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Abstract: Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is
no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD)
is a current replacement therapy option for ESRD patients until renal transplantation can be achieved.
One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms
involved in peritoneal damage include activation of the inflammatory and immune responses,
associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to
cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial
compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal
inflammation and membrane failure are strongly associated with additional problems in PD patients,
mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved
in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target
for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17
immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients,
IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental
studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to
PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in
peritoneal membrane injury during PD and other PD-associated complications.
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1. Introduction

Chronic kidney disease (CKD) is a devastating disease that affects 5–7% of the worldwide
population. Current treatments have limited effectiveness and only delay disease progression,
underscoring the need to develop novel therapeutic approaches to either stop or reverse progression.
Regardless of the underlying etiology, most CKD patients slowly progress to the permanent loss
of kidney function characterized by progressive and irreversible nephron loss and reduced renal
regenerative capacity, which is modulated by inflammation, leading to end-stage renal disease
(ESRD) [1]. For this reason, until renal transplantation can be achieved, these ESRD patients need
replacement therapies, such as peritoneal dialysis (PD) or hemodialysis.

Regarding PD, chronic exposure to conventional peritoneal dialysis fluids (PDF) has been related
to peritoneal dysfunction associated with loss of the mesothelial cell monolayer, submesothelial fibrosis,
vasculopathy, and angiogenesis [2,3]. Conventional PDF contain high glucose (ranging from 1.5%
to 4.25%) and high lactate concentrations as an osmotic gradient enhancer and a buffering agent,
respectively [4]. Importantly, glucose chemical instability during heat sterilization generates toxic
glucose degradation products (GDP), including methylglyoxal; glyoxal; 3-deoxyglucosone; and above
all, 3,4-dideoxyglucosone-3-ene [5–7]. Newer PDF, including biocompatible glucose-based solutions,
icodextrin, and taurin solutions, have been developed to reduce the deleterious effects of PDF exposure
on the peritoneal membrane (PM) [2,8]. The repeated exposure of the peritoneum to PDF and particularly
to GDP evokes several PM cellular and molecular responses in the PM. These include increased
peritoneal production of proinflammatory cytokines and advanced glycation end-products (AGEs)
that induce cell death, proangiogenic factors such as vascular endothelial growth factor (VEGF) and
transforming growth factor-β1 (TGF-β1), and other profibrotic factors [8,9]. This harmful environment
leads to an inflammatory response, cell death, phenotype changes, angiogenesis, and submesothelial
collagen accumulation (Figure 1). These phenomena lead to fibrosis and loss of PM function [2,3].
Episodes of infectious peritonitis, a common complication of PD, further contribute to these changes [10].
All these processes contribute to the loss of PM function and technique failure often found in long-term
PD patients [11].

Multiple lines of evidence point to the importance of immune cells in the pathogenesis of chronic
inflammatory disorders, including renal diseases and PD-related pathologies. In the peritoneal dialysate
effluent (PDE) of ESRD patients exposed to different conventional PDF, elevated proinflammatory
cytokine levels, together with interleukin (IL)-17A, IL-6, IL-1β, Tumor necrosis factor-α (TNF-α),
and TNF-like weak inducer of apoptosis (TWEAK), have been found [3,12–17], clearly showing
the involvement of inflammation in peritoneal damage induced by PDF exposure. Among these
inflammatory mediators, cytokine IL-17A has recently been proposed as a potential therapeutic target
for chronic inflammatory diseases [18,19].

In this review, we discuss the current data about IL-17A in ESRD patients on PD and in related
preclinical studies, addressing the cellular responses and molecular mechanisms triggered by IL-17A
and its potential contribution to peritoneal membrane pathophysiology (Figure 1).
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Figure 1. Processes involved in peritoneal damage by peritoneal dialysis: the exposure of peritoneal 
membrane to peritoneal dialysis (PD) treatment induces cellular and molecular responses, including 
inflammation, cell death, phenotype changes, angiogenesis, and submesothelial collagen 
accumulation, leading to membrane failure. The local production of interleukin (IL)-17A in the 
damaged peritoneum by immune infiltrating cells could contribute to amplification of the 
inflammatory response recruiting additional inflammatory cells in the peritoneal cavity. Moreover, 
other potential processes could be induced by IL-17A in the peritoneum, including angiogenesis, cell 
differentiation, and fibrosis (represented by segmented arrows). 

2. IL-17A: A Key Proinflammatory Cytokine and Therapeutic Target in ESRD Patients on PD 

IL-17A (usually referred only as IL-17) is the founding member of the IL-17 family of cytokines, 
which also includes IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F [20]. IL-17A is a 
pleiotropic cytokine that exerts mainly proinflammatory effects acting in concert with other 
pro-inflammatory mediators (notably, IL-1-β and TNF), although their molecular mechanisms can 
differ depending on cell type and pathological conditions [21–25]. The binding of IL-17A to its 
receptors IL-17RA/RC, expressed in many circulating and tissue cells, can activate several 
intracellular signals [26,27]. The most relevant downstream molecular pathways include 
mitogen-activated protein kinases (MAPKs) and the transcription factors nuclear factor-κB (NF-κB), 
activator protein 1 (AP-1), and CCAAT-enhancer-binding proteins (C/EBPs), leading to 
transcriptional activation of antimicrobial peptides, cytokines, and chemokines [28–32]. Firstly, we 
will discuss the origin of IL-17A in the peritoneum exposed to PDF and then the peritoneal 
responses to local production of IL-17A (Figure 1). 

2.1. IL-17A Producing Cells: Th17 Immune Cells and Other Cells Involved in PD-Induced Damage 

IL-17A is the hallmark cytokine of T helper (Th) 17 immune cells, but many other cell types 
produce IL-17A and their relative relevance depends on the pathological condition. 
IL-17A-producing cells include γδ T cells, mast cells, CD4+αβ T cells, invariant natural killer T 
(iNKT) cells, natural killer (NK) cells, CD8+ cells, innate lymphoid cells, and neutrophils, among 
others [29,33,34]. Here, we focus on the effects of these IL-17A-producing cells present in peritoneal 
damage (Figure 1). In peritoneal biopsies from ESRD patients, IL-17A immunostaining is found in 
submesothelial areas associated with the presence of inflammatory cell infiltration. These cells have 
been identified as Th17 lymphocytes (CD4+/IL-17A+), γδ T lymphocytes, neutrophils, and mast cells 
[35]. 

Figure 1. Processes involved in peritoneal damage by peritoneal dialysis: the exposure of peritoneal
membrane to peritoneal dialysis (PD) treatment induces cellular and molecular responses, including
inflammation, cell death, phenotype changes, angiogenesis, and submesothelial collagen accumulation,
leading to membrane failure. The local production of interleukin (IL)-17A in the damaged peritoneum
by immune infiltrating cells could contribute to amplification of the inflammatory response recruiting
additional inflammatory cells in the peritoneal cavity. Moreover, other potential processes could
be induced by IL-17A in the peritoneum, including angiogenesis, cell differentiation, and fibrosis
(represented by segmented arrows).

2. IL-17A: A Key Proinflammatory Cytokine and Therapeutic Target in ESRD Patients on PD

IL-17A (usually referred only as IL-17) is the founding member of the IL-17 family of cytokines,
which also includes IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F [20]. IL-17A is
a pleiotropic cytokine that exerts mainly proinflammatory effects acting in concert with other
pro-inflammatory mediators (notably, IL-1-β and TNF), although their molecular mechanisms can
differ depending on cell type and pathological conditions [21–25]. The binding of IL-17A to its
receptors IL-17RA/RC, expressed in many circulating and tissue cells, can activate several intracellular
signals [26,27]. The most relevant downstream molecular pathways include mitogen-activated protein
kinases (MAPKs) and the transcription factors nuclear factor-κB (NF-κB), activator protein 1 (AP-1),
and CCAAT-enhancer-binding proteins (C/EBPs), leading to transcriptional activation of antimicrobial
peptides, cytokines, and chemokines [28–32]. Firstly, we will discuss the origin of IL-17A in the
peritoneum exposed to PDF and then the peritoneal responses to local production of IL-17A (Figure 1).

2.1. IL-17A Producing Cells: Th17 Immune Cells and Other Cells Involved in PD-Induced Damage

IL-17A is the hallmark cytokine of T helper (Th) 17 immune cells, but many other cell types
produce IL-17A and their relative relevance depends on the pathological condition. IL-17A-producing
cells include γδ T cells, mast cells, CD4+αβ T cells, invariant natural killer T (iNKT) cells, natural killer
(NK) cells, CD8+ cells, innate lymphoid cells, and neutrophils, among others [29,33,34]. Here, we focus
on the effects of these IL-17A-producing cells present in peritoneal damage (Figure 1). In peritoneal
biopsies from ESRD patients, IL-17A immunostaining is found in submesothelial areas associated with
the presence of inflammatory cell infiltration. These cells have been identified as Th17 lymphocytes
(CD4+/IL-17A+), γδ T lymphocytes, neutrophils, and mast cells [35].
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2.1.1. Th17 Cells

Naïve CD4+ T lymphocytes can differentiate into different Th effector subpopulations, containing
the effector subtypes Th1, Th2, Th9, Th17, and Th22; follicular Th; and the regulatory T lymphocytes
(Treg cells) [36]. Each cell subtype is characterized by specific cytokine profiles and participates in
different physiological and pathological responses, but there is a great plasticity among them not
fully understood yet [37–40]. The specific Th cell differentiation is driven by the exact combination
of cytokines and activation of specific transcription factors [29,41–43]. In particular, human Th17
cells differentiate from naïve T cells under the influence of TGF-β1 and proinflammatory cytokines
(IL-1β, IL-6, and/or IL-21), mediated by the activation of the transcription factors signal transducer
and activator of transcription 3 (STAT3) and retinoid related orphan receptor γt (RORγt) and their
related genes including IL-23R [33,44–47]. Th17 cells secrete mainly cytokines of the IL-17 family,
especially IL-17A, and other Th17-specific cytokines, including IL-22, IL-26, and chemokine C-C motif
ligand (CCL)-20 [29,43,44,48,49]. Th17 cells have a critical role of in the clearance of extracellular
pathogens, but they also participate in the pathogenesis of several autoimmune and inflammatory
diseases, including psoriasis, rheumatoid arthritis, and multiple sclerosis [50], and other chronic
diseases, like CKD and cardiovascular pathologies, such as hypertension [51,52]. In the context of
the peritoneal damage, animal models of exposure to dialysis fluids showed a loss of Th17/Treg cell
balance (Th17 predominance) leading to peritoneal damage during PD [53]. Increased levels of Th17
cells were also observed in the peritoneal cavity or blood in other pathologies, such as arthritis [54]
and colitis [55].

2.1.2. γδ T Cells

Human IL-17A-producing γδ T cells are generated in the periphery and can be recruited to and can
accumulate in inflamed tissues, contributing to persistent inflammation [56]. IL-17A production by γδ

T cells is involved in antifungal immunity and in the onset of autoimmune disease [57,58]. Interestingly,
studies in murine models of hypertension identified γδ T lymphocytes as the main source of IL-17A in
hypertrophic hearts [59], kidneys, and aorta [60]. Moreover, IL-17A+ γδ T lymphocytes were observed
in the kidney of patients with hypertensive nephroangiosclerosis [61]. Currently, there are studies that
identified the presence of γδ T lymphocytes in the peritoneal cavity and its relationship with Th17
response. In a study in ovarian cancer, the authors demonstrated that γδ T cells are accumulated in
the peritoneal cavity in response to tumors and that these cells revealed preferential production of
IL-17A [62]. In other pathologies such as Mycobacterium bovis Bacillus Calmette–Guérin infection,
γδ T cells were identified as the main source of IL-17A in the peritoneal cavity during the early stages
of infection [63]. Similar results were observed in response to Escherichia coli infection in which γδ T
cells in the peritoneal cavity induced IL-17 production to mobilize neutrophils [64].

2.1.3. Neutrophils

In peritoneal biopsies of PD patients, a double positive staining for IL-17A and neutrophil markers
(such as myeloperoxidase) was found, suggesting that neutrophils may produce IL-17A [35]. In septic
peritonitis induced by E. coli infection, one study showed that higher numbers of polymorphonuclear
neutrophils accumulated in the peritoneal cavity of mice with a septic peritonitis episode and increased
their IL-17 expression during infection [65]. However, recent data suggest that cultured human
neutrophils do not express IL-17A, but that it may instead be released from neutrophil extracellular
traps (NETs) [33,66]. NETs are networks of extracellular fibers composed of cell-free DNA, histones,
and granular proteins, which are a central part of neutrophil host defense and inflammatory function [67].
Interestingly, there is a chemokine-dependent reciprocal crosstalk between neutrophils and Th17 cells,
mainly mediated by chemokines CCL-2 and CCL-20, the ligands for chemokine C-C motif receptor
(CCR)2 and CCR6 [68], suggesting an amplification of the inflammatory response. In this regard,
the IL-17/C-X-C chemokine receptor (CXCR)2 pathway recruits neutrophils in breast cancer [28].
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2.1.4. Mast Cells

Mast cells are immune cells originating in bone marrow that mature as tissue-resident cells in
mucosal and epithelial tissues, including the peritoneum [69]. IL-17A-positive mast cells may play a
crucial role in several inflammatory and immune-mediated diseases and cancer [70–72]. However,
a recent study demonstrated that primary human tissue mast cells do not produce IL-17A but capture,
store, and release bioactive exogenous IL-17A [73]. As neutrophils, mast cells can release IL-17A through
mast cells extracellular trap (MCET) formation [66]. Mast cells have been related to several PD-related
processes, such as inflammation and fibrosis, angiogenesis, immunity against bacteria (peritonitis
and sepsis), and omental tissue remodeling and cell recruitment [74–77]. Nevertheless, there is
controversy about the role of mast cells (deleterious or beneficial) in these processes. Some studies
suggest that mast cell impact on fibrosis and inflammation depends on the timing, strength, or type
(acute or chronic) of injurious stimulus [69,78]. In rats, chronic exposure to PDF resulted in an increased
number of mast cells in the omentum [79]. An upregulation of mast cells was found in patients
with chronic inflammatory peritoneal diseases, including peritonitis during PD, chronic appendicitis,
herniotomy, and fibrosis [80]. However, another study on peritoneal biopsies of PD patients showed
a reduced number of mast cells, with no correlation with time on PD, fibrosis, number of vessels,
or previous episodes of peritonitis [74]. This apparently contradictory data could be explained by
patient characteristics, the particular clinical situation at the time of tissue procurement, or the PDF
used, among other potential explanations also discussed by the authors [74]. Interestingly, in rats with
chronic renal failure induced by 5/6 nephrectomy, the number of peritoneal mast cells was significantly
increased with increased peritoneal fibrosis [81].

2.1.5. MAIT Cells

Recently, a new IL-17A-producing cell type was described: mucosal associated invariant T (MAIT)
cells [82]. MAIT cells, composing 10% of circulating CD4− T cells in adult individuals, express one of the
semi-invariant T-cell antigen receptors (TCR, vα7.2-Jα33) that relies on the identification of microbial
vitamin B metabolites link to the major histocompatibility complex (MHC) class I-like molecule MR1
on antigen-presenting cells. Also, MAIT cells are characterized by high expression of the ATP-binding
cassette subfamily B member 1 and antimicrobial specificity [82,83]. Several subtypes of MAIT cells
have been described, but all of them are CD161high IL-17-secreting CD8+ T cell subtypes, concluding
that these cells are able to produce IL-17 [82,84]. These cells are present in peritoneal cavity during
spontaneous bacterial peritonitis and contribute to peritoneal inflammation [85].

2.2. Role of IL-17A-Expressing Cells in CKD Patients

Independent of the cause, CKD is characterized by sustained inflammation and activation of
immune cells that contribute to disease progression [1]. A pioneer study showed that the in vivo delivery
of Th17 cells into mice resulted in rapid development of albuminuria, glomerular neutrophil infiltration,
and increased renal CXCL1 mRNA levels [86], suggesting a key role of IL-17A-producing cells in the
onset of renal damage, through inflammation modulation. Early experimental studies demonstrated
activation of the Th17 immune response in immune-mediated glomerulonephritis, including
anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis, and lupus nephritis [87,88]. Accordingly, patients with ANCA-associated vasculitis presented
elevated serum levels of IL-17A and other Th17-related cytokines, such as IL-23 [89], whereas in
ANCA-associated crescentic glomerulonephritis patients, only serum IL-17C but not IL-17A, F, or E
levels were increased [90]. In addition, high serum and urine IL-17A levels were found in patients with
systemic lupus erythematosus [91,92] and in other immune glomerulonephritis [93,94]. More recently,
preclinical and clinical studies have shown the involvement of IL-17A in nonimmune nephropathies,
including hypertensive [61,95] and diabetic nephropathy [96,97]. These experimental studies suggest a
local production of IL-17A in the kidney. This cytokine can act as the IL-17RA/RC expressed on different
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renal cells, such as mesangial, endothelial, and vascular smooth muscle cells and fibroblasts, to induce
several responses, including upregulation of proinflammatory and profibrotic factors, and phenotype
changes, as described in in vitro studies, and therefore could contribute to the progression of renal
damage [98]. In this sense, in human renal biopsies of hypertensive nephropathy patients, positive
IL-17A cells, mainly Th17 and γδ T cells, were found [61], suggesting the involvement of IL-17A
in the progression of human kidney diseases. Interestingly, circulating IL-17F has been recently
proposed as a systemic inflammatory protein associated with a 10-year risk of ESRD in diabetic patients,
being included in a robust kidney risk inflammatory signature (KRIS proteins) [99]. However, there is
controversy about the presence of elevated circulating and urinary IL-17A levels in diabetic patients
with or without renal damage [98].

PD patients present subclinical systemic inflammation, characterized by elevated levels of C
reactive protein (CRP); increased proinflammatory cytokines, including the Th17-related cytokine
IL-6 [100]; activated Th1/Th2 responses [101]; and deregulation in the Th17/Treg ratio [35,102].
An elevated number of circulating Th17 cells were found in ESRD and kidney-transplanted patients [103].
More recently, proteomic analyses showed that serum IL-17A levels are significantly higher in CKD
patients than in healthy controls [104]. Consistent with these findings, CKD stage positively correlated
with the Th17/Treg ratio and serum IL-17A levels whereas it negatively correlated with serum IL-10
levels. These correlations were most marked in patients who had the poorest response to hemodialysis
and PD treatments [102].

Regarding preclinical studies, several approaches using IL-17A-deficient mice or neutralizing
anti-IL-17A antibodies demonstrated protective effects in experimental renal diseases, including
unilateral ureteral obstruction [105], connective tissue growth factor (CTGF)-induced renal damage [106],
angiotensin II-induced hypertensive nephropathy [61], and diabetic nephropathy [96,98]. However,
genetic IL-17A deficiency did not attenuate CKD following subtotal nephrectomy in mice [107].
These findings suggest that IL-17A blockade should be further investigated prior to use it as a
therapeutic option in renal diseases.

2.3. Role of IL-17A-Expressing Cells in the Peritoneum Exposed to PDF

In recent years, evidence has emerged indicating that IL-17A-mediated inflammation could
contribute to peritoneal damage in experimental models of PDF exposure [35,108,109] as well as in
ESRD PD patients with long-term exposure to PDF [35]. Additionally, IL-17A is increased during
peritonitis episodes [35,110], as discussed later.

2.3.1. PDF-Induced Peritoneal Activation of Th17/IL-17A Axis in Preclinical Models

An early study showed that, in a murine model of chronic exposure to conventional PDF leading to
peritoneal fibrosis [111], the immune response was activated; was characterized by peritoneal infiltration
of Th17 and γδ T cells but no Th1 and Th2 cells; increased peritoneal expression of Th17-related
cytokines, such as IL-17A and IL-6; and activated Th17-related transcription factors, including RORγt
and STAT3 [35]. Importantly, peritoneal IL-17A protein levels correlated with peritoneal membrane
thickness [35]. Moreover, mice deficient in CD69, a leukocyte membrane glycoprotein that modulates
Th17 cell differentiation via the Janus kinase (JAK) 3/signal transducer and activator of transcription
(STAT) 5 signaling pathway, exposed to PDF [112] showed hyperactivation of the Th17 response and
increased IL-17A production in PDE, whereas interferon-γ (IFN-γ) and IL-4 levels were not altered.
Moreover, an anti-CD69 antibody mimicked the effects caused by CD69 deficiency in mice exposed to
PDF. The activated Th17 response was associated with exacerbated inflammatory and fibroproliferative
responses to PDF exposure [108]. In both models of PDF exposure, the contribution of IL-17A to the
peritoneal damage was demonstrated by using intraperitoneal neutralizing anti-IL-17A antibodies
that decreased peritoneal fibrosis [35,108]. Furthermore, bone marrow cell transplantation combining
double mutant mice deficient in Rag2 and γc combined with CD69 knockout mice demonstrated
that CD69 expression in the lymphocytic rather than in the bone marrow myeloid compartment
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was responsible for controlling Th17 cells [108]. In the same way, in uremic mice due to subtotal
nephrectomy, daily exposure to conventional PDF for 8 weeks resulted in increased CD4+/IL-17+ cells
in peritoneal cavity [109]. These experimental studies support the hypothesis of a deleterious effect
of IL-17A in the peritoneum by the modulation of the inflammatory and fibrotic response (Figure 1).
Interestingly, this study compared conventional and low-GDP bicarbonate/lactate-based PDF, showing
a large difference in inflammatory response. In uremic mice, a biocompatible low-GDP PDF increased
peritoneal recruitment of M1 macrophages, with higher levels of macrophage-related proinflammatory
cytokines and lower number of CD4+/IL-17+ cells, and was associated with better preservation of
PM integrity [109]. Although additional preclinical studies should confirm these observations, these
findings suggest that conventional PDF activated the peritoneal Th17 immune response, whereas
biocompatible PDF did not.

2.3.2. Local Production of IL-17A in Long-Term PD Patients

Several reports have described elevated peritoneal IL-6 levels in PD patients, and therefore, this
cytokine could act as a polarizing mediator of Th-17 cell differentiation [113–115]. An early study in 41
PD patients showed that IL-17A levels in PDE were increased and significantly higher in long-term PD
patients after 3 years of dialysis [35]. In peritoneal biopsies from these PD patients, submesothelial
IL-17A immunostaining was found mainly in inflammatory and fibrotic areas and correlated with
peritoneal fibrosis. By double confocal microscopy, IL-17A-expressing cells were identified as Th17 cells,
γδ lymphocytes, mast cells, and neutrophils [35]. Thus, the IL-17A response seems to be implicated in
peritoneal damage in PD and IL-17A levels in PDE could be used as a noninvasive biomarker of PM
damage in PD patients, but larger clinical studies should be performed to validate this hypothesis.

In PD patients, biocompatible PDF preserved PM integrity [116], displaying lower levels of
proinflammatory cytokines in PDEs [2,8]. As commented above, preclinical studies suggested that
novel biocompatible PDF did not activate Th17 immune responses [109]. However, IL-17A levels in
PDE from PD patients with novel biocompatible PDF should be evaluated.

3. Peritoneal Impact of IL-17A

Few studies have explored the effect of IL-17A in vivo in the peritoneum. In mice, a single
intraperitoneal administration of IL-17A resulted in a rapid increase of local levels of Granulocyte-colony
stimulating factor (G-CSF) and selective neutrophil accumulation [117]. In another study, intraperitoneal
IL-17A induced submesothelial inflammation, together with the presence of monocytes, CD3+ and
CD4+ T lymphocytes, and neutrophils, observed at 10 days. Moreover, weekly IL-17A intraperitoneal
injections for 35 days induced peritoneal fibrosis characterized by PM thickness associated with
fibronectin deposition and expression of myofibroblast markers, such as fibroblast-specific protein 1
(FSP-1) and α-smooth muscle actin (α-SMA) [35]. These data suggest a direct deleterious effect of long
exposure to IL-17A in the peritoneum, contributing to the peritoneal damage induced by PD (Figure 2).

3.1. IL-17A as a Mediator of Peritoneal Fibrosis through Activation of Inflammatory Pathways

Local tissue damage triggers an inflammatory response characterized by chemokine secretion and
immune cell recruitment. Mediators secreted from immune cells eventually drive tissue regeneration
and a transient local profibrotic response. However, failure of the reparative process may lead to
persistent inflammation, excessive extracellular matrix (ECM) deposition, and fibrosis [27]. There is
in vivo evidence supporting a profibrogenic role of IL-17A in pathological conditions associated with
inflammation [118]. Thus, in cultured dermal vascular smooth muscle cells and fibroblasts from
systemic sclerosis patients, IL-17A stimulated proinflammatory responses, ECM protein secretion,
proliferation, and migration [119,120], supporting the profibrotic role of IL-17A.
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Figure 2. Peritoneal changes due to long-term peritoneal dialysis fluids (PDF) exposure: initially,
chronic PDF exposure causes the recruitment of inflammatory cells into the submesothelial zone.
Among the infiltrating immune cells, there are several IL-17A-producing cells, such as Th17 cells,
γδ T cells, neutrophils, and others. The local production of IL-17A triggers the release of additional
pro-inflammatory mediators by infiltrating cells and resident peritoneal cells, including cytokines and
chemokines, therefore contributing to amplification of the inflammatory response. In long-term PDF
exposure, the loss of mesothelial monolayer and submesothelial thickness is associated with elevated
peritoneal IL-17A levels. This cytokine could also potentially promote fibrosis and angiogenesis in
the peritoneum.

Accordingly, the repeated exposure of the peritoneum to PDF elicits several cellular and molecular
responses in the PM, including activation of an inflammatory response, production of cytokines and
chemokines, and recruitment of inflammatory cells (Figure 2). As commented above, preclinical data
suggest that long-term exposure to PDF induced the presence of submesothelial IL-17A-producing
cells. Moreover, IL-17A could activate peritoneal cells to upregulate some proinflammatory cytokines,
like IL-6 or MCP-1, which contribute to persistent inflammation. This inflammatory response could
also trigger the production of profibrotic factors, indirectly contributing to fibrosis (Figure 2).

3.2. IL-17A in Mesothelial Cells

IL-17A binding to its receptor in mesothelial cells can induce proinflammatory responses.
In cultured human mesothelial cells, IL-17A activated the canonical NF-κB pathway and downstream
cytokines, including G-CSF [117] and the C-X-C chemokine GROalpha (also known as CXCL1) [121].
This proinflammatory response was increased in the presence of TNF-α [117]. In high-glucose
conditions, as occurs in response to conventional PDF exposure, mesothelial cells increased the
production of proinflammatory and profibrotic factors. Interestingly, high glucose activated the
TLR4/MyD88/NF-κB signaling pathway to induce inflammatory mediators, as MCP-1, in mesothelial
cells [122]. However, the role of TLR4 in IL-17A responses has not been evaluated.

The exposure of peritoneal mesothelial cells to PDF results in Mesothelial-to-Mesenchymal
Transition (MMT), a process characterized by phenotype alterations that induce a transition from
an epithelial to a mesenchymal migrative phenotype [123–127]. The mesothelial cells begin to lose
basolateral polarization and the expression of epithelial markers like cytokeratins, E-cadherins, and cell-
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junction proteins and acquire mesenchymal markers such as α-SMA, vimentin, VEGFA, Snail, collagens,
and fibronectin [123,128]. Different mediators are involved in PDF-induced MMT, including AGEs [129],
endotelin-1, growth factors, such as TGF-β1, VEGF, Gremlin-1 (GREM1), and CTGF/CCN2 as well
as proinflammatory cytokines like IL-6 [123,124,130–133]. Although to date there is no definitive
reported data, it is tempting to speculate that IL-17A may be a direct triggering stimulus of the MMT
process (Figure 3).

Biomolecules 2020, 10, x  9 of 36 

This proinflammatory response was increased in the presence of TNF-α [117]. In high-glucose 
conditions, as occurs in response to conventional PDF exposure, mesothelial cells increased the 
production of proinflammatory and profibrotic factors. Interestingly, high glucose activated the 
TLR4/MyD88/NF-κB signaling pathway to induce inflammatory mediators, as MCP-1, in 
mesothelial cells [122]. However, the role of TLR4 in IL-17A responses has not been evaluated. 

The exposure of peritoneal mesothelial cells to PDF results in Mesothelial-to-Mesenchymal 
Transition (MMT), a process characterized by phenotype alterations that induce a transition from an 
epithelial to a mesenchymal migrative phenotype [123–127]. The mesothelial cells begin to lose 
basolateral polarization and the expression of epithelial markers like cytokeratins, E-cadherins, and 
cell-junction proteins and acquire mesenchymal markers such as α-SMA, vimentin, VEGFA, Snail, 
collagens, and fibronectin [123,128]. Different mediators are involved in PDF-induced MMT, 
including AGEs [129], endotelin-1, growth factors, such as TGF-β1, VEGF, Gremlin-1 (GREM1), and 
CTGF/CCN2 as well as proinflammatory cytokines like IL-6 [123,124,130–133]. Although to date 
there is no definitive reported data, it is tempting to speculate that IL-17A may be a direct triggering 
stimulus of the MMT process (Figure 3). 

 
Figure 3. Mesothelial-to-mesenchymal transition in peritoneal damage by PDF: IL-17A produced by 
different cells can activate the nuclear factor-κB (NF-κB) pathway in mesothelial cells, driving the 
expression of regulated factors, such as IL-6. This cytokine can activate the janus kinase/signal 
transducers and activators of transcription (JAK/STAT) pathway leading to 
mesothelial-to-mesenchymal transition (MMT). Moreover, mesothelial cells change their pool gene 
expression as well as phenotype, increasing the motility of these cells and the deposition of collagens 
and fibronectin, thus promoting fibrosis. IL-17A might also activate resident fibroblasts as well as 
trigger MMT directly, but these processes have not been yet explored. 

Different signaling systems are involved in MMT. IL-17A promotes the peritoneal expression of 
IL-6 [35], which in a paracrine or autocrine manner binds and activates its receptor in mesothelial 
cells, engaging the JAK2/STAT3 pathway [114] and triggering MMT. On the other hand, TGF-β1 
activation of the Smad pathway promotes the expression of profibrogenic proteins and 
myofibroblast markers [130,134]. AGEs activate the RhoA/Rho kinase pathway, recruiting 
AP-1-mediated transcription of α-SMA. This pathway is active in human peritoneal mesothelial cells 
as demonstrated by using inhibitors of the RhoA/Rho kinase (Y27632) and curcumin, a compound 
that has been shown to inhibit AP-1 [129]. The production of reactive oxygen species (ROS) is also 
involved in MMT [135,136]. IL-17A activates these signaling systems, including RhoA/Rho kinase, 

Figure 3. Mesothelial-to-mesenchymal transition in peritoneal damage by PDF: IL-17A produced
by different cells can activate the nuclear factor-κB (NF-κB) pathway in mesothelial cells, driving
the expression of regulated factors, such as IL-6. This cytokine can activate the janus kinase/signal
transducers and activators of transcription (JAK/STAT) pathway leading to mesothelial-to-mesenchymal
transition (MMT). Moreover, mesothelial cells change their pool gene expression as well as phenotype,
increasing the motility of these cells and the deposition of collagens and fibronectin, thus promoting
fibrosis. IL-17A might also activate resident fibroblasts as well as trigger MMT directly, but these
processes have not been yet explored.

Different signaling systems are involved in MMT. IL-17A promotes the peritoneal expression of
IL-6 [35], which in a paracrine or autocrine manner binds and activates its receptor in mesothelial
cells, engaging the JAK2/STAT3 pathway [114] and triggering MMT. On the other hand, TGF-β1
activation of the Smad pathway promotes the expression of profibrogenic proteins and myofibroblast
markers [130,134]. AGEs activate the RhoA/Rho kinase pathway, recruiting AP-1-mediated transcription
of α-SMA. This pathway is active in human peritoneal mesothelial cells as demonstrated by using
inhibitors of the RhoA/Rho kinase (Y27632) and curcumin, a compound that has been shown to inhibit
AP-1 [129]. The production of reactive oxygen species (ROS) is also involved in MMT [135,136]. IL-17A
activates these signaling systems, including RhoA/Rho kinase, ROS production, and the MAPK cascade
in different cell types, such as vascular smooth muscle cells [30,31,137–139], but data on mesothelial
cells are lacking.

A majority of MMT responses converge in Snail expression, which is the principal driver
of mesothelial cell junction disruption and loss of basopolarity, leading to a mesenchymal
phenotype [128,140]. Among others, Snail expression is regulated by NF-κB, illustrating the key
role of this inflammatory transcription factor in MMT. In response to co-stimulation of TGF-β1 and
IL1-β, NF-κB activation is required for E-cadherin and cytokeratin downregulation in mesothelial
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cells [128]. Inhibition of transforming growth factor-activated kinase-1 (TAK1) blocks the MMT changes
caused by activation of NF-κB and Smad3 [141]. Moreover, the p38 MAPK signaling pathway modulates
the TAK1-NF-κB pathway [142]. The MAPK kinase (MEK)-extracellular signal-regulated kinase (ERK)
signaling pathway can also activate Snail expression. In this case, caveolin deficiency played a role in
mesothelial cell transdifferentiation through an overactivation of MEK-ERK signaling [143].

IL-17A is known to induce phenotype changes in several cell types. In cultured human tubular-
epithelial cells, these changes include loss of the epithelial marker E-cadherin and induction of a
myofibroblast-like morphology in a process known as epithelial-to-mesenchymal transition (EMT),
associated with proinflammatory and profibrotic factors upregulation [144]. IL-17-induced EMT
promoted lung cancer cell migration and invasion via the NF-κB signaling pathway [145]. We have
recently described that IL-17A also induced phenotype changes in vascular smooth muscle cells from
a contractile to a synthetic cell type, leading to changes in the secretome, including upregulation of
proinflammatory genes, like MCP-1 and IL-6. However, IL-17A did not increase ECM production in
vascular smooth muscle cells [146]. Moreover, other studies in these cells have shown that IL-17A
activates some MMT-related pathways, including ROS production, and activation of NF-κB and
protein kinases, including RhoA/Rho-kinase and the MAPK cascade [30,31,137–139]. Interestingly,
in experimental PDF exposure, the IL-17A blockade prevented the induction of MMT markers, such as
α-SMA, and peritoneal fibrosis [35,108]. Thus, future studies are needed to assess whether IL-17A can
directly induce MMT or can regulate this process in human mesothelial cells.

3.3. IL-17A in Peritoneal Fibrosis

Numerous preclinical studies have investigated the effect of IL-17A on experimental fibrosis
by using different approaches, including deleting the genes of the cytokine or its receptors
or blocking cytokine actions by neutralizing anti-IL-17A antibodies, but contradictory results
were found. The IL-17A blockade attenuated fibrosis in some experimental models, such as
lung [147–149], inflammatory skin [150], and intestinal fibrosis [151]. However, data of preclinical
kidney damage models showed that fibrosis may be both decreased or increased by IL-17A
inhibition/deletion [27,105,152,153]. Our group has demonstrated that systemic administration of
IL-17A in mice for 2 weeks increased blood pressure and induced kidney inflammation but had no
effect on renal collagen accumulation [61,146]. Consistent with these findings, a IL-17A neutralization
treatment did not improve angiotensin II-induced experimental renal or aortic fibrosis [61]. A possible
explanation could be a differential response to IL-17A in ECM production by different cell types.
In fibroblast cell lines, IL-17A increased ECM synthesis [27], but this was not the case in vascular
smooth muscle cells [146]. Several studies have observed that IL-17A responses can be modified in the
presence of other cytokines and growth factors, showing either synergistic proinflammatory effects on
endothelial cells [154] or an inhibitory effect on profibrotic responses on fibroblasts. In this respect,
in human systemic sclerosis skin fibroblasts, IL-17A reduced TGF-β1-induced collagen production and
α-SMA expression [155] and downregulated CTGF expression [156].

Additionally, the cell source of IL-17A and physio/pathological context may be relevant. In murine
bleomycin-induced pulmonary fibrosis, IL-17A+/γδ+ T cells prevented pulmonary fibrosis, apparently
through attenuation of interstitial inflammation and improving epithelial regeneration. In accordance,
γδ-deficient mice exhibited increased pulmonary inflammation and ECM deposition [157]. Neutrophils
are also a source of IL-17A production. At this point, it is important to highlight the possible
contribution of IL-17A to ECM degradation by regulating matrix metalloproteinases (MMPs), mainly
produced by neutrophils [153]. In experimental models of renal damage, IL-17 receptor knockout mice
presented exacerbated renal fibrosis associated with lower neutrophil but not macrophage infiltration
and diminished MMP-2 activity [153]. The authors hypothesized that IL-17 could protect against renal
fibrosis by inhibiting the kallikrein-kinin system [158]. Accordingly, systemic IL-17A administration
increased renal the kallikrein-1 gene and protein levels, associated with kidney neutrophil infiltration,
in the absence of ECM accumulation [61]. Altogether, these data suggest the complex role of IL-17A in
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the regulation of ECM synthesis and degradation, and the importance of understanding the role of
IL-17A in fibrosis in each individual disease. Therefore, further studies to clarify this point are needed.

Regarding peritoneum, IL-17A could contribute to peritoneal fibrosis by direct effects on resident
fibroblasts. As pointed out before, peritoneal IL-17A administration to mice induced peritoneal fibrosis,
characterized by fibronectin accumulation and submesothelial FSP-1 and α-SMA-stained cells [35].
The origin of these activated myofibroblasts was not evaluated in this study, but several sources have
been proposed, like resident fibroblasts, phenotype conversion of mesothelial (MMT) or endothelial
(EndoEMT) cells to mesenchymal cells, or infiltrating bone marrow-derived cells [159]. Importantly,
in two murine models of PDF exposure, treatment with a neutralizing anti-IL-17A antibody inhibited
peritoneal fibrosis; decreased the number of α-SMA expressing cells; and diminished the production
of profibrotic factors such as TGF-β1, CTGF, and PAI-1 as well as extracellular matrix components,
such as collagens and fibronectin [29,35]. All these processes promoted by IL-17A contribute to PM
thickening and to peritoneal fibrosis progression, suggesting a potential key role of IL-17 in PM fibrosis.

3.4. IL-17A in Peritonitis

Peritonitis, an infection within the peritoneal cavity mainly caused by bacteria, is the most frequent
complication of PD [160]. Measures to limit infection risk and to ensure prompt and appropriate
investigation and treatment have lowered peritonitis rates and improved outcomes, but peritonitis
remains a major determining factor in mortality and in adverse outcomes, including peritoneal
inflammation and membrane failure [161]. The immune response to infectious peritonitis is initially
characterized by neutrophil recruitment, with subsequent transition to monocyte predominance [162].
These changes are associated with increased intraperitoneal levels of inflammatory cytokines and
neutrophil number [163]. Various studies in mice have demonstrated the importance and pleiotropy of
IL-17A in peritoneal inflammatory response during infection. In one such study, abscess formation
after infection or surgical injury was preceded by an increase in the number of Th17 cells in the
peritoneal cavity and treatment with neutralizing antibodies against IL-17 prevented formation of
the abscesses [164]. In murine peritonitis, γδ T lymphocytes are the main source of IL-17A [165,166].
Elevated intraperitoneal IL-17A levels following caecal ligation and puncture are found in mice,
and intraperitoneal IL-17A blockade decreased proinflammatory cytokine production in the peritoneal
cavity and caused subsequent lung injury, thus improving mouse survival [166]. In patients, the cytokine
profile evident during an episode of peritonitis may predict the outcome. For example, high levels
of IL-12 and IL-18 may be evident during the early phase of peritonitis and may correlate with a
predominant type 1 immune response and recovery [167]. IL-17 is typically present at very low levels in
PDE from uninfected patients and may increase many-fold during acute peritonitis [168]. High levels
of intraperitoneal IL-17 have been correlated with favorable outcome in PD peritonitis [110]. This may
suggest a protective role of IL-17A in early immune response in the peritoneal host defense but may
also reflect the better outcomes seen following gram-positive bacterial infections, the class of organism
where high levels of intraperitoneal IL-17 are typically seen [169].

3.5. IL-17A and Macrophage Functions

Macrophages play a key role in the correct function of the PM, as they modulate peritoneal
inflammation and fibrosis [170–172]. Classically, macrophages were divided into 2 subtypes, M1 or
classically activated and M2 or alternatively activated, based on cytokine expression profiles and
surface markers. However, recent data suggest the existence of many mixed phenotypes depending on
pathological conditions [173]. M1 macrophages produce proinflammatory factors such as IL-1β, TNF-α,
IL-6, IL-23, IL-18, IL-12, and CXCL10; activate inducible nitric oxide synthase (iNOS); produce ROS;
and develop cytotoxic properties [174–176]. M2 macrophages express indoleamine 2,3-dioxygenase,
arginase I, and mannose receptor and release cytokines, like decoy IL-1RII, CCL-17, CCL-18, CCL-22,
the anti-inflammatory cytokine IL-10, and profibrotic growth factors such as TGF-β1 or VEGF [177,178].
Currently, there is no clear correspondence between these human subtypes and murine macrophages



Biomolecules 2020, 10, 1361 12 of 36

due to the existence of overlapping phenotypes and different surface marker expression in different
species, thus complicating the extrapolation of preclinical studies to human diseases [179]. Moreover,
recent studies have increased the complexity of these classifications [173].

In PD patients, alterations of macrophage heterogeneity, characterized by different maturation and
activation states, have been associated with different PD outcomes [180]. Thus, an increased proportion
of the CD16−CD206− macrophages subtype was founded in gram-negative peritonitis and failed
peritonitis treatment, whereas an increased proportion of CD16+CD206− macrophages subtype was
observed in “new-starter” patients with catheter failure and stable patients with history of recurrent
peritonitis episodes [180].

Peritoneal macrophages isolated from PDE of patients under continuous ambulatory PD (CAPD)
during peritonitis episodes showed higher production of the proinflammatory cytokines IL-1β and
TNF-α than infection-free macrophages [181]. Later studies in PDE from PD patients showed that
peritoneal M2 macrophages (CD206+ and CD163+) participate in peritoneal fibrosis by favoring
fibroblast overgrowth and increased CCL-18 production [182]. CCL-18 is a cytokine mainly produced
by M2 macrophages associated with fibrosis/tissue repair and is increased in PDE of patients with
peritonitis episodes [183,184]. Additionally, in a model of encapsulated peritoneal sclerosis, it was noted
that inflammatory M2 macrophages switch to profibrotic phenotype and activate peritoneal fibroblasts
through CCL-17 after sodium hypochlorite-induced injury [185]. In a model of macrophage depletion in
PDF-exposed mice, transfusion of macrophages of distinct phenotypes showed a pathogenic role for M1
macrophages. M1 macrophages increased peritoneal fibrosis and disturbed peritoneal ultrafiltration
more than M2 macrophages [186]. Another study of experimental PDF exposure described an
increase of peritoneal thickness; fibrotic markers including collagen type I; fibronectin; and the M2
macrophage subtype markers CD206, TGF-β, Ym-1, and Arg-1. These effects were recovered by
treatment with a liposome-encapsulated clodronate (LC, a specific scavenger of macrophages) [187].
A recent study demonstrated that dialyzed patients have a significantly lower content of Omega-3
fatty acids, such as n-3 Polyunsaturated fatty acid (PUFA), and this situation contributes to a high
cardiovascular risk in CKD patients [188]. A study in an experimental model of PD in rats showed that
the treatment with n-3 PUFA reduced peritoneal fibrosis through inhibition of activated of fibroblasts
and M2 macrophages [189].

As commented before, PDF exposure models showed that IL-17A neutralization decreased
submesothelial macrophage infiltration, but macrophage phenotypes and cytokine profiles were not
characterized [35,108]. Another study observed that, in uremic mice, exposure to standard PDF
(lactate-buffered solution) increased M1 macrophages and CD4+/IL-17+ cells in PDE [109]. In this
regard, IL-17A modulates monocyte/macrophage functions such as monocyte migration, promotion
of cytokine production [190,191], and macrophage phenotype modulation. In cultured macrophages
derived from human THP-1 monocytes, stimulation with IL-17A increased the gene expressions of
VEGF, TGF-β1, and IL-10 and upregulated M2 macrophage markers, such as CD206, CD163, Arginase
I, Ym1 (also known as chitinase 3-like 3), and Fizz1 (also known as resistin-like beta) [192]. In these
cells, IL-17A-induced M2 polarization was mediated through NF-κB signaling [192]. Preclinical studies
confirmed the potential role of IL-17A on M1/M2 macrophage differentiation. In lung cancer cells,
increased levels of IL-17A and PGE2 were involved in the development of an M2-macrophage-dominant
tumor microenvironment [193]. In human and murine jawbone osteonecrosis, IL-17A mediated the M1
polarization of macrophages and serum IL-17A levels correlated with the M1/M2 macrophage ratio at
the lesion foci [194]. In other diseases, such as endometriosis, IL-17A induced pathological macrophage
polarization into the M2 phenotype [195]. In contrast, IL-17A-deficient mice with severe colitis
presented milder intestinal inflammation and decreased M2-like macrophages, suggesting a potential
beneficial effect of IL-17A in colitis [196]. In a mouse model of lipopolysaccharide (LPS)-induced
peritonitis, a macrophage polarization was linked to the development and progression of infection
through JAK/STAT signaling pathway [197]. Mice with E. coli peritonitis showed an increased IL-17A
expression in immune cells including CD11b+ and CD11b− neutrophils, macrophages, and CD3+ T
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cells [65]. In patients with cirrhosis and peritonitis, serum levels of the M2 macrophage marker CD206
were increased and associated with mortality risk [198]. In conclusion, these sometimes-controversial
results require a more in-depth analysis of the specific cellular and molecular mechanisms that drive
the deleterious or beneficial effect of IL-17A in macrophage polarization associated with specific
pathological environments and, finally, elucidate the role of IL-17A in determining macrophage
phenotype in stable PD patients or during peritonitis episodes.

3.6. IL-17A in Angiogenesis

One of the specific changes observed after chronic peritoneal exposure to PDF is an increased
number of capillaries (angiogenesis), which is driven by VEGF and linked to an increased
PM permeability [199–201]. In this context, mesothelial cells acquire the capacity to synthesize
proinflammatory and pro-angiogenic molecules, such as VEGF [199], turning them into the main
local source of VEGF during PD [125]. In cultured omentum-derived mesothelial cells, stimulation
with TGFβ-1 and IL-1β to induce MMT resulted in downregulation of the two most important VEGF
receptors, VEGFR1 and VEGFR2, whilst the co-receptor neuropilin-1 (Nrp1) was increased. Therefore,
during in vitro MMT, the VEGF/Nrp1 interaction drives mesothelial cell behavior [202].

The potential role of IL-17A in angiogenesis induction was evaluated in proliferative disorders.
The number of infiltrating IL-17A-producing cells directly correlated with microvessel density in
tumors [203–205]. In this regard, in human colorectal carcinoma, IL-17A has been identified as an
indicator of poor prognosis [205]. Accordingly, IL-17A and VEGF serum levels in patients with lung
adenocarcinoma were positively correlated [206], and in tumoral cell lines, IL-17A induced VEGFA
expression [205]. IL-17A-induced VEGF expression seems to be mediated by STAT3 [207,208] or
STAT1 [206], but further clarification is needed concerning the molecular pathways involved and
their contribution to angiogenesis. Additionally, IL-17A can also indirectly cause angiogenesis and
neovascularization by stimulating the production of additional proangiogenic factors, including
chemokines such as CXCL1, CXCL5, CXCL6, and CXCL8 [28,29,209]. These chemokines activate the
CXCR2 receptor in endothelial cells to promote migration and proliferation [210,211]. In this regard,
CXCL1 can activate VEGF signaling in gastric tumor cells [212] and CXCL8 activation of CXCR2
increased VEGF mRNA expression in cultured endothelial cells [213], suggesting a relation between
proangiogenic chemokines, produced in response to IL-17A, and VEGF expression. Further studies
are needed to explore the mechanisms by which IL-17A promotes VEGF expression, specifically in
peritoneum exposed to PDF as well as its contribution to angiogenesis in this context (Figure 2).

4. Pharmacological Interference with the Th17 Immune Responses in PD

Pharmacological therapeutic strategies that modulate T cell responses may prevent PDF-induced
peritoneal damage. Those drugs could restrain Th17 differentiation or enhance Treg responses.
Importantly, there is great plasticity between Th17 and Treg cells, which depends on the IL-6/TGF-β1
cytokine balance and specific transcription factors activation [214] and, therefore, can be modulated by
drugs. Treg differentiation is controlled by TGF-β1, the transcription factor forkhead box P3 (FOXP3),
and STAT5 activation [215]. Tregs are specialized T cells that suppress immune responses, so they
maintain homeostasis and self-tolerance [216]. Treg actions are opposite to those of Th17 cells, through
the secretion of anti- and proinflammatory cytokines, respectively [21,215,217,218]. Several protective
pharmacological approaches with proven positive effects on PD protection can exert their beneficial
effects potentially through regulation of the Th17/IL17A axis (Figure 4).
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Figure 4. Potential therapeutic strategies modulating Th17/IL-17A response in damaged peritoneum:
briefly, Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) agonists inhibit Th17 response via signal
transducer and activator of transcription 3 (STAT3) blockade and downregulation of retinoid related
orphan receptor γt (RORγt) and IL-6 but promote Treg response by the induction of anti-inflammatory
cytokine IL-10. mTOR inhibition, via the hypoxia-induced factor-1 (HIF-1) pathway, downregulates
Th17 response. Vitamin D receptor (VDR) activation and inhibition of the COX-2/PGE2 axis also target
Th17 differentiation by decreased STAT3 activation and RORγt expression. Ala-Gln supplemented
in PDF reduces IL-17A and IL-6 production. Other common drugs used in PD patients such as
renin-angiotensin system (RAS) blockers, including angiotensin converting enzyme (ACE) inhibitors
and angiotensin receptor blockers (ARBs), and statins may also modulate Th17 response. All these
drugs also present other beneficial effects in the damaged peritoneum. Green arrows: activation,
red arrows: inhibition.

4.1. Blockade of the Renin-Angiotensin System

The current mainstay of CKD therapy is renin-angiotensin system (RAS) blockade using
angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) [219].
These agents may be continued in PD patients to preserve residual renal function, to control blood
pressure, and to decrease cardiovascular risk. RAS components are constitutively expressed in human
peritoneal mesothelial cells, and peritoneal RAS is activated in response to PDF exposure, as assessed
by increased generation of Angiotensin II (Ang II), the effector RAS peptide [220,221]. Ang II modulates
the expression of tissue injury mediators in the peritoneum, including cytokines and chemokines
leading to inflammation; growth factors such as TGF-β1, contributing to MMT of mesothelial cells;
and VEGF, favoring peritoneal angiogenesis [1,221] (Figure 4). In encapsulating peritoneal sclerosis
(EPS) in rats, acidic PDF exposure activated the peritoneal RAS and elicited peritoneal fibrosis, whereas
the ARB olmesartan attenuated peritoneal fibrosis and peritoneal adhesions [222]. ACE inhibitors
protected cultured human peritoneal mesothelial cells from high glucose-induced injury [220,223]
and rats from the adverse consequences of PDF exposure [224,225]. In PD patients, ACE inhibitors
appear to improve PM transport characteristics and to preserve residual kidney function [226–228];
however, available studies are limited. Importantly, ACE inhibitors modulate Th17 response in
immune-mediated diseases. In a murine model of multiple sclerosis (experimental autoimmune
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encephalomyelitis, EAE), ACE inhibitors suppressed Th17 cells and induction of CD4+FoxP3+ Treg
cells, together with activation of the alternative NF-κB2 pathway [229,230]. In murine obliterative
airway disease, both the ACE inhibitor lisinopril and the ARB candesartan downregulated IL-17A,
IL-10, and TNF-α and upregulated IL-10 via p38/MAPK pathway activation [231]. Accordingly,
the ARB telmisartan also significantly decreased levels of TGF-β1, IL-17A, and TNF-α in experimental
periodontitis in murine Marfan syndrome [232]. Surprisingly, in human peripheral blood mononuclear
cells infected with Trypanosoma cruzi, the cause of Chagas heart disease, the ACE inhibitor captopril
enhanced T. cruzi infection, decreasing the expression of the modulatory cytokine IL-10 while inducing
Th17 responses [233]. However, the effects of ACE inhibitors on Th17 or Treg responses in the peritoneal
milieu remain unexplored.

4.2. HMG-CoA Reductase Inhibitors (Statins)

Statins are lipid-lowering drugs that competitively inhibit 3-hydroxy-3-methylglutaryl-coenzyme
A (HMG-CoA) reductase. In addition, they exert pleiotropic actions that could contribute to
their beneficial clinical effects, as extensively demonstrated in preclinical cardiovascular disease
studies [234,235]. Statins decreased inflammation-related parameters in CKD, but the cardiovascular
benefits and efficacy of statins in reducing mortality rates in ERSD and dialysis patients
remain uncertain [236–238]. Nevertheless, statins are safe in high-risk PD patients and display
anti-inflammatory effects reflected in reduced serum CRP levels together with the conventional
lipid-lowering effect [239]. In rat and human peritoneal mesothelial cells cultured under high glucose
conditions or high glucose-PDF exposition, statins (fluvastatin, atorvastatin, or simvastatin) are
protective by modulating the serum- and glucocorticoid-inducible kinase 1 (SGK1) or phospho-p38
MAPK pathways, thus inhibiting the production of growth factors and preventing MMT [240–242].
In rat PDF exposure models, atorvastatin preserved ultrafiltration and decreased protein loss and PM
thickness [243] and simvastatin restored MMT-induced changes such as those observed in E-cadherin,
α-SMA, Snail, and fibronectin expression [241]. Thus, statins may be a potential therapeutic alternative
to preserve PM integrity in long-term PD patients.

Several studies have reported the immunomodulatory effects of statins. In CD4+ T cells isolated
from multiple sclerosis patients, simvastatin augmented the production of the suppressor of cytokine
secretion (SOCS) 3 and 7, negative regulators of STAT/JAK signaling, together with the induction of
IFN-γ, IL-4, and IL-27, whereas they inhibited STAT1 and STAT3 activation and decreased RORγt and
IL-17A mRNA levels [244,245]. In dendritic cells, atorvastatin and simvastatin lowered Th1 and/or
Th17 polarization by downregulating the transcription factors T-bet and RORγt, thus inducing Treg
differentiation [246]. In EAE mice, combined therapy with atorvastatin and rapamycin synergistically
triggered a Treg response and attenuated Th17 cell infiltration [247]. In murine acute colitis,
atorvastatin downregulated systemic cytokine levels of TNF-α, IL-17A, and the Th17-related IL-23 [248].
In nondiabetic patients undergoing PD, the addition of rosuvastatin to the ARB valsartan improved
vascular dysfunction more effectively than ARB monotherapy [249]. In hypertensive patients with
carotid atherosclerosis, a combination of the ARB telmisartan and rosuvastatin synergistically improved
Th17/Treg functional imbalance [250] as appreciated by intensive atorvastatin treatment in patients
with acute coronary syndrome [251]. Altogether, these findings show that statins may modulate
Th17 and Treg responses (Figure 4); however, whether these effects occur in peritoneum during PD
is unknown.

4.3. mTOR Inhibition

The mammalian target of rapamycin (mTOR) signaling pathway plays a key role in Th17/Treg
differentiation as well as in CD8+ T cell and NK cell proliferation and maturation [252]. mTOR activation
under hypoxic conditions accelerates Th17 differentiation of naive CD4+ T cells via induction of
hypoxia-induced factor-1 (HIF-1) and RORγt activation with subsequent induction of IL-17A and IL-23
production [253]. In EAE mice, rapamycin, a specific mTOR inhibitor and a potent immunosuppressor,
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ameliorated signs of the disease by suppressing the STAT3 pathway and downregulating RORγt mRNA
expression and then by reducing the number of Th17 cells and IL-17A in splenocytes [254]. Additionally,
combined treatment of rapamycin and fingolimod, a sphingosine 1-phosphate receptor antagonist,
prevented EAE by regulating the Akt-mTOR and MAPK/ERK pathways, which subsequently decreased
IL-17A, TGF-β1, RORγt, and Foxp3, and the number of Th17 and Treg cells [255]. In Smad3-deficient
mice, that are protected from TGF-β-induced peritoneal fibrosis and angiogenesis but not MMT,
rapamycin lowered α-SMA expression and abrogated MMT [256]. Using this same mouse model,
it has been found that HIF1α induced submesothelial thickening and angiogenesis in peritoneal
tissue in a Smad3-dependent manner, whereas rapamycin blocked these effects but did not affect the
direct TGFβ-mediated fibrosis and angiogenesis [257]. In cultured human peritoneal mesothelial cells,
rapamycin showed a mild protective effect on MMT, increasing E-cadherin and decreasing α-SMA
levels [258]. Additionally, rapamycin was protective in experimental PD, reducing PM thickness,
peritoneal fibrosis, angiogenesis, lymphangiogenesis, MMT, and Endo-MT while improving peritoneal
membrane transport and lipidic metabolism [259–262]. These studies suggest that mTOR inhibition by
rapamycin may be an alternative to reducing IL-17A production in PD (Figure 4).

4.4. Cyclooxygenase-2 Inhibition

The cyclooxygenase-2 (COX-2)/prostaglandin-E2 (PGE2) pathway is a key player in PDF-induced
peritoneal membrane inflammation in experimental models and patients [263]. COX-2 selective
inhibition with celecoxib ameliorated ultrafiltration, fibrosis, and inflammation in both mice [263] and
rat [264] models of PDF exposure. In patients, celecoxib had an anti-inflammatory effect evidenced by
reduction in high-sensitivity C reactive protein (hs-CRP) levels [265]. COX-2 is implicated in promoting
Th17 response, as demonstrated in vivo in COX-2 deficient mice in a model of ovalbumin-induced
allergic inflammation and in vitro through COX-2 deficient CD4+ T cells isolated from bronchoalveolar
lavage fluid of these mice [266]. COX-2 deficiency resulted in lower Th17 differentiation and
decreased STAT-3 phosphorylation and RORγt expression [266]. Additionally, celecoxib significantly
decreased IL-17A production in co-cultures of rheumatoid arthritis synovial fibroblasts [267]. Therefore,
COX-2 inhibition appears to be a feasible therapeutic approach for peritoneal damage (Figure 4),
but whether COX-2 inhibitors modulate Th17 responses in PD has not yet been explored. Nevertheless,
despite the advantageous effect of COX-2 inhibition in experimental models, the clinical application of
COX-2 inhibitors in PD patients must be evaluated cautiously because of the possible deleterious effect
on residual renal function in these patients [268].

4.5. Peroxisome Proliferator-Activated Receptor-γ Agonists

Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) agonists inhibit Th17 differentiation
in isolated T cells derived from multiple sclerosis and healthy patients by blocking STAT3 and
downregulating RORγt, with a subsequent decrease in IL-17A protein production [269]. In preclinical
studies, several PPAR-γ agonists inhibited IL-17A production. Rosiglitazone and pioglitazone
downregulated mRNA and protein levels of IL-17A in lung tissue and reduced airway inflammation in
murine ovalbumin-induced asthma [270]. Rosiglitazone also reduced IL-17A levels in bronchoalveolar
lavage fluids from murine neutrophilic asthma [271]. Accordingly, in a murine chronic eosinophilia,
rosiglitazone and 15d-PGJ(2), another PPAR-γ agonist, reduced eosinophil migration into the peritoneal
cavity and decreased IL-17A and IL-23 in peritoneal exudates after 48 h of allergen challenge [272].
The first study showing that drugs could modulate Th17 and Treg responses during peritoneal damage
involved PPAR-γ agonist and PDF exposure in mice [273]. Rosiglitazone decreased PDF-induced
PM damage by recruiting CD3+ lymphocytes and CD4+ CD25+ FoxP3+ cells and by increasing the
levels of the anti-inflammatory cytokine IL-10. Although this study suggested that the protective role
of PPAR-γ agonists in the PM is mediated by Treg activation, it is worth mentioning that there was
a trend towards decreased peritoneal levels of the Th17-associated cytokines IL-6 and IL-17A [273].
Further studies have also demonstrated the beneficial effects of rosiglitazone on PDF-induced injury in
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peritoneal cells in in vitro and in vivo models. In cultured rat peritoneal mesothelial cells, rosiglitazone
decreased PDF-induced damage by inhibiting inflammation, reflected by decreased IL-6 and IL-8
production, and by preserving the mesothelial cell monolayer by regulating aquaporin-1 and zonula
occludens-1 expression [274]. In later in vivo studies, rosiglitazone improved peritoneal function in rat
PD with lipopolysaccharide-induced peritonitis, which was reflected in lower dialysate-to-plasma urea
and albumin ratios, reduced inflammation, and a preserved mesothelial cell layer [275]. Unfortunately,
neither peritoneal Th17 cell activation nor IL-17A production were assessed in these studies. Therefore,
rosiglitazone emerges as a reasonable strategy to prevent peritoneal damage (Figure 4). Unfortunately,
PPAR-γ agonists have a suboptimal safety profile. Thus, rosiglitazone is no longer available in the
European Union due to safety concerns. Physicians prescribing pioglitazone should inform patients
about potential safety concerns regarding heart failure and bladder cancer [276].

4.6. Alanyl-Glutamine PD Fluids Supplementation

Conventional PDF exposure induces stress responses in peritoneal cells with heat-shock proteins
(HSPs) as their main effectors [277], possibly related to peritoneal and systemic glutamine depletion [278].
Glutamine is a conditionally essential amino acid for immune cell (lymphocytes, macrophages,
and neutrophils) metabolism under inflammatory conditions, such as tissue damage and infection [279].
Glutamine supplementation of PDF induced HSP expression and improved PDF biocompatibility as
assessed by increased mesothelial cell viability, by reduced detachment, and by decreased peritoneal
protein losses in rats exposed to PDF [280]. Later, it was shown that supplementation with the stable
dipeptide alanyl-glutamine (Ala-Gln) of heat-sterilized glucose-based PDF restored peritoneal cell stress
responses in both the immortalized cell line MeT-5A and in primary cultures of human mesothelial cells
from uremic patients [278]. In PD patients, Ala-Gln supplementation improved HSP-mediated stress
response but did not modify PDE levels of inflammatory cytokines (IL-8, IL-6, or TNF-α). However,
in a subgroup of patients with previous history of peritonitis, Ala-Gln supplementation attenuated
IL-8 but no IL-6 levels in PDE [281]. In this context, normal human peripheral blood mononuclear cells
(PBMCs) ex vivo exposed to PDE from PD patients treated with Ala-Gln-supplemented PDF showed
higher LPS-stimulated TNF-α release than when stimulated with PDE from conventional PDF-treated
patients, suggesting an improved peritoneal host-defense [281]. Additionally, in murine PD-related
peritonitis, Aln-Gln reduced TNF-α and IL-6 PDE levels, whereas it increased and restored the ex vivo
release of these cytokines in LPS-stimulated PDE peritoneal cells [281]. Similar results were observed
in ex vivo LPS-stimulated human PDE cells [282]. Transcriptomic analysis of PDE cells from PD
patients treated with and without Ala-Gln-supplemented PDF identified as highest-ranked networks
the downregulated TNF-α transcript and Akt and IL-1R signaling, whereas pathway analysis identified
IL-6 signaling-related pathways as the most significantly enriched [282]. Interestingly, in rat PDF
exposure, Ala-Gln supplementation attenuated PM thickness, α-SMA expression, and angiogenesis
(CD31+ vessels), together with impaired Th17 responses, reflected by reduced IL-17A, TGF-β1, IL-6,
and RORγt peritoneal levels [283]. Thus, addition of Ala-Gln to PDF emerges as a good strategy
to reduce peritoneal injury and inflammation and to improve immune responses in PD patients by
pathways that could involve Th17 modulation (Figure 4).

4.7. Vitamin D and Related Drugs

Paricalcitol, an analog of vitamin D and a specific activator of vitamin D receptors (VDR),
reduced PDF-induced peritoneal fibrosis in murine PD and decreased peritoneal IL-17A levels but
not of other cytokines, including IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, TNF-α, IFN-γ, and TGF-β1.
These beneficial effects were associated with increased numbers of CD4+ and CD8+ Tregs, suggesting
that protective actions of paricalcitol could be related to Treg activation [284]. Later studies confirmed
that paricalcitol fully prevents loss of ultrafiltration capacity induced by PDF exposure in rats and
decreased PM thickening and angiogenesis [285]. Paricalcitol also exerted other beneficial effects,
like attenuation of in vitro MMT through Smads modulation [286]; impairment of oxidative stress;
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and activation of the NLRP3 inflammasome, a multiprotein complex that promotes IL-1β and
IL-18 maturation [287]. Interestingly, a recent retrospective study in prevalent PD patients observed
lower peritoneal protein loss in patients treated with paricalcitol [288]. Thus, paricalcitol acts as an
anti-inflammatory agent that might improve peritoneal alterations in PD by mechanisms that could
involve IL-17A modulation (Figure 4).

5. MicroRNAs in Th17 and PD

MicroRNAs (miRNAs) are emerging as potential biomarkers and/or therapeutic targets
in multiple conditions, including kidney disease [289]. They are a large family of conserved,
small (about 22 nucleotides), noncoding, and single-stranded RNAs that repress the translation
and/or induce the degradation of their mRNA targets [290]. In PD patients, miRNA deregulation has
been described in PDE, the peritoneal cavity, and serum. In PDE, miR-21 and miR-21-5p were increased
whereas miR-129-5p, miR-200c, and miR-589 were decreased [291]. In peritoneal tissue, miR-21,
miR-23, miR-199a-5p, and miR-214-3p were upregulated and miR-30a was downregulated. In line
with these findings, in the same PD patients, serum levels of miR-21-5p, miR-221-3p, and miR-327 were
elevated and miR-34a-5p was decreased [291]. In another study, peritoneal transport characteristics
were associated with miR-15a, miR-17, miR-21, miR-30, miR-192, and miR-377 levels [292]. Regarding
potential miRNAs involved in Th17/IL-17A pathway regulation, most studies have been carried out
in autoimmune diseases [98,293]. Curiously, in an in silico study, some of the miRNAs deregulated
in PD patients (e.g., miR-17, miR-21, miR-129-5p, miR-377, or miR-589) were proposed to interact
with the mRNAs of Th17-related cytokines and IL-17 receptors [294]. Of these predicted miRNAs,
miR-21 could regulate Th17 immune responses as it promotes Th17 differentiation in experimental
EAE [295]. A correlation between miR-21 levels and the Treg/Th17 ratio was found in experimental rat
hepatocellular carcinoma [296]. In patients with rheumatoid arthritis, decreased miR-21 expression
correlated with an imbalance of Th-17 and Treg cells [297]. Further studies would be necessary to
evaluate the role of these miRNAs, in particular miR-21, in the regulation of Th17 responses during
peritoneal damage secondary to PDF and/or peritonitis.

6. Beyond the Peritoneum

The daily repeated infusion of current PDF into the peritoneal cavity may elicit an array of local
and systemic untoward effects, including PM damage, sterile inflammation, and peritoneal vascular
reactivity [200], as well as systemic metabolic, inflammatory and immune modulatory effects in which
the impact on patient outcomes has not yet been properly characterized. It is well known that PD
patients, besides renal dysfunction, frequently present other complications, including hypertension,
diabetes, and cardiovascular pathologies. Importantly, around 40–60% of deaths in PD patients are
due to cardiovascular events [298–300]. Of interest, IL-17A contributes to the pathogenesis of several
cardiovascular disorders, mainly hypertension, atherosclerosis, and ischemic heart disease [301–305].
Thus, immune and nonimmune kidney diseases, cardiovascular complications, and peritoneal damage
in PD patients must be considered in the treatment of these patients. The data reviewed here also
suggest a potential role of IL-17A in the cardio–renal axis, and future research in this context is needed.

7. Clinical Targeting of IL-17A

From a clinical translation point of view, several ongoing clinical trials (https://clinicaltrials.gov/)
are testing anti-IL-17A neutralizing antibodies for chronic inflammatory diseases [306–308], such as
Crohn’s disease (NCT00936585), spondyloarthritis (NCT03358134), and psoriasis (NCT01892436).
Hence, IL-17A blockade by neutralizing antibodies has already reached the clinical development
stage, thus facilitating potential future trials aimed at addressing the role of IL-17A blockade as a new
therapeutic approach to attenuate peritoneal damage induced by chronic PDF exposure in PD patients.

https://clinicaltrials.gov/
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8. Conclusions

In conclusion, the data reviewed here suggest a potential role of IL-17A in peritoneal membrane
injury during PD as well as in the cardio-renal axis that induces poor PD patient outcomes. Key issues
to be addressed are the identification of the main drivers of IL17A responses in clinical PD and the
need for and design of clinical trials targeting IL17A in PD.

Future research should unravel the impact of PDF biocompatibility on recruitment of IL17A
responses in PD patients. Preclinical studies suggested that novel biocompatible PDF did not activate
Th17 immune responses [109]. However, there is scarce clinical information on whether this is the case
in PD patients. Detailed studies are needed on IL-17A levels in peritoneal effluent from PD patients
treated with different PDF as well as analysis of peritoneal biopsies for activation of IL17A responses
in relation to the prior or current use of less biocompatible PDF. These studies could suggest whether
deleterious IL-17A responses could be controlled by an optimized choice of PDF. Even new enriched
PDF should be tested in this respect.

If evidence is found of continuing activation of deleterious IL17A responses even in patients using
biocompatible PDF, the next step may be the design of a pilot clinical trial using specific anti-IL17A
strategies. The nature of PD allows for the design of studies using local intraperitoneal administration
of IL-17A-taregting drugs to minimize systemic exposure and adverse effects as well as cost. Endpoints
to be considered for these future trials include peritoneal (peritoneal function, peritonitis episodes,
and biopsies), renal (residual renal function), and cardiovascular (events) endpoints. We recognize
that it is currently unknown whether the local control of IL-17A responses at the peritoneum may
have a beneficial impact on kidney and cardiovascular outcomes by controlling a source of systemic
inflammation. Preclinical studies may be helpful in assessing whether local intraperitoneal or systemic
delivery of IL-17A-targeting therapies is preferable.
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62. Rei, M.; Goncąlves-Sousa, N.; Lancą, T.; Thompson, R.G.; Mensurado, S.; Balkwill, F.R.; Kulbe, H.;
Pennington, D.J.; Silva-Santos, B. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote ovarian
cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl. Acad. Sci. USA 2014,
111, 3562–3570. [CrossRef] [PubMed]

63. Guo, Y.; Sun, X.; Shibata, K.; Yamada, H.; Muta, H.; Podack, E.R.; Yoshikai, Y. CD30 is required for activation
of a unique subset of interleukin- 17A-Producing γδT Cells in innate immunity against mycobacterium bovis
bacillus calmette-guérin infection. Infect. Immun. 2013, 81, 3923–3934. [CrossRef] [PubMed]

64. Shibata, K.; Yamada, H.; Hara, H.; Kishihara, K.; Yoshikai, Y. Resident Vδ1 + γδ T Cells Control Early
Infiltration of Neutrophils after Escherichia coli Infection via IL-17 Production. J. Immunol. 2007, 178,
4466–4472. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fimmu.2020.00348
http://dx.doi.org/10.4049/jimmunol.179.7.4313
http://dx.doi.org/10.1016/j.autrev.2017.07.009
http://dx.doi.org/10.1007/s00281-019-00733-8
http://dx.doi.org/10.1152/physrev.00031.2016
http://dx.doi.org/10.1016/j.immuni.2015.12.003
http://www.ncbi.nlm.nih.gov/pubmed/26682981
http://dx.doi.org/10.1155/2015/416480
http://www.ncbi.nlm.nih.gov/pubmed/26064907
http://dx.doi.org/10.1093/intimm/dxp018
http://www.ncbi.nlm.nih.gov/pubmed/19254958
http://dx.doi.org/10.1016/j.intimp.2013.05.004
http://dx.doi.org/10.3389/fimmu.2018.02389
http://dx.doi.org/10.1182/blood-2009-01-198028
http://dx.doi.org/10.1016/j.fertnstert.2011.04.060
http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02604
http://dx.doi.org/10.1016/j.jacbts.2016.07.009
http://dx.doi.org/10.3389/fphar.2019.01015
http://dx.doi.org/10.1073/pnas.1403424111
http://www.ncbi.nlm.nih.gov/pubmed/25114209
http://dx.doi.org/10.1128/IAI.00887-13
http://www.ncbi.nlm.nih.gov/pubmed/23918785
http://dx.doi.org/10.4049/jimmunol.178.7.4466
http://www.ncbi.nlm.nih.gov/pubmed/17372004


Biomolecules 2020, 10, 1361 23 of 36

65. Ren, Y.; Hua, L.; Meng, X.; Xiao, Y.; Hao, X.; Guo, S.; Zhao, P.; Wang, L.; Dong, B.; Yu, Y.; et al. Correlation of
Surface Toll-Like Receptor 9 Expression with IL-17 Production in Neutrophils during Septic Peritonitis in
Mice Induced by E. coli. Mediat. Inflamm. 2016, 2016, 3296307. [CrossRef]

66. Lin, A.M.; Rubin, C.J.; Khandpur, R.; Wang, J.Y.; Riblett, M.; Yalavarthi, S.; Villanueva, E.C.; Shah, P.;
Kaplan, M.J.; Bruce, A.T. Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in
Psoriasis. J. Immunol. 2011, 187, 490–500. [CrossRef]

67. Li, R.H.L.; Tablin, F. A comparative review of neutrophil extracellular traps in sepsis. Front. Vet. Sci. 2018,
5, 291. [CrossRef]

68. Pelletier, M.; Maggi, L.; Micheletti, A.; Lazzeri, E.; Tamassia, N.; Costantini, C.; Cosmi, L.; Lunardi, C.;
Annunziato, F.; Romagnani, S.; et al. Evidence for a cross-talk between human neutrophils and Th17 cells.
Blood 2010, 115, 335–343. [CrossRef]

69. Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast cell: A multi-functional master cell. Front. Immunol.
2016, 6, 620. [CrossRef] [PubMed]

70. Hueber, A.J.; Asquith, D.L.; Miller, A.M.; Reilly, J.; Kerr, S.; Leipe, J.; Melendez, A.J.; McInnes, I.B. Mast cells
express IL-17A in rheumatoid arthritis synovium. J. Immunol. 2010, 184, 3336–3340. [CrossRef] [PubMed]

71. Liu, X.; Jin, H.; Zhang, G.; Lin, X.; Chen, C.; Sun, J.; Zhang, Y.; Zhang, Q.; Yu, J. Intratumor IL-17-positive
mast cells are the major source of the IL-17 that is predictive of survival in gastric cancer patients. PLoS ONE
2014, 9, e106834. [CrossRef]

72. Kenna, T.J.; Brown, M.A. The role of IL-17-secreting mast cells in inflammatory joint disease.
Nat. Rev. Rheumatol. 2013, 9, 375–379. [CrossRef]

73. Noordenbos, T.; Blijdorp, I.; Chen, S.; Stap, J.; Mul, E.; Cañete, J.D.; Lubberts, E.; Yeremenko, N.; Baeten, D.
Human mast cells capture, store, and release bioactive, exogenous IL-17A. J. Leukoc. Biol. 2016, 100, 453–462.
[CrossRef]

74. Jiménez-Heffernan, J.A.; Bajo, M.A.; Perna, C.; Del Peso, G.; Larrubia, J.R.; Gamallo, C.; Sánchez-Tomero, J.A.;
López-Cabrera, M.; Selgas, R. Mast cell quantification in normal peritoneum and during peritoneal dialysis
treatment. Arch. Pathol. Lab. Med. 2006, 130, 1188–1192. [CrossRef]

75. Zareie, M.; Fabbrini, P.; Hekking, L.H.P.; Keuning, E.D.; Ter Wee, P.M.; Beelen, R.H.J.; Van Den Born, J. Novel
role for mast cells in omental tissue remodeling and cell recruitment in experimental peritoneal dialysis.
J. Am. Soc. Nephrol. 2006, 17, 3447–3457. [CrossRef]

76. Rönnberg, E.; Johnzon, C.F.; Calounova, G.; Garcia Faroldi, G.; Grujic, M.; Hartmann, K.; Roers, A.; Guss, B.;
Lundequist, A.; Pejler, G. Mast cells are activated by Staphylococcus aureus in vitro but do not influence the
outcome of intraperitoneal S. aureus infection in vivo. Immunology 2014, 143, 155–163. [CrossRef]

77. Dahdah, A.; Gautier, G.; Attout, T.; Fiore, F.; Lebourdais, E.; Msallam, R.; Daëron, M.; Monteiro, R.C.;
Benhamou, M.; Charles, N.; et al. Mast cells aggravate sepsis by inhibiting peritoneal macrophage
phagocytosis. J. Clin. Investig. 2014, 124, 4577–4589. [CrossRef]

78. Bradding, P.; Pejler, G. The controversial role of mast cells in fibrosis. Immunol. Rev. 2018, 282, 198–231.
[CrossRef]

79. Zareie, M.; Hekking, L.H.; Driesprong, B.A.; ter Wee, P.M.; Beelen, R.H.; van den Born, J. Accumulation of
omental mast cells during peritoneal dialysis. Perit. Dial. Int. 2001, 21 (Suppl. 3), 373–376. [CrossRef]

80. Alscher, D.M.; Braun, N.; Biegger, D.; Fritz, P. Peritoneal Mast Cells in Peritoneal Dialysis Patients, Particularly
in Encapsulating Peritoneal Sclerosis Patients. Am. J. Kidney Dis. 2007, 49, 452–461. [CrossRef] [PubMed]

81. Kazama, I.; Baba, A.; Endo, Y.; Toyama, H.; Ejima, Y.; Matsubara, M.; Tachi, M. Mast cell involvement in the
progression of peritoneal fibrosis in rats with chronic renal failure. Nephrology 2015, 20, 609–616. [CrossRef]

82. Dusseaux, M.; Martin, E.; Serriari, N.; Péguillet, I.; Premel, V.; Louis, D.; Milder, M.; Le Bourhis, L.; Soudais, C.;
Treiner, E.; et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161 hi IL-17-secreting T cells.
Blood 2011, 117, 1250–1259. [CrossRef]

83. Kjer-Nielsen, L.; Patel, O.; Corbett, A.J.; Le Nours, J.; Meehan, B.; Liu, L.; Bhati, M.; Chen, Z.; Kostenko, L.;
Reantragoon, R.; et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012, 491,
717–723. [CrossRef]

84. Reantragoon, R.; Corbett, A.J.; Sakala, I.G.; Gherardin, N.A.; Furness, J.B.; Chen, Z.; Eckle, S.B.G.; Uldrich, A.P.;
Birkinshaw, R.W.; Patel, O.; et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in
mucosal-associated invariant T cells. J. Exp. Med. 2013, 210, 2305–2320. [CrossRef]

http://dx.doi.org/10.1155/2016/3296307
http://dx.doi.org/10.4049/jimmunol.1100123
http://dx.doi.org/10.3389/fvets.2018.00291
http://dx.doi.org/10.1182/blood-2009-04-216085
http://dx.doi.org/10.3389/fimmu.2015.00620
http://www.ncbi.nlm.nih.gov/pubmed/26779180
http://dx.doi.org/10.4049/jimmunol.0903566
http://www.ncbi.nlm.nih.gov/pubmed/20200272
http://dx.doi.org/10.1371/journal.pone.0106834
http://dx.doi.org/10.1038/nrrheum.2012.205
http://dx.doi.org/10.1189/jlb.3HI1215-542R
http://dx.doi.org/10.1043/1543-2165(2006)130[1188:MCQINP]2.0.CO;2
http://dx.doi.org/10.1681/ASN.2005111173
http://dx.doi.org/10.1111/imm.12297
http://dx.doi.org/10.1172/JCI75212
http://dx.doi.org/10.1111/imr.12626
http://dx.doi.org/10.1177/089686080102103S71
http://dx.doi.org/10.1053/j.ajkd.2006.11.040
http://www.ncbi.nlm.nih.gov/pubmed/17336707
http://dx.doi.org/10.1111/nep.12489
http://dx.doi.org/10.1182/blood-2010-08-303339
http://dx.doi.org/10.1038/nature11605
http://dx.doi.org/10.1084/jem.20130958


Biomolecules 2020, 10, 1361 24 of 36

85. Ibidapo-obe, O.; Stengel, S.; Köse-Vogel, N.; Quickert, S.; Reuken, P.A.; Busch, M.; Bauer, M.; Stallmach, A.;
Bruns, T. Mucosal-Associated Invariant T Cells Redistribute to the Peritoneal Cavity During Spontaneous
Bacterial Peritonitis and Contribute to Peritoneal Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2020, 9,
661–677. [CrossRef]

86. Summers, S.A.; Steinmetz, O.M.; Li, M.; Kausman, J.Y.; Semple, T.; Edgtton, K.L.; Borza, D.B.; Braley, H.;
Holdsworth, S.R.; Kitching, A.R. Th1 and Th17 cells induce proliferative glomerulonephritis. J. Am.
Soc. Nephrol. 2009, 20, 2518–2524. [CrossRef]

87. Ghali, J.; Holdsworth, S.; Kitching, A. Targeting IL-17 and IL-23 in Immune Mediated Renal Disease.
Curr. Med. Chem. 2015, 22, 4341–4365. [CrossRef]

88. Dolff, S.; Witzke, O.; Wilde, B. Th17 cells in renal inflammation and autoimmunity. Autoimmun. Rev. 2019, 18,
129–136. [CrossRef]

89. Nogueira, E.; Hamour, S.; Sawant, D.; Henderson, S.; Mansfield, N.; Chavele, K.-M.; Pusey, C.D.;
Salama, A.D. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with
ANCA-associated vasculitis. Nephrol. Dial. Transplant. 2010, 25, 2209–2217. [CrossRef]

90. Krohn, S.; Nies, J.F.; Kapffer, S.; Schmidt, T.; Riedel, J.H.; Kaffke, A.; Peters, A.; Borchers, A.; Steinmetz, O.M.;
Krebs, C.F.; et al. IL-17C/IL-17 receptor E signaling in CD4+ T cells promotes T H 17 cell-driven glomerular
inflammation. J. Am. Soc. Nephrol. 2018, 29, 1210–1222. [CrossRef]

91. Kwan, B.C.-H.; Tam, L.-S.; Lai, K.-B.; Lai, F.M.-M.; Li, E.K.-M.; Wang, G.; Chow, K.-M.; Li, P.K.-T.; Szeto, C.-C.
The gene expression of type 17 T-helper cell-related cytokines in the urinary sediment of patients with
systemic lupus erythematosus. Rheumatology (Oxford) 2009, 48, 1491–1497. [CrossRef]

92. de Oliveira Peliçari, K.; Postal, M.; Sinicato, N.A.; Peres, F.A.; Fernandes, P.T.; Marini, R.; Costallat, L.T.L.;
Appenzeller, S. Serum interleukin-17 levels are associated with nephritis in childhood-onset systemic lupus
erythematosus. Clinics (Sao Paulo) 2015, 70, 313–317. [CrossRef]

93. Kalavrizioti, D.; Gerolymos, M.; Rodi, M.; Kalliakmani, P.; Provatopoulou, S.; Eleftheriadis, T.; Mouzaki, A.;
Goumenos, D.S. T helper (Th)-cytokines in the urine of patients with primary glomerulonephritis treated
with immunosuppressive drugs: Can they predict outcome? Cytokine 2015, 76, 260–269. [CrossRef]

94. Ramani, K.; Biswas, P.S. Emerging roles of the Th17/IL-17-axis in glomerulonephritis. Cytokine 2016, 77,
238–244. [CrossRef]

95. Krebs, C.F.; Lange, S.; Niemann, G.; Rosendahl, A.; Lehners, A.; Meyer-Schwesinger, C.; Stahl, R.A.K.;
Benndorf, R.A.; Velden, J.; Paust, H.J.; et al. Deficiency of the interleukin 17/23 axis accelerates renal injury in
mice with deoxycorticosterone acetate+angiotensin II-induced hypertension. Hypertension 2014, 63, 565–571.
[CrossRef]

96. Lavoz, C.; Matus, Y.S.; Orejudo, M.; Carpio, J.D.; Droguett, A.; Egido, J.; Mezzano, S.; Ruiz-Ortega, M.
Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic
nephropathy. Kidney Int. 2019, 95, 1418–1432. [CrossRef]

97. Ma, J.; Li, Y.J.; Chen, X.; Kwan, T.; Chadban, S.J.; Wu, H. Interleukin 17A promotes diabetic kidney injury.
Sci. Rep. 2019, 9, 2264. [CrossRef]

98. Lavoz, C.; Rayego-Mateos, S.; Orejudo, M.; Opazo-Ríos, L.; Marchant, V.; Marquez-Exposito, L.;
Tejera-Muñoz, A.; Navarro-González, J.F.; Droguett, A.; Ortiz, A.; et al. Could IL-17A Be a Novel Therapeutic
Target in Diabetic Nephropathy? J. Clin. Med. 2020, 9, 272. [CrossRef]

99. Niewczas, M.A.; Pavkov, M.E.; Skupien, J.; Smiles, A.; Md Dom, Z.I.; Wilson, J.M.; Park, J.; Nair, V.; Schlafly, A.;
Saulnier, P.J.; et al. A signature of circulating inflammatory proteins and development of end-stage renal
disease in diabetes. Nat. Med. 2019, 25, 805–813. [CrossRef]

100. Li, P.K.T.; Ng, J.K.C.; Mcintyre, C.W. Inflammation and Peritoneal Dialysis. Semin. Nephrol. 2017, 37, 54–65.
[CrossRef]

101. Zamauskaite, A.; Yaqoob, M.M.; Madrigal, J.A.; Cohen, S.B. The frequency of Th2 type cells increases with
time on peritoneal dialysis in patients with diabetic nephropathy. Eur. Cytokine Netw. 1999, 10, 219–226.

102. Zhu, X.; Li, S.; Zhang, Q.; Zhu, D.; Xu, Y.; Zhang, P.; Han, J.; Duan, Z.; Gao, J.; Ou, Y. Correlation of increased
Th17/Treg cell ratio with endoplasmic reticulum stress in chronic kidney disease. Medicine (United States)
2018, 97, e10748. [CrossRef] [PubMed]

103. Ma, L.; Zhang, H.; Hu, K.; Lv, G.; Fu, Y.; Ayana, D.A.; Zhao, P.; Jiang, Y. The imbalance between Tregs,
Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol. 2015, 16, 56.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jcmgh.2020.01.003
http://dx.doi.org/10.1681/ASN.2009030337
http://dx.doi.org/10.2174/0929867322666151030163022
http://dx.doi.org/10.1016/j.autrev.2018.08.006
http://dx.doi.org/10.1093/ndt/gfp783
http://dx.doi.org/10.1681/ASN.2017090949
http://dx.doi.org/10.1093/rheumatology/kep255
http://dx.doi.org/10.6061/clinics/2015(05)01
http://dx.doi.org/10.1016/j.cyto.2015.08.002
http://dx.doi.org/10.1016/j.cyto.2015.07.029
http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02620
http://dx.doi.org/10.1016/j.kint.2018.12.031
http://dx.doi.org/10.1038/s41598-019-38811-4
http://dx.doi.org/10.3390/jcm9010272
http://dx.doi.org/10.1038/s41591-019-0415-5
http://dx.doi.org/10.1016/j.semnephrol.2016.10.007
http://dx.doi.org/10.1097/MD.0000000000010748
http://www.ncbi.nlm.nih.gov/pubmed/29768353
http://dx.doi.org/10.1186/s12865-015-0118-8
http://www.ncbi.nlm.nih.gov/pubmed/26400627


Biomolecules 2020, 10, 1361 25 of 36

104. Romanova, Y.; Laikov, A.; Markelova, M.; Khadiullina, R.; Makseev, A.; Hasanova, M.; Rizvanov, A.;
Khaiboullina, S.; Salafutdinov, I. Proteomic analysis of human serum from patients with chronic kidney
disease. Biomolecules 2020, 10, 257. [CrossRef] [PubMed]

105. Sun, B.; Wang, H.; Zhang, L.; Yang, X.; Zhang, M.; Zhu, X.; Ji, X.; Wang, H. Role of interleukin 17 in TGF-β
signaling-mediated renal interstitial fibrosis. Cytokine 2018, 106, 80–88. [CrossRef] [PubMed]

106. Rodrigues-Díez, R.; Rodrigues-Díez, R.R.; Rayego-Mateos, S.; Suarez-Alvarez, B.; Lavoz, C.; Stark Aroeira, L.;
Sánchez-López, E.; Orejudo, M.; Alique, M.; Lopez-Larrea, C.; et al. The C-terminal module IV of connective
tissue growth factor is a novel immune modulator of the Th17 response. Lab. Investig. 2013, 93, 812–824.
[CrossRef] [PubMed]

107. Rosendahl, A.; Kabiri, R.; Bode, M.; Cai, A.; Klinge, S.; Ehmke, H.; Mittrücker, H.W.; Wenzel, U.O. Adaptive
immunity and IL-17A are not involved in the progression of chronic kidney disease after 5/6 nephrectomy in
mice. Br. J. Pharmacol. 2019, 176, 2002–2014. [CrossRef]

108. Liappas, G.; González-Mateo, G.T.; Sánchez-Díaz, R.; Lazcano, J.J.; Lasarte, S.; Matesanz-Marín, A.; Zur, R.;
Ferrantelli, E.; Ramírez, L.G.; Aguilera, A.; et al. Immune-regulatory molecule CD69 controls peritoneal
fibrosis. J. Am. Soc. Nephrol. 2016, 27, 3561–3576. [CrossRef]

109. Vila Cuenca, M.; Keuning, E.D.; Talhout, W.; Paauw, N.J.; van Ittersum, F.J.; ter Wee, P.M.;
Beelen, R.H.J.; Vervloet, M.G.; Ferrantelli, E. Differences in peritoneal response after exposure to low-GDP
bicarbonate/lactate-buffered dialysis solution compared to conventional dialysis solution in a uremic mouse
model. Int. Urol. Nephrol. 2018, 50, 1151–1161. [CrossRef]

110. Wang, H.H.; Lee, T.Y.; Lin, C.Y. Kinetics and involvement of interleukin-17 in the outcome of peritonitis in
nondiabetic patients undergoing peritoneal dialysis. J. Chin. Med. Assoc. 2011, 74, 11–15. [CrossRef]

111. Gonzalez-Mateo, G.T.; Loureiro, J.; Jimenez-Hefferman, J.A.; Bajo, M.-A.; Selgas, R.; Lopez-Cabrera, M.;
Aroeira, L.S. Chronic exposure of mouse peritoneum to peritoneal dialysis fluid: Structural and functional
alterations of the peritoneal membrane. Perit. Dial. Int. 2009, 29, 227–230. [CrossRef]

112. Martin, P.; Gomez, M.; Lamana, A.; Cruz-Adalia, A.; Ramirez-Huesca, M.; Ursa, M.A.; Yanez-Mo, M.;
Sanchez-Madrid, F. CD69 Association with Jak3/Stat5 Proteins Regulates Th17 Cell Differentiation.
Mol. Cell. Biol. 2010, 30, 4877–4889. [CrossRef] [PubMed]

113. Maksic, D.; Vasilijic, S.; Colic, M.; Stankovic-Popovic, V.; Bokonjic, D. Systemic and intraperitoneal
proinflammatory cytokine profiles in patients on continuous ambulatory peritoneal dialysis. Adv. Perit. Dial.
2009, 25, 50–55. [PubMed]

114. Xiao, J.; Gong, Y.; Chen, Y.; Yu, D.; Wang, X.; Zhang, X.; Dou, Y.; Liu, D.; Cheng, G.; Lu, S.; et al. IL-6
promotes epithelial-to-mesenchymal transition of human peritoneal mesothelial cells possibly through the
JAK2/STAT3 signaling pathway. Am. J. Physiol. Renal Physiol. 2017, 313, F310–F318. [CrossRef] [PubMed]

115. Pecoits-Filho, R.; Carvalho, M.J.; Stenvinkel, P.; Lindholm, B.; Heimbürger, O. Systemic and intraperitoneal
interleukin-6 system during the first year of peritoneal dialysis. Perit. Dial. Int. 2006, 26, 53–63. [CrossRef]

116. Schmitt, C.P.; Aufricht, C. Is there such a thing as biocompatible peritoneal dialysis fluid? Pediatr. Nephrol.
2017, 32, 1835–1843. [CrossRef]
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