih.gov/ N/A

QuPath https://qupath.github.io N/A

Bio-Plex Manager v4.1 Bio-Rad N/A

ImageLab Software v4.1 (ChemiDoc XRS) BioRad N/A

Other

In Cell Analyzer 2000 GE N/A

Nikon Eclipse 50i microscope Nikon N/A

Fluorescent microscope (Axioscope) Zeiss N/A

Confocal microscope (LSM710 META). Zeiss N/A

Axio Scan.Z1 Zeiss N/A

LTQ Orbitrap XL Thermo Scientific N/A

CM1900 Cryostat Leica N/A

Freeezing-stage microtome (MicroM) ThermoScientific N/A

POLARstar Omega plate reader BMG Labtech N/A

Bioplex-200 System Bio-Rad N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeff Da-

vies (jeff.s.davies@swansea.ac.uk).

Materials Availability
This study did not generate unique reagents.

Data and Code Availability
This study did not generate datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Approvals
The animal procedures described, including those involving genetically modified animals, conformed to the UK Animals (Scientific

Procedures) Act 1986 and the Monash University Animal Ethics Committee guidelines. All procedures complied with the NC3Rs
Cell Reports Medicine 1, 100120, October 20, 2020 e3
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ARRIVE Guidelines on reporting in vivo experiments. The study involving humans was approved by Local Ethical Review (14/NE/

0002; IRAS project ID: 141456) at Newcastle University, consistent with the Mental Capacity Act 2005.

Animals
Six-month old homozygous GOAT null (GOAT�/�) mice and their WT (C57BL/6) littermate controls23 were imported from Taconic

Farms (Hudson, NY) and housed in the JBIOS animal facility (Cardiff University) under standard laboratory conditions (12h L:D cycle)

with food and water available ad libitum. Six-month old Ghrelin null (Ghrelin�/�) mice and their WT littermates29 were bred from het-

erozygous x heterozygousmating in the animal facility at Cardiff University under standard conditions (as above). Founder stockwere

a kind gift from Prof. Yuxiang Sun (Texas A&M University, College Station, USA). A second genetic model of GOAT ablation24 was

provided by Regeneron Pharmaceuticals. This GOAT�/� line was generated using Velocigene technology. TheGOAT gene sequence

(ATG-stop) was replaced with a lacZ reporter gene using the target vector, bacterial artificial chromosome (BAC). These mice orig-

inated from C57BL/6/129 targeted embryonic stem cells and mice were backcrossed onto a C57BL/6 mice background. Mice were

kept in standard laboratory conditions at Monash University with free access to food (chow diet, cat no. 8720610 Barastoc stock-

feeds, Victoria Australia), and water at 23�C in a 12-hour light/dark cycle and were group-housed to prevent isolation stress, unless

otherwise stated. The allocation of mice into groups was performed in a randomized manner and data collection was performed by a

person blind to the treatment conditions.

Rat Primary Hippocampal Cell Culture
Primary rat hippocampal cultures from the hippocampi of day-18 Fisher 344 rat embryos were grown in neurobasal media

(ThermoFisher, 21103), supplemented with B27 supplement (ThermoFisher, 17504), 200mM GlutaMax (ThermoFisher, 35050) and

25mML-glutamine (ThermoFisher, 25030081). Tissue culture plastic was coated with poly-d-lysine (Sigma, P6407) at a concentration

of 4.5mg/cm2. Cells were maintained at 37�C in a 5% CO2 humidified incubator.

Rat Hippocampal Stem Cells (HCN cells).
These cells, herein referred to as Neural Stem/Progenitor Cells (NSPCs), initially isolated and cloned from Fisher 344 rats, were a kind

gift from Prof Jenny Hsieh’s lab (University of Texas, San Antonio, USA). These cells were cultured in DMEM F12 (ThermoFisher,

21331), supplemented with N2 supplement (ThermoFisher, A1370701), GlutaMax (ThermoFisher, 35050061), Penicillin-strepto-

mycin-fungizone (ThermoFisher, 15240062) and 20ng/ml bFGF/FGF2 (Peprotech, 100-18B). Tissue culture plastic was coated

with 10 mg/ml Poly-l-ornithine (PLO) (Sigma, P4957) and 5 mg/ml laminin (AMS Bio, 3400-010-02). Cells were maintained at 37�C
in a 5% CO2 humidified incubator.

Human Brain
The brain tissue was collected by the PUK Brain Bank at Imperial College London with ethical approval (07/MRE09/72) and was used

in this study with consent following peer review. A total of 17 subjects were included in the BaseScope analysis. Post-mortem hip-

pocampal tissue sections were prepared from formalin fixed frozen tissue, cryo-sectioned (6-8um thick) and mounted onto Super-

frost glass slides. Brain tissue was prepared from healthy controls (n = 5), with no evidence of degenerative disease or cognitive

decline, participants diagnosed with PD (n = 7) and participants diagnosed with PDD (n = 5). All cases had a post-mortem interval

of < 24h. Upon arrival, sections were stored at �70�C and sections from across the anterior-posterior extent of the hippocampus

were visually determined for use in subsequent BaseScope assays.

METHOD DETAILS

UAG Infusion
Each mouse23 was fitted with an indwelling jugular vein catheter connected to a subcutaneous osmotic mini-pump (ALZET model

1007D) primed to deliver vehicle (sterile isotonic saline containing BSA (1mg/ml) and heparin (5U/ml) at 0.5ml/h) or UAG (48ug/

day) under isoflurane anesthesia. One day later all mice received an injection of thymidine analog, BrdU (50mg/kg i.p), to label dividing

cells. After seven days mice were re-anesthetized and killed by decapitation, the brains being excised whole and processed for

immunohistochemistry (IHC) as described below.

Tissue Collection
Whole brain was removed and immediately fixed by immersion in 4% paraformaldehyde (PFA) in 0.1M phosphate buffer (pH 7.4) for

24h at 4�C unless stated otherwise. Subsequently brains were cryoprotected in 30% sucrose solution (until sunk). Coronal sections

(30 mm) were cut into a 1:6 series along the entire rostro-caudal extent of the hippocampus using a freezing-stage microtome

(MicroM, ThermoScientific) and collected for IHC. All IHCwas performed on free-floating sections at room temperature unless stated

otherwise. A sub-set of 12-week old GHSR�/� mice (see Fig.S3) were terminally anesthetized and intra-cardially perfused with 4%

PFA prior to cryoprotection, as described above.
e4 Cell Reports Medicine 1, 100120, October 20, 2020
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Immunohistochemistry
For immunofluorescent analysis of BrdU+/Dcx+, sectionswerewashed three times in PBS for 5minutes, permeabilized inmethanol at

�20�C for 2 minutes and washed (as before) prior to pre-treatment with 2N HCl for 30 minutes at 37�C followed by washing in 0.1 M

borate buffer, pH8.5, for 10 minutes. Sections were washed as before and blocked with 5% normal donkey serum (NDS) in PBS plus

0.1% triton (PBS-T) for 60 minutes at room temperature. Sections were incubated overnight at 4�C in rat anti-BrdU (1:400, AbD Se-

rotec) and goat anti-Dcx (1:200, Santa Cruz Biotechnology, USA) diluted in PBS-T. Tissue were washed as before and incubated in

donkey anti-rat AF-488 (1:500, Life Technologies, USA) and donkey anti-goat AF-568 (1:500, Life Technologies, USA) in PBS-T for

30minutes in the dark. After another wash sections weremounted onto Superfrost+ slides (VWR, France) with prolong-gold anti-fade

solution (Life Technologies, USA).

For immunofluorescent analysis of Sox2, sections were treated as above with the exception of antigen retrieval being performed in

sodium citrate at 70�C for 1h (rather than 2N HCl or borate buffer) with subsequent blocking in 5% NGS. Immunoreactivity was de-

tected using rabbit anti-Sox2 (1:500, ab97959, Abcam) and goat anti-rabbit AF-568 (Life Technologies, USA). Nuclei were counter-

stained with Hoechst prior to mounting as described above.

For immunofluorescent analysis of Sox2+/ S100b+, sections were washed three times in PBS for 5minutes, permeabilised in meth-

anol for 2 minutes at �20�C and washed again (as above). Antigen retrieval was performed with sodium citrate buffer for 1 hour at

70�C, sections were washed as before and subsequently blocked with 5% normal goat serum (NGS) in PBS+0.1% Triton-X (PBS-T)

for 1 hour at room temperature. Sections were incubated overnight at 4�C in rabbit anti-Sox2 (1:1000, ab97959, Abcam) diluted in

PBST. Sections were washed as before and incubated in goat anti-rabbit AF-568 (1:500, Life Technologies) in PBST for 30minutes at

room temperature, in the dark. Following another wash step, sections were incubated for 1 hour at room temperature with mouse

anti-S100b (1:1000, S2532, Sigma) in PBST. Following another set of washes, sections were incubated in goat anti-mouse AF-

488 (1:500, Life Technologies) in PBST for 30 minutes at room temperature and protected from light. After a final wash sections

were mounted onto Superfrost+ Plus slides (VWR) with Prolong-gold anti-fade mounting solution (Invitrogen) and coverslipped.

For DAB-immunohistochemical analysis of Ki67, Sox2 and DCX labeling, sections were washed in 0.1M PBS (2x10mins) and 0.1M

PBS-T (1x10mins). Subsequently, endogenous peroxidases were quenched by washing in a PBS plus 1.5%H2O2 solution for 20 mi-

nutes. Sections were washed again (as above) and incubated in 5% NGS (NDS for DCX) in PBS-T for 1h. Sections were incubated

overnight at 4�C with rabbit anti-Ki67 (1:500, ab16667, Abcam), rabbit anti-Sox2 (1:1000, ab97959, Abcam) or goat anti-DCX (1:200

Santa Cruz Biotechnology, USA), in PBS-T and 2%NGS (NDS for DCX) solution. Another wash step followed prior to incubation with

biotinylated goat anti-rabbit (1:400 Vectorlabs, USA) for Ki67 and Sox2 or biotinylated donkey anti-goat (1:400 Vectorlabs, USA) for

DCX, in PBS-T for 70 minutes. The sections were washed and incubated in ABC (Vectorlabs, USA) solution for 90 minutes in the dark

prior to another two washes in PBS, and incubation with 0.1M sodium acetate pH6 for 10 minutes. Immunoreactivity was developed

in nickel-enhanced DAB solution followed by two washes in PBS. Sections were mounted onto superfrost+ slides (VWR, France) and

allowed to dry overnight before being de-hydrated and de-lipified in increasing concentrations of ethanol. Finally, sections were incu-

bated in Histoclear (2x3 mins; National Diagnostics, USA) and coverslipped using Entellan mounting medium (Merck, USA). Slides

were allowed to dry overnight prior to imaging.

For DAB-immunohistochemical analysis of c-Fos labeling, sections were washed and endogenous peroxidases quenched as

before. Sections were washed again (as above), before antigen retrieval in sodium citrate at 70�C for 1h and subsequent blocking

in 5% NGS in PBS-T for 1h. Sections were incubated overnight at 4�C with rabbit anti-c-Fos (1:4000, SC-52, Santa Cruz, USA) in

PBS-T and 2% NGS solution. Another wash step followed prior to incubation with biotinylated goat anti-rabbit (1:400 Vectorlabs,

USA) in PBS-T for 70 minutes. The sections were washed and incubated in ABC (Vectorlabs, USA) solution for 90 minutes in the

dark prior to another round of washing (as above) and subsequent tyramide signal amplification. Following incubation with bio-

tinylated tyramine (1:100) in PBS-T plus 0.1% H2O2 for 10 min, sections were washed in 0.1M PBS (1x10 mins) and 0.1M PBS-T

(2x10 mins), before a second 90 minutes ABC (Vectorlabs, USA) incubation, which was again performed in the dark. Sections

were then washed in 0.1M PBS (2x10 mins) and incubated with 0.1M sodium acetate pH6 for 10 minutes. Immunoreactivity and tis-

sue processing was performed as described above.

Quantification of Labeled Cells
Immuno-stained brain tissue was imaged by light microscopy (Nikon 50i) (for DAB), fluorescent microscopy (Axioscope, Zeiss) or

confocal microscopy (LSM710 META, Zeiss). Immunofluorescent cells were manually counted bilaterally through the z axis using

a3 40 objective and throughout the rostro-caudal extent of the granule cell layer (GCL). DAB-immunolabelled cells were quantified

using ImageJ software. Resulting numbers were divided by the number of coronal sections analyzed and multiplied by the distance

between each section to obtain an estimate of the number of cells per hippocampus (and divided by 2 to obtain the total per DG). For

quantification of immunoreactivity in GOAT�/� mice24 where there were only rostral DG sections available, cell number was divided

by the DG area and expressed as counts per mm2. All analyses were performed blind to genotype and treatment.

RNAscope ISH on Mouse Brain Tissue
RNAscope is a proprietary method of in situ hybridization (ISH) to visualize single RNA molecules per cell. The assay was performed

according to the manufacturer’s instructions, including all buffers if not otherwise stated (ACD Bio, RNAscope� 2.5 Red Assay,

322360). Briefly, male C57Bl6 mice (11-13 weeks old) were treated with acyl-ghrelin (300 mg/kg; i.p at 11.00h) before brains were
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collected 24h later for RNAscope assay. Coronal sections (30 mm) were cut using a freezing-stage microtome (MicroM,

ThermoScientific) along the entire rostro-caudal extent of the hippocampus and collected in a 1:12 series, immersed in cryoprotec-

tant (0.1M PBS containing 30% ethylene glycol, 20% glycerol) and stored at �80�C until use. Sections were first washed with TBS-

0.1%Tween20 (TBST) to remove residual cryoprotectant, followed by incubation in TBST-1.5% H2O2 for 20 minutes at RT. The

sections were subsequently rinsed in PBST andmounted onto SuperFrost Plus slides. Next, the slides were dehydrated in an ethanol

gradient (70%–100%) for 3 minutes each, then baked in a dry oven for 60 minutes at 60�C. Target retrieval was performed by incu-

bation in target retrieval buffer (1X) in a steamer for 15minutes, before washing with 100% ethanol. Pre-treatment protease digestion

was performed using the protease plus at 40�C for 30 minutes in the HybEz oven rack. After this, slides were incubated with the

probes: BDNF IXa (461591), positive control PPIB (313911), or the negative control DapB (310043), for 2 hours at 40�C. After this,
slides were washed with wash buffer (1X) and left in SSC buffer (5X) at RT overnight. Signal amplification was performed with

ACD bio amplification reagents (AMP1-6) in the HybEz oven. The stain was developed for 10 minutes using the Fast-RED A & B re-

agents (60:1). 50%Haematoxylin was used as a counter-stain to enhance visualization and contrast of the RNA puncta. VectaMount

was added per slide prior to coverslipping. Images were acquired using a light microscope (Nikon Eclipse 50i, 3 10 magnification)

and analyzed using the ImageJ software to quantify puncta per mm2 of GCL.

Golgi-Cox Analysis of Dendritic Spines
Impregnation of WT and GOAT�/� mouse brains with Golgi-Cox solution was performed using the FD Rapid GolgiStainTM Kit

(PK401A, FD Neurotechnologies Inc.) according to the manufacturer’s instructions. Briefly, freshly dissected brains were rinsed

withMilli-Q water to remove residual blood. The tissue was immersed in impregnation solution (equal volumes solution A and solution

B) and stored, in the dark, at room temperature for 2 weeks. Impregnation solution was replaced with fresh solution after the first 24h.

The tissue was transferred into solution C and stored, in the dark, at room temperature for 1 week. Solution Cwas replaced with fresh

solution after the first 24h of immersion. Brain tissue was subsequently frozen by slowly dipping the tissue into pre-cooled isopen-

tane, on dry-ice, for a few seconds. The tissue was placed on dry-ice for 1 minute, before being wrapped in foil and stored at�80�C.
Golgi-Cox impregnated brains were sectioned using a Leica CM1900 Cryostat (chamber temperature set to �15�C; cutting stage

temperature set to �10�C) at a thickness of 120mm and mounted onto glass slides that were rinsed in Solution C. Slides were dried

overnight at room temperature and protected from light. The slides were rinsed 2xwithMilli-Qwater, for 4minutes each, before being

placed in a mixture of 1 part Solution D, 1 part Solution E and 2 parts Milli-Q water (DEQ solution) for 10 minutes. Slides were dehy-

drated in a series of 50%, 75% and 95%EtOH for 4minutes each, followed by 4x 4minute incubations in 100%EtOH. Subsequently,

the slides were delipified in Histoclear 3x for 4 minutes, and coverslipped using Entellan mounting media.

Dendritic spines were analyzed using the Nikon Eclipse 50i microscope using a Nikon Plan 100x/1.25 oil objective. The images

were subsequently processed using ImageJ software in order tomanually count dendritic spines, selected from secondary branches

of apical dendrites. Spines were categorised into the following groups; mushroom, thin spine, stubby spine, branched and filopo-

dium, as described59,60. For each genotype, 4-8 dendritic segments per mouse were analyzed. The spine density was presented

as the number of spines per mm dendritic length.

Milliplex Plasma Analysis
Mouse plasma was analyzed using the Milliplex-MAP 6-plex mouse cytokine magnetic bead panel kit (Cat #SPR402), to analyze the

cytokines IL-6, eotaxin, fractakine, IL-10, RANTES and TNFa. The assay was performed according to the manufacturer’s guidelines.

All reagents were brought to room temperature (RT) before use in the assay. Plasma samples were thawed at 4�C and diluted 1:2 with

assay buffer. Antibody-immobilized beads were sonicated for 30 s and vortexed for 1 minute. 60ml from each antibody-bead vial was

added to themixing bottle provided and the final volumemade up to 3ml with assay buffer. Wash buffer (WB) was prepared bymixing

60ml 10X WB with 540ml deionized water. Serum matrix solution was prepared by adding 2ml assay buffer to the lyophilized serum

matrix. Subsequently, the mouse cytokine standard cocktail (Cat #MXM8070) was reconstituted with 0.25ml deionized water and a

1:5 serial dilution was made.

WB (200ml) was added to each well of the 96-well plate before it was sealed and agitated for 10 minutes at room temperature. The

WB was removed and 25ml of each standard or control was added to the appropriate wells and 25ml of assay buffer to the sample

wells. Next, 25ml of serummatrix was added to the background, standards and control wells, and 25ml of diluted plasma sample was

added into the sample wells. Following this, the mixing bottle containing the antibody-bead mixture was vortexed and 25ml was

added to each well. The plate was sealed, wrapped in foil and incubated at 2-8�C on a plate shaker for 16-18 hours.

After incubation, the well contents were removed (using a handheld magnet) and the wells washed twice with 200ml WB. Subse-

quently, 25ml of detection antibodies were added to each well, the plate was then sealed, covered with foil and incubated for 1h at

room temperature, with agitation. Next, 25ml Streptavidin-Phycoerythrin was added to each well and incubated for 30 minutes as

before. Finally, with a hand-heldmagnet, well contents were removed and the plate waswashed twicewith 200ml WB. 150ml of sheath

fluid (BioRad Bio-Plex Sheath Fluid, Cat #171-000055) was added to each well for 5 minutes with agitation. The plate was assessed

using a Bio-Rad Bioplex-200 System with Bio-Plex Manager 4.1 software.
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Behavioral Testing
To determine whether the neurochemical deficits observed in GOAT�/� mice resulted in impaired hippocampal-dependent spatial

memory and whether this could be rescued by acyl-ghrelin, adult 12 week-old WT and GOAT�/� mice (n = 6/group) were given daily

injections of either saline or acyl-ghrelin (300 mg/kg i.p) for 1 or 7 days prior to analysis of spatial memory using a Y-maze. This dose of

acyl-ghrelin was chosen as it has previously been shown to increase food intake. Injections were performed daily between 9-10am

when mice were in a fed state. A modified Y-maze task was used to assess spatial memory performance on day 1, 7 or 28 days after

the first acyl-ghrelin injection. All tests were performed in an experimental room with sound isolation and dim light. The animals were

carried to the test room for at least 1 hour of acclimation. Behavior was monitored using a video camera positioned above the ap-

paratuses and the videos were later analyzed by an experienced blinded researcher using video tracking software (CleverSys Inc,

Reston, VA, USA). The modified Y-maze measures spatial memory, as spatial orientation cues facilitate rodents to explore a novel

arm rather than returning to a previously visited arm61. This ethologically relevant test is based on the rodents’ innate curiosity to

explore novel areas and was chosen in these studies specifically because it does not require negative or positive reinforcers,

such as food rewards, as ghrelin is known to affect food intake and motivation. In addition, it has been validated as a hippocampal

relevant spatial task62, with impaired performance in different models of hippocampal damage. We used a Y-shaped gray Perspex

maze (30 cm x 10 cm x 16 cm) and each arm could be isolated by blocking entry with a sliding door. Sawdust from a mouse’s home

cage lined the maze during the trials and extra maze cues on the walls were placed 30-40 cm from the end of the arms to provide

spatial orientation cues. Behavior was tested across two trials, the first of which had one arm of the maze blocked off. Mice were

allowed to explore the reduced maze for 10 minutes and then returned to their home cage. The second trial was conducted 30 mi-

nutes after the first trial and both arms of the maze were opened. Mice were placed in the start (home) arm and allowed to explore the

full maze for 5minutes. All behaviors were recorded and analyzed using tracking software. Novel arm exploration was recordedwhen

all four feet of each mouse entered the novel arm. The apparatus was cleaned with 80% ethanol between each trial and each animal.

Proliferation and Survival Assays
To determine the effect of ghrelin on proliferation, primary hippocampal cells were seeded at a density of 5x104 cells per well for 24h

with the appropriate treatments (acyl-ghrelin or UAG). To assess whether this proliferative affect wasmediated by GHS-R, cells were

incubated with GHS-R antagonist D-Lys3 (1mM) 0.5h before acyl-ghrelin incubation. For the final 1h of treatments, half themedia was

removed and incubated with EdU (well concentration 10mM), prior to fixation with 4% PFA. To determine the effect of acyl-ghrelin on

survival, primary hippocampal cells were seeded at a density of 5x104 cells per well for 16h in the presence of 10 mM EdU. The next

day cells were rinsed thoroughly with PBS and incubated with appropriate treatments for 4 days, before being fixed with 4% PFA.

Proliferation/survival were assessed by EdU Click-IT assay (ThermoFisher C10337), counting the number of EdU-positive cells as a

proportion of Hoescht stained cells. Cells were imaged using a3 20 objective (InCell Analyzer, GEHealthcare) with 9 fields of view per

well. Each independent experiment was performed three times, with each treatment condition performed in triplicate.

To determine the effect of ghrelin and conditioned media on cell proliferation and survival the adult rat hippocampal stem cell line

(HCN) was used. These cells, herein referred to as Neural Stem/Progenitor Cells (NSPCs), initially isolated and cloned from Fisher 344

rats were a kind gift from Prof Jenny Hsieh’s lab (University of Texas, San Antonio, USA), were cultured in DMEM F12 (ThermoFisher,

21331), supplemented with N2 supplement (ThermoFisher, A1370701), GlutaMax (ThermoFisher, 35050061), Penicillin-strepto-

mycin-fungizone (ThermoFisher, 15240062) and 20ng/ml bFGF/FGF2 (Peprotech, 100-18B). Tissue culture plastic was coated

with 10 mg/ml Poly-l-ornithine (PLO) (Sigma, P4957) and 5 mg/ml laminin (AMS Bio, 3400-010-02). Cells were maintained at 37�C
in a 5% CO2 humidified incubator.

To examine the effect of conditionedmedia on the survival of newborn cells, NSPCswere seeded at a density of 5x104 cells per well

in a 96-well PLO/Laminin coated plate and incubated with EdU (10 mM) for 16h to label dividing cells. This time point coincided with

the end of primary hippocampal cells being treatedwith vehicle or acyl-ghrelin (1 mM) for 2 days. TheNSPCswerewashed three times

with PBS to remove residual media, and the vehicle (V-CM) or acyl-ghrelin (AG-CM) treated conditioned media was transferred from

the primary hippocampal cells to the NSPC cultures and incubated for 2 days. During this time, primary hippocampal cells were

treated with vehicle or acyl-ghrelin for a further 2 days. At this point the conditioned media was, once again, applied to the NSPCs

and incubated for a further 2 days. Following exposure to conditioned media for a total of 4 days, the NSPCs cells were fixed with 4%

PFA. The survival assay was performed in triplicate and assessed via the EdU Click-iT assay, as described above. Analysis was per-

formed using ImageJ software, with the number of EdU+ cells expressed as a proportion of DAPI+ cells.

Human Plasma Collection
All procedures involving human participants were performed at the Clinical Aging Research Unit, Newcastle University, with appro-

priate ethical approvals. 48 adults aged 60-85 were recruited; healthy controls (HC) (n = 20), PD (n = 20) and PDD according to level 1

Movement Disorder Task Force criteria for the diagnosis of PDD63 (n = 8). Montreal Cognitive Assessment (MoCA) wasR 26/30 for

HC and PD, and % 25/30 for PDD. Participants with unexplained weight loss, obesity, BMI < 18 or > 30, diabetes, gastrointestinal

disease, smoking, deep brain stimulation or non-selective anticholinergic medication were excluded. Participants were tested fasted

and off PD medication. Blood was drawn in the fasted state (0) and at 5, 15, 30, 60, 120 and 180 minutes following a standard

breakfast.
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Whole blood was collected into Vacutainer� EDTA-plasma tubes (Cat No: 6450) up to a volume of 7ml per tube and inverted gently

to prevent coagulation. Whole blood was transferred immediately to 3 cold centrifuge tubes; the first tube was used for quantification

of ghrelin and contained AEBSF (2mg/ml) to prevent proteinase activity. The second tubewas used for analysis of insulin, leptin, PYY,

IL-6, GLP-1 (active) and TNFa. These 2 separate tubes were centrifuged at 2000xg for 15 minutes at 4�C, resulting in 3 layers (top

plasma layer, mid white layer of leukocytes and a bottom layer of red blood cells). The top layer of plasma was carefully transferred

into sterile tubes (200ml aliquots), labeled with the date and identification number, and stored at �80�C. The third tube retained

platelet-rich plasma for the analysis of IGF-1 and GH, this fraction of blood was spun at 1000xg for 15 minutes at 4�C, aliquoted
and stored as stated above.

Blood samples for assessing acyl-ghrelin were treated with 4-(2-Aminoethyl)-benzenesulfonyl fluoride (A8456, Sigma Aldrich) to

prevent de-acylation and analyzed using a multiplex assay (Milliplex MAP Kit - Human Metabolic Hormone Magnetic Bead Panel

HMHEMAG-34K, Millipore), with additional beads to quantify leptin, insulin, IL-6, TNFa, PYY and GLP-1 active. Total ghrelin was

analyzed by ELISA (EZGRT-89K Millipore). For IGF-1 and GH, platelet-rich plasma samples were analyzed using Human IGF-1

DuoSet ELISA (cat. No. DY291, R&D Systems), and Human GH DuoSet ELISA (Cat. No. DY1067, R&D Systems), using half-volume

Nunclon Microwell 96-well plates. Area under the curve (AUC) was calculated for each analyte, however, plasma samples that were

below the standard range for GH and IGF-1 were excluded. Outliers were identified using the ROUT test (Q = 1%) and removed prior

to analysis using a Kruskall-Wallis test with Dunn’s post hoc multiple comparison.

BaseScope ISH on Human Brain Tissue
Sections were thawed at RT for five minutes, fixed with 10% NBF (Sigma Aldrich) for 1 h, then washed twice with PBS before dehy-

dration in increasing concentrations of ethanol. Sections were baked at 60�C for 30min to improve tissue adhesion to the glass sur-

face. BaseScope assay (Advanced Cell Diagnostics) was performed according to supplier guidelines. Pre-treatment conditions were

optimized as follows; Hydrogen peroxide for 10 min at RT; target retrieval reagent for 15 min at 100�C; dehydration in ethanol 100%

(Sigma Aldrich) for 3min. Sections were dried completely for 20min at 60�C, then protease IV was added to the dried slides for 30min

at 40�C. CustomBaseScope probes targeting humanGHS-R1a were applied for 2 h at 40�C as follows; for every case, sections were

incubated with negative (DABP) and positive (PPIB) probes as well as with GHS-R1a probes (Cat.no. 709121). After incubation, sec-

tions were stored overnight in freshly prepared 5x Saline SodiumCitrate (SSC) buffer pH 7.0 (from the 25x: 3MNaCl and 0.3MSodium

Citrate dehydrate in ddH20). The following day, sections were incubated with the remaining reagents: AMP0 (30 min at 40�C), AMP1

(15 min at 40�C), AMP2 (30 min at 40�C), AMP3 (30 min at 40�C), AMP4 (15 min at 40�C), AMP5 (30 min at RT) and AMP6 (15 min at

RT). Slides were rinsed twice with wash buffer between each incubation. A mixture of Fast Red A + B was prepared (1:60) and sec-

tions were incubated with the staining solution for 10 min at RT. Gill’s hematoxylin (Vector labs) counterstain solution (1:1 in ddH20)

was applied, then quickly rinsed and sections were left to dry for 30 min at 60�C. Dried sections were mounted using VectaMount

mounting media (Vector labs) and imaged the following day.

Tissue sections were digitised by whole slide-scanning using a Zeiss Axio Scan.Z1 at high resolution (0,11 to 0,15um/px), low to

none compression (15% to 0%) and3 40magnification. When necessary, the whole DGwas reconstructed using Adobe Photoshop

(Adobe System Incorporated). Each file was then loaded into the open-source software QuPath64, the DG was manually drawn in

each file and the area measured by the software; subsequently the stain was manually counted using the ‘‘counter’’ tool - each

red puncta corresponding to a single mRNA molecule. The number of puncta and area were recorded separately, and the density

(number of dots per area) in the three GHS-R1a-stained sections was averaged and divided by the density of the positive control

stain – in order to account for any difference in tissue quality and RNA preservation. Finally, data were exported to GraphPad Prism

(GraphPad Software Inc.) for statistical analysis using one-way ANOVA.

Immunohistochemistry of Human Brain Tissue
Fixed-frozen sections (controls n = 5, PD n = 6, PDD n = 6) stored at �80�C were quickly thawed at RT and fixed for 1 h in 10% NBF

(Sigma-Aldrich, UK) to improve adherence to the glass slide. Sectionswere incubated for 8min at RTwith 1%H2O2 (Sigma-Aldrich) in

PBST, before incubation for 20 min at RT with 10% normal goat serum (Sigma-Aldrich). This was followed by overnight incubation at

4�C with rabbit anti-GOAT antibody (1:500; Phoenix Pharmaceuticals, Germany). The following day, sections were incubated for 1 h

at RT with biotinylated anti-rabbit (1:500; Vector labs, UK) and subsequently for 1 h at RT with pre-mixed avidin-biotin complex (Vec-

tor labs, UK). ImmPactDAB (Vector labs, UK) was prepared according to manufacturer’s instructions and applied to the sections for

40 s before being washed away with tap water. Nuclei were counterstained for 60 s with Gill’s Haematoxylin 1:1 (Vector labs, UK)

before the sections were dehydrated and coverslipped using Entellan mounting media (Sigma-Aldrich, UK). Images were acquired

by whole slide scanning (as described above). Immunoreactive cells were manually counted within the GCL and the area measured

using QuPath software. All analysis was performed in a blinded manner.

Western Blot Assay of Human Brain Tissue
Frozen post-mortem hippocampal tissues were processed for western blot analysis. A total of 18 subjects were included in the

western blot analysis. Frozen hippocampal brain tissue (�250mg) was prepared from controls (n = 6), PD (n = 6) and PDD (n = 6).

All cases had a post-mortem interval of < 29h. Briefly, protein was extracted using the QIAGEN AllPrep DNA/RNA/Protein mini kit

according to manufacturer’s instructions (QIAGEN, 80204). Protein was quantified using the Pierce BCA Protein Assay Kit according
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to instructions (ThermoFisher, 23227) and the concentration of each sample standardized. Protein samples were combined with 4X

sample loading buffer (BioRad, 1610747) and made up to a final volume of 25 mL with water, boiled at 100�C for 5 mins and loaded

onto 10% acrylamide gels and separated by SDS-PAGE. The separated proteins were transferred from the gel to the PVDF mem-

brane (BioRad 1620177). The blots were subsequently incubated overnight at 4�C in TBST with 5% BSA with anti-GOAT (1:1000;

Phoenix Peptide) and anti-GAPDH (1:5000, Sigma) antibodies. Blots were visualized using the chemiluminescence method (ECL

Select, RPN2235; GE Healthcare) and levels were quantified using ImageLab Software v4.1 (ChemiDoc XRS, BioRad) and normal-

ized to GAPDH.

Free Fatty Acid Analysis using Mass Spectrometry
Free fatty acids were extracted from control, PD and PDD human plasma collected at baseline following an overnight fast, using a

method as described by Zhang et al.65. Briefly 100ml of plasma was added to 250ml of a solvent mixture (1M acetic acid:2-propanol:-

hexane (2:20:30)) containing 2.5mg internal standard (nonanoic acid), this was mixed vigorously by vortex followed by the addition of

250ml hexane (ratio of 2.5:1 (solvent mixture:sample)). The samples weremixed vigorously by vortex and centrifuged for 10minutes at

1100 x g, 4�C. The upper organic layer was removed into clean glass vials. A second extraction step was performed by the addition of

250ml hexane (ratio of 2.5:1, solvent mixture:sample). The organic layers were pooled and dried under N2 flow or under vacuum, re-

suspended in Chloroform/Methanol (2:1, v/v) and stored at�70�C. Samples were analyzed by direct infusion electrospray ionisation

mass spectrometry (ESI/MS) using the Thermo Scientific LTQ Orbitrap XL (in negative mode). Data was analyzed using Xcalibur

software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were carried out using GraphPad Prizm 6.0 for Mac. Data distribution were assessed using the Schapiro-Wilks

normality test. For normally-distributed data, comparison between two groups was assessed by two-tailed unpaired Student’s t test.

For multiple groups with one variable factor, a one-way ANOVA was used, and where there were two variable factors a two-way

ANOVA was used. Appropriate post hoc tests were used as described in the Figure legends. Data displaying non-Gaussian distri-

bution were analyzed by non-parametric tests, as described in the text. Spearman correlation (two-tailed) and linear regression anal-

ysis were used to determine the goodness-of-fit between plasma AG:UAG (AUC) and cognition (MoCA). Data are presented asmean

± sem. *, p < 0.05; **, p < 0.01; ***, p < 0.001 were considered significant.
Cell Reports Medicine 1, 100120, October 20, 2020 e9


	Unacylated-Ghrelin Impairs Hippocampal Neurogenesis and Memory in Mice and Is Altered in Parkinson’s Dementia in Humans
	Introduction
	Results
	UAG Inhibits Hippocampal Neurogenesis in Adult Mice
	UAG Reduces the Number of New Adult-Born Immature Neurons and Non-neuronal Cells in the Adult Hippocampus
	UAG and GOAT−/− Reduce Markers of Hippocampal Plasticity in Adult Mice
	Adult GOAT−/− Mice Display Hippocampal-Dependent Spatial Memory Deficits that Are Rescued by Acyl-ghrelin Treatment
	UAG Inhibits Acyl-Ghrelin-Mediated Hippocampal Cell Proliferation and New Cell Survival In Vitro
	Acyl-ghrelin Increases Survival of Newborn Hippocampal Cells via BDNF in a Non-cell-Autonomous Manner
	The Circulating Ratio of AG:UAG Is Reduced in PDD
	Levels of Circulating Medium-Chain Fatty Acid Substrates for GOAT Were Unchanged in PD and PDD
	Ghrelin Receptor Is Expressed in the Human DG and Is Unchanged in PD and PDD
	GOAT Expression Is Reduced in the Hippocampal GCL of PDD Brain

	Discussion
	Limitations of Study

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Experimental Model and Subject Details
	Study Approvals
	Animals
	Rat Primary Hippocampal Cell Culture
	Rat Hippocampal Stem Cells (HCN cells).
	Human Brain

	Method Details
	UAG Infusion
	Tissue Collection
	Immunohistochemistry
	Quantification of Labeled Cells
	RNAscope ISH on Mouse Brain Tissue
	Golgi-Cox Analysis of Dendritic Spines
	Milliplex Plasma Analysis
	Behavioral Testing
	Proliferation and Survival Assays
	Human Plasma Collection
	BaseScope ISH on Human Brain Tissue
	Immunohistochemistry of Human Brain Tissue
	Western Blot Assay of Human Brain Tissue
	Free Fatty Acid Analysis using Mass Spectrometry

	Quantification and Statistical Analysis



