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Abstract
Industrial Internet of Things (IIoT) is performed based on the multiple sourced data collection, communication, management 
and analysis from the industrial environment. The data can be generated at every point in the manufacturing production 
process by real-time monitoring, connection and interaction in the industrial field through various data sensing devices, 
which creates a big data environment for the industry. To collect, transfer, store and analyse such a big data efficiently and 
economically, several challenges have imposed to the conventional big data solution, such as high unreliable latency, massive 
energy consumption, and inadequate security. In order to address these issues, edge computing, as an emerging technique, 
has been researched and developed in different industries. This paper aims to propose a novel framework for the intelligent 
IIoT, named Industrial Internet of Learning (IIoL). It is built using an industrial wireless communication network called 
Low-power wide-area network (LPWAN). By applying edge computing technologies in the LPWAN, the high-intensity 
computing load is distributed to edge sides, which integrates the computing resource of edge devices to lighten the compu-
tational complexity in the central. It cannot only reduce the energy consumption of processing and storing big data but also 
low the risk of cyber-attacks. Additionally, in the proposed framework, the information and knowledge are discovered and 
generated from different parts of the system, including smart sensors, smart gateways and cloud. Under this framework, a 
pervasive knowledge network can be established to improve all the devices in the system. Finally, the proposed concept and 
framework were validated by two real industrial cases, which were the health prognosis and management of a water plant 
and asset monitoring and management of an automobile factory.

Keywords Industrial Internet of Things (IIoT) · Edge computing · Low power wide area network (LPWAN) · Pervasive 
knowledge network · Machine health prognosis · Predictive maintenance

1 Introduction

At the age of Industry 4.0, industrial digital technologies 
(IDTs) have been developed rapidly (Maier 2017; Dopico 
et al. 2016), such as the Internet of Things (IIoT), artifi-
cial intelligence (AI), edge computing (Sittón-Candanedo 
et al. 2019), and pervasive knowledge (Deng et al. 2020). 
It requires the significant digital devices integrating into 
industrial systems, which has a high demand for data stor-
ing, transferring and analysing. For example, an automobile 
manufacturing company generally generated about 480 TB 
in 2013, which will be still increasing three-time by the end 
of 2020. Furthermore, the data was generated from differ-
ent data sources, fused and nested together (Luckow 2015). 
In order to handle such a big and complex data, the con-
ventional big data analytics methods have many challenges, 
such as high unreliable latency, high energy consumption, 
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incomplete data fusion and poor security. The current indus-
try needs a reliable, stable, and fault-tolerant data communi-
cation system and adequate real-time processing power for 
exploiting the hidden knowledge from it (Gai et al. 2016). At 
the meanwhile, the edge devices have become more potent 
and powerful in terms of high computing speed, ample 
memory space, and multiple embedded functions (Wang 
et al. 2020). It has pushed applications, data and computing 
power away from centralised points to locations closer to 
the user, which provides low latency, low energy consuming 
and secure support to delay-sensitive applications. Every 
edge of this IoT environment has the sufficient capability 
to learn and discover knowledge based on the big data and 
each other (Deng et al. 2020; Shi et al. 2016). The IIoT now 
has become a critical research topic for solving the industrial 
big data challenges.

The IIoT based framework, architecture, and taxonomy 
have been increasingly generated and published since the 
term of IIoT was firstly used (Boyes et al. 2018). According 
to the previous research, an IIoT system generally consists 
of four layers, which include device layer, network layer, 
service layer, and content layer (Hylving and Schultze 2013; 
Jansen and van der Merwe 2020; Hossain and Muhammad 
2016). Data is collected on the device layer, transferred on 
the network layer, and then analysed on the service layer. 
Finally, the discovered knowledge is present on the content 
layer. These four layers commonly follow a logical sequence 
in the previous research when the framework is applied. 
However, with the rapid development of edge device and 
communication technology, the functions of these four lay-
ers are not distinguished specifically. Data can be analysed 
on the service, device and network layer. Furthermore, 
the different types and levelled knowledge is discovered 
pervasively, which will be presented to the users and also 
improves the performance of every point of the IIoT frame-
work. There is a need in both academia and industry to real-
ise how to achieve the above functions.

This paper aims to propose a novelty approach, Industrial 
Internet of Learning (IIoL), by delivering concept, introduc-
ing the framework and revealing case studies. This approach 
fully discovers the potential of the entire data network to 
solve the issues of data centralisation by the technologies of 
LPWAN and edge computing. In Sect. 2, relevant literature 
is reviewed to understand the state-of-the-art of LPWAN 
and edge computing technologies. Server LPWAN technolo-
gies are discussed and comprised. Also, edge computing is 
reviewed to compare to cloud and fog computing. Based on 
the understanding of LPWAN and edge computing, the IIoL 
is proposed in Sect. 3. The framework includes two main 
parts, the LPWAN part and the cloud part. The LPWAN 
consists of smart sensors and gateways. The raw data is 
sensed and collected from the industrial environment, such 
as production line, robots, and Computer Numerical Control 

(CNC) machines, by smart sensors. Multiple dimensional 
data is integrated and pre-processed in smart sensors. Then 
the pre-processed information is sent to smart gateways 
which can discover the knowledge for smart sensors and 
the industrial environment. Finally, the processed data is 
processed and uploaded to the cloud, which means only the 
important processed information is uploaded to the cloud. 
The knowledge chains flow in the entire architecture, which 
creates a pervasive knowledge network. This approach has 
entirely realised the computing and data communication 
potential of edge devices and LPWAN. In Sects. 4 and 5, two 
cases, health prognosis of a water plant and automobile fac-
tor assets monitoring and management, are revealed to prove 
the feasibility of the proposed IIoL. Section 5 concludes.

2  Literature review

2.1  Data communication for LPWAN

The industrial communication used dedicated networks 
which were named as Fieldbus system in early days. This 
type of network was limited by parallel cabling between sys-
tems, sensors, actuators, and controllers (Sauter 2010). From 
the 1990s, the wireless networks became increasingly popu-
lar in the industry due to cables do not restrict it. These wire-
less networks were mainly adopted by the IEEE 802 protocol 
group (Tramarin et al. 2015). However, the main challenge 
of wireless networks was to ensure real-time and reliability 
capabilities, especially in the manufacturing environment 
(Vitturi et al. 2013). Wollschlaeger et al. (Wollschlaeger 
et al. 2017) believed that the Internet of Things (IoT) and 
Cyber-physic systems (CPS) would change the industrial 
scenery again because the concepts of IoT and CPS can fulfil 
the industrial requirement, e.g., regarding real-time, mobil-
ity, safety and security. They had also pointed out there were 
still some challenges in IoT and CPS current industry, such 
as hard time boundaries, isochronous communication, low 
jitter, high availability and low cost. In the current industrial 
environment, LPWAN became increasingly popular (Qin 
et al. 2019; Al-Sarawi et al. 2017) due to it offered afford-
able connectivity to industrial devices (Raza et al. 2017). In 
Fig. 1, the communication technologies are compared in two 
perspectives, data rate speed and range capacity.

Compared to other wireless communication methods, 
LPWANs generally has covered a big range. In this wire-
less communication technology group, several individual 
technologies are included, such as LoRa (Georgiou and 
Raza 2017), Sigfox (Zuniga 2016), Narrowband IoT (NB-
IoT) (Ratasuk et al. 2016), and ZETA (Mekki et al. 2019). 
These four most popular LPWANs have various capabili-
ties in terms of bandwidth, data rate, communication range, 
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allow private network and standardisation, which are shown 
in Table 1.

The LoRa and NB-IoT are the two leading emergent 
LPWAN technologies (Sinha et al. 2017). ZETA is emerg-
ing which targets on reducing the energy consumption with 
the required communication quality of the network. It is cur-
rently popular in some Asian countries such as China and 
Japan (ZiFiSense 2020). From the above table, LoRa and 
ZETA have the most considerable bandwidth with a reason-
able data rate. In contrast, the bandwidth and data rate of 
Sigfox is less than LoRa, NB-IoT and ZETA.

2.2  IIoT and edge computing: challenges 
and opportunities

The industrial big data refers to data generated in high-
volume, high-variety, and high-velocity that requires high 
veracity to creates high-value knowledge so-called five ‘V’ 
(Yin and Kaynak 2015). Generally, the industry generated 
data is upload to the factory management systems or the 
cloud, which is analysed by the centralised cloud com-
puting technologies (Gonçalves 2015). It offers industrial 
organisations to centrally store massive amounts of data and 
optimise computational resources to deliver on their data 

processing needs. The conventional centralised cloud com-
puting is encountering severe challenges, such as unreliable 
latency, high energy consumption, and poor security (Shi 
et al. 2016).

Specifically, compared to the fast-developing data genera-
tion speed, the bandwidth of network has come to a stand-
still. With the growing quantity of data generated from IIoT, 
speed of data transportation is becoming a bottleneck for the 
cloud-based computing paradigm. For example, a typical 
automated manufacturing company generates 24 TB data 
per day, resulting in 13 billion data samples per day (GE 
2012). If all the data needs to be sent to the cloud for pro-
cessing, the response time would be a big issue. In some 
industry scenarios, The difference between a response time 
of 100 ms and 1 ms can be life-threatening (Bosch 2018). 
Secondly, big data could lead to an explosion in energy use. 
Nowadays, data centres use an estimated 200 terawatt-hours 
(TWh) each year and contribute around 0.3% to overall car-
bon emissions (Jones 2018). New alarming research suggests 
that data centres will be one of the biggest energy consumers 
on the planet, beating energy consumption levels in many 
countries. One of the most worrying models predicts that 
electricity is consumed by information communication tech-
nologies (ICT) could exceed 20% of the global (Andrae and 

Fig. 1  IoT communication 
technologies comparison

Table 1  Comparison between 
LoRa, Sigfox, NB-IoT and 
ZETA

LoRa Sigfox NB-IoT ZETA

Bandwidth 250 kHz 100 Hz 200 kHz 2 k H.Z.
Data rate 20 kbps 100 bps 200 kbps 600bps
Communication range 1 km (urban), 

20 km (rural)
10 km (urban), 

40 km (rural)
1 km (urban), 

10 km(rural)
3 km (urban), 20 km (rural)

Private network YES No No YES
Energy consumption Low Low Low Very low
Standardisation LoRa-Alliance ETSI 3GPP ZETA-Alliance
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Edler 2015). With increasing applications installing on to 
the cloud, it may become untenable to meet the increas-
ing energy demands. Thirdly, the security issue is another 
big challenge for using cloud computing. With as many IoT 
devices, smartphones, and other computing systems as there 
are available now, cyber-attacks against cloud platforms 
were mostly unthinkable. In present, not all cloud computing 
services can provide the high level network security. Some 
of the cloud solutions hardly deliver the required security 
between users, leading to shared resources, applications, and 
systems. Therefore, threats can originate from other users 
with the cloud service. Also, they target one user could also 
have an impact on other users (Kaufman 2009).

Motivated to solve these challenges, a new technology, 
edge computing, is driving a trend that shifts the function of 
centralised cloud computing to edge of networks (Ai et al. 
2018). Similar to cloud computing, edge service providers 
furnish application, data computation, and storage services 
to the end-users. However, the edge services provide low 
latency, low energy consuming and secure support to delay-
sensitive applications. Although edge computing has sev-
eral advantages over cloud computing, the research on the 
emerging domain is still in its infancy (Khan et al. 2019). 
There exist three conventional edge computing technologies, 
cloudlet (Satyanarayanan et al. 2009), mobile edge comput-
ing (Hu et al. 2015) and fog computing (Bonomi et al. 2012). 
Mobile edge computing was defined by the European Tele-
communications Standards Institute (ETSI) as an edge com-
puting technology. It provides mobile users to use the com-
puting service from the edge of the mobile network, within 
the Radio Access Network (RAN) and close to mobile sub-
scribers (Hu et al. 2015). Cloudlet is a mobility-enhanced 
small-scale cloud data centre located at the edge of the net-
work. The cloudlet supports resource-intensive and interac-
tive mobile devices with lower latency. Different from the 
cloud, a cloudlet needs to be more agile in its configuration 
in order to associate with mobile devices. Also, the offloaded 
services need to be seamlessly migrated between cloudlets 
(Satyanarayanan et al. 2009). Fog computing extends the 
cloud computing paradigm to the edge of networks, wireless 
networks for the IoT. It is a highly virtualised platform that 
provides compute, storage, and networking services between 
end devices and traditional cloud computing data centres, 
but not exclusively located at the edge of network (Bonomi 
et al. 2012).

Li et al. (2019) proposed a resource scheduling approach 
for manufacturing systems on edge devices. This approach 
contained two aspects: selecting an algorithm for edge 
server (SA-ES) and cooperation of edge computing for low-
latency task (CEC). The computing results were obtained 
based on the communication, computing and queuing time. 
In the experiments, the proposed approach was compared to 
cloud server computing and ordinary edge computing. The 

validation results showed that the latency of the approach 
was the lowest with the lowest energy consumption gener-
ally. It was interesting that in the small data size task, the 
performance proposed approach was similar to ordinary 
edge computing. Comparing between edge and cloud com-
puting, cloud computing was typically slower (30%) and 
consuming more energy consumption (50%). The paper 
also proved the resource scheduling was necessary for edge 
computing, which can provide lower computing latency and 
energy consumption.

Qi and Tao (2019) proposed several reference architec-
tures of edge, fog, and cloud computing in smart manufac-
turing. These architectures were related to and independent 
of each other. The hierarchy architecture included three-level 
computing concepts, which edge computing was close to the 
real world. The fog computing was in between the edge and 
cloud computing with the medium speed, and cloud com-
puting was on the top of the pyramid, which focused on the 
collaboration task with the high latency. In this article, three 
other architectures were provided for each of edge, fog and 
cloud, which could display their features and the develop-
ment roadmap.

Besides, services on these three computing platforms can 
be summarised. Generally, on edge, the services are low 
intelligent compared to the fog and cloud. Nevertheless, the 
response time is much short, which can achieve real-time 
control. On the cloud, some high-level intelligent services 
are provided, such as task management, supply–demand 
matching, personalised customisation smart design collabo-
ration and commerce collaboration. Authors tended to gener-
ate an overall structure for smart manufacturing including 
edge, fog and computing. Based on the capability and fea-
tures, various levelled services are provided, which allows 
three-level computing technologies cooperated for achieving 
the requirement of smart manufacturing.

3  IIoL: pervasive knowledge network—
concepts and framework

3.1  Concept and framework of IIoL

The IIoL architecture, shown in Fig. 2, consists of three 
main sections, physical section, LPWAN section, and cloud 
section. In the physical section, the industrial equipment, 
including industrial robots, computer numerical control 
(CNC) machines, and other industrial machines, are the 
primary data sources. The raw data is collected from these 
data sources by the smart sensors of the LPWAN section. 
Another critical part of the physical section is information 
platforms which provide the information and knowledge dis-
covered from the cloud and LPWAN sections.
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In the LPWAN section, this research proposes an internet 
of learning based framework for industry, which is called 
Industry internet of learning (IIoL). The smart sensors col-
lect raw data from industrial equipment. The data is also 
pre-processed in smart sensors relying on the embedded 
processors. The pre-processed data is uploaded to the smart 
gateway, and low-level information, such as system status 
warning information is delivered to the physical section 
assisting the people in making corrected decisions. All of the 
pre-processed data is uploaded to the smart gateways, where 
the pre-processed data is analysed by some advanced data 
analytics algorithms, such as regression, classification, and 
clustering. The data is processed becoming more abstracted. 
Two types of knowledge are generated in the smart gate-
ways. One knowledge is for smart sensors which improve the 
parameter settings in both software and hardware of smart 
sensors. Another knowledge will be present in the physical 
section, which focuses on the entire manufacturing system. 
For example, the twin models and machine health analysis is 
generated based on knowledge. In the proposed IIoL frame-
work, only processed data is uploaded into the cloud. In the 
cloud, high-level data analysis, such as integrated simula-
tion and synthesis, collaborative diagnostics and decision 

making, is completed. Cloud-discovered knowledge can be 
used for improving the internet of learning based LPWAN. 
Generally, the proposed LPWAN, including smart sensors 
and gateways, have the learning capability from each other 
and the cloud. Additionally, on the cloud, AI knowledge, 
such as self-configuration, self-adjust, and self-optimisation, 
is discovered.

The proposed framework matches the structure and 
requirement of 5C architecture proposed by Lee et  al. 
(2015), which is shown in Fig. 3. In the 5C architecture, five 
levels of functions are described as Sensor connection level, 
Data to information conversion level, Cyber level, Cogni-
tion level, and Configuration level, which are classified as 
three main technologies, Data technology, Analytic technol-
ogy, and Operation technology. In the proposed structure, 
the smart sensors have mapped the functions in the Sensor 
connection level and Data to information conversion level. 
It is benefited from the edge device capabilities of data col-
lection and processing. These capabilities are referred to the 
expected features of Data technology and Analytic technol-
ogy defined for the 5C architecture, such as high data trans-
fer rate, low latency, high reliability, data pre-processing and 
data visualization. The proposed smart gateways provide the 

Fig. 2  The framework of IIoL
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functions on Cyber level, which the analytic technology is 
applied. Furthermore, the cloud makes the manufacturing 
system intelligent and self-configured which are the core 
functions on Cognition level and Configuration level. In 
order to discover the hidden patterns and knowledge, Opera-
tion technology is used for achieving enterprise control and 
intelligent optimisation. Generally, the proposed framework 
includes the primary functions and features in 5C architec-
ture (Lee et al. 2015). In the next section, the knowledge 
chains in this framework are examined and discussed with 
more details.

3.2  Pervasive knowledge network: IIoL‑enabled 
LPWAN and cloud

Based on the computing capability of each edge in a pro-
posed LPWAN network, including smart sensors and smart 
gateways, the knowledge is discovered and flowed between 
smart sensors and gateways. Integrating the cloud, there are 

several knowledge chains in the proposed framework. In this 
section, the details of these knowledge chains are discussed. 
Before introducing the details of the methodology, the list of 
nomenclature is displayed in Table 2.

3.2.1  On smart sensors

The raw data is collected from the physical section by smart 
sensors which are represented as follows:

where D is the entire raw dataset which consists of the num-
ber of r features, D1,D2,… , Dr.

There are three types of knowledge for the physic work, 
Knowledge I, III, V which is discovered from smart sensors, 
gateways and the cloud. For Knowledge I, the based repre-
sentation is shown as:

(1)D =
[

D1,D2,… , Dr

]

,

Fig. 3  The mapping between the proposed framework IIoL and 5C architecture (Lee 2019)

Table 2  The list of nomenclature which is used in the methodology

Symbol Property Symbol Property

CKP Cloud obtained knowledge for the physical world (Knowledge V) f ke
n

The input variables of discovering knowledge II

Ckf
m

The knowledge for the smart gateway (Knowledge IV) f ke(⋅) The function of discovering the knowledge (II)
Dr raw dataset, include the number of r features FKC

m
The processed data for cloud

Ekp
n

The edge obtained knowledge for the physic world (Knowledge I) f kc(⋅) The function of data processing for cloud

e
kp
n

The input variables of discovering knowledge I f kc
m

The input variables of data processing

Ekf
n

The data pre-processing results for the smart gateway gkp(⋅) The function of discovering the knowledge (Knowledge I)

e
kp
n

The input variables of data pre-processing gkf (⋅) The function of data pre-process

FKP
n

The knowledge for the physic world (Knowledge III) hkp(⋅) The function of Knowledge V

f kp
n

The input variables of discovering knowledge III hkf (⋅) The function of Knowledge IV
f kp(⋅) The function of discovering the knowledge (III) n The number of smart sensors
Ffe
n

The knowledge for smart sensors (Knowledge II) m The number of smart gateways
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where Ekp

1
…E

kp
n

 are the edge obtained knowledge for the 
physic world (Knowledge I), gkp(⋅) is the function of discov-
ering the knowledge for the physic world. n is the number 
of edge devices. ekp

1
… e

kp
n  are the variables of the function 

gkp(⋅) . Furthermore, the data is also pre-processed on smart 
sensors, which are defined:

In the above functions, Ekf

1
…E

kf
n

 are the pre-processing 
results for the smart gateway, gkf (⋅) is the function of dis-
covering the knowledge for smart gateway. ekf

1
… e

kf
n  are the 

variables of the function gkf (⋅).

3.2.2  On smart gateways

In the smart gateway section, two types of knowledge are 
discovered. One is for the physic world (Knowledge III), 
which the knowledge chain is represented as:

In this set of functions, FKP
1

…F
KP
n

 are the knowledge for 
the physic world (Knowledge III), fkp(⋅) is the function of 
discovering the knowledge for the physic world. f kp

1
… f

kp
m  

are the variables of the function fkp(⋅) . Another type of 
knowledge (knowledge II) is for smart sensors which the 
knowledge chains are denoted as:

the FKE
1

…F
KE
n

 are the knowledge for smart sensors (Knowl-
edge II), fke(⋅) is the function of discovering knowledge. 
f ke
1
… f ke

n
 are the variables of the function fke(⋅) , which is 

related to the inputs of smart sensor e . Meanwhile, in the 
smart gateways, the data collected from smart sensors is 
processed again for uploading to the cloud:

(2)

E
kp

1
= gkp(D, e

kp

1
),

E
kp

2
= gkp(D, e

kp

2
),

Ekp
n

= gkp(D, e
kp
n
),

(3)

E
kf

1
= gkf (D

E
1
, e

kf

1
), EKF = [E

kf

1
,E

kf

2
,… ,E

kf
n ],

E
kf

2
= gkf (D

E
2
, e

kf

2
), EFK

1
= [E

kf

1
,E

kf

2
,… ,E

kf

j
],

E
kf
n
= gkf

(

D
E
n
, e

kf
n

)

, E
FK
2

=

[

E
kf

j+1
, E

kf

j+2
,… , E

kf

k

]

,

(4)

F
KP
1

= fkp

(

E
FK
1
, f

kp

1

)

F
KP
2

= fkp

(

E
FK
2
, f

kp

2

)

F
KP
n

= fkp
(

E
FK
m
, f kp
n

)

(5)
F
fe

1
= fke

(

E
FK
1
, f ke
1

)

f ke
1

=
[

e1, e2,… , ej

]

F
fe

2
= fke(E

F
2
K, f k

1
e) f ke

2
= [e(j+1), e(j+2),… , ek]

F
fe
n
= fke

(

E
FK
n
, f ke
n

)

f ke
n

=
[

en−2, en−1,… , en

]

F
KC
1

…F
KC
m

 are the processed data for cloud, fkc(⋅) is the 
function of data processing for the cloud. The m is the num-
ber of smart gateways. f kc

1
… f kc

m
 are the variables of the 

function fkc(⋅).

3.2.3  On cloud

On the cloud, the primary knowledge (Knowledge V) CKP is 
for the physical world by using the function hkp(⋅):

The inputs of hkp(⋅) is the processed data obtained from 
the smart gateway. Also, the cloud can provide another 
knowledge (knowledge IV) for smart gateways based on the 
high-level information to improve the performance, which 
is represented as:

C
kf

1
…C

kf
m

 are the knowledge (knowledge IV) deliver-
ing to each smart gateway, where hkf (⋅) is the knowledge 
discovering function, FKC

m
 are the variables. In both expres-

sions, Δkf  and Δkp are the bias. According to the framework 
details shown above, five types of knowledge are discovered 
in the proposed framework. They have been summarised in 
Table 3, where the main contents, the target of the knowl-
edge and the location of discovery are clarified

In order to validate the feasibility of the concept, frame-
work and pervasive knowledge network, two cases are 
demonstrated in the next two sections. In the first case, the 
proposed framework was applied for the machine health 

(6)

F
KC
1

= fkc
(

E
FK
1
, f kc
1

)

F
KC
2

= fkc
(

E
FK
2
, f kc
2

)

F
KC
m

= fkc
(

E
FK
m
, f kc
m

)

(7)C
KP = hkp

(

F
KC
,Δkp

)

(8)

C
kf

1
= hkf (F

KC
1
,Δkf )

C
kf

2
= hkf (F

KC
2
,Δkf )

C
kf
m
= hkf (F

KC
m
,Δkf )

Table 3  The list of knowledge discovered by the proposed method

Knowledge type Main contents Target Discovered on

Knowledge I E
kp

1
…E

kp
n

Physical world Smart sensor

Knowledge II F
KE
1

…F
KE
n

Smart sensor Smart gateway
Knowledge III F

KP
1

…F
KP
n

Physical world Smart gateway
Knowledge IV C

kf

1
…C

kf
m

Smart gateway Cloud

Knowledge V C
KP Physical world Cloud
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prognosis of a water plant. The plant consists of three pump-
ing stations located in three different places, which over ten 
pump machines are installed in each pumping station. The 
vibration data of the pump machine is monitored, transferred 
and analysed for the predictive maintenance. The second 
case is about the automobile production factory assets mon-
itoring and management. An over 200,000 square meters 
automobile production factory is focused. The status of laser 
rooms and assembly robots in this factory are monitored and 
controlled. The Predictive maintenance (PdM) is applied for 
the robots in this case. Both cases have been implemented in 
the real scenario, guided by the framework of the IIoL which 
the LPWAN of is based on the ZETA wireless communi-
cation technology. The data in these two case is collected 
from ongoing machines, systems, and working environment, 
which is used for improving and maintaining the relevant 
manufacturing systems.

4  Case study I: machine health prognosis 
and management of a water plant

4.1  Background

In this case, the machine health prognosis was analysed 
under the framework of the proposed IIoL approach focus-
ing on a water plant which includes three pumping stations. 
These pumping stations are located in Shenzhen China, 
which has displayed on the following map, Fig. 4. The dis-
tance between the central station and west station is about 
1.1 km, and the distance to the east station is about 0.35 km. 
The smart gateway is allocated in the central station. In each 
station, over ten water pumps are monitored by the smart 
sensors. The data is sensed, collected and pre-processed in 
each smart sensor. Then the pre-processed data is sent to 
the smart gateway for further analytics. The knowledge of 

improving data collection and pre-processing return to the 
smart sensors. The essential information of urgent main-
tenance is displayed to the maintenance operators. These 
knowledge and information are also uploaded to the cloud 
for complete analytics. The advanced big data analysis, such 
as machine learning and deep learning, is applied to the 
cloud for machine health prognosis, which will also integrate 
more data and information out of the system.

4.2  Data pre‑processing on smart sensors

The smart sensors used in the case study focus on collecting 
the vibration data representing the vibration of pumps. The 
sensor are mounted on each pump which connects to the 
smart gateway wirelessly in the ZETA network. Figure 5 
shows the pumps in the pump station and the smart sensor 
mounted on the pump machine. The smart sensor is built on 
the STM32L452CC processor, which is an Ultra-low-power 
flex power control processor (STMicroelectronics 2019). 
The vibration sensor in the smart sensor is the micro-electro-
mechanical systems (MEMS) vibration sensor, which is used 
for collecting the acceleration signals of three-axis, in terms 
of the x-axis, y-axis, and z-axis. There are 4096 sampling 
points collected by the sensor, where the data sampling fre-
quency in this case study is 3200 HZ.

Based on the IIoL framework, the raw data is pre-pro-
cessed on smart sensors. Only the pre-processed data is sent 
to the smart gateway. In this case study, 57 pre-processed 
features are generated on smart sensors, which have been 
determined in Table 4.

Apart from sending the pre-processed data to the gateway, 
the information of these features can be displayed on the 
user interface based on the interests of the operators and 
plant managers. The displayed information is referred to the 
Knowledge I in the proposed framework. In this case, the 
mean, maximum and minimum values of x, y, and z axes 

Fig. 4  Locations of pumping stations
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are displayed which gives plant operators and manager a 
general idea of the vibrations on three axes at the perspective 
of basic statistics.

4.3  Knowledge and information discovery on smart 
gateways

Technique details of the smart gateway are presented in 
Table 5. The smart gateway applies ATSMA5D36 as the 
core processor. This processor uses ultra-low-power ARM 
Cortex A5 as the core, but it has a reasonable computing 
capability in terms of 536 MHz CPU speed and128 KB 

SRAM (Cortex-A5™ 2009). This smart gateway can cover 
over 5 km in the urban environment, which three pumping 
stations are built under the communication range.

On the smart gateway, all pre-processed data that is col-
lected from pump machines will be integrated. The data 
from each pump machine is explicitly marked for identify-
ing the machine. The clustering process is applied for realis-
ing the general machine behaviours, which are represented 
as different clusters on the smart gateway. The K-Means is 
used as the clustering algorithm in this case study (Jiang 
et al. 2020). Three clusters have been set up as the cluster 
number, which is based on three pump station. The outlier 

Fig. 5  Pumps (left) and smart sensor (right) in the water station

Table 4  Pre-processed features generated by smart sensors

Features Description Features Description

meanX,Y,Z Average in x, y and z axes. peakX,Y,Z Peak values in x, y and z axes
maxX,Y,Z Maximum in x, y and z axes. pulseX,Y,Z Pulse Values in x, y and z axes
minX,Y,Z Minimum in x, y and z axes. marginX,Y,Z Margin in x, y and z axes
rmsX,Y,Z Root mean square in x, y and z axes. skewRatioX,Y,Z Skewness ratio in x, y and z axes
smrX,Y,Z Standardised mortality ration in x, y and z axes. kurRatioX,Y,Z Kurtosis ratio in x, y and z axes
stdX,Y,Z Standard deviation in x, y and z axes. meanSpectrumX,Y,Z Average of spectrum in x, y and z axes
varX,Y,Z Variation in x, y and z axes. centerSpectrumX,Y,Z Centre point of spectrum in x, y and z axes
skewX,Y,Z Skewness in x, y and z axes. rmsSpectrumX,Y,Z Root mean square of spectrum in x, y and z axes
kurX,Y,Z Kurtosis in x, y and z axes. stdSpectrumX,Y,Z The standard deviation of spectrum in x, y and z axes
waveX,Y,Z Wavelet in x, y and z axes.
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data is then highlighted to present to the operator, which are 
represented as Knowledge III. The clustering results are also 
integrated into the dataset, which is uploaded to the cloud. 
Also, a feature selection process is used on the smart gate-
way for the clustering at the meanwhile. The most important 
features are determined out of pre-processed features. The 
entropy-based feature ranking is used, which the importance 
of each feature is outlined. To increase the processing capa-
bility of smart sensor, 80% features which are on the top of 
feature ranking, are used for pre-processing on the smart 
sensor. This knowledge (Knowledge II) is sent down to each 
smart sensor. However, it is dynamic information which is 
influenced by not only clustering on the smart gateway but 
also the results sent by the cloud, which will be explained 
in the next subsection.

4.4  Machine health prognosis on the cloud

By using the processed data, the health of each pump 
machine is predicted, especially for the critical component 
of a pump machine, the bearing. Based on the historical 
data and the domain knowledge, the health of each pump 
machine is levelled as a health score, which is 0–100. 
The 0 means the pump machine is no longer to be used, 
and 100 means the machine is new. This score is used as 
the main predicted target for machine health prediction, 
which is presented to the managers as Knowledge V In this 
case, three prediction methods are used, which are linear 
regression, decision tree and neural network. Comparing 
the prediction accuracy of these three algorithms, the neu-
ral network obtained the highest accuracy. The predicted 
health score is presented to operators and system manag-
ers, which is used for understanding and maintaining the 
machine.

Furthermore, on the cloud, all the data is integrated, and 
the feature is ranked again. The feature selection results 
are sent to smart gateways, which improves the processing 
capability of the smart gateway. This knowledge (Knowl-
edge IV) is also compared with the feature selection results 
of the smart gateway to enrich the understanding of the 
processed vibration features.

5  Case study II: assets monitoring 
and management for automobile factory

5.1  Background

The second case, designed under the IIoL framework 
is about the assets monitoring and management in an 
automobile factory in which the production area is over 
200,000 square meters. In this case, two laser rooms and 
over 40 industrial robots are focused as the main targets. 
The working environment is shown in Fig. 6. The left 
image shows the cooling water status monitoring smart 
sensors and working environment for the laser room. The 
right image shows the smart sensor of robots, which can 
sense the temperature and vibration of industrial robots.

Several types of smart sensors have been installed for 
collecting data and data pre-processing due to the signifi-
cant production area and the signal interference by the fac-
tory facilities. The smart gateway cannot cover the entire 
factory area within a reasonable network. To solve this 
issue, two mote devices are used in this case to enhance 
wireless communication strength and extend the commu-
nication range. The details of the mote devices are intro-
duced in Sect. 5.3. By using the data collected from the 

Table 5  Technique details of the Smart gateway

Smart gateway Technique details
Transfer Protocol ZETA

Working frequency Sub-GHz

Core processor ATSMA5D36

Transmit power ≤20dBm

Number of channels Three channels

Power supply type PoE/AC100 - 240V to DC 5V

stand-by current ≤100mA

Maximum power ≤5W

waterproof level IP67

Operating temperature −20 ºC ~ + 75 ºC

storage temperature −30 ºC ~ + 85 ºC
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smart sensor and the proposed IIoL approach, the working 
environment and devices status is monitored and analysed, 
and the industrial robots are maintained predictively.

5.2  Data pre‑processing on smart sensor

The smart sensor uses the same processor in this case. The 
details are shown in Sect. 4.3. However, more types of sen-
sors are applied in this case. The features of the raw data are 
explained in Table 6. According to the table, the tempera-
ture and humidity of the laser room have been monitored 
inside and outside. For the industrial robot, the temperature 
of cooling water, the temperature and vibration of robot 
server motors are also monitored. Each smart sensor is con-
nected with smart gateway wirelessly in the entire automo-
bile factory.

Similar to case one, for each feature, 19 pre-processed 
features are generated on the smart sensor, which 133 fea-
tures are generated and sent to the smart gateway in the 
LPWAN. Additionally, the mean, maximum and minimum 
values of the laser rooms in a period are presented to the 
operator with the alert as the defined Knowledge I. There 
are three colour alerts introduced in this case.

5.3  Knowledge and information discovery on smart 
gateways

To avoid the unnecessary data missing in the lager and com-
plete working environment, this case uses the other device 
for enhancing the communication strength of the LPWAN, 
which is called mote. The mote is designed for extending 
and enhancing the LPWAN, which is a low power and bat-
tery support wireless network middleware, especially for 
some production factories and more substantial network 
range requirement. In this case, the mote details are shown 
in Table 7.

Comparing to a smart gateway, the mote abandons the com-
puting capability but much lower the power usage, especially 
when it is standby, which allows the battery power supply. 
It has been approved as an indispensable component in the 
IIoT in this case study. After the pre-processed data is sent 
to the smart gateway via the mote, all the data is integrated 
and classified into different datasets, the laser room dataset 
and the industrial robot dataset. Similar to the last case, clus-
tering is one of the primary data analysis methods used on 
the smart gateway, which is presented to the relevant users 
as the defined Knowledge III. The status cluster information 

Fig. 6  The working environ-
ment of the automobile produc-
tion factory

Table 6  Feature description Laser rooms Industrial robots

Feature name Description Feature name Description

laserTemp-in Temperature of inside laser room coolTem Temperature of robot cooling water
laserTemp-out Temperature of outside laser room motorTem Temperature of robot sever motor
laserHum-in Humidity of inside laser room motorVib Vibration of robot server motor
laserHum-out Humidity of outside laser room
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is integrated with the pre-processed data and uploaded to 
the cloud. Additionally, the feature selection method is also 
applied to the smart gateway in this case. The laser room and 
industrial robot features are selected separately. The selected 
feature knowledge (Knowledge II) is sent back to a smart sen-
sor for improvement.

5.4  Factor assets monitoring and management 
on the cloud

After receiving the processed data from smart gateways, this 
data is integrated with historical data. Based on the laser room 
monitoring data and processed data, the laser room monitor-
ing status is predicted. The predictive time window is set as 
1 s. The time-series based neural network, long-short-term-
memory (LSTM) network was used in this case study. Another 
primary function on the cloud is predictive maintenance of 
industrial robots. The processed data is used with robot his-
torical maintenance dataset. This case targeted on the Remain 
useful life (RUL) of robots as the output of the modelling. A 
suitable modelling approach is explored to establish an airport 
conveyor RUL prediction model. Since there are multi-types of 
data in the integrated database, a merged neural network which 
consists of a long-short term memory network and artificial 
neural network is designed for modelling. A merged neural 
network can learn the hidden patterns from different data types 
and fuse these patterns to further learn the abstract patterns 
that relevant to the RUL of robots. The RUL information is 
display to the factory managers as Knowledge V. Also the 
RUL results can help smart gateway to improve feature selec-
tion, which is referred to as the defined Knowledge IV.

6  Discussion

In the last two sections, two industrial cases have been 
revealed to validate the feasibility of the proposed 
approach, IIoL. The IIoL has been implemented success-
fully in these two different industrial scenarios, which the 
working environment, situation and performance are dif-
ferent. In the first case, the pump machines health was 
presented, analysed and predicted to the operators and 
managers. The knowledge and data have been exchanged 
between the smart sensors and smart gateway, which 
improves the performance of LPWAN and Cloud sections. 
In the second case, the proposed method was applied in an 
even larger and more complete working area. Two types of 
industrial targets were focused on this case, the laser room 
and industrial robots. The industrial robots are maintained 
predictively benefiting from the proposed IIoL approach.

Although the working environment is different between 
the introduced case studies, there are still some common-
alities. Both cases are located in a large and complicated 
working field, which is generally larger than hundred-thou-
sand square meters. Furthermore, both cases have been 
surrounded by sophisticated electrical devices, which have 
caused signal interference. These two commonalities have 
shown the advantages of LPWAN, wide range and high 
stability. Additionally, this is a low power consumption 
network, which has a low cost of power consumption when 
the network is running. However, it is still the early stage 
of both cases, according to the principle of the proposed 
approach. Also, the cases are still developing following 

Table 7  Technique details of the mote

Mote Technique details
Transfer Protocol ZETA

Working frequency Sub-GHz

Transmit power ≤20dBm

Power supply type 2*ER34615 (battery)

Working current ≤70mA

stand-by current 5μA

waterproof level IP67

Operating temperature −20 ºC ~ + 75 ºC

storage temperature −40 ºC ~ + 100 ºC
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the proposed framework to achieve the goals, mainly the 
functions on the cloud. More relevant data needs to be col-
lected by integrating more sensors. The results of machine 
health prognosis and predictive maintenance are on the 
stage of the test, which is going to be used in reality soon.

Apart from the introduced industry case studies, the pro-
posed approach can also be applied to another manufacturing 
system with some requirements. First of all, the smart sen-
sors need a friendly interface to sense and collect essential 
data from the target system, which provides the system with 
a digital industrial environment. A suitable digital environ-
ment can show real-time data and information to the relevant 
people. Moreover, the target system needs to be covered by 
an LPWA network. In the above case studies, ZETA network 
has been implemented as the supported LPWAN technology 
in this research, which can be replaced as another LPWAN 
technology. The technology plan is based on the local wire-
less communication policy and infrastructure budget, which 
should be planned before applied the proposed approach.

7  Conclusions

IIoT is one of the core technologies at the age of Industry 
4.0. The computing capability of current edge devices is 
sturdy and able to achieve some complex data processing. 
The LPWAN technologies can cover a large area with low 
power consumption, which is factory-suitable wireless com-
munication technology. The focus of this paper has been on 
discovering the full potential of the IIoT network, which 
includes edge and network devices. A data and knowledge 
framework (IIoL) was proposed, which was inspired by a 
review of related research indicating the significant com-
puting and data-communication capability of edge devices 
and LPWAN. In the proposed framework, every point of 
the network is used to generate relevant information and 
knowledge. The information and knowledge are exchanged 
between edge devices and gateways for improving the per-
formance of the entire system. Two case studies are revealed 
in this paper. In the case studies, the feasibility of the pro-
posed approach was carried out based on a pump station and 
automobile factory. Data was collected based on different 
purposes, and smart sensors and gateways were improved 
by the knowledge discovered from the proposed IIoL 
approach. On the cloud, functional models were built based 
on advanced data analytics technologies, such as machine 
learning and deep learning. The results are used for assist-
ing relevant professionals in understanding the system and 
maintaining the critical component predictively. Finally, this 
approach bears the nature of data-driven which can also be 
developed to help many other manufacturing systems apart 
from the cases introduced in this paper.
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